

February 24, 2022 COR-22-021 **Via Electronic Submitta**

Alaska Department of Environmental Conservation Division of Water, Compliance Program 555 Cordova Street Anchorage, AK 99501

Re: Northern Star (Pogo) LLC 2021 Annual Quarter Monitoring Report

To whom it may concern:

Enclosed is Northern Star (Pogo) LLC Annual 2021 Activity and Monitoring Report. This report is prepared to fulfill the requirements of the Alaska Department of Natural Resources (ADNR) Pogo Mine Millsite Lease ADL416949, Alaska Department of Environmental Conservation (ADEC) APDES Permit AK0053341, and ADEC Waste Management Permit 2018DB0001. This report covers the period from January 1, 2021 through December 31, 2021.

If you have any questions, please contact James Meyers, Senior Environmental Coordinator at 907-895-2879 or email him at <u>jmeyers@nsrltd.com</u>.

Sincerely,

Micheal Eckert General Manager

Enclosure: Annual Pogo Mine Water Quality Monitoring Report, 2021

cc: Tim Pilon, ADEC (via ZENDTO) Brent Martellaro, ADNR (via ZENDTO) Kate Harper, ADNR (via ZENDTO) <u>dec-wareporting@alaska.gov</u> (via ZENDTO)

2021 ANNUAL MONITORING REPORT

NORTHERN STAR (POGO) LLC

Submitted To:

Alaska Department of Environmental Conservation Division of Water, Compliance Program 555 Cordova Street Anchorage, Alaska 99501

> Alaska Department of Natural Resources Division of Mining, Land, and Water 550 West 7th Avenue, Suite 900D Anchorage, AK 99501-3557

> > Prepared by:

Northern Star (Pogo) LLC P.O. Box 145 Delta Junction, Alaska 99737

February 23, 2022

TABLE OF CONTENTS

1.	INTR	ODUCI	ΓΙΟΝ	1
2.	2021	MONI	TORING	1
	21	SUMM	ΙΔΡΥ	1
	2.2	TREAT	ED FEELUENT MONITORING	3
	2.2.1	Ou	tfall 011 – Treated Effluent from Mine Water Treatment Plant	3
	2.2.2	Ou	tfall 001 – Discharge from Off River Treatment Works	4
	2.2.3	Ou	tfall 002 – Treated Effluent from Sewage Treatment Plant	5
	2.3	Surfa	ce Water Monitoring	5
	2.3.1	Go	odpaster River	5
	2.3.2	Wł	hole Effluent Toxicity	6
	2.3.3	Fis	h Tissue	6
	2.4	Grou		7
	2.4.1	Do	wngradient of DSTF	7
	2.4.2	Lie	se Creek Flumes	7
	2.4.3	Do	wngradient of RTP Dam	8
	2.4	1.3.1	MW12-500, 501, 502 Wells	8
	2.4	1.3.2	MW18-001 and MW18-002	8
	2.4.4	Do	wngradient of Ore Zone	8
	2.4	1.4.1	MW11-216	8
	2.4	1.4.2	MW18-003A and MW18-003B	8
	2.5	Proc	ess Control Monitoring	9
	2.5.1	Wa	ater Balance	9
	2.5.2	Pei	rmits to Appropriate Water and Temporary Water Use Permit Summary	9
	2.5.3	Ca	rbon-In-Pulp (CIP) Tailings Cyanide Destruction1	1
	2.5.4	Mi	neralized Development Rock Geochemistry1	1
	2.5.5	Flo	tation Tailings Geochemistry	1
	2.5.6	Flo	tation Tailings Interstitial Water Chemistry1	1
	2.6	Visua	L MONITORING	2
	2.6.1	Fac	cility Inspection	2
	2.6.2	Bio	ological Survey	3
	2.6.3	Inv	asive Weed Control	3

	2.7	DEVELOPMENT ROCK SEGREGATION AND STORAGE	13
	2.7.1	Handheld XRF Procedure	13
	2.8	WASTE DISPOSAL	13
	2.9	GEOTECHNICAL MONITORING	14
	2.10	Spill Reporting	16
3.	AS-B	UILT REPORTS AND MAPS	16
4.	RECL	AMATION AND FINANCIAL RESPONSIBILITY	16
5.	PERN	IIT ACTIVITIES	18

LIST OF FIGURES

Figure 1: 2021 MWTP#3 Outfall 011 Discharge to ORTW	3
Figure 2: 2021 Annual Outfall 001 Discharge to Goodpaster River	4
Figure 3: 2021 Annual Outfall 002 Discharge to Goodpaster River	5
Figure 4: 2021 Flume #1 Flow and Site Rainfall	7
Figure 5: 2021 Annual Waste Disposal in the DSTF	. 14
Figure 6: 2020 Pogo Spill Reporting	. 16

LIST OF TABLES

Table 1: Pogo Mine Whole Effluent Toxicity Testing 2021	6
Table 2: Permits to Appropriate Water 2021 Monthly Total Flows	10
Table 3: 2021 Temporary Water Use Authorization Flows	11
Table 4: Miscellaneous Waste Disposal in DSTF and Underground in 2021	14
Table 5: Mine Reclamation and Closure Cost Estimates as of 2017	17
Table 6: Pogo Access Road/Transmission Line Reclamation and Closure Cost Estimates as of 2017	18

