

February 28, 2023 COR-23-011 Via Electronic Submittal

Alaska Department of Environmental Conservation Division of Water, Compliance Program 555 Cordova Street Anchorage, AK 99501

Re: Northern Star (Pogo) LLC 2022 Annual Quarter Monitoring Report

To whom it may concern:

Enclosed is Northern Star (Pogo) LLC Annual 2022 Activity and Monitoring Report. This report is prepared to fulfill the requirements of the Alaska Department of Natural Resources (ADNR) Pogo Mine Millsite Lease ADL416949, Alaska Department of Environmental Conservation (ADEC) APDES Permit AK0053341, and ADEC Waste Management Permit 2018DB0001. This report covers the period from January 1, 2022 through December 31, 2022.

If you have any questions, please contact James Meyers, Senior Environmental Coordinator at 907-895-2879 or email him at <u>imeyers@nsrltd.com</u>.

Sincerel

Micheal Eckert General Manager

Enclosure: Annual Pogo Mine Water Quality Monitoring Report, 2022

cc: Tim Pilon, ADEC (via ZENDTO) William Groom, ADNR (via ZENDTO) Kate Harper, ADNR (via ZENDTO) <u>dec-wareporting@alaska.gov</u> (via ZENDTO)

2022 ANNUAL MONITORING REPORT

NORTHERN STAR (POGO) LLC

Submitted To:

Alaska Department of Environmental Conservation Division of Water, Compliance Program 555 Cordova Street Anchorage, Alaska 99501

> Alaska Department of Natural Resources Division of Mining, Land, and Water 550 West 7th Avenue, Suite 900D Anchorage, AK 99501-3557

> > Prepared by:

Northern Star (Pogo) LLC P.O. Box 145 Delta Junction, Alaska 99737

February 27, 2023

TABLE OF CONTENTS

1.	INTR	ODUCT	DUCTION1				
2.	2022 MONITORING1						
	2.1	Summ	ARY	1			
	2.2	TREATE	D EFFLUENT MONITORING	3			
	2.2.1	Out	tfall 011 – Treated Effluent from Mine Water Treatment Plant	3			
			tfall 001 – Discharge from Off River Treatment Works4	1			
	2.2.3	Out	tfall 002 – Treated Effluent from Sewage Treatment Plant	1			
	2.3	SURFA	ce Water Monitoring	5			
	2.3.1	Go	odpaster River	5			
	2.3.2	Wh	ole Effluent Toxicity	5			
	2.3.3	Fish	h Tissue é	5			
	2.4	Grou	NDWATER QUALITY MONITORING	1			
	2.4.1	Doi	wngradient of DSTF	7			
	2.4.2	Lies	se Creek Flumes	7			
	2.4.3	Do	wngradient of RTP Dam٤	3			
	2.4	1.3.1	MW12-500, 501, 502 Wells	3			
	2.4	1.3.2	MW18-001 and MW18-002	3			
	2.4.4	Do	wngradient of Ore Zone٤	3			
	2.4	1.4.1	MW11-216	3			
	2.4	1.4.2	mw18-003a and mw18-003B	3			
	2.5	Proci	ess Control Monitoring)			
	2.5.1	Wa	iter Balance)			
	2.5.2	Per	mits to Appropriate Water and Temporary Water Use Permit Summary)			
	2.5.3	Car	bon-In-Pulp (CIP) Tailings Cyanide Destruction	1			
	2.5.4	Mir	neralized Development Rock Geochemistry 11	1			
	2.5.5	Flo	tation Tailings Geochemistry	1			
	2.5.6	Flo	tation Tailings Interstitial Water Chemistry12	?			
	2.6	Visua	L MONITORING	2			
	2.6.1	Fac	ility Inspection	?			
	2.6.2	Bio	logical Survey	}			
	2.6.3	Inv	asive Weed Control	3			

	2.7	DEVELOPMENT ROCK SEGREGATION AND STORAGE	.13
	2.8	Waste Disposal	.13
	2.9	GEOTECHNICAL MONITORING	.14
	2.10	SPILL REPORTING	.17
3.	AS-B	UILT REPORTS AND MAPS	.18
4.	RECL	AMATION AND FINANCIAL RESPONSIBILITY	.18
5.	PERN	ΛΙΤ ΑCTIVITIES	.20
	5.1	Annual 2022 Permit activities	.20

LIST OF FIGURES

Figure 1: 2022 MWTP#3 Outfall 011 Discharge to ORTW	3
Figure 2: 2022 Annual Outfall 001 Discharge to Goodpaster River	4
Figure 3: 2022 Annual Outfall 002 Discharge to Goodpaster River	5
Figure 4: 2022 Flume #1 Flow and Site Rainfall	8
Figure 5: 2022 Annual Waste Disposal in the DSTF	14
Figure 6: 2022 Pogo Spill Reporting	17

LIST OF TABLES

Table 1: Pogo Mine Whole Effluent Toxicity Testing 2022	6
Table 2: Permits to Appropriate Water 2022 Monthly Total Flows	. 10
Table 3: 2022 Temporary Water Use Authorization Flows	. 11
Table 4: Miscellaneous Waste Disposal in DSTF and Underground in 2022	. 14
Table 5: Miscellaneous Waste Disposal in DSTF and Underground in 2022	. 18
Table 6: Mine Reclamation and Closure Cost Estimates as of 2017	. 19
Table 7: Pogo Access Road/Transmission Line Reclamation and Closure Cost Estimates as of 2017	. 20

APPENDICES

APPENDIX A – MAPS

Figure 1.1: General Location Map

Figure 1.2: Monitoring Locations

Figure 1.3: Surface Water Monitoring Locations

Figure 1.4: Pogo Mine As-Built

Figure 1.4a: 1525 Portal and Lower Camp As-Built

Figure 1.4b: Airstrip Area As-Built

Figure 1.4c: Mill and Permanent Camp Bench As-Built

Figure 1.4d: Permanent Camp Bench As-Built

Figure 1.4e: RTP and DSTF Area As-Built

Figure 1.4f: Pogo Mine 2022 Disturbance Areas

APPENDIX B – WASTE ROCK GEOCHEMISTRY AND FLOTATION TAILINGS SOLIDS CHEMISTRY

Table 1: Whole Rock Geochemistry for Rock Placed in Dry Stack 2022

Table 2: Geochemistry of Flotation Tailings Solids Placed in Dry Stack 2022

APPENDIX C – TIME SERIES GRAPHS OF MONITORING DATA

APPENDIX D – WHOLE EFFLUENT TOXICITY TESTINGDCS

APPENDIX E – FISH TISSUE SAMPLING LAB REPORTS

Electronic Appendices

APPENDIX F - ELECTRONIC MONITORING DATA

[SUBMITTED ELECTRONICALLY VIA ALASKA ZENDTO (STATE OF ALASKA)]

[SUBMITTED ALASKA ENVIRONMENTAL DATA MANAGEMENT SYSTEM (EDMS) PORTAL]

ACRONYMS

ADEC:Alaska Department of Environmental ConservationADNR:Alaska Department of Natural ResourcesAPDES:Alaska Pollutant Discharge Elimination SystemBOD:Biological Oxygen DemandCIP:Carbon-in-PulpDCS:Distributed Control SystemDSTF:Dry Stack Tailings FacilityDMR:Discharge Monitoring Reportgpm:Gallons Per MinuteML:Method LimitMWTP#3:Mine Water Treatment Plant #3ORTW:Off-River Treatment WorksQAP:Quality Assurance PlanSTP:Seepage Collection WellsSTP:Sevage Treatment PlantTSS:Total Suspended SolidsTDS:Total Dissolved SolidsTWUA:Water Quality StandardsWAD:Water Quality StandardsWAD:Karer Quality StandardsXRF:x-ray fluorescence	AAC:	Alaska Administrative Code
APDES:Alaska Pollutant Discharge Elimination SystemBOD:Biological Oxygen DemandCIP:Carbon-in-PulpDCS:Distributed Control SystemDSTF:Dry Stack Tailings FacilityDMR:Discharge Monitoring Reportgpm:Gallons Per MinuteML:Method LimitMWTP#3:Mine Water Treatment Plant #3ORTW:Off-River Treatment WorksQAP:Quality Assurance PlanRTP:Recycle Tailings PondSCW:Seepage Collection WellsSTP:Total Suspended SolidsTDS:Total Dissolved SolidsTWUA:Temporary Water Use AuthorizationWAD:Weak Acid DissociableWQS:Water Quality Standards	ADEC:	Alaska Department of Environmental Conservation
BOD:Biological Oxygen DemandCIP:Carbon-in-PulpDCS:Distributed Control SystemDSTF:Dry Stack Tailings FacilityDMR:Discharge Monitoring Reportgpm:Gallons Per MinuteML:Method LimitMWTP#3:Mine Water Treatment Plant #3ORTW:Off-River Treatment WorksQAP:Quality Assurance PlanRTP:Recycle Tailings PondSCW:Seepage Collection WellsSTP:Sewage Treatment PlantTDS:Total Suspended SolidsTDS:Total Dissolved SolidsTWUA:Temporary Water Use AuthorizationWAD:Water Quality Standards	ADNR:	Alaska Department of Natural Resources
CIP:Carbon-in-PulpDCS:Distributed Control SystemDSTF:Dry Stack Tailings FacilityDMR:Discharge Monitoring Reportgpm:Gallons Per MinuteML:Method LimitMWTP#3:Mine Water Treatment Plant #3ORTW:Off-River Treatment WorksQAP:Quality Assurance PlanSCW:Seepage Collection WellsSTP:Sewage Treatment PlantTSS:Total Suspended SolidsTWUA:Temporary Water Use AuthorizationWAD:Weak Acid DissociableWQS:Water Quality Standards	APDES:	Alaska Pollutant Discharge Elimination System
DCS:Distributed Control SystemDSTF:Dry Stack Tailings FacilityDMR:Discharge Monitoring Reportgpm:Gallons Per MinuteML:Method LimitMWTP#3:Mine Water Treatment Plant #3ORTW:Off-River Treatment WorksQAP:Quality Assurance PlanRTP:Recycle Tailings PondSCW:Seepage Collection WellsSTP:Total Suspended SolidsTDS:Total Dissolved SolidsTWUA:Temporary Water Use AuthorizationWAD:Water Quality Standards	BOD:	Biological Oxygen Demand
DSTF:Dry Stack Tailings FacilityDMR:Discharge Monitoring Reportgpm:Gallons Per MinuteML:Method LimitMWTP#3:Mine Water Treatment Plant #3ORTW:Off-River Treatment WorksQAP:Quality Assurance PlanRTP:Recycle Tailings PondSCW:Seepage Collection WellsSTP:Sewage Treatment PlantTSS:Total Suspended SolidsTDS:Total Dissolved SolidsTWUA:Temporary Water Use AuthorizationWAD:Water Quality Standards	CIP:	Carbon-in-Pulp
DMR:Discharge Monitoring Reportgpm:Gallons Per MinuteML:Method LimitMWTP#3:Mine Water Treatment Plant #3ORTW:Off-River Treatment WorksQAP:Quality Assurance PlanRTP:Recycle Tailings PondSCW:Seepage Collection WellsSTP:Sewage Treatment PlantTSS:Total Suspended SolidsTDS:Total Dissolved SolidsTWUA:Temporary Water Use AuthorizationWAD:Water Quality Standards	DCS:	Distributed Control System
gpm:Gallons Per MinuteML:Method LimitMWTP#3:Mine Water Treatment Plant #3ORTW:Off-River Treatment WorksQAP:Quality Assurance PlanRTP:Recycle Tailings PondSCW:Seepage Collection WellsSTP:Sewage Treatment PlantTSS:Total Suspended SolidsTDS:Total Dissolved SolidsTWUA:Temporary Water Use AuthorizationWAD:Water Quality Standards	DSTF:	Dry Stack Tailings Facility
ML:Method LimitMWTP#3:Mine Water Treatment Plant #3ORTW:Off-River Treatment WorksQAP:Quality Assurance PlanRTP:Recycle Tailings PondSCW:Seepage Collection WellsSTP:Sewage Treatment PlantTSS:Total Suspended SolidsTDS:Total Dissolved SolidsTWUA:Temporary Water Use AuthorizationWAD:Water Quality Standards	DMR:	Discharge Monitoring Report
MWTP#3:Mine Water Treatment Plant #3ORTW:Off-River Treatment WorksQAP:Quality Assurance PlanRTP:Recycle Tailings PondSCW:Seepage Collection WellsSTP:Sewage Treatment PlantTSS:Total Suspended SolidsTDS:Total Dissolved SolidsTWUA:Temporary Water Use AuthorizationWAD:Water Quality Standards	gpm:	Gallons Per Minute
ORTW:Off-River Treatment WorksQAP:Quality Assurance PlanRTP:Recycle Tailings PondSCW:Seepage Collection WellsSTP:Sewage Treatment PlantTSS:Total Suspended SolidsTDS:Total Dissolved SolidsTWUA:Temporary Water Use AuthorizationWAD:Weak Acid DissociableWQS:Water Quality Standards	ML:	Method Limit
QAP:Quality Assurance PlanRTP:Recycle Tailings PondSCW:Seepage Collection WellsSTP:Sewage Treatment PlantTSS:Total Suspended SolidsTDS:Total Dissolved SolidsTWUA:Temporary Water Use AuthorizationWAD:Weak Acid DissociableWQS:Water Quality Standards	MWTP#3:	Mine Water Treatment Plant #3
RTP:Recycle Tailings PondSCW:Seepage Collection WellsSTP:Sewage Treatment PlantTSS:Total Suspended SolidsTDS:Total Dissolved SolidsTWUA:Temporary Water Use AuthorizationWAD:Weak Acid DissociableWQS:Water Quality Standards	ORTW:	Off-River Treatment Works
SCW:Seepage Collection WellsSTP:Sewage Treatment PlantTSS:Total Suspended SolidsTDS:Total Dissolved SolidsTWUA:Temporary Water Use AuthorizationWAD:Weak Acid DissociableWQS:Water Quality Standards	QAP:	Quality Assurance Plan
STP:Sewage Treatment PlantTSS:Total Suspended SolidsTDS:Total Dissolved SolidsTWUA:Temporary Water Use AuthorizationWAD:Weak Acid DissociableWQS:Water Quality Standards	RTP:	Recycle Tailings Pond
TSS:Total Suspended SolidsTDS:Total Dissolved SolidsTWUA:Temporary Water Use AuthorizationWAD:Weak Acid DissociableWQS:Water Quality Standards	SCW:	Seepage Collection Wells
TDS:Total Dissolved SolidsTWUA:Temporary Water Use AuthorizationWAD:Weak Acid DissociableWQS:Water Quality Standards	STP:	Sewage Treatment Plant
TWUA:Temporary Water Use AuthorizationWAD:Weak Acid DissociableWQS:Water Quality Standards	TSS:	Total Suspended Solids
WAD:Weak Acid DissociableWQS:Water Quality Standards	TDS:	Total Dissolved Solids
WQS: Water Quality Standards	TWUA:	Temporary Water Use Authorization
5	WAD:	Weak Acid Dissociable
XRF: x-ray fluorescence	WQS:	Water Quality Standards
	XRF:	x-ray fluorescence

1. INTRODUCTION

Northern Star (Pogo) LLC prepared this report to fulfill the requirements of the Alaska Department of Environmental Conservation (ADEC) APDES Permit AK0053341 (7/27/17), Alaska Department of Environmental Conservation (ADEC) Waste Management Permit 2018DB0001 (5/24/2018), Alaska Department of Natural Resources (ADNR) Pogo Mine Millsite Lease ADL416949, and ADNR Plan of Operations Approval F20189500 (7/2/2020). This report addresses activities executed during the year of 2022. A General Location Map can be found in **Appendix A**, **Figure 1.1**. Graphs show data plotted on a log-scale axis and include at least the past six years of data. This report defines individual data sets and their relation to the detection limits and the ADEC Water Quality Standards (WQS).

2. 2022 MONITORING

A prescriptive environmental monitoring program is performed in accordance with State of Alaska permits and Pogo's approved *Pogo Mine Monitoring Plan* and *Quality Assurance Project Plan* (QAPP).

The objectives of Pogo's monitoring programs are:

- To monitor the water quality of the effluent discharged from the facility,
- To establish a compliance trend for water quality in the Goodpaster River and the groundwater below the facility that can be correlated over time with mining activities or discharges from the facility.
- To monitor the Carbon-in-Pulp (CIP) tailings processes associated with the underground paste backfill, and,
- To monitor the flotation tailings and the materials placed in the Drystack Tailings Facility (DSTF).

Samples collected from the Mine Water Treatment Plant #3 (MWTP#3), groundwater stations, surface water stations, the Sewage Treatment Plant (STP) and the Off-River Treatment Works (ORTW) effluent were submitted to Energy Laboratories, Inc. and Pollen Environmental. Samples collected for PC002, monitoring mineralized waste rock, and PC003, monitoring flotation tailings, were analyzed by ALS Chemex. Annual Whole Effluent Toxicity (WET) Test samples were submitted to TRE Environmental and Eurofins Test America Laboratory, Seattle.

2.1 Summary

The WQS graphs for Cadmium, Copper, Lead, Nickel, Silver and Zinc have been updated to take the sample specific water hardness value into account. Previous reports, before the 2021 1st Quarter Monitoring Report, used the lowest possible WQS for those constituents without sample hardness being considered.

A summary of the 2022 monitoring results shows:

APDES Permit:

- **Outfall 011:** Pogo reported no exceedances at Outfall 011 during 2022. Refer to **Section 2.2.1** for more detail.
- **Outfall 001:** Pogo reported no exceedances at Outfall 001 during 2022. Refer to **Section 2.2.2** for more detail.
- Outfall 002: Pogo reported no exceedances at Outfall 002 during 2022. Refer to Section 2.2.3 for more detail.

- Surface Water: No adverse trends were observed for the year. Refer to Section 2.3.1 for more detail.
- Whole Effluent Toxicity: WET Testing took place in June. Chronic bioassays were conducted by two laboratories concurrently. All final test results were within the permit limits. Refer to Section 2.3.2 for more detail.
- Fish Tissue: Annual fish tissue sampling was completed in September. All analytical results are consistent with historical data and no trends or significant anomalies were identified in 2022. No other adverse trends were observed. Refer to **Section 2.3.3** for more detail.

Waste Management Permit:

Ground Water

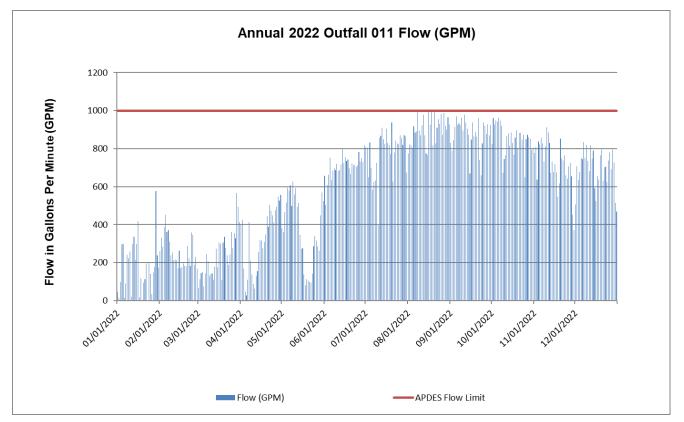
- 2011 Series Wells: Two wells are located below the Drystack Tailings Facility: MW11-001A and MW11-001B. The wells monitor groundwater downstream of the DSTF and upstream of the Recycled Tailings Pond (RTP). TDS concentrations were above WQS in MW11-001A on June 17, August 29 and October 28. MW11-001B was above TDS WQS on June 17. Nitrate was above WQS in both wells for all of 2022. Refer to Section 2.4.1 for more detail.
- **500 Series Wells:** Three wells are located below the RTP Dam: MW12-500, MW12-501, and MW12-502. The wells monitor groundwater downstream of the RTP seepage collection well (SCW) system. Chloride, nitrate, and sodium levels were detected above trigger limits while arsenic and nitrate were detected above WQS. Sodium has an increasing trend over the sampling period of 2014-2022. Refer to **Section 2.4.3.1** for more detail.
- 2018 Series Wells: The 2018 series wells were installed in October 2018 and are sampled quarterly, with the exception of MW18-001 which is sampled monthly. MW18-001 had one sample above the trigger limit for Copper on May 14th 2022 and concentrations of arsenic and nitrate, above WQS. Except for the 3rd quarter sample, Nitrate is above WQS in MW18-002. MW18-003A and MW18-003B were installed as a nested pair of wells at the end of Liese Valley. Samples from MW18-003A indicated Copper and Nitrate were above WQS in March but below for the rest of 2022. MW18-003B iron and manganese concentrations have exceeded WQS since installation of the well in 2018 and remained above WQS throughout 2022. MW18-003B also had an exceedance of pH in June, August and October. Refer to Section 2.4.3.2 for wells MW18-001 and MW18-002, and to Section 2.4.4.2 for wells MW18-003B.
- 200 Series Wells: MW11-216 is located downgradient of the ore body to monitor groundwater quality and is sampled semi-annually. MW11-216 was sampled on June 19th and August 31st, 2022 and all results were below WQS. Refer to Section 2.4.4.1 for more detail.

Process Control

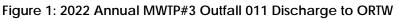
- **PC001:** PC001 monitors CIP tails prior to use in paste backfill. During the 1st Quarter of 2022, one sample result was above the maximum threshold. No other values exceeded the permit thresholds. Refer to **Section 2.5.3** for more detail.
- **PC002 and PC003 Solids:** PC002 samples monitor mineralized waste rock that is placed within the DSTF. PC003 Solids samples monitor flotation tailings that are placed within the DSTF. No adverse trends were observed. Refer to **Sections 2.5.4 and 2.5.5** for more detail.
- **PC003 Liquid:** PC003 Liquid samples monitor interstitial water pressed from the flotation tailings prior to placement within the DSTF. The following constituents were above the Target Operating Ranges: WAD CN in June and TKN in March and June; Mercury was over

the operating limit for all 4 quarters. There were no sustained upward trends. No other adverse trends were observed during 2022. Refer to Section 2.5.6 for more detail. A discussion of the results for each sampling program is provided below.

2.2 Treated Effluent Monitoring


ADEC APDES AK0053341 (8/1/17), Appendix A, 3.0

Treated effluent data are submitted to ADEC monthly via the Discharge Monitoring Reports (DMRs) under the APDES Permit. The monitoring locations for treated effluent are shown on Appendix A, Figure 1.2, as Outfall 011, 001, and 002.


2.2.1 Outfall 011 - Treated Effluent from Mine Water Treatment Plant

ADEC APDES AK0053341 (8/1/17), 1.4

Groundwater and drill water collected from the underground workings are sent to MWTP#3 (located near the 1525 portal). The treated effluent is returned for use underground, sent to the mill to be used as process water, or discharged to the ORTW. Surface runoff and groundwater are collected in the RTP. RTP water and mine water are sent to MWTP#3, treated, and then discharged to the ORTW, or directed to the mill through the RTP head tank for use as process water. Treated effluent was discharged to the ORTW during 2022 at an average 576 gpm. The volume of water

discharged from Outfall 011 during 2022 is shown below in Figure 1.

Continuous pH data is collected at Outfall 011 along with weekly laboratory samples of WAD cyanide and quarterly laboratory samples for metals (arsenic, cadmium, copper, iron, lead, manganese, mercury, selenium, zinc), total suspended solids (TSS), hardness, and sulfate. All results

are within the limits and conditions set forth in the permit. Outfall 011 has two continuous pH meters. pH readings taken during the year show compliance with permit limits. No adverse trends are reported for the year. Time series graphs are provided in **Appendix C**. Monitoring data is provided in **Appendix F**.

2.2.2 Outfall 001 – Discharge from Off River Treatment Works

ADEC APDES AK0053341 (8/1/17), 1.3

Treated effluent from MWTP#3 is sent to the ORTW. After mixing in the ORTW, water flowed over the weir of Pond 2 (Outfall 001) into the Goodpaster River at an average of 14,420 gpm throughout 2022. The sampling location is at the weir. **Figure 2** presents the 2022 flow from Outfall 001.

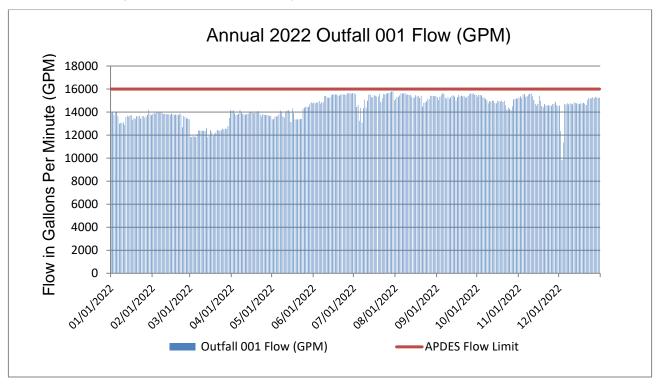
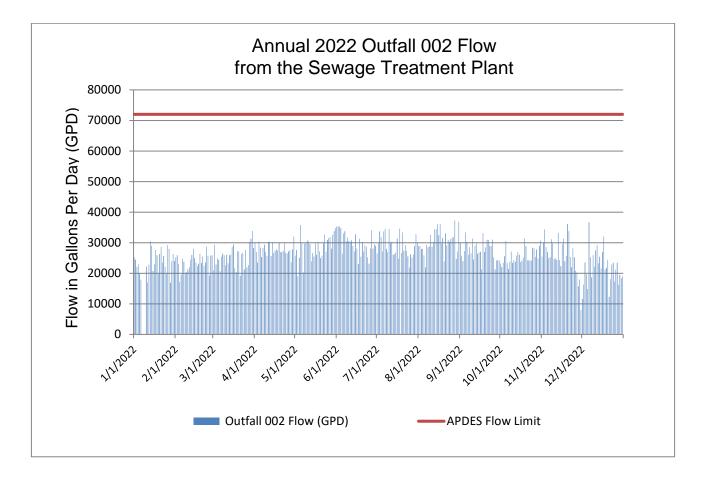


Figure 2: 2022 Annual Outfall 001 Discharge to Goodpaster River

Continuous turbidity data and twice-daily pH readings are collected along with weekly laboratory samples for copper, lead, manganese, WAD cyanide, pH, and temperature at Outfall 001. Monthly samples required by the permit include cadmium, mercury, zinc, hardness and lab turbidity.

In 2022, None of the analytical results for WAD cyanide exceeded the facility specific method limit (ML) of 20 ug/L. All other results are within the limits and conditions set forth within the permit. Time series graphs are provided in **Appendix C** and show the change in concentration limits. Monitoring data is provided in **Appendix F**.


2.2.3 Outfall 002 – Treated Effluent from Sewage Treatment Plant

ADEC APDES AK0053341 (8/1/17), 1.5

The STP operated throughout 2022 with flows ranging between 8,008 and 37,262 gallons per day. The average flow during the period at Outfall 002 was 26,656 gallons per day. Daily field parameters were collected to assess quality of treated effluent. Monthly samples were also collected for metals (arsenic, cadmium, copper, lead, manganese, mercury, and zinc), biological

oxygen demand (BOD₅), total suspended solids (TSS), fecal coliform, and nitrate/nitrite. **Figure 3** presents the gallons per day flow from Outfall 002 for 2022.

Figure 3: 2022 Annual Outfall 002 Discharge to Goodpaster River

Influent data from STP 002 were collected for BOD_5 and TSS on a quarterly basis to determine percent removal. All results were within the limits and conditions set forth in the permit. Time series graphs are provided in **Appendix C**. Monitoring data is provided in **Appendix F**.

2.3 Surface Water Monitoring

2.3.1 Goodpaster River

ADEC Waste Management Permit 2018DB0001 (5/24/2018), 1.6.2; ADEC APDES AK0053341 (8/1/17), 1.8; Pogo Mine Monitoring Plan (7/20) 8.0

Six surface water stations are monitored to evaluate water quality along the Goodpaster River: SW01 and SW49 are located upstream of the Pogo Mine, SW41 is located downstream of Outfall 001, SW42 is downstream of Outfall 002, and SW15 and SW12 are located downstream from all Pogo facilities. Surface water samples are analyzed six times a year for total metals (antimony, arsenic, cadmium, copper, iron, lead, manganese, mercury, nickel, selenium, silver, and zinc) and WAD cyanide. Physical and aggregate properties of alkalinity, conductivity, hardness, nitrite plus nitrate, pH, total dissolved solids (TDS), turbidity, and temperature are also measured.

Surface water samples were collected on March 5, May 15, June 22, August 7, September 21, and December 4, 2022. All results were within the limits and conditions set forth in the permits. No adverse trends were observed. The locations of the surface water monitoring stations are shown in **Appendix A, Figure 1.3.** Time series graphs are provided in **Appendix C**. Monitoring and historic data is provided in **Appendix F**.

2.3.2 Whole Effluent Toxicity

ADEC APDES Permit AK0053341 (8/1/17), 1.7

The annual WET test was conducted from June 20 to June 24 by TRE in Fort Collins, Colorado. A split of the same sample was also sent to Test America in Corvallis, Oregon. Results from both laboratories are presented in **Table 1**. All results were within the limits and conditions set forth within the permit. Laboratory reports are provided in **Appendix D**.

Laboratory	Species	No Observed Effect Concentration (%)	Low Observed Effect Concentration (%)	Inhibition Concentration 25%	Toxicity Units Chronic	Was Toxicity Demonstrated TUc value > 2.0
test America	Pimephales promelas	100	>100	>100	<1	No
TRE	Pimephales promelas	100	>100	>100	<1	No

Table 1: Pogo Mine Whole Effluent Toxicity Testing 2022

2.3.3 Fish Tissue

ADEC APDES Permit AK0053341 (8/1/17), 1.8.8

To assess long term trends in Goodpaster River quality, annual whole-body analyses of juvenile Chinook salmon are required at monitoring sites both upstream (SW01) and downstream (SW12) from the project facilities. Juvenile Chinook salmon were collected from these two stations on September 21, 2022. At SW01, fourteen fish were collected, and metals analysis was conducted on ten individual Chinook and a composite sample of four fish. Twelve juvenile Chinook salmon were collected at SW12. The samples were shipped to Eurofins Environment Testing Northwest, LLC – Tacoma.

Once the laboratory received the samples and prepped them for analysis, it was determined that some of the sample volumes were insufficient to run both mercury and metals analysis without dilution. The lab notified Pogo about the sample volume situation to discuss options. The situation was brought to ADEC's Tim Pilon's attention so we could work through the issue and develop a plan. The goal of the plan was to analyze the samples to receive the most accurate data for reporting metals and mercury concentrations in the fish captured from the sampling event. Pogo requested agency approval to increase the sample volume through diluting the sample matrix so samples could be analyzed under method 6020 for metals and 7471A for mercury.

At SW01, there was one individual sample that did not have enough sample volume to be analyzed for metals and mercury, so it was analyzed for metals only. Pogo worked with Tim Pilon on this situation and requested Agency approval to allow Pogo to use the composite sample of two fish as a substitute for the 10th sample at SW01. Based on communications with Tim Pilon, ADEC on October 13, 2022, NSR Pogo met the sampling criteria of APDES Permit AK0053341. As required by *Fish Resource Permit SF2022-183d*, a report of collection activities and a data submission form was submitted to ADF&G on November 28, 2022.

All analytical results are consistent with historical data and no trends or significant anomalies were identified in 2022. Time series graphs are provided in **Appendix C**, lab reports are provided in **Appendix E**, and monitoring and historic data are provided in **Appendix F**.

2.4 Groundwater Quality monitoring

Groundwater samples are analyzed for WAD cyanide, major cations and anions, total metals, dissolved metals, physical and aggregate properties of ammonia, conductivity, hardness, nitrates, pH, TDS, TSS, and temperature. The locations of the groundwater monitoring stations are shown in **Appendix A**, **Figure 1.2**.

2.4.1 Downgradient of DSTF

ADEC Waste Management Permit 2018DB0001 (5/24/2018), 1.1.4, 1.2.6, 1.2.7, 1.5.4; Pogo Mine Monitoring Plan (7/20), 9.0

MW11-001A and MW11-001B provide information on water quality trends down-gradient from the DSTF and up-gradient of the RTP. MW11-001A is an alluvial well and MW11-001B is a bedrock well. The MW11 wells were sampled on February 18, June 17, August 29 and October 28. MW11-001A was dry during the first quarter and no sample was collected.

TDS concentrations were above WQS in MW11-001A on June 17, August 29 and October 28. MW11-001B was above TDS WQS on June 17. Nitrate was above WQS in both wells for all of 2022. Both wells are located within the process facility, so concentrations above the WQS are under observation. WQS are shown on the graphs for reference purposes only. No other adverse trends were observed. Time series graphs are provided in **Appendix C**. Monitoring data is provided in **Appendix F**.

2.4.2 Liese Creek Flumes

Four flumes were installed in Liese Creek in 2012. **Figure 4** provides flow data for Flume #1 (near the toe of the DSTF) versus precipitation rate in 2022. 2022 was a below average rainfall year.

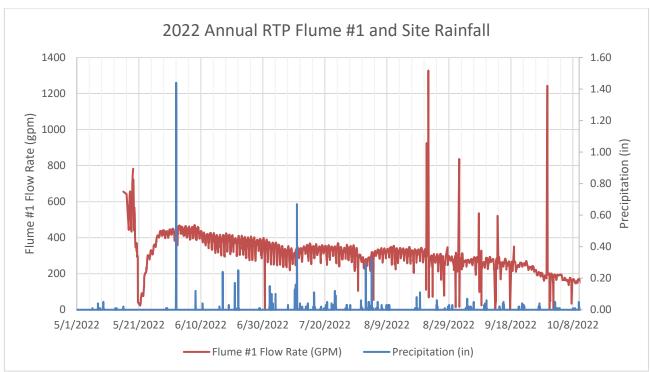


Figure 4: 2022 Flume #1 Flow and Site Rainfall

2.4.3 Downgradient of RTP Dam

2.4.3.1 MW12-500, 501, 502 WELLS

ADEC Waste Management Permit 2018DB0001 (5/24/2018), 1.1.4, 1.2.6, 1.2.7, 1.5.4; Pogo Mine Monitoring Plan (7/20), 9.0

Three wells located below the RTP Dam, MW12-500, MW12-501, and MW12-502, monitor groundwater downstream of the RTP seepage collection system. Samples were collected quarterly throughout 2022 when there was available water. Trigger limits for groundwater monitoring at these locations are set forth in Pogo's ADEC Waste Management Permit 2018DB0001.

Samples for these wells were collected February 20, June 18, August 30, and October 28, 2022. No sample for MW-502 was collected in February due to low water level in the well.

Chloride, nitrate, and sodium levels were detected above trigger limits while arsenic and nitrate were detected above WQS. Containment of RTP dam seepage is under evaluation as part of a current corrective action investigation with ADEC. Time series graphs are provided in **Appendix C**. Monitoring data is provided in **Appendix F**.

2.4.3.2 MW18-001 AND MW18-002

Two wells located below the RTP Dam near Liese Creek Flumes #2 and #3 are MW18-001 and MW18-002. These wells monitor groundwater downstream of the RTP seepage collection system. Samples were collected monthly for MW18-001 and quarterly for MW18-002. Well placement was designed to monitor changes in water quality parameters through the Liese Creek Valley and help identify SCW bypass flow.

MW18-001 (near Flume #2) had one sample above the trigger limit for Copper on May 14th 2022 and concentrations of arsenic and nitrate, above WQS. Except for the 3rd quarter sample, Nitrate is above WQS in MW18-002 (near Flume #3). Dam containment of the RTP water is under evaluation as part of a current corrective action investigation with ADEC.

Except as noted above, all other results are within the limits and conditions set forth within the permit. Locations of the wells are represented in **Appendix A**, **Figure 1.2** Pogo Monitoring Locations. Time series graphs are provided for the MW18 series wells in **Appendix C**. Monitoring data is provided in **Appendix F**.

2.4.4 Downgradient of Ore Zone

ADEC Waste Management Permit 2018DB0001 (5/24/2018), 1.1.4, 1.2.6, 1.2.7, 1.5.4; Pogo Mine Monitoring Plan (7/20), 9.0

2.4.4.1 MW11-216

Monitoring well MW11-216 provides information on water quality trends down-gradient from the ore zones. Samples are collected semi-annually. MW11-216 was sampled on June 19th and August 31st, 2022 and all results were below WQS. Piezometer well MW99-216 collects data continuously, and is verified quarterly for water elevation. Time series graphs are provided in **Appendix C**. Monitoring data is provided in **Appendix F**.

2.4.4.2 MW18-003A AND MW18-003B

MW18-003A and MW18-003B were installed in 2018 to further evaluate groundwater downstream of the RTP and seepage collection well system. These wells also provide information on water quality trends down gradient from the ore zones. MW18-003A and MW18-003B were installed as a nested pair of wells at the end of Liese Valley near Flume #4. MW18-003A is an alluvial well and MW18-003B is a bedrock well.

Samples were collected from MW18-003A on March 12, 2022, and MW18-003B on February 18, 2022. MW18-003A was collected after repairs were made to a damaged pump power cable. Samples were collected from both wells on June 18, August 31, and October 30, 2022. Samples from MW18-003A indicated Copper and Nitrate were above WQS in March but below for the rest of 2022.

MW18-003B iron and manganese concentrations have exceeded WQS since installation of the well in 2018 and remained above WQS throughout 2022. MW18-003B also had an exceedance of pH in June, August and October. These results, and a slow well recharge rate indicate a low hydraulic conductivity and reducing environment present around the well. Time series graphs are provided in **Appendix C**. Monitoring data is provided in **Appendix F**.

2.5 Process Control Monitoring

Process facilities are monitored as described below.

2.5.1 Water Balance

ADEC Waste Management Permit 2018DB0001 (5/24/2018), 1.5.2.4; Pogo Plan of Operations (7/20), 9.0; Water Rights LAS 24616 and LAS 32225

At the start of 2022, the RTP reservoir volume was 12.3 million gallons. On December 31, 2022, the RTP volume was 12.0 million gallons.

Water Added to RTP

- 189.4 million gallons of runoff and seepage water was collected in the RTP
- 30.8 million gallons of treated water was recycled to the RTP distribution system

Removed from RTP distribution system

- 1.0 million gallons were pumped from the RTP for underground process water
- 45.1 million gallons were pumped from the RTP to the mill process
- 54.8 million gallons were pumped from the RTP to MWTP#3

Recycled Treated Water

- 23.7 million gallons were recycled at the mill
- 30.8 million gallons of treated water was recycled to the RTP distribution system

Discharge to ORTW

• 302.4 million gallons were treated and discharged to the ORTW

2.5.2 Permits to Appropriate Water and Temporary Water Use Permit Summary

Pogo utilizes the following ADNR Permits to Appropriate Water: LAS 32229, 32228, 32225, 32034, 32033, 32032, 24617, 24616, 24613, 24612, 24611 and ADNR Temporary Water Use Authorization (TWUA) F2021-096.

The TWUA F2021-096 will facilitate the existing diversion ditches and allow for new diversion ditches to be constructed in 2023/2024 as the DSTF design requires. New diversion ditches will be tied into the existing diversion ditches, there will be no increase in water use quantities with the addition of new diversion ditches. A summary of water usage for Permits to Appropriate Water and Temporary Water Use Authorization is provided in Table 2 and Table 3.

	LAS 24616/32225 Surface Water Collected in Recycle Tailings Pond (RTP)	LAS 32228 RTP Seepage Collection System Wells	LAS24617/32229 Groundwater from Underground Mine Discharged to ORTW and Recycled Underground	LAS 24613 Goodpaster River ORTW Influent	LAS24611 Drinking Water Wells DW02 & DW03	LAS 24612 Gravel Pit Pond*	LAS 32032, 32033, 32034 Caribou, Shaw, and Gilles Creek Access Road Dust Control and Compaction **
Month	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
January	10,366,036	2,058,778	14,622,810	598,085,897	751,606	0	0
February	3,128,445	2,055,041	20,692,960	542,594,193	669,946	0	0
March	8,068,939	1,349,223	21,183,471	532,697,849	785,031	280,000	0
April	1,215,392	1,101,934	23,633,068	584,931,604	822,444	420,000	0
Мау	5,614,190	1,165,091	23,154,749	599,637,263	870,629	1,066,250	240,000
June	36,180,842	1,593,527	20,047,587	631,384,771	874,309	1,546,050	398,400
July	20,377,221	1,787,668	21,713,612	630,368,272	842,025	1,031,550	268,800
August	21,318,441	1,847,964	27,354,969	622,386,365	834,129	726,500	225,600
September	23,167,023	1,878,014	32,279,222	626,354,320	747,204	448,500	158,400
October	24,796,099	1,807,948	36,504,676	628,635,571	765,353	434,000	0
November	21,585,665	1,938,252	34,222,324	614,681,482	716,649	420,000	0
December	16,244,772	3,804,450	35,064,856	618,021,208	723,226	252,000	0
Total (gallons)	192,063,064	22,387,889	310,474,303	7,229,778,795	9,402,551	6,624,850	1,291,200
Total in Acre-ft	589.4	68.7	952.8	22,187.2	28.9	20.33	4.0
Permit Limit Acre-ft	967.8	600	2,000	24,195.11	81.77	241.95	98.5

* Includes water used for mill make-up and for road dust control.

** Each LAS for Caribou, Shaw, and Gilles Creek allow 50,000 gallons per day from April 1st through October

31st. These have been combined to show total acre-ft for the access road dust control and compaction.

,					
TWUA F2021-096 Diversion Ditches					
Total Snowmelt Gallons Diverted	189,681,900				
Total Rainfall Gallons Diverted	103,017,743				
Total (gallons)	292,699,643				
Total (acre-feet)	898.3				
Permit Limit (acre-feet)	1460				

Table 3: 2022 Temporary Water Use Authorization Flows

2.5.3 Carbon-In-Pulp (CIP) Tailings Cyanide Destruction

ADEC Waste Management Permit 2018DB0001 (5/24/2018), 1.2.3, 1.5.2.3; Pogo Mine Monitoring Plan (7/20), 7.2

After cyanide destruction, the CIP tailings are stored in the CIP tank prior to being mixed with cement and used as backfill in the mine. The NSR Pogo Mine Monitoring Plan requires collection of grab samples at station PC001 (CIP Stock Tank), located directly after the cyanide destruction circuit. A daily sample is collected during each paste pour. The Waste Management Permit 2018DB0001 requires that samples contain less than 10 mg/kg of WAD cyanide as a monthly average and none of the samples can contain more than 20 mg/kg of WAD cyanide. During the 1st Quarter of 2022, one sample result was above the 20 mg/kg threshold at 30.7 mg/kg. The monthly average remained below 10 mg/kg; however, the 30.7 mg/kg result exceeded the 20 mg/kg maximum allowable concentration. The exceedance was reported to the ADEC and a corrective plan was initiated, approved and implemented as required in the Waste Management Permit (*2018DB0001*). No other values exceeded the permit thresholds. Time series graphs are provided in **Appendix C**. Monitoring data is provided in **Appendix F**.

2.5.4 Mineralized Development Rock Geochemistry

ADEC Waste Management Permit 2018DB0001 (5/24/2018), 1.2.1, 1.5.2.6; Pogo Mine Monitoring Plan (7/20) 7.1

Samples of whole rock materials placed in the DSTF (PC002) are collected monthly and composited to form a quarterly sample for analysis. All sample result values are within the historical ranges and the composite samples showed no adverse trends. **Appendix B**, **Table 1**, shows selected parameters for PC002 whole rock monitoring. Monitoring data is provided in **Appendix F**.

2.5.5 Flotation Tailings Geochemistry

ADEC Waste Management Permit 2018DB0001 (5/24/2018), 1.5.4; Pogo Mine Monitoring Plan (7/20) 7.1

Flotation tailings geochemistry solid samples were collected on March 4, June 5, September 4, and December 2, 2022 at PC003, the underflow of the filter-feed tank at the end of the mill circuit, prior to disposal on the DSTF. All sample result values are within the historical ranges and no adverse trends were observed otherwise. **Appendix B, Table 2**, shows selected parameters for the PC003 Solid, flotation tailings samples. Monitoring data are provided in **Appendix F**.

2.5.6 Flotation Tailings Interstitial Water Chemistry

ADEC Waste Management Permit 2018DB0001 (5/24/2018), 1.5.4; Pogo Mine Monitoring Plan (7/20) 7.1

The interstitial water from the tailings samples was collected at PC003 on March 4, June 5, September 4, and December 2, 2022. Most of the constituents were below the target operating ranges presented in Table 7-3 of the *2020 Pogo Mine Monitoring Plan*.

The following constituents were above the Target Operating Ranges: WAD CN in June and TKN in March and June; Mercury was over the operating limit for all 4 quarters. There were no sustained upward trends. Time series graphs are provided in Appendix C. Monitoring and historic data are provided in **Appendix F**.

An internal investigation began in 2018 to review the mercury concentration in PC003 as described in the 2020 Second Quarter Monitoring Report. The environmental concern with elevated mercury in the flotation tailings interstitial water is the potential for a corresponding mercury increase at the point of compliance groundwater monitoring wells down gradient of the DSTF. Data from the interstitial water samples show a mercury increase above the operating target range limit beginning in the third quarter of 2015, continuing through the first quarter of 2020 then at or above the operating range limit from the fourth quarter of 2020 through 2022. An evaluation of mine processes included mercury in water inputs to the mill, ore samples, mill reagents, liquid samples from areas within the mill circuit, solid samples of mineralized rock and flotation tailings, vapor samples from annual stack testing, and other areas unrelated to the mine process. During the evaluation, two primary factors were found to contribute to the exceedances of the flotation tails operating at target range limit:

- 1. The current operating target range was based on a data set with a high percentage of non-detect results.
- 2. Recent utilization of an analytical method with lower reporting precision and a higher reporting limit.

The observed changes in reported mercury levels for interstitial water samples have not resulted in a corresponding change in the point of compliance groundwater monitoring wells over the past five years, indicating no environmental impact occurred while mercury was elevated. Pogo has switched to a different EPA-approved dissolved mercury method (245.7) with lower reporting limits than EPA 245.1. This change is reflected in the revised QAP, which was submitted with the Plan of Operations Minor Modification in July 2020. Once a sufficient data set has been built using EPA method 245.7, the operating range limits will be revised using the new data set.

2.6 Visual Monitoring

2.6.1 Facility Inspection

ADEC Waste Management Permit 2018DB0001 (5/24/2018), 1.5.2.1, 1.5.9.3, 1.5.9.4; Pogo Mine Monitoring Plan (7/20) 5.0, 3.1; Pogo RTP Operating and Maintenance Manual (7/18), 5.0

Weekly visual inspections of the DSTF, RTP Dam, and seepage collection wells were completed throughout the year. No cracking, bulging, settlement, geotechnical concerns, erosion, or damage was observed. The most recent Period Safety Inspection (PSI) of the Recycle Tailings Pond (RTP) Dam was completed on June 28-29 2022. Based on the 2022 PSI findings, the RTP Dam is considered to be in *"satisfactory condition"*, as defined by the National Inventory of Dams (NID) Data Dictionary. The next PSI is planned for Summer of 2025.

A field inspection occurred on June 9, 2022 to support upcoming planned expansion of the Pogo

dry stack facility in 2023. During this visit, ADNR Dam Safety observed the Pogo RTP Dam and dry stack facility.

2.6.2 Biological Survey

ADEC Waste Management Permit 2018DB0001 (5/24/2018), 1.5.2.5; Pogo Mine Monitoring Plan (7/20) 5.4

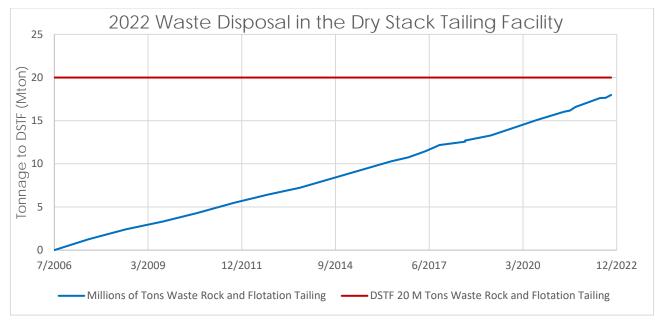
The objective of the visual biological survey program is to monitor wildlife interaction with the surface waste disposal facilities. No wildlife issues with the surface waste disposal facilities occurred during the year.

2.6.3 Invasive Weed Control

On August 5th, 2022, Salcha Delta Soil and Water Conservation District (SDSWCD) traveled the Pogo Access Road, visiting each active and inactive material site and right of way (ROW) areas affected by wildfire activity. SDSWCD field staff scouted, mapped, and photographed the extent of the target species to identify priority treatment areas, which included the following species: White sweet clover (*Melilotus albus*) (MEAL2), Bird vetch (*Vicia cracca*) (VICR), Foxtail barley (*Hordeum jubatum*) (HOJU), Alsike clover (*Trifolium hybridum*) (TRHY), and Narrowleaf hawksbeard (*Crepis tectorum*) (CRTE3). On August 14th, 2022, one Alaska State certified pesticide applicator from SDSWCD conducted initial treatment activities at priority treatment locations where MEAL2 was identified. On August 26th, 2022, field staff returned to each site to observe herbicide effectiveness. Field efforts will continue invasive weed monitoring into the summer of 2023.

2.7 Development Rock Segregation and storage

ADEC Waste Management Permit 2018DB0001 (5/24/2018), 1.2.1, 1.5.2.6; Pogo Mine Monitoring Plan (7/20), 7.1.1


During 2022, 5,483 rounds were blasted underground, and of these 4,098 were sampled. A total of 303 rounds (7.4%) were not sampled due to operational challenges and were encapsulated in the DSTF. Of the sampled rounds, 1,465 (35.7%) exceeded either the arsenic threshold of 600 mg/l or the sulfide threshold of 0.5% and these were placed in the DSTF. 2,330 rounds (56.9%) were classified as non-mineralized development rock and were used to build drains, construct shells, and line the edge of the DSTF. This material was also used as road surfacing and backfill material.

2.8 Waste Disposal

ADEC Waste Management Permit 2018DB0001 (5/24/2018), 1.2.1, 1.4.4

During 2022, 918,279 dry tons of flotation tailings, 426,950 tons of mineralized rock, and 144,800 tons of non-mineralized rock were placed in the DSTF. Approximately 231,637 dry tons of flotation tails and 90,540 dry tons of CIP tailings were placed underground as paste backfill in 2022. A DSTF survey using a WingtraOne drone on September 5th, 2022, indicated 17.98 M tons of material were contained in the DSTF, representing 90% of the 20 M ton design capacity, leaving approximately 2.11 M tons. More frequent and accurate drone survey methods have replaced previously used approximation of tonnage calculated by truck load counts. **Figure 5** presents the approximate total waste disposal within the DSTF and indicates remaining design capacity.

Figure 5: 2022 Annual Waste Disposal in the DSTF

The approximate quantities of miscellaneous waste materials placed either into the DSTF or underground during the year are shown in **Table 4**.

Material	Disposal Location	Approximate Quantity	Unit
Assay Lab XRF Wafers	DSTF	30	lbs
Set Bags of Concrete	DSTF	2,500	lbs
WTP filter cake	DSTF	1,320	tons
Burn pit debris	DSTF	6	truck load
Supersacks	DSTF	1	truck load
Grind Material	DSTF	120	tons
Filter cloths	DSTF	12	each
Set Grout Bags	DSTF	9,512	lbs

Table 4: Miscellaneous Waste Disposal in DSTF and Underground in 2022

2.9 Geotechnical Monitoring

ADEC Waste Management Permit 2018DB0001 (5/24/2018), 1.4.3, 1.4.3.4; Pogo DSTF Construction and Maintenance Plan (7/20)

Throughout 2022, pre-permitting studies, design, and permitting work was completed as part of the DSTF expansion project. WSP Golder was retained for DSTF construction design work, and Respec was retained for design of the diversion ditches and accompanying roads.

