Memorandum

To: Chief, Division of ANCSA Operations (960)

From: SD

Subject: Final Easements for the Village of Copper Center

The easement staff met on January 12, 1979, to conform the final easement recommendations and consider major waterways and navigability recommendations for lands selected by the village of Copper Center. Of those recommendations, my decision is as follows:

MAJOR WATERWAYS:

The Copper River, the Klutina River, Klutina Lake and Hudson Lake were considered and discussed.

The Copper River has a history of past use for access purposes. The river today is still extensively used for access to public land and for access between communities. Therefore, the Copper River was determined to be a major waterway.

The Klutina River was determined to be a major waterway from the east side of the airstrip in T. 1 S., R. 2 W., Copper River Meridian, westerly through the selection to Klutina Lake. The above-described portion is heavily used for access to Klutina Lake (which is navigable) and to public lands around the lake. The portion of Klutina River which goes downstream from the airport to the Copper River was found to be non-major. The difficult and rough nature of this portion of the river makes access travel uncommon.

Klutina Lake was determined to be a major waterway. It receives heavy use for access to public lands around the lake.

Hudson Lake was determined to be a major waterway. It provides significant floatplane access to public lands in the area.

No other water bodies within the lands considered were determined to be major waterways.
Navigability:

The Copper River, the Klutina River, Klutina Lake and Hudson Lake were considered and discussed.

The Copper River has a history of use for travel, trade and commerce. During the early 1900's, a fleet of sternwheelers operated on the river to ferry supplies to the Kennicott mine facilities near McCarthy and also upstream to the Upper Copper River Basin. Other smaller boats were used by miners, trappers, and traders for access to and from the upper Copper River Basin. Therefore, the Copper River was found to be navigable.

The Klutina River was found to be navigable. There is evidence of historic use of the Klutina for travel and commerce.

Klutina Lake was also found to be navigable due to evidence of historic use for travel and commerce.

Hudson Lake was determined to be non-navigable because it has no known history of use for travel, trade or commerce.

No other water bodies within the lands considered were determined to be navigable.

ALLOWABLE USES:

All easements are subject to applicable Federal, State or municipal corporation regulation. The following is a listing of uses allowed for each type of easement. Any uses which are not specifically listed are prohibited.

25 Foot Trail The uses allowed on a twenty-five (25) foot wide trail easement are: travel by foot, dogsled, animals, snowmobiles, two and three-wheel vehicles, and small all-terrain vehicles (less than 3,000 lbs. Gross Vehicle Weight (GVW)).

50 Foot Trail The uses allowed on a fifty (50) foot wide trail easement are: travel by foot, dogsled, animals, snowmobiles, two and three-wheel vehicles, small and large all-terrain vehicles, track vehicles and four-wheel drive vehicles.

60 Foot Road The uses allowed on a sixty (60) foot wide road easement are: travel by foot, dogsled, animals, snowmobiles, two and three-wheel vehicles, small and large all-terrain vehicles, track vehicles, four-wheel drive vehicles, automobiles, and trucks.
One Acre Site The uses allowed for a site easement are: vehicle parking (e.g., aircraft, boats, ATV's, snowmobiles, cars, trucks), temporary camping, and loading or unloading. Temporary camping, loading, or unloading shall be limited to 24 hours.

Site Easement (Airstrip) The uses allowed for a site easement are: aircraft landing, vehicle parking (e.g., aircraft, boats, ATV's, snowmobiles, cars, trucks), temporary camping, and loading or unloading. Temporary camping, loading or unloading shall be limited to 24 hours.

EASEMENTS TO BE RESERVED:

a. (EIN 1 C5, D1, D9) An easement for an existing access trail twenty-five (25) feet in width from the left bank of the Copper River in Sec. 18, T. 2 N., R. 1 E., Copper River Meridian, northeasterly to public lands in T. 3 N., R. 2 E., Copper River Meridian. The trail passes into T. 3 N., R. 1 E., an Ahtna, Inc. regional selection, and is identified as EIN 36 D9 in this selection. The uses allowed are those listed above for a twenty-five (25) foot wide trail easement.

Discussion:
This is an existing trail that currently receives use. It provides access to public lands in the Wrangells area which are isolated by the selection pattern of the village and the regional corporations. The trail follows the topography to public lands in T. 3 N., R. 2 E. It is noted that if the Ahtna, Inc. selection of T. 3 N., R. 1 E., is not conveyed, that portion of the trail beyond the north section line of Sec. 4, T. 2 N., R. 1 E., is unnecessary and is to be recommended for deletion by Easement Management.

b. (EIN 2 C5) A one (1) acre site easement upland of the ordinary high water mark in Sec. 24, T. 1 N., R. 1 E., Copper River Meridian, on the left bank of the Copper River at the mouth of the Nadina River. The uses allowed are those listed above for a one (1) acre site easement.

Discussion:
This easement is necessary as a trailhead for an access route leading to public lands and for use by the public while traveling along the waters of the Copper River. The Copper River receives very
heavy use by the public for recreational float trips and for travel to the lands and resources along the river. The site also functions as a trailhead area for landing boats while traveling overland to public lands along the Nadina River on trail EIN 2a C5.

c. (EIN 2a C5) An easement for an existing access trail twenty-five (25) feet in width from the left bank of the Copper River and site EIN 2 C5 in Sec. 24, T. 1 N., R 1 E., Copper River Meridian northeasterly to public lands. The uses allowed are those listed above for a twenty-five (25) foot wide trail easement.

Discussion:
This trail has existing use as a travel route to public lands located near the base of Mt. Drum. This trail is a necessary access route to these public lands.

d. (EIN 2b C5) A one (1) acre site easement upland of the ordinary high-water mark in Sec. 32, T. 1 N., R. 2 E., Copper River Meridian, on the left bank of the Copper River. The uses allowed are those listed above for a one (1) acre site easement.

Discussion:
This easement is necessary as a trailhead for an access route to public lands and as a stopping area for the public while using the Copper River. The Copper River is heavily used for recreational floating and for travel between points along the river. The site also functions as trailhead for boat docking while utilizing an overland access route to public lands along Trail EIN 2c C5.

e. (EIN 2c C5) An easement for an existing access trail twenty-five (25) feet in width from the left bank of the Copper River at site EIN 2b C5 in Sec. 32, T. 1 N., R. 2 E., Copper River Meridian northeasterly to public lands. The uses allowed are those listed above for a twenty-five (25) foot wide trail easement.

Discussion:
This easement is necessary as an overland access route to lands remaining in public ownership which may be isolated by Native ownership patterns. The easement roughly follows the Dadina River and has been used for a number of years for access to this
area. Examination of the topography between the Nadina River and the Dadina River revealed the necessity of both trail systems. Rivers, canyons and ridges divide the two proposed systems. Trail EIN 2c C5 extends through the lands now under regional selection by Ahtna, Inc. as trail EIN 32 D1, D9, to public lands.

f. (5 C5, D1 D9) An easement for an existing access trail twenty-five (25) feet in width from road EIN 11 C3, C5, D1, D9, L (the Klutina Lake Road) in Sec. 14, T. 1 N., R. 2 W., Copper River Meridian, northwesterly to Hudson Lake and site EIN 5a, C5, D1, D9, thence northwesterly to public lands in Sec. 35, T. 2 N., R. 3 W., Copper River Meridian. The uses allowed are those listed above for a twenty-five (25) foot wide trail easement.

Discussion:
This easement provides access to Hudson Lake, a major waterway, and to lands remaining in public ownership located beyond Hudson Lake. The first portion of the trail has been used for the past 80 years and is the main overland access route to Hudson Lake. That portion of the trail extending beyond site EIN 5a C5, D1, D9, northwesterly to public lands, connects the Hudson Lake area trails to northerly access trails via Tazlina trail EIN 11j C5, D9, and public lands.

g. (EIN 5a C5, D1, D9) A site easement upland of the ordinary high-water mark in Sec. 6, T. 1 N., R 2 W., Copper River Meridian, on the east shore of Hudson Lake. The site is one (1) acre in size with a 25-foot easement on the bed of the lake along the entire waterfront of the site. The uses allowed are those listed above for a one (1) acre site.

Discussion:
This easement is necessary as a loading, unloading area and floatplane docking area on the shore of Hudson Lake. The entire shoreline of Hudson Lake is selected by the Native corporation and this is the only public access point to the lake.

h. (EIN 5c C5, D1, D9) An easement for an existing access trail twenty-five (25) feet in width from public lands in Sec. 32, T. 2 N., R. 2 W., Copper River Meridian, southwesterly to public lands in
T. 1 N., R. 3 W., Copper River Meridian. The uses allowed are those listed above for a twenty-five (25) foot wide trail easement.

Discussion:
This existing trail provides access to isolated public lands east and southwest of Hudson Lake. If T. 2 N., R. 2 W., Copper River Meridian, and T. 1 N., R. 3 W., Copper River Meridian, are later conveyed to Ahtna, Inc., this easement is recommended for deletion.

i. (EIN 10 C5) A site easement for a bush airstrip two hundred and fifty (250) feet in width and three thousand (3,000) feet in length located in Sec. 19, T. 1 S., R. 2 W., Copper River Meridian, adjacent to road EIN 11 C3, C5, D1, D9, L. This size is minimum for safe public use of this airstrip. The uses allowed are those listed above for an airstrip site.

Discussion:
This easement is necessary to protect the existing landing strip near the end of the Klutina Lake Road near the outlet of Klutina Lake on the Klutina River. This landing area is used by light aircraft on wheels for access to Klutina Lake. The Klutina River is navigable and major from the airstrip west to the lake and Klutina Lake is navigable and major. Both have received much use in the past. The Native corporation selecting this area is interested in building a campground and resort area near this point. This easement is not intended to be in competition with such facilities, but to provide a public use landing area to compliment such an operation. The easement is necessary for access to public waters of Klutina Lake and the Klutina River and to the public lands located near the south end of Klutina Lake.

j. (EIN 10a C5) A one (1) acre site easement upland of the ordinary high water mark in Sec. 19, T. 1 S., R. 2 W., Copper River Meridian, on the left bank of the Klutina River adjoining the west end of airstrip EIN 10 C5. The uses allowed are those listed above for a one (1) acre site.

Discussion:
This easement is necessary to provide public access between the road and the navigable Klutina River (a major waterway at this point) and the airstrip and the Klutina River. This area redevises
very heavy public use. This site will enable the public to put into the river from the road and the airstrip and go upstream to the navigable Klutina Lake, a major waterway. It will also act as a trailhead for the public using trail EIN 21 E to proceed westerly to public lands.

k. (EIN 11 C3, C5, D1, D9, L) An easement sixty (60) feet in width for an existing road from the Copper Center area in Sec. 18, T. 2 N., R. 1 W., Copper River Meridian, southwesterly to site EIN 10a C5, on the Klutina River near Klutina Lake. The uses allowed are those listed above for a sixty (60) foot wide road easement.

Discussion:
This easement known as the Klutina Lake Road is necessary to provide access from Copper Center to Klutina Lake. This is the only overland access route to the lake and has many years of existing use by the public. This trail was first used during the gold rush days by miners traveling from Valdez to the Klondike. Over the years, this trail has been upgraded from a hiking trail to a very crude jeep trail to its present condition of a somewhat marginal road. This easement is necessary for a continued public access to major, navigable waterways and lands and resources remaining in public ownership.

l. (EIN 12 C5, L) An easement fifty (50) feet in width for existing powerlines and telephone lines roughly paralleling the Richardson Highway from Sec. 36, T. 3 N., R. 1 W., southerly to Sec. 28, T. 1 N., R. 1 E., Copper River Meridian. The uses allowed are those associated with operation and maintenance of power and telephone line facilities.

Discussion:
Telephone lines and powerlines have been constructed roughly paralleling the highways in this area. In some places, the powerlines are covered by a granted right-of-way, A-042054. Since, until recently, the power company and the telephone utility company were one and the same, the telephone lines were simply built piggyback-fashion using the power poles to string the telephone lines on. The lines were constructed a number of years ago and have been providing continuous service to the residents of the Copper River Basin.
m. (EIN 12a C5, L) An easement fifty (50) feet in width for existing telephone lines roughly paralleling the old Edgerton Cutoff from Sec. 36, T. 1 N., R. 1 E., Copper River Meridian, southerly to Sec. 31, T. 1 S., R. 3 E., Copper River Meridian. The uses allowed are those activities associated with operation and maintenance of telephone line facilities.

Discussion:
Telephone lines have been constructed roughly paralleling the highways in this area. The lines were constructed a number of years ago and have been providing continuous service to the residents of the Copper River Basin.

n. (EIN 12b C5, L) An easement fifty (50) feet in width for existing powerlines and telephone lines roughly paralleling the Edgerton Highway from Sec. 2, T. 2 S., R. 2 E., Copper River Meridian, northeasterly to Sec. 31, T. 1 S., R. 3 E., Copper River Meridian. The uses allowed are those activities associated with operation and maintenance of power and telephone line facilities.