APPENDICES

APPENDIX A – MAPS

Figure 1.1: General Location Map

Figure 1.2: Monitoring Locations

Figure 1.3: Surface Water Monitoring Locations

Figure 1.4: Pogo Mine As-Built

Figure 1.4a:1525 Portal and Lower Camp As-Built

Figure 1.4b: Airstrip Area As-Built

Figure 1.4c: Mill and Permanent Camp Bench As-Built

Figure 1.4d: RTP and DSTF Area As-Built

APPENDIX B – WASTE ROCK GEOCHEMISTRY AND FLOTATION TAILINGS SOLIDS CHEMISTRY

Table 1: Whole Rock Geochemistry for Rock Placed in Dry Stack 2021

Table 2: Geochemistry of Flotation Tailings Solids Placed in Dry Stack 2021

APPENDIX C - TIME SERIES GRAPHS OF MONITORING DATA

APPENDIX D - WHOLE EFFLUENT TOXICITY TESTING

APPENDIX E – FISH TISSUE SAMPLING LAB REPORTS

Electronic Appendices

APPENDIX F - ELECTRONIC MONITORING DATA

[SUBMITTED ELECTRONICALLY VIA ALASKA ZENDTO (STATE OF ALASKA)]

ACRONYMS

AAC:	Alaska Administrative Code
ADEC:	Alaska Department of Environmental Conservation
ADNR:	Alaska Department of Natural Resources
APDES:	Alaska Pollutant Discharge Elimination System
BOD:	Biological Oxygen Demand
cfs:	Cubic Feet Per Second
CIP:	Carbon-in-Pulp
DCS:	Distributed Control System
DSTF:	Dry Stack Tailings Facility
DMR:	Discharge Monitoring Report
gpm:	Gallons Per Minute
MDL:	Method Detection Limit
ML:	Method Limit
MWTP#3:	Mine Water Treatment Plant #3
NWP:	Nationwide Permit
ORTW:	Off-River Treatment Works
QAP:	Quality Assurance Plan
RTP:	Recycle Tailings Pond
SCW:	Seepage Collection Wells
STP:	Sewage Treatment Plant
TSS:	Total Suspended Solids
TDS:	Total Dissolved Solids
TWUA:	Temporary Water Use Authorization
WAD:	Weak Acid Dissociable
WQS:	Water Quality Standards
XRF:	x-ray fluorescence

1. INTRODUCTION

Northern Star (Pogo) LLC prepared this report to fulfill the requirements of the Alaska Department of Environmental Conservation (ADEC) APDES Permit AK0053341 (7/27/17), Alaska Department of Environmental Conservation (ADEC) Waste Management Permit 2018DB0001 (5/24/2018), Alaska Department of Natural Resources (ADNR) Pogo Mine Millsite Lease ADL416949, and ADNR Plan of Operations Approval F20189500 (7/2/2020). This report addresses activities executed during the year of 2021. A General Location Map can be found in **Appendix A**, **Figure 1.1**. Graphs show data plotted on a log-scale axis and include the past six years of data. This report defines individual data sets and their relation to the detection limits and the ADEC Water Quality Standards (WQS).

2. 2021 MONITORING

A prescriptive environmental monitoring program is performed in accordance with State of Alaska permits and Pogo's approved Pogo Mine Monitoring Plan and Quality Assurance Plan (QAP).

The objectives of Pogo's monitoring programs are:

- To monitor the water quality of the effluent discharged from the facility,
- To establish a compliance trend for water quality in the Goodpaster River and the groundwater below the facility that can be correlated over time with mining activities or discharges from the facility.
- To monitor the Carbon-in-Pulp (CIP) tailings processes associated with the underground paste backfill, and,
- To monitor the flotation tailings and the materials placed in the Drystack Tailings Facility (DSTF).

Samples collected from the Mine Water Treatment Plant #3 (MWTP#3), groundwater stations, surface water stations, the Sewage Treatment Plant (STP) and the Off-River Treatment Works (ORTW) effluent were submitted to Energy Laboratories, Inc. and Pollen Environmental. Samples collected for PC002, monitoring mineralized waste rock, and PC003, monitoring flotation tailings, were analyzed by ALS Chemex. Annual Whole Effluent Toxicity (WET) Test samples were submitted to TRE Environmental and Eurofins Test America Laboratory, Seattle.

2.1 Summary

The WQS graphs for Cadmium, Copper, Lead, Nickel, Silver and Zinc have been updated to take the sample specific water hardness value into account. Previous reports used the lowest possible WQS for those constituents without sample hardness being considered.

A summary of the 2021 monitoring results shows:

APDES Permit:

- Outfall 001: Pogo reported one exceedance and atypical event at Outfall 001. Samples collected on May 2nd, 16th and 23rd showed elevated background levels of Mercury in influent Goodpaster River water (presumably from naturally occurring mercury minerals). On November 1 pump withdrawal rates rose above 15,000 GPM for approximately 19 hours. Refer to Section 2.2.2 for more detail.
- **Outfall 011:** Pogo reported no exceedances at Outfall 011 during 2021. Refer to **Section 2.2.1** for more detail.
- Outfall 002: Pogo reported no exceedances at Outfall 002 during 2021. Refer to Section 2.2.3 for more detail.