2022 Dam Safety Inspection

On June 9 2022, Dam safety engineers form the Alaska Department of Natural Resources made a site visit in order to assess the safety of the Recycle Tailings Pond Dam (NID ID#AK00304).

- The ADNR Employees were Charles Cobb, Benjamin Wagner, and Kimberly Bustillos
- Findings from this visit were documented in the State of Alaska Consolidated Agency Comments on Pogo Mine 2022 Environmental Audit Report and integrated into the Periodic Safety Inspection conducted by WSP/Golder.

Certificate of Approval to Operate a Dam

- Certificate of Approval to Operate a Dam was issued by the State of Alaska on December 20th, 2022.
- The Certificate is valid until August 27th, 2025.

Diversion Ditch Design

- Respec has been retained to begin designing new diversion ditches to accommodate the drystack expansion.
- Early design concepts and ditch liner options were delivered to Pogo in December, 2022.
- Respec will be working with WSP to finalize the designs in 2023.

Shell construction took place on Shell 1 of the DSTF during all four quarters. The DSTF Construction and Maintenance Plan was updated during 2022 based on recommendations from the geotechnical review report and previous 2019 and 2020 geotechnical investigations. Compaction testing activities throughout 2022 is summarized below:

- On May 20, 2022, GPA Compaction Testing QA was completed by Mappa to provide points for a soil model analysis on the Troxler E-Gauge. Of the 10 points tested, 10 met the percent proctor of 90%. The percent proctor values ranged from 91.8-98.3%, with an average of 95.6%. Moisture contents ranged from 13.6-18.0%, with an average of 15.2%. NSR performed density testing at the same locations to create a soil model for the EDG. In addition to the onsite testing, three standard proctor tests were completed by Mappa. Maximum dry densities were determined to be 110.0, 111.5, and 112.0 pcf at 15.0, 15.5, and 15.5% moisture contents, respectively.
- Three tailings samples were sent to Mappa in May for standard proctor testing. Maximum dry densities were determined to be 110.1, 109.9, and 110.9 pcf at moisture contents of 14.9, 14.5, and 15.3%, respectively. The maximum dry density for purposes compaction testing was set at 110.3 pcf. A wet density offset of -3.7 pcf and a moisture content offset of +5.4 pcf was programmed and enabled into the Troxler E-Gauge. These numbers were based on Mappa QA site visits and lab moisture content data that was collected over 6 months.
- On February 12th, 8 out of 10 points were within 10% of the standard proctor with an average of 93%. It is important to note that frozen tailings characteristics interfere with the Troxler moisture gauge, so lab moisture contents were also measured. Lab tested moisture contents ranged from 11.1-20.3% with an average of 16.5%, and the average mill moisture content over a three-day period prior to testing was 15.0%.
- On February 16th, 4 out of 6 points met the standard proctor of 90%, with an average of 91.5%. Lab tested moisture contents ranged from 14.8-22.2% with an average of 18.6%, and the average mill moisture content over a three-day period was 14.1%.
- On February 22nd, 4 out of 6 points met the standard proctor of 90%, with an average of 91.5%. No lab moisture content samples were collected, so a 4% moisture offset was used based on previous Troxler gauge tests. The average three-day mill moisture content was 14.4%.

- On March 26th, only 2 out of 8 points met the standard proctor of 90%, with an average of 87.9%. Lab moisture contents ranged from 15.5-19.5% with an average of 15.8%, and the average mill moisture content over a three-day period was 15.8%.
- On April 30th 3 of 10 points were within 10% of the standard proctor with an average of 87.54%. Lab tested moisture contents ranged from 12.06% to 17.67% with an average of 14.3%.
- On May 12th, 10 of 10 points were within 10% of the standard proctor with an average of 97.63%. Lab tested moisture contents ranged from 14.59% to 15.38% with an average of 14.97%.
- On May 16th 10 of 10 points were within 10% of the standard proctor with an average of 99.14 %. Lab tested moisture results varied from 13.92 % to 16.32 %.
- On May 20th 10 of 10 points were within 10% of the standard proctor with an average of 101.85 %. Lab tested moisture content varied from 13.89% to 21.03A%.
- On May 24th 10 of 10 points were within 10% of the standard proctor with an average of 100.99 %. Lab tested moisture content varied from 12.82 % to 14.76 %.
- On May 28th 10 of 10 points were within 10 % of the standard proctor with an average of 96.6 %. Lab tested moisture content varied from 9.70 % to 13.31 %.
- On June 03rd 4 of 8 points were within 10% of the standard proctor with an average of 89.22%. Troxler Gauge tested moisture content varied from 13.6 % to 15.1 %.
- On June 08th 6 of 6 points were within 10 % of standard proctor with an average of 97.415 %. Troxler Gauge tested moisture content varied from 9.33 % to 15.83 %.
- On June 17th 8 of 9 points were within 10 % of standard proctor with an average of 99.98 %. Troxler gauge tested moisture content varied from 11.78 % to 17.43 %.
- On June 23rd 8 of 10 points were within 10% of standard proctor with an average of 99.78 %. Troxler gauge tested moisture content varied from 11.89 % to 16.64 %.
- On June 25th 5 of 8 points were within 10% of standard proctor with an average of 91.69%. Troxler gauge tested moisture content varied from 12.9% to 14.8%.
- On July 17th,10 of 10 points were within 10% of the standard proctor with an average of 101.01%. Troxler gauge tested moisture contents ranged from 12.42% to 19.29%.
- On July 20th, 9 of 10 points were within 10% of the standard proctor with an average of 94.89%. Troxler Gauge tested moisture contents ranged from 15.44% to 20.25% with an average of 17.12%.
- On July 29th, 8 of 10 points were within 10% of the standard proctor with an average of 99.65%. Troxler Gauge tested moisture results varied from 16.03 % to 20.03 %.
- On August 12th, 10 of 10 points were within 10% of the standard proctor with an average of 100.27 %. Troxler Gauge tested moisture content varied from 10.06% to 14.00%.
- On August 21st, 10 of 10 points were within 10% of the standard proctor with an average of 93.26 %. Troxler Gauge tested moisture content varied from 16.03 % to 20.03 %.
- On August 26th, 9 of 10 points were within 10 % of the standard proctor with an average of 94.76 %. Troxler Gauge tested moisture content varied from 15.98 % to 21.89 %.

- On September 10th, 9 of 10 points were within 10% of the standard proctor with an average of 93.99%. Troxler Gauge tested moisture content varied from 18.52 % to 23.17%.
- On September 17th, 8 of 10 points were within 10 % of standard proctor with an average of 92.37 %. Troxler Gauge tested moisture content varied from 16.01 % to 26.94 %.
- On September 23rd, 5 of 10 points were within 10 % of standard proctor with an average of 90.63 %. Troxler Gauge tested moisture content varied from 20.03 % to 28.27 %.
- On October 10th, 10 of 10 points were within 10% of the standard proctor with an average of 94.56%. Troxler Gauge tested moisture content varied from 17.33 % to 24.74 %.
- On October 22nd, 9 of 10 points were within 10% of the standard proctor with an average of 99.44%. Troxler Gauge tested moisture content varied from 15.08 % to 26.03 %.
- On November 4th, 6 of 10 points were within 10% of the standard proctor with an average of 92.56%. Troxler Gauge tested moisture content varied from 7.48 % to 15.71 %.
- On November 13th, 7 of 10 points were within 10% of the standard proctor with an average of 97.06%. Troxler Gauge tested moisture content varied from 9.68 % to 15.96 %.
- On November 19th, 9 of 10 points were within 10% of the standard proctor with an average of 95.50%. Troxler Gauge tested moisture content varied from 8.72 % to 16.82 %.
- On November 26th, 8 of 10 points were within 10% of the standard proctor with an average of 98.33%. Troxler Gauge tested moisture content varied from 11.82 % to 16.49 %.
- On December 11th, 7 of 10 points were within 10% of the standard proctor with an average of 93.01%. Troxler Gauge tested moisture content varied from 7.62 % to 16.52 %. Lab tested moisture content ranged between 16.49% and 19.95%.
- The Troxler E-Gauge was shipped to a Troxler Service Center in Wheat Ridge, CO, mid-December 2022 for calibration.

2.10 Spill Reporting

ADEC APDES AK0053341 (8/1/17), Appendix A, 1.14; ADEC Waste Management Permit 2018DB0001 (5/24/2018), 1.4.10

During 2022 there were a total of 386 spills reported. Refer to **Figure 6**, 2022 Annual NSR Pogo Spill Reporting.

Figure 6: 2022 Pogo Spill Reporting

3. AS-BUILT REPORTS AND MAPS

The Pogo Mine Site 2022 as-built maps are presented in **Appendix A. Figure 1.4** provides an overview of all facilities within the Pogo Millsite lease boundary at the end of 2022. **Figures 1.4a** through **1.4e** provide additional detail for the major areas of the mine. Areas disturbed in 2022 are shown in Figure **1.4f.** Any wetland disturbance included in these areas has been authorized under USACE permit file POA-1996-00211 issued in 2020.

Pogo Disturbance Acreage		
	2021	2022
Newly Disturbed Land	17	21.96
Newly Rehabbed Land	3	9.5
Total land disturbed but not rehabbed	490	502.46

Table 5. Pogo	Disturbance Acreage Table
	Distandance Acreage Table

4. RECLAMATION AND FINANCIAL RESPONSIBILITY

ADEC Waste Management Permit 2018DB0001 (5/24/18), 1.11, 3. ADNR Plan of Operations Approval F20189500 (5/24/2018), pg. 3, 9; ADNR Pogo Mine Millsite Lease ADL416949 (3/9/04), Section 8.

The Pogo Mine reclamation and closure bond including the road/transmission line is currently \$71.91 million (refer to Table 6). The road/transmission line reclamation and closure cost estimate is currently at \$7.08 million (Table 7). Reclamation and Financial Responsibility will be updated in 2023 as part of the Waste Management and Plan of Operations renewal process.

Summary of Estimated Reclamation and Closure Costs	
Item Description	
Earthwork/Recontouring	
Subtotal	\$8,526,670
Revegetation/Stabilization	
Subtotal	\$3,694,623
Detoxification/Water Treatment/Disposal of Wastewater	
Subtotal	\$5,669,769
Structure, Equipment and Facility Removal	
Subtotal	\$10,402,219
Monitoring	
Subtotal	\$2,369,650
Construction Management and Support	
Subtotal	\$1,093,448
Closure Planning	
Subtotal	\$16,663,398
Subtotal Operational and Maintenance Costs	
Subtotal	\$48,419,777
Indirect Costs	
Subtotal	\$18,161,463
Total Direct and Indirect	\$66,581,240
Inflation Proofing	\$5,326,499
Grand Total	\$71,907,739

Table 6: Mine Reclamation and Closure Cost Estimates as of 2017

Table 7: Pogo Access Road/Transmission Line Reclamation and Closure Cost Estimates as of 2017

Summary of Estimated Right of Way Closure Costs	
Item Description	
Earthwork/Recontouring	
Subtotal	\$646,544
Revegetation/Stabilization	
Subtotal	\$1,554,352
Detoxification/Water Treatment/Disposal of Wastewater	
Subtotal	\$0
Structure, Equipment and Facility Removal	
Subtotal	\$1,451,958
Monitoring	
Subtotal	\$0
Construction Management and Support	
Subtotal	\$400,440
Closure Planning	
Subtotal	\$726,229
Subtotal Operational and Maintenance Costs	
Subtotal	\$4,779,523
Indirect Costs	
Subtotal	\$1,784,132
Total Direct and Indirect	\$6,563,655
Inflation Proofing	\$525,092
Grand Total	\$7,088,747

5. PERMIT ACTIVITIES

5.1 Annual 2022 Permit activities

Regulatory notifications and major permitting activities completed in 2022 are identified below.

- Potable water system notifications:
 - o Pogo Mine Wastewater and Water Treatment Plant Operator Updates: Pogo NSR

submitted updates to operator certifications on February 6.

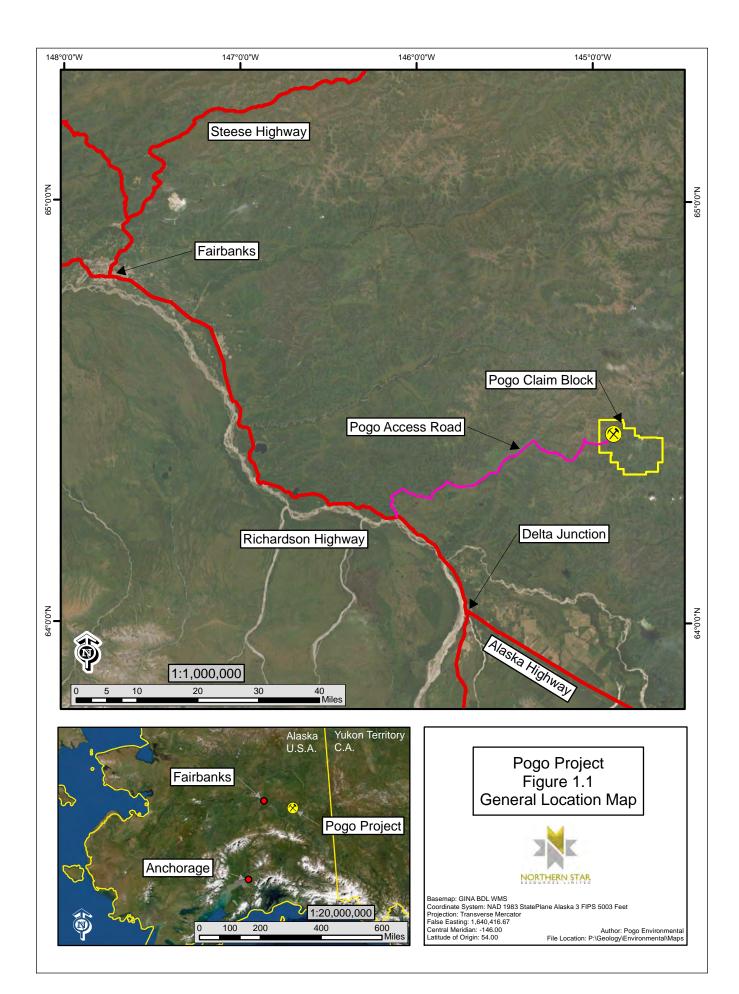
- Request for Interim Approval to Operate Water Main and D-500 Water Line Connection for Pogo Mine Camp Expansion, PWSID: 372643: On March 8, NSR Pogo requested approval to operate the newly installed potable water main to D-500.
- **Pogo Mine D-600 Camp Interim Water Hauling Notification:** NSR Pogo notified ADEC Drinking Water or interim potable water hauling to D-600.
- Request for Final Approval to Operate Water Main and D-500 Water Line Connection for Pogo Mine Camp Expansion (Phase I), PWSID: 372643: On April 4, NSR Pogo requested approval to operate the newly installed potable water main to D-500.
- Request for Conversion of Generic Water Tank to Potable Water Tank (Phase I): On June 16, NSR Pogo requested approval to convert an existing 10,000-gallon water tank into a potable water tank as part of ongoing expansion of Pogo's Lower Camp capacity.
- Request for Pre-Installation of Potable Water Line: On June 29th, Pogo NSR requested approval to pre-install a section of potable water line that is part of the COR-22-047 Request for Conversion of Generic Water Tank to Potable Water Tank
- Request for Final Approval to Connect KDR and D400, PWSID 372643: On July 14, NSR Pogo requested approval to connect the Kitchen Dining and Recreation facility to D400.
- Waiver Request for Reduced Separation Between Existing Sewer and Potable Lines, PWSID 372643: On August 8th, NSR Pogo requested a waiver for a potable ad sewer line crossing where a minimum separation could not be maintained.
- Request to connect D700water cart to D600 via Feed Line (PWSID 372643): On September 2nd, NSR Pogo requested approval to connect the D700 water cart to the D600 tap via a feed line as part of the Lower Camp Expansion Project.
- Request to Connect D700A and D700B to Potable Water Mains: On October 25th.
 NSR Pogo requested to connect the D700A and D700B camp unit to the potable water main distribution system as part of the Lower Camp Expansion Project.
- Pogo Mine Camp Expansion Potable 3 Upgrades 100% Submittal, PWSID 372643: On October 27th, NSR Pogo submitted the 100% Potable Upgrades for the Lower Camp Expansion Project.
- Pogo Mine Camp Expansion- New KDR Connection to Potable Water System: On December 5th, NSR Pogo notified ADEC that the new KDR unit was connected to the lower camp potable water distribution system. Th potable water load from the old KDR was transferred to the new KDR.
- Pogo Mine Camp Expansion New D600B Camp Unit Connection to Potable Water Distribution System: On December 17th, NSR Pogo notified ADEC that the new D600B camp unit was connected to the lower camp potable water distribution system.
- Multi-Sector General Permit (MSGP) Annual Report AKR06AC58: NSR Pogo submitted the required 2021 MSGP Annual Report via ADEC OASYS on January 31.

- Air Permitting:
 - Semiannual Facility Operating Report, Second Half 2021, Permit No. AQ0406MSS07: On January 31, NSR Pogo submitted the Semiannual Facility Operating Report, Second Half 2021 to ADEC Air Quality.
 - Semiannual Facility Operating Report, Second Half 2021, Permit No. AQ0406TVP02: On January 31, NSR Pogo submitted the Semiannual Facility Operating Report, Second Half 2021 to ADEC Air Quality.
 - **2021 Annual Report CISWI Unit ID 412, Permit No. AQ0406TVP02:** NSR Pogo submitted this report on January 31(ADEC / EPA).
 - Assessable Emissions Estimates for Calendar Year 2021, Permit No. AQ0406MSS07: NSR Pogo submitted the 2022 Assessable Emissions Estimates on March 28 (ADEC / EPA).
 - Annual Compliance Certification, Air Quality Operating Permit No. AQ0406TVP02: On March 28, NSR Pogo submitted the Annual Compliance Certification for Permit No. AQ0406TVP02 (ADEC / EPA).
 - 2022 Mercury Performance Test Plan Submittal: On May 5, NSR Pogo submitted the Source Test Plan outlining procedures and methods to be followed for the upcoming Mercury emissions/performance test of the gold refinery processes.
 - **2022 Mercury Performance Test 10-Day Notification:** NSR submitted the 2022 Mercury Performance Test 10-Day Notification to ADEC on July 11th.
 - Semiannual Facility Operating Report, First Half 2022, Permit No. AQ0406MSS07: On July 21st, NSR Pogo submitted the Semiannual Facility Operating Report, First Half 2022 to ADEC Air Quality.
 - Semiannual Facility Operating Report, First Half 2022, Permit No. AQ0406TVP02: On July 21st, NSR Pogo submitted the Semiannual Facility Operating Report, First Half 2022 to ADEC Air Quality.
 - 2022 Mercury Compliance Performance Test: NSR completed the annual compliance testing from July 22nd to July 24th, on the sources to NESHAP Subpart EEEEEEE.
 - 2022 Annual Stack Testing Report: Cover letter and test report documenting NESHAP Subpart EEEEE testing completed for the refinery processes at Pogo Mine were submitted for Condition 10.1 of the facility's Title V permit on September 12th, 2022, to ADEC.
- APDES Permit No. AK0053341 activities:
 - Accidental Discharge Notification Sewage Pipe Break: On January 11, NSR Pogo submitted an accidental discharge notification to the ADEC Division of Water. There were multiple sewage pipeline ruptures due to cold weather and pipe contraction/expansion conditions. Sections of the pipe were replaced, while others were fused together, and heat trace was reapplied.
 - Request to Operate Sewage Treatment Plant Distribution System Lines: On March 8, NSR Pogo request approval to operate the newly constructed lift station for D-500 and D-600 camps and associated sewage lines to the STP.

- Pogo Mine Lower Camp Expansion Project, As-Built Submittal: On April 4, NSR submitted as-built drawings for the additional connections to the Pogo Mine Sewage Treatment Plant (STP) as part of the ongoing expansion of Pogo's Lower Camp capacity.
- Pogo Mine Sewage Treatment Plant Request to Increase Design Capacity: On April 4, NSR submitted as-built drawings of the changes to the membrane bioreactor system and a Capacity Re-Rating Memo that proposes a rerated STP capacity based on design review.
- Accidental Discharge Notification RTP Head Tank overflow: On June 7, NSR
 Pogo submitted an accidental discharge notification to the ADEC Division of
 Water. Due to failed logic controls in the Digital Control System water flowed out
 of the top of the RTP Head Tank 2 for about 20 seconds.
- Lower Camp Expansion Project Request for Approval to upgrade Sewage
 Collection and Conveyance System: On June 15, NSR Pogo submitted plans for the Sewer System upgrade for the Lower Camp expansion.
- Aquatic Resource Permit Application: On June 27, NSR Pogo applied for approval to perform the annual fish tissue survey in support of APDES permit sampling requirements.
- Accidental Discharge Notification RTP Transfer Tote: On June 28, NSR Pogo submitted an accidental discharge notification to the ADEC Division of Water. An estimated 30 gallons escaped the tote and discharged to the gravel outside of the Mine Water Treatment plant.
- Request for approval to pre-install Lower Camp Expansion sewer lines: On July 11, NSR Pogo requested approval to pre-install sewer lines for the Lower Camp Expansion project before 100% approval.
- Emergency Request to channel at Off-River-Treatment Works- Emergency Request Approval: On July 19, NSR Pogo requested and received emergency authorization to remove material from the ORTW inlet to improve flow conditions.
- Treated Mine Water ORTW Pipeline Breach Notification: On August 8th, NSR Pogo submitted a treated mine water breach notification to ADEC regarding a leak in the MW2 discharge line. Repairs to the pipe were made.
- Additional Emergency Request to Channel Flow at ORTW: On August 10th, NSR Pogo submitted an additional request to channel flow at the ORTW. ADF&G denied this request on September 15th.
- Accidental Discharge Notification-Sewage Pipe Spill: On August 12th, NSR Pogo submitted an accidental discharge notification of a 10-gallon sewage water spill that occurred during sewer line maintenance.
- Request to Operate New Sewage Conveyance System: On September 2nd, NSR Pogo requested approval to operate sewage infrastructure for the Lower Camp Expansion Project.
- Interim Water Hauling Notification for D700B and 700A (Phase 2.1): On September 2nd, NSR Pogo notified ADEC that interim water hauling operations would begin at D700A an 700B.
- o DMR-QA Study 42: On September 9th, a data report form for laboratory checklists

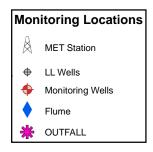
was submitted to ADEC regarding the DMR-QA study performed at Pogo for 2022. Two analytes, Total Hardness and Fluoride, were recorded as not acceptable after results came back from SGS Laboratories.

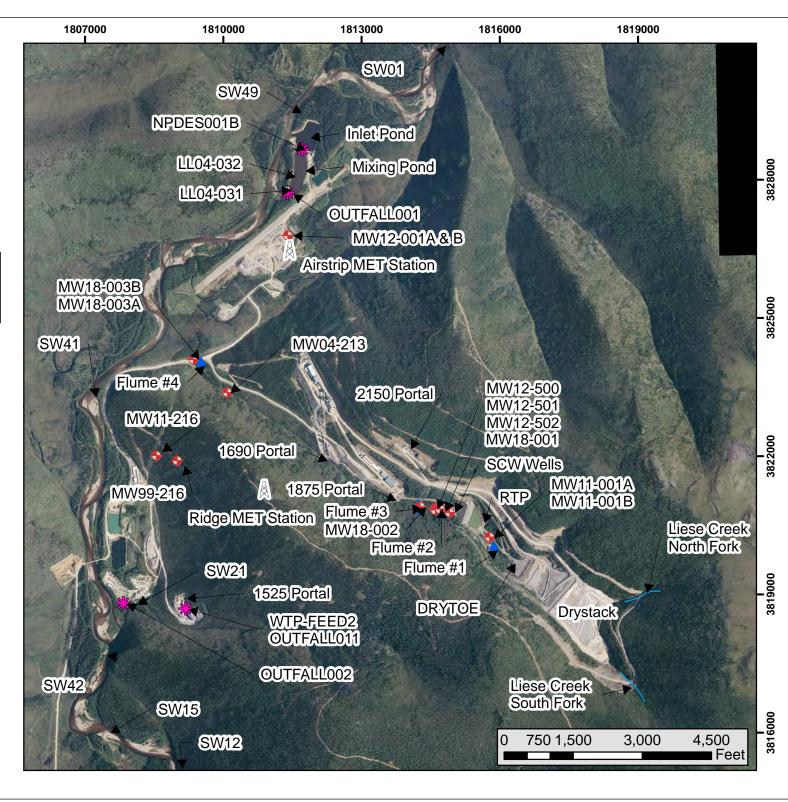
- Compliance Inspection Summary and Recommendations (ADEC): On November 9th and 10th, ADEC inspectors were on site to conduct inspections of the ADPES Individual permit AK0053341 and MSGP Permit AKR06AC58. Pogo received an inspection report of ADPES permitting activities and notice of violation on December 13th. Responses to NOVs were submitted on January 26th, 2023.
- Accidental Discharge Notification Sewage Pipe Breaks: On December 5th, NSR Pogo submitted two Accidental Discharge Notifications to the ADEC Division of Water. There were two sewage pipeline ruptures due to frozen conditions caused by heat trace failures. Approximately 32,100 total gallons of gray water was discharged onto the ground. Contaminated material was neutralized with lime and disposed on the DSTF. Pipe connections were repaired and insulation and heat traces were reapplied.
- Accidental Discharge Notification Dry Shower Pipe Break: On December 14th, NSR Pogo submitted an Accidental Discharge Notification to the ADEC when approximately 60 gallons of grey water had been discharged on the ground. A drainpipe had broken, causing the discharge in a crawl space. The pipe was repaired and braced to prevent future occurrences.
- **Updated Pogo Mine QAPP:** Minor updates were made in the Quality Assurance Plan to address changes in personnel. A more thorough review will be completed as part of the Waste Management Permit and Plan of Operations renewal applications in 2023.
- Renewal of Alaska Pollutant Discharge Elimination System Permit No. AK0053341
- 2022 Aquatic Resource Final Report: Pogo submitted an Aquatic Resource Final Report from juvenile Chinook Fish Tissue sampling along the Goodpaster River to ADF&G on November 28th, 2022.
- Waste Management Permit No. 2018DB0001 activities:
 - Draft 2022 Pogo Mine Environmental Audit RFP: On February 1, NSR Pogo submitted the draft RFP for the Environmental Audit to ADEC and ADNR as required by Waste Management Permit No. 2018DB0001 and Plan of Operations No. F20189500.
 - 2022 Pogo Mine Environmental Audit Proposal: On March 14, NSR Pogo submitted Golder's proposal for the Environmental Audit to ADEC and ADNR for review.
 - 2022 Pogo Mine Environmental Audit: On June 26 28, WSP Golder performed the required 5-year environmental audit on site as required by the NSR Pogo Waste Management Permit. The environmental compliance audit compared and evaluated facility operations against site-wide regulatory permits, plans, procedures, and record keeping.
 - CIP Tailings WAD CN limit exceedance: On July 18th a summary of corrective actions taken after the CIP Tailings WAD CN exceedance in January 2022, was submitted to ADEC, as per the conditions of the Permit.

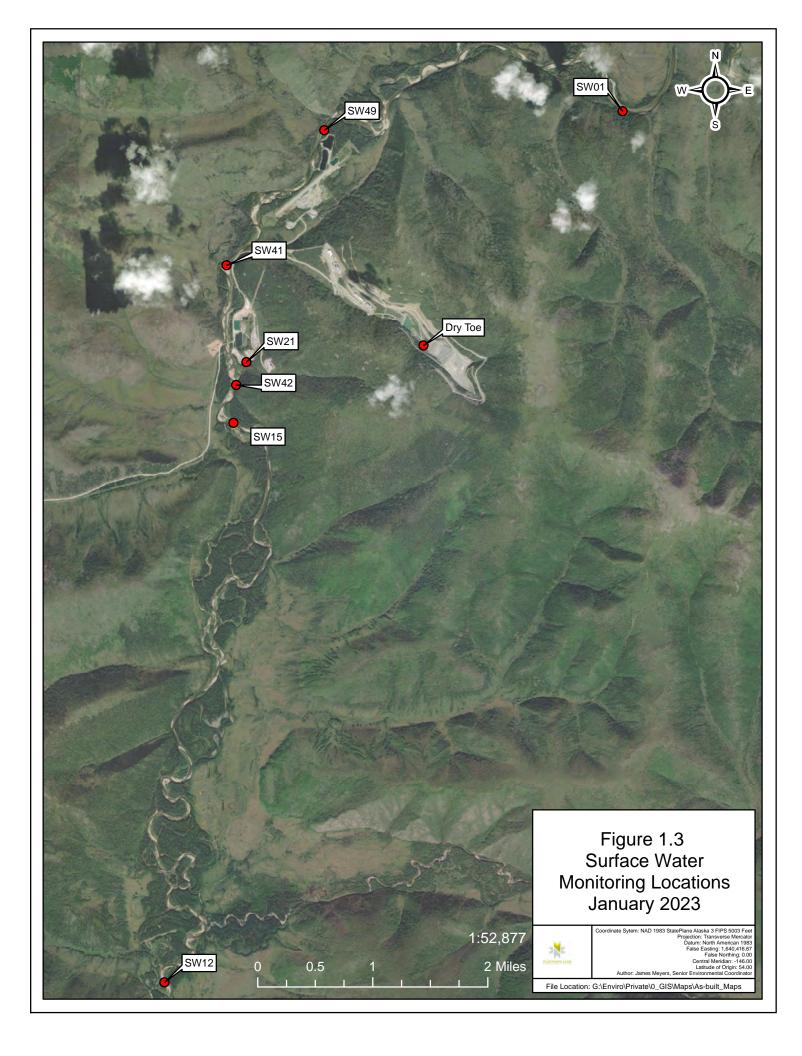


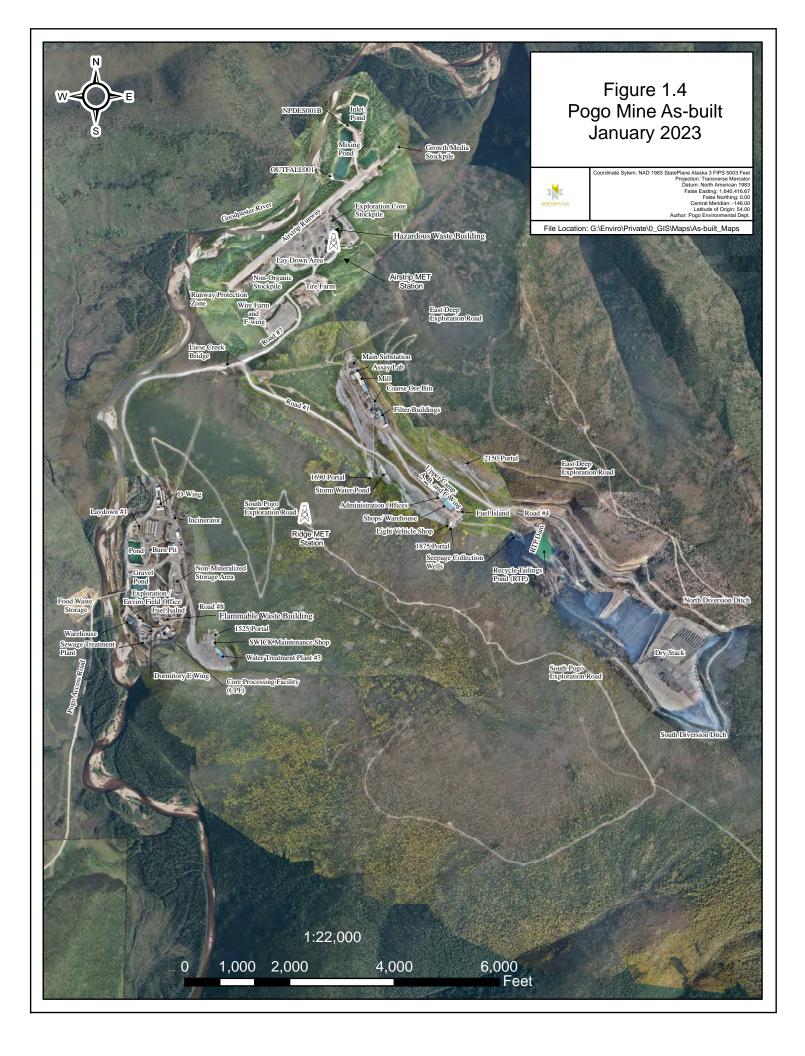
- 2022 Pogo Mine Environmental Audit comments: On October 10th. NSR Pogo received state agency comments on the Draft Golder 2022 Pogo Mine Audit Report. NSR Pogo reviewed and discussed comments, which are to be relayed to the state agencies and WSP Golder.
- Final Pogo Environmental Audit Report: On December 2nd, NSR Pogo, ADNR, and ADEC received the Final Environmental Audit of the Pogo Mine report from WSP Golder. Overall, WSP Golder found that Pogo monitoring, reporting, and operational compliance is sufficient.
- Notification of Pogo Mine Lift Station 22 Commencement Lower Camp Expansion Phase 2.2 Works: On December 9th, NSR Pogo notified ADEC that the operation of Lift Station 22 had been commenced.
- Other:
 - Notification of Completion of Liese Creek Culvert Project (USACE POA 1996-00211): On May 23rd, NSR Pogo notified the US Army Corps of Engineers that the wetlands disturbance for the Lise Creek Culvert project had been completed.
 - Issuance of 401 Water Quality Certificate (USACE POA 1996-00211) Pogo Mine Expansion Project: On December 8th, NSR Pogo received the Certificate of Reasonable Assurance for work affecting navigable waters in the U.S. from ADEC for the proposed Pogo Mine Expansion Project.
 - Notification of Completion of 2022 Emergency Action Plan Orientation and Table Top Exercise: On December 8th, NSR Pogo notified the ADNR Dam Safety Program that the annual orientation exercise for the Pogo Recycle Tailings Pond (RTP) Dam Emergency Action Plan (EAP) and Table Top Exercise had been completed in accordance with the special conditions of the Certificate of Approval to Operate a Dam, RTP Dam (NID ID#AK00304).
 - Completion of 6th Periodic Safety Inspection (PSI) of RTP Dam: On June 28-29, WSP Golder preformed the 6th periodic safety inspection on site. On December 19th, NSR Pogo received the PSI report, which concluded that the RTP Dam appeared to be in satisfactory condition in accordance with 11 AAC 93.
 Recommendations received by ADNR and WSP Golder will be addressed by NSR Pogo in 2023.
 - Certificate of Approval to Operate a Dam for the Pogo RTP (AK00304): On December 21st, NSR Pogo was issued a Certificate of Approval to Operate a Dam. The Certificate expires August 27th, 2025.

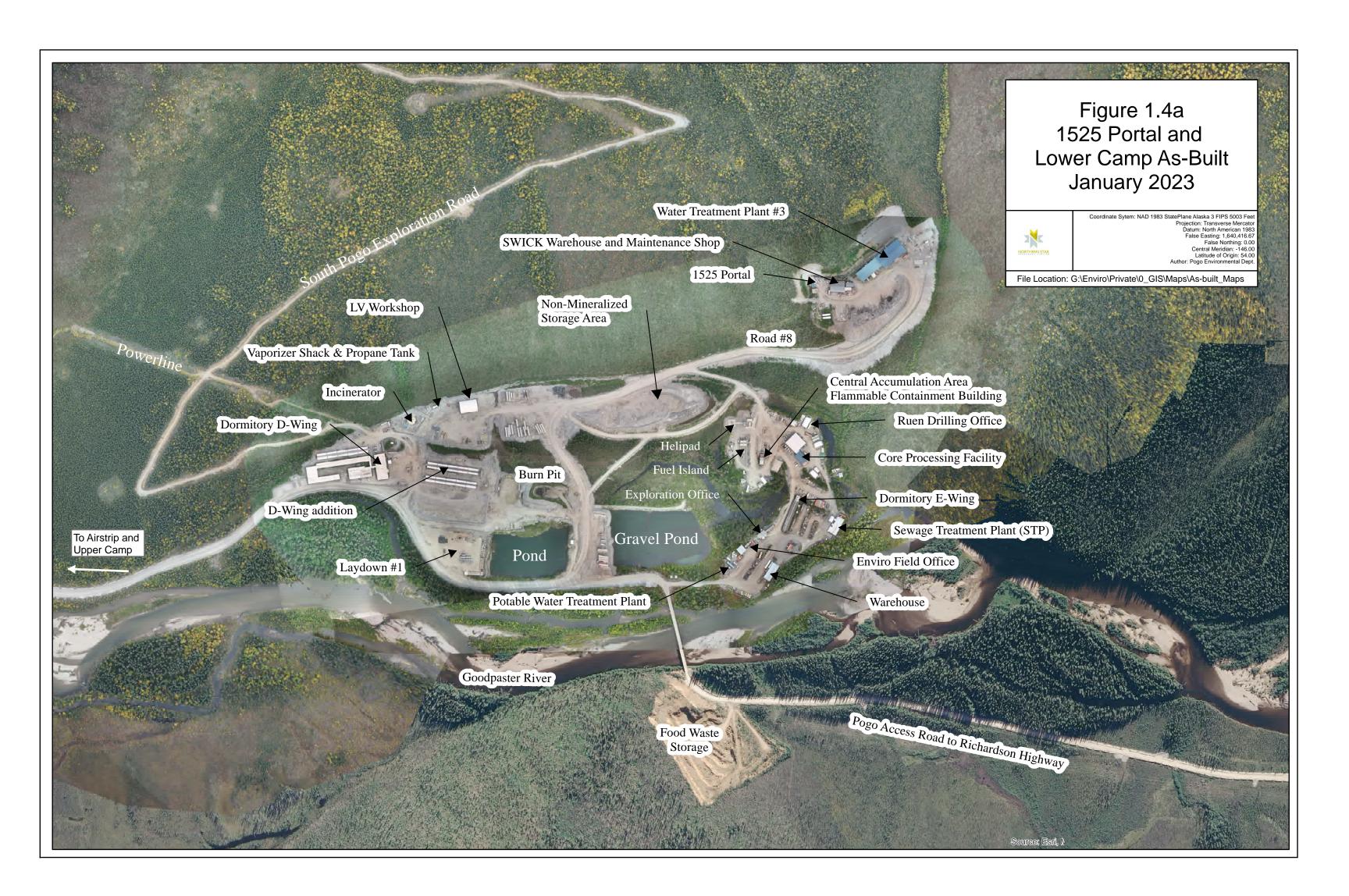
APPENDIX A – MAPS

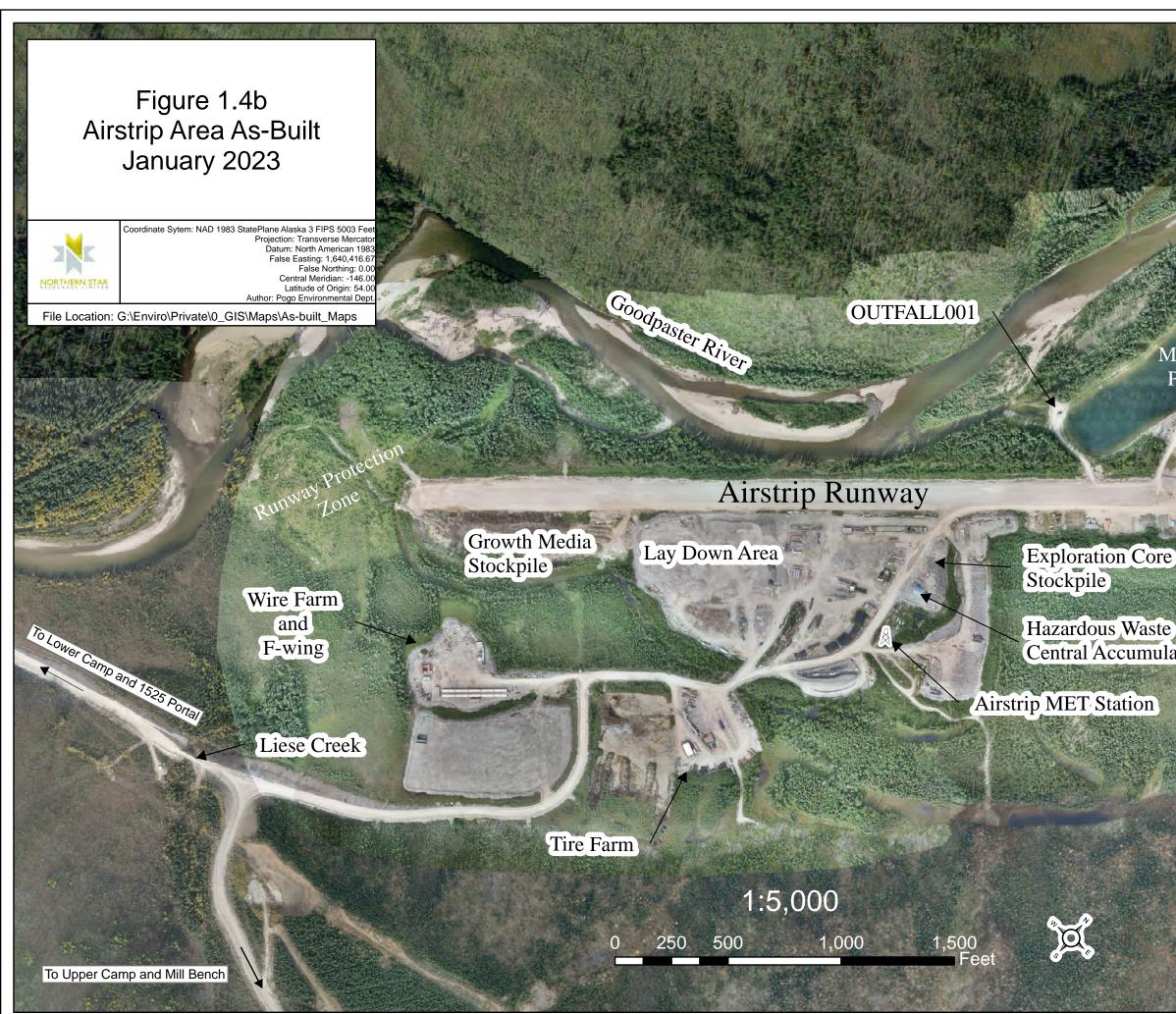

Figure 1.1: Pogo General Location Map Figure 1.2: Pogo Mine Monitoring Locations Figure 1.3: Surface Water Monitoring Stations Figure 1.4: Pogo Mine As-Built Figure 1.4a: 1525 Portal Area and Lower Camp As-Built Figure 1.4b: Airstrip Area As-Built Figure 1.4c: Mill Bench As-Built Figure 1.4d: Upper Camp As-Built Figure 1.4e: RTP & Dry Stack Area As-Built Figure 1.4f: 2022 Disturbance Areas


Figure 1.2 Monitoring Locations Pogo Mine


Coordinate Sytem: NAD 1983 StatePlane Alaska 3 FIPS 5003 Feet Projection: Transverse Mercator Datum: North American 1983 False Easting: 1,640,416.67 False Northing: 0.00 Central Meridian: -146.00 Latitude of Origin: 54.00 Author: Jeremiah Drewel, Environmental Coordinator

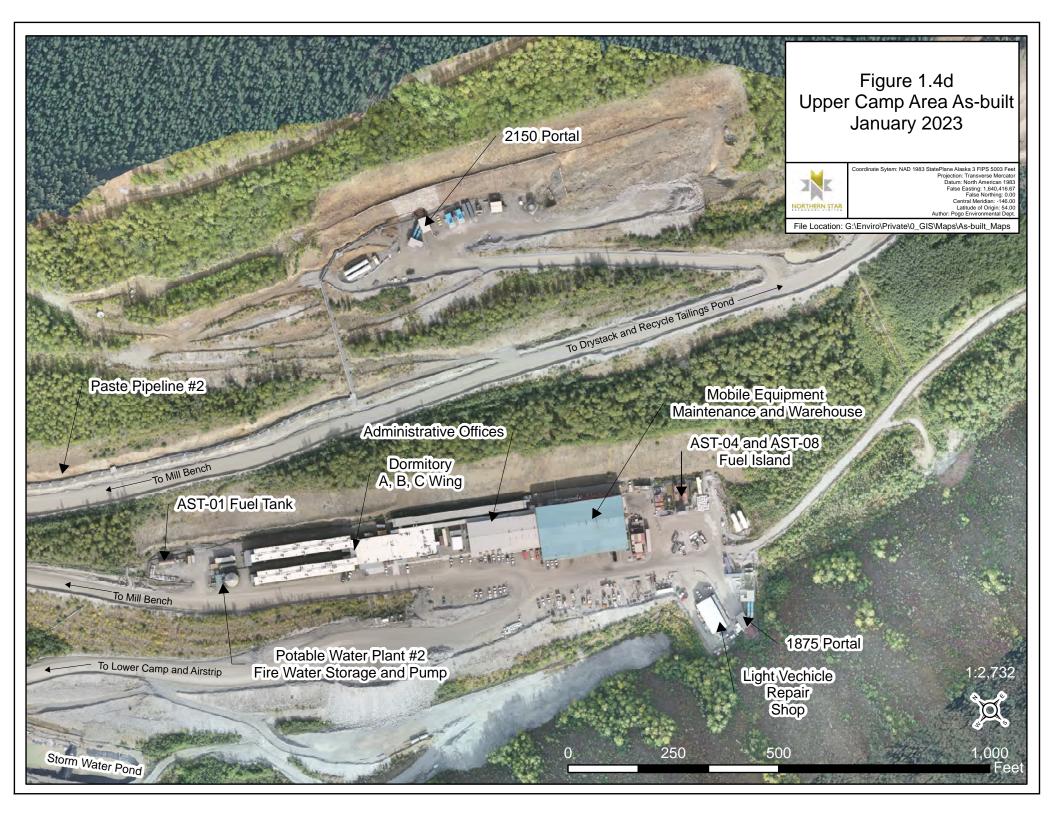


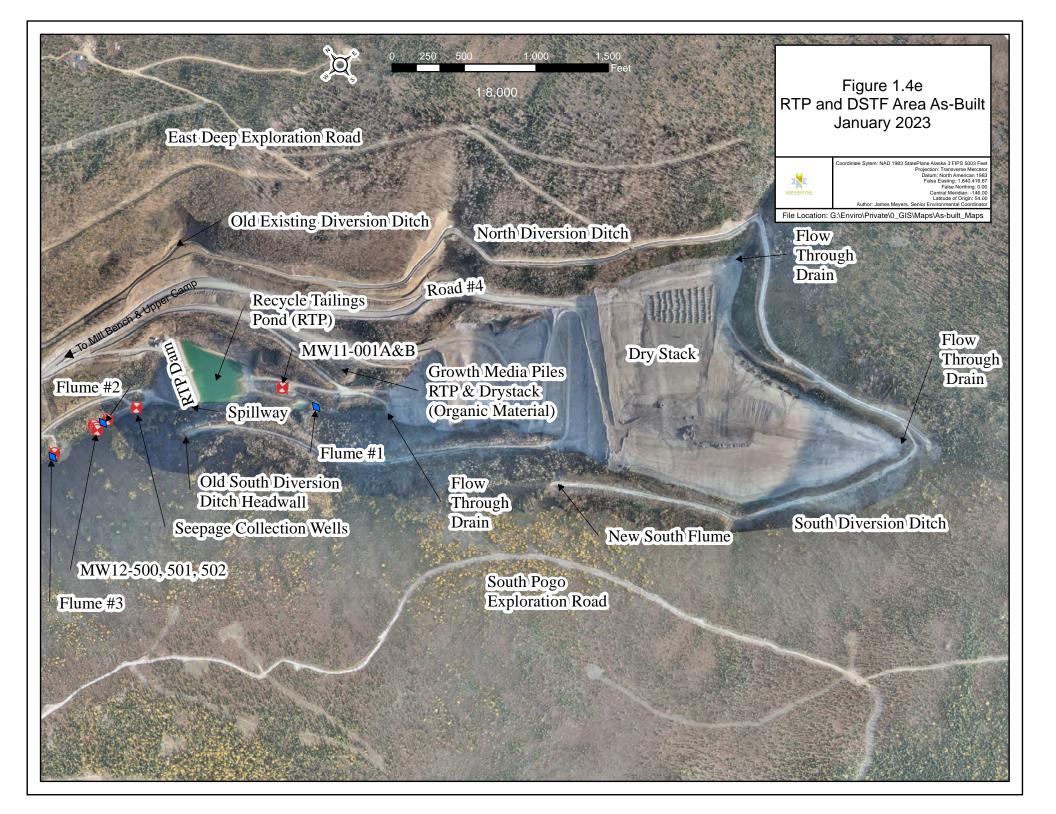


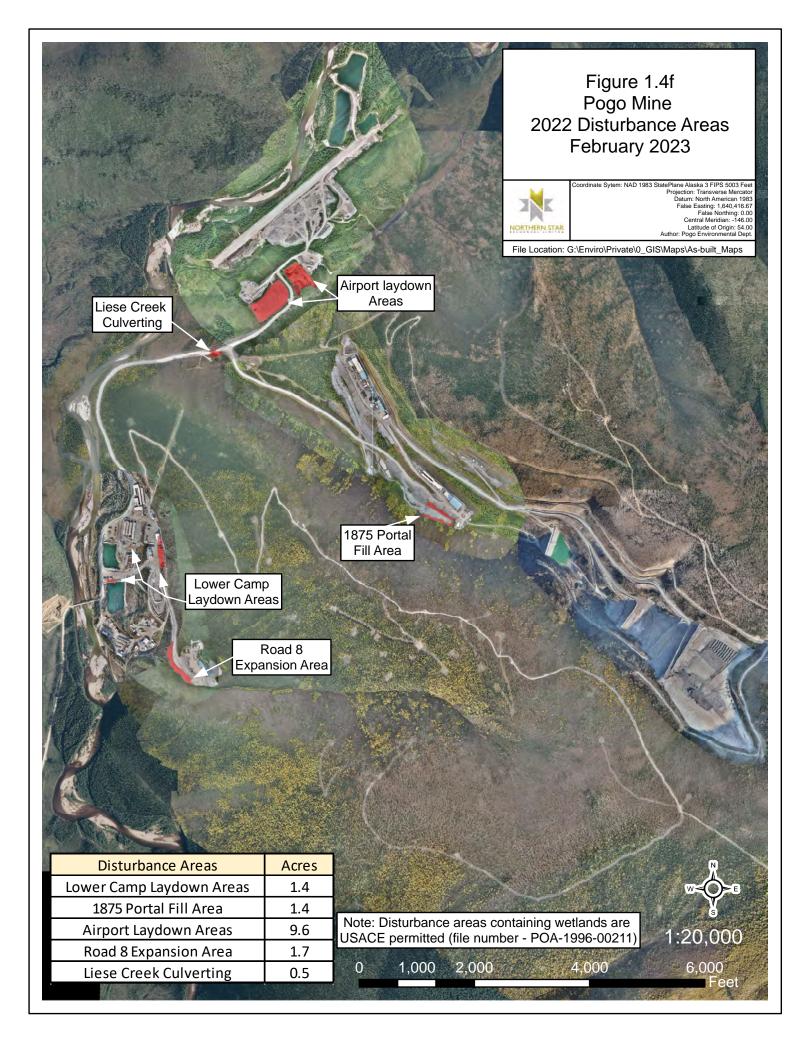


Inlet Pond

Mixing Pond


NPDES001B


Runway Protection Zone


Growth Media Stockpile

Central Accumulation Area

APPENDIX B –

WASTE ROCK GEOCHEMISTRY AND FLOTATION TAILINGS SOLIDS CHEMISTRY DATA

Table 1: Whole Rock Geochemistry for Rock Placed in Dry Stack 2022

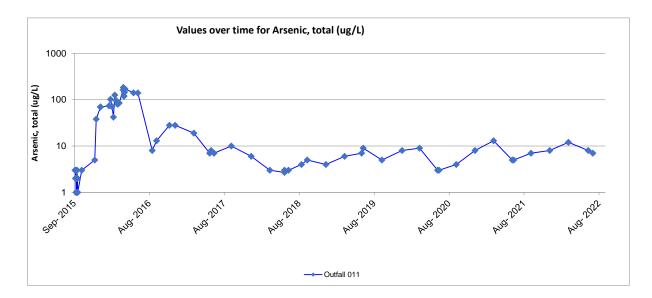
 Table 2: Geochemistry of Flotation Tailings Solids Placed in Dry Stack 2022