Discussion:
Telephone lines and powerlines have been constructed roughly paralleling the highways in this area. In some places, the powerlines are covered by a granted right-of-way, A-042054. Since until recently, the power company and the telephone utility company were one and the same, the telephone lines were simply built piggyback-fashion using the power poles to string the telephone lines on. The lines were constructed a number of years ago and have been providing continuous service to the residents of the Copper River Basin.

o. (EIN 17 C5) An easement for a proposed access trail twenty-five (25) feet in width from Copper Center southwesterly to isolated public lands in Secs. 25, 26, 27, 34, 35, and 36, T. 2 N., R. 1 W., Copper River Meridian. The uses allowed are those listed above for a twenty-five (25) foot wide trail easement.

Discussion:
This easement is necessary to provide access from Copper Center to a block of state owned lands located a short distance from Copper Center. These public lands have been isolated from other possible access routes by Copper Center and Ahtna
land selections. The elevated status of the Trans-Alaska Pipeline prevents the practical utilization of other alternatives requiring a breach of the pipeline.

(EIN 21 E) An easement for an existing access trail twenty-five (25) feet in width from site EIN 10a C5 in Sec. 19, T. 1 S., R. 2 W., Copper River Meridian, southwesterly to public lands. The uses allowed are those listed above for a twenty-five (25) foot wide trail easement.

Discussion:
This trail is necessary to allow continued public access to public lands located west of the Native selection. This is a continuation of the Klutina Lake Road.

(EIN 22 E) An easement for a proposed access trail twenty-five (25) feet in width from road EIN 11 C3 C5, D1, D9, L in Sec. 17, T. 1 S., R. 2 W., Copper River Meridian, northerly to public lands. The uses allowed are those listed above for a twenty-five (25) foot wide trail easement.

Discussion:
This trail offers access to public lands which will be isolated by Native selections. This trail is necessary to allow continued use of public lands and resources. However, these lands are over-selected by the Klutt-Kaah Corporation and in the event that these lands are conveyed to the corporation, the easement will be dropped.

(EIN 23 D1) An easement for a proposed access trail twenty-five (25) feet in width from site EIN 2 C5 in Sec. 24, T. 1 N., R. 1 E., Copper River Meridian, northerly to public lands in Secs. 1, 2, 11, 12, and 13, T. 1 N., R. 1 E., Copper River Meridian. The uses allowed are those listed above for a twenty-five (25) foot wide trail easement.

Discussion:
This easement is necessary to allow continued public access to publicly-owned (State) lands which are isolated from other forms of access by Native selections. This easement is not duplicative of proposed EIN 24 D1, an easement to be dropped with the conveyance of T. 2 N., R. 2 E., to Ahtna. Additionally, the difficulty of the terrain makes access from only the north unreasonable.
s. (EIN 24 D1) An easement for a proposed access trail twenty-five (25) feet in width from Sec. 1, T. 1 N., R. 1 E., Copper River Meridian, northeasterly to Sec. 31, T. 2 N., R. 2 E., Copper River Meridian. The uses allowed are those listed above for a twenty-five (25) foot wide trail easement.

Discussion:
This easement is necessary to allow continued public access to publicly-owned lands from public lands isolated by the selection pattern. If lands in T. 2 N., R. 2 E., Copper River Meridian, are conveyed at a later date, the easement will be dropped.

The following easements were considered but not recommended:

a. (EIN 7 C5, D9) An easement for a proposed access trail twenty-five (25) feet in width from site easement EIN 5a C5, D1, D9 on Hudson Lake northeasterly to public lands.

Discussion:
Access to this area is provided by trail EIN 5c C5, D9. Therefore, this trail does not meet the requirements of the new easement regulations.

b. (EIN 8a C1, C5, D1, D9, L) A streamside easement twenty-five (25) feet in width upland of and parallel to the ordinary high water mark on all banks and an easement on the entire bed of the Klutina River from Klutina Lake to the Copper River.

Discussion:
This is a recreation easement and does not meet the requirements of the new easement regulations.

c. (EIN 8b C1, C5, D1, D9, L) A site easement upland of the ordinary high water mark in Sec. 14, T. 2 N., R. 1 W., Copper River Meridian, on the left bank of the Klutina River.

Discussion:
Access to the Klutina River is readily available from road EIN 11 C3, C5, D1, D9, L in many points along the road. Therefore, the easement is unnecessary. The Klutina River is not a major waterway downstream of the airstrip, access to the river will not provide access to other publicly owned lands or to a major waterway.
d. (EIN 8c C1, C5, D1, D9, L) A site easement upland of the ordinary high water mark in Secs. 13 and 14, T. 1 N., R. 2 W., Copper River Meridian, on the left bank of the Klutina River.

Discussion:
Access to the Klutina River is readily available from road EIN 11 C3, C5, D1, D9, L in many points along the road. Therefore, the easement is unnecessary. The Klutina River is not a major waterway downstream of the airstrip, access to the river will not provide access to other publicly owned lands or to a major waterway.

e. (EIN 8d C1, C5, D1, D9, L) A site easement upland of the ordinary high water mark in Sec. 26, T. 1 N., R. 2 W., Copper River Meridian, on the left bank of the Klutina River.

Discussion:
Access to the Klutina River is readily available from road EIN 11 C3, C5, D1, D9, L in many points along the road. Therefore, the easement is unnecessary. The Klutina River is not a major waterway downstream of the airstrip, access to the river will not provide access to other publicly owned lands or to a major waterway.

f. (EIN 8e C1, C5, D1, D9, L) An easement for an existing access trail twenty-five (25) feet in width from site EIN 8b C1, C5, D1, D9, L adjoining the Klutina River northerly to the Klutina Lake Road.

Discussion:
Access to the Klutina River is readily available from road EIN 11 C3, C5, D1, D9, L in many points along the road. Therefore, the easement is unnecessary. The Klutina River is not a major waterway downstream of the airstrip, access to the river will not provide access to other publicly owned lands or to a major waterway.

g. (EIN 8f C1, C5, D1, D9, L) An easement for a proposed access trail twenty-five (25) feet in width from the left bank of the Klutina River in Sec. 13, T. 1 N., R. 2 W., Copper River Meridian, westerly to the Klutina Lake Road, EIN 11 C3, C5, D1, D9 L. The uses allowed are those listed above for a twenty-five (25) foot wide trail easement.

Discussion:
This access trail is no longer required because of the deletion of the site easement at this point of the Klutina River.
h. (EIN 8g C1, C5, D1, D9, L) An easement for a proposed access trail twenty-five (25) feet in width from site EIN 8d C1, C5, D1, D9, L adjoining the Klutina River northwesterly to the Klutina Lake Road.

Discussion:
Access to the Klutina River is readily available from road EIN 11 C3, C5, D1, D9, L in many points along the road. Therefore, the easement is unnecessary. The Klutina River is not a major waterway downstream of the airstrip, access to the river will not provide access to other publicly owned lands or to a major waterway.

i. (EIN 9 C1, C5, D1, D9, L) A streamside easement twenty-five (25) feet in width upland of and parallel to the ordinary high water mark on all banks of the navigable Copper River from T. 3 N., R. 1 W., Copper River Meridian, southerly through the Copper Center selection to T. 2 S., R. 3 E., Copper River Meridian.

Discussion:
This is a recreation easement and does not meet the requirements of the new easement regulations.

j. (EIN 11a D9) A fishery management and public use easement upland of the ordinary high-water mark in Sec. 19, T. 1 S., R. 2 W., Copper River Meridian, on the right bank of the Klutina River.

Discussion:
This easement is a recreation easement and contrary to the new easement regulations.

k. (EIN 11b D9) A fishery management and public use easement upland of the ordinary high-water mark in Sec. 19, T. 1 S., R. 2 W., Copper River Meridian, on the left bank of the Klutina River.

Discussion:
There is no provision for this type of easement in the new easement regulations.

l. (EIN 16 D1) An easement for an existing access trail twenty-five (25) feet in width from the Klutina Lake Road near mile nine in Sec. 1, T. 1 N., R. 2 W., Copper River Meridian, northerly to public lands. The uses allowed are those listed above for a twenty-five (25) foot wide trail easement.
Discussion:
This easement provides access to the same lands as trail EIN 5c C5, D1, D9. Additionally, this easement did not appear in the Ahtna regional selection in T. 2 N., R. 2 W., and thus loses impact for the cornering extension in the northeast corner of this township.

m. (EIN 18 C) The right of the United States to enter upon the lands herein granted for cadastral, geodetic, or other survey purposes is reserved, together with the right to do all things necessary in connection therewith.

Discussion:
This easement is contrary to the new easement regulations.

n. (EIN 19 C4) An existing trail easement twenty-five (25) feet in width from the SE¼ of Sec. 31, T. 2 N., R. 1 W., Copper River Meridian, to site EIN 5a C5, D1, D9, thence northwesterly to public lands.

Discussion:
This easement was given this number by mistake. It was meant to be numbered 5c C5, D9 and is now reserved by this number.

o. (EIN 19b C5, L) An easement for a proposed 138 KV transmission line one hundred (100) feet in width from the north border of T. 2 N., R. 1 W., Copper River Meridian, southerly through the selection, paralleling the Trans-Alaska Pipeline. The uses allowed are those activities associated with the construction, operation and maintenance of the powerline facility.

Discussion:
This easement is unnecessary because this transmission line is covered by a right-of-way grant AA-12692.
To: SD (932)
From: DM-A

Date: 15 Aug 1980

Subject: Navigability Recommendations for Valdez Quadrangle FY 80

Enclosed is a report of FY 80 navigability recommendations for the Valdez 1:250,000 quadrangle. This short format report addresses all known Ahtna selections on the quadrangle for FY 80.

The report was written based on a review of available maps and review of AEIDC contract material. Interviews were conducted with residents of the Glennallen area.

We submit this report for your review, signature, and distribution to the appropriate office(s).

Enclosure
I. Primary Policy Guidelines

II. Source of Information
 A. USGS Quadrangles (Scales 1:63,360-1:250,000)

 B. Master Title Plats
 Master title plats were consulted to determine land status regarding ownership, withdrawals, power projects, etc.

 C. State - BLM Water Delineation Maps
 In 1974 the State of Alaska submitted water delineation maps to BLM covering water bodies within the state which they considered navigable. Later, at an informal meeting between Anchorage District personnel and State of Alaska personnel, the State annotated the maps to include additional water bodies. BLM also delineated those water bodies which had appeared to be navigable under current guidelines. No work was done in southeast Alaska.

 D. National Oceanic Survey Charts

 E. AEIDC
 The University of Alaska, AEIDC (Arctic Environmental Information and Data Center), under contract to BLM, researched historic information in Alaska and extracted the information relevant to many water bodies in Alaska. The information is arranged alphabetically by watershed. Copies of the contract data are available at the Alaska Resources Library, Anchorage District BLM, Fairbanks District BLM, and BLM State Office.

III. Selections
 A. Serial No. AA-8104-2 (23,040 acres)
 i. General
 a. Location, Development, and Accessibility
 This township (T. 1 S., R. 3 W., CRM) is located about 17 air miles northwest of Tonsina. There are four Native allotment applications abutting Klutina Lake and one abutting the Klutina River. The Klutina Lake Trail parallels the north side of both the lake and river and the Richardson Highway is approximately 17 miles east of the selection. Klutina Lake and River were determined to be administratively navigable. State Office memo dated November 5, 1979, consequently, will not be addressed in this report.

 b. Topography
 Mount Carter, Dowling Peak, and Sunny Peak dominates the northcentral portion of this selection.
IV. Summary of Recommendations

<table>
<thead>
<tr>
<th>Serial No.</th>
<th>Legal Description</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA-8104-2</td>
<td>T. 1 S., R. 3 W., CRM</td>
<td>Klutina Lake and River are determined to be navigable. All other freshwater bodies are non-navigable.</td>
</tr>
<tr>
<td></td>
<td>T. 2 N., R. 2 W., CRM</td>
<td>Hudson Lake's non-navigable determination is under appeal. All other freshwater bodies are non-navigable.</td>
</tr>
<tr>
<td></td>
<td>T. 1 S., R. 1 E., CRM</td>
<td>No navigable waters.</td>
</tr>
<tr>
<td></td>
<td>T. 2 N., R. 2 E., CRM</td>
<td>No navigable waters.</td>
</tr>
<tr>
<td></td>
<td>T. 1 N., R. 3 E., CRM</td>
<td>No navigable waters.</td>
</tr>
<tr>
<td></td>
<td>T. 1 S., R. 3 E., CRM</td>
<td>The Copper River is determined to be navigable. All other freshwater bodies are non-navigable.</td>
</tr>
<tr>
<td></td>
<td>T. 2 S., R. 4 E., CRM</td>
<td>The Copper River is determined to be navigable. All other freshwater bodies are non-navigable.</td>
</tr>
<tr>
<td></td>
<td>T. 6 S., R. 4 E., CRM</td>
<td>The Copper River is determined to be navigable. All other freshwater bodies are non-navigable.</td>
</tr>
<tr>
<td></td>
<td>T. 1 S., R. 5 E., CRM</td>
<td>No navigable waters.</td>
</tr>
<tr>
<td></td>
<td>T. 5 S., R. 5 E., CRM</td>
<td>The Copper River is determined to be navigable. All other freshwater bodies are non-navigable.</td>
</tr>
<tr>
<td></td>
<td>T. 2 S., R. 6 E., CRM</td>
<td>No navigable waters.</td>
</tr>
<tr>
<td></td>
<td>T. 4 S., R. 6 E., CRM</td>
<td>The Chitina River is determined to be navigable. All other freshwater bodies are non-navigable.</td>
</tr>
<tr>
<td></td>
<td>T. 6 S., R. 6 E., CRM</td>
<td>No navigable waters.</td>
</tr>
<tr>
<td></td>
<td>T. 1 S., R. 7 E., CRM</td>
<td>No navigable waters.</td>
</tr>
</tbody>
</table>
Memorandum

To: Chief, Division of ANCSA and State Conveyances (960)

From: Assistant to the State Director for Conveyance Management (913)

Subject: Final Navigability Determination for State Selections in the Valdez Quadrangle

This is the administrative navigability determinations for water bodies within lands selected by the State of Alaska in the Valdez Quadrangle. The townships encompassing these selections and this navigability determination are listed in the attached Land Report Title Page of Report #1, Valdez SS - FY83 on file in the Navigability Section (962). A summary of the navigability recommendations contained in the report are attached. For reporting convenience the entire eight townships have been covered.