- Surface Water: No adverse trends were observed for the year. Refer to Section 2.3.1 for more detail.
- Whole Effluent Toxicity: WET Testing took place in June. Chronic bioassays were conducted by two laboratories concurrently. All final test results were within the permit limits. Refer to Section 2.3.2 for more detail.
- Fish Tissue: Annual fish tissue sampling was completed in September. Arsenic concentrations were elevated in two specimens upstream of the mine. No other adverse trends were observed. Refer to Section 2.3.3 for more detail.

Waste Management Permit:

Ground Water

- 2011 Series Wells: Two wells are located below the Drystack Tailings Facility: MW11-001A and MW11-001B. The wells monitor groundwater downstream of the DSTF and upstream of the Recycled Tailings Pond (RTP). TDS concentrations were above WQS in MW11-001A on August 13 and MW11-001B on June 11. Nitrate was above WQS for all of 2021 in both wells. Refer to Section 2.4.1 for more detail.
- 500 Series Wells: Three wells are located below the RTP Dam: MW12-500, MW12-501, and MW12-502. The wells monitor groundwater downstream of the RTP seepage collection well (SCW) system. Chloride, nitrate, and sodium levels were detected above trigger limits, arsenic and nitrate were above WQS. MW12-502 was above the trigger limit for Potassium on October 29th. Sodium has an increasing trend over the sampling period of 2014-2021. Refer to Section 2.4.3.1 for more detail.
- 2018 Series Wells: The 2018 series wells were installed in October 2018 and are sampled quarterly, with the exception of MW18-001 which is sampled monthly. MW18-001 had concentrations of arsenic and nitrate, above WQS. Nitrate is above WQS in MW18-002. MW18-003A and MW18-003B were installed as a nested pair of wells at the end of Liese Valley. Samples from MW18-003A indicate that Nitrate was above WQS in January at 13.7 mg/L but decreased below WQS for the rest of 2021. MW18-003B samples had concentrations of iron and manganese above the WQS. Refer to Section 2.4.3.2 for wells MW18-001 and MW18-002, and to Section 2.4.4.2 for wells MW18-003A and MW18-003B.
- 200 Series Wells: MW11-216 is located downgradient of the ore body to monitor groundwater quality and is sampled semi-annually. A sample was collected August 14th, 2021. All analytes came back below WQS. Refer to **Section 2.4.4.1** for more detail.

Process Control

- **PC001:** PC001 monitors CIP tails prior to use in paste backfill. All samples are within limits and conditions set forth within the permit. Refer to **Section 2.5.3** for more detail.
- PC002 and PC003 Solids: PC002 samples monitor mineralized waste rock that is placed within the DSTF. PC003 Solids samples monitor flotation tailings that are placed within the DSTF. No adverse trends were observed. Refer to Sections 2.5.4 and 2.5.5 for more detail.
- PC003 Liquid: PC003 Liquid samples monitor interstitial water pressed from the flotation tailings prior to placement within the DSTF. The following constituents were above the Target Operating Ranges: Iron in June, September and December; Copper in September and December; WAD CN and TKN in September; Mercury was at or over the operating limit for all 4 quarters. No other adverse trends were observed during 2021. Refer to Section 2.5.6 for more detail. A discussion of the results for each sampling program is provided below.

2.2 Treated Effluent Monitoring

ADEC APDES AK0053341 (8/1/17), Appendix A, 3.0

Treated effluent data are submitted to ADEC monthly via the Discharge Monitoring Reports (DMRs) under the APDES Permit. The monitoring locations for treated effluent are shown on **Appendix A**, **Figure 1.2**, as Outfall 011, 001, and 002.

2.2.1 Outfall 011 – Treated Effluent from Mine Water Treatment Plant

ADEC APDES AK0053341 (8/1/17), 1.4

Groundwater and drill water collected from the underground workings are sent to MWTP#3 (located near the 1525 portal). The treated effluent is returned for use underground, sent to the mill to be used as process water, or discharged to the ORTW. Surface runoff and groundwater are collected in the RTP. RTP water and mine water are sent to MWTP#3, treated, and then discharged to the ORTW, or directed to the mill through the RTP head tank for use as process water. Treated effluent was discharged to the ORTW during 2021 at an average 352 gpm. The volume of water

discharged from Outfall 011 during 2021 is shown below in Figure 1.

Continuous pH data is collected at Outfall 011 along with weekly laboratory samples of WAD cyanide and quarterly laboratory samples for metals (arsenic, cadmium, copper, iron, lead, manganese, mercury, selenium, zinc), total suspended solids (TSS), hardness, and sulfate. All results are within the limits and conditions set forth in the permit. Outfall 011 has two continuous pH meters. pH readings taken during the year show compliance with permit limits. No adverse trends are reported for the year. Time series graphs are provided in **Appendix C**. Monitoring data is provided in **Appendix F**.

2.2.2 Outfall 001 – Discharge from Off River Treatment Works

ADEC APDES AK0053341 (8/1/17), 1.3

Treated effluent from MWTP#3 is sent to the ORTW. After mixing in the ORTW, water flowed over the weir of Pond 2 (Outfall 001) into the Goodpaster River at an average of 13,746 gpm throughout 2021. The sampling location is at the weir. **Figure 2** presents the 2021 flow from Outfall 001.