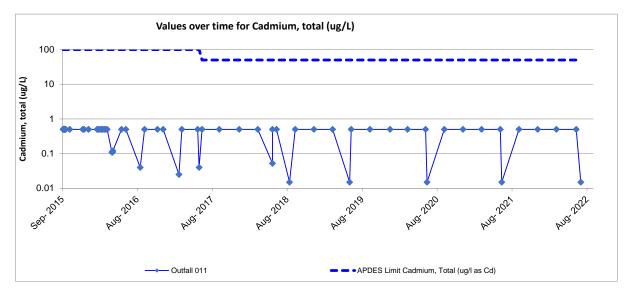
PC002	units	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
Antimony, Total	mg/kg	1.36	2	1.8	1.35
Arsenic, Total	mg/kg	1,150	1,570	412	593
Carbon	%	0.48	0.63	0.24	0.26
Copper, Total	mg/kg	35.7	39.4	21.8	41.7
Inorganic Carbon	%	1.8	2.3	0.9	1.2
Iron, Total	mg/kg	34,200	38,100	28,800	52,900
Lead, Total	mg/kg	20	17	24.7	20.8
Maximum Potential Acidity	tCaCO3/1000t	10.3	14.4	5.9	19.4
Net Neutralization Potential	tCaCO3/1000t	36	55	20	22
pH, Paste	pH units	8.2	8.2	8.7	9.5
Potassium, Total	mg/kg	25,800	22,100	27,500	31,600
Ratio (NP/MPA)	su	4.46	3.83	4.38	4.22
Selenium, Total	mg/kg	2	1	<1	2
Sodium, Total	mg/kg	14,300	12,900	15,800	13,400
Sulfate Sulfur (CO ₃ Leach)	%	<0.01	<0.01	<0.01	<0.01
Sulfate Sulfur (HCL Leach)	%	0.01	< 0.01	0.02	<0.01
Sulfide Sulfur (Calculated)	%	0.33	0.46	0.19	0.25
Sulfur, Total (LECO)	%	0.33	0.46	0.19	0.25
Zinc, Total	mg/kg	62	60	136	81

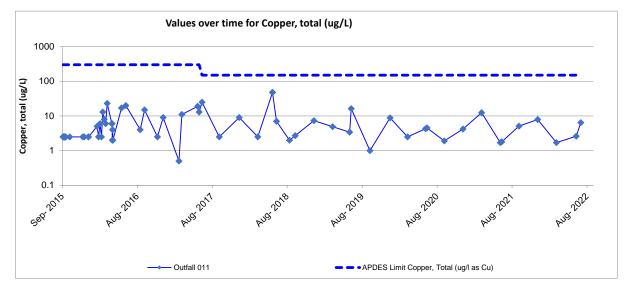
Appendix B. Table 1. Whole Rock Geochemistry for Rock placed into Drystack 2022

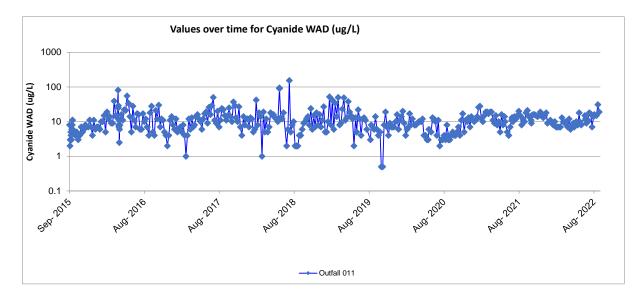
Appendix B. Table 2. Geochemistry of Flotation Tailings Solids placed into Drystack 2022

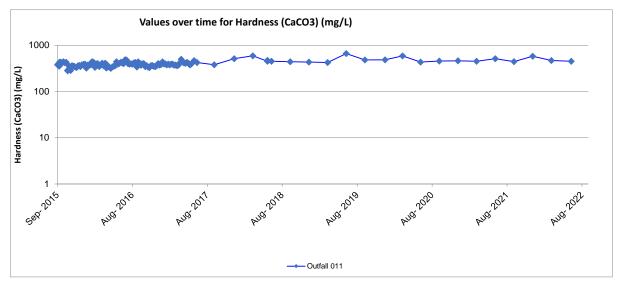
PC003 Solid	units	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
Antimony, Total	mg/kg	1.37	0.77	0.88	1.1
Arsenic, Total	mg/kg	394	134.5	257	284
Carbon	%	0.38	0.38	0.5	0.36
Copper, Total	mg/kg	48.6	42.9	56.8	57.3
Inorganic Carbon	%	1.4	1.4	1.8	1.3
Iron, Total	mg/kg	26,800	25,000	27,700	24,200
Lead, Total	mg/kg	11.2	8.2	7.7	8.5
Maximum Potential Acidity	tCaCO3/1000t	2.2	2.2	3.1	1.6
Net Neutralization Potential	tCaCO3/1000t	34	34	38	35
pH, Paste	pH units	8.2	8.2	8.3	7.3
Potassium, Total	mg/kg	21,600	18,100	19,700	17,300
Ratio (NP/MPA)	su	16.46	16.46	13.12	23.68
Selenium, Total	mg/kg	1	<1	<1	<1
Sodium, Total	mg/kg	7,500	8,400	8,800	5,800
Sulfate Sulfur (CO ₃ Leach)	%	0.01	<0.01	0.02	0.01
Sulfate Sulfur (HCL Leach)	%	0.03	0.01	0.05	0.01
Sulfide Sulfur (Calculated)	%	0.06	0.07	0.08	0.04
Sulfur, Total (LECO)	%	0.07	0.07	0.1	0.05
Zinc, Total	mg/kg	28	22	25	23