The report was written based on a review of available maps, a review of AEIDC contract material, library sources, and previous reports prepared by Anchorage District Office covering these areas.

A review has been made of the report. I agree with its recommendations and find them consistent with the December 14, 1979 ANCAB decision on navigable waters.

Based on the report the Tazlina River (T. 3 N., R. 2 W.), the Copper River (T. 2 S., R. 3 E.), and the upper Klutina River (T. 4 S., R. 4 W.) are determined navigable and all other water bodies within the subject townships are determined nonnavigable.

cc: State of Alaska
Navigability Project
Pouch 7-005
Anchorage, Alaska 99510
(with maps)

/sg/ Robert D. Arnold
Mr. James E. Culbertson
Land Exchange/Entitlement Unit
State of Alaska
Department of Natural Resources
Division of Research and Development
Pouch 7-005
Anchorage, Alaska 99510
(with maps)

DM-NAV (013)
Attn: C. Neufelder
(with maps)

AM-G (017)
(with maps)
LAND REPORT TITLE PAGE

<table>
<thead>
<tr>
<th>State</th>
<th>District</th>
<th>District</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaska</td>
<td>Anchorage</td>
<td>Anchorage</td>
</tr>
<tr>
<td></td>
<td>Resource area</td>
<td>Resource area</td>
</tr>
<tr>
<td></td>
<td>Glennallen</td>
<td>Glennallen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of Action</th>
<th>Serial Number</th>
<th>Serial Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigability Recommendations Valdez-SS-FY'83-#1</td>
<td>See Below</td>
<td>See Below</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicant’s name</th>
<th>Address (include zip code)</th>
<th>Address (include zip code)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State Selections - Alaska</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date(s) of examination</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LANDS INVOLVED

<table>
<thead>
<tr>
<th>TOWNSHIP</th>
<th>RANGE</th>
<th>MERIDIAN</th>
<th>SECTION</th>
<th>SERIAL NUMBER</th>
<th>ACRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. 3 N.</td>
<td>R. 2 W.</td>
<td>Copper River</td>
<td></td>
<td>AA-004808</td>
<td>23,000</td>
</tr>
<tr>
<td>T. 1 N.</td>
<td>R. 9 W.</td>
<td>Copper River</td>
<td></td>
<td>AA-006775</td>
<td>23,000</td>
</tr>
<tr>
<td>T. 2 S.</td>
<td>R. 1 E.</td>
<td>Copper River</td>
<td></td>
<td>AA-003026</td>
<td>23,000</td>
</tr>
<tr>
<td>T. 2 S.</td>
<td>R. 3 E.</td>
<td>Copper River</td>
<td></td>
<td>AA-021217</td>
<td>23,000</td>
</tr>
<tr>
<td>T. 4 S.</td>
<td>R. 4 W.</td>
<td>Copper River</td>
<td></td>
<td>AA-006800</td>
<td>23,000</td>
</tr>
<tr>
<td>T. 8 S.</td>
<td>R. 2 W.</td>
<td>Copper River</td>
<td></td>
<td>AA-063900</td>
<td>23,000</td>
</tr>
<tr>
<td>T. 8 S.</td>
<td>R. 3 W.</td>
<td>Copper River</td>
<td></td>
<td>AA-063900</td>
<td>23,000</td>
</tr>
<tr>
<td>T. 8 S.</td>
<td>R. 7 W.</td>
<td>Copper River</td>
<td></td>
<td>A-061242</td>
<td>20,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Approximate Total</td>
<td></td>
<td>184,000</td>
<td></td>
</tr>
</tbody>
</table>

Purpose of report

To make recommendations as to navigability and nonnavigability of water bodies located within the selected townships.

Prepared by

Louis H. Carufel

Title: Natural Resource Specialists

Date of report: [Redacted]
Navigability Report
Valdez-SS-FY'83-#1

I. INTRODUCTION

A. Policy Guidance Used

3. Instruction Memorandum No. AK-81-781, Change 1.

B. Reference to Navigability Request

This report was requested by memorandum dated September 16, 1982 from Chief, Branch of State Adjudication (964)

II. LOCATION

A. Geographic Setting - The report area covers all water bodies contained within the subject townships listed on the Land Report Title Page. The eight townships of the report area are scattered throughout the Valdez Quadrangle.

Topography within the subject townships is of a rugged steep mountainous nature with glaciers predominating at higher elevations of the Chugach Mountain Range. Also there are several upland valleys followed by riparian drainages which flows into major river lowlands. Elevations range from mean sea level (MSL) to nearly 5,400 feet above MSL. A tidal inlet, Port Valdez, abuts one subject township.
The oldest town in this area is Copper Center, established as a trading post in 1896. Valdez is the next oldest being established as a debarkation point during gold rush days in 1897. Today Valdez serves as a port of entry for Alaska and is the terminus of the Trans-Alaska pipeline. Airports are located throughout this area at Glennallen, Valdez, Tonsina, and Copper Center. Valdez is an important tourist area that is linked to the Alaska Marine Highway system. Valdez is an ice free port for commerce.

B. Specific Lands - Lands involved are recorded on the Land Report Title Page. No additional townships were reviewed or included in this report.

III. DEVELOPMENT

A. General commercial and domestic activities in the region consist of an improved road system, Richardson Highway, connecting many towns and major cities as Anchorage and Fairbanks. Secondary roads and several trails are present, many of which were associated with the exploration, trading, freighting and mining and prospecting for gold in the report area.

The major development after World War II was the construction of the Glen Highway to join the Richardson Highway at Glennallen. This road construction opened the region to population growth and development. The discovery of oil at Prudhoe Bay in 1968 resulted in the building of the Trans-Alaska pipeline which eventually ran through the region and terminated at Valdez and helped provide some economic stability for the area.

Present development in the report area appears to be patented headquarter sites associated with pipeline operations, commercial and recreational fishing and hunting, and air taxi operators. A small number of people do maintain cabins on various lakes and creeks. The above activities require service related support.

B. Specific development activities in the report area will continue to be oil, minerals, tourism, and recreation and service related industries to the communities in the vicinity.

IV. LAND STATUS

The master title plats (MTP's) contained no information that seemed relevant to a navigability determination. The subject townships are primarily public lands that have been withdrawn for power, utility corridors, transportation systems, pipelines and oil and gas. Some of the public lands in the subject townships are unsurveyed, have had mineral surveys, and R/W access delineations. The subject townships have applications for selection by city, village, native and State governments.
V. ACCESS

General access to the report area is through the Glenn and Richardson Highways and airports located at Glennallen, Valdez, Tonsina, and Copper Center. Also the report area is accessed by the Alaska Marine Highway which provides regular service to Valdez. The Port of Valdez is the loading terminus for large oil barges.

Access into the specific report area is generally by aircraft (float, helicopter, and wheeled), some secondary roads, and trails (historical and contemporary). In addition access could be by watercraft on boatable water bodies or by all terrain vehicles (ATV's) over undesignated trails.

VI. MAPS

A. U.S.G.S. Quadrangles (Scales 1:63,360-1:250,000)
 Valdez - 1:250,000
 Valdez - 1:63,350
 A - 4, 5, & 7
 B - 5 & 6
 C - 3, 4, 5, & 6
 D - 5 & 8
 Gulkana - 1:63,360
 A-4

B. Master Title Plats
 Master title plats (MTP's) were consulted to determine land status regarding ownership, withdrawals, power projects, etc.

 This is one of a set of maps showing mining locations in Alaska. This series is published by the United States Geological Survey Office.

VII. PREVIOUS NAVIGABILITY DETERMINATIONS

The Tazlina River is located in the North half of the North half of T. 3 N., R. 2 W., Copper River Meridian. In previous work done by BLM on selections impacted by the Tazlina River, the recommendation was made that it be considered navigable from its mouth at the end of Tazlina Lake to its junction with the Copper River. The State Director has concurred with the recommendations (8/19/80).

Both Klutina Lake and the lower river were previously determined to be navigable. A State Director memo conveying land to the village of Copper Center determined the Klutina River administratively navigable (11/5/79) from its outlet at Klutina Lake to the Copper River.
VIII. WATER BODIES

Several water bodies within the report area are glacially influenced. Physical information as depicted on the U.S.G.S. quadrangles is as follows:

<table>
<thead>
<tr>
<th>Lakes</th>
<th>Max. Length (Miles)</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenny</td>
<td>.25</td>
<td>+-40</td>
</tr>
<tr>
<td>Nelchina Bench</td>
<td>.40</td>
<td>+-50</td>
</tr>
<tr>
<td>Pippin</td>
<td>1.00</td>
<td>+-200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Streams</th>
<th>Gradient (ft./mi.)</th>
<th>Width (Ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottley Creek</td>
<td>70-800</td>
<td>Minus 80</td>
</tr>
<tr>
<td>Sheep Creek (G)</td>
<td>150</td>
<td>Minus 80</td>
</tr>
<tr>
<td>Tsina River (G)</td>
<td>50-150</td>
<td>Less than 250</td>
</tr>
<tr>
<td>Ptarmigan Creek (G)</td>
<td>150</td>
<td>Plus 80</td>
</tr>
<tr>
<td>Cascade Creek (G)</td>
<td>350</td>
<td>Minus 80</td>
</tr>
<tr>
<td>Small Creek (G)</td>
<td>500</td>
<td>Minus 80</td>
</tr>
<tr>
<td>Mineral Creek (G)</td>
<td>250</td>
<td>Plus 80</td>
</tr>
<tr>
<td>Uno Creek (G)</td>
<td>800</td>
<td>Minus 80</td>
</tr>
<tr>
<td>Gold Creek (G)</td>
<td>600</td>
<td>Minus 80</td>
</tr>
<tr>
<td>Stephens Creek (G)</td>
<td>60</td>
<td>Plus 80</td>
</tr>
<tr>
<td>Klutina River (G)</td>
<td>35</td>
<td>Plus 80</td>
</tr>
<tr>
<td>Tonsina River (G)</td>
<td>60</td>
<td>Plus 100</td>
</tr>
<tr>
<td>Willow Creek</td>
<td>60</td>
<td>Minus 80</td>
</tr>
<tr>
<td>Streams</td>
<td>Gradient (ft./mi.)</td>
<td>Width (Ft.)</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Squirrel Creek</td>
<td>40-100</td>
<td>Minus 80</td>
</tr>
<tr>
<td>Bernard Creek</td>
<td>100</td>
<td>Minus 80</td>
</tr>
<tr>
<td>Tazlina River (G)</td>
<td>35</td>
<td>Plus 200</td>
</tr>
</tbody>
</table>

NOTE: (G) indicates glacially influenced water body.

Numerous unnamed lakes many of which are located within the glacial outwash plain are also within the report area. The unnamed streams generally have more restrictive physical characteristics (less depth, less width and higher gradient) than do named streams.

All tidal water within the subject township are considered navigable under the Submerged Lands Act (67 Stat. 29, PL-31, May 22, 1953).

IX. USE INFORMATION

The AEIDC contract material in several instances makes mention of water bodies within this report area. On several occasions this use information refers to boat use for commerce or travel on a water body. Additional historical and contemporary use information was presented in source material listed in the reference portion of this report.