Figure 2: 2021 Annual Outfall 001 Discharge to Goodpaster River

Continuous turbidity data and twice-daily pH readings are collected along with weekly laboratory samples for copper, lead, manganese, WAD cyanide, pH, and temperature at Outfall 001. Monthly samples required by the permit include cadmium, mercury, zinc, hardness and lab turbidity

There was one exceedance and atypical event at Outfall 001 in 2021.

On May 2, 16, and 23, Mercury samples collected at the Goodpaster River inlet indicated that mercury concentrations (i.e., Goodpaster River) were higher than the allowable APDES Mercury discharge limit for Pogo Mine effluent. Consequently, ADEC determined that the natural conditions from the waters of the state, were of lower quality than the water quality criteria set out in 18 AAC 70.020(b).

On November 1, 2021, flow meters at Outfall 001 reported pump withdrawal rates above 15,000 gallons per minute for approximately 19 hours. The daily average flow at Outfall 001 was 15,623 gallons per minute (GPM), and 431 GPM at Outfall 011. The average water withdrawal from the Goodpaster River was 192 gallons over the 15,000 gallons per minute maximum allowed by the permit. Northern Star Water Operations ordered a new inline flowmeter, as well as implemented automated system preventative alarms to notify operators of high flow trends while working in the Mine Water Treatment Plant.

All 2021 WAD cyanide analytical results for Outfall 001 were 10 ug/L or less. None of the analytical results for WAD cyanide fell between the facility specific method limit (ML) of <20 ug/L and the facility specific method detection limit (MDL) of <10 ug/L. All other results are within the limits and

conditions set forth within the permit. Time series graphs are provided in **Appendix C** and show the change in concentration limits. Monitoring data is provided in **Appendix F**.

2.2.3 Outfall 002 – Treated Effluent from Sewage Treatment Plant

ADEC APDES AK0053341 (8/1/17), 1.5

The STP operated throughout 2021 with flows ranging between 4,858 and 35,932 gallons per day. The average flow during the period at Outfall 002 was 24,060 gallons per day. Daily field parameters were collected to assess quality of treated effluent. Monthly samples were also collected for metals (arsenic, cadmium, copper, lead, manganese, mercury, and zinc), biological oxygen demand (BOD₅), total suspended solids (TSS), fecal coliform, and nitrate/nitrite. **Figure 3** presents the gallons per day flow from Outfall 002 for 2021.

Figure 3: 2021 Annual Outfall 002 Discharge to Goodpaster River

Influent data from STP 002 were collected for BOD₅ and TSS on a quarterly basis to determine percent removal. All results were within the limits and conditions set forth in the permit. Time series graphs are provided in **Appendix C**. Monitoring data is provided in **Appendix F**.

2.3 Surface Water Monitoring

2.3.1 Goodpaster River

ADEC Waste Management Permit 2018DB0001 (5/24/2018), 1.6.2; ADEC APDES AK0053341 (8/1/17), 1.8; Pogo Mine Monitoring Plan (7/20) 8.0

Six surface water stations are monitored to evaluate water quality along the Goodpaster River: SW01 and SW49 are located upstream of the Pogo Mine, SW41 is located downstream of Outfall 001, SW42 is downstream of Outfall 002, and SW15 and SW12 are located downstream from all

Pogo facilities. Surface water samples are analyzed six times a year for total metals (antimony, arsenic, cadmium, copper, iron, lead, manganese, mercury, nickel, selenium, silver, and zinc) and WAD cyanide. Physical and aggregate properties of alkalinity, conductivity, hardness, nitrite plus nitrate, pH, total dissolved solids (TDS), turbidity, and temperature are also measured.

Surface water samples were collected on March 14, May 16, June 23, August 8, September 24, and December 7, 2021. All results were within the limits and conditions. No adverse trends were observed. The locations of the surface water monitoring stations are shown in **Appendix A**, **Figure 1.3.** Time series graphs are provided in **Appendix C**. Monitoring and historic data is provided in **Appendix F**.

2.3.2 Whole Effluent Toxicity

ADEC APDES Permit AK0053341 (8/1/17), 1.7

The annual WET test was conducted from June 21 to June 25 by TRE in Fort Collins, Colorado. A split of the same sample was also sent to Test America in Corvallis, Oregon. Results from both laboratories are presented in **Table 1**. All results were within the limits and conditions set forth within the permit. Laboratory reports are provided in **Appendix D**.

Laboratory	Species	No Observed Effect Concentration (%)	Low Observed Effect Concentration (%)	Inhibition Concentration 25%	Toxicity Units Chronic	Was Toxicity Demonstrated TUc value > 2.0
test America	Pimephales promelas	100	>100	>100	<1	No
TRE	Pimephales promelas	100	>100	>100	<1	No

Table 1: Pogo Mine Whole Effluent Toxicity Testing 2021

2.3.3 Fish Tissue

ADEC APDES Permit AK0053341 (8/1/17), 1.8.8

To assess long term trends in Goodpaster River quality, annual whole-body analyses of juvenile Chinook Salmon are required at monitoring sites both upstream (SW01) and downstream (SW12) from the project facilities. Juvenile Chinook salmon were collected from these two stations from September 24, 2021. At SW 01, all required fish were collected, and metals analysis was conducted on ten individual Chinook and a composite sample of five fish. Only eight juvenile Chinook salmon were collected at SW12, causing total body metals analysis to be run on only eight fish and with no composite sample for that location. Based on communications with Tim Pilon, ADEC and Brent Martellaro, ADNR on September 28th, 2021, NSR Pogo met the intent and spirit of APDES Permit AK0053341 with the reduced number of fish analyzed. As required by *Fish Resource Permit SF2020-*175d, a report of collection activities and a data submission form was submitted to ADF&G on November 11th, 2021.