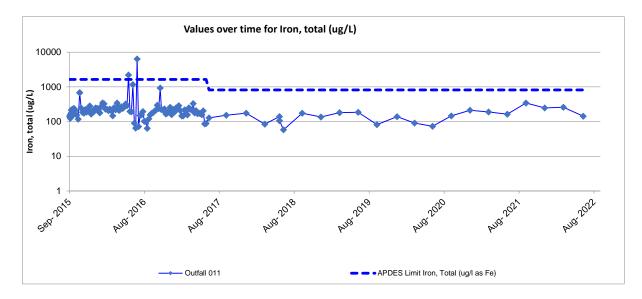


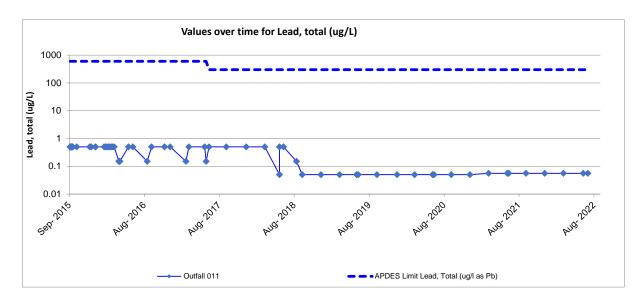

APPENDIX C -

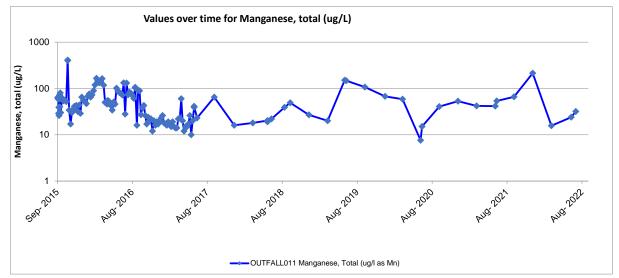

TIME SERIES GRAPHS OF MONITORING DATA

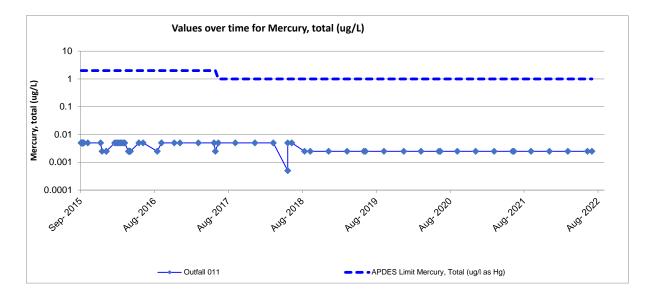


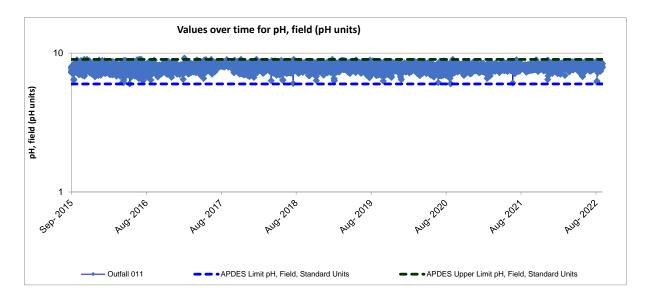

APPENDIX C – OUTFALL 011 GRAPHS

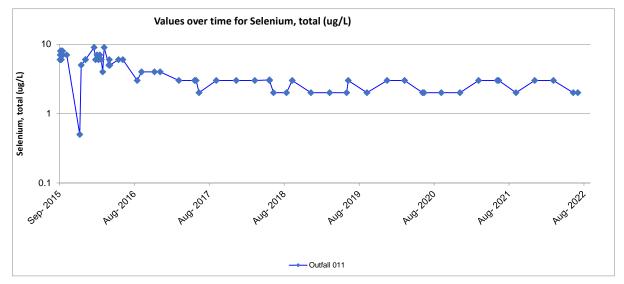


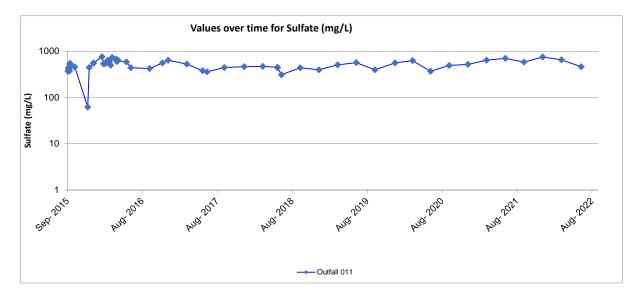


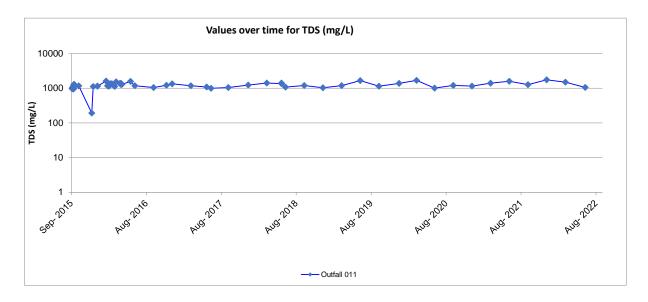


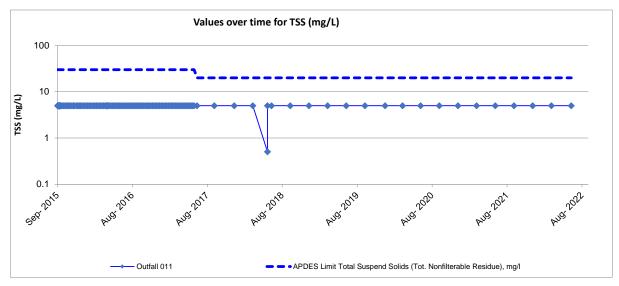


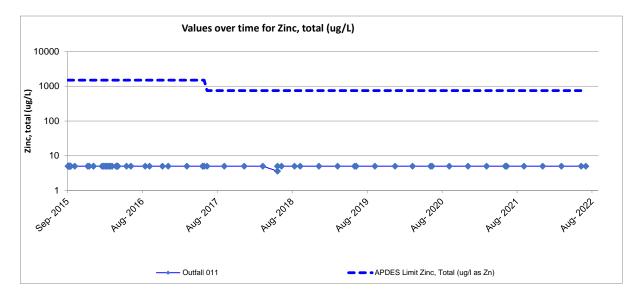


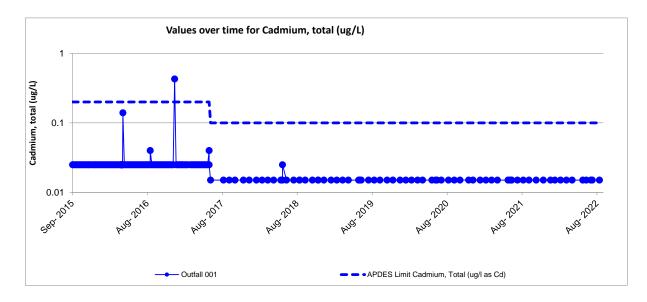


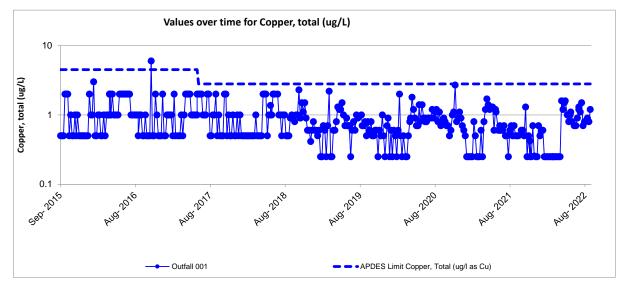


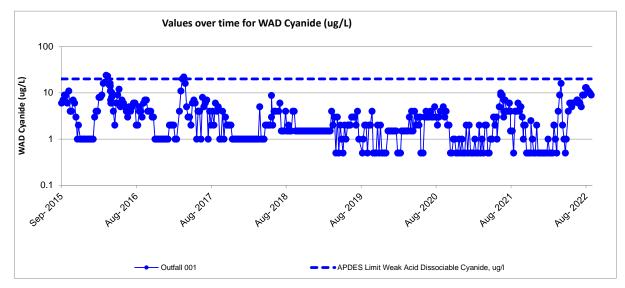


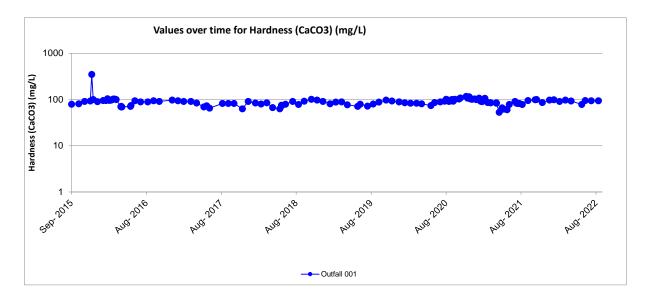


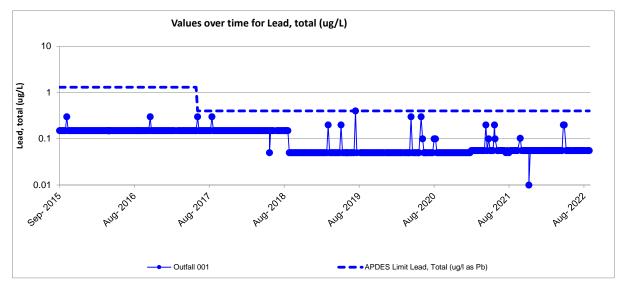


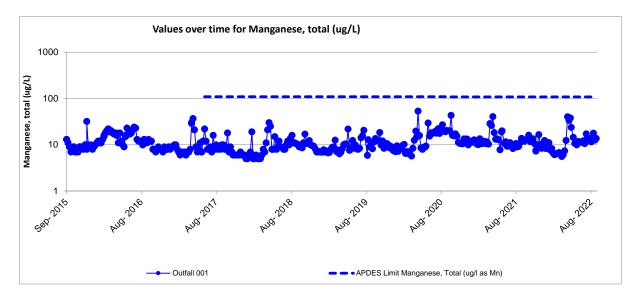


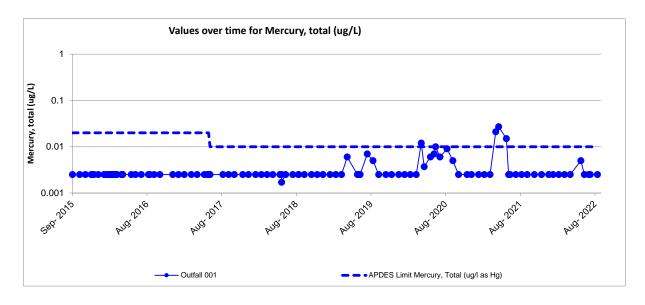


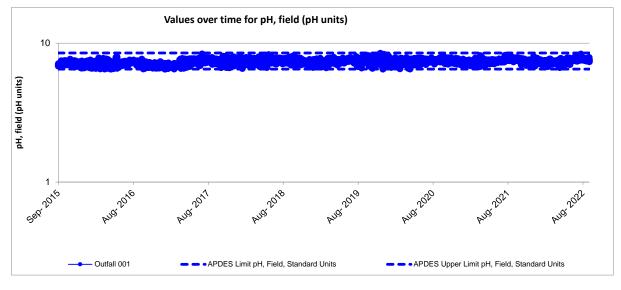


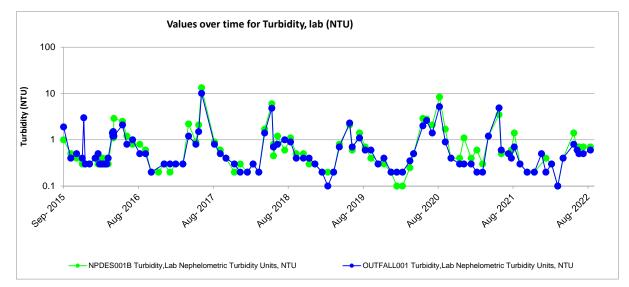


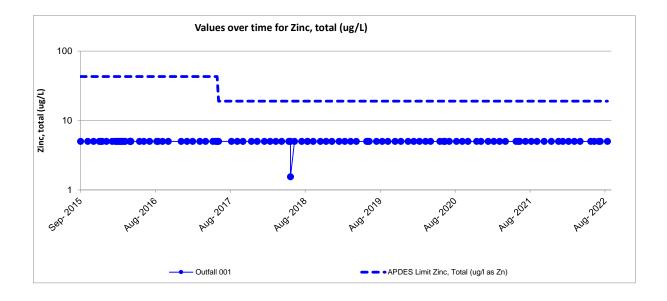

APPENDIX C – OUTFALL 001 GRAPHS

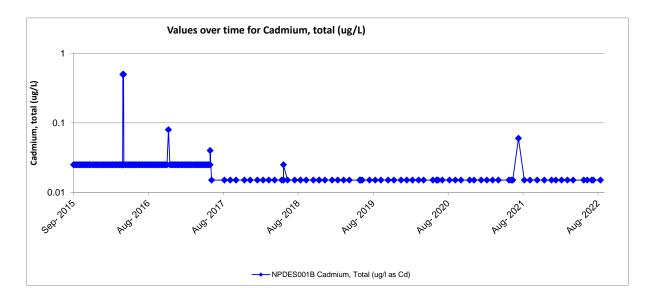


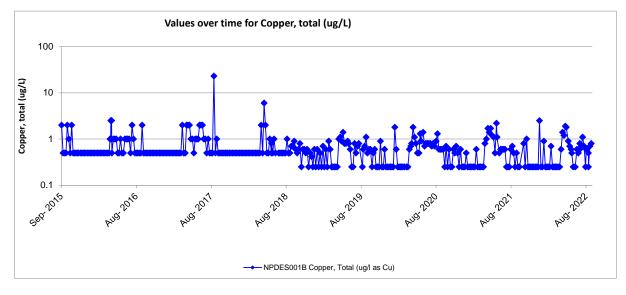


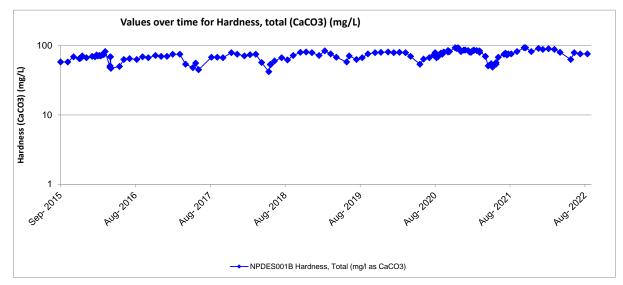


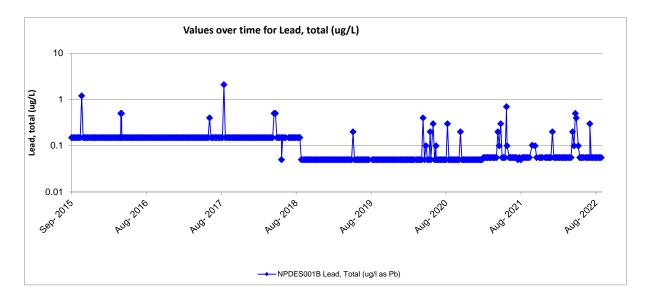


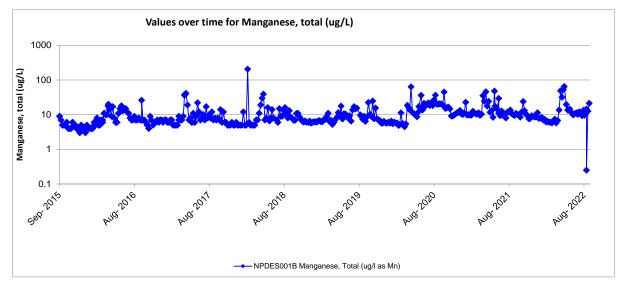


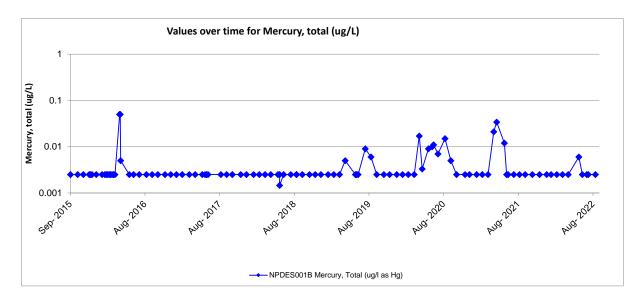


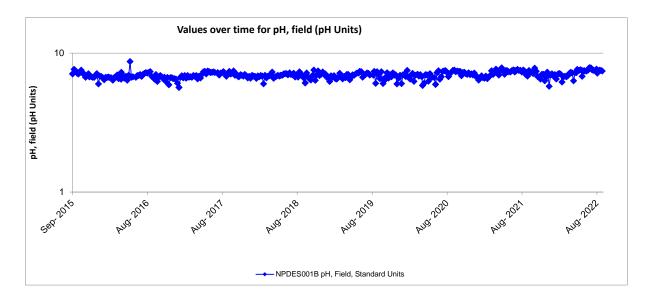


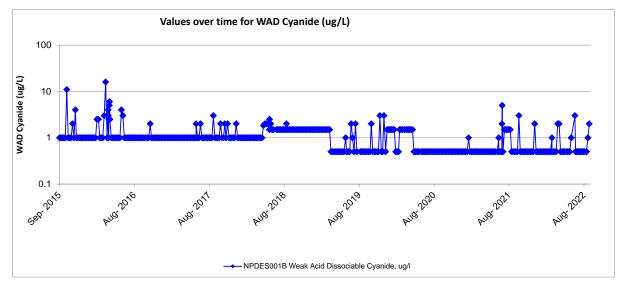


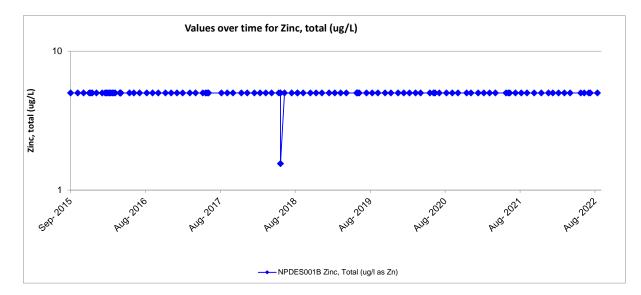


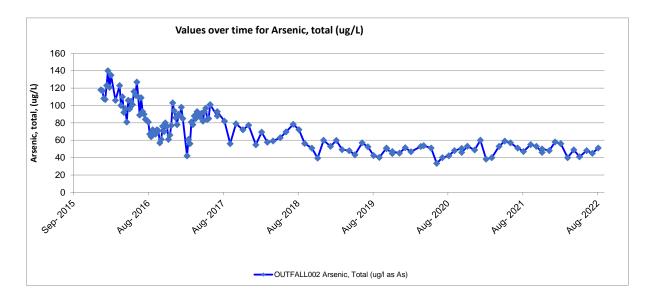

APPENDIX C – NPDES001B GRAPHS

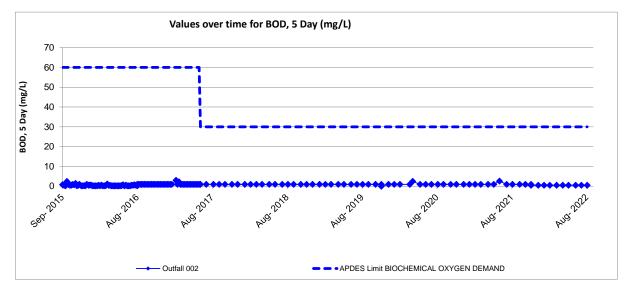


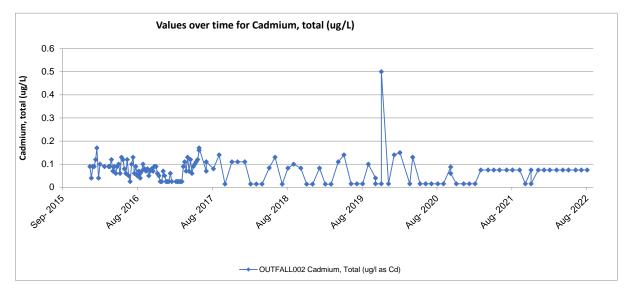


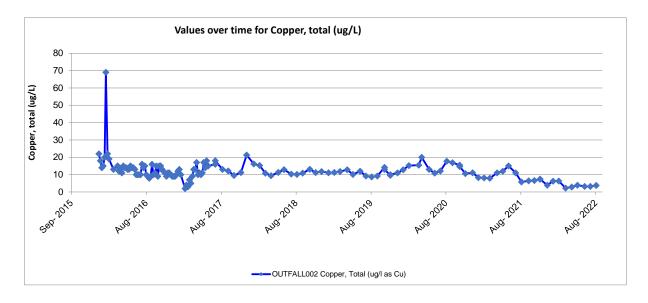


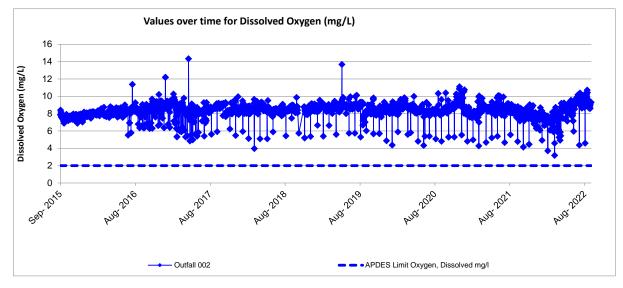


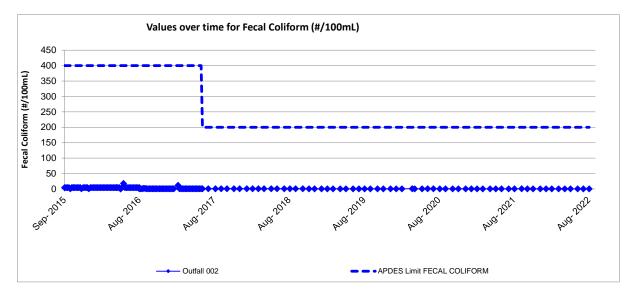


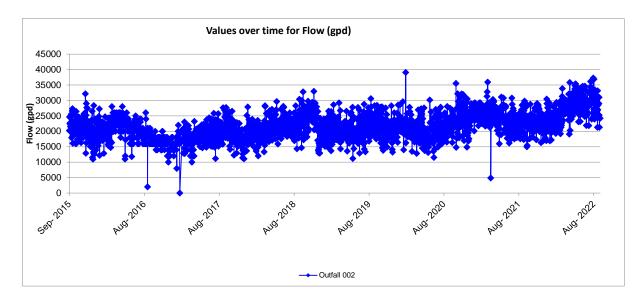


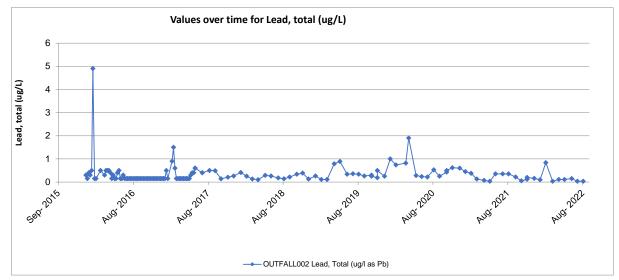


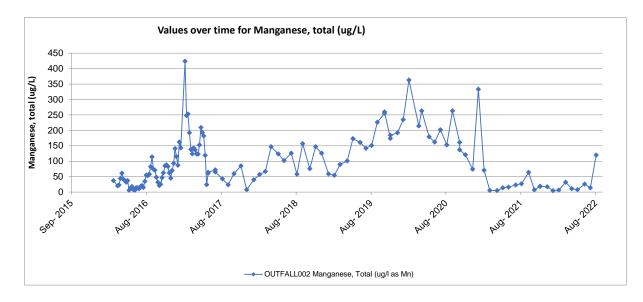


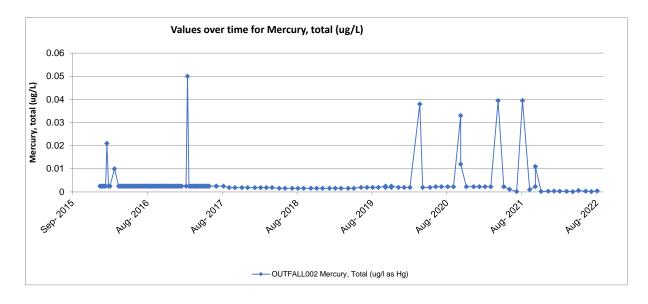

APPENDIX C – OUTFALL 002 GRAPHS

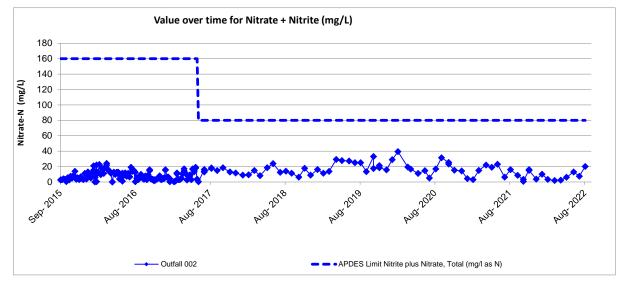


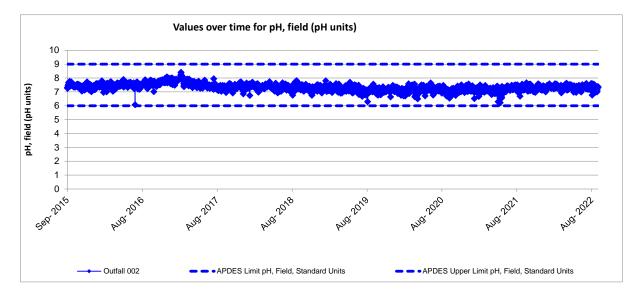


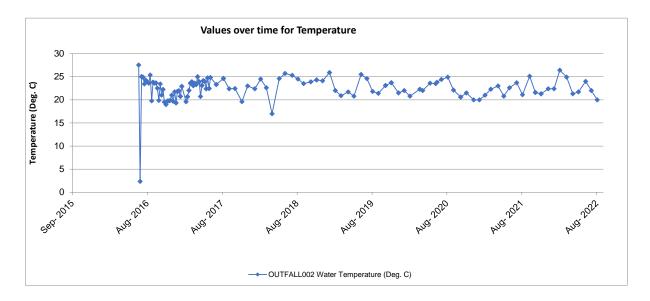


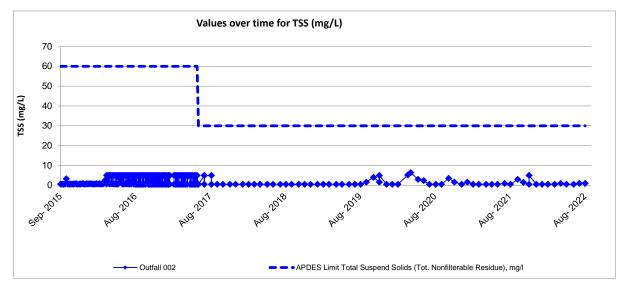


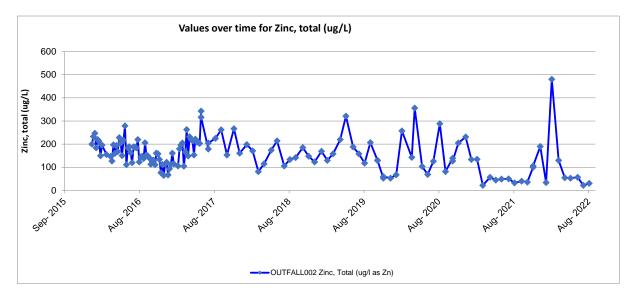


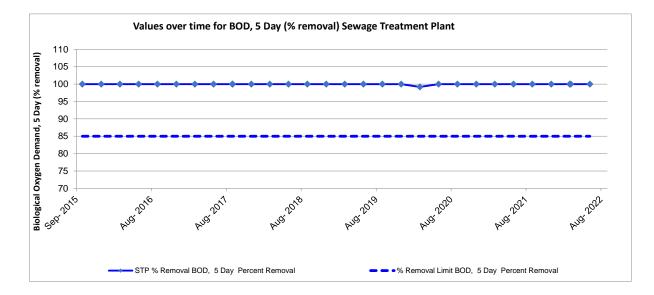


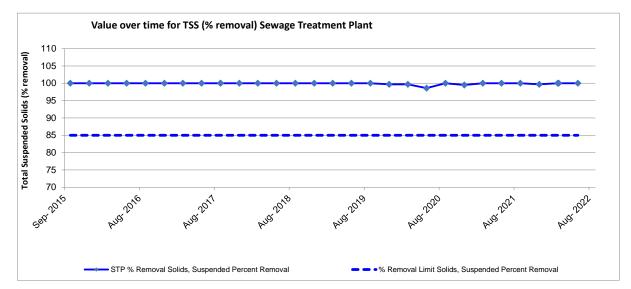


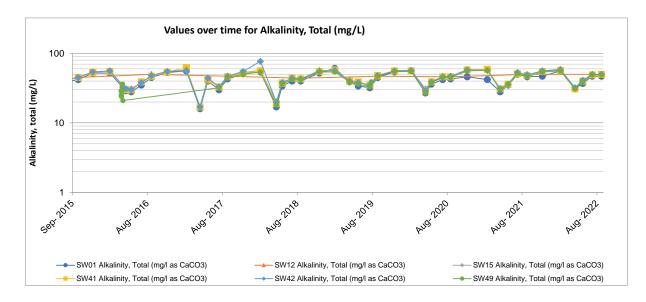


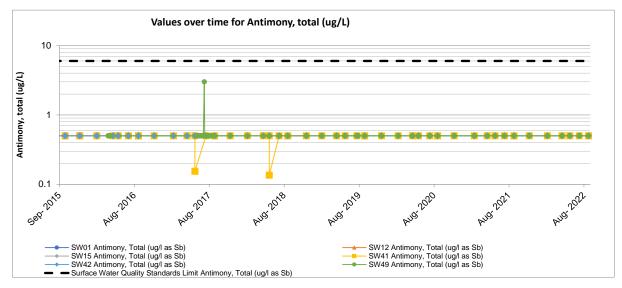


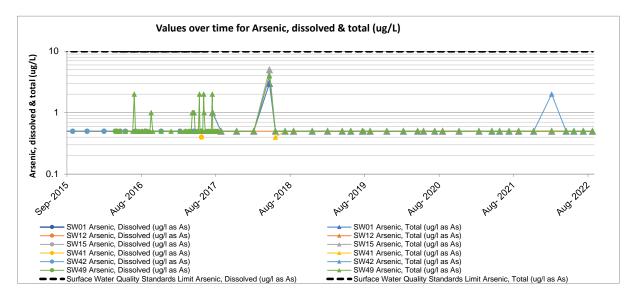


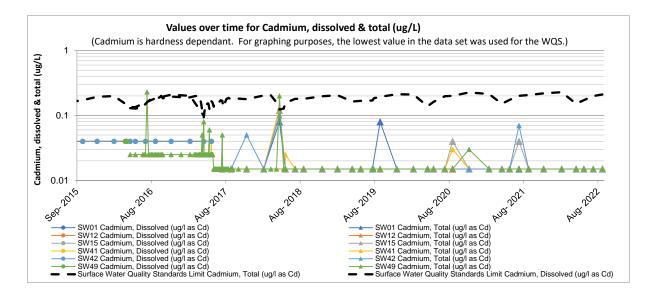


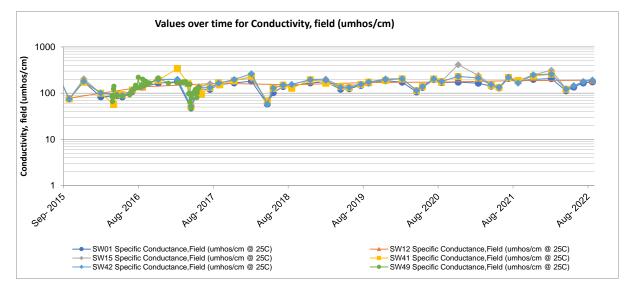


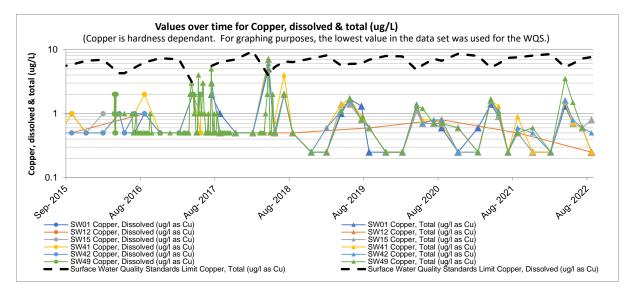

APPENDIX C – STP GRAPHS



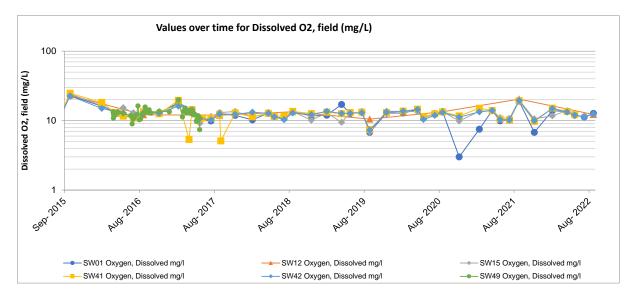


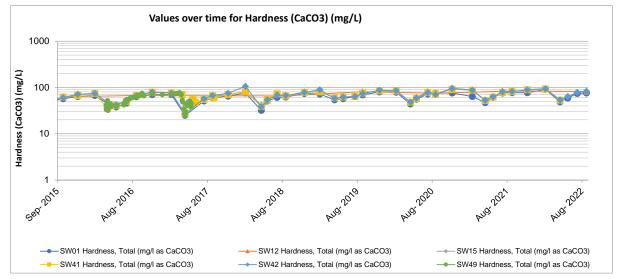


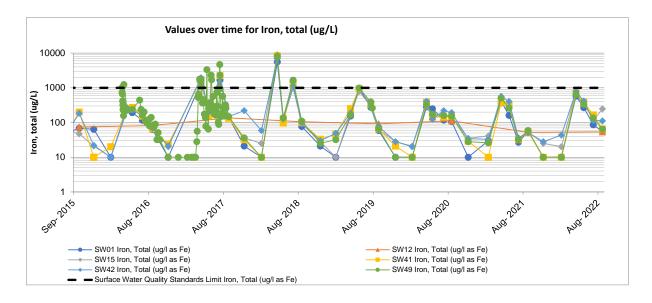

APPENDIX C – SURFACE WATER GRAPHS

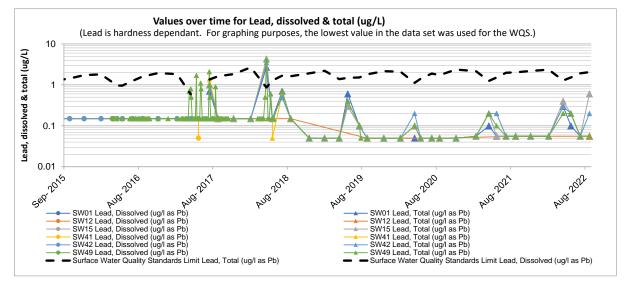


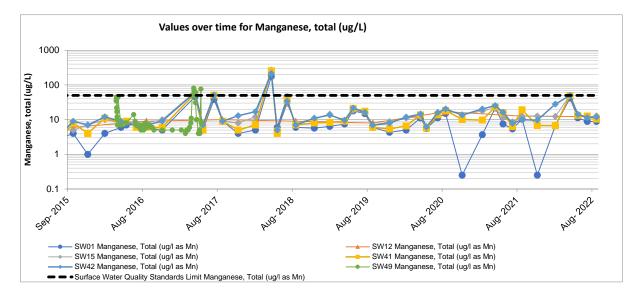


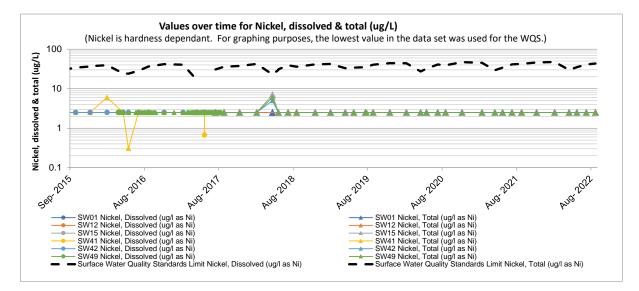


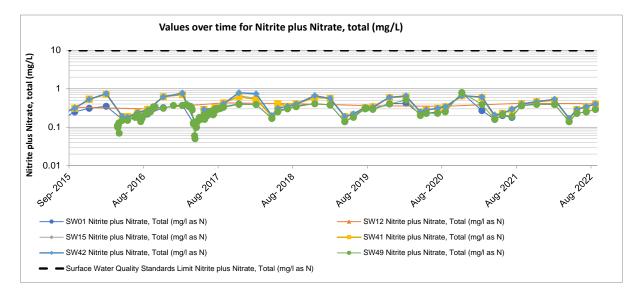


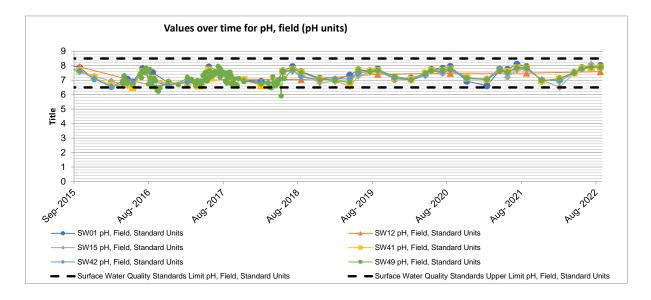


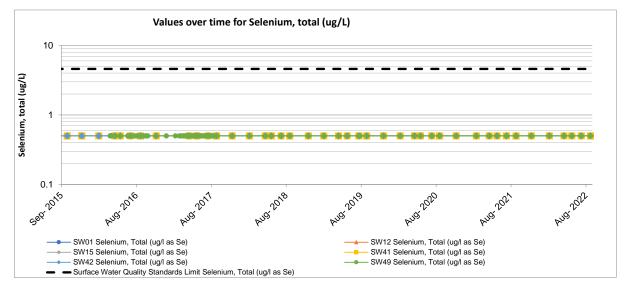


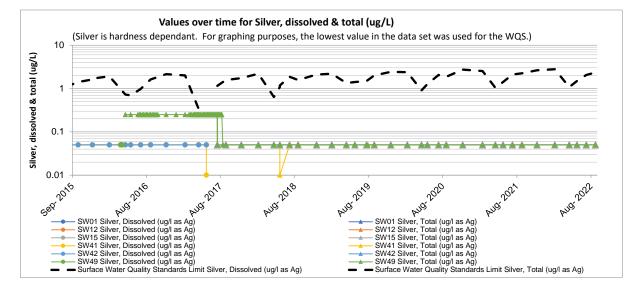


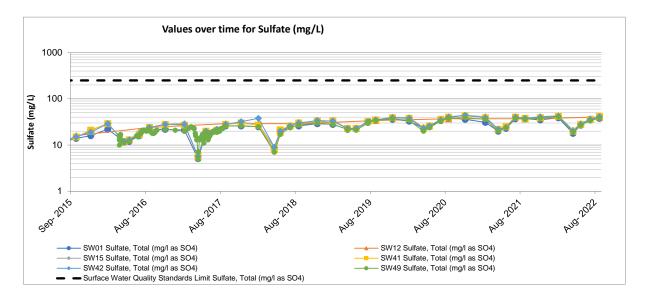


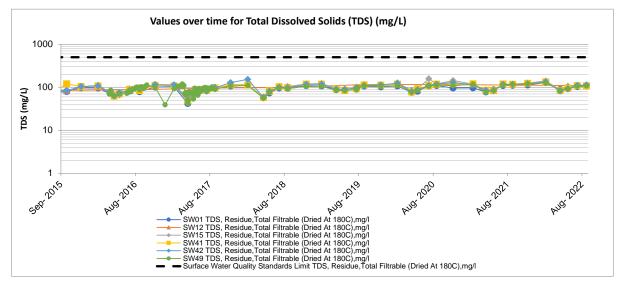


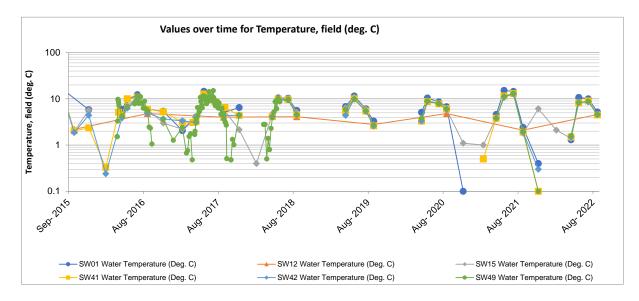


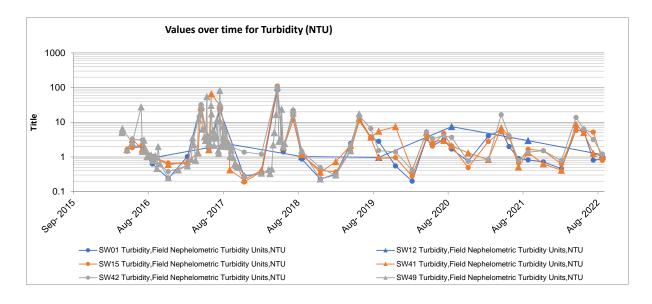


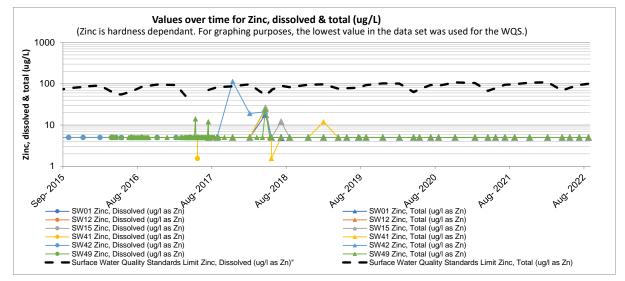


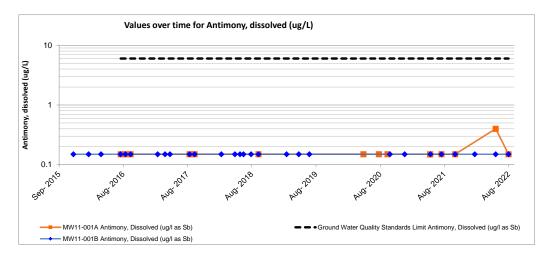


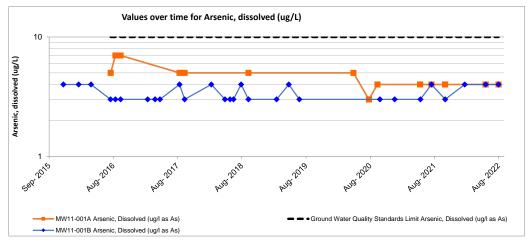


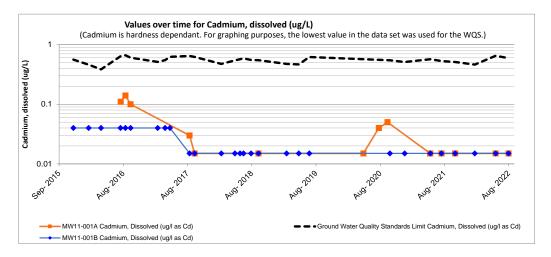


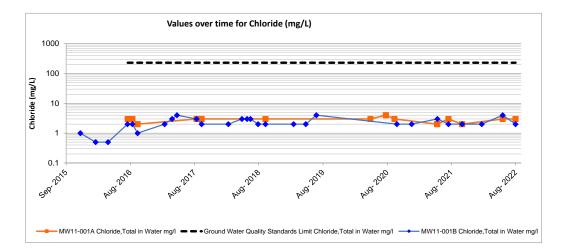


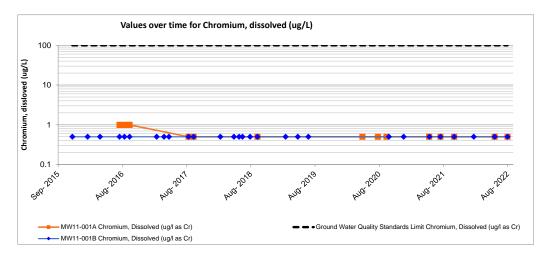


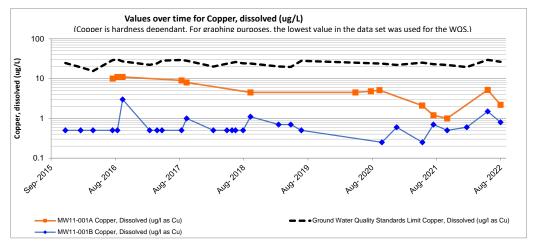


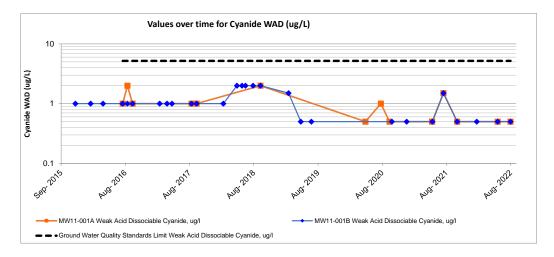


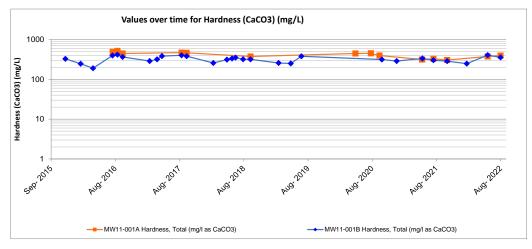


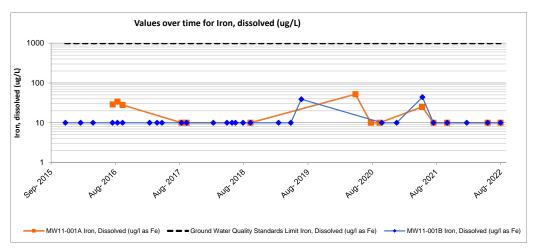

APPENDIX C -

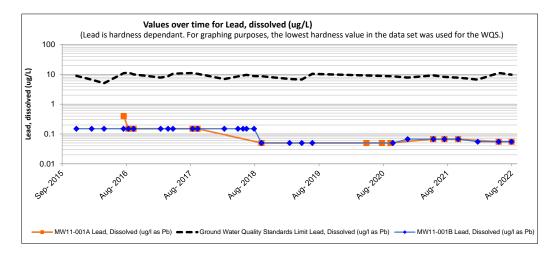

MW11-001A AND MW11-001B GRAPHS

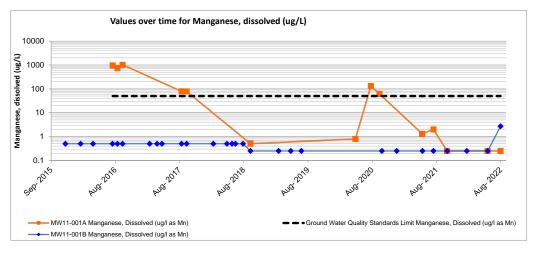


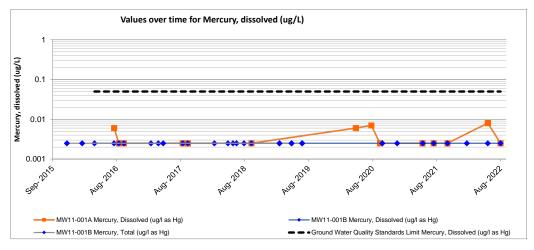


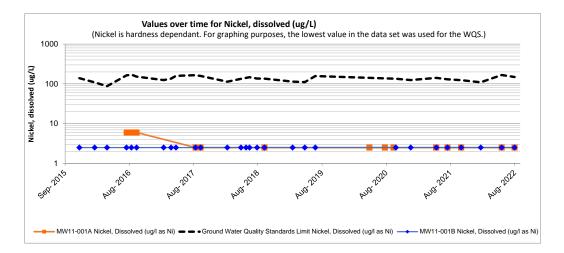


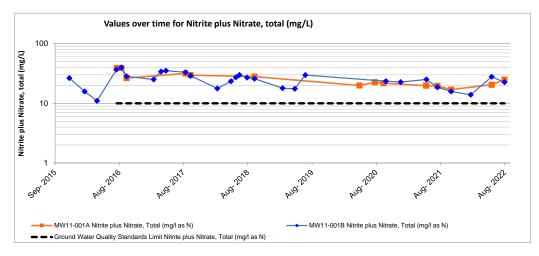


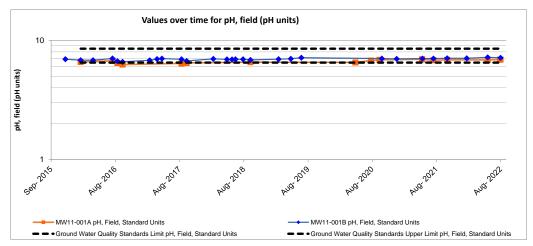


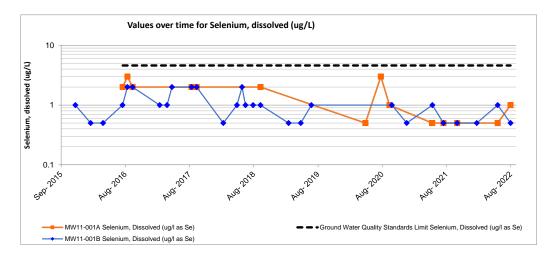


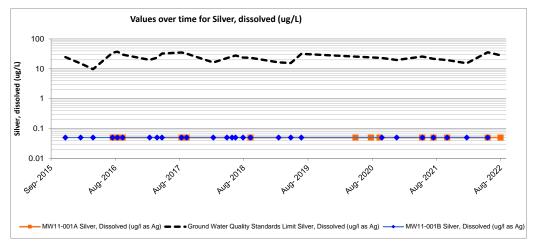


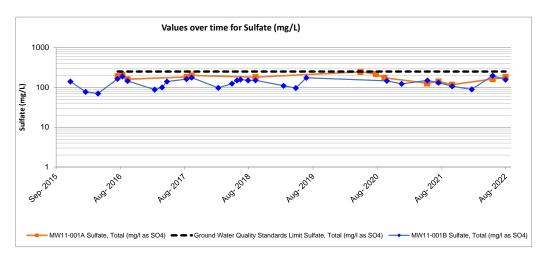


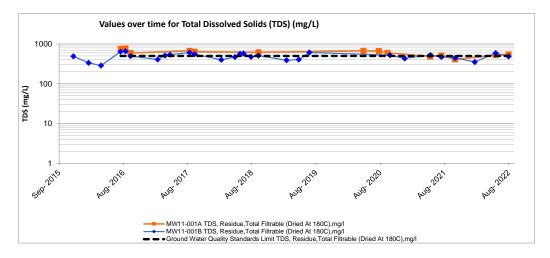


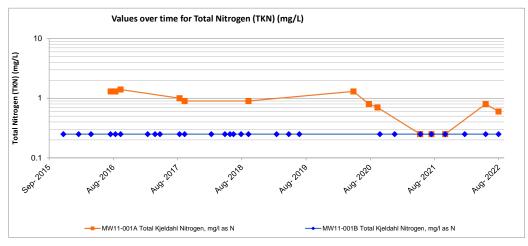


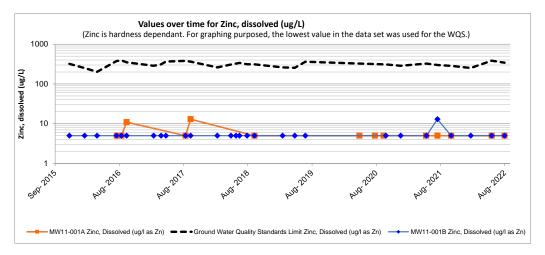


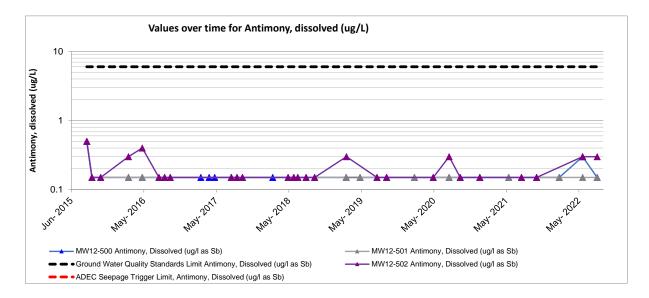


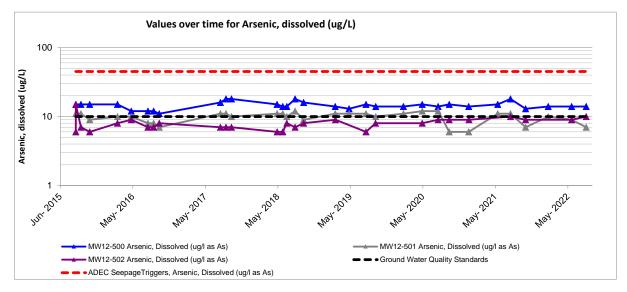


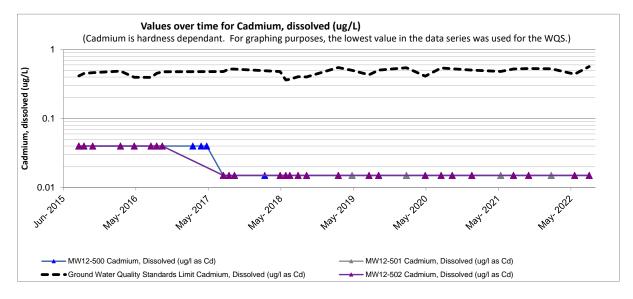


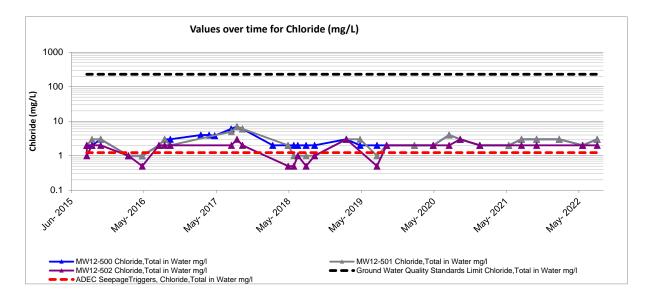


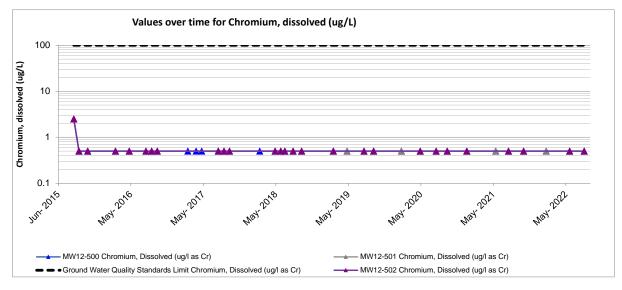


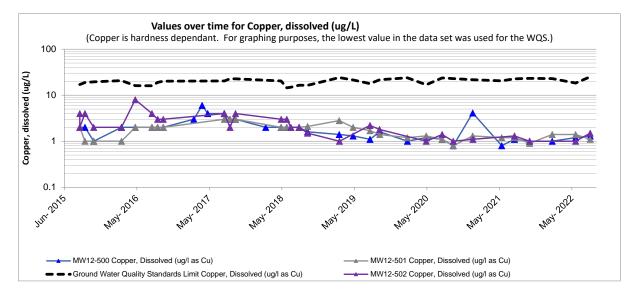


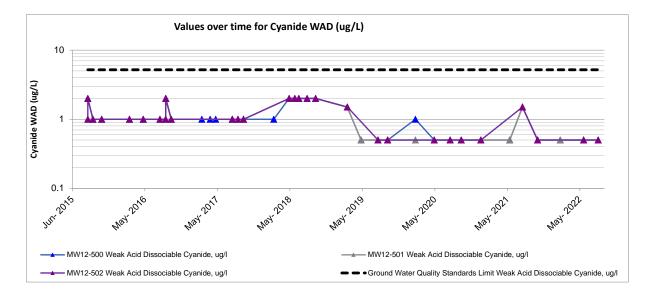


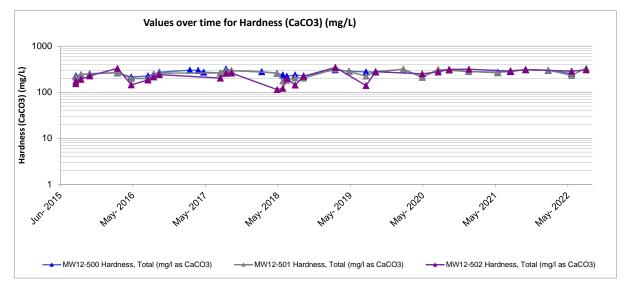


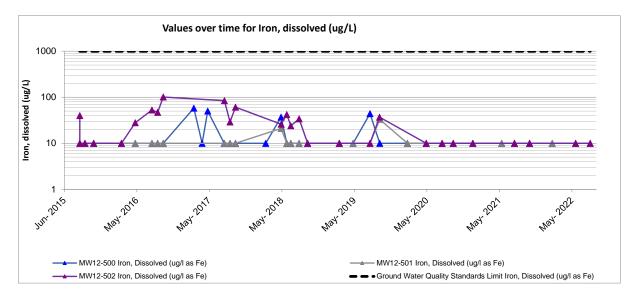

APPENDIX C -

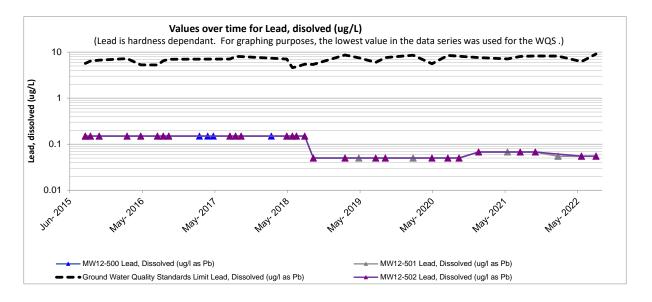

MW12-500, MW12-501, MW12-502 GRAPHS WATER QUALITY STANDARDS AND SEEPAGE TRIGGER LIMITS

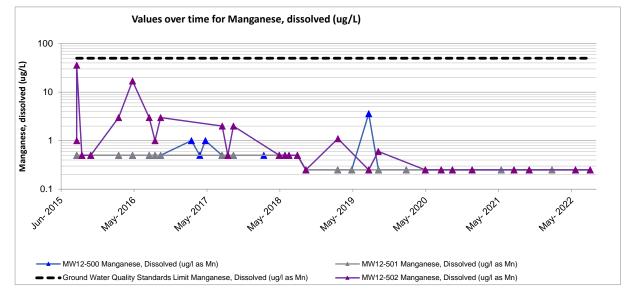


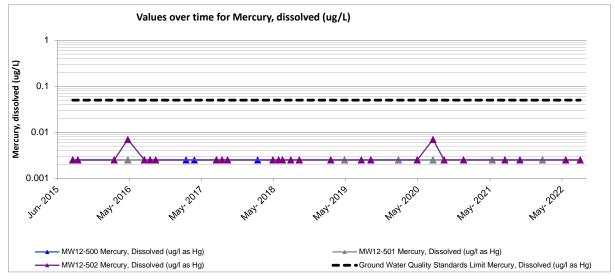


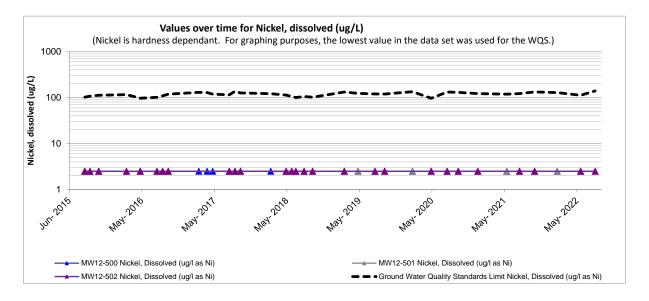


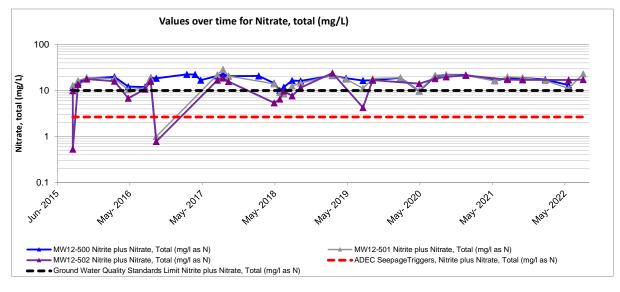


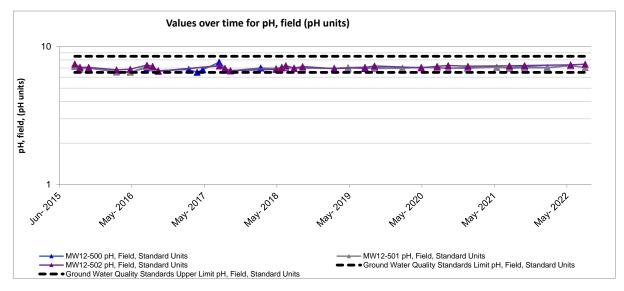


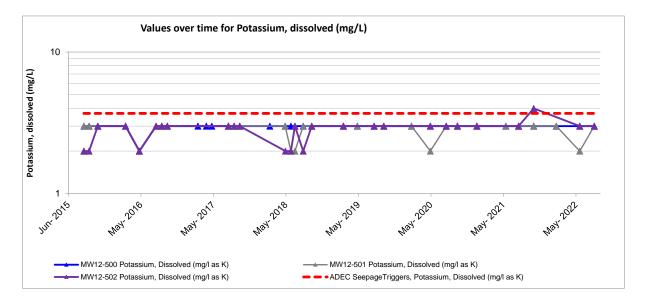


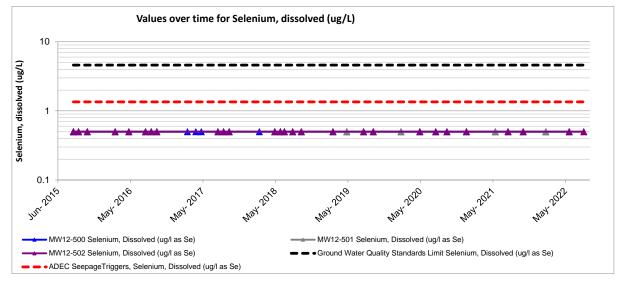


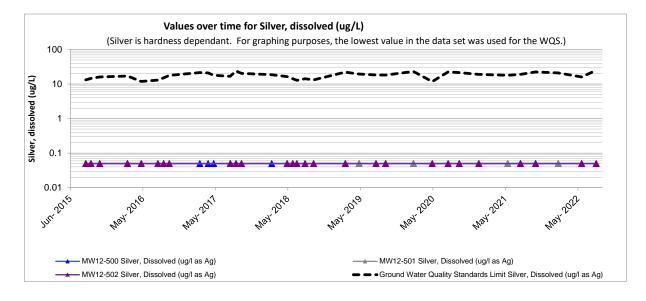


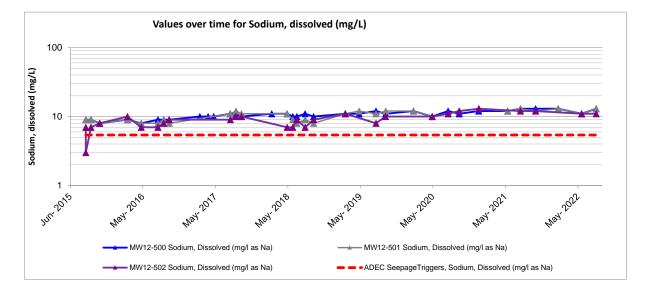


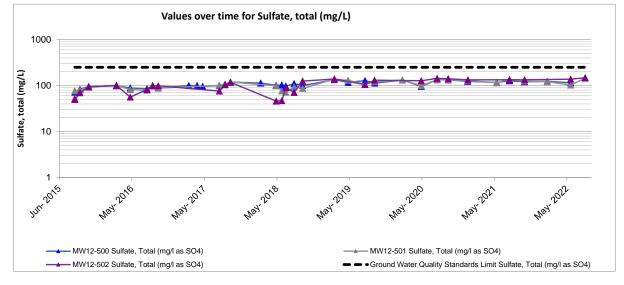


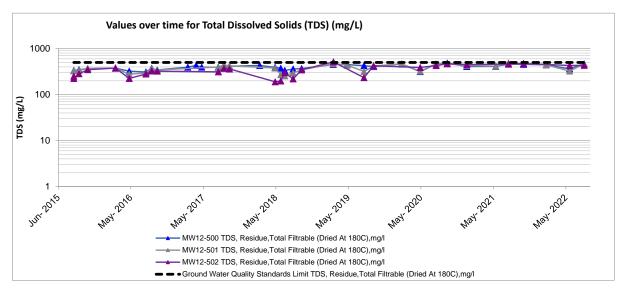


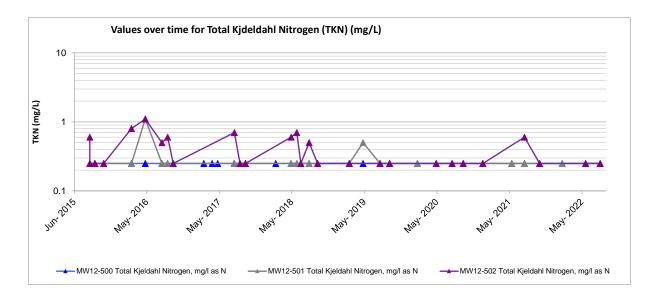


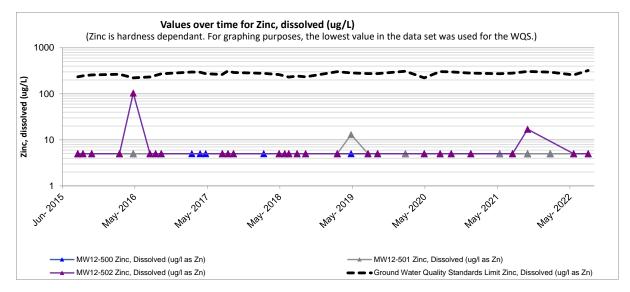


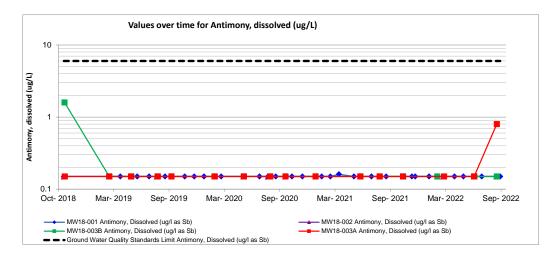


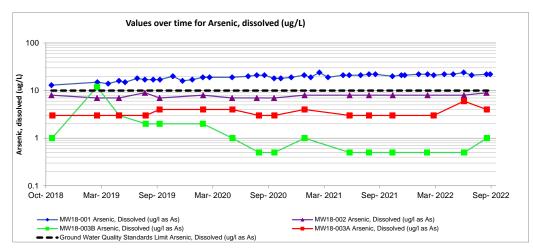


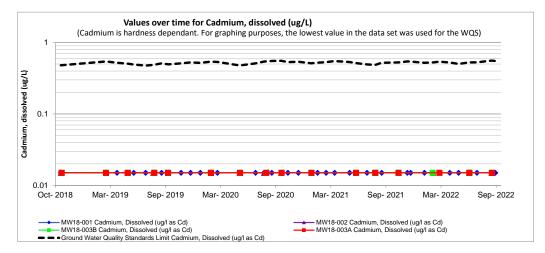




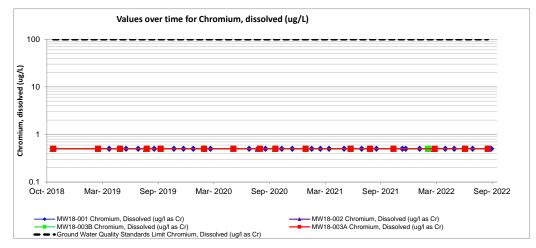


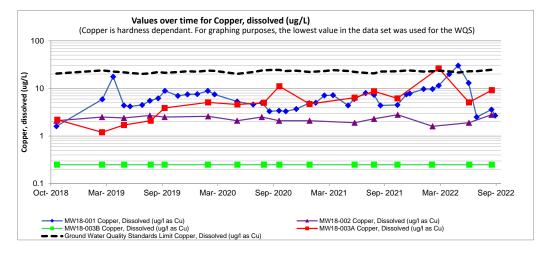


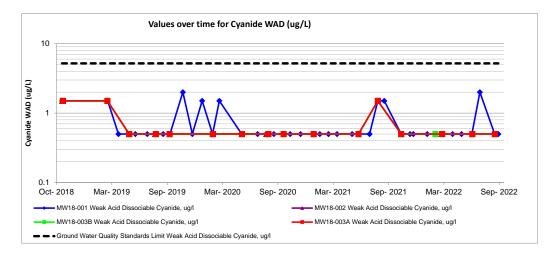


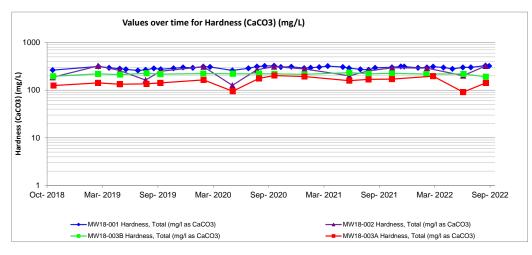


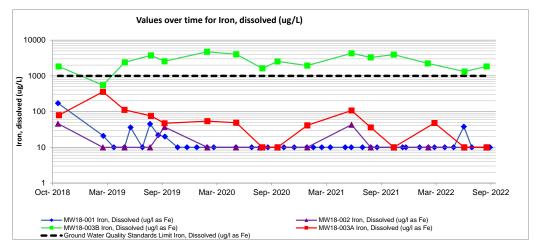

APPENDIX C -

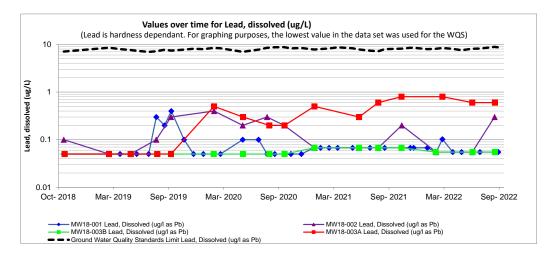

MW18-001, MW18-002, MW18-003A, MW18-003B GRAPHS WATER QUALITY STANDARDS

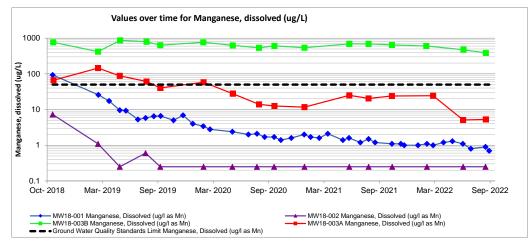


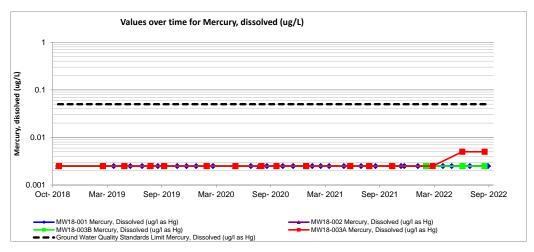


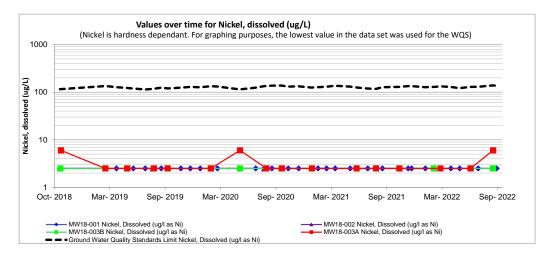


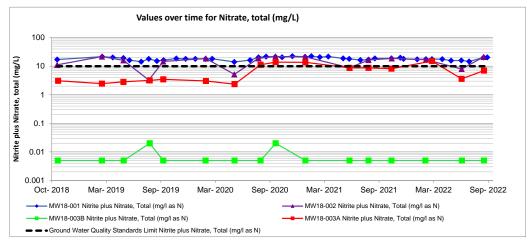


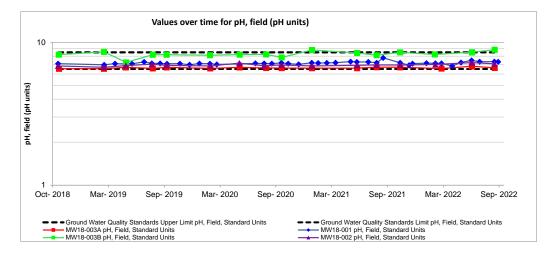


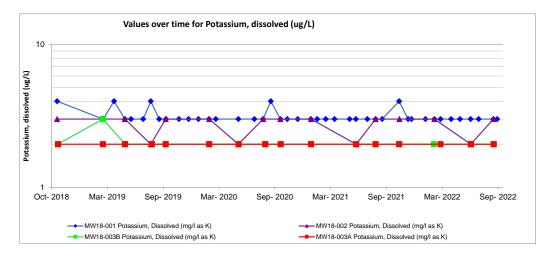


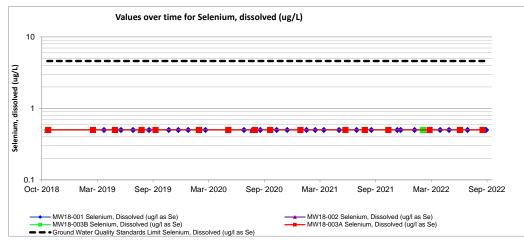


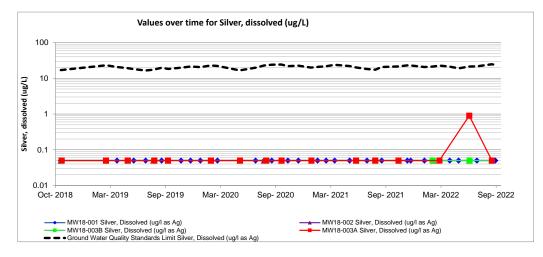


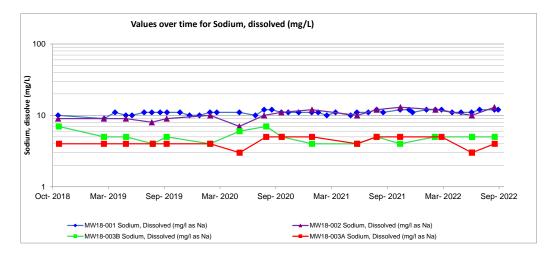


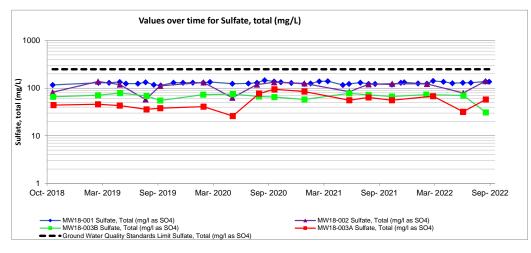


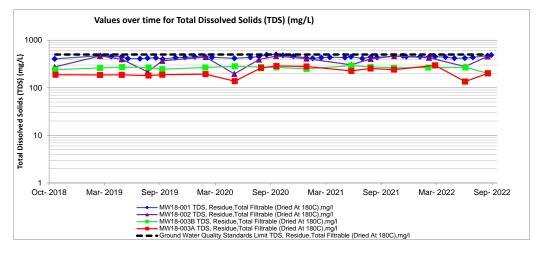


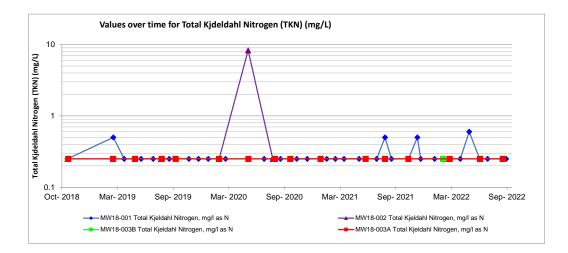


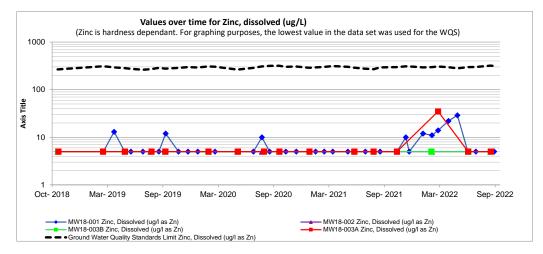


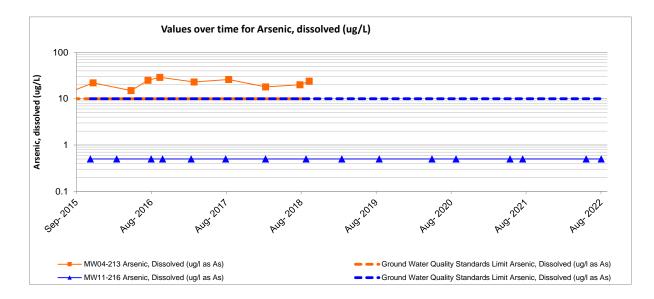


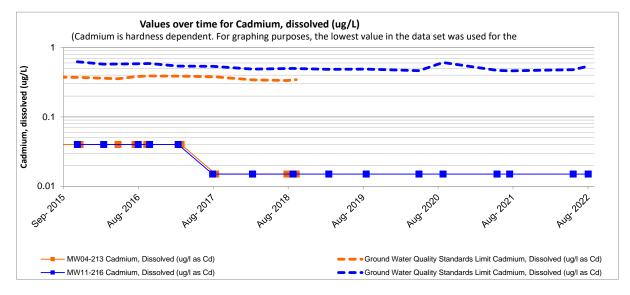


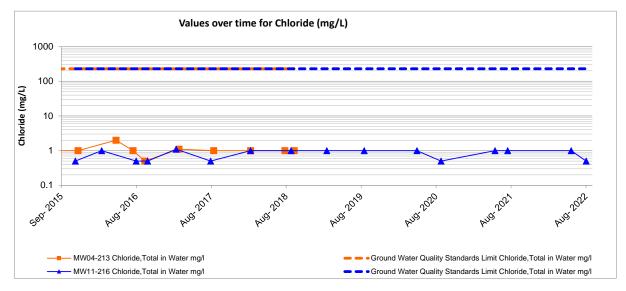


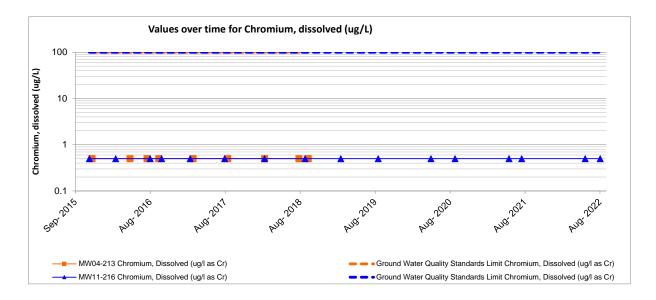


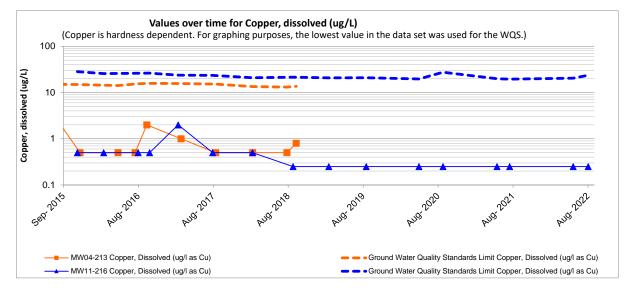


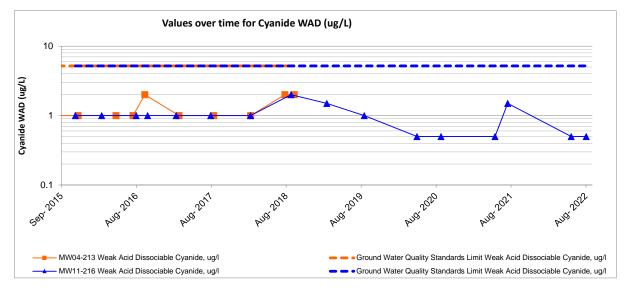


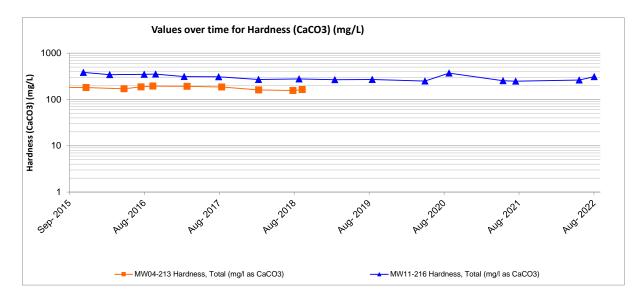


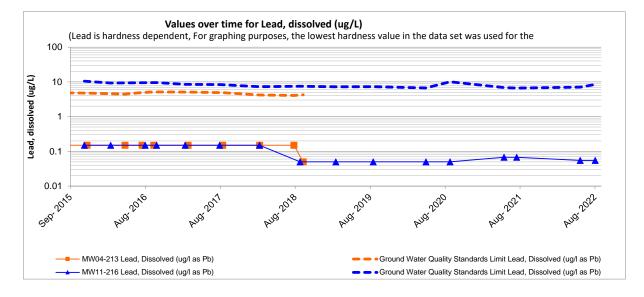


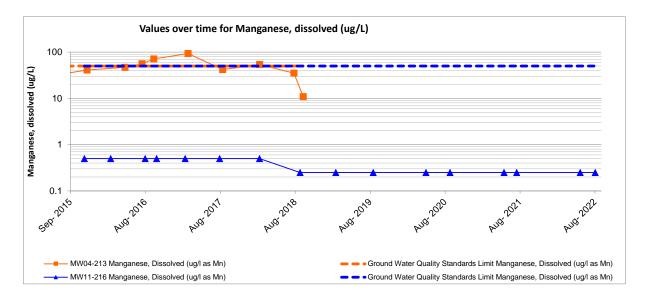


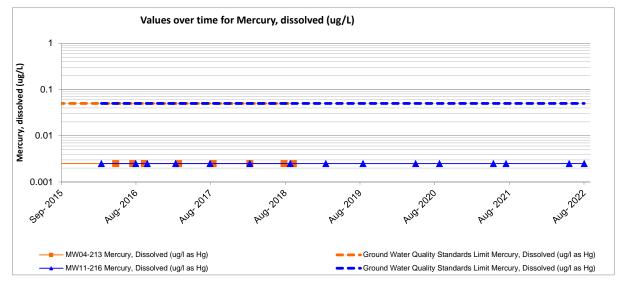

APPENDIX C – MW11-216 GRAPHS

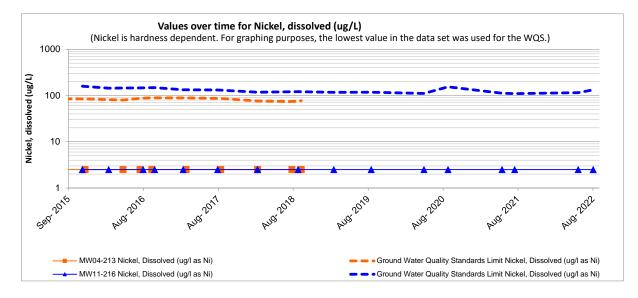


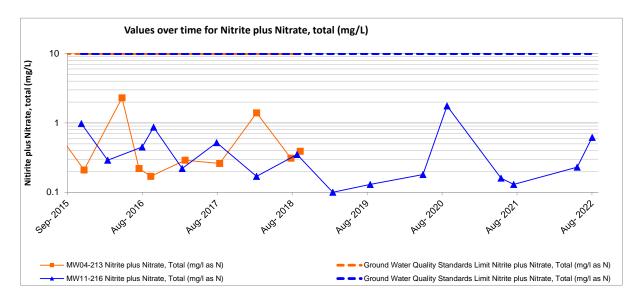


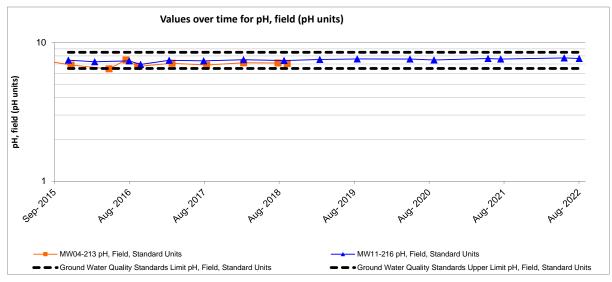


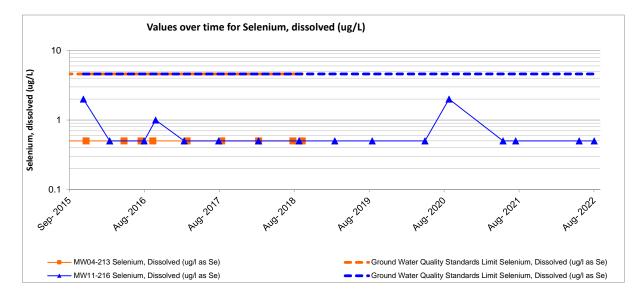


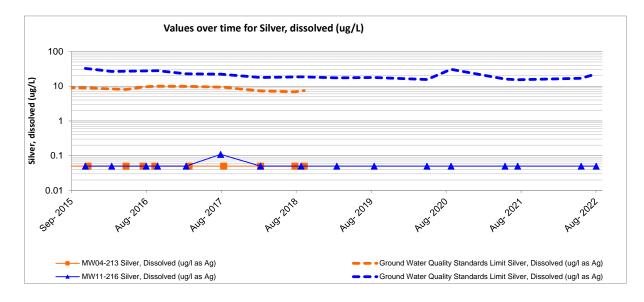


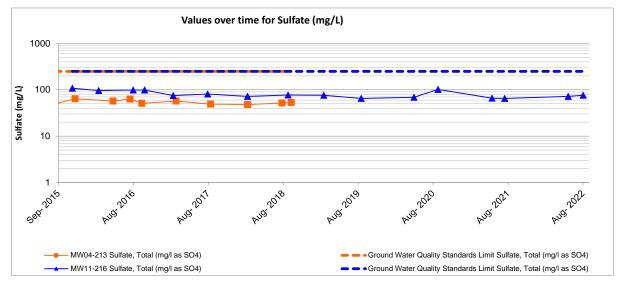


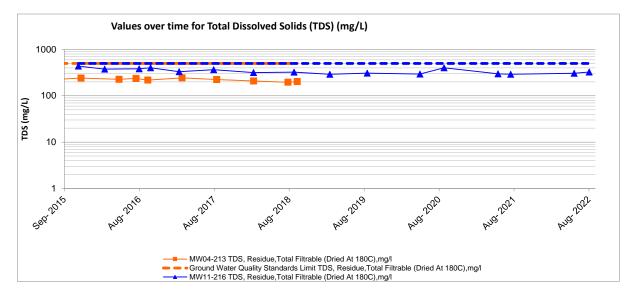


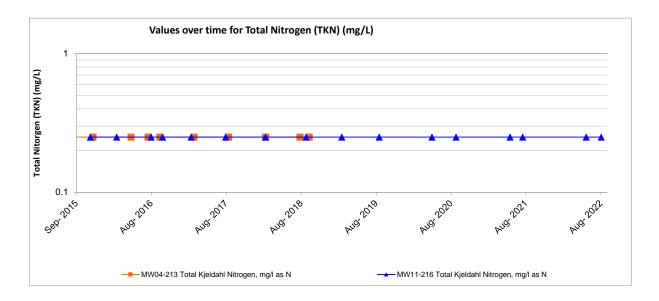


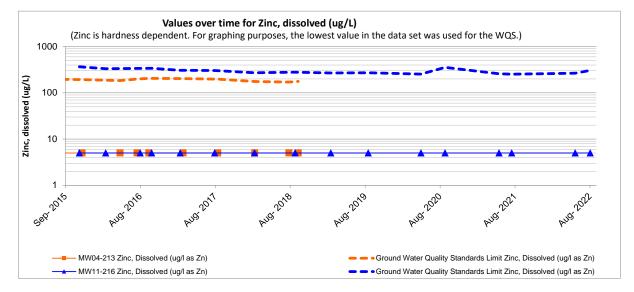


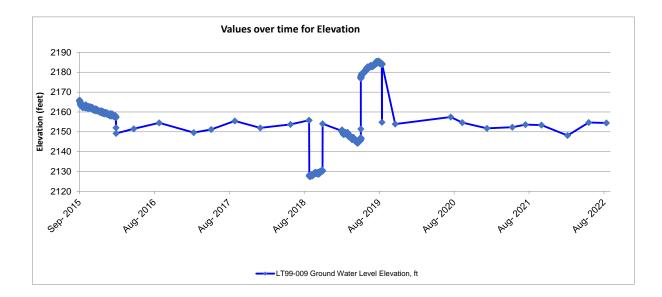


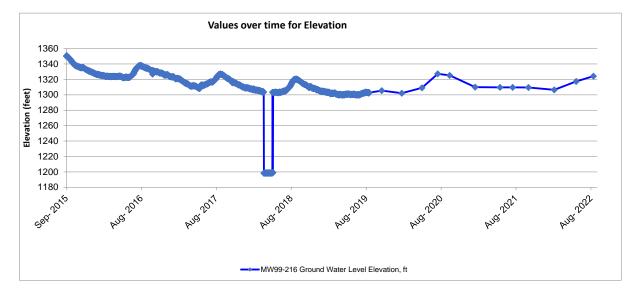


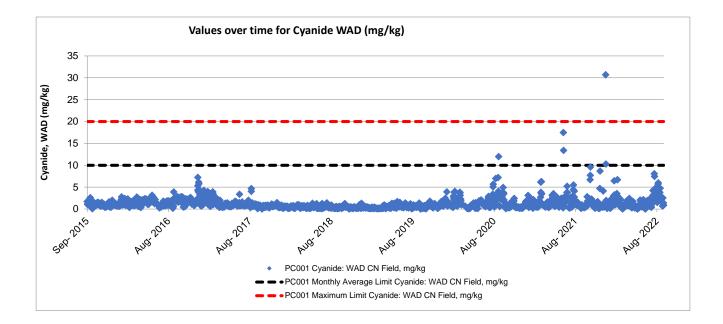


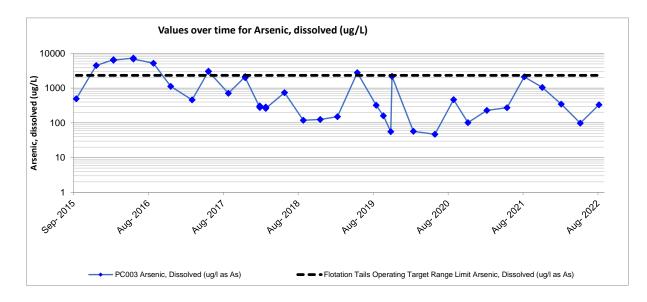


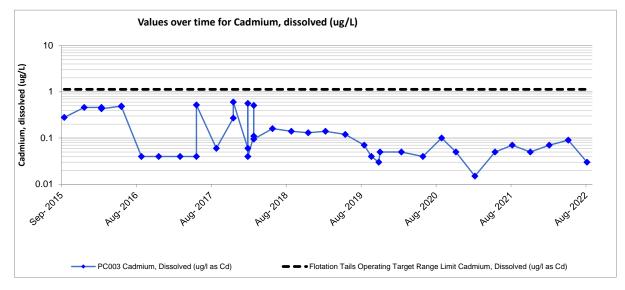


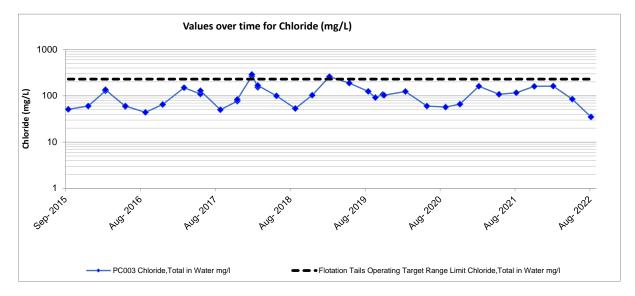


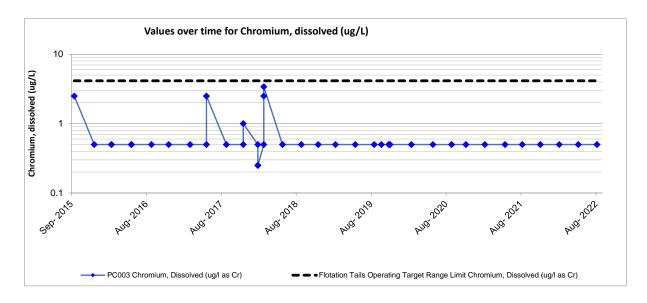


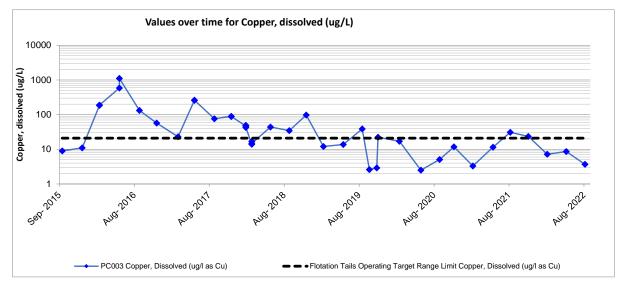

APPENDIX C – MW99-216 AND LT99-009 GROUNDWATER ELEVATION GRAPHS

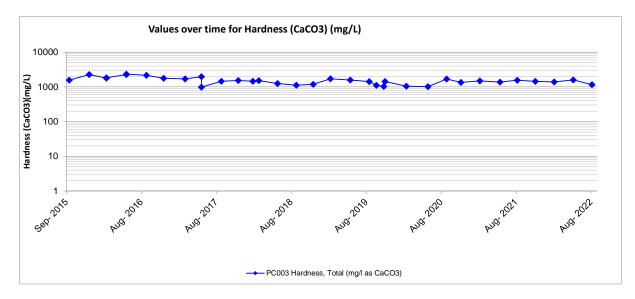


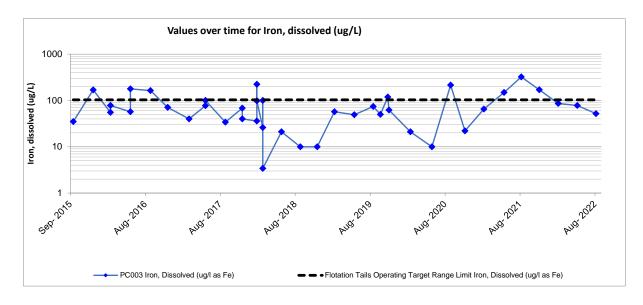

APPENDIX C – PC001 GRAPH

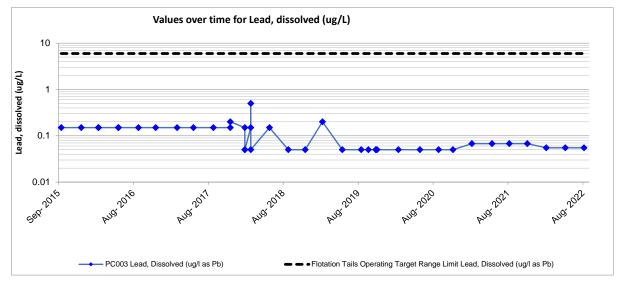


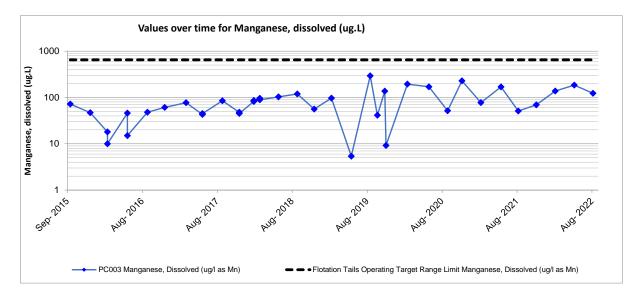


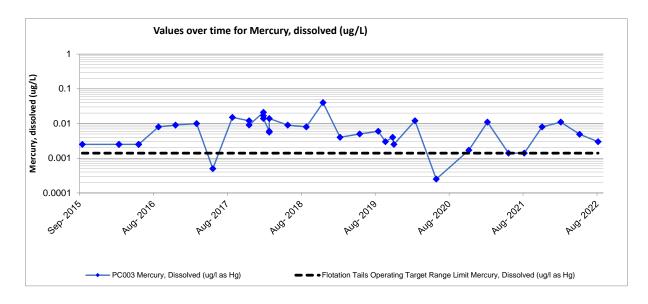

APPENDIX C – PC003 INTERSTITIAL WATER GRAPHS

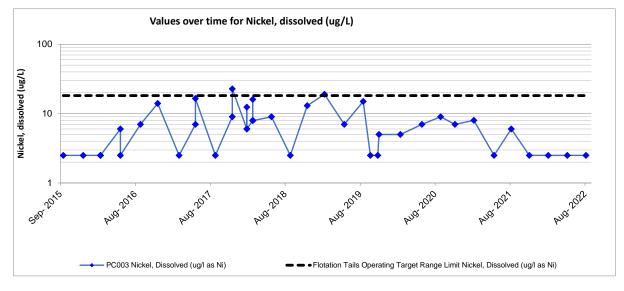


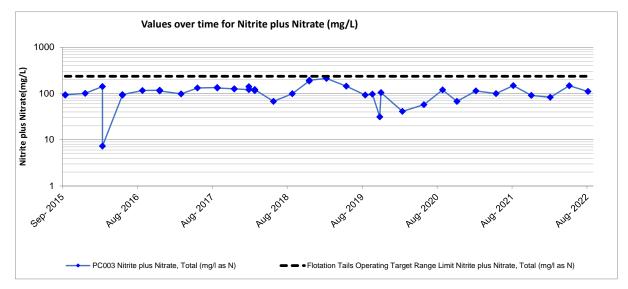


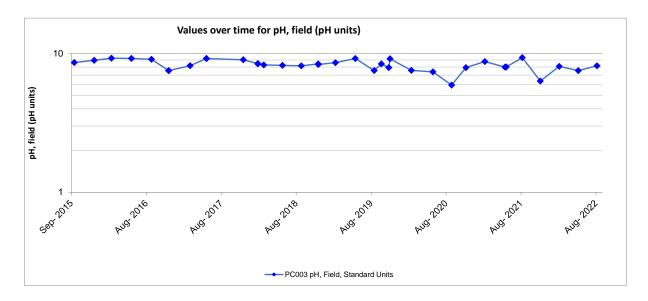


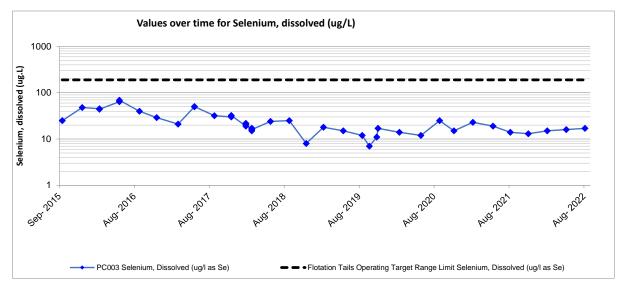


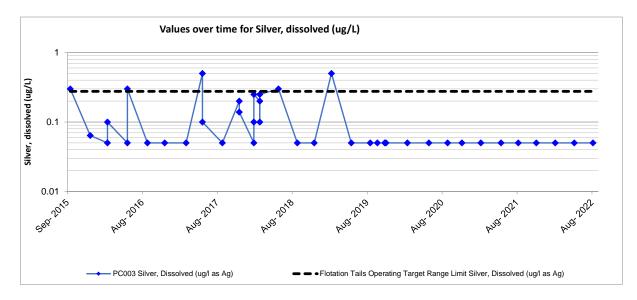


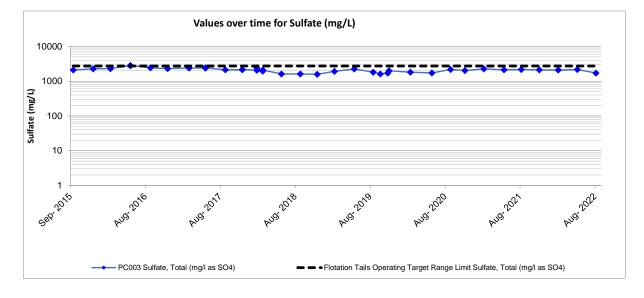


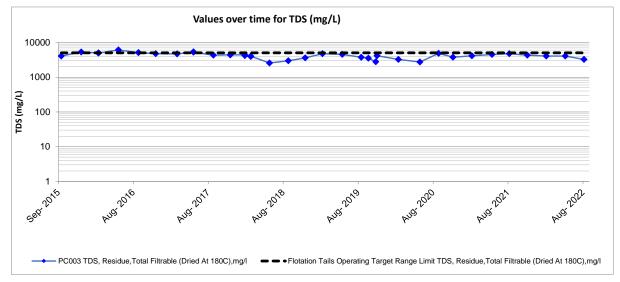


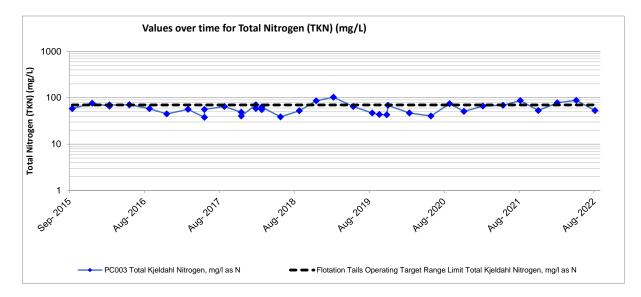


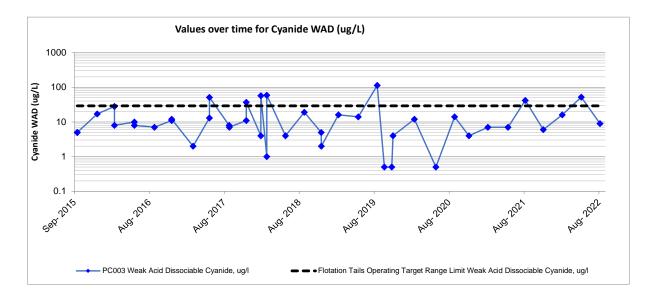


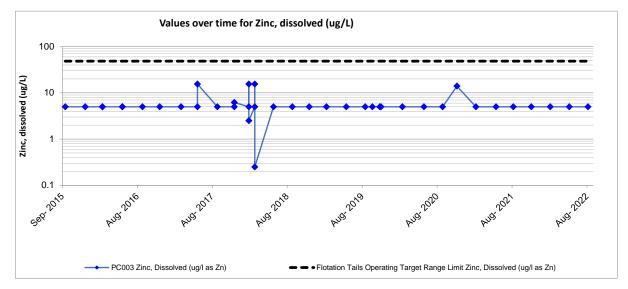












APPENDIX D – 202**2** WHOLE EFFLUENT TOXICITY TESTING WET LABORATORY REPORTS

T 970.416.0916 F 970.490.2963

July 13, 2022

Mr. Nathan Kehoe Northern Star Resources Limited Pogo Operations P.O. Box 145 Delta Junction, Alaska 99737

RE: Results of WET test – June 2022

Dear Mr. Kehoe,

Attached is a copy of the report for the *Pimephales promelas* (fathead minnow) toxicity test initiated in June 2022 with effluent from your facility.