Based on source information the gold rush to the Yukon Territory initiated for a number of prospectors in 1897-98 at the Port of Valdez. Mining supplies and materials were hauled up through Valdez Glacier, past Townsend Peak across the Klutina Glacier to Twelvemile Camp which is slightly downstream from the confluence of the Klutina River and Stephens Creek. Benedict (1899) gave the following account:

One of the more popular methods of reaching Copper Center was by boat. Upon reaching the foot of Klutina Glacier, prospectors, mail carriers, etc., either sledged or packed their supplies and equipment to Twelvemile Camp on the Upper Klutina River, or to the head of Klutina Lake. At Twelvemile Camp, the goods were cached at a safe distance from the river, until the river had risen enough for boat travel. The goods were then carried to the boats by packing or by pulling sleds across the gravel surface. (Benedict 1899:44) By the first of June, the Upper Klutina River at Twelvemile Camp was sufficiently deep for travel, "and many boats were to be seen passing down the river every day," (Benedict 1899:57) the prospectors governing the course of the boat with a pole. Just below Twelvemile Camp, where the river was shallow, heavily-laden boats often scraped the bottom of the river, forcing the prospectors to push or pull the boat. (Benedict 1899:58) A few hundred feet below this spot, the prospectors encountered a dangerous point, upon
which many boats were wrecked. According to Benedict, who descended the Upper Klutina River by boat the point was:

caused by a change in the valley bottom crowding the river back again into a comparatively narrow channel and flinging it heavily against a sharply projecting elbow of land over grown with great alders, from which it was in turn rudely flung diagonally to the opposite bank, only to be met there by another projection of land which forced it as violently to the right again as it had before been forced to the left. Upon one or the other of these dangerous spits, thus raged against by the whole volume of the stream, many a boat and its valuable cargo came to grief." (Benedict 1899:58)

Although there was but four or five feet of water at either of these formidable spits, the current was so powerful that a searcher for the lost goods could not have held his feet for an instant; and ten men, on a straight tug, could not budge the boat from the spot where it was held by the giant force of the stream. (Benedict 1899:59)

Nevertheless, many boats obtained safe passage through this portion of the river. Just above Sawmill Camp, some boats were upset by a large tree stump about 10 feet from the bank, near a turn in the river. Beyond Sawmill Camp, boats were sometimes upset by "two spruce trees a short distance, which stand in the middle of the swiftest current, and between which boats are compelled to pass." (Benedict 1899:63)

Currently, floatplanes use Klutina Lake and provide access to the upper Klutina River. Boats are used on the lake and some recreational floating of the lower Klutina River occurs.

There is no historical use of Tonsina River being boatable for commerce or trade. Most boat use was for ferrying supplies across the river at permanent sites. Some rafts and boats tried to float the river but were unsuccessful.

The Tonsina River is used by recreational floaters using rubber rafts. Seep Weber's book "Wild Rivers of Alaska", rates the portion through the subject townships as white water 3-4, with a gradient of 32 feet per mile. Physical characteristics of Tonsina River and other water bodies excluding the Copper River, appear to preclude their use as a highway of commerce.

The Tazlina River has been determined navigable from Tazlina Lake to the river bifurcation with the Copper River by the concurrence of the State Director (8/19/80).

X. CONCLUSIONS

The source information that historical use during the "Gold Rush" days, of boats in the upper Klutina River (Twelve mile camp to Klutina Lake) indicate the river to navigable and an avenue of
commerce. Also boat use on the Tazlina River by prospectors to carry mining gear and supplies to the Yukon and Klondike gold rush over a water body highway was a commercial and trade operation.

The accessibility, lack of use information, and limiting physical characteristics of the streams not previously determined in the report area, make it difficult to believe that they have been used or will be used as highways of commerce. Steep gradients, deep gorges, shallow depths, and braided, narrow channels, dominate the character of most streams. If development were to occur in these areas, roads, if possible, not the water bodies, will play the most important role as a mode of transportation.

All named and unnamed water bodies except Klutina River, Copper River and the Tazlina River in the subject townships are therefore concluded to be nonnavigable because they fail to meet the Departmental criteria.

XI. RECOMMENDATIONS

I hereby recommend that the Klutina River, Copper River and the Tazlina River in the subject townships of the report area due to their historical use and susceptibility for use as a highway of commerce (T. 3 N., R. 2 W., T. 2 S., R. 3 E., and T. 4 S., R. 4 W., Copper River Meridian) be determined navigable. Previous reports on waterbodies within the report area have found Tazlina Lake and River and the Klutina Lake and River to navigable.

I further recommend all other freshwater bodies, named and unnamed, in the report area be determined nonnavigable.

XII. REFERENCE

5. AEIDC
The University of Alaska, AEIDC (Arctic Environmental Information and Data Center), under contract to BLM, researched historic information in Alaska and extracted the information relevant to many water bodies in Alaska. The information is arranged alphabetically by named water body. Copies of the contract data are available at the Alaska Resources Library, Anchorage District Office BLM, Fairbanks District BLM and BLM State Office.
6. Anchorage District
 Previous Navigability Reports
 GULKANA #2, FY81
 GULKANA #2, FY82

Prepared by /s/ Louis H. Carufel
L.H. Carufel

Reviewed by /s/ Sherman F. Berg
Serm Berg

Reviewed by /s/ Gary K. Seitz
Gary Seitz

Date JAN 07 1983

Date JAN 07 1983

Date JAN 07 1983
Summary of Navigability Determinations

<table>
<thead>
<tr>
<th>Legal Description</th>
<th>Serial Number</th>
<th>Report Name-FY-Area</th>
<th>Month</th>
<th>Acres (Est.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 N., 2 W., CRM</td>
<td>AA-004808</td>
<td>VAL #1, 22,000</td>
<td>83 Dec.</td>
<td></td>
</tr>
</tbody>
</table>

Recommendations:
Tazlina River navigable. All other water bodies nonnavigable.

| 1 N., 9 W., CRM | AA-006775 | VAL #1, 23,000 | 83 Dec. | |

Recommendations:
Recommend that all water bodies be administratively determined nonnavigable.

| 2 S., 1 E., CRM | AA-003026 | VAL #1, 23,000 | 83 Dec. | |

Recommendations:
Recommend that all water bodies be administratively determined nonnavigable.

| 2 S., 3 E., CRM | AA-021217 | VAL #1, 23,000 | 83 Dec. | |

Recommendations:
Copper River from East boundary of NE¼ of Section 1 as navigable in subject township. Recommend that all water bodies be administratively determined nonnavigable.

| 4 S., 4 W., CRM | AA-006800 | VAL #1, 23,000 | 83 Dec. | |

Recommendations:
Klutina River from South boundary of NW¼ of Sec. 31 is navigable in the subject township. Recommend that all other water bodies be administratively determined nonnavigable.

| 8 S., 7 W., CRM | A-061242 | VAL #1, 20,000 | 83 Dec. | |
Recommendations:
The mean high tideline will be established at the time of survey. Recommend that all fresh water bodies be administratively determined nonnavigable.

8 S., 3 W., CRM A-063999 VAL #1, 23,000
 83 Dec.

Recommendations:
Recommend that all water bodies be administratively determined nonnavigable.

8 S., 2 W., CRM A-063999 VAL #1, 23,000
 83 Dec.

Recommendations:
Recommend that all water bodies be administratively determined nonnavigable.
Memorandum

To: Chief, Branch of Survey Preparation and Contracts (923)

From: Chief, Branch of Mapping Sciences (924)

Subject: Navigable Waters on Lands Selected by Ahtna, Inc., in Group Survey Nos. 148, 220, 222 and 394 (Window 1867)

This memorandum identifies navigable waters on lands interim-conveyed to, and selected by, Ahtna, Inc., in survey window 1867 (Chistochina, Gulkana, Gakona, Gulkana Townsite, Copper Center, Tazlina, and Tonsina). The survey window consists of 156 townships in the Copper River valley. Navigable waters in each township are listed in Appendix I.

This memo supplements our navigability memorandum of August 7, 1989.1 At that time, at the request of Ahtna, Inc., we simply identified navigable waters excluded from conveyances, potentially navigable waters on selected lands, and non-navigable waters on selected lands. We did not identify navigable waters on Ahtna-selected lands. The corporation requested that this action be deferred until litigation over the navigability of the

1 Wayne A. Boden to Deputy State Director for Cadastral Survey, August 7, 1989, file AA-6667-EE, ANCSA files. This report also identified navigable waters on state-selected lands and navigable waters excluded from tentatively approved lands.
Gulkana River was completed.²

Not long after the conclusion of the Gulkana River litigation, Ahtna, Inc., requested BLM to meander all navigable water bodies on its interim-conveyed lands and to segregate the submerged lands from the uplands. On August 21, 1991, the corporation requested that the following interim conveyances be reviewed for navigable waters: 226 and 227, 235, 245, 442, and 564.³ This report includes lands conveyed by ICs 235, 245, 442 (in part), and 564. Future reports will address lands conveyed by ICs 226, 227, and 442.

Navigability Criteria

The BLM-Alaska's navigability criteria are based upon federal title navigability law. In a March 16, 1976, memorandum, Associate Solicitor Hugh C. Garner summarized the law for the purpose of administering the Alaska Native Claims Settlement Act. In general, nontidal water bodies are navigable if, at the time of statehood, they were suitable for travel, trade, and commerce. The Ninth Circuit Court's decision of December 13, 1989, on the navigability of the Gulkana River provides additional guidance. In this case, the Court found that watercraft customary at statehood included boats with a load capacity of about 1,000 pounds. The Court further held that contemporary guided fishing and sightseeing activity on the Gulkana River was commerce and that watercraft customary at statehood "could have at least supported" this commercial activity.

Sources of Information

Information about the land status, history and physical character of the report area comes from a variety of sources. The USGS topographic maps (scale 1:63,360 and 1:250,000) are the primary sources for location, relief, and stream gradients. For further physical evidence, we used aerial photographs, particularly the NASA (CIR 60) color infrared photos, as well as a number of published and unpublished reports.

For sources containing historical and physical character information, see the bibliography. For land status information, we relied upon the Master Title Plats (MTPs). Certain U. S. Survey field notes and BLM navigability reports were also consulted. In addition, Fabio Ferruzzi and Donald C. Koenig interviewed local residents for information about certain

² Wayne A. Boden to Roy Ewan, February 9, 1989, file AA-6667-EE, ANCSA files. Mr. Ewan was president of Ahtna, Inc.

water bodies.4

Report Area

The report area is located in southcentral Alaska, popularly known as the Copper River Basin. The basin is bordered by the Alaska Range on the north, the Talkeetna Mountains on the west, the Wrangell Mountains on the east, and the Chugach Mountains on the south. The physiographic region of approximately 24,400 square miles is drained by the Copper River and its tributaries.5

The basin is dominated by glaciers and glaciated valleys with side slopes rising steeply into high mountain ranges. The major tributaries of the Copper River are generally heavily laden with silt, with the notable exceptions of the Tazlina, Klutina, and Tonsina rivers. These three rivers have natural settling basins formed by large morainal lakes. The water which emerges contains mostly very fine "rock flour."6

Relief in the lower elevations of the basin is generally low over a gently sloping and rolling landscape. Elevations over the entire basin range from 1,000 feet along the Copper River to the mountains of the Wrangell-St. Elias mountain complex, which contains the "largest concentration of peaks exceeding 14,500 feet in the United States."7 The basin is largely covered by spruce and hardwood forest, with large and small lakes and marshes sporadically spread throughout. The area of study is situated mostly in the northern end of the basin. All rivers and streams discussed in this report are direct or indirect tributaries to the Copper River.

The rivers and streams of this region are substantially influenced not only by snowmelt cycles, but also precipitation. One writer observed that "precipitation over the basin area is characterized by wide extremes. On the coastal side of the Chugach Mountains the average annual precipitation varies from 60 to 193 inches at sea level stations. In the Copper River Basin, the average precipitation ranges from 9 to 22 inches per year at the reporting stations. The change from the wet coastal climate to the dry continental climate occurs in a distance of probably less than 20 miles."8

4 Fabio Ferruzzi to File AA-6656-EE, May 18, 1992; and C. Michael Brown (for Donald C. Koenig) to File AA-6704-EE, April 30, 1993, ANCSA files.

5 Grumman Ecosystems Corporation 1975, 2-1.

6 Ibid., 2-9,10.

7 Ibid., 2-13.

8 Ibid., 2-23.
The Gakona River is reasonably representative of glacial rivers in the region. The Gakona's watershed, 620 square miles in size, is about three percent of the Copper River drainage. The river heads in the Gakona Glacier, the largest on the south side of the Alaska Range, situated about twelve miles east of Isabel Pass on the Richardson Highway. The highly turbid river flows southerly for ninety-two miles to the Copper River near the town of Gakona. The river's gradient fluctuates between twenty and thirty feet per mile with an average of about twenty-three feet per mile. Below the glacier for many miles the river is very braided, and the streambed is up to a mile wide. Below Otter Creek in T. 12 N., R. 1 E., CRM, to the Copper, the river is mostly confined to a primary channel about three chains wide, sometimes more, sometimes less. In some areas, the gravel streambed widens to nearly one-half mile.

Rainfall maps show that fifty-nine percent of the precipitation in the watershed falls on the upper reaches of the river, and most of the precipitation is during the summer months, with the peak in July. Mean monthly streamflow varies from about 110 cubic feet per second in February to 2,400 cubic feet per second in July. Ice jams sometimes cause the extreme conditions of streamflow, ranging from blocked flow to peak flows when the jam breaks. The streamflow is significantly affected by the snowmelt runoff, which is typically greatest in the evenings and lowest in the morning due to a daily snowmelt cycle in the summer.