Arsenic concentrations were elevated in two sample specimens collected upstream from the mine. All other results are consistent with historical data. Time series graphs are provided in **Appendix C**, lab reports are provided in **Appendix E**, and monitoring and historic data are provided in **Appendix F**.

2.4 Groundwater Quality monitoring

Groundwater samples are analyzed for WAD cyanide, major cations and anions, total metals, dissolved metals, physical and aggregate properties of ammonia, conductivity, hardness, nitrates, pH, TDS, TSS, and temperature. The locations of the groundwater monitoring stations are shown in **Appendix A**, **Figure 1.2**.

2.4.1 Downgradient of DSTF

ADEC Waste Management Permit 2018DB0001 (5/24/2018), 1.1.4, 1.2.6, 1.2.7, 1.5.4; Pogo Mine Monitoring Plan (7/20), 9.0

MW11-001A and MW11-001B provide information on water quality trends down-gradient from the DSTF and up-gradient of the RTP. MW11-001A is an alluvial well and MW11-001B is a bedrock well. The MW11 wells were sampled on January 16, June 11, August 13 and October 30. MW11-001A was dry during the first quarter and no sample was collected.

TDS concentrations were above WQS in MW11-001A on August 13 and MW11-001B on June 11. Nitrate was above WQS in both wells for all of 2021. Both wells are located within the process facility, so concentrations above the WQS are under observation. WQS are shown on the graphs for reference purposes only. No other adverse trends were observed. Time series graphs are provided in **Appendix C**. Monitoring data is provided in **Appendix F**.

2.4.2 Liese Creek Flumes

Four flumes were installed in Liese Creek in 2012. **Figure 4** provides flow data for Flume #1 (near the toe of the DSTF) versus precipitation rate in 2021. 2021 was a below average rainfall year.

Figure 4: 2021 Flume #1 Flow and Site Rainfall

2.4.3 Downgradient of RTP Dam

2.4.3.1 MW12-500, 501, 502 WELLS

ADEC Waste Management Permit 2018DB0001 (5/24/2018), 1.1.4, 1.2.6, 1.2.7, 1.5.4; Pogo Mine Monitoring Plan (7/20), 9.0

Three wells located below the RTP Dam, MW12-500, MW12-501, and MW12-502, monitor groundwater downstream of the RTP seepage collection system. Samples were collected quarterly throughout 2020 when there was available water. Trigger limits for groundwater monitoring at these locations are set forth in Pogo's ADEC Waste Management Permit 2018DB0001.

Samples for these wells were collected January 17, June 11, August 14, and October 29, 2021. No sample for MW-502 was collected in June due to low water level in the well.

Chloride, nitrate, and sodium levels were detected above trigger limits while arsenic and nitrate were detected above WQS. MW12-502 was above the trigger limit for Potassium on October 29th. Dam containment of the RTP water is under evaluation as part of a current corrective action investigation with ADEC. Time series graphs are provided in **Appendix C**. Monitoring data is provided in **Appendix F**.

2.4.3.2 MW18-001 AND MW18-002

Two wells located below the RTP Dam near Liese Creek Flumes #2 and #3 are MW18-001 and MW18-002. These wells monitor groundwater downstream of the RTP seepage collection system. Samples were collected monthly for MW18-001 and quarterly for MW18-002. Well placement was designed to monitor changes in water quality parameters through the Liese Creek Valley and help identify SCW bypass flow.

MW18-001 (near Flume #2) and MW18-002 (near Flume #3) samples indicate chloride, nitrate, and sodium above the trigger limits set forth in Pogo's ADEC Waste Management Permit 2018DB0001. MW18-001 had one sample above the trigger limit for Potassium on October 29th 2021 and concentrations of arsenic and nitrate, above WQS. Nitrate is above WQS in MW18-002. Dam containment of the RTP water is under evaluation as part of a current corrective action investigation with ADEC.

Except as noted above, all other results are within the limits and conditions set forth within the permit. Locations of the wells are represented in **Appendix A**, **Figure 1.2** Pogo Monitoring Locations. Time series graphs are provided for the MW18 series wells in **Appendix C**. Monitoring data is provided in **Appendix F**.

2.4.4 Downgradient of Ore Zone

ADEC Waste Management Permit 2018DB0001 (5/24/2018), 1.1.4, 1.2.6, 1.2.7, 1.5.4; Pogo Mine Monitoring Plan (7/20), 9.0

2.4.4.1 MW11-216

Monitoring well MW11-216 provides information on water quality trends down-gradient from the ore zones. Samples are collected semi-annually. MW11-216 was sampled on June 13 and October 30th, 2021 and all results are below WQS. Piezometer well MW99-216 collects data continuously, and is verified quarterly for water elevation. Time series graphs are provided in **Appendix C**. Monitoring data is provided in **Appendix F**.