TRE Environmental Strategies, LLC greatly appreciates this opportunity to provide our services to you. Please do not hesitate to call if you have any questions.

Sincerely,

hitnev Nadd

Report Author naddywm.tre@gmail.com

Enclosures

14001-412-031

Rami B. Naddy, Ph.D. Manager/Environmental Toxicologist naddyrb.tre@gmail.com

Report of Short-Term Chronic Toxicity Testing using the Fathead Minnow (*Pimephales promelas*)

Project ID: 14001-412-031 June 2022

Sponsor and Laboratory Information

Sponsor	Northern Star Resources Limited Pogo Operations P.O. Box 145 Delta Junction, AK 99737
Project Officer	Nathan Kehoe (907) 895-2760
Testing Facility	TRE Environmental Strategies, LLC 100 Racquette Drive, Unit A Fort Collins, CO 80524 Fax: (970) 490-2963 State of Florida NELAP Laboratory ID: E87972
Study Director	Rami B. Naddy, Ph.D. (970) 416-0916 email: naddyrb.tre@gmail.com
Report Author	Whitney Naddy (970) 416-0916 email: naddywm.tre@gmail.com

Test Information

Test	Short-Term Chronic under Static-Renewal Conditions
Basis	USEPA (2002), method 1000.0
Test Dates and Time	June 23, 2022 @ 1535 to June 30, 2022 @ 1530
Test Length	7 days
Species	Pimephales promelas
Test Material	Effluent (Grab)
Outfall	001
Permit Number	AK-005334-1
Receiving Stream	Goodpaster River
Dilution Water	Moderately Hard Reconstituted Water
Test Concentrations	MH, 6.25, 12.5, 25, 50, and 100% effluent
IWC	100% effluent
Permit Compliance	<u>X</u> Pass Fail

- Results described in this report apply only to the samples submitted to the laboratory and analyzed, as listed in the report
- Test results comply with The NELAC Institute (TNI) standards. Reports are intended to be considered in their entirety; TRE is not responsible for consequences arising from use of a partial report
- This report contains 6 pages plus 2 appendices

Effluent Collection and Receipt

Sample No.	Field No.	Collection Date & Time	TRE No.	Date of Receipt	Temp. at Arrival (°C)	Qual.
.1	NA	06/20/22 @ 0615 - 0621		06/22/22	5.9	N1, HT
2	NA	06/22/22 @ 0646 - 0649	36635	06/23/22	4.3, 4.8	
3	NA	06/24/22 @ 0651 - 0652	36638	06/25/22	3.4	

Note: See Appendix A for chain of custody records

Effluent Characterization

Sample No.	рН	Hard. (mg/L) ^{HA}	Alk. (mg/L) ^{HA}	Spec. Cond. (μS/cm)	TRC (mg/L) ^G	NH₃-N (mg/L)	
2	7.7	78	38	247	<0.02	<1.0	
3	7.7	76	40	226	<0.02	1.3	

Initial Dilution/Control Water Characterization

Batch No.	pH	Hard. (mg/L) ^{HA}	Alk. (mg/L) ^{HA}	Spec. Cond (µS/cm)	TRC (mg/L) ^g	NH₃-N (mg/L)
14680	8.1	94	64	348	<0.02	<1.0

Test Conditions

Туре	Static-Renewal Short-term Chronic
Test Endpoints	Survival and Growth (Dry Weight Per Original Fish)
Test Chambers	473-ml plastic cups
Test Solution Volume	250 ml
Replicates per Treatment	4
Organisms per Replicate	10
Test Temperature	$25 \pm 1^{\circ}$ C ($\leq 3^{\circ}$ C differential)
Lighting	Fluorescent, 16 hours light:8 hours dark
Chamber Placement	Random according to computer-generated chart
Aeration?	X No Yes
Test Solution Renewal	Daily

Test Organism

Species	Pimephales promelas
Age	<24 hours
Source	TRE In-house culture, batch 062322
Acclimation	None
	0.05 ml brine shrimp nauplii per test chamber 3x/day through Day 4
Feeding	(noon feeding), followed by 0.1 ml brine shrimp nauplii per test
-	chamber 3x/day for the remainder of the test
Reference Toxicant Testing	Initiated June 2, 2022 using sodium chloride (NaCl)

TEST RESULTS

Biological Data

Treatment (% Effluent)		Percent	t Surviva	l of <i>Pime</i>	phales p	promelas		Mean Dry Weight - (mg) ^{w1}	Red Rela	ificant uction tive to ntrol?
	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	- (Ing)	Surv.	Growt h
0 (MH)	100	97.5	97.5	97.5	97.5	97.5	95	0.652	N/A	N/A
6.25 ^{x2}	100	100	100	100	100	97.5	95	0.581	No	No
12.5	100	100	100	100	100	95	95	0.563	No	No
25	100	100	97.5	95	95	95	95	0.598	No	No
50	100	100	100	100	100	100	100	0.670	No	No
100	100	100	100	97.5	95	95	95	0.602	No	No
<u> </u>	Percent N	<i>linimum</i>	Significar	nt Differer	nce (Grov	vth)		14.1	Acce	eptable

Percent Minimum Significant Difference (Growth)

Note: See Appendix B for copies of laboratory data sheets

Data Analysis and Test Endpoints

Biological Endpoint	Statistical Endpoint	Value (% Effluent)	Endpoint < IWC?
Q	NOEC	100	No
Survival	LOEC	>100	
	NOEC	100	No
_	LOEC	>100	
Growth (per original fish)	ChV	>100	· · · · ·
	IC ₂₅	>100	No
	TUc (100/IC ₂₅)	<1.0	

NOEC = No Observed Effect Concentration LOEC = Lowest Observed Effect Concentration

ChV = Chronic Value

IC₂₅ = 25% Inhibition Concentration

TU_c = Chronic Toxic Units

Note: Analyses completed using, where appropriate, CETIS version 1.8.7 (2014).

Treatment (% Effluent)	q	H	Disso Oxygen	A REE MAN AND A REAL PROPERTY OF	Condu (μS/	••••••	Tempo (°	erature C)	Qual.
l% Eniuent)	Low	High	Low	High	Low	High	Low	High	
0 (MH)	7.4	8.1	5.0	7.0	280	348	24	25	
100	7.3	7.9	4.9	9.2	216	267	24	25	
All Treatments	7.3	8.2	≥4.	っ	N	٨	24	25	Т3
	7.0	0.2	∠4.	2	IN	~	24	26	T4

Physical and Chemical Data

Reference Toxicant Test Results for P. promelas

IC ₂₅ (mg Cl ⁻ /L)	TRE Historical 95% C	ontrol Limits (mg Cl ⁻ /L)
	Low	High
1,439	561	1,959

References

CETIS. 2014. Comprehensive Environmental Toxicity Information System. User Guide (version 1.8.7). Tidepool Scientific, LLC. McKinleyville, CA.

USEPA. 2002. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. Fourth Edition. EPA-821-R-02-013.

Explanation of Qualifiers

Note: study-specific narratives within the body of the report are denoted, if necessary, with the superscript letters **a** - **d**, and associated footnotes. Other qualifications and definitions are defined below.

- S Sample temperature upon receipt was outside the range recommended by USEPA (2002), (i.e., 0 to 6°C or ambient if collected and used on the same day).
- I Ice was present in the sample upon receipt.
- NI Sample was not used for testing.
- N2 Liquid from container with ice was not used for testing.
- F Sample was filtered to remove indigenous organisms prior to use.
- HT Sample hold time (normally 36 hours) was exceeded.
- HA Hardness and alkalinity concentrations are presented as CaCO₃.
- G TRC = Total Residual Chlorine
- T1 Temperatures measured in some of the old test solutions were outside the recommended test temperature range but the allowed 3°C differential was not exceeded.
- T2 Temperatures measured in some of the old test solutions were outside the recommended test temperature range and the allowed 3°C differential was exceeded.
- T3 Temperatures measured in test solutions.
- T4 Continuous temperatures measured in the environmental chamber or water bath.
- X1 Mean young per original female. If any 4th or higher broods were produced, they were excluded from calculation of mean young per female and statistical analysis of reproduction.
- X2 One or more organisms in this treatment were lost or not found in the test chamber and were excluded from analysis, as the loss was attributed to technician error. See laboratory data sheets for additional detail, as appropriate.
- X3 One or more male *C. dubia* were found in this treatment and were included in analysis of survival but excluded from analysis of reproduction. See laboratory data sheets for additional detail, as appropriate.
- X4 One or more fish were alive at test termination but were lost during the drying/weighing process. These fish were included in analysis of survival but excluded from analysis of growth. See laboratory data sheets for additional detail, as appropriate.
- $Ol = Dissolved oxygen concentrations were \leq 4.0 mg/L in one or more treatments during the test; aeration was initiated in all test chambers. See laboratory data sheets for additional detail, as appropriate.$
- O2 Dissolved oxygen concentrations ≤4.0 mg/L were observed in one or more treatments only at test termination.
- O_3 Dissolved oxygen concentrations were $\leq 4.0 \text{ mg/L}$ in one or more treatments during the test but aeration was not possible. See laboratory data sheets for additional detail, as appropriate.
- W1 Weight per original number of organisms introduced at test initiation.
- W2 Weight per surviving number of organisms at test termination.
- Vl Value was statistically (α=0.05 or 0.01, as appropriate) reduced relative to the control, but was considered a Type I error (anomalous false positive), and was disregarded. The NOEC was interpreted accordingly.
- V2 Value was not statistically (α =0.05 or 0.01, as appropriate) less than the control, but was considered a Type II error (anomalous false negative). The NOEC was interpreted accordingly.
- P1 PMSD was below the lower bound indicated by USEPA (2002). A statistically significant reduction for a treatment was disregarded if the RPD for that treatment was less than the lower bound.
- P2 PMSD was above the upper bound indicated by USEPA (2002), and statistically significant reductions in organism performance were detected.
- P3 PMSD was above the upper bound indicated by USEPA (2002), and no statistically significant reductions in organism performance were detected.
- R Monthly reference toxicant test endpoint for this species was outside the 95% control limits for the 20 most recent endpoints.

Statement of Quality Assurance

The test data were reviewed by the Quality Assurance Unit to assure that the study was performed in accordance with the protocol (if applicable) and standard operating procedures, and that the resulting data and report meet the requirements of TNI standards. This report is an accurate reflection of the raw data.

Quality Assurance Unit

lyly 622 Date

Data Analyst

APPENDIX A

Chain of Custody Records

TRE Environmental Strategies, LLC

Client/Project Name: Northern Shar Resources Limited (Polac) Project #: 14001 - 4-12 (031)	thern Star Resou	urces Limited (Pago)	Project #: <u>1</u> 4	1001-412 (031)	Test Requested		
Chain of Custody Tape #:_	51273	Intact?(circle):	Yes	Teen Creat	(non Ari	
Sampler (Print/Affiliation):		Signature:			nent, etc	. (ر <u>ک</u> ار	QI 9
	Sample C	Sample Collection	Sample Type			n9T e	Idmi
Client / Sample ID	Beginning	흉	·dw qe.	kinte	<u> </u>	hern	es di
	Date Time	Date Time	-			es	ey
Effluent #1 6/2	6/20/2022 06 15	6/2/12 06:21	>	2.59 0-62 1	×	Ь. С	
			-				
quished By:	nt Name/Affiliation)	Date: BRD 201	Received By:	Received By: (Print Name/Affiliation)	Date:	Laboratory (Destination):	
Nethin Kehoi /N:	NSR Poyo						•
Mr K		Time: 07:00	Signature:		Time:	TRE Environmental Strategies, LLC 100 Racquette Drive, Unit A	jies, LLC nit A
Sample Refinquisked By: (Print Name/Affiliation)	nt Name/Affiliation)	Date:	Received By:	Received By: (Print Name/Affiliation) + 17RE	Date: 6/2/27	Fort Collins, CO 80524 (970) 416-0916	4
Signature:		Time:	Signature:		Time: 0745	(970) 490-2963 (FAX)	0
Sample Relinquished By: (Print Name/Affiliation)	nt Name/Affiliation)	Date:	Received By:	Received By: (Print Name/Affiliation)	Date:		-
Signature:		Time:	Signature:		Time:	Sample Shipped Via (circle): Tem FedEx Other UPS Courier Yes	Temp Blank?
Comments: temp 12 PH : 7.	12.6 NPOES: 7.58 NPOES:	5: AK0053341		9896202 #0d		Received on Ice:	No
Effective Date: 02/13/19	find a vit	+ nt hald in		9 ((()) ()	5 (11/22/9 ((()		
DID MIT	001 0CO	binning in the sen that wid	~			Seria	Serial No. 0724

TRE Environmental Strategies, LLC - Chain of Custody

Page | of <u>(</u>

Page 9 of 25

Serial No. 07242

36635 **TRE Environmental Strategies, LLC** ON Temp Blank? å di alqme2 del 100 Racquette Drive, Unit A ⇒ Fort Collins, CO 80524 (970) 490-2963 (FAX) Courier Yes (970) 416-0916 СТЪегт. #<u>1</u>€___)°С š 3 A es levinA nodU .qm9T 9lqms2 7 T Sample Shipped Via (circle): Laboratory (Destination): Other Received on Ice: SdD REGEX Test Requested Date: 06/23/27 Time: 0750 Date: Time: Date: Time: J X Х (Liq., Soil, Sediment, etc.) AK00 533 4 xinteM ٢ Not Used Preservation (i.e.: 0-6°C) TRE rot 2039686 0-6 0-6.5 Client/Project Name: Northern Stur Resources Limited (Bogo) Project #: 14001 - 412 (031 Received By: (Print Name/Affiliation) Received by: (Print Name/Affiliation) RENOVLEY Received By: (Print Name/Affilia NPDES 190 Volume 259 ۶ 2 Nathun Kehve / Pyo Enviormente: Northin Sta laylor Yes Sample fype ∙ძшоე Signature: Signature: Signature: Grab > Intact?(circle): Time Date: 672/27 112427 6 49 Sh:9 /201 20/9 Time: 07:30 Ending Date Sample Collection Date: Time: Date: Time: اا ر ۲ و د Time 6/2427 6:46 6/22/22 P:40 Beginning Sample Relinquished By: (Print Name/Affiliation) Sample Relinquished By: (Print Name/Affiliation) Sample Relinquished By: (Print Name/Affiliation) Chain of Custody Tape #: 51272 Date (CIM) *lehoe* Sampler (Print/Affiliation): Ч Ч Client / Sample ID Effluent #2 Ethnem #2 Effective Date: 02/13/19 Nathen Comments: Signature: Signature: Signature:

Serial No. 07243

Phone: (970) 416-0916 Fax: (970) 490-2963 TRE Environmental Strategies, LLC - Chain of Custody 100 Racquette Drive, Unit A Fort Collins, CO 80524

of Page 1

 TRE Environmental Strategies, LLC - Chain of Custody

 100 Racquette Drive, Unit A
 Fort Collins, CO 80524
 Phone: (970) 416-0916
 Fax: (970) 490-2963

		4						122.							ſ
Client/Project Name: Northern Star Kesowres Limited Roch Project #: 14001 -412 (031)	Northern Star	Kesor	Arces Lim	"HEG FOOD	Projec	;#; 7	001-412	-(031)		Test	Test Requested	sted	lsvi		
Chain of Custody Tape #: 51274	: #: 51274		Intac	Intact?(circle):	<u> </u>	Yes	NO	Not Used					n Arr		
	のないで、ないないないないないです。	Salesy and Sale			A State of	1980 and 1980	のである。 それなみの	第二人にに 彼者を成れたい テレン	(.ots				00		
Sampler (Print/Affiliation): Northow Keluce	Nathan K	elnce /	1NSR	Signature:			K K		ə 'tuəı						
	Sam	ple Co	Sample Collection		Sample Type	2 Type						-	<u> </u>	əldu	
Client / Sample ID	Beginning		End	Ending	ds		Volume	Preservation	trix _{(lio2}				əjdi		
	Date Tir	Time	Date	Time	Gri	uoŋ		(n a-n ::a-i))]			me2		
Effluent #3	6/24/22 06:45		77127	06:50	>	12	2.50	0-6 0 0	د ا	×			24	L 3000	8
Effluent #3	6124/22 06:51		624/22	06:52	Ń		16	0.6.6	۲ ۲	×					
		$\left[\right]$				$\left[\right]$							-		
		\vdash													
										-			-		
						$\left \right $			+-	-			-		
Sample Relinquished By: (Print Name/Affiliation) Nathown Kohoe / N5R Pogo	(Print Name/Affiliation) USR Pogo		Date: _6/24/22	22 ki	Receiv	ed By: (P	Received By: (Print Name/Affiliation)	liation)	ă	Date:		Laboratory (Destination):	lation):		
signature:		<u> </u>	Time: 07:2C	1:20	Signature:	ire:			F	Time:		TRE Envirot 100 Rac	nmental S	TRE Environmental Strategies, LLC 100 Racquette Drive, Unit A	 ب
ample Relinquished By: (Print Name/Affiliation)	(Print Name/Affiliation)		Date:		Receiv	ed By: (P	Received By: (Print Name/Affiliation)	iliation)		Date:		Fort (Fort Collins, CO 80524 (970) 416-0916) 80524 916	
ignature:		<u>=</u>	Time:		Signature:	ire:			F	Time:		(026)	(970) 490-2963 (FAX)	3 (FAX)	
ample Relinquished By: (Print Name/Affiliation)	(Print Name/Affiliation)		Date:		Received	SiQI	rint Name/Aff	Illation) Chow/-		Date: U/2	20	Sample Shipped Via (circle):	ia (circle):	Temp Blank?	
ignature:		<u> </u>	Time:		Signature	d d	- -	Ach	F }	Time: 04	\$	FedEx Ot UPS	Other Couri	Courier Yes No	\sim
comments: PH	7,65 11,300		NPDES: Po# 20	5: Aroos334 2039686	3341							Received on Ice:	ce: Yes	$ \begin{bmatrix} \\ \\ \end{bmatrix} $	
fective Date: 02/13/19	~														1

Page 1 of 1

APPENDIX B

Test Data

Page 1 of 7 QA Form No. 051 Revision 5 Effective 02/14 RAWY 7/3/W

TOXICITY DATA PACKAGE COVER SHEET

Test Type:	Chronic	Project Number: <u>14001-412-031</u>
Test Substance:	Effluent-(Outfall 001)	Species: Pimephales promelas
Dilution Water Type:	Mod Hard	Organism Lot on Batch Number: 062322
Concurrent Control Water Ty	pe: NA	Age: <u>C24 hr</u> (< 24 hr) Supplier: TRE
Date and Time Test Began:	6/13/2 @ 1535	Date and Time Test Ended: 6/30/22@ 530
Protocol Number:	USEPA 2002, Method 1000.	0 Investigator(s): WT/HP PU/PS TA
Background Information	u .,	ł
Type of Test:	Static-Renewal	pH control?: <u>Yes</u> No If yes, give % CO ₂ : <u>N/A</u>
Test Temperature:	25 ± 1 °C	Env. Chmbr/Bath #: 25 Test Chmbrs: 473-ml cups/beakers
Test Solution Vol.:	250 ml	Number of Replicates per Treatment:4
Length of Test:	7 days	Number of Organisms per Replicate:10
Photoperiod:	<u>16 h light : 8 h dark</u>	Light Intensity: 50 to 100 ftc.
Type of Food and Quantity pe	er Chamber: 0.1 ml B.S.	Feeding Frequency: <u>3 x Daily</u>
Test Substance Characteriza Hardness: <u>Sx Receipt</u> pH: <u>Daily</u>	tion Parameters and Frequence Alkalinity: <u>Sx Receipt</u> Conductivity: <u>Daily</u>	cy: NH ₃ : <u>Sx Receipt</u> TRC: <u>Sx Receipt</u>
Test Concentrations (Volume	e:Volume): 0 (MH), 6.2	25, 12.5, 25, 50, and 100%
Agency Summary Sheet(s)?:	None	
Reference Toxicant Data:	Test Dates 02-22	to 06 09 22 1025: 1439 mg LC
Hist. 95% Control Limits:	<u>661 to 1959</u>	Method for Determining Ref. Tox. Value: Lebear latipolation
Special Procedures and Co	onsiderations:	
D.O. maintained ≥ 4.0 mg/L		
*Conductivity measured in di	lution water and 100% effluent	t at test termination
If survival in any test chambe	er falls below 50%, reduce feed	ding in that chamber to 0.05 ml of brine shrimp
Appropriate correction factor	s have been applied to all tem	peratures recorded in this data package
Study Director Initials:	Date: C21/2	2

Page 2 of 7 QA Form No. 014 Revision 1 Effective 02/14

6A MI 7/13/22

TEST SUBSTANCE USAGE LOG

Project Number:

14001-412-031

	Sample 1	Sample 2	Sample 3
Test Substance Number	36635	301038	
	From: 6122122	From: UNAIW	From:
Test Substance Collection	@ 0646	@ 0045	@
Date and Time	To: 6122/22	TO: 6/24/22	То:
	@ 0649	e 0050	@
Sample Type (Grab or Comp)	grab	Grab	
Date Test Substance Received	6123122	6/25/22	
Dilution Water Number	1111 00	11000	
RW# or TRE#, circle one	14680	1440	
Concurrent Control Water RW#	NA	NA	
	6/23/22	Q125/W	
Date(s) Used	6124122	6//26/22	
		6/27/22	
		6/28/22/6/19/2	2

Preparation of Test Solutions

Test Substance Conc.	Test Substance Volume	Dilution Water Volume	Totai Volume (ml)	Test Substance Volume	Dilution Water Volume	Total Volume (ml)	Test Substance Volume	Dilution Water Volume	Total Volume (ml)
(% Effluent)	(ml)	(mi)		(mi)	(ml)		(ml)	(ml)	
0 (MH)	0	1000	1000						
6.25%	<u>62.5</u>	938	1000						
12.5%	125	875	1000						
25%	250	750	1000						
50%	500	500	1000						
100%	1000	0	1000						
						1.1			
Total	1937.5	4062.5	6000						
Initials / Date	6/23/221	WTMixed	FC						
Initials / Date	PLUIZY	n n	t.						
Initials / Date	HP 41	25/12	14 13	· · ·					
Initials / Date		126/22	11 -						
Initials / Date		6110	4 G						
Initials / Date	WT 6/	28/22	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
Initials / Date	TA 6/2	19/22	11 11				Č		
Initials / Date									

Page 14 of 25

Page 3 of 7 QA Form No. 060 **Revision 3** Effective 02/14

2/13/22

FATHEAD MINNOW (PIMEPHALES PROMELAS) CHRONIC BIOLOGICAL DATA

Project Number:

14001-412-031

% sun.