Copper River (USGS Gulkana and Valdez Topographic Series Maps; scale: 1:250,000)

The Copper River is one of the largest rivers in Alaska. In the course of conveying land to the Native corporations and the State of Alaska, we consistently found different segments of the river navigable. On June 26, 1979, we found the river navigable through the report area in T. 10 N., R. 5 E., CRM.

Indian Creek (USGS Gulkana C-1 and D-1) (CIR 60: roll 3013, frame 4073, August 1991)

Indian Creek is entirely within IC 235 in T. 10 N., R. 5 E., CRM, and IC 442 in T. 11 N., R. 5 E., CRM. The submerged lands were not excluded from the conveyances.

This stream is a tributary to the Copper River at mile 228. In its first 8.5 miles, the creek has an average gradient of 55 feet per mile. The overall drainage area is 113 square miles. On October 14, 1963, the creek's discharge at the highway crossing was measured at 55 cubic feet per second (cfs); on June 12, 1964, 195 cfs; on July 7, 1964, 127 cfs. The Glenn Highway crosses the river over a bridge at stream mile 2.

9 Ingham and Clay 1982, 2.

10 Sue A. Wolf, Decision, June 26, 1979, file AA-6656-EE, ANCSA files.

The aerial photo shows a moderately meandering stream. Gravel and sand bars marking stream bends increase in number and are larger as the stream approaches the Copper. Thick vegetation covers the banks. The creek empties into an half-mile-long interconnecting channel of the Copper River in two distributaries. Each one is about thirty-five feet wide. The streambed appears to reach its maximum width of 75 to 100 feet at the bridge. The channel is about fifty feet wide. Only a half mile upstream from the bridge, the entire creek bed narrows to about thirty-five feet and remains that way for many miles upstream.

In 1929, when this stream was called Indian River, the Alaska Road Commission described the creek at a proposed bridge site near its mouth as 124 feet wide bank to bank with shifting channels. At extreme high water, it was four feet deep; at ordinary extreme high water, about three feet deep for about fifty feet.\(^{12}\)

In 1992 and 1993, local residents generally informed us that this creek is not navigable except possibly in the short period after the spring breakup. Irvin Postin, who has lived in the area for forty-five years, described the stream as generally narrow and shallow. During the spring breakup, it is very fast and between three and five feet deep. Ken Roberson described the stream as one to two feet deep, thirty to sixty feet wide, with a gravel bed. Sweepers and logjams are present. He thought that he could float a moose in a canoe (about 1,000 pounds) down the creek, but it would be very marginal in a dry season. Larry Kajdan thought it might be possible to take canoes or rafts down the two miles from the highway to the Copper River, but he has not heard of anyone doing it. He did not think it would be a popular route of travel, given the presence of brush, trees and logjams, and usual shallow water. He was even more doubtful about the usefulness of the creek above the highway as a route of travel. John Rego also did not know of anyone who had boated the creek. Like Roberson, he thought a person might be able to float out a moose kill, but he noted that the water level would have to be "well above average."\(^{13}\)

Indian Creek is not navigable. The creek is easily accessible by highway. Yet there is no readily available evidence of anyone boating this creek. Four informants consistently held the opinion that the creek was not navigable for canoes or rafts except possibly during the brief high water periods. Ordinarily, the creek is too shallow and hazardous (sweepers, logjams, fast current) for commercial navigation.

Boulder Creek (USGS Gulkana C-1 and C-2) (CIR 60s: roll 3013, frames 4140 and 4217, August 1981)

The first half mile of Boulder Creek, in Section 36, T. 10 N., R. 4 E., CRM, is patented

\(^{12}\) Arctic Environmental Information and Data Center (AEIDC) 1979, 1351.

\(^{13}\) Fabio Ferruzzi to File AA-6656-EE, May 18, 1992; C. Michael Brown to File AA-6704-EE, April 30, 1993, ANCSA files.
(50-79-0146). The next next mile (Sec. 1, T. 9 N., R. 4 E. and Sec. 6, T. 9 N., R. 5 E., CRM) was conveyed by IC No. 235. The remainder of the creek in T. 9 N., R. 5 E., CRM, about six miles, except for a short segment in Sec. 4 conveyed by IC 442, crosses ANCSA-selected land.

Heading in glaciers in the Wrangell Mountains, Boulder Creek, about twenty-three miles long, flows northwest to empty into the Copper River about a mile upstream of the Chistochina River. The gradient is about twenty-five feet per mile in the first one and one-half miles; the next three miles (to the 2,150 foot contour line), about sixty-six feet per mile. In the next three miles, the average gradient is about 100 feet per mile. The aerial photos show a braided stream with a bed one to four chains wide and a stream channel one-half to one chain in width. Gravel bars, some vegetated, some not, are visible throughout. The creek meanders little. It has high, brush-covered banks.

We found no evidence of anyone boating this creek. Local residents informed us that the creek is most likely not navigable. John Rego remarked that he has walked up the streambed many times. Larry Kajdan said hunters and others drive ORVs up the creek (presumably the exposed gravel bars). While they and others (Ken Roberson, Lee Adler) thought that the creek was raftable at high water, they emphasized that such trips would be very dangerous. The creek is steep and very fast at high water. Ken Roberson noted that, as the name implies, the creek contain boulders. Normally, the channels are too shallow and rocky for any craft. Rego thought the channels were often less than a foot deep, sometimes only inches deep.\(^{14}\)

Boulder Creek is not a navigable waterway. Local residents do not boat this braided glacial creek. Ordinarily, the channels are very shallow. The creek flows very fast during high water periods, making it very hazardous for raft or canoe navigation.

Chistochina River (USGS Gulkana C-2 and D-2) (CIR 60: roll 3013, frame 3990, August 1981)

The report area generally includes the first fourteen miles of this river. Starting at the mouth, the first few miles of the Chistochina riverbed, in Sec. 2, T. 9 N., R. 4 E., CRM, and Secs. 27 and 34, T. 10 N., R. 4 E., CRM, are patented (50-79-0146 and 50-82-0007). The next few miles in Secs. 9, 16, 21, and 22, T. 10 N., R. 4 E., CRM, were conveyed by IC 442. The riverbed in Secs. 9 and 16, T. 11 N., R. 4 E., CRM, was also conveyed to the State of Alaska.

Certain river segments are ANCSA- and State-selected: Secs. 5 and 8, T. 10 N., R. 4 E., (miles 6-8) and Sections 3, 4, 20, 29 and 32, T. 11 N., R. 4 E., CRM (miles 8-11, 13-14).

\(^{14}\) Ibid.
In 1988, we found the river navigable in two sections in T. 10 N., R. 4 E., CRM.15 A tributary of the Copper River at mile 221, the Chistochina drains an area of 750 square miles. In its last fourteen miles, the river has an average gradient of about twenty-eight feet per mile. Its principal tributaries are the East Fork (mile 15) and the Middle Fork (mile 25).

The river’s average discharge (estimated) is 1,200 cubic feet per second.16 During the flood of August 1971, the U.S. Geological Survey measured at the Sinona Lodge a discharge of 40,000 cubic feet per second.17

The aerial photos show a braided river with a well-defined channel. It is about eight chains wide at the north end of the survey area, expanding to about fifteen chains at the south end. The river appears to have high energy and is loaded with sediment. There are no visible obstructions. Low brush occupy its banks.

During the Klondike Gold Rush, some prospectors explored this river valley for gold. A few tried to ascend the river in boats. On July 1, 1898, George Hazelett and fellow travellers attempted to take a boat up one of the mouths. Hazelett described the channel as six to eight feet deep, fifty feet wide, and very swift. They were unable to line the boat up due to the thick brush on the banks. So they hiked up the river. Several weeks later, Hazelett and his party of seven people returned to the boat (loaded with supplies) and succeeded this time in pulling it up the river. Just how far they traveled is not clear. Hazelett wrote that they reached the first fork on the right side -- perhaps the Middle Fork -- in six days. In late August, Hazelett and several others attempted to descend the upper reaches of the river in a wooden raft. They found the water so deep that they could not pole the raft. Eventually, they reached their boat, and in this, floated down the Chistochina an estimated twenty-two miles to the Copper in two hours and ten minutes.18

Subsequently, gold was discovered on the headwater tributaries of the Chistochina, and several mines were developed. Mining machinery and supplies were hauled to the mines over a trail following the river during the summer and over the river ice during the winter. Later, beginning in the 1930s, airplanes were frequently used.19

15 Robert W. Arndorfer to Deputy State Director for Cadastral Survey, September 22, 1988, file AA-6656-EE, ANCSA files. (Report for survey window 832.)

16 Grumman Ecosystems Corporation 1975, 4-19.

17 Ibid., 2-235

18 AEIDC 1979, 558-559.

19 Ibid., 556, 557.
In recent times, several local residents reported that they had rafted the Middle Fork and the Chistochina. Ken Roberson said that he has rafted the Chistochina from the upper part of the Middle Fork on moose hunting trips. Along the way he shot and quartered a moose and floated to the mouth. He noted that the river was four to six feet deep with no obstructions. Larry Scribner has floated the Middle Fork and the main stem to near the Copper River. He knows hunters have also made this trip. He said too that he once saw a riverboat at the mouth of the Middle Fork. He described the Chistochina’s main channel downstream of the East Fork as four to eight feet deep in many places.\(^{20}\) Dr. Andrew Embick thought a small, lightly loaded raft was the best craft to use on the river. The primary challenge in navigating this river is simply deciding which of the many shallow channels to follow. He doubted that moose hunters would boat the river in September because flows were low then and boaters would ground their craft a lot. They would more likely use the ATV trail following nearly the entire length of the river.\(^{21}\) John Rego, who routinely flies in this area inspecting mining claims, said that he has frequently seen boaters on the Chistochina beyond the reach under investigation.\(^{22}\)

We conclude that the Chistochina River is navigable through the report area. Riverboats and smaller craft carrying in excess of one thousand pounds may be used successfully on this reach. Reportedly, this reach of the river is four to eight feet deep in places. Hunters in rafts often descend the river, putting in on of its major forks. One of these forks (East) is about a mile below the upstream boundary of the report area; two of them (Middle and West) are many miles upstream from the report area.

Sinona Creek (USGS Gulkana C-2 and D-2) (CIR 60s: roll 3013, frames 3992, 4070, 4141, and 4143, August 1991)

The first twenty-four and a half miles of this creek are located in the report area. The lower reaches, in the NW\(^1\) Sec. 10, T. 9 N., R. 4 E., CRM, were conveyed by IC 235. Upstream, the creek crosses several patented U.S. Surveys and the Glenn Highway in the Section 3. In T. 10 N., R. 4 E., CRM, the creek bed was conveyed by ICs 235 and 442; and patented in the extreme southwest corner of Section 34. It is State- and ANCSA-selected in Section 33, T. 10 N., R. 4 E., CRM, as well as in T. 11 N., R. 3 E., CRM.

This creek empties into the Copper River at mile 222, about a mile below the Chistochina River. Within the report area, the creek twists and turns in a narrow valley, falling on the average about twenty feet per mile. In its lowest two miles, its course is more linear. The

\(^{20}\) Steven T. Leskosky to File AA-6656-EE, August 26, 1988; Robert W. Arndorfer to Deputy State Director for Cadastral Survey, September 22, 1988, file AA-6656-EE, ANCSA files.

\(^{21}\) Fabio Ferruzzu to File AA-6656-EE, May 18, 1992, ANCSA files.

\(^{22}\) C. Michael Brown to File AA-6704-EE, April 30, 1993, ANCSA files.
channel is about thirty-five feet wide in the photos. Gravel bars are visible on some bends.²³

The Glenn Highway crosses the creek over a bridge at creek mile 1.75. Three U.S. Surveys are clustered near the Glenn Highway bridge. On September 4, 1952, during the execution of U.S. Survey No. 3222, cartographer Harold Radcliff described the creek as forty feet wide and twenty inches deep. During the survey for U.S. Survey No. 3319 in July 17-22, 1954, he described the stream as twenty feet wide and ten to twenty inches deep. During the survey for U.S. Survey No. 5362 in May 20-24, 1976, surveyor Sherman Bell noted Sinona Creek as forty-six feet wide and two feet deep.²⁴

Local residents informed us that this creek is non-navigable. Irvin Postin, who lives near the creek's mouth, said that during most of the open season the creek is six to eight inches deep and fifteen to twenty feet wide on his property. It contains many logjams, beaver dams, sweepers, and deadfalls. He doubted this creek could be navigated during high water periods because it is then too swift and dangerous. Ken Roberson described the creek as fifteen to twenty-five feet wide and shallow, sometimes even dry, and containing many overhanging limbs and logjams.²⁵ John Rego said that this stream is too shallow, narrow, and filled with debris for navigation under any circumstances.²⁶

Sinona Creek is non-navigable. The creek is too shallow for commercial navigation. In its lower reaches, the creek is six inches to two feet deep. Logjams, deadfalls, and sweepers are present. Local residents, one of whom lives at the mouth of the creek, believe that this creek is non-navigable, primarily due to numerous impediments. The creek is too fast and dangerous to navigate during high water periods.