2.4.4.2 MW18-003A AND MW18-003B

MW18-003A and MW18-003B were installed in 2018 to further evaluate groundwater downstream of the RTP and seepage collection well system. These wells also provide information on water quality

trends down gradient from the ore zones. MW18-003A and MW18-003B were installed as a nested pair of wells at the end of Liese Valley near Flume #4. MW18-003A is an alluvial well and MW18-003B is a bedrock well.

Samples were collected from both wells on January 17, June 12, August 14, and October 29, 2021. Samples from MW18-003A indicate that Nitrate was above WQS in January at 13.7 mg/L but decreased below WQS for the rest of 2021.

MW18-003B iron and manganese concentrations have exceeded WQS since installation of the well in 2018 and remained above WQS throughout 2021. These results, and a slow well recharge rate indicate a low hydraulic conductivity and reducing environment present around the well. Time series graphs are provided in **Appendix C**. Monitoring data is provided in **Appendix F**.

2.5 Process Control Monitoring

Process facilities are monitored as described below.

2.5.1 Water Balance

ADEC Waste Management Permit 2018DB0001 (5/24/2018), 1.5.2.4; Pogo Plan of Operations (7/20), 9.0; Water Rights LAS 24616 and LAS 32225

At the start of 2021, the RTP reservoir volume was 20.3 million gallons. On December 31, 2021, the RTP volume was 14.2 million gallons.

Water Added to RTP

- 44.6 million gallons of runoff and seepage water was collected in the RTP
- 51.4 million gallons of treated water was recycled to the RTP distribution system

Removed from RTP distribution system

- 27.8 million gallons were pumped from the RTP for underground process water
- 44.4 million gallons were pumped from the RTP to the mill process
- 7.9 million gallons were pumped from the RTP to MWTP#3

Recycled Treated Water

- 7.0 million gallons were recycled at the mill
- 51.5 million gallons of treated water was recycled to the RTP distribution system

Discharge to ORTW

• 181.7 million gallons were treated and discharged to the ORTW

2.5.2 Permits to Appropriate Water and Temporary Water Use Permit Summary

Pogo utilizes the following ADNR Permits to Appropriate Water: LAS32229, 32228, 32225, 32034, 32033, 32032, 24617, 24616, 24613, 24612, 24611 and ADNR Temporary Water Use Authorization TWUA F2016-109. A summary of water usage for Permits to Appropriate Water and Temporary Water Use Authorization is provided in **Table 2** and **Table 3**.

	LAS 24616/32225 Surface Water Collected in Recycle Tailings Pond (RTP)	LAS 32228 RTP Seepage Collection System Wells	LAS 24617/32229 Groundwater from Underground Mine Discharged to ORTW and Recycled Underground	LAS 24613 Goodpaster River ORTW Influent	LAS 24611 Drinking Water Wells DW02 & DW03	LAS 24612 Gravel Pit Pond*	LAS 32032, 32033, 32034 Caribou, Shaw, and Gilles Creek Access Road Dust Control and Compaction **
Month	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
January	3,127,411	2,361,565	38,681,089	578,437,920	835,501	24,000	0
February	7,010,253	1,975,513	17,676,256	509,065,119	808,073	24,000	0
March	1,548,094	2,056,869	21,201,758	533,207,042	788,316	24,000	0
April	2,028,521	1,670,406	19,256,152	612,909,386	750,938	80,250	414,000
Мау	4,577,984	2,159,179	19,404,901	588,918,645	761,279	259,500	580,500
June	3,633,547	2,541,356	21,561,011	593,442,710	730,481	24,000	571,500
July	1,220,964	2,386,489	25,649,039	597,027,834	721,625	753,750	355,500
August	5,495,897	2,434,078	18,696,932	628,457,826	714,505	36,000	18,000
September	6,455,256	2,390,502	10,063,492	549,389,251	716,281	63,000	0
October	779,365	2,586,883	22,222,809	590,352,376	745,573	0	0
November	4,073,915	2,721,716	20,492,797	609,061,343	759,461	0	0
December	4,747,647	2,287,827	17,495,027	612,633,251	747,980	0	0
Total (gallons)	44,698,852	27,572,384	252,401,263	7,002,902,703	9,080,014	1,288,500	1,939,500
Total in Acre-ft	137.2	84.6	774.6	21,490.9	27.9	3.95	6.0
Permit Limit Acre-ft	967.8	600	2,000	24,195.11	81.77	241.95	98.5

Table 2: Permits to Appropriate Water 2021 Monthly Total Flows

* Includes water used for mill make-up and for road dust control.

** Each LAS for Caribou, Shaw, and Gilles Creek allow 50,000 gallons per day from April 1st through October

31st. These have been combined to show total acre-ft for the access road dust control and compaction.