MM

Q

						Number	of Survivi	ng Organ	isms	
~~~	Test	Day	Day	Day	Day	Day	Day	Day	Day	Demedia
%Conc.	Replicate	0		2	3	4	5	6	7	Remarks
0 (MH)	<u> </u>	10	10	10	10		10	10	9	
	В	10	10	10	10	10	10	<u>,10</u>	10	<u>a</u> 5
	С	10	10	10	10	lo	10	10	10	
	D	10	10	9	9	٩	4	٩	9	
6.25%	A	10	10.	10	10	10		0109	8	· lextra org thanked 0.8
	В	10	10	10	10	10	10	10	10	94.7/1
	С	10	10	10	10	10	10	93	9	"tech error of 1/1
	D	10	10	10	10	lo	10	9*	9	* tech error 1/1
12.5%	A	10	10	10	10	10	10	10	10	
	В	10	10	10	10	(0	10	10	10	05
	С	10	10	10	10	ίQ	10	908	8	90
	D	10	D	10	10	W	10	10	10	
25%	A	10	10	10	10	10	10	10	10	e ors hut found
	В	10	10	10	10	٩°	9	9	9	
	с	10	10	10	q	9	9	9	9	as
	D	10	6	10	10	61	10	10	10	
50%	Α	10	10	10	10	10	10	10	10	
	В	10	10	10	10	$\frac{10}{10}$	10	10	10	100
	С	10	10	IÕ	10	10	10	10	10	
	D	10	102	ΪŎ	TO	$\overline{D}$	10	10	10	\$ 10m siphered
100%	Α	10	10,	10	10	10	10	10	10	i extre orgremored
	В	10	Ň	10	10	10	10	10	10	95
	C	10	01	10	10	9	8	8	8	· Org not found
	D	10	10	10	10	id	10	10	10	<i>y</i>
	A									
	В									· · · · · · · · · · · · · · · · · · ·
	C					·				
	D									
		6/23/22	1.124122	4/25h	16/26/27.	GNIN	K17 st72	6129177	6/20192	
	Time:	1525	INIT	1140	102.0	1620	1055	1545	1530	
	Initials:	WT/HP		HP	WT	ps	wr	TA	wt	
		611		1			<u> </u>			OGATZTA QUINTOTATZ
								<u> </u>	- <b>r</b> - <b>v</b> -	otati

Page 4_ of 7 QA Form No. 058 Revision 4 Effective 02/14 7/3/22 QANN

#### **CHRONIC CHEMICAL DATA (INITIAL)**

Project Number:

14001-412-031

Pimephales promelas Test Species:

%	Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Meter #	Remarks
Conc.: 0 (MH)						:			All Conc.	
рН	8.1	81	7.8	8.1	8.1	8,1	8.1		19	
D.O. (mg/L)	6.7	4.5	Q.B	6.8	6.7	7.0	6.9		17	
Temp. (°C)	25	25	25	25	15	25	25		L36	
Cond. (µS/cm)	348	342	322	0 <del>326</del> 332	327	298	334		16	
Hard. (mg/L)	94	1	98	352					Titr.	
Alk. (mg/L)	64		57						Titr.	
TRC (mg/L) 6120	<0.02								22	
NH ₃ (mg/L)	(1.0								HAI	
Conc.: 6.25%										
рН	8.1	8.1	80	8.1	8.2	8.1	82	<u>.</u>		
D.O. (mg/L)	6.8	6.6	7.0	7.0	71	7.1	7.1			
Temp. (°C)	*	*	X	*	×	*	84			
Cond. (µS/cm)	352	337	310	0337	325	295	319			
Hard. (mg/L)	345	ļ		328						
Alk. (mg/L)	· · · · · · · · · · · · · · · · · · ·			ļ						
TRC (mg/L)				ļ				·		
NH ₃ (mg/L)	<u> </u>									
Conc.: 12.5%	=}				ļ					·
рН	8.1	8.0		8.1	8.1	8.1	8.1			
D.O. (mg/L)	6.8	4.8	<u>Q</u> Q	7.0	2.0	7.2	7.1			
Temp. (°C)	*	*		*	*	*	Ø			
Cond. (µS/cm)	342	332	908	326	308	293	30 2			
Conc.: 25%		100	00		L 1	00				
рН		80	8.0		8.1	8.0	8.1			
D.O. (mg/L)	7.0	7.0		7.2	12	7.3	7.2	· · ·		
Temp. (°C)	#	*	the	#	X al	*				
Cond. (µS/cm)	330					282		l		
		21/24/2				016816	26129172	┣		
Time		5/1045	1125		1540		1555	<u> </u>		
Initials	s: WT	<b>P</b> V	HP	WT	<u>115</u>	wr	TA	<u> </u>	e wet chen	

Note: Hardness, alkalinity, TRC, and NH3 data appearing on this page have been transcribed from the wet chemistry log QA Form No. 084.

*Dilution/control water and effluent were brought to 25°C prior to making the dilution series. The temperature of resulting effluent dilution is assumed to also be 25°C. 0 wr 6/23/w

Page 16 of 25

Page 5_ of 7 QA Form No. 058 Revision 4 Effective 02/14 Qh NAN 7/13/22

#### CHRONIC CHEMICAL DATA (INITIAL)

Project Number:	1400	1-412-03	1							
Test Specie	s: <b>Pimep</b>	hales pr	omelas							
%	Day	Day	Day	Day	Day	Day	Day	Day	Meter #	Remarks
	0	1	2	3	4	5	6			
Conc.: 50%	5					70	·		All Conc.	
<u> </u>	7,9	7.8	79	8.0	80	7.8 7.70			Conc.	
pH		<u>טי</u> ו ר.ר	7V	7.5	7-4	7.8			++	
D.O. (mg/L) Temp. (°C)	7.1	() 		*	×	*	⋪		<u> </u>	
Cond. (µS/cm)	305	292	179	283	279	260	y .		<u>-</u>	
Conc.:			PICT	-05	61					
pH D.O. (mg/L)										
Temp. (°C)										- ne di
Cond. (µS/cm)	_									
Conc.:						1				
pH	-									
D.O. (mg/L)									+ - +	
Temp. (°C)										
Cond. (µS/cm)										
Conc.:										
рН					-					
D.O. (mg/L)	-			· · · · ·						
Temp. (°C)										
Cond. (µS/cm)	-	<u> </u>								
Conc.: 100	%	<u>·</u>								
pH	7,7	2.6	77	7.7	7.7	7.5	7.9			
D.O. (mg/L)	7.8	9.2	78	8.7	8.2	8.9	7.6			
Temp. (°C)	25	25	25	25	15	25	25			
Cond. (µS/cm)	247		220		_	216	267			
Hard. (mg/L)	78		70							
Alk. (mg/L)	38		40							
TRC (mg/L)	<0.02		40.07							
$NH_3$ (mg/L)	41.0		1.3							
Dat		6124177	4/25h	6/20/2	GININ	6/28/22	6129127			· · · · · · · · · · · · · · · · · · ·
Tim		1045	1125	0940		1020	1555			
	Is: WT	R	HP	WT	PS	WT	TA			

Note: Hardness, alkalinity, TRC, and NH3 data appearing on this page have been transcribed from the wet chemistry log QA Form No. 084.

*Dilution/control water and effluent were brought to 25°C prior to making the dilution series. The temperature of resulting effluent dilution is assumed to also be 25°C.

OK Ghrin , wp

Page <u>6</u> of 7 QA Form No. 059 Revision 3 Effective 02/14 QA N3 $\mathcal{N}$   $\mathcal{Z}[13]/2\mathcal{V}$ 

## CHRONIC CHEMICAL DATA (FINAL)

Project Number: Test Species:

14001-412-031 Pimephales promelas

%	Day	Day	Day	Day	Day	Day	Day	Day	Meter #	Remarks
	1	2	3	4	5	6	7	8		
Conc.: 0 (Mł	I)						280		All Conc.	* conductivity
pH	7.8	77	7.9	7.7	7.5	7.5	7.4		20	
D.O. (mg/L)	5.8	95.4	5.8	5-2	5.0	5.3	5.0		18	-
Temp (°C)	24	24	25	24	24	25	24		1-45	
Conc.: 6.25	6									
рН	7.7	7.0	7.8	7.6	7.5	7.8	7.4			
D.O. (mg/L)	5.6	5.0	5.2	5.0	4.2	4.6	4.9			
Temp (°C)	24	24	25	24	24	25	25			
Conc.: 12.5	6									
рН	7.8	7.0	7.7	7.5	7.5	7.4	7.4			
D.O. (mg/L)	5. <b>9</b>	5.0	5.5	4.6	4.5	4.6	5.1			
Temp (°C)	24	24	25	24	24	25	24			
Conc.: 25%										
рН	7.7	7.Q	7.9	7-6	7.5	7.5	7.5			
D.O. (mg/L)	5.0	47	5.6	N-9	4.6	4.9	5,1			
Temp (°C)	24	24	25	ZM	24	25	24			
Conc.: 50%										
рН	7.6		7.8	7.5	7.4	77	7.4			
D.O. (mg/L)	5.6	50	5.4	4.8	4.4	49	4.6			
Temp (°C)	24	24	25	24	25	25	24			
Conc.: 100							220			* conductivity
pH	ר 5	7.4	7.8	7.5	7.4	7.6	7.3			
D.O. (mg/L)	5.7	5.0	5.9	200	4.9	5.1	5,0			
Temp (°C)	24	25	25	24	25	25	24			
Conc.:					-					
pH										
D.O. (mg/L)										
Temp (°C)										
Date:		19h5h								
Time:	1010	1125					1435			
Initials:	PV	HP	WT	M	wt	TA	WT			

O PLUIZMILTE O NUZZINI, WP

Page 18 of 25

Page 7_ of 7 QA Form No. 055 Revision 3 Effective 02/14

#### DAILY TOXICITY TEST LOG

QA 103 7 2/13/22

Project Numb			
Test Species	Pimephales promelas		_
General Comments		Feeding * 0.05 BS Day 0-D	Initials/Date Day 4 Noon
Test Day 0	Random Chart: Zeta Min/Max Therm. #: <u>M-32_</u> Test Solution Mixed at: 1445 Test Organisms Added at: 1535	+ 0.1 BS Day 4 P Fed @	WT
Test Day 1	Real Time Temp= °C Range = °C	Fed @ Fed # Fed # Fe	
Test Day 2	$\frac{25}{\text{Real Time Temp}} \xrightarrow{\circ} C \text{ Range} = \xrightarrow{\circ} C$	\$ 1625 WT Fed @ \$ 0675 FS/HP	6124120
Test Day 3	24 25-24 Real Time Temp= 25 °C Range = 25 - 26 °C	51430 RJ/HP Fed @	14/25/2
		* 0815 HP * 14 JUPL	6/26/22
Test Day 4	Real Time Temp= 25 °C Range = 24-26 °C	Fed @ + 06 20 kg/pi + 1120 KS/ NA/ + 1650 KI/ A 2	45 6127122
Test Day 5	Real Time Temp= 25 °C Range = 25 ~ 76 °C	Fed @ * 0820 WT + KS/PC	WT 6/28/20
Test Day 6	Real Time Temp= 25 °C Range = 25-26 °C	Fed @ #0835 HP + 100 pl + 1630 #4	TA 6129122
Test Day 7	Real Time Temp= 26 °C Range = 25-26 °C	NONE	WT 6/30/22
Test Day 8			

Donny 2 telding RSGI25/12

- Continued feeding 0.05ml B.S. due to low D.O.S

Page 19 of 25

Project Number: 14001-412-031				:	TEST ORGAN	RGANISA	I LENGTHS	. WEIGHT	ISM LENGTHS. WEIGHTS. AND LOADING	DING		Effective 01/20	01/20
Project Num			2	-								1991 1911 1910	4
Consister Dr	Der: T	2001	112-0	5	Test Substance:	お	Aulm7			Comments:	č I	U-HT W	
opecies.	MAN	Species: P. DYMU JUA			Analyst Tare: TH	e: TH VI	Analyst G	Analyst Gross: WT		Analytical Balance ID:	nce ID: √0	### #te:6/30/2771	7-1- 3022Time: 1540
Date/Time of Tare Wt.: 6/30/72	Tare Wt	1: b13	2210	0111	Date/Time (	of Gross Wt.:	Date/Time of Gross Wt.: 7/1/22 @ 1420	@ 142C			to Lo	Date: 7/1/22 T	ime: <u>08/5</u>
Boat Tre	Treatment	Rep. L	Length	Weight Type (Circle):	e (Circle):	Wet Blot Dry	iry Dry (60-90°⊄	0°0( Dry (>100°C)	0°C)	AFDW (>500°C)	Lot of Batch Number	$\bigcap$	062322
.o N				Tare Moicht (a)	Tare Gross	Net		No. of	Mean Wt. per	Mean Wt. per	No. of	Mean Wt.	Mean Wt. per
				weigin (g)	weigni (g)	6	(g)	Organisms	Organism (mg)	r reatment (mg) (Original)	organisms	per Surviving Organism (mq)	I reatment (mg) (Surviving)
	HM	4		1,13439	1.14044 0.0060	0.00605					6		
		Ъ		1.13387		1,14071 0.00684					01		
		3		1.13641	1.14 339 0.0069 S	0.0069%					01		
	Ŕ	Ω		althi.1	1.15331 0.0061	0.00615					9		
ė	6.25	\$		1.12517	1.130570.00540	0,00540		2	-		8		
		D		1.14205	1.14812 0.00607	0.00607				-	10	•	
-		ပ ပ	-	1.15147		0,00599					6		
		0		0h2hl V	1.14813 0.0057	0.00573					6		
·2 Pag	_	A		1.16031.1	1.16660 0.00589	0.00539					10		
e 20		£		1.13703	1.143550.0065	0.00652					10		
of 2		S		1.14579 1.15021 0.0044	1.15021	2.000.0					∞	•	
5		Q	_	1.13804 1.14369 0.0056	19869	0.00565					10		
Blank				1.15199	1.15198	-0.00001							
Range													
Mean									•				
Test Solution Volume:	'olume:						Loading Rate:						
¹ Add in weight loss of blank boat, if appropriate.	loss of b	lank bos	at, if appı	ropriate.									

Project Number: 14001- 412-03 Species: Pront 404- Date/Time of Tare Wt.: b130122 1 Boat Treatment Rep. Length W No.	412-031			WEIGHTS	TEST ORGANISM LENGTHS. WEIGHTS. AND LOADING	SNIC		ON AR -ICAD	Ellective U 1/2U
Species: $P(p)MMA$ Date/Time of Tare Wt.: $b/$ Boat Treatment Rep. No.		Test Substance	1 to Mar to A	-		Comments:	4	2 1 F A	
Date/Time of Tare Wt.: b/	4	Analyst Tare: 77		Analyst Gross: WT		Analytical Balance ID: $\int_{0}^{0} V$	nce ID: JUI t Z from Da	D: J(11777) from Date: 6/30/22Time: 1540	me: 1540
Boat Treatment Rep. No.	30122 1110	Date/Time of Gros	wt.: 7/	@ 1420			to Da	Date: <u>2/i/22</u> Time: <u>0815</u>	me: <u>0&amp;15</u>
O Z		Weight Type (Circle): Wet	Blot Dry Dry (60-90° g) Dry (>100°C) AFDW (>500°C)	"@ Dry (>10	0°C) AFDW (	>500°C)	Lot of Batch Number:		062322
		Tare     Gross     Net V       Weight (g)     Weight (g)     (()	Net Weight Adjusted (g) Net Weight	+	Mean Wt. per Original	Mean Wt. per Treatment	No. of Surv.	Mean Wt. per	Mean Wt. per Treatment (mg)
	-		(6)	Organisms	Organism (mg)	(mg) (Original)	Organisms	Surviving Organism (mg)	(Surving)
125 4	12h1.1	1.142491.148570.00608	1608				10		
Ą	1. 1453	14539 1.15112 0.00573	573				9		
S	1.1404	. 14046 1.14674 0.00628	62 8	1			6		
0	1 1416	1.14163 1.14741 0.00578	578				10		
50 A	1.13683	3 1,14243 0.00610	610				0		
\$	1.15454	4 1, 16201 0.00	147				01		
<u>د</u>	hh6h1.1	4 1.155870.006	643				10		
0	1.1382	1.13825 1.1450 1 200676	676				10		
100/ #	1.13911	1.145330.00622	622				10		
E	1.15093		52				10		
5	1.13843	3 1.14.376 0.00533	533				8		
0	1.13219	1 1.138 14 0.005	59S				0		
Blank									
Range									
Mean								-	
Test Solution Volume:			Loading Rate:						

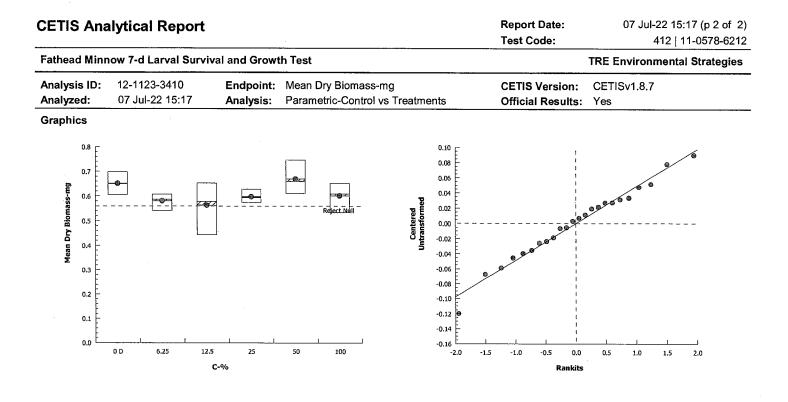
Page of _____ QA Form No. 010a Revision 1 Effective 02/14

r/olt att

		14001-412-031		_	obeneo.					CAT.	CLA: 12 1 1 21
			C.C.C.	Noicht Moicht	Adjusted	No of Orio	Mean Wt./ Original Organism	Mean Wt./ Treatment (md)	Number of Surv	Mean Wt./ Surviving Organism	Mean Wt./ Treatment (ma)
Treatment	Rep Units:	Veight (g)	Weight (g)	(g) (g) (g) (g) (Organisms	INEL WEIGHIL	Organisms	(mg)	(Original)	Organisms	(mg)	(Surviving)
	· <	1.13439	1.14044		0.00606	10	0.606	0.6515		0.673	0.6854
	В	1.13387	1.14071		0.00685		0.685		10	0.685	
	0	1.13641	1.14339	0.00698	0.00699	10	0.699		10	0.699	
1	D	1.14716	1.15331	0.00615	0.00616	10	0.616		6	0.684	
	A	1.12517	1.13057	0.00540	0.00541	10	0.541	0.5808	8	0.676	0.6472
- <u>, , , , , , , , , , , , , , , , , , ,</u>	ш	1.14205			0.00608	10	0.608		10	0.608	
- %cz.0	0	1.15147		0.00599	0.00600	10	0.600		6	0.667	
	D	1.14240	1.14813	0.00573	0.00574	10	0.574		6	0.638	
										001.0	
	A	1.16071	1.16660	0.00589	0.00590	10	0.590	0.5630	10	0.590	0.5907
- - - - - - - - - - - - - - - - - - -	В	1.13703	1.14355		0.00653	10	0.653		10	0.653	
%C.7L	0	1.14579	1.15021	0.00442	0.00443	10	0.443		8	0.554	
L	D	1.13804	1.14369	0.00565	0.00566	10	0.566	-	10	0.566	
	A	1.14249	1.14857	0.00608	0.00609	10	0.609	0.5978	10	0.609	0.6312
) 1 2 2 2	ш	1.14539	1.15112		0.00574	10	0.574		6	0.638	
- %c7	ပ ပ	1.14046	1.14674	0.00628	0.00629	10	0.629		6	0.699	
I	D	1.14163	1.14741	0.00578	0.00579	10	0.579		10	0.579	
								00100		<b>F F C C</b>	0 6700
	A	1.13683	1.14293		0.00611	10	0.611	0.6700	01	0.011	00100
200/	В	1.15454	1.16201	0.00747	0.00748	10	0.748		10	0.748	
- % <u>^</u>	0	1.14944	1.15587	0.00643	0.00644	10	0.644		10	0.644	
L		1.13825	1.14501	0.00676	0.00677	10	0.677		10	0.677	
	A	1.13911	1.14533			10	0.623	0.6015	10	0.623	0.6349
,000,	B	1.15093	1.15745				0.653		10	0.653	
- %^^^	с V	1.13843	1.14376		0.00534		0.534		8	0.668	
1		1.13219	1.13814		0.00596	10	0.596		10	0.596	
Blank		1.15199	1.15198	-0.00001							

Page of _____ QA Form No. 010a Revision 1 Effective 02/14

7/4/21 +18/22 CA: AS 7/8/22


ninow		<u>.&lt;</u>	6.077%	9.072%	10.526%	6.077%	0.000%	10.526%				7.259%	5.203%	15.633%	4.340%	8.741%	8.423%			<u>.&lt;</u>	1.534%	4.761%	7.480%	8.101%	8.741%	5.018%
Fathead minnow		<u>SD</u>	0.0577	0.0816	0.1000	0.0577	0.0000	0.1000		2		0.0473	0.0302	0.0880	0.0259	0.0586	0.0507	1	organismi	SD	0.0105	0.0308	0.0442	0.0511	0.0586	0.0319
Species:		Mean	0.9500	0.9000	0.9500	0.9500	1.0000	0.9500	r original)	,	Mean	0.6515	0.5808	0.5630	0.5978	0.6700	0.6015	-	r surviving	<u>Mean</u>	0.6854	0.6472	0.5907	0.6312	0.6700	0.6349
S		<u>Max</u>	1.0	1.0	1.0	1.0	1.0	1.0	(drv wt nei		Max	0.699	0.608	0.653	0.629	0.748	0.653		(ary wt pel	Max	0.699	0.676	0.653	0.699	0.748	0.668
	urvival Data	<u>Min</u>	0.9	0.8	0.8	0.9	1.0	0.8	rowth Data		Min	0.606	0.541	0.443	0.574	0.611	0.534		rowth Data	<u>Min</u>	0.673	0.608	0.554	0.579	0.611	0.596
14001-412-031	istics for SI	Z	4	4	4	4	4	4	istics for G		Z	4	4	4	4	4	4	( 	ISTICS TOF G	Z	4	4	4	4	4	4
	Summary Statistics for Survival Data	Treatment	MM	6.25%	12.5%	25%	50%	100%	Summary Statistics for Growth Data (dry wt per original)		<u>Treatment</u>	MH	6.25%	12.5%	25%	50%	100%	Ċ	Summary Statistics for Growth Data (ary wt per surviving organism)	<u>Treatment</u>	MH	6.25%	12.5%	25%	50%	100%
Project Number:	0)								U.	, .								ſ	,,							

% of control --86% 92% 103%

Page 23 of 25

ETIS Ana	lytical Repo	rt					Repo Test	Code:			7 (p 1 of 2 -0578-621
athead Minn	ow 7-d Larval Su	ırvival a	and Growt	n Test					TRE Envir	onmental	Strategie
Analysis ID: Analyzed:	12-1123-3410 07 Jul-22 15:17		indpoint: nalysis:	Mean Dry Bion Parametric-Co	-	ments		S Version ial Result		8.7	
Batch ID:	00-5343-1855	T	est Type:	Growth-Surviva	al (7d)		Anal	yst: Lai	b Tech		
Start Date:	23 Jun-22 15:35	5 F	rotocol:	EPA/821/R-02	-013 (2002)		Dilue	ent: Mo	d-Hard Synth	etic Water	
Ending Date:	30 Jun-22 15:30	) 5	species:	Pimephales pr	omelas		Brine	e: No	t Applicable		
Duration:	7d	S	Source:	In-House Cultu	ire		Age:	<2	4h		
Sample ID:	16-9252-3788	C	Code:	64E1DD0C			Clier	nt: No	rthern Star Re	es	
-	22 Jun-22 06:49	) N	laterial:	Ambient Samp	le		Proje	ect: Wi	ET Annual Co	mpliance T	est
-	23 Jun-22 07:50		Source:	Discharge Mo	nitoring Repor	rt	-				
Sample Age:	33h (4.3 °C)	S	Station:	Outfall 001	•						
Data Transfor		Zeta	Alt H	vo Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Untransformed		NA	C > T	76	NA		14.1%	100	>100	NA	10
Dunnett Multi	ple Comparison	Test						Ŭ			
Control	vs C-%		Test			P-Value	P-Type	Decisio			
Dilution Water			1.849		0.092 6	0.1341	CDF	÷	nificant Effect		
	12.5		2.313		0.092 6	0.0596	CDF	-	nificant Effect		
	25 50		1.405 -0.48		0.092 6 0.092 6	0.2598 0.9373	CDF CDF	÷	nificant Effect nificant Effect		
	100		-0.48		0.092 6	0.2954	CDF	-	nificant Effect		
					0.002 0						
Test Acceptal											
Attribute	Test Stat			Overlap	Decision		<b>.</b>				
Control Resp	0.6515	0.25 -		Yes		cceptability					
PMSD	0.1414	0.12 -	0.3	Yes	Passes A	cceptability	Criteria				
ANOVA Table	•										
Source	Sum Squ	ares		Square	DF	F Stat	P-Value	Decisio			
Between	0.034423			8846	5	2.352	0.0827	Non-Sig	nificant Effect		
Error	0.0526955		0.002	927528	18 23	_					
Total	0.087118				23						
Distributiona	l Tests										
Attribute	Test			Test Sta		P-Value	Decision				
Variances			of Variance		15.1	0.4087	Equal Va				
Distribution	Shapiro-	Nilk W N	Normality	0.9839	0.884	0.9552	Normal D	istribution			
	omass-mg Sumn										% Effect
			t Mear	n 95% LC	_ 95% UCL	Median	Min	Max	Std Err	CV%	70Ellec
Mean Dry Bio	mass-mg Sumn	nary	t Mear 0.65 [.]		_ 95% UCL	<b>Median</b> 0.6505	<b>Min</b> 0.606	<b>Max</b> 0.699	<b>Std Err</b> 0.02364	<b>CV%</b> 7.26%	0.0%
Mean Dry Bio C-%	omass-mg Sumn Control Type	nary Coun		5 0.5763	0.7267 0.6288				0.02364 0.01511	7.26% 5.2%	0.0% 10.9%
Mean Dry Bio C-% 0	omass-mg Sumn Control Type	nary Count 4	0.65 0.58 0.56	150.5763080.5327030.423	0.7267 0.6288 0.703	0.6505 0.587 0.578	0.606 0.541 0.443	0.699 0.608 0.653	0.02364 0.01511 0.04401	7.26% 5.2% 15.6%	0.0% 10.9% 13.6%
Mean Dry Bio C-% 0 6.25 12.5 25	omass-mg Sumn Control Type	nary Count 4 4 4 4	0.65 0.58 0.56 0.59	15         0.5763           08         0.5327           3         0.423           78         0.5565	0.7267 0.6288 0.703 0.639	0.6505 0.587 0.578 0.594	0.606 0.541 0.443 0.574	0.699 0.608 0.653 0.629	0.02364 0.01511 0.04401 0.01297	7.26% 5.2% 15.6% 4.34%	0.0% 10.9% 13.6% 8.25%
Mean Dry Bio C-% 0 6.25 12.5 25 50	omass-mg Sumn Control Type	nary Count 4 4 4 4 4 4 4	0.65 0.58 0.56 0.59 0.67	15         0.5763           08         0.5327           3         0.423           78         0.5565           0.5768	0.7267 0.6288 0.703 0.639 0.7632	0.6505 0.587 0.578 0.594 0.6605	0.606 0.541 0.443 0.574 0.611	0.699 0.608 0.653 0.629 0.748	0.02364 0.01511 0.04401 0.01297 0.02928	7.26% 5.2% 15.6% 4.34% 8.74%	0.0% 10.9% 13.6% 8.25% -2.84%
Mean Dry Bio C-% 0 6.25 12.5 25	omass-mg Sumn Control Type	nary Count 4 4 4 4	0.65 0.58 0.56 0.59	15         0.5763           08         0.5327           3         0.423           78         0.5565           0.5768	0.7267 0.6288 0.703 0.639	0.6505 0.587 0.578 0.594	0.606 0.541 0.443 0.574	0.699 0.608 0.653 0.629	0.02364 0.01511 0.04401 0.01297	7.26% 5.2% 15.6% 4.34%	0.0% 10.9% 13.6% 8.25%
Mean Dry Bio C-% 0 6.25 12.5 25 50 100	omass-mg Sumn Control Type	nary Count 4 4 4 4 4 4 4 4	0.65 0.58 0.56 0.59 0.67	15         0.5763           08         0.5327           3         0.423           78         0.5565           0.5768	0.7267 0.6288 0.703 0.639 0.7632	0.6505 0.587 0.578 0.594 0.6605	0.606 0.541 0.443 0.574 0.611	0.699 0.608 0.653 0.629 0.748	0.02364 0.01511 0.04401 0.01297 0.02928	7.26% 5.2% 15.6% 4.34% 8.74%	0.0% 10.9% 13.6% 8.25% -2.84%
Mean Dry Bio C-% 0 6.25 12.5 25 50 100	omass-mg Sumn Control Type Dilution Water	nary Count 4 4 4 4 4 4 4 4	0.65 0.58 0.56 0.59 0.67 0.60	15         0.5763           08         0.5327           3         0.423           78         0.5565           0.5768           15         0.5209	0.7267 0.6288 0.703 0.639 0.7632	0.6505 0.587 0.578 0.594 0.6605	0.606 0.541 0.443 0.574 0.611	0.699 0.608 0.653 0.629 0.748	0.02364 0.01511 0.04401 0.01297 0.02928	7.26% 5.2% 15.6% 4.34% 8.74%	0.0% 10.9% 13.6% 8.25% -2.84%
Mean Dry Bio C-% 0 6.25 12.5 25 50 100 Mean Dry Bio	omass-mg Sumn Control Type Dilution Water omass-mg Detai	nary Count 4 4 4 4 4 4 4 4 4 1 <b>Rep 1</b> 0.606	0.65 0.58 0.56 0.59 0.67 0.60 <b>Rep</b> 0.68	15       0.5763         08       0.5327         03       0.423         78       0.5565         0.5768         15       0.5209         2       Rep 3         5       0.699	0.7267 0.6288 0.703 0.639 0.7632 0.6821 <b>Rep</b> 4 0.616	0.6505 0.587 0.578 0.594 0.6605	0.606 0.541 0.443 0.574 0.611	0.699 0.608 0.653 0.629 0.748	0.02364 0.01511 0.04401 0.01297 0.02928	7.26% 5.2% 15.6% 4.34% 8.74%	0.0% 10.9% 13.6% 8.25% -2.84%
Mean Dry Bio C-% 0 6.25 12.5 25 50 100 Mean Dry Bio C-%	omass-mg Sumn Control Type Dilution Water Dilution Water Dilution Water Dilution Water Dilution Water	nary Count 4 4 4 4 4 4 4 4 1 Rep 1	0.65 0.58 0.56 0.59 0.67 0.60 <b>Rep</b> 0.68	15       0.5763         08       0.5327         03       0.423         78       0.5565         0.5768         15       0.5209         2       Rep 3         5       0.699	0.7267 0.6288 0.703 0.639 0.7632 0.6821 <b>Rep</b> 4 0.616 0.574	0.6505 0.587 0.578 0.594 0.6605	0.606 0.541 0.443 0.574 0.611	0.699 0.608 0.653 0.629 0.748	0.02364 0.01511 0.04401 0.01297 0.02928	7.26% 5.2% 15.6% 4.34% 8.74%	0.0% 10.9% 13.6% 8.25% -2.84%
Mean Dry Bio C-% 0 6.25 12.5 25 50 100 Mean Dry Bio C-% 0	omass-mg Sumn Control Type Dilution Water Dilution Water Dilution Water Dilution Water Dilution Water	nary Count 4 4 4 4 4 4 4 4 4 1 <b>Rep 1</b> 0.606	0.65 0.58 0.56 0.59 0.67 0.60 <b>Rep</b> 0.68	15       0.5763         08       0.5327         03       0.423         78       0.5565         0.5768         15       0.5209         2       Rep 3         5       0.699         3       0.6	0.7267 0.6288 0.703 0.639 0.7632 0.6821 <b>Rep</b> 4 0.616 0.574 0.566	0.6505 0.587 0.578 0.594 0.6605	0.606 0.541 0.443 0.574 0.611	0.699 0.608 0.653 0.629 0.748	0.02364 0.01511 0.04401 0.01297 0.02928	7.26% 5.2% 15.6% 4.34% 8.74%	0.0% 10.9% 13.6% 8.25% -2.84%
Mean Dry Bio C-% 0 6.25 12.5 25 50 100 Mean Dry Bio C-% 0 6.25	omass-mg Sumn Control Type Dilution Water Dilution Water Dilution Water Dilution Water Dilution Water	nary Count 4 4 4 4 4 4 4 4 4 4 4 1 0.606 0.541 0.59 0.609	0.65 0.58 0.59 0.67 0.60 <b>Rep</b> 0.68 0.60 0.65 0.57	15       0.5763         08       0.5327         08       0.423         78       0.5565         0.5768         15       0.5209         2       Rep 3         5       0.699         3       0.443         4       0.629	0.7267 0.6288 0.703 0.639 0.7632 0.6821 <b>Rep 4</b> 0.616 0.574 0.566 0.579	0.6505 0.587 0.578 0.594 0.6605	0.606 0.541 0.443 0.574 0.611	0.699 0.608 0.653 0.629 0.748	0.02364 0.01511 0.04401 0.01297 0.02928	7.26% 5.2% 15.6% 4.34% 8.74%	0.0% 10.9% 13.6% 8.25% -2.84%
Mean Dry Bio C-% 0 6.25 12.5 25 50 100 Mean Dry Bio C-% 0 6.25 12.5	omass-mg Sumn Control Type Dilution Water Dilution Water Dilution Water Dilution Water Dilution Water	nary <u>Count</u> 4 4 4 4 4 4 4 4 4 1 <u>Rep 1</u> 0.606 0.541 0.59	0.65 0.58 0.59 0.67 0.60 <b>Rep</b> 0.68 0.60 0.65 0.57 0.74	15       0.5763         08       0.5327         3       0.423         78       0.5565         0.5768         15       0.5209         2       Rep 3         5       0.699         3       0.443         4       0.629         8       0.644	0.7267 0.6288 0.703 0.639 0.7632 0.6821 <b>Rep</b> 4 0.616 0.574 0.566	0.6505 0.587 0.578 0.594 0.6605	0.606 0.541 0.443 0.574 0.611	0.699 0.608 0.653 0.629 0.748	0.02364 0.01511 0.04401 0.01297 0.02928	7.26% 5.2% 15.6% 4.34% 8.74%	10.9% 13.6% 8.25% -2.84%

Page 24 of 25 st: HIV QA: AB







eurofins Environment Testing

# **AQUATIC TOXICOLOGY REPORT**

Project Name: Location:

NORTHERN STAR (POGO) LLC DELTA JUNCTION, ALASKA

Prepared by: Eurofins Environment Testing Northwest, LLC - ASL

(formerly Eurofins TestAmerica – ASL)

1100 NE Circle Boulevard, Suite 310 Corvallis, Oregon 97330 541-243-6137



Accredited in accordance with NELAP

Oregon Environmental Laboratory Accreditation Program #OR100022 (NELAP) State of Washington DOE Environmental Laboratory Accreditation Program, Lab ID C556 California State Environmental Laboratory Accreditation Program, Certificate No.: 1726

> Report Date: July 22, 2022 Released by: Michelle Bennett

> > Lab I.D. No. B5386

This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized. If you have received this report in error, please notify the sender and destroy this report immediately. This report shall not be reproduced except in full, without prior express written approval by the laboratory.

Results relate only to the items tested and the sample(s) as received by the laboratory. The results included in this report have been reviewed for compliance and meet all requirements for accredited parameters. All data have been found to be compliant with laboratory protocol, with the exception of any items noted in this report. For questions, please contact the Project Manager (contact info on next page).

# CONTENTS

Section Pag	ge
INTRODUCTION	3
OVERVIEW OF REGULATORY GUIDANCE	3
SUMMARY OF TEST RESULTS	
ACRONYM DEFINITIONS	4
METHODS AND MATERIALS	
TEST METHODS	
DEVIATIONS FROM PROTOCOLS	
TEST DESIGN	5
DILUTION WATER	
SAMPLE COLLECTION AND STORAGE	5
SAMPLE PREPARATION	6
DATA ANALYSIS	6
RESULTS AND DISCUSSION	7
CHRONIC BIOASSAYS	
REFERENCE TOXICANT TESTS	8
APPENDIX A. RAW DATA SHEETS	
APPENDIX B. REFERENCE TOXICANT DATA SHEETS	
APPENDIX C. CHAIN OF CUSTODY	

LABORATORY CONTACT: Brett Muckey, Laboratory Director Brett.Muckey@et.eurofinsus.com (541) 243-0980

### **INTRODUCTION**

Eurofins Environment Testing Northwest, LLC Applied Sciences Laboratory (EETNW - ASL) conducted toxicity testing on sample(s) from Northern Star (Pogo) LLC, Delta Junction, Alaska.

Testing was initiated on: June 21, 2022

The test(s) were conducted using:

• the fathead minnow (*Pimephales promelas*)

### **OVERVIEW OF REGULATORY GUIDANCE**

The following provides an overview and excerpts of applicable permit specifics, regulatory guidance, and other relevant information. This is intended only as a helpful guide, from a laboratory perspective, for understanding test outcomes. The final responsibility for interpretation of results remains with the client and/or regulatory agency.

The following guidance is taken from EETNW-ASL reading of the NPDES permit for Northern Star - Pogo (permit #AK0053341, effective July 1, 2017, expires June 30, 2022).

### Whole Effluent Toxicity Testing (WET) Requirements:

- "1.7.2 Chronic toxicity testing must be conducted on grab sample of effluent."
- "1.7.3 Chronic Test Species and Methods"
  - "1.7.3.1 For Outfall 001, chronic tests must be conducted annually prior to August 1."
  - o "1.7.3.2 ... using the fathead minnow, *Pimephales promelas*."
  - "1.7.3.3 The presence of chronic toxicity must be determined as specified in Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, Fourth Edition (EPA/821-R-02-013, October 2002)."
  - $\circ$  "1.7.3.4 Results must be reported in TU_c, where TU_c = 100/IC₂₅."
- 1.7.4 Quality Assurance
  - 1.7.4.3.1 If organisms are not cultured in-house, concurrent testing with reference toxicants must be conducted. If organisms are cultured in-house, monthly reference toxicant testing is sufficient. Reference toxicant tests must be conducted using the same test conditions as the effluent toxicity tests.
- "1.7.5 A trigger for chronic toxicity of 2 TUc shall apply for the purposes of determining compliance with Permit Part 1.7.6 [accelerated testing] and 1.7.7 [TIE/TRE]."

### **SUMMARY OF TEST RESULTS**

Exhibit 1 provides a summary of the final test results.

### EXHIBIT 1 Summary of Chronic Test Results

NOFC	LOFC	ICar		Was chronic toxicity
			TUc	demonstrated
(70)	(70)	(70)		(a TUc value > 2.0)?
100	> 100	> 100	< 1	No
	(%)	(%) (%)	NOEC         LOEC         IC25           (%)         (%)         (%)           100         > 100         > 100	(%) (%) (%) TUc

Note: acronyms are as defined below.

From the NPDES permit - *Chronic Toxicity Trigger*: "Toxicity Triggers. Since data does not exist to support the development of a WET limit at this time, a target level for chronic toxicity of 2 TUc shall apply ..."

More detailed information is provided in the Results and Discussion section.

### ACRONYM DEFINITIONS (from EPA guidance):

NOEC = No Observed Effect Concentration: The highest test concentration that causes no observable adverse effects on the test organisms (i.e. no statistically significant reduction from the control).

LOEC = Low Observed Effect Concentration: The lowest test concentration that does cause an observable adverse effect on the test organisms (i.e. is statistically significant reduction from the control).

 $LC_{50}$  = Lethal Concentration (50%): A point estimate of the test concentration that would cause death in 50 percent of the test population.

 $IC_{25} =$  Inhibition Concentration (25%): A point estimate of the test concentration that would cause a 25 percent reduction of a non-quantal biological measurement (i.e. growth, reproduction, etc.) for the test population.

### METHODS AND MATERIALS

### **TEST METHODS**

The chronic test methods were performed according to: *Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms*, Fourth Edition, (EPA 2002), EPA-821-R-02-013.

Additional guidance was provided by:

• *Method Guidance and Recommendations for Whole Effluent Toxicity (WET) Testing* (40 CFR Part 136), (EPA August 2000), EPA 821-B-00-004.

# **DEVIATIONS FROM PROTOCOLS**

Deviations from required procedures in the test methods:

• None noted.

Deviations from <u>recommended</u> procedures in the test methods:

• None noted.

### **TEST DESIGN**

The following summarizes the conditions used for both overall testing and the specifics for each test (observations and notations can be found on the datasheets in Appendix A):

Overall Test Design:

• Chronic tests: 6.25, 12.5, 25, 50, and 100 percent sample + dilution water for the control.

Test Organism Conditions:

- All organisms tested were fed and maintained during culturing, acclimation, and testing as prescribed by the EPA (2002).
- The test organisms appeared vigorous and in good condition prior to testing.

### P. promelas chronic test:

- Source: Aquatox Inc., Hot Springs, Arkansas
- Age: Less than 48 hours old and within an 24 hour age range
- Design: Four test vessels per concentration, ten organisms per vessel
- Test Solution Renewal: Daily
- Monitoring:
  - o Daily: Survival
  - o Daily: DO and pH in pre and post-renewal solutions, all concentrations
  - o Daily: Temperature in pre-renewal solutions, all concentrations
  - With each new sample: Conductivity in post-renewal solutions, control and highest sample concentration
- Termination: 7 days after test initiation.
- Endpoints: Survival and Growth (average dry weight per organism added @ initiation)

### **DILUTION WATER**

The dilution water used was the standard culture water used by EETNW - ASL:

• Reconstituted, moderately hard water (as per EPA protocol) with a total hardness of 75 to 105 mg/L as CaCO₃ and an alkalinity of 50 to 75 mg/L as CaCO₃.

### SAMPLE COLLECTION AND STORAGE

Samples were collected by Northern Star (Pogo) LLC personnel. The samples were accepted as scheduled by EETNW - ASL. Chain of Custody and Sample Receipt Records are provided in Appendix C.

- All samples were received within the EPA recommended 0 to 6 °C range.
- All samples were initially used for test initiation or test solution renewal within the EPA recommended maximum holding time of 36 hours of sample collection.
- All subsequent uses of a sample occurred within the EPA recommended maximum holding time of 72 hours past the time of initial use of that sample.
- Following receipt, the samples were stored in the dark at 0 to 6 °C until test solutions were prepared and tested.

# SAMPLE PREPARATION

Samples used during these tests were:

- Temperature adjusted prior to test initiation and each daily renewal.
- Filtered through a 60 µm net upon arrival.

### DATA ANALYSIS

The statistical analyses performed for the chronic tests were those outlined in *Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms*, USEPA Office of Water, Fourth Edition (EPA 2002), EPA-821-R-02-013, using CETIS.

- The specific statistical analysis and CETIS version used for each endpoint evaluation is listed with the statistical outputs included with each test in Appendix A.
- If any additional analysis methods were also used, an explanation of the rationale and reference to the source method is included with the presentation of those results below.

### **RESULTS AND DISCUSSION**

The raw data sheets for all tests are presented in Appendix A.

### **CHRONIC BIOASSAYS**

Table 1 summarizes the survival and growth data for the *P. promelas* chronic test.

Sı	Table 1 Immary of Chronic Re <i>P. promelas</i>	esults
Sample Concentration (%)	Percent Survival	Mean Dry Weight Per Organism Added (mg)
Control	97.5	0.667
6.25	100	0.638
12.5	100	0.682
25	97.5	0.689
50	85.0	0.626
100	95.0	0.694

Statistical analysis in accordance with the EPA protocol results in:

- NOEC = 100 %
- LOEC > 100 %
- $IC_{25} > 100 \%$
- $TU_c$  < 1.0

From the NPDES permit - *Chronic Toxicity Trigger*: "Toxicity Triggers. Since data does not exist to support the development of a WET limit at this time, a target level for chronic toxicity of 2 TUc shall apply ..."

Dissolved oxygen concentrations remained at 4.0 mg/L or greater throughout the test period. Test temperatures remained at  $25\pm1^{\circ}$ C.

The *P. promelas* test meets Test Acceptability Criteria (TAC) for a minimum 80 percent control survival and a minimum weight of 0.250 mg per surviving control organism. Unless referenced above, the tests proceeded without any noted deviations or interruptions that could have affected test results. The testing should be considered "valid".

### **REFERENCE TOXICANT TESTS**

Reference toxicant (reftox) testing is performed to document both initial and ongoing laboratory performance of the test method(s). While the health of the test organisms is primarily evaluated by the performance of the laboratory control, reftox test results also may be used to assess the health and sensitivity of the test organisms. Reftox test results within their respective cumulative summary (Cusum) chart limits are indicative of consistent laboratory performance and normal test organism sensitivity.

The results of the reftox tests indicate that the test organisms were within their respective cusum chart limits based on EPA guidelines. This demonstrates ongoing laboratory proficiency of the test methods and suggests normal test organism sensitivity in the associated client testing.

The *P. promelas* chronic reftox test was conducted using potassium chloride. The data sheets for the reference toxicant tests are provided in Appendix B.

Ta	ble 2	
Chronic Reference	<b>Toxicant Tests</b>	(g/L)
Species	IC25	Cusum Chart Limits
<i>P. promelas</i> (survival)	0.61	0.59 to 0.68
P. promelas (growth)	0.63	0.45 to 0.73

Table 2 summarizes the reference toxicant test results and Cusum chart limits.

# **APPENDIX** A

# **RAW DATA SHEETS**

Dr " - " = sample not dechlorinated, or analyte not collected/needed. 2 prior to filtered 60 um use?  $\mathbf{\overline{P}}$  $\mathbf{b}$ Þ na Cond. as Rc'vd (Su) na 5 ı ı I 28 21212 as Rc'vd Note: "-" Indicates data collection or dechlorination not needed. Any other adjustments to samples prior to use are documented in Comments below or on Dilutions page. Ηd na 0 I ı 1 (mg/L) as Rc'vd Q na I ı I Test Termination: Date Test Initiation: Date Ammonia Hardness Alkalinity mg/l as CaCO₃ 5 mg/L as Rc'vd T ۱ ı # 0.10 mg/L 5 mg/L mg/l as CaCO₃ as Rc'vd 78 72 78 Conductivity NH₃-N 0.88 0.94 0.96 as Rc'vd mg/l SDG # BG 3S С Dechlorination allowed as Rc'vd / after Dechlor.  $\Box$  Indicates the action was taken, ( $\Box$ = action not taken): // # Chlorine (mg/l) I ı I Total Residual 0.02 mg/L 20.02 Hd 20.07 20.02 Temporter Tables FRESHWATER TOXICITY TEST: SAMPLE AND DILUTION WATER DATA ۲ # 24 as Rc'vd Temp (C) Dissolved Oxygen_ na  $\frac{\eta q}{\sqrt{q}}$ n, n 09:45 12:21 (mm/dd/yy) (Pacific 12:05 Zone) Time Nathan Kehoe / Jill Van Patten 907-895-2760 / 907-687-3579 Received Reporting Limits: 6 124 122 105:32 6 125 122 (2) 120 122 (12: 12) (0/21 12) 61210 Date Water Quality Meters Used/ID#: Hardness Alkalinity Comments: -(mm/dd/yy) |( Pacific | (122122 35:27 Time Zone) Northern Star Collected mg/l as CaCO₃ z 3 0 5 5 Date mg/1 as CaCO₃ 50 い 30 5 BG338601 (J.H.24) 001-WET 5386 -02 Out Fall 001-WET 35386 -03 Quitfall 001 - 636 921CS 9239 26372 4155 #**H** Field ID Recon MH (FHM) Dilution Water Sample ID Number 🕃 eurofins Contact Client

Northern Star Pogo Mine - FHM chr.xlsm Doc Control ID: 4SL899-0122

# Securofins Environment Testing FRESHWATER TOXICITY TEST: TEST ORGANISM INFORMATION

### Northern Star

Sample Designation (SDG): B 9360

	FHM #2225			
Test Species Information	Pimephales			
Test Species Information	promelas			
	Chronic			
	<48 hrs, all within a			
Organism Age at Initiation	24 hour window			
Test Container Size	800 ml			
Test Volume	500 ml			
Feeding: Type and	0.15 ml Artemia,			
Amount	2 x Daily			
Aeration:	📈 None			
	□ Prior to use		· ·	
In Test Chambers via Slow Bubble :	□ @ hrs			
Acclimation Period	<24 hrs		1.2 Mar. 1.2 Mar.	
Organism Source	Aquatox			
Size	-			
Loading Rate	-			

Dissolved Oxygen aeration justifications (in test chambers):

Test(s):  $\Box$  All  $\Box$ 

Date:

Comments:

**Test Solution Preparation and Dilution Record** 

Note: 🗆 Indicates task not done, 🗹 Indicates task was done. Temp adj. = Temperature adjusted to ambient or test temp Ditto marks (''') indicate that the same SDG, batch of dilution water, or food as the previous day's entry was used.

Client: Northern Star Fathea

. –	Fathead minnow - Chr	ow - Chro	ronic								
L	Test	Sample		Final	Test	Sample ID	Daily Sample Preparation	Dilution Water	Date	Time	Initials
	Concentration	Volume		Volume	Day	Used	(prior to dilution)	Used )		1 / 6 6	,
	(%)	(slm)		(mls)	0 (Initiation)	BG344-01	🗖 Temp adj, 🔲 Aerated	D# 9217 (	2	10:27	N
	Control	0.00	↑	2000	1	BC 346- 01	🗖 Temp adj, 🗖 Aerated	D# 541	2 <u>2"111</u>	53.50	2
	6.25	125	↑	2000	2	B5 284 - 02	🔲 Temp adj, 🗌 Aerated	m# 5574	124-12	13:67	04
I	12.5	250	1	2000	б	B5286 - 07	🔲 Temp adj, 🗌 Aerated	D# <<>14		52: 04	ha'
L	25	500	↑	2000	4	B5386 - 02	🗆 Temp adj, 🗆 Aerated	D# 5515	Cr 122 12	01:01	IG L
	50	1,000	↑	2000	S,	BC- 985.58	🗖 Temp adj, 🗖 Aerated	ED # のいしの	CO 12/1"22	09:61	KG
	100	2,000	1	2000	9	BS366 - 03	🗖 Temp adj, 🗖 Aerated	D# 52.56	121124	10:20	¥e
Tot	Total Sample volume needed per day =	e needed per	day =	3875 mls							

- 75

🔆 euroi	16	nvironment Testing merica	FAT	THEAD MINN	NOW 7-DAY S	URVIVAL AI	ND WATER	QUALITY DA	ATA		
Ran	dom Te	mplate Used:	6 conc. x 4 rep	s. # []	Water	bath/incubator	Used:	Date Initiated	61211	20 L 1	e 15 : 00
		в 5386						ate Terminated	61281	20 2 2 Tim	e 10 :08
Client	-		Nor	thern Star	1541	ROLDY	Samr	le Description			
Tech:	Day 0	DY Day	$1 \underline{D} \underline{V} \underline{D} ay$	/ 2 <u>M</u> 1	Day 3 <u>0 7</u> Day 3 <u>141</u>	Day 4 KG	Day 5 <u>Kø</u>	Day 6 _ <b>4</b>	م Day 7	DY	
Time	Day 0	1436 Day	1 <u>1235</u> Day	12 152y 1	Day 3 1342	Day 4 1355	_ Day 5 _ iH	37 Day 6_1	425 Day 7	1008	
Conc.				ve Organisms		Dissol	ved O ₂ g/l)	1	Н	Temp. #	Conductivity
or Percent	Day	А	В	C	D	Pre	Post	Pre	Post	(°C) Pre ⊨	(µS) Post (1 st use)
	0	10	10	10	10		8.0		7.7	Post: 74. 0 756	
	1 2	10	10	10	), U ] O	7.5	8.6 ¥.0	7.4	7.5	29.0 250	
Control	3	10	10	10	10	7.5	8.1	7.6	8.0	24. 8 2.30	
Ĉ	4	10 10	59	10	10	7.8	8.1	7.7	7.0	25.0 278 75,0 250	318
	6	10	9	10	10	7.5	8.0	7,7	J.P		
	7	10	9	10	10	7.2	<u>.</u>	7,2		24.8 250	
	0 1	10 1 Ú	10 ( U	10 10	10 1 Ú	7.5	8.0	7.3	7.7	Post: 25 0	+
%	2	10	10	10	10	7.4	8.0	7.6	7.9	24.8	
6.25 %	3	10	10	10/-	10 -	7.6	8.5	7.6	8.0 7.7	24,8	
é	5	10	10	10	10	7.5	8,2	7.1	7.8	24.9 25.0	<b>-</b>
	6 7	10	10	10	10	7.5	8.0	7.6	R-O	25.0 24.8	
	0	10	10 10	10 10	10	7.2	8.2	7,2	7,7	2918 Post: 25.0	
	1	10	10	10	10-	7.5	8.3	7.3	7,5	23.1	
%	2	10	$\frac{10}{10}$	10	10	7.4	8.1	7.5	7.9	24.9	
12.5	4	10	10	10	10	7.0	8.7.	7.6		25.0	
	5	10	10	10	10	7.5	8.5	7.6	7.8	250	
	6 7	10	10	10	10	7.5	8.3	7.4	7.9	24.9	
	0	+0 g	10	10	10		8.2		7.6	Post: 2.S. 1	
	1 2	10	9	10	10	7.4	8,3	7.3	7.5	25.0	
%	3	10	9	10	10	7,5	8.4	7.5	7.8	14.8 24.8	
25	4	10	9	10	10	8.0	8.2	7.6	7.6	25.0	
-	5	10	9	(0) (0)	10	7.4 7.5	8.2 9.5	1.4	7.9	249 249	
	7	914	3	10	10	7.2		7.2		25.0	
-	0	10 I Ø	10 16	10	10	7.5	8.4 *8.3	7.2	7.5	Post: 24, 9	
	2	ιú	9	10	10	7.5	× 0.5 ×8.0	7.4	7.5	25.0	<u></u>
50 %	3	10	9 2	10	10	7.5	+83	7,5	7.7	24,8	
5	4 5		9 9	10	10	7.5	8.3	7.5	7.6	24.8 24.9	
	6	5	9	10	10	7,5	B.3 3.3	7.5	7.8	25.0	
	7		9	10	10	7.2	<u>a</u>	7.2		24.8	
	1	10   0	10 10	10	10 10	7.6	86 X84	7.2	7.7.2	Post: 24.9 25.1	231
2	2	10	10	{ <i>V</i>	10	7.5	×8.1	7.3	7.2	24.8	233
100 %	3	9	10	10	10	7.6	¥ 8,4 8.8	7.4	7.4	25.0 25.0	234
	5	9	9	10	10	7.4	8.5	7.4	7.6	25.0	201
-	6	9	9	10	10	7.5	8.5	7.9	1.5	25.0	
✓ Indicat			<u> </u>	·	lution renewal,		ontainer		newal solution	s. Post =Post-rer	awal solutions

"M" = organism missing, start count reduced. "Inj" = organism injured, remove from stats.

"F" = fungus noted on dead organisms.  $\Box$  Aeration in test chambers begun @_____  $\mathcal{R}_{OSF}$  P4 Shukdawa 66241 M / 613122 / 613412

(Note observations on Test Organism Info sheet)

Therm ID# = Thermometer ID used for all measurements that day. (23.8) = Temp. out of recommended range

Northern Star Pogo Mine - FHM chr.xlsm Doc Control ID: ASL899-0122

Day 0 Temperatures = Post-renewals

Client	Pogo		Tins Labeled As:	Pogo		
Lab ID:	B5386		Start Date:	6/21/2022		
Sample Description:						
	Technician:	KG	KG	_		
	Date:	7/4/2022	6/27/2022	_		
<u></u>	Balance Serial #:	B328543647	B328543647	_		
Percent	Replicate	Total Weight (mg)	Tare Weight (mg)	No. of Fish		
»						
	A	845.38	839.20	10		
Control	B	829.63	823.62	9		
	C	777.47	770.39	10		
	D	830.78	823.39	10		
	A	843.71	837.94	10		
6.25 %	В	797.12	791.29	10		
	С	767.13	759.92	10		
	D	772.09	765.38	10		
	A	775.11	768.02	10		
12.5 %	В	775.07	768.58	10		
	С	819.62	812.74	10		
	D	800.41	793.58	10		
	A	803.59	797.78	9 of 9		
25 %	В	797.47	791.03	9		
	С	818.98	811.61	10		
	D	828.82	821.53	10		
	A	816.12	810.92	5		
50 %	В	836.96	830.76	9		
	С	822.28	814.99	10		
	D	825.31	818.98	10		
	Α	825.74	819.55	9		
100 %	В	815.13	808.93	9		
	С	801.64	795.50	10		
	D	807.18	797.95	10		
	А					
	В					
	С		-			
	D					

# FATHEAD MINNOW 7-DAY GROWTH DATA

weigh to 0.01 mg

FATHEAD	MINNOW	7-DAY	<b>GROWTH DATA</b>
---------	--------	-------	--------------------

Client	Pogo		Tins Labeled As:	Pogo
Lab ID:	B5386		Start Date:	6/21/2022
Sample Description:				
	Technician: Date: Balance Serial #:	B328543647	KG 6/27/2022 B328543647	
Percent	Replicate	Total Weight (mg)	Tare Weight (mg)	No. of Fish
Control	A B C D		839.20 823.62 770.39 823.39	10 9 10 10
6.25 %	A B C D		837.94 791.29 759.92 765.38	10 10 10 10
12.5 %	A B C D		768.02 768.58 812.74 793.58	10 10 10 10
25 %	A B C D		797.78 791.03 811.61 821.53	9 of 9 9 10 10
50 %	A B C D		810.92 830.76 814.99 818.98	S 9 10 10
100 %	A B C D		819.55 808.93 795.50 797.95	9 9 10 10
	A B C D			

weigh to 0.01 mg

# **CETIS Summary Report**

20 Jul-22 13:44 (p 1 of 2) B538601ppc / 07-4340-7153

Fathead Min	now 7-d Larval	Survival an	d Growt	h Test					I	Eurofins Te	stAmerica ·	Corva	allis
Batch ID: Start Date: Ending Date	02-7580-8059 21 Jun-22 15:0 28 Jun-22 10:0	0 <b>Pro</b>	st Type: otocol: ecies:	( )				Analys Diluen Brine:		Michelle Bennett Mod-Hard Synthetic Water			
Test Length			on:	Actinopterygii				Source	e: Aqu	iatox, AR		Age:	1D
Sample ID:	08-7978-6409	Co	de:	B5386-01				Projec	t:				
Sample Date	e: 20 Jun-22 05:2	2 <b>Ma</b>	terial:	Mining Discharg	ge/Runoff			Source	e: Nor	thern Star (F	Pogo) LLC (A	AK0053	341
•	e: 21 Jun-22 12:2	2 <b>CA</b>	S (PC):					Statior	n:				
Sample Age	: 34h (3.1 °C)	Clie	ent:										
Multiple Cor	nparison Summ	ary											