Sanford River (USGS Gulkana B-2 and 3) (CIR 60s: roll 26, frame 143, August 1980; and roll 3395, frames 7800 and 7801, August 1984)

The lower twenty-three miles is within the report area. The first mile and a half of the river bed, in Sections 35 and 36, T. 7 N., R. 1 E., CRM, was conveyed by ICs 564 and 565. The remainder of the river, located within the Wrangell-St. Elias National Park, is also selected by the regional corporation.

From its source in the Sanford Glacier in the Wrangell Mountains, this river flows northwesterly thirty-five miles to the Copper River at mile 199. The river drains a 350-square-mile area. It has a gradient of about forty feet per mile (fpm). The average runoff

²³ Fabio Ferruzzi to File-AA-6656-EE, May 18, 1992, ANCSA files.
²⁴ Ibid.
²⁵ Ibid.
²⁶ C. Michael Brown to File AA-6704-EE, April 30, 1993, ANCSA files.
(estimated) is about five hundred cubic feet per second.27

The aerial photos show a stream bed 1,300 to 2,000 feet wide and braided channels. At its mouth, the Sanford is wider than the Copper. A main channel, one to two hundred feet wide, can be seen in the photos for about six and a half miles from the Copper. Upstream, a main channel is difficult to locate, the flow distributed in many narrow channels. The shoreline is well-defined, often consisting of high bluffs. There is little evidence of vegetated islands.28

We have no historical record of boating on this river. During the Klondike Gold Rush period, explorers and prospectors recorded their experience in crossing this river by foot or with horses. They wrote that the best time to cross the river was at low water. The river was too swift and dangerous to cross at high water, usually in the afternoon when glacier melt adds to the flow. Neal Benedict reported that the banks were fifty to one hundred feet high. The main channel was about 125 feet wide and very swift.29

In the course of interviewing local residents, we found only one person with boating experience on the river. Dr. Andrew Embick has kayaked the Sanford from its headwaters to the Copper River. He described it as fast, shallow, and rocky. The main difficulty in floating the river was staying in the main channel. The river is so braided that it was difficult to identify the main channel. He did not believe that the river was suitable for rafts, canoes, and fiberglass kayaks, generally because they would sustain damage from continual groundings. He recommended use of the more durable polyethylene kayaks.

Several local residents (Ken Roberson, Lee Adler, and Larry Kajdan30) recalled stories of hunters rafting or canoeing the river. Roberson and Adler noted that an airstrip once existed on the upper reaches of the river. Before the creation of the Wrangell-St. Elias National Park in 1981, hunters reportedly were dropped off at the airstrip; they then hunted and transported game kills down the river in rafts. Neither was able to name anyone who had actually made the trip. John Breivagle also recalled someone ascending the river about twelve miles in a boat with outboard motors, but he could not recall their names.31

27 Grumman Ecosystems Corporation 1975, 4-19 and 4-20.

28 In addition, see Lynette Nakazawa's photo of river's mouth taken on July 29, 1985, Navigability Section files.

29 AEIDC 1979. 2852 and 2853.

30 Fabio Ferruzzi to File AA-6656-EE, May 18, 1992, ANCSA files.

31 C. Michael Brown to File AA-6704-EE, April 30, 1993, ANCSA files.
While they had no boating experience on the river, all of our contacts except Embick were confident that, during ordinary high water periods, the lower twenty-three miles of Sanford River are suitable for navigation by inflatable rafts carrying substantial loads. These included Doug Whitaker, Larry Kajdan, Ken Roberson, Lee Adler, and John Breivagel. All but Breivagel also thought canoes carrying substantial loads could be used on the river. Breivagel believed that it would take an expert canoeist. The river is fast and can be dangerous when high. Nevertheless, he thought a boat carrying a half ton or more could be taken up and down the river, at least to a canyon at the base of the mountains.32

Due to the lack of sufficient information, we are unable to reach a finding on the navigability of this river. In view of local residents’ opinions, we believe that this river may be susceptible to navigation and, therefore, warrants further investigation. More concrete information is needed. This may require a field inspection.

Gakona River (USGS Gulkana B-3 and C-3) (CIR 60s: roll 3013, frame 4211, August 1981; roll 3395, frame 7804, August 1984)

The Gakona River flows through three townships in the report area: Tps. 6-8 N., R. 1 E., CRM. In T. 8 N., R. 1 E., CRM (miles 14 to 23), the river crosses both State- and ANCSA-selected land. In 1981, the BLM held that the river downstream is non-navigable, and the submerged lands were conveyed by ICs 564 and 565.

This action was challenged by the State in a complaint filed in U.S. District Court (A82-200 CIV) against the Department, the BLM, and the Native corporations, alleging that the Gakona River is navigable from its headwaters to the Copper River. On July 1, 1982, the Solicitor in Washington, D.C., requested that this case be defended by the Department of Justice.

On March 15, 1991, the U.S. District Court for Alaska declared the lower reaches of this river navigable. The Court "ordered and adjudged" that "the Gakona River is navigable in fact under the federal test of navigability from its confluence with the Copper River to the point upstream where the river intersects the North township line of Township 9 North, Range 1 East, Copper River Meridian, in the State of Alaska." The township identified in this court order is adjacent and upstream of the uppermost township in the report area. Therefore, the Court's judgement obviates any further discussion of the navigability of this river within the report area.33

Dog Creek (USGS Gulkana B-4) (CIR 60: roll 3013, frame 4205, August 1981)

This creek flows through Secs. 5, 7, 8, 18, 19, and 30, T. 8 N., R. 3 W., CRM, in the report area (miles 0.5 to 6). The lands are State- and ANCSA-selected. The remainder of the creek (in T. 9 N., R. 3 W., and Tps. 7-9 N., R. 4 W., CRM), on State-selected lands, is not within the report area.

Heading in Crosswind Lake (elevation 2,112 feet), this tightly meandering stream, single-lined on the USGS map, empties into the southern end of Fish Lake (elevation 2,015 feet), which in turn empties into the West Fork Gulkana River. The creek flows through a number of small lakes in its course, including Dog Lake (elevation 2,098). From Dog Lake to Fish Lake, the creek travels about eight miles with an average gradient of about ten feet per mile.

In 1991, we found the creek navigable from Fish Lake to Crosswind Lake. Nearly all traffic is downstream. Fred Ewan reported that inhabitants of a former village on Crosswind Lake used to descend the creek to the Gulkana in wooden boats. In more recent times, a few people have taken small boats and canoes down the creek from Crosswind Lake. In the fall of 1962, Bruno (Blackie) Zimbicki and a friend took two fourteen-foot wooden boats with a load capacity of seven to eight hundred pounds down the creek to Fish Lake. According to Zimbicki, other than having to cut a few trees out of the way, they had "no trouble" in reaching Fish Lake. (Zimbicki also recalled that in the mid 1960s Wayne Green and two others took a sixteen- to eighteen-foot Smokercraft up Dog Creek to Green's cabin on Crosswind Lake.) Wilson (Butch) Potterville used a fifteen-and-a-half-foot Grumman Sport canoe (carrying capacity 1,100 pounds) and a four-horsepower motor with a lift; Fred Williams used the same canoe or a similar one. Potterville, who descended the creek on August 11, 1981, with an assistant, recalled that the channel was about ten feet wide and "knee-deep." He believed that he could have ascended the creek to Crosswind Lake in the canoe as well as eighteen- to twenty-four-foot boats during ordinary high water. Williams descended Dog Creek to Fish Lake in mid July 1965 and again in June 1966. (There are reports of others taking sixteen-foot canoes down the creek.) Finally, Al Lee once accompanied several people in a small raft as far as Dog Lake. He mentioned that rocks can

34 On June 27, 1984, the United States disclaimed any interest in the West Fork Gulkana River from its mouth to Victor Creek in Sec. 20, T. 10 N., R. 4 W., CRM, about ten miles upstream of the Fish Lake effluent.

be impediments during low water periods.37

Middle Lake Effluent (USGS Gulkana C-4) (CIR 60: roll 3013, frame 4205, August 1981)

This creek is located on ANCSA-selected lands in its entirety. The creek is located in Secs. 4 and 5, T. 8 N., R. 3 W., CRM, and in Sec. 32, T. 9 N., R. 3 W., CRM. In 1991, BLM decided that the creek is not navigable in Sec. 32, T. 9 N., R. 3 W., CRM.38

From Middle Lake (elevation 2,080), this effluent, two and a half miles long, flows westerly to empty into Dog Creek at mile 0.5. The USGS map shows a meandering, single-lined stream. It has an average gradient of twenty-five feet per mile.

This creek is part of a canoe route from Middle Lake to Sourdough on the Gulkana River. People usually haul a sixteen- to seventeen-foot canoe in an ATV over the eleven miles from Sourdough to Middle Lake. This is a shallow lake, only four to six feet deep. Sam Aguiar, who has a cabin on Fish Lake, has perhaps canoed the route ten times between 1975 and 1990. In 1989, he and his wife, in a party of six, made the trip in two canoes. He described it as a pleasant three- to five-day trip. The float down the creek is a "thriller." The creek ranges from six inches to three feet deep, and in places it is too narrow to paddle, only four feet wide with three- to four-foot-high banks. In high water, the stream in these tight areas is like a chute. An occasional deadfall over the stream may cause the canoeists to duck fast. During low water, one must wade or drift the canoes over some riffles.

The Reverend Al Krinke of Glennallen recalled making one of these trips with Sam Aguiar, probably in September. They used a nineteen-foot aluminum canoe with a ten-horsepower motor. The three people and their gear probably weighed around 800 pounds. Although the stream was narrow, it always carried enough water to float the canoe. They had to clear or duck some deadfalls. He noted that the water was deepest after they entered Dog Creek.39

Larry Kajdan, Ken Roberson, and Fred Ewan confirmed that others canoe this creek. Roberson said that the proximity of this route to Sourdough made it easier and more economical to access than some others; he characterized it as a "poor man’s float." From what he has seen during overflights, Roberson described the creek as ten to fifteen feet wide and about a foot deep. It is not deep, but most of it will float a loaded canoe. It is too

narrow for rafts. Some portaging or walking may be necessary.40

We conclude that this creek is non-navigable. The creek is too narrow and shallow for craft carrying substantial loads (about 1,000 pounds). Ordinarily, local residents use this creek for recreational purposes in small lightly loaded canoes. It is not suitable for larger craft.

Tazlina River (USGS Gulkana A-3 and 4) (CIR 60; roll 3097, frames 9435 and 9437, August 1982)

The lower twenty-two miles of this river is located within the report area; specifically, T. 3 N., Rs. 1-3 W., and T. 4 N., Rs. 2 and 3 W., CRM. The riverbed in all these townships but T. 3 N., R. 1 W. was conveyed by ICs 245 and 246.

In 1980, the State Director decided that the Tazlina River, about thirty miles long, is navigable from the Copper River to Tazlina Lake.41 The river drains an area of 2,590 square miles, the largest drainage area of any tributary west of the Copper River. It has an average gradient of about seventeen feet per mile. The river flows through a canyon for most of its length. In the first twenty-five miles, the canyon has sharply cut bluffs rising five hundred feet above the river. On the lower fifteen miles the banks are about six to eight feet high. The river is well over three chains wide and frequently four to six chains wide. Normal depths range from about two to twelve feet. The estimated flow is six miles per hour.

The river has an average flow of 4,100 cubic feet per second. A gage for the Tazlina River on the Richardson Highway bridge, for a drainage area of about 2,670 square miles, showed a discharge averaging 4,085 cubic feet per second over a twenty-two-year period.42

The Glennallen Resource Area reported that in the early 1900s miners transported goods and equipment up the river. In more recent times, John Breivagle, a commercial jet boat operator, transported people, supplies, and small vehicles up and down the river. Karl Becker, an outfitter, also used large inflatable rafts capable of carrying a ton on the river.

40 Ibid.; Darryl L. Fish to DM-A, November 17, 1980; and Sherman F. Berg, Draft memo entitled "Final Navigability Determination for Gulkana Village Corporation on the Gulkana Quadrangle," February 9, 1984, Navigability Section files.

42 Grumman Ecosystems Corporation 1975, 2-67, 2-79, and 4-170.
Landowners on Tazlina Lake have also boated to their property.43

Mendeltna Creek (USGS Valdez D-7) (CIR-60: roll 2670, frame 8264, August 1978)

The report area includes about four miles (only two air miles) of this creek: in Secs. 2, 11 and 12, T. 2 N., R. 7 W., CRM. These lands, below the Glenn Highway crossing, are selected by both the State and regional corporation.

This creek flows fifteen miles southeasterly in tight meanders from its source in Old Man Lake to Tazlina Lake, emptying into the lake about two miles northeast of the Nelchina River. It has an average gradient of about twenty-eight feet per mile, drains an area of about 180 square miles, and has a average (estimated) runoff of about two hundred cubic feet per second.44 On July 13, 1970, it had a discharge measuring only 108 cubic feet per second.45 The aerial photos show a meandering single-channeled creek twenty to forty feet in width and numerous small gravel bars on bends. Reportedly, the creek is two to six feet deep. Below the highway, the creek "flows through dense willow and alder thickets and is choked with log jams in many places. This creek provides habitat for red salmon, king salmon and grayling. Grizzly bears are often seen along its banks."46 There are no visible obstacles. The banks are covered with low-lying vegetation.