1 5					
TWUA F2016-109 Diversion Ditches					
Total Snowmelt Gallons Diverted	101,929,954				
Total Rainfall Gallons Diverted	79,971,959				
Total (gallons)	181,901,913				
Total (acre-feet)	558				
Permit Limit (acre-feet)	1460				

Table 3: 2021 Temporary Water Use Authorization Flows

2.5.3 Carbon-In-Pulp (CIP) Tailings Cyanide Destruction

ADEC Waste Management Permit 2018DB0001 (5/24/2018), 1.2.3, 1.5.2.3; Pogo Mine Monitoring Plan (7/20), 7.2

After cyanide destruction, the CIP tailings are stored in the CIP tank prior to being mixed with cement and used as backfill in the mine. The NSR Pogo Mine Monitoring Plan requires collection of grab samples at station PC001 (CIP Stock Tank), located directly after the cyanide destruction circuit. A daily sample is collected during each paste pour. The Waste Management Permit 2018DB0001 requires that samples contain less than 10 mg/kg of WAD cyanide as a monthly average and none of the samples can contain more than 20 mg/kg of WAD cyanide. During 2021, two PC001 sample results were above 10 mg/kg at 17.5 and 13.4 mg/kg of WAD cyanide; however, the monthly average remained below 10 mg/kg. A split sample of PC001 was sent to SGS Fairbanks lab as a QC check on the Pogo Assay lab as required in the Pogo QAP, there was no issue. Time series graphs are provided in **Appendix C**. Monitoring data is provided in **Appendix F**.

2.5.4 Mineralized Development Rock Geochemistry

ADEC Waste Management Permit 2018DB0001 (5/24/2018), 1.2.1, 1.5.2.6; Pogo Mine Monitoring Plan (7/20) 7.1

Samples of whole rock materials placed in the DSTF (PC002) are collected monthly and composited to form a quarterly sample for analysis. All sample result values are within the historical ranges and the composite samples showed no adverse trends. **Appendix B**, **Table 1**, shows selected parameters for PC002 whole rock monitoring. Monitoring data is provided in **Appendix F**.

2.5.5 Flotation Tailings Geochemistry

ADEC Waste Management Permit 2018DB0001 (5/24/2018), 1.5.4; Pogo Mine Monitoring Plan (7/20) 7.1

Flotation tailings geochemistry solid samples were collected on March 7, June 13, September 5, and December 2, 2021 at PC003, the underflow of the filter-feed tank at the end of the mill circuit, prior to disposal on the DSTF. All sample result values are within the historical ranges and no adverse trends were observed otherwise. **Appendix B, Table 2**, shows selected parameters for the PC003 Solid, flotation tailings samples. Monitoring and historic data are provided in **Appendix F**.

2.5.6 Flotation Tailings Interstitial Water Chemistry

ADEC Waste Management Permit 2018DB0001 (5/24/2018), 1.5.4; Pogo Mine Monitoring Plan (7/20) 7.1

The interstitial water from the tailings samples was collected at PC003 on March 7, June 13 (dissolved Mercury on June 19), September 5, and December 2, 2021. Most of the constituents were below the target operating ranges presented in Table 7-3 of the *2020 Pogo Mine Monitoring Plan*.

The following constituents were above the Target Operating Ranges: Iron in June, September and December; Copper in September and December; WAD CN and TKN in September; Mercury was at or over the operating limit for all 4 quarters. There were no sustained upward trends. Time series graphs are provided in Appendix C. Monitoring and historic data are provided in Appendix F.

An internal investigation began in 2018 to review the mercury concentration in PC003 as described in the 2020 Second Quarter Monitoring Report. The environmental concern with elevated mercury in the flotation tailings interstitial water is the potential for a corresponding mercury increase at the point of compliance groundwater monitoring wells down gradient of the DSTF. Data from the interstitial water samples show a mercury increase above the operating target range limit beginning in the third quarter of 2015, continuing through the first quarter of 2020 then at or above the operating range limit from the fourth quarter of 2020 through 2021. An evaluation of mine processes included mercury in water inputs to the mill, ore samples, mill reagents, liquid samples from areas within the mill circuit, solid samples of mineralized rock and flotation tailings, vapor samples from annual stack testing, and other areas unrelated to the mine process. During the evaluation, two primary factors were found to contribute to the exceedances of the flotation tails operating at target range limit:

- 1. The current operating target range was based on a data set with a high percentage of non-detect results.
- 2. Recent utilization of an analytical method with lower reporting precision and a higher reporting limit.

The observed changes in reported mercury levels for interstitial water samples have not resulted in a corresponding change in the point of compliance groundwater monitoring wells over the past five years, indicating no environmental impact occurred while mercury was elevated. Pogo has switched to a different EPA-approved dissolved mercury method (245.7) with lower reporting limits than EPA 245.1. This change is reflected in the revised QAP, which was submitted with the Plan of Operations Minor Modification in July 2020. Once a sufficient data set has been built using EPA method 245.7, the operating range limits will be revised using the new data set.

2.6 Visual Monitoring

2.6.1 Facility Inspection

ADEC Waste Management Permit 2018DB0001 (5/24/2018), 1.5.2.1, 1.5.9.3, 1.5.9.4; Pogo Mine Monitoring Plan (7/20) 5.0, 3.1; Pogo RTP Operating and Maintenance Manual (7/18), 5.0

Weekly visual inspections of the DSTF, RTP Dam, and monitoring wells were completed throughout the year. No cracking, bulging, settlement, geotechnical concerns, erosion, or damage was observed. The most recent Period Safety Inspection (PSI) of the Recycle Tailings Pond (RTP) Dam was completed on July 9-11, 2019. Based on the 2019 PSI findings, the RTP Dam is considered to be in *"satisfactory condition"*, as defined by the National Inventory of Dams (NID) Data Dictionary. The next PSI is planned for Summer of 2022.