Analysis ID	Endpoint		Comp	oarison Method			NO		LOEL	TOEL	PMSD	TU	5
02-3191-1419	9 7d Survival Rat	te	Steel	Many-One Rank	Sum Test	(	100	)	>100		15.2%	1	
00-3684-9943	3 Mean Dry Biom	nass-mg	Dunne	ett Multiple Comp	parison Test		100	)	>100		21.7%	1	
Point Estima	ate Summary												
Analysis ID	Endpoint		Point	Estimate Metho	bd		√ Lev	vel	%	95% LCL	95% UCL	TU	5
04-2379-2816	6 Mean Dry Biom	nass-mg	Linea	r Interpolation (IC	CPIN)		IC2	25	>100			<1	
Test Accepta	ability					TAC	Limits	5					
Analysis ID	Endpoint		Attrib	ute	Test Stat	Lower	Up	per	Overlap	Decision			
02-3191-1419	-3191-1419 7d Survival Rate Control Resp				0.975	0.8	>>		Yes	Passes C	riteria		
00-3684-994	3 Mean Dry Biom	nass-mg	Contro	ol Resp	0.6665	0.25	>>		Yes	Passes Criteria			
04-2379-2810	6 Mean Dry Biom	nass-mg	Contro	Control Resp 0.6665		0.25	>>		Yes	Passes Criteria			
00-3684-9943	3 Mean Dry Biom	nass-mg	PMSE	)	0.2169	0.12	0.3		Yes	Passes C	riteria		
7d Survival I	Rate Summary												
Conc-%	Code	Count	Mean		95% UCL	Min	Ма		Std Err	Std Dev	CV%	%Eff	
0	D	4	0.975		1.0550	0.9000			0.0250	0.0500	5.13%	0.009	
6.25		4	1.000		1.0000	1.0000			0.0000	0.0000		-2.56	
12.5		4	1.000		1.0000	1.0000			0.0000	0.0000		-2.56	
25		4	0.975		1.0550	0.9000			0.0250	0.0500	5.13%	0.00	
50		4	0.850		1.2290	0.5000			0.1190	0.2380	28.01%	12.82	
100		4	0.950	0 0.8581	1.0420	0.9000	1.0	000	0.0289	0.0577	6.08%	2.569	%
	omass-mg Sum												
Conc-%	Code	Count	Mean		95% UCL	Min	Ma		Std Err	Std Dev	CV%	%Eff	
0	D	4	0.666		0.7737	0.601	0.7		0.03369	0.06738	10.11%	0.009	
6.25		4	0.638		0.7495	0.577	0.7		0.03503	0.07006	10.98%	4.289	
12.5		4	0.682		0.7218	0.649	0.7		0.01243	0.02486	3.64%	-2.36	
25		4	0.688		0.7701	0.644	0.7		0.02552	0.05104	7.41%	-3.36	
50		4	0.625		0.7615	0.52	0.7		0.04275	0.0855	13.67%	6.159	
100		4	0.694	0.451	0.937	0.614	0.9	23	0.07634	0.1527	22.00%	-4.13	%

20 Jul-22 13:44 (p 2 of 2) B538601ppc / 07-4340-7153

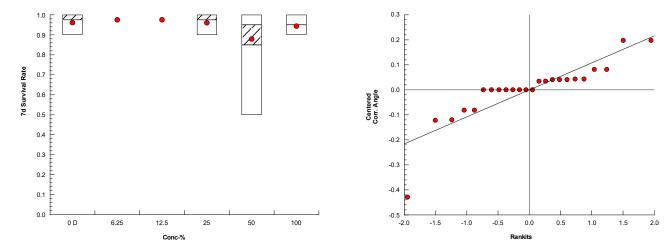
#### Fathead Minnow 7-d Larval Survival and Growth Test

Test Code/ID:	B538601ppc / 07-4340-7153
	Eurofins TestAmerica - Corvallis

E4B2B557FC535DD6C0D0E1BA3	E26E640

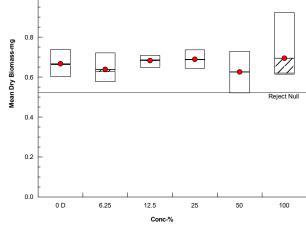
7d Survival R	ate Detail					MD5: E4B2B557FC535DD6C0D0E1BA3E26F
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	D	1.0000	0.9000	1.0000	1.0000	
6.25		1.0000	1.0000	1.0000	1.0000	
12.5		1.0000	1.0000	1.0000	1.0000	
25		1.0000	0.9000	1.0000	1.0000	
50		0.5000	0.9000	1.0000	1.0000	
100		0.9000	0.9000	1.0000	1.0000	

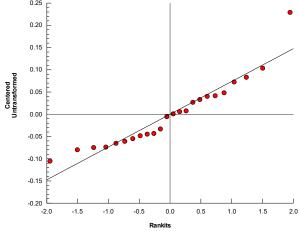
### Mean Dry Biomass-mg Detail


Mean Dry Bio	mass-mg Deta	ul				MD5: FDBA1C11A2E4526A32CA4D3322537D0C
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	D	0.618	0.601	0.708	0.739	
6.25		0.577	0.583	0.721	0.671	
12.5		0.709	0.649	0.688	0.683	
25		0.6456	0.644	0.737	0.729	
50		0.52	0.62	0.729	0.633	
100		0.619	0.62	0.614	0.923	

#### 7d Survival Rate Binomials

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	10/10	9/10	10/10	10/10
6.25		10/10	10/10	10/10	10/10
12.5		10/10	10/10	10/10	10/10
25		9/9	9/10	10/10	10/10
50		5/10	9/10	10/10	10/10
100		9/10	9/10	10/10	10/10


CETIS Ana	alyti	cal Repo	ort						•	ort Date: Code/ID:		Jul-22 13:4 601ppc / 0		
Fathead Mini	now 7	-d Larval S	Survival a	nd Growth Te	st					E	Eurofins Te	stAmerica	- Corvalli	
Analysis ID: Analyzed:		191-1419 ul-22 13:13		ndpoint: 7d s nalysis: Nor	Survival Rat parametric-		s Tr	eatments		IS Version: us Level:	CETISv1.9.7			
Edit Date:	20 J	ul-22 13:12	м	ID5 Hash: E4E	32B557FC5	35DD6C0	D0E	E1BA3E26	6F640 <b>Edit</b>	or ID:	000-042-	882-4		
Data Transfo	rm		Alt Hyp	0				NOEL	LOEL	TOEL	TU	MSDu	PMSD	
Angular (Corr	ected)		C > T					100	>100		1	0.1485	15.23%	
Steel Many-C	)ne Ra	ank Sum To	est											
Control	vs	Conc-%		Test Stat	Critical	Ties	DF	P-Type	P-Value	Decision(	α:5%)			
Dilution Wate	r	6.25		20	10	1 (	6	CDF	0.9516	Non-Signi	ficant Effect			
		12.5		20	10	1	6	CDF	0.9516	Non-Signi	ficant Effect			
		25		18	10	2	6	CDF	0.8333	Non-Signi	ficant Effect			
		50		15.5	10	2	6	CDF	0.5438	Non-Signi	ficant Effect			
		100		16	10	2	6	CDF	0.6105	Non-Signi	ficant Effect			
ANOVA Table	9													
Source		Sum Squ	are	DF		F Stat	P-Value	Decision(	Decision(α:5%)					
Between		0.108806		0.0217611		5		1.19	0.3528	Non-Signi	ficant Effect			
Error		0.329095		0.0182831	0.0182831									
Total		0.437901				23								
ANOVA Assu	Imptio	ons Tests												
Attribute		Test				Test Sta	at	Critical	P-Value	Decision(	α:1%)			
Variance		Bartlett Ec	quality of \	Variance Test						Indetermir	nate			
Distribution		Shapiro-W	Vilk W No	rmality Test		0.7933		0.884	0.0002	Non-Normal Distribution				
7d Survival F	Rate S	ummary												
Conc-%		Code	Count	Mean	95% LCL			Median	Min	Max	Std Err	CV%	%Effect	
0		D	4	0.9750	0.8954	1.0000		1.0000	0.9000	1.0000	0.0250	5.13%	0.00%	
6.25			4	1.0000	1.0000	1.0000		1.0000	1.0000	1.0000	0.0000	0.00%	-2.56%	
12.5			4	1.0000	1.0000	1.0000		1.0000	1.0000	1.0000	0.0000	0.00%	-2.56%	
25			4	0.9750	0.8954	1.0000		1.0000	0.9000	1.0000	0.0250	5.13%	0.00%	
50			4	0.8500	0.4712	1.0000		0.9500	0.5000	1.0000	0.1190	28.01%	12.82%	
100			4	0.9500	0.8581	1.0000		0.9500	0.9000	1.0000	0.0289	6.08%	2.56%	
Angular (Cor	rected	l) Transfor	med Sum	nmary										
Conc-%		Code	Count	Mean	95% LCL	95% UC		Median	Min	Max	Std Err	CV%	%Effect	
0		D	4	1.3710	1.2420	1.5010		1.4120	1.2490	1.4120	0.0407	5.94%	0.00%	
6.25			4	1.4120	1.4120	1.4120		1.4120	1.4120	1.4120	0.0000	0.00%	-2.97%	
12.5			4	1.4120	1.4120	1.4120		1.4120	1.4120	1.4120	0.0000	0.00%	-2.97%	
25			4	1.3690	1.2420	1.4970		1.4080	1.2490	1.4120	0.0401	5.85%	0.16%	
			4	1.2150	0.7432	1.6860		1.3310	0.7854	1.4120	0.1481	24.39%	11.42%	
50 100								1.3310	1.2490					


CETIS And	alytical Report		Report Date: Test Code/ID:	20 Jul-22 13:43 (p 2 of 3) B538601ppc / 07-4340-7153				
Fathead Minnow 7-d Larval Survival and Growth Test         Eurofins TestAmerica - Corval								
Analysis ID:	02-3191-1419	Endpoint:	7d Survival Rate	CETIS Version:	CETISv1.9.7			
Analyzed:	20 Jul-22 13:13	Analysis:	Nonparametric-Control vs Treatments	Status Level:	1			
Edit Date:	20 Jul-22 13:12	MD5 Hash:	E4B2B557FC535DD6C0D0E1BA3E26F640	Editor ID:	000-042-882-4			
Edit Date: Graphics	20 Jul-22 13:12	MD5 Hash:	E4B2B557FC535DD6C0D0E1BA3E26F640	Editor ID:	000-042-882-4			



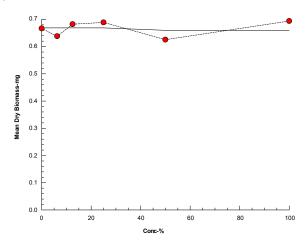
QA:_____

CETIS Ana	lyti	cal Rep	ort		•	eport Date:         20 Jul-22 13:43 (p 3           est Code/ID:         B538601ppc / 07-4340						
Fathead Minn	iow 7	d Larval	Survival	and Growth Te	st					Eurofins Te	stAmerica	- Corvallis
Analysis ID: Analyzed: Edit Date:	20 J	684-9943 ul-22 13:13 ul-22 13:12		Endpoint: Mea Analysis: Par MD5 Hash: FDB	ametric-Co	ntrol vs Trea		State	IS Version us Level: or ID:	: CETISv1 1 000-042-		
Data Transfor	m		Alt H	Іур			NOEL	LOEL	TOEL	TU	MSDu	PMSD
Untransformed	1		C > T				100	>100		1	0.1446	21.69%
Dunnett Multi	iple C	Compariso	n Test									
Control	vs	Conc-%		Test Stat	Critical	MSD DF	P-Type	P-Value	Decisio	ı(α:5%)		
Dilution Water		6.25		0.4744	2.407	0.145 6	CDF	0.6586	Non-Sig	nificant Effect		
		12.5		-0.2622	2.407	0.145 6	CDF	0.8989	-	nificant Effect		
		25		-0.3727	2.407	0.145 6	CDF	0.9199		nificant Effect		
		50		0.6825	2.407	0.145 6	CDF	0.5660	-	nificant Effect		
		100		-0.4578	2.407	0.145 6	CDF	0.9336	Non-Sig	nificant Effect		
ANOVA Table												
Source		Sum Squares Mean Square				DF	F Stat	P-Value	Decisior	n(α:5%)		
Between		0.015983	6	0.0031967		5	0.443	0.8127	Non-Significant Effect			
Error		0.129886	i	0.0072159	0.0072159							
Total		0.14587				23	_					
ANOVA Assu	mptio	ons Tests										
Attribute		Test				Test Stat	Critical	P-Value	Decision(α:1%)			
Variance		Bartlett E	quality o	of Variance Test		8.336	15.09	0.1387	Equal Va	ariances		
Distribution		Shapiro-V	Vilk W N	Normality Test		0.9128	0.884	0.0406	Normal [	Distribution		
Mean Dry Bio	mass	s-mg Sumi	mary									
Conc-%		Code	Coun	nt Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0		D	4	0.6665	0.5593	0.7737	0.663	0.601	0.739	0.03369	10.11%	0.00%
6.25			4	0.638	0.5265	0.7495	0.627	0.577	0.721	0.03503	10.98%	4.28%
12.5			4	0.6822	0.6427	0.7218	0.6855	0.649	0.709	0.01243	3.64%	-2.36%
25			4	0.6889	0.6077	0.7701	0.6873	0.644	0.737	0.02552	7.41%	-3.36%
50			4	0.6255	0.4895	0.7615	0.6265	0.52	0.729	0.04275	13.67%	6.15%
100			4	0.694	0.451	0.937	0.6195	0.614	0.923	0.07634	22.00%	-4.13%
Graphics												
^{1.0} Г							^{0.25} F					_
t							0.20					•





CETIS™ v1.9.7.9 Page 20


QA:

CETIS Ana	alytical Repo	ort						•	ort Date:			44 (p 1 of 1)
			• "					lest	Code/ID:			7-4340-7153
Fathead Mini	now 7-d Larval S	urvival and	Growth	lest					E	urofins les	stAmerica	- Corvallis
Analysis ID:	04-2379-2816	End	point: N	/lean Dry Biom	ass-mg			CETI	S Version:	CETISv1.	9.7	
Analyzed:	20 Jul-22 13:13	Ana	l <b>ysis:</b> L	inear Interpola	tion (ICPI	N)		Statu	is Level:	1		
Edit Date:	20 Jul-22 13:12	MD5	<b>Hash:</b> F	DBA1C11A2E	4526A320	CA4D3	322537D0C	Edito	or ID:	000-042-8	382-4	
Linear Interp	olation Options											
X Transform	Y Transforn	n See	d F	Resamples	Exp 95%	% CL	Method					
Log(X+1)	Linear	2145	5904 2	200	Yes		Two-Point	Interpo	olation			
Point Estima	tes											
Level %	95% LCL	95% UCL	τυ	95% LCL	95% UCI	L						
IC25 >100	)		<1									
Mean Dry Bio	omass-mg Sumn	nary			Ca	alcula	ted Variate				Isotor	nic Variate
Conc-%	Code	Count	Mean	Median	Min	Ма	x CV%	6	%Effect		Mean	%Effect
0	D	4	0.6665	0.663	0.601	0.7	39 10.1	1%	0.00%		0.6689	0.00%
6.25		4	0.638	0.627	0.577	0.7	21 10.9	8%	4.28%		0.6689	0.00%
12.5		4	0.6822	0.6855	0.649	0.7	09 3.64	%	-2.36%		0.6689	0.00%
25		4	0.6889	0.6873	0.644	0.7	37 7.41	%	-3.36%		0.6689	0.00%

### Graphics

50

100



4

4

0.6255

0.694

0.6265

0.6195

0.52

0.614

0.729

0.923

13.67%

22.00%

6.15%

-4.13%

0.6598

0.6598

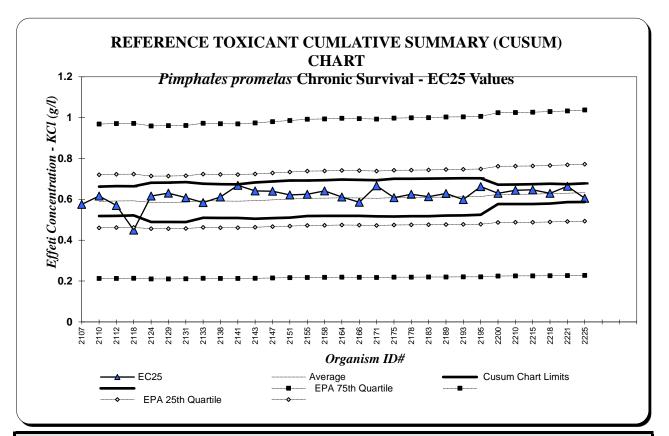
1.37%

1.37%

# **APPENDIX B**

**REFERENCE TOXICANT DATA SHEETS** 

					NOW 7-DAY	SURVIVAL AN	D WATER QU	ALITY DATA	1. 121 120	ZZ Time	15:23
		$\frac{S B 003}{S}$	6 conc. x 4 reps. i		wau	# 10	scu.	Date Terminated	6 198120	22 Time	09 :36
	-			<u> </u>						ion Volume / rcp:	
Organ	ISM ID;	FHM LLLS				1 634					
Client				C - RefTox	<u> </u>			mple Description		Cl (50 g/L stock)	
Tech:	Day 0_	<u>1)4</u> Day 1	Day 2	$\frac{D}{15}$ Day 3	3 <u> </u>	ay 4 <u>K6</u> Da ay 4 <b>ju 05</b> Da	ay 5 <b>166</b> I	Day 6 KG I	Day 7 $10^{\circ}$		
Time	Day 0	1435 Day 1	1208 Day 2	1347 Day 2	3 <u>  555</u> D			Day 6 MIN 1	Day 7 <u>09 20</u>		
Conc.			Number of Liv	e Organisms		Dissolv (mg		p]	н	Temp, ∦ (°C) ∉	Conductivity (µS)
or Percent	Day	A	В	c	D	Pre	Post	Pre	Post	Pre 🛱	Post (daily)
	0	10	10	10	10		8.0			roals. 0 250	
	1	10	10	-10	6	74	8.1_	7.3	7.7	15.0 250	299
5	2		10		10	7.4	7.8	7.3	7.9	25.0 210	
Control	3	10		-10	<u>10</u>	1.6	8,0	75	1.8	25.0 2:18	307
Ũ	5	10	10	10	10	7-4	E.O	7,4	7.9	25.0 250	317
	6	10	10	10	10	-75	8.1	7.9	3.0	25.0 250	320
	7	10	10	10	10	7.2		7.4		23. 0 250 For 25. 0	754
	0	10 9	10 10	10	10	.7.4	8.0	7.5	7.6	25.0	716
	1 2		10	16	10	1.4	8.0	7.5	7.7	25.0	777
g/L	3	av	10	10	10	7.6	8.1	7.6	8.0	24.8	792
0.25	4	a	10	10	10	7.6	3.1	7.6 7.5	7.8	2.4.9	760
	5	9	10	(0)	10	14		7.5	7.8 8.0	25.0 25.0	744
	6	9	0	10	10	7.3	3.)	7.4	0.4	2.94. 9 64	
<u> </u>	7	<b>9</b> 10	10	10	10	1.6	8.0	1 7.7	7.8	Pase 25 16134	1204
	1	10	8	10	10	7.5	8.3	7.4	7.6	2.8.1	1204
	2	10	8	10	10	7,4	8.0	7.4	8.0	25.1	1238
) g/L	3	10	8	10	10	7.6	8.1	7.10	\$ .0	24.9	1230
0.50	4	10	8	10	10	7,5	8.1	7.6	·7.8	25,0 25,0	12.05
	5	16	8	16	10	7.5	8.(	7.6	7.9	29.0	1225
	7	10	\$	10	10	23		75		N. O	
	0	10 9	10	10	10		7.8		7.8	Post 25.1	2090
	1	3 m	1	le	5	7.6	X 3	7.5	7.7	25.1	2100
	2	2	1	6	3	7.7	8.0	7.6	8.6	25.0 25.0	2100
0 g/L	3		1	6	3	7.6	8.2	7.0	7.8	23.0	2.080
1.0	4		0	5		7.2	8.1	-1.12	7.9	25.0	2110
	6	1				7.5	8.2.	17.6	8.1	2.9.0	2100
	7			3		7.3		7.5		25,0	1 30/0
	0	10	10	10	10		7,9		7.8	Post 25,0	3740
	1	0	0	U I	<u>1</u> 1	7.7	8.3	7.5	8.0	15.0	3790
R	2		<u>                                     </u>		0	7.8	8.2	7.8	8.0	25.1	3800
2.0 g/L	4	+			1	-a.sk1	-frh #1		1-1-9*1	25.0 4	
	5	i								ļ	<u>                                     </u>
	6					+		"I		<u>↓</u>	
<b> </b>	7				10		7.9		7.8	Post 25.1	6940
	0	<u>10</u>	10 0	10 0	0	7.7	<u>s 611</u>	7.4	× v \	25.0	7160
	2	1			<u> </u>						
4.0 g/L	3										<u>                                      </u>
4.0	4						<u>                                      </u>			<u>↓                                      </u>	
	5		<u>                                     </u>	$\left  - \right $				┨──┼───	<u>├</u>		
	6		<u>}</u>	.+-		+	·L				
ـــــــــــــــــــــــــــــــــــــ	_1	a organization in the	1		renewal ranks	ced into container.			D:	xy 0 Temperatures	= Post-renew:
v mon "M" ≈ c	cates on organism	ie organism madv i missing, start co	ount reduced. "Ini	" = organism injur	red, remove fro	m stats.		Therm ID# = T		sed for all measure	
		ted on dead orga				. Post =Post-renew	al solutions.		23.8 =	Temp. out of reco	minended rang
	Endpo					<u>Chart Limits</u>		Task Manager	· toria	$\sim$	>
									÷ Ac		>
S	urvival -	EC ₂₅	0.61		0.59	to 0.68	Pı	roject Manager			
									11 -	$\square$	


Survival - EC₂₅ Growth - IC₂₅

0.63

0.59 to 0.68 0.45 to Page 73 QA Officer M. B.

QA Officer REFTOX - FILM chronic (KCI) ASL1282-0122 xkm Doc Control ID: ASL1282-1118

κ /



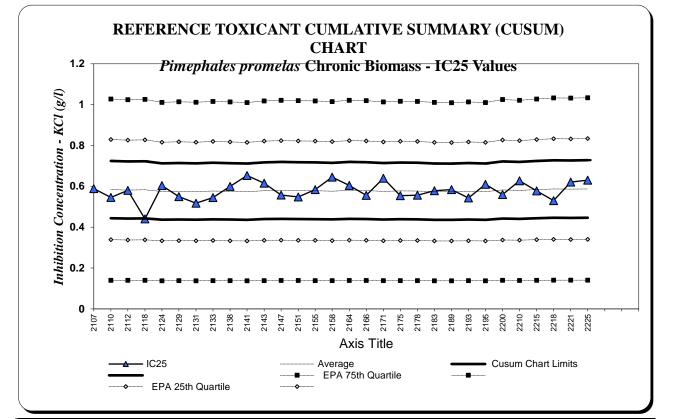
### **Pimephales promelas - Chronic (EPA Test Method 1000.0)**

### POTASSIUM CHLORIDE (g/L)

Endpoint: Chronic Survival

Stats Method: Linear Interpolation

Test Conditions: Recon MH, 25 oC


### From EPA 833-R-00-003:

- 10th Quartile CV (control limit) = 0.03
- 25th Quartile CV (*warning limit*) = 0.11
- 75th Quartile CV (*warning limit*) = 0.32
- 90th Quartile CV (*control limit*) = 0.52

Intralab CV is compared to EPA Warning limits (25th and 75th CV's) and Control limits (10th and 90th CV's),

Event	FHM	Test Start	EC25	Running	Running	Cusum Ch	nart Limits	Intralab
#	ID #	Date	2020	Average	SD	AVG-2SD	AVG+2SD	CV
76	2178	9/9/2021	0.63	0.6	0.05	0.52	0.70	0.08
77	2183	9/28/2021	0.61	0.6	0.05	0.52	0.70	0.07
78	2189	11/2/2021	0.63	0.6	0.05	0.52	0.70	0.07
79	2193	11/16/2021	0.60	0.6	0.05	0.52	0.70	0.07
80	2195	12/7/2021	0.66	0.6	0.04	0.52	0.70	0.04
81	2200	1/25/2022	0.63	0.6	0.02	0.58	0.67	0.04
82	2210	3/8/2022	0.64	0.6	0.02	0.58	0.67	0.04
83	2215	4/19/2022	0.65	0.6	0.02	0.58	0.67	0.04
84	2218	5/10/2022	0.63	0.6	0.02	0.58	0.68	0.03
85	2221	6/3/2022	0.66	0.6	0.02	0.59	0.67	0.04
86	2225	6/21/2022	0.61	0.6	0.02	0.59	0.68	0.03

If lab CV is outside EPA Control limits, the EPA Control limits are used to set Cusum chart limits.



# **Pimephales promelas - Chronic (EPA Test Method 1000.0)**

### POTASSIUM CHLORIDE (g/L)

Endpoint: Chronic Growth (Biomass)

Stats Method: Linear Interpolation

Test Conditions: Recon MH, 25 oC

### From EPA 833-R-00-003:

10th Quartile CV (control limit) = 0.12

25th Quartile CV (*warning limit*) = 0.21

- 75th Quartile CV (*warning limit*) = 0.38
- 90th Quartile CV (*control limit*) = 0.45

Intralab CV is compared to EPA Warning limits (25th and 75th CV's) and Control limits (10th and 90th CV's),
If lab CV is outside EPA Control limits, the EPA Control limits are used to set Cusum chart limits.

Event	FHM	Test Start	IC25	Running	Running		art Limits	Intralab
#	ID #	Date		Average	SD	AVG-2SD	AVG+2SD	CV
79	2193	11/16/2021	0.54	0.58	0.05	0.44	0.71	0.09
80	2195	12/7/2021	0.61	0.57	0.05	0.44	0.71	0.07
81	2200	1/25/2022	0.56	0.58	0.04	0.44	0.72	0.07
82	2210	3/8/2022	0.63	0.58	0.04	0.44	0.72	0.07
83	2215	4/19/2022	0.58	0.58	0.04	0.44	0.72	0.06
84	2218	5/10/2022	0.53	0.59	0.04	0.45	0.73	0.06
85	2221	6/3/2022	0.62	0.59	0.04	0.45	0.73	0.06
86	2225	6/21/2022	0.63	0.59	0.04	0.45	0.73	0.06
87								
88								

**APPENDIX C** 

**CHAIN OF CUSTODY** 

eurofins Environment Testing America	Sample Receipt Record
Batch Number: 195396-01 Date Received:	0/21/22
Client/Project: PogO Received By:	T
Were custody seals intact?	Yes No N/A
Packing Material:	[ ↓ Ic ↓ Blue Ice Box
Temperature: Digital Therm ID: $244$ Expires: $9/9/2022$ Observed: $\frac{2.6}{3.1}$	°C Is 🔯 Yes
- OR - IR Therm ID: Expires: / /20 Observed: (for solid samples) IR Gun Daily Offset: Corrected Sample Temperature (IR Observed + IR Offset):	°C         Temp OK?         □         No           °C         (≤6.0 °C)         □         N/A           °C         °C         °C         °C
If sample is noted $@ \le 0.0$ °C, is the sample frozen or partially frozen?	 YesNo 🔀N/A
Was a Chain of Custody (CoC) Provided?	Yes No N/A
Was the CoC correctly filled out? (If No, document below)	Yes No N/A
Were the sample containers in good condition (not broken or leaking)?	Yes No N/A
Are all samples within 36 hours of collection?	Ves No N/A
	Air Cargo 🗌 N/A
Sample Exception Report (The following exceptions were	<b>y</b>
Client was notified on: Client contact:	
Resolution to Exception:	

Curofins Eurofins Environment Testine Northwest. LLC			Eurofins Environment Testing NW	Attention: Aquatic Toxicology Laboratory 1100 NE Circle Blvd. Suite 310		Phone: 541-243-6137		nments		Concentration	Comments							Date/Time	Date/Time	Date/Time	Shipping # COC Bioassay as of 020522	Doc Co
<b>Contractions Eurofins</b> Environment		Ship Samples to:		Attent Attent 1100	Corva	Phone		Analysis Required / Comments	; ;	cute hronic ronic cute hronic hronic	Trout A A MHZ SHM C MB Act MB Ch MYS C MYS C A 22 A MYS C A A 2 A A 2 A A 2 A A 3 A 3 A A 3 A A 3 A A 3 A A A A							By (Please sign and print name) دے	By (Please sign and print name)	By (Please sign and print name)	s Fed-Ex Hand Other	
TOXICITY TESTING	AK 00 5 3341		Composite Sample Information	Hour Volume/Sample	late	DateTime	Chilled During Collection		oinc	shers d Acut d Chro cute cute	# of # of Contair Lab TFathea Fathea Fathea Cerio C Cerio C	263960111						Date/Time Relinquished By	Date/Time Relinquished By	Date/Time Relinquished	Date/Time Shipped Via	
CHAIN OF CUSTODY RECORD - FOR AQUATIC TOXICIT	(long) LL L NPDES#	5	JUNCHUN, AK 99737	Samples/Hour	kelno e	2760	Chilled Du			Sample	Time Comp. Grab	06.22		•				(Please sign and print name)	(Please sign and print name)	(Please sign and print name)	(Please sign and print name)	(Please sign and print name)
CHAIN OF CUSTOL	Client: Northarn star (loya) LLL	Address: PU Bux 145	DCITA JUNCH		Contact Person: Nullun	Phone: 107 - 895 - 1	DC# 7040677				Sample ID Date	044all001-WET 6120 22						Sampled By & Title (Pleas Nathan Kelve - Env. Locidianter	Received By	Received By	Received By	Work Authorized By

Page 28

.

027	FAI 6342	27	65	52												02	7-6342 7652
	Name and Address					Shipper's Ac 27442	cour 48	nt Num 698	ber 3		egotiable						
	ern Star (Pog 0 Pogo Mile					Customer 48	_				Wayb	lli		Ala		a	
	Junction, Ak					48	92	1		Issue	ву			AIR			
USA	,												F			0 SEATTLE, WA 98168	ł
			-	Tel:	90768	73579										ALASKACARGO.COM	
	e's Name and Addre					Consignee's A	Acco	unt Nu	mber	Also r	notify						
	DELIVERY	SE	R١	/IC						-							
	DX 311	=0		107	220												
USA	ALLIS, ORI	ΞG	Ur	N 97	228												
				Tel:	541 92	26 7300									Tel	:	
Issuing Ca	arrier's Agent and C	ity								Acco	unting Info	rmation				-	48927
	-									Nor	thern S	tar (Pog	go)	) LLC			
											e 50 Po	-					
										Del US	ta Junc ^	tion, Ak	( 9	9737			
Agent's IA	TA Code					ccount No.					~						
Airport of	Departure (Addr. of	Fire	100	trior) c	d Request	d Roufing				- SR	N/2040	672					
Fairba		r Irs	. car	mer) ar	ia riequeste	a rooung				Go	ldStrea	k					
To	By First Carrier					To / By	Т	To	/ Ву	Curre	ency	WT/VA	LI	Other	Pecla	ared Value For Carriage	Declared Value For Customs
SEA	Alaska Airli	ine	s			PDX	AS	s		US	d þx	X		X	1	NVD	NCV
	Destination				Flight/Date		1 *	ht/Dat		Amo	unt of Insu	rance					
Portla	nd				AS 5	594/21	. /	AS 2	2266/21		XX>	<					
Handling	Information		700														
	NOA 541-92 STORE IN C						-										SCI
		.00				JUDIDLL	-										301
No of Pieces	Gross Weight	kg Ib			mmodity m No.	Charg Wei		e	Rate Charg			То	tal				Quantity of Goods sions or Volume)
	_		╘					-				A C A	~				
1	74.0	14	μ				1.0					A2 A	G	REED	'	WATER SAMI	PLES
																Dims: 12 x 22 x	13 x 1
									1								
		Ц									<u> </u>					GSX COL	
1	74.0											AS A	Gŀ	REED		Volume: 1.986	
Prepaid		 	eight	Charge	<del></del>	Collec	t o	)ther C	harges		L						
	AS AGREE				-			ХВ	-	.50							
			uatio	n Char	ge		1		_ ,=								
			Т	ax													
		24-			we A == - 1			01-1		41	the set	46.4	L -	n = f =			4 of the act
	I otal C	Juner	r Cha	arges D	ue Agent			contai	ns dangerou	s goods	s, such pa	rt is prop	berl	y describe	ed by	nd that insofar as any pa name and is in proper co	ndition for carriage
	Total O	ther	Cha	rges Di	e Carrier	A sector to a				•		-	s G	oods Reg	julatio	ns. I consent to the insp Signature of Shipper or h	
				ĺ					Northe	rn St	ar (Po	go)			~~		
	·····			1			1'		_		OFENOT	CONTAR	м	r	-	THIS SHIPMENT DOES C	
								KK				CONTAI		L		THIS SHIPMENT <u>DOES</u> C DANGEROUS GOODS	
	Total Prepaid				Total Co	llect											
	AS AGREE	D		<b> </b>				20	Jun 2022	2 10	).03		F	airban	ike	Ala	ska Airlines
							-		ited On (Date					ali Dari			ing Carrier or its Agent
				<u> </u>			+	LAUCE		<u>'/</u>							27-6342 7652
1				1			1					1					

Environment Testing America		Sample	Receipt Re	cord
Batch Number: B5396-02	Date Received:	6/23/2	22	
Client/Project: P0 90	Received By:	TL		
Were custody seals intact?		Yes	5 📄 No 📃	N/A
Packing Material:		Ic	<☐ Blue Ice	Box
Temperature: Digital Therm ID: $26^{U}$ Expires: $-6^{U}$	1/9/2022 $2.61/20$ Observed: $3.($		ls 💢	Yes
- OR - IR Therm ID: Expires: (for solid samples) Corrected Sample Temperatu	/ /20 Observed: IR Gun Daily Offset: Ire (IR Observed + IR Offset):		p OK?	No N/A
If sample is noted $@ \leq 0.0$ °C, is the		Y	es No 🗙	N/A
Was a Chain of Custody (CoC) Provided?		Y Y	es No	N/A
Was the CoC correctly filled out? (If No, document below)		М, К	'es No	N/A
Were the sample containers in good condition (not broker	n or leaking)?	Σį Υ	′es No	N/A
Are all samples within 36 hours of collection?		Y	/es No	N/A
Method of Shipment: Hand Delivered,	🗌 FedEx, 🗌 UPS, 🕅 Othe	er: Alv Cal	rg0	N/A
	(The following exceptions we	ere noted)		
Client was notified on: Client contac	t:			
Resolution to Exception:				

CHAIN OF CUSTODY RECORD - FOR AQUATIC TOXICITY	ATIC TOXICITY TESTING	PULATINS FUILOUT	
client: Northern Star (Pay Lic NPDE	NPDES# AX 0053341		ivironment lesung northwest, LLC
Address: po Bax 145		Ship Samples to:	
ction AK 99737	Composite S		Eurofins Environment Testing NW
Samp	Samples/Hour Volume/Sample	Atter	Attention: Aquatic Toxicology Laboratory
Contact Person: Northern Kelhone. Initiated:	Date	Corv	Corvallis, OR 97330
-2760	Date	Phor	Phone: 541-243-6137
PO# 7040677	Chilled During Collection		
		Analysis Required / Comments	omments
	ronic Iic	ic bi bi bi bi bi bi bi bi bi bi bi bi bi	
Sample	Ders d Aci ld Ch loute Acute	vcute ute rronic tronic tronic tronic troni	. Concentration
Date Comr	4 o 4 o 5 ortio 5 ortio 10 ortio 10 ortio 10 ortio 10 ortio 10 ortio 10 ortio 10 ortio 1	Trout V SHM A AB Ac AB Ac AB Ac AYS A AYS A AYS A AYS A A AS A AS A A A A A A A A A A A A A	Comments
Outertrutt 6/12/22 06:27	2 De allonov V		
Dutp. 11 001-WET			
Sampled By & Title (Please sign and print name) Mrthhey, Orews Enviro Socc, M	Date/Time Relinquished By 6/22/22 7:30	By (Please sign and print name) د	Date/Time
Received By (Please sign and phint name)	Date/Time Relinquished By	By (Please sign and print name)	Date/Time
Received By (Please sign and print name)	ЭГ	By (Please sign and print name)	Date/Time
Received By (Please sign and print name)	Date/Time Shipped Via	Fed-Ex Hand Other	Shipping # COC Bioassay as of 020522
Work Authorized By (Please sign and print name)			Dac Col

Page 31

eurofins Environment Testing America	Sample Receipt Record
Batch Number: <u>B5380-05</u> Date Received:	6125122
Client/Project: Northern Star - Payo Received By:	10 ¹ /
Were custody seals intact?	1. Yes No N/A
Packing Material:	Ic Blue Ice Box
Temperature: Digital Therm ID: 269 Expires: 9/9/2022 Observed: 2:	c Is 🗹 Yes
- OR - IR Therm ID: Expires: / /20 Observed: (for solid samples) IR Gun Daily Offset: Corrected Sample Temperature (IR Observed + IR Offset):	
If sample is noted @ $\leq$ 0.0 °C, is the sample frozen or partially frozer	1? Yes No 🕅 N/A
Was a Chain of Custody (CoC) Provided?	Yes No N/A
Was the CoC correctly filled out? (If No, document below)	Yes No N/A
Were the sample containers in good condition (not broken or leaking)?	Yes No N/A
Are all samples within 36 hours of collection?	Ves No N/A
Method of Shipment: 🗍 Hand Delivered, 🗌 FedEx, 🗌 UPS, 🗐 C	ther: <u>Air Carge</u> N/A
Sample Exception Report (The following exceptions	V
Client was notified on: Client contact:	
Resolution to Exception:	

CHAIN OF CUSTODY RECORD - FOR AQUATIC TOXICITY	DY RECORD - F	OR AQUATIC		TESTING	eurotins		Eurofins Environment Testing Northwest. LLC
Client: Northern Star	$\sim$	fogo ric NPDES#	AK OC	0053341			0
Dei	100, AK 91737	22	Composite	Composite Sample Information	u	Eurofin	Eurofins Environment Testing NW
		Samples/Hour	Hour	Volume/Sample		Attentio	Attention: Aquatic Toxicology Laboratory
Contact Person: Nathau	an Kehoe	I otal Hours- Initiated: D	Date	Time		Corvalli	Corvallis, OR 97330
Phone: 107-895-2760	-2760	Ended:	Date	Time		Phone:	Phone: 541-243-6137
2		Chilled Du	Chilled During Collection			Analysis Boardinad / Commants	
			5	te te buic	e Diric	Vinc Vaste Asste	
			# of Sontainers 	athead A athead C erio Acu terio Chro tro Chro A sinnia A	rout Acut MH5 MH5 MH5 Acute NYS Acute	VYS Chrc Jgae W ZBH AC V ZBH AV	connents
Sample ID Date	06632 Comp.		65386		V V S S	D ≠ V	
						· · · · · · · · · · · · · · · · · · ·	
						·····	,
				· · ·			
Sampled By & Title Maid.au kelue - Env. L	(Please sign and print name)	rint name)	Date/Time	07'20	By (Please sign and print name)	ld print name)	Date/Time
Received By Druku Vau waar	in and	print hame) N) @KUN&}2	ate/Time /25/22	Helinguished By	By (Please sign and print name)	id print name)	Date/Time
Received By	(Please sign and print name)	int name)	Date/Time	Relinquished	By (Please sign and print name)	ld print name)	Date/Time
Received By	(Please sign and print name)	int name)	Date/Time	Shipped Via UPS Bus	s Fed-Ex Hand	Other	Shipping # COC_Bioassay_as of 020522
Work Authorized Bv	(Please sign and print name)	int name)	Remarks				Doc Control ID: ASL612-0519

Page 33

	FAI 634	_	76	674													02	7-6342 7674
	Name and Address ern Star (Po		<u>۔</u>			Shipper's Ac 27442	486	nt Numbe 6983	er		egotiab							
Mile 5	0 Pogo Mile	90 R	08	ad	<b>1</b>	Customer 48	s ID   92	Number 7		Issue	Way ₁ թ√	bil	I	7	41n	ska.		
Delta	Junction, Al					-+0	52	,		laane	y					CARGO		
USA															BOX	58900 SEATTLE, WA 9		
				Tel:	90768					<u> </u>				800	0-225-	2752 ALASKACARGO.(	СОМ	
-	e's Name and Addr		:0			Consignee's /	Accol	unt Num	ber	Also r	notify							•
	DELIVERT	SE	-							1								
	ALLIS, OR	97	<b>7</b> 3	39														
USA																		
				Tel:	541 93	26 7300										Tel:		
Issuing Ca	arrier's Agent and C	City									unting Ir thern		^{iation} r (Pogo					48927
													n (Pogo Mile R	·				
													n, AK 9					
Agent's IA	TA Code				Δ	ccount No.				- US	4							
											N/204	067	2					
	Departure (Addr. o	f Firs	st C	arrier) a	nd Requeste	d Routing					ldStre		-					
Fairba ⊺₀	By First Carrier					То / Ву	<del></del>	To / E	ly I	Curre	ncy		WT/VAL		Other	Declared Value For Carria	je I	Declared Value For Customs
	Alaska Airl	ine	es			PDX	As				D P	- H		X		NVD	-	NCV
Airport of	Destination				Flight/Date		Flig	ht/Date			unt of In			ſ`	- I			
Portla					AS ´	124/24		AS 5	11/25		X	(X						
Handling	Information STORE IN (	201	n	ER V			-											
	STORE IN C	50					-										i	SCI
No of	Gross	kg	Τ						Rate /				Total					Quantity of Goods
Pieces	s Weight Ib Item No. Weight						Charg	e			IUIAI	1		(Incl. E	Dimen	sions or Volume)		
1							5.0					A	AS AG	R	EED	WATER SA	١MF	PLES
																Dims: 24 x 1	3 v	14 x 1
																	5 .	
		$\parallel$														GSX COL		
1	75.0											А	S AG	RE	ED	Volume: 2.52	8	
Prepaid		We	eigt	nt Charg	e	Collec	t Ot	ther Cha	rges		L							
	AS AGREE		_					хвс	-	50								
		Valu	Jati	ion Char	ge		1											
							4											
				Tax														
	Total (	Othe	r Cl	harges D	Due Agent		s	hipper c	ertifies that	the part	iculars of	on the	e face her	reof	are corr	ect and that insofar as an	у раг	t of the consignment
							C	ontains	dangerous	goods	, such j	part i	s proper	ly de	escribe	d by name and is in prop lations. I consent to the	er col	ndition for carriage
	Total C	ther	Ch	arges D	ue Carrier			-	Norther						2	Signature of Shipper		-
L								LC			<b>v</b> .	5-	,			222	/	/
							[		HIS SHIPN			от со	ONTAIN		Γ	THIS SHIPMENT DOE		
	Total Prepaid				Total Co	llect	┼╙		DANGEROL	JS GOO	DS					DANGEROUS GOOD	S	
	AS AGREE	D																
							1:	24 Ju	ın 2022	2 10	:50		F	air	banl	ks A	۱as	ska Airlines
							1-1	Execute	d On (Date)					at (P	lace)	Signature of		ng Carrier or its Agent
																	02	27-6342 7674



# APPENDIX E – 2022 FISH TISSUE TESTING LABORATORY REPORTS

# 🛟 eurofins

# Environment Testing America

# **ANALYTICAL REPORT**

Eurofins Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

## Laboratory Job ID: 580-118295-1

Client Project/Site: Chinook - Discrete and Composites-2022

### For:

Northern Star (Pogo) LLC PO BOX 145 Delta Junction, Alaska 99737

Attn: Nathan Kehoe

Shind cum-

Authorized for release by: 10/19/2022 4:06:24 PM

Sheri Cruz, Project Manager I (253)922-2310 Sheri.Cruz@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

LINKS

Review your project results through

EOL

Have a Question?

www.eurofinsus.com/Env

Visit us at:

Ask— The Expert

Results relate only to the items tested and the sample(s) as received by the laboratory.

# **Table of Contents**

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	
Client Sample Results	6
QC Sample Results	30
Chronicle	34
Certification Summary	39
Sample Summary	40
Chain of Custody	41
Receipt Checklists	43

Eurofins Seattle 10/19/2022

3

5

#### Job ID: 580-118295-1

#### Laboratory: Eurofins Seattle

Narrative

#### **CASE NARRATIVE**

#### Client: Northern Star (Pogo) LLC Project: Chinook - Discrete and Composites-2022 Report Number: 580-118295-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) resulting from a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are an unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes within the calibration range of the instrument or that reduces the interferences thereby enabling the quantification of target analytes.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

#### **RECEIPT**

The samples were received on 09/27/2022; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was -2.3 C.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

#### **RECEIPT EXCEPTIONS**

There was a sample designated SW01F01, water, that was actually a fish sample. It is sample SW01F01 (580-118295-14).

Method 7471A: Insufficient sample volume was provided for the following sample for the 7471A analysis: SW01F08 (580-118295-21).

#### TOTAL METALS (ICPMS)

Samples BAIT (580-118295-1), SW12F01 (580-118295-3), SW12F02 (580-118295-4), SW12F03 (580-118295-5), SW12F04 (580-118295-6), SW12F05 (580-118295-7), SW12F06 (580-118295-8), SW12F07 (580-118295-9), SW12F08 (580-118295-10), SW12F09 (580-118295-11), SW12F10 (580-118295-12), SW12COMP (580-118295-13), SW01F01 (580-118295-14), SW01F02 (580-118295-15), SW01F03 (580-118295-16), SW01F04 (580-118295-17), SW01F05 (580-118295-18), SW01F06 (580-118295-19), SW01F07 (580-118295-20), SW01F08 (580-118295-21), SW01F09 (580-118295-22), SW01F10 (580-118295-23) and SW01COMP (580-118295-24) were analyzed for total metals (ICPMS) in accordance with EPA SW-846 Method 6020. The samples were prepared on 10/11/2022 and analyzed on 10/12/2022 and 10/14/2022.

Samples BAIT (580-118295-1)[10X], SW12F01 (580-118295-3)[10X], SW12F02 (580-118295-4)[10X], SW12F03 (580-118295-5)[10X], SW12F04 (580-118295-6)[10X], SW12F05 (580-118295-7)[10X] and SW12F06 (580-118295-8)[10X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### TOTAL RECOVERABLE METALS (ICPMS)

Sample SW-FB2 (580-118295-2) was analyzed for total recoverable metals (ICPMS) in accordance with EPA SW-846 Method 6020. The samples were prepared on 10/14/2022 and analyzed on 10/17/2022.

## Job ID: 580-118295-1 (Continued)

#### Laboratory: Eurofins Seattle (Continued)

Sample SW-FB2 (580-118295-2)[5X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### TOTAL MERCURY

Sample SW-FB2 (580-118295-2) was analyzed for total mercury in accordance with EPA SW-846 Methods 7470A. The samples were prepared and analyzed on 10/06/2022.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### TOTAL MERCURY

Samples BAIT (580-118295-1), SW12F01 (580-118295-3), SW12F02 (580-118295-4), SW12F03 (580-118295-5), SW12F04 (580-118295-6), SW12F05 (580-118295-7), SW12F06 (580-118295-8), SW12F07 (580-118295-9), SW12F08 (580-118295-10), SW12F09 (580-118295-11), SW12F10 (580-118295-12), SW12COMP (580-118295-13), SW01F01 (580-118295-14), SW01F02 (580-118295-15), SW01F03 (580-118295-16), SW01F04 (580-118295-17), SW01F05 (580-118295-18), SW01F06 (580-118295-19), SW01F07 (580-118295-20), SW01F09 (580-118295-22), SW01F10 (580-118295-23) and SW01COMP (580-118295-24) were analyzed for total mercury in accordance with EPA SW-846 Method 7471A. The samples were prepared on 10/11/2022 and analyzed on 10/13/2022 and 10/14/2022.

A deviation from the Standard Operating Procedure (SOP) occurred. Details are as follows: Due to lack of sample volume, an initial mass of less than 0.6g was used. Samples SW12F07 (580-118295-9), SW01F03 (580-118295-16), SW01F04 (580-118295-17), SW01F05 (580-118295-18), SW01F06 (580-118295-19), SW01F07 (580-118295-20), SW01F09 (580-118295-22) and SW01F10 (580-118295-23).

The following sample did not have enough sample volume for an initial mass of 0.6g. SW12F06 (580-118295-8)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

# **Definitions/Glossary**

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites-2022 Job ID: 580-118295-1

4

#### Qualifiers

**Metals** Qualifier **Qualifier Description** J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. Glossary Abbreviation These commonly used abbreviations may or may not be present in this report. ¤ Listed under the "D" column to designate that the result is reported on a dry weight basis Percent Recovery %R CFL **Contains Free Liquid** CFU **Colony Forming Unit** CNF Contains No Free Liquid Duplicate Error Ratio (normalized absolute difference) DER Dil Fac **Dilution Factor** DL Detection Limit (DoD/DOE) DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DLC Decision Level Concentration (Radiochemistry) Estimated Detection Limit (Dioxin) EDL LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE) MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry) MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL NC Not Calculated ND Not Detected at the reporting limit (or MDL or EDL if shown) NEG Negative / Absent POS Positive / Present PQL Practical Quantitation Limit PRES Presumptive QC **Quality Control** Relative Error Ratio (Radiochemistry) RER Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)

- TEQ Toxicity Equivalent Quotient (Dioxin)
- TNTC Too Numerous To Count

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites-2022 Job ID: 580-118295-1

Matrix: Tissue

Lab Sample ID: 580-118295-1

#### Client Sample ID: BAIT Date Collected: 09/19/22 15:00 Date Received: 09/27/22 10:30

Method: SW846 6020	- Metals (ICP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.24	0.033	mg/Kg		10/11/22 10:55	10/12/22 17:32	10
Arsenic	0.26		0.24	0.048	mg/Kg		10/11/22 10:55	10/12/22 17:32	10
Cadmium	ND		0.38	0.037	mg/Kg		10/11/22 10:55	10/12/22 17:32	10
Copper	56		0.48	0.11	mg/Kg		10/11/22 10:55	10/12/22 17:32	10
Lead	ND		0.24	0.023	mg/Kg		10/11/22 10:55	10/12/22 17:32	10
Nickel	ND		0.24	0.093	mg/Kg		10/11/22 10:55	10/12/22 17:32	10
Selenium	2.6		0.72	0.14	mg/Kg		10/11/22 10:55	10/12/22 17:32	10
Silver	0.095	J	0.096	0.0096	mg/Kg		10/11/22 10:55	10/12/22 17:32	10
- Method: SW846 7471	A - Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.030	0.0089	mg/Kg		10/11/22 10:57	10/13/22 16:30	1

# Eurofins Seattle

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites-2022

#### **Client Sample ID: SW-FB2** Date Collected: 09/21/22 10:08 Date Received: 09/27/22 10:30

### Lab Sample ID: 580-118295-2 Matrix: Water

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.0050	0.0010	mg/L		10/14/22 18:29	10/17/22 14:32	5
Antimony	ND		0.0040	0.00063	mg/L		10/14/22 18:29	10/17/22 14:32	5
Cadmium	ND		0.0020	0.00019	mg/L		10/14/22 18:29	10/17/22 14:32	5
Copper	ND		0.010	0.0030	mg/L		10/14/22 18:29	10/17/22 14:32	5
Lead	0.00034	J	0.0020	0.00020	mg/L		10/14/22 18:29	10/17/22 14:32	5
Nickel	ND		0.015	0.00063	mg/L		10/14/22 18:29	10/17/22 14:32	5
Selenium	ND		0.040	0.010	mg/L		10/14/22 18:29	10/17/22 14:32	5
Silver	ND		0.0020	0.00013	mg/L		10/14/22 18:29	10/17/22 14:32	5
Method: SW846 7470	A - Mercury (CVAA)								
Analyte	• • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00030	0.00015	ma/L		10/06/22 11:25	10/06/22 17:53	1

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites-2022

#### Client Sample ID: SW12F01 Date Collected: 09/21/22 10:30 Date Received: 09/27/22 10:30

Method: SW846 6020 - Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.25	0.034	mg/Kg		10/11/22 10:55	10/12/22 17:35	10
Arsenic	ND		0.25	0.050	mg/Kg		10/11/22 10:55	10/12/22 17:35	10
Cadmium	ND		0.40	0.038	mg/Kg		10/11/22 10:55	10/12/22 17:35	10
Copper	2.2		0.50	0.11	mg/Kg		10/11/22 10:55	10/12/22 17:35	10
Lead	ND		0.25	0.024	mg/Kg		10/11/22 10:55	10/12/22 17:35	10
Nickel	ND		0.25	0.096	mg/Kg		10/11/22 10:55	10/12/22 17:35	10
Selenium	0.37	J	0.75	0.14	mg/Kg		10/11/22 10:55	10/12/22 17:35	10
Silver	ND		0.10	0.010	mg/Kg		10/11/22 10:55	10/12/22 17:35	10
_ Method: SW846 7471A	- Mercury (CVAA)								
Analyte	• • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.011	J	0.025	0.0075	mg/Kg		10/11/22 10:57	10/13/22 16:32	1

10/19/2022

Job ID: 580-118295-1

Matrix: Tissue

Lab Sample ID: 580-118295-3

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites-2022

#### Client Sample ID: SW12F02 Date Collected: 09/21/22 10:30 Date Received: 09/27/22 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.25	0.033	mg/Kg		10/11/22 10:55	10/12/22 17:39	10
Arsenic	0.050	J	0.25	0.049	mg/Kg		10/11/22 10:55	10/12/22 17:39	10
Cadmium	ND		0.39	0.038	mg/Kg		10/11/22 10:55	10/12/22 17:39	10
Copper	0.54		0.49	0.11	mg/Kg		10/11/22 10:55	10/12/22 17:39	10
Lead	ND		0.25	0.024	mg/Kg		10/11/22 10:55	10/12/22 17:39	10
Nickel	ND		0.25	0.095	mg/Kg		10/11/22 10:55	10/12/22 17:39	10
Selenium	0.33	J	0.74	0.14	mg/Kg		10/11/22 10:55	10/12/22 17:39	10
Silver	ND		0.098	0.0098	mg/Kg		10/11/22 10:55	10/12/22 17:39	10
Method: SW846 7471	A - Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.019	J	0.028	0.0085	mg/Kg		10/11/22 10:57	10/13/22 16:39	1

Job ID: 580-118295-1

Matrix: Tissue

Lab Sample ID: 580-118295-4

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites-2022

#### Client Sample ID: SW12F03 Date Collected: 09/21/22 10:30 Date Received: 09/27/22 10:30

	Metals (ICP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.24	0.033	mg/Kg		10/11/22 10:55	10/12/22 17:42	10
Arsenic	ND		0.24	0.049	mg/Kg		10/11/22 10:55	10/12/22 17:42	10
Cadmium	ND		0.39	0.038	mg/Kg		10/11/22 10:55	10/12/22 17:42	10
Copper	0.55		0.49	0.11	mg/Kg		10/11/22 10:55	10/12/22 17:42	10
Lead	ND		0.24	0.023	mg/Kg		10/11/22 10:55	10/12/22 17:42	10
Nickel	ND		0.24	0.094	mg/Kg		10/11/22 10:55	10/12/22 17:42	10
Selenium	0.36	J	0.73	0.14	mg/Kg		10/11/22 10:55	10/12/22 17:42	10
Silver	ND		0.098	0.0098	mg/Kg		10/11/22 10:55	10/12/22 17:42	10
	- Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.024	J	0.028	0.0084	mg/Kg		10/11/22 10:57	10/13/22 16:41	1

10/19/2022

Job ID: 580-118295-1

Matrix: Tissue

Lab Sample ID: 580-118295-5

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites-2022

#### Client Sample ID: SW12F04 Date Collected: 09/21/22 10:30 Date Received: 09/27/22 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.23	0.031	mg/Kg		10/11/22 10:55	10/12/22 17:21	10
Arsenic	ND		0.23	0.046	mg/Kg		10/11/22 10:55	10/12/22 17:21	10
Cadmium	ND		0.37	0.035	mg/Kg		10/11/22 10:55	10/12/22 17:21	10
Copper	0.43	J	0.46	0.10	mg/Kg		10/11/22 10:55	10/12/22 17:21	10
Lead	ND		0.23	0.022	mg/Kg		10/11/22 10:55	10/12/22 17:21	10
Nickel	ND		0.23	0.089	mg/Kg		10/11/22 10:55	10/12/22 17:21	10
Selenium	0.32	J	0.69	0.13	mg/Kg		10/11/22 10:55	10/12/22 17:21	10
Silver	ND		0.092	0.0092	mg/Kg		10/11/22 10:55	10/12/22 17:21	10
	- Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.025	J	0.028	0.0083	mg/Kg		10/11/22 10:57	10/13/22 16:43	1

10/19/2022

Job ID: 580-118295-1

Matrix: Tissue

Lab Sample ID: 580-118295-6

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites-2022

#### Client Sample ID: SW12F05 Date Collected: 09/21/22 10:30 Date Received: 09/27/22 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.24	0.033	mg/Kg		10/11/22 10:55	10/12/22 17:25	10
Arsenic	0.061	J	0.24	0.048	mg/Kg		10/11/22 10:55	10/12/22 17:25	10
Cadmium	ND		0.38	0.037	mg/Kg		10/11/22 10:55	10/12/22 17:25	10
Copper	0.68		0.48	0.11	mg/Kg		10/11/22 10:55	10/12/22 17:25	10
Lead	ND		0.24	0.023	mg/Kg		10/11/22 10:55	10/12/22 17:25	10
Nickel	ND		0.24	0.092	mg/Kg		10/11/22 10:55	10/12/22 17:25	10
Selenium	0.42	J	0.72	0.14	mg/Kg		10/11/22 10:55	10/12/22 17:25	10
Silver	ND		0.096	0.0096	mg/Kg		10/11/22 10:55	10/12/22 17:25	10
Method: SW846 7471	A - Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.026	0.0077	mg/Kg		10/11/22 10:57	10/13/22 16:45	1

Lab Sample ID: 580-118295-7

Job ID: 580-118295-1

Matrix: Tissue

5

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites-2022

#### Client Sample ID: SW12F06 Date Collected: 09/21/22 10:30 Date Received: 09/27/22 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.24	0.033	mg/Kg		10/11/22 10:55	10/12/22 17:28	10
Arsenic	ND		0.24	0.048	mg/Kg		10/11/22 10:55	10/12/22 17:28	10
Cadmium	ND		0.38	0.037	mg/Kg		10/11/22 10:55	10/12/22 17:28	10
Copper	0.50		0.48	0.11	mg/Kg		10/11/22 10:55	10/12/22 17:28	10
Lead	ND		0.24	0.023	mg/Kg		10/11/22 10:55	10/12/22 17:28	10
Nickel	ND		0.24	0.093	mg/Kg		10/11/22 10:55	10/12/22 17:28	10
Selenium	0.34	J	0.72	0.14	mg/Kg		10/11/22 10:55	10/12/22 17:28	10
Silver	ND		0.096	0.0096	mg/Kg		10/11/22 10:55	10/12/22 17:28	10
	A - Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.038	J	0.066	0.020	mg/Kg		10/11/22 10:57	10/13/22 16:47	1

10/19/2022

Job ID: 580-118295-1

Matrix: Tissue

Lab Sample ID: 580-118295-8

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites-2022

#### Client Sample ID: SW12F07 Date Collected: 09/21/22 10:30 Date Received: 09/27/22 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.25	0.034	mg/Kg		10/11/22 10:45	10/14/22 15:17	10
Arsenic	ND		0.25	0.049	mg/Kg		10/11/22 10:45	10/14/22 15:17	10