The Glenn Highway crosses this creek over a bridge in creek mile 7. Mendeltna Lodge is located near here. According to Larry Kajdan, several cabins also are located about a quarter mile above the highway. Several cabins also are located on Tazlina Lake near the creek's mouth. He also reported a former Native village about a quarter mile from the lake.47

Occasionally, canoers (and possibly kayakers and rafters) float Mendeltna Creek from the Oil Well Road about a mile below Old Man Lake to the Glenn Highway. We interviewed three people --- Larry Kajdan, Darryl Fish, and Ken Roberson -- who have canoed the route. Kajdan used a seventeen-foot canoe; Fish, a nineteen-foot canoe. Kajdan called the trip a "pleasant run." The creek is twenty to thirty feet wide and two to six feet deep. After clearing the creek of logjams, Vern Atkins, who owns a business on the highway, used to

43 Darryl L. Fish (for Larry Kajdan) to DM-A, November 17, 1980, Navigability Section files.
44 Grumman Ecosystems Corporation 1975, 4-171.
47 Ibid.
sponsor canoe races on the creek. In addition, he used to run an airboat from the highway for about two miles. He no longer sponsors the races because of the pressure of his business and no longer operates the airboat because it is "too cumbersome." He, like Kajdan, estimated the creek’s width at twenty to thirty feet and its depth at two feet and more.48

Local residents agreed that the creek below the highway is non-navigable. The creek is filled with logjams, deadfalls, and sweepers. Atkins said it is rocky just below the highway and very shallow near Tazlina Lake. In 1990, Atkins said that in the past twenty years he had known of only three people who tried to descend this section. One drowned; another said "never again." (He didn’t mention what happened to the third person.) John Breivagle recalled that in June 1977 he took a state trooper up the creek a half mile in a twenty-four foot jet boat in order to retrieve the body of man who drowned. They had to cut through several deadfalls. Several people agreed with Breivagle’s opinion that this section of the creek is "just too much trouble" and "too dangerous" for navigation.49

Mendelta Creek is non-navigable. The consensus of local residents (Roberson, Fish, Atkins and Breivagle) is that this stream is too dangerous for any kind of boating south of the Glenn Highway. One person drowned in trying to descend it. Another said he would never try it again. Another person who tried to take a jet boat up said it is too much trouble and too dangerous to boat.

Nelchina River (USGS Valdez D-7) (CIR 60: roll 2670, frame 8264, August 1978)

The report area includes public land fronting on a quarter-mile of the main channel of the Nelchina River in mile 1, in Section 11, T. 2 N., R. 7 W., CRM. The lands are selected by the State under AA-21201. The river, about three-quarters of a mile wide in this township, has been meandered and the submerged lands segregated in the rectangular survey.

In 1980, the State Director decided that Nelchina River is navigable to Eureka Creek. Heading in Nelchina Glacier, this river flows north and southeast twenty-eight miles to Tazlina Lake. The river drains an area of about 800 square miles and has an estimated flow of 1,500 cubic feet per second. The mouth is an alluvial fan about two miles wide. In the

48 Ibid.; Edgar A. Earnhart to Files. November 30, 1990, file AA-6667-EE; Fabio Ferruzzi to File AA-6656-EE. May 18, 1992; and C. Michael Brown to File AA-6704-EE, April 30, 1993, ANCSA files. In 1980, Kajdan reported this creek navigable "both upstream and downstream by boats carrying over 1,000 pounds. . . . Affords upstream access to Old Man Lake and downstream access to Tazlina Lake. . . . Should be considered navigable." Darryl L. Fish to DM-A, November 17, 1980, Navigability Section files.

first five miles, the river flows in numerous channels, varying from fifty to more than two hundred feet in width. Above mile 5.5, the flow is consolidated into a primary channel over two hundred feet in width. The average gradient throughout this stretch is about twenty-eight feet per mile.\footnote{50}

The river is navigable for rafts and riverboats. Mac Wheeler, a BLM employee, floated down the Nelchina from the Little Nelchina (mile 21) in an Avon Adventurer. He reported that the delta was most difficult section to float, presumably because of shallow water. Nevertheless, he believed that a riverboat carrying a ton of goods could be taken up the Nelchina. Above the delta, the river is 200 to 250 feet wide and more than six feet deep. Commercial rafting companies reportedly have operated on the river. Larry Kajdan, also a BLM employee, observed two sixteen- to eighteen-foot riverboats near the mouth of the Little Nelchina.\footnote{51}

\textbf{Moose Creek} (USGS Gulkana A-4) (CIR 60: roll 3395, frame 7833, August 1984)

Moose Creek in T. 4 N., R. 2 W. CRM (miles 2-12), is either patented or conveyed by IC 245. A short segment in Secs. 1 and 2, T. 4 N., R. 3 W., CRM, is located in an ANCSA- and State-selection area.

Heading in the Twin Lakes, this creek empties into the Tazlina River at mile 6. The creek drains an area of about 150 square miles and has an estimated average flow of about 120 cubic feet per second at mile 5.9.\footnote{52} In mile 3 to 10, the creek falls two hundred feet for an average gradient of twenty-nine feet per mile. It is about twenty-five feet wide and very sinuous. The banks are heavily vegetated. There are numerous places along the stream where vegetation appears to nearly or completely block the stream (probably beaver dams).

Local residents reported that this creek is non-navigable. Larry Kajdan and John Rego said that this stream is too narrow, shallow, and full deadfalls and the like for navigation. Kajdan said the stream is a popular fishing stream for grayling. It is fished from the banks only.\footnote{53}

Moose Creek is not navigable. From photo-interpretation and interviews with local residents we know that this creek is narrow and filled with deadfalls, logjams, and the like. Local residents report that the creek is not boated and, in fact, is too shallow for practical navigation.

\footnote{50} Grumman Ecosystems Corporation 1975, 4-171.

\footnote{51} Donovan Yingst to SD (932), August 18, 1980, Navigability Section files. This supplemented report no. 3, Valdez Quadrangle, March 13, 1980.

\footnote{52} Grumman Ecosystems Corporation 1975, 4-171.

\footnote{53} C. Michael Brown to File AA-6704-EE, April 30, 1993, ANCSA files.
Tonsina River (USGS Valdez C-3 and C-4) (CIR 60: None available) (Black/White 1967, Line 8, Roll 29, 1;12,000)

This river flows through eleven townships, eight of which are in the report area. This encompasses all but the lowest twelve miles of the fifty-nine-mile-long river (including Tonsina Lake). The river in three townships -- T. 4 S., Rs. 1 and 2 W., and T. 2 S., 2 E., CRM -- must yet be reviewed in terms of navigability. All include river segments below Tonsina Lake. Either Ahtna, Inc., or the State, or both (topfilings), have selections along the river in the townships.

In 1981, BLM determined that Tonsina Lake was navigable. However, Tonsina River was determined non-navigable in Tps. 3 and 4 S., R. 1 W.; Tps. 4 and 5 S., R. 2 W., CRM. In 1989, we found the river navigable in Tps. 2 and 3 S., R. 1 E. and non-navigable in T. 6 S., R. 2 W., CRM (segment above Tonsina Lake).54

From Tonsina Lake, the river flows northeasterly thirty-eight miles to the Copper River at mile 123. The average gradient from the lake to Copper River is thirty-one feet per mile. The river is mostly greater than three chains in width, but it has stretches under and over three chains in width. The drainage area is 830 square miles. The estimated average flow is 1,500 cubic feet per second.55

In July 1974, employees of the Grumman Ecosystems Corporation conducted a helicopter survey of the river. They described the river below the lake as follows: "The river is characterized, in this reach, by a steep gradient, swift flow, boulders in channel, some gravel bars, high concentrations of glacial flour and numerous riffles. The first 8 miles below Tonsina Lake slope only 11 feet per mile, while the remaining 32 miles slope at nearly 40 feet per mile. From mile 40 to mile 32 flow is somewhat laminar and waters are not always confined within their banks. Below mile 32, as the gradient steepens, flow increases and becomes more turbulent, with some white water and standing waves. Flow is generally confined to one channel, except below the Edgerton Highway bridge, where the main channel is still relatively definable in all areas." The width of the main channel ranged between sixty and eighty feet. At mile 5, they measured the river's velocity at eight feet per second.56

According to the Grumman Ecosystems Corporation, the Coast Guard in October 1970 decided that the Tonsina was navigable at least to the proposed site of the trans-Alaska pipeline crossing at mile 27.5. In September 1973, the Corps of Engineers surveyed the site

55 Grumman Ecosystems Corporation 1975, 4-20, 4-126.

56 Ibid., 4-133.
and considered the river navigable to Tonsina Lake. The corporation agreed with the Corps that the river is navigable to the lake.57

Recreationists and hunters occasionally visit this river system. In 1983, Ken Roberson reported that recreationists fly into Tonsina Lake for float trips (rafts and kayaks) down the river to the Richardson Highway crossing. In the fall, hunters also take eighteen- to twenty-foot riverboats using jets up to the lake. He said too that Jon Brevagle taken a twenty-four-foot boat with a jet unit from Tonsina Lodge on the highway to Tonsina Lake seven or eight times. Four or five trips were chartered.58 According to kayakers, the river between the lake and the highway is Class II+ on the International Whitewater Scale. The main channel is at least two feet deep.59

The Tonsina River from Tonsina Lake to the Copper River is navigable. Reported usage has included eighteen- to twenty-four-foot-long shallow draft boats using jets, and numerous inflatable rafts. These craft are capable of carrying more than a thousand pounds (people or goods) on this river. At least one boater has transported people to the lake for hire.

Upper Klutina River (USGS Valdez B-6 and C-6) (CIR 60: Roll 2670, Frame 7933, August 1978)

This river (above Klutina Lake) flows four miles across ANCSA-selected lands in T. 3 S., R. 4 W., CRM, to empty into Klutina Lake. This is below Stephens Creek (NW\textfrac{1}{4} Sec. 31, T. 4 S., R. 4 W., CRM), which we identified in 1983 as the head of navigation for boats.60

The Upper Klutina River heads in the Klutina Glacier on the slopes of Mt. Brookfield, sixteen miles north of Valdez, and flows northerly about seventeen miles to Klutina Lake (elevation 1,719 feet). The lake, sixteen and a half miles long, acts as an effective settling pond for this glacial river. From the lake, the Lower Klutina flows twenty-five miles with an average gradient of twenty-nine feet per mile to the Copper River at Copper Center. The river in this reach is in a steep-walled U-shaped glacial valley. It has been characterized as a

57 Ibid., 4-128 and 4-129.

58 Dennis P. Daigger to Gary Seitz, July 12, 1983, Navigability Section files. Mr. Daigger was a State natural resource manager.

59 Wayne A. Boden to Deputy State Director for Cadastral Survey, August 7, 1989, file AA-6704-EE, ANCSA files.

swift flowing, sediment-choked, shallow and narrow-channeled stream.61

Our conclusion that the Upper Klutina is navigable to Stephens Creek (mile 10) is based upon evidence of boating during the Klondike Gold Rush. According to one report, a large camp was situated near the creek during the winter of 1898-99: "Draining Klutina Glacier and heading northerly into Klutina Lake, Upper Klutina River is about 20 miles in length, of which length four miles lay above and 16 below a small community known as Twelvemile Camp in 1898-99."62 On July 17, 1898, an Army lieutenant found three hundred people in the tent community, all waiting for the river to go down for safe boating. He noted that several people were drowned in attempts to boat the river.63

One observer (Benedict) described the stampeder's descent of the river in the spring of 1899. Once the river had risen enough for boating, men at Twelvemile Camp carried or sledded their supplies and gear to homemade or knockdown boats. By the first of June, the river was sufficiently deep for travel. Many boats were subsequently launched. Heavily-laden boats often scraped the river bottom just below Twelvemile Camp. Here the prospectors pushed or pulled the boat. A few hundred feet below this spot, they encountered a dangerous point, upon which many boats were wrecked. Nevertheless, using a pole to steer, many made a safe passage to the lake, and continued down the river to the Copper.64

According to one turn-of-the-century observer, during normal stages the river is no more than three hundred feet wide and three or four feet deep. Another reported that in early August the river was nearly a hundred feet wide and between two and three feet deep.65

Western Distributary of Upper Klutina River (USGS Valdez C-6) (CIR 60: roll 2670, frame 7933, August 1978)

This distributary crosses ANCSA-selected lands in T. 3 S., R. 4 W., CRM.

On the USGS maps, the eastern distributary bears the name of the river. The USGS Valdez C-6 quadrangle (scale 1:63,360; 1950, Minor Revisions 1965), compiled from aerial

61 Grumman Ecosystems Corporation 1975, 4-151.

62 C. Michael Brown, Report on Klutina Lake and River, c. 1977, 2. In this report, much information about Klutina River was gleaned from Neal D. Benedict, "The Valdes and Copper River Trail, Alaska" (unpublished manuscript, Anchorage Historical and Fine Arts Museum. 178 pp. 158 photos).

63 Ibid., 21.

64 Ibid., 18, 19.

65 Ibid., 3.
photographs taken in 1950, shows a main channel in the eastern distributary about three chains wide with numerous interconnecting single-line channels. The western distributary, which branches off directly north in Section 17, is well-defined and about two chains in width.

In the aerial photo taken in August 1978, the eastern distributary consists of many stretches of gravel bars with very little water and widely dispersed, very narrow channels of water, particularly at the junction with the western distributary and the last mile before entering the lake. The western distributary, on the other hand, is a well-defined and continuous channel over two chains wide to the lake. At the time of the photo, the western channel is clearly the main channel.

What little there is in the historical record about this distributary supports this viewpoint. The historical record does not mention or imply any distinctive route to the lake. One source noted that the river enters the lake from the southwest and "was similar to the main forks of the Klutena." (This is the only source found that noted the existence of the forks.) Counting the western distributary, there are four distinct mouths of the Klutina on Klutina Lake, which from the maps and photos would appear to be closely equivalent from the lake view. A U.S. Geological Survey source in 1898 reported: "The confluence of the Hallet and the Klutena is where the Klutina valley is 5 mi. wide." Since Hallet Creek is west of the Klutina River, this also strongly implies that the author of that observation considered the "western distributary" as equivalent to the main river.66

Local residents tended to agree that the western distributary is navigable. Lee Adler was not aware of any particular physical distinction between them. John Breivagle, who boated both distributaries in 1974, agreed that the two forks are equally usable for boating. He described the western distributary as more defined and probably deeper than the more braided eastern distributary. He did not believe there would be any difficulty in ascending the distributary in his twenty-four-foot long jet boat with a thousand-pound load. He described the western branch as over four feet deep; the eastern distributary, about two feet deep.67

Hallet River (USGS Valdez C-6, 1950, Minor Revisions 1965) (CIR 60: roll 2670, frame 7933, August 1978)

The last mile of this river flows through an ANCSA- and State-selected area (T. 3 S., R. 4 W., CRM). The remainder of the creek (Tps. 3 and 4 S., R. 5 W., CRM) has been TA’d to the State.

Draining an area of about one hundred square miles, this glacial river, eighteen miles long,

66 AEIDC 1979, 1200.

empties into Klutina Lake about a half mile northwest of the western distributary of the Klutina River.68 In miles 4 to 10, the river is braided. The floodplain is one to three thousand feet wide. In miles 1 to 4, it flows through a steep-walled canyon in a single channel. Rapids in this reach are visible in the photos. The lowest half mile of the river is braided, crossing a wide (at least 1,000 feet), most unvegetated gravel plain. (Photo-interpreter Greg Balen explained that this reach would be meandered.) The main channel is about 35 feet wide. Numerous gravel bars appear throughout. In its lowest nine miles, the stream's gradient is about fifty feet per mile. The average estimated discharge is three hundred cubic feet per second.69

Three local residents unanimously agreed that this creek is not navigable. John Breivagle said that he attempted to take a twenty-four-foot jet boat up this river a short distance (perhaps a half mile). He found it very difficult to boat and believed the canyon section would be even more difficult. Lee Adler and John Rego were unaware of anyone boating the river. Both thought the river is too shallow and rocky. Neither considered it navigable by small craft.70

This river is non-navigable. The river is too shallow and rocky for navigation by small craft. Local residents were unaware of anyone boating the river and believed that it could not be navigated on a practical basis. One of these residents included a well known boater in the area who in fact attempted to take a jet boat up the river, but found it very difficult to navigate.

\textbf{Saint Anne Creek} (USGS Valdez C-6 and D-6) (CIR 60: roll 2670, frame 8225, August 1978)

The first half mile of the creek below Saint Anne Lake (in Sec. 36, T. 1 N., R. 5 W., CRM) is selected by both Ahtna, Inc., and the State. It then crosses the extreme southwest corner of Sec. 31 in T. 1 N., R. 4 W., CRM, before continuing through unsurveyed T. 1 S., R. 4 W., CRM. These lands also are selected by the regional corporation. A patented U.S. Survey (6726) straddles the stream's mouth.

From the extreme southern tip of Saint Anne Lake, this creek flows south-southeasterly eight and a half miles to Klutina Lake. The maps show the creek below Saint Anne Lake an area called Cranberry Marsh, bordered by steep valley walls formed by Cranberry, Wests and Powell peaks. The average gradient is about thirty feet per mile. In the one and one-half miles before entering Klutina Lake, the creek drops eighty-one feet. It has an estimated

68 The USGS Valdez topographic map (scale 1:250,000, 1960, Minor Revisions 1972, names this stream "Hallet Creek."

69 Grumman Ecosystems Corporation 1975, 4-152.

70 C. Michael Brown to File AA-6704-EE, April 30, 1993, ANCSA files.
average run-off of 150 cubic feet per second. The drainage area is about ninety square miles. In the aerial photo, the tightly meandering stream is fifteen to forty feet wide with noticeable obstructions and dense vegetation along its banks and throughout the stream valley.

The historical record contains some references of people walking up this stream valley or crossing the stream, and one instance of two people boating up the creek. In 1898, Addison M. Powell wrote that he and his party walked along this creek and, when attempting to jump across, landed in waist-deep water. Powell mentions two men who ascended the creek and also says that it was about five feet deep.

Local residents unanimously agreed that this creek is not navigable on a practical basis. Ken Roberson said that people in his office floated the narrow creek with great difficulty, frequently encountering snags, deadfalls, sweepers, and some beaver dams. Larry Kajdan and John Rego echoed Roberson's view of the creek.

Saint Anne Creek is not navigable. It is clear from the aerial photo and recent interviews that this stream is unsuitable for navigation even under the best of conditions. It contains too many snags, overhanging limbs, log jams, and beaver dams. While a few historical sources indicate that people ascended the creek in boats, they do not reveal if these ascents were successful. In view of contemporaries' statements, we believe they were not.

Other Water Bodies

The remaining water bodies in the report area, both named and unnamed, are not suitable for use by any watercraft. They are too steep, swift, narrow and/or discontinuous. These streams were eliminated by virtue of physical characteristics only, as interpreted from the aerial photos and maps. They include: the unnamed Tazlina Glacier streams in Sections 26 and 27, T. 1 S., R. 7 W., CRM; and Bear, Bernard, Dust, Hurtle, Kaina, Manker, Nickel, Quartz, Rainbow, Squirrel, and Willow creeks. Lakes under fifty acres in size are not included unless they are connected to a navigable water body.

71 Grumman Ecosystem Corporation 1975, 4-155.

72 AEIDC 1979, 2826. Ferruzski noted that, on August 11, 1898, Will H. Cary ascended the river from Klutina Lake about a half mile in a whipsawed lumber boat, eighteen feet long and four and one-half feet wide. Fabio Ferruzski to File 6656-EE, May 18, 1992, ANCSA files. We were unable to locate the source of this note.

73 Fabio Ferruzski to File AA-6656-EE, May 18, 1992; C. Michael Brown to File AA-6704-EE, April 30, 1993, ANCSA files.
cc: State of Alaska
 Department of Natural Resources
 Division of Water
 P.O. Box 107005
 Anchorage, Alaska 99510-7005

State of Alaska
Department of Natural Resources
Division of Land
Title and Contract Section
3601 C Street, Suite 960
Anchorage, Alaska 99503

State of Alaska
Department of Natural Resources
Division of Land
State Interest Determinations Unit
P.O. Box 107005
Anchorage, Alaska 99503

Ahtna, Inc.
P.O. Box 649
Glennallen, Alaska 99588

Wrangell-St. Elias National Park and Preserve
P.O. Box 29
Glennallen, Alaska 99588

National Park Service
Attn: Chuck Gilbert
2525 Gambell Street
Anchorage, Alaska 99503

Chief, Branch of Planning and Development (920B)

Chief, Branch of Field Surveys (921)

Chief, Branch of Examination and Records (922)
Attn: Records

Louis Doors (924)
Lynette Nakazawa (924)

John Toms (923)

DM (050)

Chief, Branch of CIRI/Ahtna Adjudication (968)
APPENDIX I

Navigable Waters on Lands Selected by Ahtna, Inc., in Group Survey Nos. 148, 220, 222, and 394 (Survey Window 1867)

Copper River Meridian

Townships

Tps. 1-5 N., R. 1 E.
None.

Tps. 6 and 7 N., R. 1 E.
Copper River and Gakona River.

T. 8 N., R. 1 E.
Gakona River.

Tps. 1-5 N., R. 2 E.
None.

T. 6 N. R. 2 E.
None. No determination is made for the Sanford River.

T. 7 N., R. 2 E.
Copper River. No determination is made for the Sanford River.

Tps. 8-11 N., R. 2 E.
None.

Tps. 1-5 N., R. 3 E.
None.

T. 6 N., R. 3 E.
None. No determination is made for the Sanford River.

Tps. 7-9 N., R. 3 E.
Copper River.

Tps. 10 and 11 N., R. 3 E.
None.
Tps. 7 and 8 N., R. 4 E.
None.

T. 9 N., R. 4 E.
Copper River.

T. 10 and 11 N., R. 4 E.
Chistochina River.

Tps. 7-9 N., R. 5 E.
None.

T. 10 N., R. 5 E.
Copper River.

T. 11 N., R. 5 E.
None.

Tps. 7-11 N., R. 6 E.
None.

Tps. 1 and 2 N., R. 1 W.
Klutina River.

T. 3 N., R. 1 W.
None.

T. 4 N., R. 1 W.
Copper River.

T. 5 N., R. 1 W.
None.

T. 6 N., R. 1 W.
Copper River and Gulkana River.

Tps. 7 and 8 N., R. 1 W.
Gulkana River.

T. 1 N., R. 2 W.
Klutina River.

T. 2 N., R. 2 W.
None.
Tps. 3 and 4 N., R. 2 W.
Tazlina River.

Tps. 5-7 N., R. 2 W.
None.

T. 8 N., R. 2 W.
Gulkana River.

Tps. 1 and 2 N., R. 3 W.
None.

Tps. 3 and 4 N., R. 3 W.
Tazlina River.

T. 8 N., R. 3 W.
Dog Creek.

Tps. 1 and 2 N., R. 4 W.
None.

T. 1 and 2 N., R. 5 W.
None.

Tps. 1 and 2 N., R. 6 W.
None.

T. 1 N., R. 7 W.
None.

T. 2 N., R. 7 W.
Nelchina River.

T. 1 N., Rs. 8-11 W.
None.

T. 2 N., R. 10 W.
Nelchina River to Eureka Creek.

T. 2 N., R. 11 W.
None.

T. 1 S., R. 1 E.
None.
Tps. 2 and 3 S., R. 1 E.
Tonsina River.

Tps. 4-8 S., R. 1 E.
None.

T. 1 S., R. 2 E.
None.

T. 2 S., R. 2 E.
Tonsina River.

Tps. 3-5 S., R. 2 E.
None.

T. 1 S., R. 3 E.
Copper River.

Tps. 8 and 9 S., Rs. 6-9 E.
None.

Tps. 1-3 S., R. 1 W.
None.

T. 4 S., R. 1 W.
Tonsina River.

T. 5-8 S., R. 1 W.
None.

T. 1 S., R. 2 W.
Klutina River.

Tps. 2 and 3 S., R. 2 W.
None.

T. 4 S., R. 2 W.
Tonsina River.

Tps. 5 and 6 S., R. 2 W.
None.

T. 1 S., R. 3 W.
Klutina River.
Tps. 2-6 S., R. 3 W.
None.

T. 1 and 2 S., R. 4 W.
None.

T. 3 S., R. 4 W.
Klutina River.

T. 4 S., R. 4 W.
Klutina River to Stephens Creek.

Tps. 5 and 6 S., R. 4 W.
None.

Tps. 1-4 S., Rs. 5-11 W.
None.
APPENDIX II

LIST OF CONTACTS

<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
<th>Phone Number and Background</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larry Kajdan</td>
<td>03/09/93</td>
<td>(267-1369) Recreation Specialist, BLM Glennallen District Office</td>
</tr>
<tr>
<td>John Rego</td>
<td>03/09/93</td>
<td>(822-3217) Geologist, BLM Glennallen District Office</td>
</tr>
<tr>
<td>Lee Adler</td>
<td>03/24/93</td>
<td>(822-3217) Resource Specialist, BLM Glennallen District Office</td>
</tr>
<tr>
<td></td>
<td>04/13/93</td>
<td></td>
</tr>
<tr>
<td>Ken Roberson</td>
<td>04/13/93</td>
<td>(822-5520) Fish Biologist, Alaska Department of Fish and Game</td>
</tr>
<tr>
<td>John Breivagle</td>
<td>04/24/93</td>
<td>(822-5870) Resident, Copper Center</td>
</tr>
</tbody>
</table>
BIBLIOGRAPHY

U.S., Bureau of Land Management, Alaska State Office. Alaska Native Claims Settlement Act Easement Files AA-6667-EE (Gulkana; 2 parts), AA-6658-EE (Copper Center; 2 parts), AA-6656-EE (Chistochina; 2 parts).