Cadmium	ND		0.39	0.038	mg/Kg		10/11/22 10:45	10/14/22 15:17	10
Copper	0.30	J	0.49	0.11	mg/Kg		10/11/22 10:45	10/14/22 15:17	10
Lead	ND		0.25	0.024	mg/Kg		10/11/22 10:45	10/14/22 15:17	10
Nickel	ND		0.25	0.095	mg/Kg		10/11/22 10:45	10/14/22 15:17	10
Selenium	0.21	J	0.74	0.14	mg/Kg		10/11/22 10:45	10/14/22 15:17	10
Silver	ND		0.099	0.0099	mg/Kg		10/11/22 10:45	10/14/22 15:17	10
Method: SW846 7471	A - Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.074	0.022	mg/Kg		10/11/22 10:51	10/14/22 17:09	1

**Eurofins Seattle** 

5

Job ID: 580-118295-1

Matrix: Tissue

Lab Sample ID: 580-118295-9

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites-2022

#### Client Sample ID: SW12F08 Date Collected: 09/21/22 10:30 Date Received: 09/27/22 10:30


#### Lab Sample ID: 580-118295-10 Matrix: Tissue

watrix: fissue

Job ID: 580-118295-1

#### Method: SW846 6020 - Metals (ICP/MS) 5 Analyte **Result Qualifier** RL MDL Unit D Prepared Dil Fac Analyzed 0.033 mg/Kg Antimony ND 0.24 10/11/22 10:45 10/14/22 15:21 10 Arsenic ND 0.24 10/11/22 10:45 10/14/22 15:21 10 0.048 mg/Kg Cadmium ND 0.39 0.037 mg/Kg 10/11/22 10:45 10/14/22 15:21 10 0.11 mg/Kg 10/11/22 10:45 10/14/22 15:21 10 Copper 0.59 0.48 Lead ND 0.24 0.023 mg/Kg 10/11/22 10:45 10/14/22 15:21 10 Nickel 0.24 0.093 mg/Kg 10 ND 10/11/22 10:45 10/14/22 15:21 Selenium 0.28 0.73 0.14 mg/Kg 10/11/22 10:45 10/14/22 15:21 10 .1 0.097 Silver ND 0.0097 mg/Kg 10/11/22 10:45 10/14/22 15:21 10 Method: SW846 7471A - Mercury (CVAA) RL MDL Unit Analyte **Result Qualifier** D Prepared Analyzed Dil Fac 0.028 0.028 0.0083 mg/Kg 10/11/22 10:51 10/14/22 17:11 Mercury 1

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites-2022

#### Client Sample ID: SW12F09 Date Collected: 09/21/22 10:30 Date Received: 09/27/22 10:30

Lab Sample	ID:	580-11	8295-11

**Matrix: Tissue** 

Job ID: 580-118295-1

#### Method: SW846 6020 - Metals (ICP/MS) Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac 0.034 mg/Kg Antimony ND 0.25 10/11/22 10:45 10/14/22 15:24 10 Arsenic ND 0.25 10/11/22 10:45 10/14/22 15:24 10 0.049 mg/Kg Cadmium ND 0.39 0.038 mg/Kg 10/11/22 10:45 10/14/22 15:24 10 0.49 0.11 mg/Kg 10/11/22 10:45 10/14/22 15:24 10 Copper 0.40 J Lead ND 0.25 0.024 mg/Kg 10/11/22 10:45 10/14/22 15:24 10 Nickel 0.25 0.095 mg/Kg 10/11/22 10:45 10/14/22 15:24 10 ND Selenium 0.29 0.74 0.14 mg/Kg 10/11/22 10:45 10/14/22 15:24 10 .1 0.099 Silver ND 0.0099 mg/Kg 10/11/22 10:45 10/14/22 15:24 10 Method: SW846 7471A - Mercury (CVAA) RL MDL Unit Analyte **Result Qualifier** D Prepared Analyzed Dil Fac 0.025 0.025 0.0076 mg/Kg 10/11/22 10:51 10/14/22 17:13 Mercury 1

**Eurofins Seattle** 

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites-2022

#### Client Sample ID: SW12F10 Date Collected: 09/21/22 10:30 Date Received: 09/27/22 10:30

Job ID: 580-118295-1
----------------------

### Lab Sample ID: 580-118295-12 Matrix: Tissue

5

Method: SW846 6020 Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.25	0.033	mg/Kg		10/11/22 10:45		10
Arsenic	ND		0.25	0.049	mg/Kg		10/11/22 10:45	10/14/22 15:28	10
Cadmium	ND		0.39	0.038	mg/Kg		10/11/22 10:45	10/14/22 15:28	10
Copper	0.47	J	0.49	0.11	mg/Kg		10/11/22 10:45	10/14/22 15:28	10
Lead	ND		0.25	0.024	mg/Kg		10/11/22 10:45	10/14/22 15:28	10
Nickel	ND		0.25	0.095	mg/Kg		10/11/22 10:45	10/14/22 15:28	10
Selenium	0.26	J	0.74	0.14	mg/Kg		10/11/22 10:45	10/14/22 15:28	10
Silver	ND		0.098	0.0098	mg/Kg		10/11/22 10:45	10/14/22 15:28	10
Method: SW846 7471	A - Mercury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.023	J	0.028	0.0084	mg/Kg		10/11/22 10:51	10/14/22 17:20	1

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites-2022

#### Client Sample ID: SW12COMP Date Collected: 09/21/22 10:30 Date Received: 09/27/22 10:30

Job ID: 580-118295-1

#### Lab Sample ID: 580-118295-13 Matrix: Tissue

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.25	0.034	mg/Kg		10/11/22 10:45	10/14/22 15:31	10
Arsenic	0.055	J	0.25	0.049	mg/Kg		10/11/22 10:45	10/14/22 15:31	10
Cadmium	ND		0.40	0.038	mg/Kg		10/11/22 10:45	10/14/22 15:31	10
Copper	0.56		0.49	0.11	mg/Kg		10/11/22 10:45	10/14/22 15:31	10
Lead	ND		0.25	0.024	mg/Kg		10/11/22 10:45	10/14/22 15:31	10
Nickel	ND		0.25	0.095	mg/Kg		10/11/22 10:45	10/14/22 15:31	10
Selenium	0.17	J	0.74	0.14	mg/Kg		10/11/22 10:45	10/14/22 15:31	10
Silver	ND		0.099	0.0099	mg/Kg		10/11/22 10:45	10/14/22 15:31	10
Method: SW846 7471	A - Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.0097	J	0.026	0.0078	mg/Kg		10/11/22 10:51	10/14/22 17:22	1

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites-2022

#### Client Sample ID: SW01F01 Date Collected: 09/21/22 16:10 Date Received: 09/27/22 10:30

### Lab Sample ID: 580-118295-14 Matrix: Tissue

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.24	0.033	mg/Kg		10/11/22 10:45	10/14/22 15:35	10
Arsenic	ND		0.24	0.049	mg/Kg		10/11/22 10:45	10/14/22 15:35	10
Cadmium	ND		0.39	0.038	mg/Kg		10/11/22 10:45	10/14/22 15:35	10
Copper	1.9		0.49	0.11	mg/Kg		10/11/22 10:45	10/14/22 15:35	10
Lead	ND		0.24	0.024	mg/Kg		10/11/22 10:45	10/14/22 15:35	10
Nickel	ND		0.24	0.095	mg/Kg		10/11/22 10:45	10/14/22 15:35	10
Selenium	0.26	J	0.73	0.14	mg/Kg		10/11/22 10:45	10/14/22 15:35	10
Silver	ND		0.098	0.0098	mg/Kg		10/11/22 10:45	10/14/22 15:35	10
Method: SW846 7471	A - Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.0085	J	0.028	0.0085	mg/Kg		10/11/22 10:51	10/14/22 17:24	1

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites-2022

#### Client Sample ID: SW01F02 Date Collected: 09/21/22 16:10 Date Received: 09/27/22 10:30

Lab Sample	ID:	580-11	8295-15

Matrix: Tissue

5

Job ID: 580-118295-1

#### Method: SW846 6020 - Metals (ICP/MS) Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac Antimony ND 0.25 0.033 mg/Kg 10/11/22 10:45 10/14/22 15:38 10 0.25 Arsenic ND 10/11/22 10:45 10/14/22 15:38 10 0.049 mg/Kg Cadmium ND 0.39 0.038 mg/Kg 10/11/22 10:45 10/14/22 15:38 10 0.49 0.11 mg/Kg 10/11/22 10:45 10/14/22 15:38 10 Copper 0.62 Lead ND 0.25 0.024 mg/Kg 10/11/22 10:45 10/14/22 15:38 10 Nickel 0.25 0.095 mg/Kg 10/11/22 10:45 10/14/22 15:38 10 ND Selenium 0.46 0.74 0.14 mg/Kg 10/11/22 10:45 10/14/22 15:38 10 .1 Silver 0.098 0.0098 mg/Kg ND 10/11/22 10:45 10/14/22 15:38 10 Method: SW846 7471A - Mercury (CVAA) **Result Qualifier** RL MDL Unit Analyte D Prepared Analyzed Dil Fac 0.029 0.023 J 0.0088 mg/Kg 10/11/22 10:51 10/14/22 17:26 Mercury 1

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites-2022

#### Client Sample ID: SW01F03 Date Collected: 09/21/22 16:10 Date Received: 09/27/22 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.25	0.034	mg/Kg		10/11/22 10:45	10/14/22 15:42	10
Arsenic	ND		0.25	0.050	mg/Kg		10/11/22 10:45	10/14/22 15:42	10
Cadmium	ND		0.40	0.038	mg/Kg		10/11/22 10:45	10/14/22 15:42	10
Copper	0.39	J	0.50	0.11	mg/Kg		10/11/22 10:45	10/14/22 15:42	10
Lead	0.029	J	0.25	0.024	mg/Kg		10/11/22 10:45	10/14/22 15:42	10
Nickel	ND		0.25	0.096	mg/Kg		10/11/22 10:45	10/14/22 15:42	10
Selenium	0.29	J	0.74	0.14	mg/Kg		10/11/22 10:45	10/14/22 15:42	10
Silver	ND		0.099	0.0099	mg/Kg		10/11/22 10:45	10/14/22 15:42	10
Method: SW846 7471	A - Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Mercury	ND		0.093	0.028	mg/Kg		10/11/22 10:51	10/14/22 17:28	1	

Job ID: 580-118295-1

Matrix: Tissue

Lab Sample ID: 580-118295-16

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites-2022

#### **Client Sample ID: SW01F04** Date Collected: 09/21/22 16:10 Date Received: 09/27/22 10:30

_

### Lab Sample ID: 580-118295-17 Matrix: Tissue

5

Job ID: 580-118295-1

Method: SW846 6020 -	Metals (ICP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.25	0.034	mg/Kg		10/11/22 10:45	10/14/22 15:46	10
Arsenic	ND		0.25	0.050	mg/Kg		10/11/22 10:45	10/14/22 15:46	10
Cadmium	ND		0.40	0.038	mg/Kg		10/11/22 10:45	10/14/22 15:46	10
Copper	0.35	J	0.50	0.11	mg/Kg		10/11/22 10:45	10/14/22 15:46	10
Lead	ND		0.25	0.024	mg/Kg		10/11/22 10:45	10/14/22 15:46	10
Nickel	ND		0.25	0.096	mg/Kg		10/11/22 10:45	10/14/22 15:46	10
Selenium	0.15	J	0.75	0.14	mg/Kg		10/11/22 10:45	10/14/22 15:46	10
Silver	ND		0.10	0.010	mg/Kg		10/11/22 10:45	10/14/22 15:46	10
- Method: SW846 7471A	- Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.026	J	0.031	0.0094	mg/Kg		10/11/22 10:51	10/14/22 17:30	1

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites-2022

#### Client Sample ID: SW01F05 Date Collected: 09/21/22 16:10 Date Received: 09/27/22 10:30

Lab	Sample	ID:	580-118295-18

Matrix: Tissue

Job ID: 580-118295-1

Method: SW846 6020	- Metals (ICP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.25	0.034	mg/Kg		10/11/22 10:45	10/14/22 15:49	10
Arsenic	ND		0.25	0.050	mg/Kg		10/11/22 10:45	10/14/22 15:49	10
Cadmium	ND		0.40	0.038	mg/Kg		10/11/22 10:45	10/14/22 15:49	10
Copper	0.38	J	0.50	0.11	mg/Kg		10/11/22 10:45	10/14/22 15:49	10
Lead	ND		0.25	0.024	mg/Kg		10/11/22 10:45	10/14/22 15:49	10
Nickel	ND		0.25	0.096	mg/Kg		10/11/22 10:45	10/14/22 15:49	10
Selenium	0.23	J	0.75	0.14	mg/Kg		10/11/22 10:45	10/14/22 15:49	10
Silver	ND		0.10	0.010	mg/Kg		10/11/22 10:45	10/14/22 15:49	10
	A - Mercury (CVAA)								
Analyte	• • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.36	0.11	mg/Kg		10/11/22 10:51	10/14/22 17:33	1

**Eurofins Seattle** 

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites-2022

#### Client Sample ID: SW01F06 Date Collected: 09/21/22 16:10 Date Received: 09/27/22 10:30

Lab Sample	ID:	580-118295-19

Matrix: Tissue

5

Job ID: 580-118295-1

#### Method: SW846 6020 - Metals (ICP/MS) Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac 0.034 mg/Kg Antimony ND 0.25 10/11/22 10:45 10/14/22 16:03 10 Arsenic ND 0.25 0.050 mg/Kg 10/11/22 10:45 10/14/22 16:03 10 Cadmium ND 0.40 0.038 mg/Kg 10/11/22 10:45 10/14/22 16:03 10 0.50 0.11 mg/Kg 10/11/22 10:45 10/14/22 16:03 10 Copper 0.59 Lead ND 0.25 0.024 mg/Kg 10/11/22 10:45 10/14/22 16:03 10 Nickel 0.25 0.096 mg/Kg 10/11/22 10:45 10/14/22 16:03 10 ND Selenium 0.29 0.74 0.14 mg/Kg 10/11/22 10:45 10/14/22 16:03 10 0.099 Silver ND 0.0099 mg/Kg 10/11/22 10:45 10/14/22 16:03 10 Method: SW846 7471A - Mercury (CVAA) RL MDL Unit Analyte **Result Qualifier** D Prepared Analyzed Dil Fac Mercury ND 0.23 0.069 mg/Kg 10/11/22 10:51 10/14/22 17:35 1

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites-2022

#### **Client Sample ID: SW01F07** Date Collected: 09/21/22 16:10 Date Rec

Nickel

Date Received: 09/27/22 10:3	0							
Method: SW846 6020 - Meta	ls (ICP/MS)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND	0.25	0.034	mg/Kg		10/11/22 10:45	10/14/22 16:07	10
Arsenic	ND	0.25	0.050	mg/Kg		10/11/22 10:45	10/14/22 16:07	10
Cadmium	ND	0.40	0.038	mg/Kg		10/11/22 10:45	10/14/22 16:07	10
Copper	0.41 J	0.50	0.11	mg/Kg		10/11/22 10:45	10/14/22 16:07	10
Lead	ND	0.25	0.024	mg/Kg		10/11/22 10:45	10/14/22 16:07	10

0.096 mg/Kg

Method: SW846 7471A - Merc Analyte	ury (CVAA) Result Qua	alifier RL	MDL	Unit	п	Prepared	Analvzed	Dil Fac
Silver	ND	0.099	0.0099	mg/Kg		10/11/22 10:45	10/14/22 16:07	10
Selenium	0.24 J	0.75	0.14	mg/Kg		10/11/22 10:45	10/14/22 16:07	10

ND

0.25

Job ID: 580-118295-1

Matrix: Tissue

Lab Sample ID: 580-118295-20

10/11/22 10:45 10/14/22 16:07

5

10

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites-2022

#### Client Sample ID: SW01F08 Date Collected: 09/21/22 16:10 Date Received: 09/27/22 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.30	0.041	mg/Kg		10/11/22 10:45	10/14/22 16:10	10
Arsenic	ND		0.30	0.060	mg/Kg		10/11/22 10:45	10/14/22 16:10	10
Cadmium	ND		0.48	0.046	mg/Kg		10/11/22 10:45	10/14/22 16:10	10
Copper	0.90		0.60	0.13	mg/Kg		10/11/22 10:45	10/14/22 16:10	10
Lead	ND		0.30	0.029	mg/Kg		10/11/22 10:45	10/14/22 16:10	10
Nickel	ND		0.30	0.12	mg/Kg		10/11/22 10:45	10/14/22 16:10	10
Selenium	0.36	J	0.90	0.17	mg/Kg		10/11/22 10:45	10/14/22 16:10	10
Silver	ND		0.12	0.012	mg/Kg		10/11/22 10:45	10/14/22 16:10	10

Job ID: 580-118295-1

Lab Sample ID: 580-118295-21 Matrix: Tissue

5

10/19/2022

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites-2022

#### Client Sample ID: SW01F09 Date Collected: 09/21/22 16:10 Date Received: 09/27/22 10:30

Lab Sam	ple ID:	580-11	8295-22

Matrix: Tissue

5

Job ID: 580-118295-1

#### Method: SW846 6020 - Metals (ICP/MS) Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac 0.033 mg/Kg Antimony ND 0.25 10/11/22 10:45 10/14/22 16:14 10 0.25 Arsenic ND 10/11/22 10:45 10/14/22 16:14 10 0.049 mg/Kg Cadmium ND 0.39 0.038 mg/Kg 10/11/22 10:45 10/14/22 16:14 10 0.49 0.11 mg/Kg 10/11/22 10:45 10/14/22 16:14 10 Copper 0.52 Lead ND 0.25 0.024 mg/Kg 10/11/22 10:45 10/14/22 16:14 10 Nickel 0.25 0.095 mg/Kg 10/11/22 10:45 10/14/22 16:14 10 ND Selenium 0.34 0.74 0.14 mg/Kg 10/11/22 10:45 10/14/22 16:14 10 .1 0.098 0.0098 mg/Kg Silver ND 10/11/22 10:45 10/14/22 16:14 10 Method: SW846 7471A - Mercury (CVAA) RL MDL Unit Analyte **Result Qualifier** D Prepared Analyzed Dil Fac Mercury ND 0.10 0.030 mg/Kg 10/11/22 10:51 10/14/22 17:39 1

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites-2022

#### **Client Sample ID: SW01F10** Date Collected: 09/21/22 16:10 Date Received: 09/27/22 10:30

Job ID: 580-118295-1

#### Lab Sample ID: 580-118295-23 Matrix: Tissue

Method: SW846 6020	- Metals (ICP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.24	0.033	mg/Kg		10/11/22 10:45	10/14/22 16:17	10
Arsenic	ND		0.24	0.048	mg/Kg		10/11/22 10:45	10/14/22 16:17	10
Cadmium	ND		0.38	0.037	mg/Kg		10/11/22 10:45	10/14/22 16:17	10
Copper	0.54		0.48	0.11	mg/Kg		10/11/22 10:45	10/14/22 16:17	10
Lead	ND		0.24	0.023	mg/Kg		10/11/22 10:45	10/14/22 16:17	10
Nickel	ND		0.24	0.092	mg/Kg		10/11/22 10:45	10/14/22 16:17	10
Selenium	0.28	J	0.72	0.14	mg/Kg		10/11/22 10:45	10/14/22 16:17	10
Silver	ND		0.096	0.0096	mg/Kg		10/11/22 10:45	10/14/22 16:17	10
Method: SW846 7471	A - Mercury (CVAA)								
Analyte	• • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.019	J	0.058	0.018	mg/Kg		10/11/22 10:51	10/14/22 17:45	1

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites-2022

#### Client Sample ID: SW01COMP Date Collected: 09/21/22 16:10 Date Received: 09/27/22 10:30

Job ID: 580-118295-1

#### Lab Sample ID: 580-118295-24 Matrix: Tissue

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.24	0.032	mg/Kg		10/11/22 10:45	10/14/22 16:21	10
Arsenic	ND		0.24	0.047	mg/Kg		10/11/22 10:45	10/14/22 16:21	10
Cadmium	ND		0.38	0.036	mg/Kg		10/11/22 10:45	10/14/22 16:21	10
Copper	0.94		0.47	0.10	mg/Kg		10/11/22 10:45	10/14/22 16:21	10
Lead	ND		0.24	0.023	mg/Kg		10/11/22 10:45	10/14/22 16:21	10
Nickel	ND		0.24	0.091	mg/Kg		10/11/22 10:45	10/14/22 16:21	10
Selenium	0.18	J	0.71	0.14	mg/Kg		10/11/22 10:45	10/14/22 16:21	10
Silver	ND		0.094	0.0094	mg/Kg		10/11/22 10:45	10/14/22 16:21	10
Method: SW846 7471	A - Mercury (CVAA)								
Analyte	• • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.011	J	0.021	0.0063	mg/Kg		10/11/22 10:51	10/14/22 17:48	1

## Method: 6020 - Metals (ICP/MS)

#### Lab Sample ID: MB 580-406576/24-A Matrix: Tissue Analysis Batch: 407038

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.50	0.068	mg/Kg		10/11/22 10:45	10/14/22 21:10	10
Arsenic	ND		0.50	0.10	mg/Kg		10/11/22 10:45	10/14/22 21:10	10
Cadmium	ND		0.80	0.077	mg/Kg		10/11/22 10:45	10/14/22 21:10	10
Copper	ND		1.0	0.22	mg/Kg		10/11/22 10:45	10/14/22 21:10	10
Lead	ND		0.50	0.048	mg/Kg		10/11/22 10:45	10/14/22 21:10	10
Nickel	ND		0.50	0.19	mg/Kg		10/11/22 10:45	10/14/22 21:10	10
Selenium	ND		1.5	0.29	mg/Kg		10/11/22 10:45	10/14/22 21:10	10
Silver	ND		0.20	0.020	mg/Kg		10/11/22 10:45	10/14/22 21:10	10

#### Lab Sample ID: LCS 580-406576/25-A Matrix: Tissue Analysis Batch: 407038

Analysis Datch. 407030							
	Spike	LCS	LCS				%Rec
Analyte	Added	Result (	Qualifier	Unit	D	%Rec	Limits
Antimony	50.0	47.6		mg/Kg		95	80 - 120
Arsenic	50.0	47.4		mg/Kg		95	80 - 120
Cadmium	50.0	47.6		mg/Kg		95	80 - 120
Copper	50.0	49.5		mg/Kg		99	80 - 120
Lead	50.0	48.2		mg/Kg		96	80 - 120
Nickel	50.0	48.7		mg/Kg		97	80 - 120
Selenium	50.0	45.4		mg/Kg		91	80 - 120
Silver	50.0	49.0		mg/Kg		98	80 - 120

#### Lab Sample ID: LCSD 580-406576/26-A **Matrix: Tissue**

# Analysis Batch: 407038

Analysis Batch: 407038							Prep Ba	tch: 40	)6576
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	50.0	47.3		mg/Kg		95	80 - 120	1	20
Arsenic	50.0	47.1		mg/Kg		94	80 - 120	0	20
Cadmium	50.0	47.0		mg/Kg		94	80 - 120	1	20
Copper	50.0	49.5		mg/Kg		99	80 - 120	0	20
Lead	50.0	47.8		mg/Kg		96	80 - 120	1	20
Nickel	50.0	48.8		mg/Kg		98	80 - 120	0	20
Selenium	50.0	45.0		mg/Kg		90	80 - 120	1	20
Silver	50.0	48.4		mg/Kg		97	80 - 120	1	20

#### Lab Sample ID: MB 580-406579/17-A Matrix: Tissue

#### Analysis Batch: 406789

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.25	0.034	mg/Kg		10/11/22 10:55	10/12/22 16:22	5
Arsenic	ND		0.25	0.050	mg/Kg		10/11/22 10:55	10/12/22 16:22	5
Cadmium	ND		0.40	0.039	mg/Kg		10/11/22 10:55	10/12/22 16:22	5
Copper	ND		0.50	0.11	mg/Kg		10/11/22 10:55	10/12/22 16:22	5
Lead	ND		0.25	0.024	mg/Kg		10/11/22 10:55	10/12/22 16:22	5
Nickel	ND		0.25	0.097	mg/Kg		10/11/22 10:55	10/12/22 16:22	5
Selenium	ND		0.75	0.14	mg/Kg		10/11/22 10:55	10/12/22 16:22	5

**Eurofins Seattle** 

5 6

## Client Sample ID: Lab Control Sample Prep Type: Total/NA

Job ID: 580-118295-1

Prep Type: Total/NA

Prep Batch: 406576

**Client Sample ID: Method Blank** 

#### **Client Sample ID: Lab Control Sample Dup** Prep Type: Total/NA

**Client Sample ID: Method Blank** 

Prep Type: Total/NA

Prep Batch: 406579

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites-2022

# **QC Sample Results**

Job ID: 580-118295-1

Client Sample ID: Lab Control Sample Dup

**Client Sample ID: Method Blank** 

Prep Type: Total Recoverable

Prep Batch: 407003

Prep Type: Total/NA Prep Batch: 406579

# Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: MB 580-40657 Matrix: Tissue Analysis Batch: 406789		МВ							C	lie		Prep Type: T Prep Batch:	otal/NA
Analyte		Qualifier		RL	1	MDL	Unit		D	Pr	epared	Analyzed	Dil Fac
Silver	ND			0.10			mg/K	g	_ 1		1/22 10:55	10/12/22 16:22	5
Lab Sample ID: LCS 580-4065 Matrix: Tissue Analysis Batch: 406789	79/18-A		Spike		LCS	LCS	i	Cli	ent S	San		Lab Control Prep Type: T Prep Batch: %Rec	otal/NA
Analyte			Added		Result	Qua	lifier	Unit		D	%Rec	Limits	
Antimony			50.0		49.7			mg/Kg		_	99	80 - 120	
Arsenic			50.0		49.6			mg/Kg			99	80 - 120	
Cadmium			50.0		49.9			mg/Kg			100	80 - 120	
Copper			50.0		50.6			mg/Kg			101	80 - 120	
Lead			50.0		50.4			mg/Kg			101	80 - 120	
Nickel			50.0		50.1			mg/Kg			100	80 - 120	
Selenium			50.0		49.6			mg/Kg			99	80 - 120	
Silver			50.0		50.6			mg/Kg			101	80 - 120	

#### Lab Sample ID: LCSD 580-406579/19-A Matrix: Tissue

Analy	/sis	<b>Batch:</b>	406789	
-------	------	---------------	--------	--

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	50.0	49.7		mg/Kg		99	80 - 120	0	20
Arsenic	50.0	49.6		mg/Kg		99	80 - 120	0	20
Cadmium	50.0	50.0		mg/Kg		100	80 - 120	0	20
Copper	50.0	51.1		mg/Kg		102	80 - 120	1	20
Lead	50.0	49.9		mg/Kg		100	80 - 120	1	20
Nickel	50.0	50.2		mg/Kg		100	80 - 120	0	20
Selenium	50.0	49.1		mg/Kg		98	80 - 120	1	20
Silver	50.0	50.6		mg/Kg		101	80 - 120	0	20

#### Lab Sample ID: MB 580-407003/26-A Matrix: Water Analysis Batch: 407212

	AB MB							
Analyte Res	ult Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND D	0.00080	0.00013	mg/L		10/14/22 18:29	10/17/22 12:39	1
Arsenic	ND	0.0010	0.00020	mg/L		10/14/22 18:29	10/17/22 12:39	1
Cadmium	ND	0.00040	0.000037	mg/L		10/14/22 18:29	10/17/22 12:39	1
Copper	ND	0.0020	0.00060	mg/L		10/14/22 18:29	10/17/22 12:39	1
Lead	ND	0.00040	0.000040	mg/L		10/14/22 18:29	10/17/22 12:39	1
Nickel	ND	0.0030	0.00013	mg/L		10/14/22 18:29	10/17/22 12:39	1
Selenium	ND	0.0080	0.0021	mg/L		10/14/22 18:29	10/17/22 12:39	1
Silver	ND	0.00040	0.000025	mg/L		10/14/22 18:29	10/17/22 12:39	1

Lab Sample ID: LCS 580-407003/27-A	A Client Sample ID: Lab Control Samp							
Matrix: Water					F	Prep Ty	pe: Total Recoverable	
Analysis Batch: 407212							Prep Batch: 407003	
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	1.00	1.00		mg/L		100	80 - 120	

**Client Sample ID: Lab Control Sample Dup** 

Prep Type: Total Recoverable

# Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 580-407003/27-A Matrix: Water Analysis Batch: 407212				Clie			: Lab Control Sample pe: Total Recoverable Prep Batch: 407003
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	1.00	1.00		mg/L		100	80 - 120
Cadmium	1.00	1.01		mg/L		101	80 - 120
Copper	1.00	1.03		mg/L		103	80 - 120
Lead	1.00	1.01		mg/L		101	80 - 120
Nickel	1.00	1.02		mg/L		102	80 - 120
Selenium	1.00	1.04		mg/L		104	80 - 120
Silver	1.00	1.01		mg/L		101	80 - 120

## Lab Sample ID: LCSD 580-407003/28-A Matrix: Water

Analysis Batch: 407212							Prep Batch: 407003			
	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Antimony	1.00	1.00		mg/L		100	80 - 120	0	20	
Arsenic	1.00	1.01		mg/L		101	80 - 120	0	20	
Cadmium	1.00	1.01		mg/L		101	80 - 120	0	20	
Copper	1.00	1.03		mg/L		103	80 - 120	0	20	
Lead	1.00	1.01		mg/L		101	80 - 120	0	20	
Nickel	1.00	1.03		mg/L		103	80 - 120	1	20	
Selenium	1.00	0.995		mg/L		99	80 - 120	4	20	
Silver	1.00	1.01		mg/L		101	80 - 120	1	20	

# Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 580-406202/17-A Matrix: Water Analysis Batch: 406282 Mi	3 MB							Clie	ent Samp	ole ID: Met Prep Type Prep Bate	e: Tot	al/NA
Analyte Resul	t Qualifier		RL	I	MDL U	nit	D	) Р	repared	Analyze	k	Dil Fac
Mercury NI	0	0.00	0030	0.00	0015 m	g/L		10/0	6/22 11:25	10/06/22 17	:23	1
Lab Sample ID: LCS 580-406202/18-A Matrix: Water Analysis Batch: 406282							Clier	nt Sai	nple ID:	Lab Contr Prep Type Prep Bate	e: Tot	al/NA
		Spike		-	LCS					%Rec		
Analyte		Added		Result	Qualifi	er	Unit	D	%Rec	Limits		
Mercury		0.00200	(	0.00202			mg/L		101	80 - 120		
Lab Sample ID: LCSD 580-406202/19-A Matrix: Water Analysis Batch: 406282						CI	ient Sa	mple	ID: Lab	Control Sa Prep Type Prep Bate	e: Tot	al/NA
		Spike		LCSD	LCSD					%Rec		RPD
Analyte		Added		Result	Qualifi	er	Unit	D	%Rec	Limits	RPD	Limit
Mercury		0.00200	(	0.00199			mg/L		100	80 - 120	1	20

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites-2022

## **QC Sample Results**

Job ID: 580-118295-1

5 6 7

Method: 7471A - Mercury (CVAA)

 Lab Sample ID: MB 580-406577/24-A									Cli	ont Sam	ple ID: M	othod	Blank
Matrix: Tissue									011	ont Oan	Prep Ty		
Analysis Batch: 407143											Prep Ba		
Analysis Datch. 407 145	MR	мв									перы		00377
Analyte R		Qualifier		RL		MDL U	Init	6	) F	repared	Analyz	red	Dil Fac
Mercury	ND	Quanner		0.030		0090 r				•	$\frac{10/14/22}{2}$		1
	ND			0.000	0.0	1000	iig/i (	9	10/	11/22 10.5	2 10/14/22	10.04	
Lab Sample ID: LCS 580-406577/25-4	4							Clier	nt Sa	mple ID	: Lab Cor	ntrol Sa	ample
Matrix: Tissue											Prep Ty		
Analysis Batch: 407143											Prep Ba		
····· <b>,</b> ··· · · · · · · · · · · · · · · · · ·			Spike		LCS	LCS					%Rec		
Analyte			Added		Result	Quali	fier	Unit	D	%Rec	Limits		
Mercury			0.167		0.191			mg/Kg		115	80 - 120		
Lab Sample ID: LCSD 580-406577/26	- <b>A</b>						С	lient Sa	mple	ID: Lab	<b>Control</b>	Sample	e Dup
Matrix: Tissue											Prep Ty	pe: Tot	al/NA
Analysis Batch: 407143											Prep Ba	atch: 4	06577
			Spike		LCSD	LCSD	)				%Rec		RPD
Analyte			Added		Result	Quali	fier	Unit	D	%Rec	Limits	RPD	Limit
Mercury			0.167		0.170			mg/Kg		102	80 - 120	12	20
Lab Sample ID: MB 580-406581/23-A									Cli	ent Sam	ple ID: M	ethod	Blank
Matrix: Tissue											Prep Ty		
Analysis Batch: 406959											Prep Ba	•	
	мв	МВ											
Analyte R	esult	Qualifier		RL		MDL L	Jnit	D	) F	repared	Analyz	zed	Dil Fac
Mercury	ND			0.030		0090 r					9 10/13/22		1
							0 0	5					
Lab Sample ID: LCS 580-406581/24-A	4							Clier	nt Sa	mple ID	: Lab Cor	ntrol Sa	ample
Matrix: Tissue											Prep Ty	pe: Tot	al/NA
Analysis Batch: 406959											Prep Ba	atch: 4	06581
-			Spike		LCS	LCS					%Rec		
Analyte			Added		Result	Quali	fier	Unit	D	%Rec	Limits		
Mercury			0.167		0.154			mg/Kg		93	80 - 120		
Lab Sample ID: LCSD 580-406581/25	-Δ						С	lient Sa	mnle	ID [.] I at		Sample	e Dun
Matrix: Tissue									in pro		Prep Ty		
Analysis Batch: 406959											Prep Ba		
			Spike		LCSD	LCSD	)				%Rec		RPD
Analyte			Added		Result			Unit	D	%Rec	Limits	RPD	Limit
Mercury			0.167		0.146	<u><u></u></u>		mg/Kg		87	80 - 120	6	20
			0.107		0.140					07	50-120	0	20

Factor

10

1

Run

Batch

Number Analyst

406579 ABP

406789 FCW

406581 ABP

406959 JLS

Lab

EET SEA

EET SEA

EET SEA

EET SEA

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites-2022

Batch

Method

3050B

6020

7471A

7471A

**Client Sample ID: BAIT** 

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Г

Date Collected: 09/19/22 15:00

Date Received: 09/27/22 10:30

Client Sample ID: SW-FB2 Date Collected: 09/21/22 10:08

Date Received: 09/27/22 10:30

Batch

Туре

Prep

Prep

Analysis

Analysis

# Lab Sample ID: 580-118295-1 **Matrix: Tissue**

# Lab Sample ID: 580-118295-2 Matrix: Water

Prepared

or Analyzed

10/11/22 10:55

10/12/22 17:32

10/11/22 10:57

10/13/22 16:30

Lab Sample ID: 580-118295-3

Lab Sample ID: 580-118295-4

Lab Sample ID: 580-118295-5

**Matrix: Tissue** 

**Matrix: Tissue** 

Matrix: Tissue

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total Recoverable	Prep	3005A			407003	ТМН	EET SEA	10/14/22 18:29
Total Recoverable	Analysis	6020		5	407212	FCW	EET SEA	10/17/22 14:32
Total/NA	Prep	7470A			406202	ABP	EET SEA	10/06/22 11:25
Total/NA	Analysis	7470A		1	406282	CA	EET SEA	10/06/22 17:53

#### Client Sample ID: SW12F01 Date Collected: 09/21/22 10:30 Date Received: 09/27/22 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3050B			406579	ABP	EET SEA	10/11/22 10:55
Total/NA	Analysis	6020		10	406789	FCW	EET SEA	10/12/22 17:35
Total/NA	Prep	7471A			406581	ABP	EET SEA	10/11/22 10:57
Total/NA	Analysis	7471A		1	406959	JLS	EET SEA	10/13/22 16:32

#### Client Sample ID: SW12F02 Date Collected: 09/21/22 10:30 Date Received: 09/27/22 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3050B			406579	ABP	EET SEA	10/11/22 10:55
Total/NA	Analysis	6020		10	406789	FCW	EET SEA	10/12/22 17:39
Total/NA	Prep	7471A			406581	ABP	EET SEA	10/11/22 10:57
Total/NA	Analysis	7471A		1	406959	JLS	EET SEA	10/13/22 16:39

#### Client Sample ID: SW12F03 Date Collected: 09/21/22 10:30 Date Received: 09/27/22 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3050B			406579	ABP	EET SEA	10/11/22 10:55
Total/NA	Analysis	6020		10	406789	FCW	EET SEA	10/12/22 17:42
Total/NA	Prep	7471A			406581	ABP	EET SEA	10/11/22 10:57
Total/NA	Analysis	7471A		1	406959	JLS	EET SEA	10/13/22 16:41

**Eurofins Seattle** 

Factor

10

1

Run

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites-2022

Batch

Method

3050B

6020

7471A

7471A

Batch

3050B

6020

7471A

7471A

Method

Client Sample ID: SW12F04

Batch

Type

Prep

Prep

Client Sample ID: SW12F05

Date Collected: 09/21/22 10:30

Date Received: 09/27/22 10:30

Analysis

Analysis

Batch

Туре

Prep

Prep

Analysis

Analysis

Date Collected: 09/21/22 10:30

Date Received: 09/27/22 10:30

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Lab Sample ID: 580-118295-7 **Matrix: Tissue** 

#### Dilution Batch Run Factor Number Analyst Lab 406579 ABP EET SEA 10 406789 FCW EET SEA 406581 ABP EET SEA 406959 JLS EET SEA 1

Batch

406579

Number Analyst

406789 FCW

406581 ABP

406959 JLS

ABP

Lab

EET SEA

EET SEA

EET SEA

EET SEA

#### Client Sample ID: SW12F06 Date Collected: 09/21/22 10:30 Date Received: 09/27/22 10:30

		Batch	Batch		Dilution	Batch			Prepared
Pr	ер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
To	tal/NA	Prep	3050B			406579	ABP	EET SEA	10/11/22 10:55
To	tal/NA	Analysis	6020		10	406789	FCW	EET SEA	10/12/22 17:28
To	tal/NA	Prep	7471A			406581	ABP	EET SEA	10/11/22 10:57
То	tal/NA	Analysis	7471A		1	406959	JLS	EET SEA	10/13/22 16:47

#### Client Sample ID: SW12F07 Date Collected: 09/21/22 10:30 Date Received: 09/27/22 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3050B			406576	ABP	EET SEA	10/11/22 10:45
Total/NA	Analysis	6020		10	407038	FCW	EET SEA	10/14/22 15:17
Total/NA	Prep	7471A			406577	ABP	EET SEA	10/11/22 10:51
Total/NA	Analysis	7471A		1	407143	JLS	EET SEA	10/14/22 17:09

#### Client Sample ID: SW12F08 Date Collected: 09/21/22 10:30 Date Received: 09/27/22 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3050B			406576	ABP	EET SEA	10/11/22 10:45
Total/NA	Analysis	6020		10	407038	FCW	EET SEA	10/14/22 15:21
Total/NA	Prep	7471A			406577	ABP	EET SEA	10/11/22 10:51
Total/NA	Analysis	7471A		1	407143	JLS	EET SEA	10/14/22 17:11

**Eurofins Seattle** 

#### Lab Sample ID: 580-118295-6 **Matrix: Tissue**

Prepared

or Analyzed

10/11/22 10:55

10/12/22 17:21

10/11/22 10:57

10/13/22 16:43

Prepared

or Analyzed

10/11/22 10:55

10/12/22 17:25

10/11/22 10:57

10/13/22 16:45

Lab Sample ID: 580-118295-8

Lab Sample ID: 580-118295-9

Lab Sample ID: 580-118295-10

**Matrix: Tissue** 

Matrix: Tissue

Matrix: Tissue

Dilution

Factor

10

1

Factor

10

1

Run

Run

Batch

406576

Number Analyst

407038 FCW

406577 ABP

407143 JLS

Batch

406576

Number Analyst

407038 FCW

406577 ABP

407143 JLS

ABP

ABP

Lab

EET SEA

EET SEA

EET SEA

EET SEA

Lab

EET SEA

EET SEA

EET SEA

EET SEA

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites-2022

Batch

Method

3050B

6020

7471A

7471A

Batch

Method

3050B

6020

7471A

7471A

Client Sample ID: SW12F09

Batch

Type

Prep

Prep

Client Sample ID: SW12F10 Date Collected: 09/21/22 10:30

Date Received: 09/27/22 10:30

Analysis

Analysis

Batch

Туре

Prep

Prep

Client Sample ID: SW12COMP Date Collected: 09/21/22 10:30

Analysis

Analysis

Date Collected: 09/21/22 10:30

Date Received: 09/27/22 10:30

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

**Matrix: Tissue** 

Lab Sample ID: 580-118295-11

e

Lah Sample ID: 580-118295-12

Prepared

or Analyzed

10/11/22 10:45

Prepared

or Analyzed

10/11/22 10:45

10/14/22 15:24

10/11/22 10:51

10/14/22 17:13

Lab	oumpio n	D. 000-110200-17
		Matrix: Tissu

8	3	
ç	9	

10/14/22 15:28 10/11/22 10:51 10/14/22 17:20

#### Lab Sample ID: 580-118295-13 **Matrix: Tissue**

Lab Sample ID: 580-118295-14

Lab Sample ID: 580-118295-15

Matrix: Tissue

Matrix: Tissue

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3050B			406576	ABP	EET SEA	10/11/22 10:45
Total/NA	Analysis	6020		10	407038	FCW	EET SEA	10/14/22 15:31
Total/NA	Prep	7471A			406577	ABP	EET SEA	10/11/22 10:51
Total/NA	Analysis	7471A		1	407143	JLS	EET SEA	10/14/22 17:22

#### **Client Sample ID: SW01F01** Date Collected: 09/21/22 16:10 Date Received: 09/27/22 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3050B			406576	ABP	EET SEA	10/11/22 10:45
Total/NA	Analysis	6020		10	407038	FCW	EET SEA	10/14/22 15:35
Total/NA	Prep	7471A			406577	ABP	EET SEA	10/11/22 10:51
Total/NA	Analysis	7471A		1	407143	JLS	EET SEA	10/14/22 17:24

#### Client Sample ID: SW01F02 Date Collected: 09/21/22 16:10 Date Received: 09/27/22 10:30

_	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3050B			406576	ABP	EET SEA	10/11/22 10:45
Total/NA	Analysis	6020		10	407038	FCW	EET SEA	10/14/22 15:38
Total/NA	Prep	7471A			406577	ABP	EET SEA	10/11/22 10:51
Total/NA	Analysis	7471A		1	407143	JLS	EET SEA	10/14/22 17:26

**Eurofins Seattle** 

Factor

Dilution

Factor

10

1

10

1

Run

Run

Batch

406576

Number Analyst

407038 FCW

406577 ABP

407143 JLS

Batch

406576

Number Analyst

407038 FCW

406577 ABP

407143 JLS

ABP

ABP

Lab

EET SEA

EET SEA

EET SEA

EET SEA

Lab

EET SEA

EET SEA

EET SEA

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites-2022

Batch

Method

3050B

6020

7471A

7471A

Batch

3050B

6020

7471A

7471A

Method

Client Sample ID: SW01F03

Batch

Type

Prep

Prep

Client Sample ID: SW01F04

Date Collected: 09/21/22 16:10

Date Received: 09/27/22 10:30

Analysis

Analysis

Batch

Туре

Prep

Prep

Client Sample ID: SW01F05

Date Collected: 09/21/22 16:10

Analysis

Analysis

Date Collected: 09/21/22 16:10

Date Received: 09/27/22 10:30

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

**Matrix: Tissue** 

**Matrix: Tissue** 

Lab Sample ID: 580-118295-16

Prepared

or Analyzed

10/11/22 10:45

10/14/22 15:42

10/11/22 10:51

10/14/22 17:28

Prepared

or Analyzed

10/11/22 10:45

10/14/22 15:46

10/11/22 10:51

Lab Sample ID: 580-118295-17

H	1		
ç			

#### EET SEA 10/14/22 17:30 Lab Sample ID: 580-118295-18

Lab Sample ID: 580-118295-19

Lab Sample ID: 580-118295-20

**Matrix: Tissue** 

Matrix: Tissue

Matrix: Tissue

Date Received: 09/27/22 10:30										
	Batch	Batch		Dilution	Batch			Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed		
Total/NA	Prep	3050B			406576	ABP	EET SEA	10/11/22 10:45		
Total/NA	Analysis	6020		10	407038	FCW	EET SEA	10/14/22 15:49		
Total/NA	Prep	7471A			406577	ABP	EET SEA	10/11/22 10:51		
Total/NA	Analysis	7471A		1	407143	JLS	EET SEA	10/14/22 17:33		

#### **Client Sample ID: SW01F06** Date Collected: 09/21/22 16:10 Date Received: 09/27/22 10:30

Γ	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3050B			406576	ABP	EET SEA	10/11/22 10:45
Total/NA	Analysis	6020		10	407038	FCW	EET SEA	10/14/22 16:03
Total/NA	Prep	7471A			406577	ABP	EET SEA	10/11/22 10:51
Total/NA	Analysis	7471A		1	407143	JLS	EET SEA	10/14/22 17:35

#### Client Sample ID: SW01F07 Date Collected: 09/21/22 16:10 Date Received: 09/27/22 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3050B			406576	ABP	EET SEA	10/11/22 10:45
Total/NA	Analysis	6020		10	407038	FCW	EET SEA	10/14/22 16:07
Total/NA	Prep	7471A			406577	ABP	EET SEA	10/11/22 10:51
Total/NA	Analysis	7471A		1	407143	JLS	EET SEA	10/14/22 17:37

**Eurofins Seattle** 

**Matrix: Tissue** 

Matrix: Tissue

**Matrix: Tissue** 

Lab Sample ID: 580-118295-21

Lab Sample ID: 580-118295-22

Lab Sample ID: 580-118295-23

Prepared

or Analyzed

10/11/22 10:45

10/14/22 16:10

# 7 8 9 10

# Total/NA Analysis 6020 Client Sample ID: SW01F09 Date Collected: 09/21/22 16:10

Batch

Method

3050B

Date Received: 09/27/22 10:30

Client Sample ID: SW01F08

Batch

Туре

Prep

Date Collected: 09/21/22 16:10

Date Received: 09/27/22 10:30

Prep Type

Total/NA

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3050B			406576	ABP	EET SEA	10/11/22 10:45
Total/NA	Analysis	6020		10	407038	FCW	EET SEA	10/14/22 16:14
Total/NA	Prep	7471A			406577	ABP	EET SEA	10/11/22 10:51
Total/NA	Analysis	7471A		1	407143	JLS	EET SEA	10/14/22 17:39

Dilution

Factor

10

Run

Batch

Number Analyst

406576 ABP

407038 FCW

Lab

EET SEA

EET SEA

Lab Chronicle

#### Client Sample ID: SW01F10 Date Collected: 09/21/22 16:10 Date Received: 09/27/22 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3050B			406576	ABP	EET SEA	10/11/22 10:45
Total/NA	Analysis	6020		10	407038	FCW	EET SEA	10/14/22 16:17
Total/NA	Prep	7471A			406577	ABP	EET SEA	10/11/22 10:51
Total/NA	Analysis	7471A		1	407143	JLS	EET SEA	10/14/22 17:45

### Client Sample ID: SW01COMP

Date Collected: 09/21/22 16:10 Date Received: 09/27/22 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3050B			406576	ABP	EET SEA	10/11/22 10:45
Total/NA	Analysis	6020		10	407038	FCW	EET SEA	10/14/22 16:21
Total/NA	Prep	7471A			406577	ABP	EET SEA	10/11/22 10:51
Total/NA	Analysis	7471A		1	407143	JLS	EET SEA	10/14/22 17:48

#### Laboratory References:

EET SEA = Eurofins Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

## Lab Sample ID: 580-118295-24

Matrix: Tissue

## Accreditation/Certification Summary

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites-2022

#### Job ID: 580-118295-1

### Laboratory: Eurofins Seattle

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Р	rogram	Identification Number	Expiration Date
Alaska (UST)	S	tate	20-004	02-19-25
The following analytes the agency does not c		ort, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
6020	3005A	Water	Antimony	
6020	3005A	Water	Arsenic	
6020	3005A	Water	Cadmium	
6020	3005A	Water	Copper	
6020	3005A	Water	Lead	
6020	3005A	Water	Nickel	
6020	3005A	Water	Selenium	
6020	3005A	Water	Silver	
6020	3050B	Tissue	Antimony	
6020	3050B	Tissue	Arsenic	
6020	3050B	Tissue	Cadmium	
6020	3050B	Tissue	Copper	
6020	3050B	Tissue	Lead	
6020	3050B	Tissue	Nickel	
6020	3050B	Tissue	Selenium	
6020	3050B	Tissue	Silver	
7471A	7471A	Tissue	Mercury	
Oregon	Ν	ELAP	4167	07-08-23

The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification.

Analysis Method	Prep Method	Matrix	Analyte	
6020	3050B	Tissue	Antimony	
6020	3050B	Tissue	Arsenic	
6020	3050B	Tissue	Cadmium	
6020	3050B	Tissue	Copper	
6020	3050B	Tissue	Lead	
6020	3050B	Tissue	Nickel	
6020	3050B	Tissue	Selenium	
6020	3050B	Tissue	Silver	
7471A	7471A	Tissue	Mercury	

## Sample Summary

#### Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites-2022

Job	ID:	580-1	18295-1

5
8
9

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-118295-1	BAIT	Tissue	09/19/22 15:00	09/27/22 10:
580-118295-2	SW-FB2	Water	09/21/22 10:08	09/27/22 10:3
580-118295-3	SW12F01	Tissue	09/21/22 10:30	09/27/22 10:3
580-118295-4	SW12F02	Tissue	09/21/22 10:30	09/27/22 10:30
580-118295-5	SW12F03	Tissue	09/21/22 10:30	09/27/22 10:30
580-118295-6	SW12F04	Tissue	09/21/22 10:30	09/27/22 10:30
580-118295-7	SW12F05	Tissue	09/21/22 10:30	09/27/22 10:30
580-118295-8	SW12F06	Tissue	09/21/22 10:30	09/27/22 10:30
580-118295-9	SW12F07	Tissue	09/21/22 10:30	09/27/22 10:30
580-118295-10	SW12F08	Tissue	09/21/22 10:30	09/27/22 10:30
580-118295-11	SW12F09	Tissue	09/21/22 10:30	09/27/22 10:30
580-118295-12	SW12F10	Tissue	09/21/22 10:30	09/27/22 10:30
580-118295-13	SW12COMP	Tissue	09/21/22 10:30	09/27/22 10:30
580-118295-14	SW01F01	Tissue	09/21/22 16:10	09/27/22 10:30
580-118295-15	SW01F02	Tissue	09/21/22 16:10	09/27/22 10:30
580-118295-16	SW01F03	Tissue	09/21/22 16:10	09/27/22 10:30
580-118295-17	SW01F04	Tissue	09/21/22 16:10	09/27/22 10:30
580-118295-18	SW01F05	Tissue	09/21/22 16:10	09/27/22 10:30
580-118295-19	SW01F06	Tissue	09/21/22 16:10	09/27/22 10:30
580-118295-20	SW01F07	Tissue	09/21/22 16:10	09/27/22 10:30
580-118295-21	SW01F08	Tissue	09/21/22 16:10	09/27/22 10:30
580-118295-22	SW01F09	Tissue	09/21/22 16:10	09/27/22 10:30
580-118295-23	SW01F10	Tissue	09/21/22 16:10	09/27/22 10:30
580-118295-24	SW01COMP	Tissue	09/21/22 16:10	09/27/22 10:30



# Northern Star (Pogo) LLC Chain of Custody

Page 1 of 2

4 5

10

I

NORTHINN STAR											# 01 000		
Сотралу Name:		Contact Name: Ph		Phone:		Laboratory Name:							
Northern Star (Pogo) L	LC	Nathan Ke	hoe	(907) 895-27		2760	Eurofins TestAmerica						
leport Mail Address:							Mail Addre		a Reattle				
3204 International Street			sritd.com				Eurofins TestAmerica - Seattle 5755 8th Street East						
Fairbanks, Alaska 997	01	P.O. or Co		act #: PO# 204498		87 Tacoma, WA 98424							
Email:		Turnarou	nd Time for	Result	5 (T/	<b>AT</b> )					AK0053341		
pogoenvironment@nsrltc	l.com	<u> </u>	<u>X</u> Standard Expedited				ted (253)922-2310 Pu			Public Water System (PWS) ID#:			
Special Instructions/Comments:						Requ	uested /	Analysis	/Method:	FI	sh Tissue p 580169		
ab ID#						Pre: None	Pre: None						
Client Sample Identification / Lo	cation	Date Sampled	Time Sampled	Matrix (S- DW-WW-Other)	No. of Containers	<b>EPA 6020 Metals</b> Sb, As, Cd, Cu, Pb, Ni, Se, Ag	<b>EPA 7471A</b> Mercury					Field Preserved	
Bait		9/19/2022	15:00	Fish	1	X	x					N	
SW-FB2		9/21/2022	10:08	Water	1	х	x	<u> </u>	Preservo	ed with HNO3		Y	
SW12F01		9/21/2022	10:30	Fish	1	x	х					N	
SW12F02		9/21/2022	10:30	Fish	1	x	х					N	
SW12F03		9/21/2022	10:30	Fish	1	x	х					N	
SW12F04		9/21/2022	10:30	Fish	1	x	х					N	
SW12F05		9/21/2022	10:30	Fish	1	x	x					N	
SW12F06		9/21/2022	10:30	Fish	1	х	x					N	
SW12F07		9/21/2022	10:30	Fish	1	x	x		+		Think this is a subscript of the subsc	N	
		9/21/2022	10:30	Fish	1	x	x					N	
		9/21/2022	10:30	Fish	1	x	x					N	
SW12F09 SW12F10		9/21/2022	10:30	Fish	1	x	x		580-118295	Chain of Cu	stody	N	
SW12P10 SW12COMP		9/21/2022	10:30	Fish		x	X					N	
Relinquished by:	Date	Time	Received by:		•	······		Date	Time Sec	tion To Be	Completed by Le	aboratory	
The	9/4/22	0845	Suliam	1 11	Na	/1/		9/21/02	1030 Cus	stody Seal In	tact? Y / N		
elinquished by:	Date	Time	Received by:	(		7		Date		nples On Ice	? Y/N		
			Therm. II	:1RO	Çor	2.30	inc: <u>27</u>	°	Rec	eipt Temper	ature:	°C	
Relinquished by:	Date	Time	Re Cooler Ds	e:	BK			Date	Time Sigi	natures Com	plete? Y / N		
uning the second se			Packing:_	60		UPS:			Sigr	natures Mate	h?Y/N		
	an Kahaa / M	latt Drown	Cust. Seal		\0	Lab C	our:	✓	 Аля	II Notes:			
-	an Kehoe / N		S Blue Ice	Pac	, von je 4	e Other 1 of 43	: <u>Ukst</u>	<u>I</u>				10/1	



# Northern Star (Pogo) LLC Chain of Custody

Page 2 of 2

# of Coolers: 1

Company Name:		Contact Maria		Phone:			Laboratory I	Name:				
Northern Star (Pogo) LLC		Contact Name: Phone: Nathan Kehoe (907) 895-			95-2	2760	TestAme	erica Seatt	le			
Report Mail Address: 3204 International Street Fairbanks, Alaska 99701	Invoice to: pogo.ap@nsrltd.com P.O. or Contract #: PO# 204498			87	Mail Adddress: Eurotins TestAmerica - 5755 8th Street East 37 Tacoma, WA 98424							
		Turnaround Time for Results (TAT)								DES Permit #: AK00		
pogoenvironment@nsrltd.com	<u> </u>	X Standard Expedited				ublic Water System (PWS) ID#: Fish Tissue per Quote						
Special Instructions/Comments:						Req	uested /	Analysis/	Metho	d: Fish I	15801695	
Lab ID#						Pre: None	Pre: None					
Client Sample Identification / Location	2,	Date Sampled	Time Sampled	Matrix (S- DW-WW-Other)	No. of Containers	EPA 6020 Metals Sb, As, Cd, Cu, Pb, Ni, Se, Ag	<b>EPA 7471A</b> Mercury					Field Preserved
SW01F01		9/21/2022	16:10	Water	1	x	X	<b></b>				N
SW01F02		9/21/2022	16:10	Fish	1	x	<u>x</u>					N
SW01F03		9/21/2022	16:10	Fish	1	x	x	ļ				N
SW01F04		9/21/2022	16:10	Fish	1	x	<u>x</u>					N
SW01F05		9/21/2022	16:10	Fish	1	x	x					N
SW01F06		9/21/2022	16:10	Fish	1	x	. <u>x</u>					<u>N</u>
SW01F07		9/21/2022	16:10	Fish	1	x	x					<u>N</u>
SW01F08		9/21/2022	16:10	Fish	1	x	x					N
SW01F09		9/21/2022	16:10	Fish	1	x	x					N
SW01F10		9/21/2022	16:10	Fish	1	x	x					<u>N</u>
SW01COMP		9/21/2022	16:10	Fish	5	x	<u>x</u>	ļ		<u> </u>		N
	Date	Time	Received by:		1		<u> </u>	Date	Time	Section To Be Com	l pleted by Le	boratory
Relinquished by:	9/26/22		21	4	f.	A.M		1041	1836	Custody Seal Intact?		
Mr m	Date	σ <mark>% </mark> Υζ Time	Sydu Received by:	A.L	UN.	<u>  v/   </u>		Date	Time	Samples On Ice?		
Relinquished by:	Date		reconce by.	,		/				Receipt Temperature		
	Date	Time	Received by:			<u></u>		Date	Time	Signatures Complete	? Y / N	·
Relinguished by:	Dale									Signatures Match?	Y / N	
Ninthan k	(aboo / M	latt Drowe	s / Russel	Goee	ett					Add'l Notes:		
Name of Sampler: (printed) Nathan K Version 1.0 G:\Enviro\Private				Pag	<u>je 4</u>	2 of 43				-		10/19/2

#### Client: Northern Star (Pogo) LLC

#### Login Number: 118295 List Number: 1 Creator: Vallelunga, Diana L

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 580-118295-1

List Source: Eurofins Seattle



## APPENDIX F –

## ELECTRONIC MONITORING DATA

[SUBMITTED ELECTRONICALLY VIA ALASKA ZENDTO (STATE OF ALASKA)]