A field inspection occurred on August 18, 2021 to support upcoming planned expansion of the Pogo dry stack facility in 2021. During this visit, ADNR Dam Safety and DOWL observed the Pogo RTP Dam and dry stack facility.

2.6.2 Biological Survey

ADEC Waste Management Permit 2018DB0001 (5/24/2018), 1.5.2.5; Pogo Mine Monitoring Plan (7/20) 5.4

The objective of the visual biological survey program is to monitor wildlife interaction with the surface waste disposal facilities. No wildlife issues with the surface waste disposal facilities occurred during the year.

2.6.3 Invasive Weed Control

On June 14th, 2021, Salcha Delta Soil and Water Conservation District (SDSWCD) traveled the Pogo Access Road, visiting each active material site along the way. SDSWCD field staff scouted, mapped, and photographed the extent of the target species, bird vetch (Vicia cracca) (VICR), foxtail barley (Hordeum jubatum) (HOJU), alsike clover (Trifolium hybridum) (TRHY), narrowlearf hawksbeard (Crepis tectorum) (CRTE3), and shepherd's purse (Capsella bursa-pastoris) (CABU2), to determine treatment areas. On June 15th, 2021, two Alaska State certified pesticide applicators from SDSWCD carried out initial treatment activities at certain locations where VICR and MEAL2 were identified. On July 19th, 2021, field staff returned to each site to observe herbicide effectiveness and scouted and treated new or late emerging infestations. Field efforts will continue invasive weed monitoring into the summer of 2022.

2.7 Development Rock Segregation and storage

ADEC Waste Management Permit 2018DB0001 (5/24/2018), 1.2.1, 1.5.2.6; Pogo Mine Monitoring Plan (7/20), 7.1.1

During 2021, 3090 rounds were blasted underground, and of these 2574 were sampled. A total of 516 rounds (16.7%) were not sampled due to operational challenges and were encapsulated in the DSTF. Of the sampled rounds, 624 (20.2%) exceeded either the arsenic threshold of 600 mg/l or the sulfide threshold of 0.5% and these were placed in the DSTF. 1950 rounds (63.1%) were classified as non-mineralized development rock and were used to build drains, construct shells, and line the edge of the DSTF. This material was also used as road surfacing and backfill material.

2.7.1 Handheld XRF Procedure

The handheld XRF development rock segregation program was ended on February 4, 2021. The development rock segregation procedures returned to the previously approved Assay Lab benchtop XRF process to quantify Arsenic and Sulfur in rock samples.

2.8 Waste Disposal

ADEC Waste Management Permit 2018DB0001 (5/24/2018), 1.2.1, 1.4.4

During 2021, 708,035 dry tons of flotation tailings, 237,844 tons of mineralized rock, and 401,545 tons of non-mineralized rock, were placed in the DSTF. Approximately 125,233 dry tons of flotation tails and 106,296 dry tons of CIP tailing were placed underground as paste backfill in 2021. A DSTF survey using a WingtraOne drone on September 3rd, 2021, indicated 16.6 M tons of material were contained in the DSTF, representing 83% of the 20 M ton design capacity, leaving approximately 3.41 M tons. More frequent and accurate drone survey methods have replaced previously used approximation of tonnage calculated by truck load counts. **Figure 5** presents the approximate total waste disposal within the DSTF and indicates remaining design capacity.

Figure 5: 2021 Annual Waste Disposal in the DSTF

The approximate quantities of miscellaneous waste materials placed either into the DSTF or underground during the year are shown in **Table 4**.

Material	Disposal Location	Approximate Quantity	Unit
Assay Lab XRF Wafers	DSTF	63.7	lbs
Assay Lab Sample Reject	DSTF	432.5	cubic yards
CV002 Conveyor belt	DSTF	6	truck load
WTP filter cake	DSTF	800	tons
Burn pit debris	DSTF	4	truck load
Drill Cores	DSTF	12	truck load
Ball Mill Scat	DSTF	1	truck load
Filter cloths	DSTF	10	each
Grind bags	DSTF	51,000	lbs

Table 4: Miscellaneous Waste Disposal in DSTF and Underground in 2021

2.9 Geotechnical Monitoring

ADEC Waste Management Permit 2018DB0001 (5/24/2018), 1.4.3, 1.4.3.4; Pogo DSTF Construction and Maintenance Plan (7/20)

Throughout 2021, pre-permitting studies, design, and permitting work was completed as part of the DSTF expansion project. AECOM completed a 2021 Geotechnical Review Report and a DSTF Conceptual Design Report. The primary purposes of these are listed below:

2021 Geotechnical Review Report

- Reviews all historic data related to the DSTF, including metallurgical and geotechnical moisture contents, compaction testing, and geotechnical drilling investigations.
- Analyzes the impact of reduction of the non-mineralized ("green") rock layer in Shell 1, including updated liquefaction and stability analyses.
- Provides recommendations for updated compaction QA/QC testing of the tailings.

DSTF Conceptual Design Report

- Calculates drainage analyses to size permanent and temporary diversion ditches.
- Provides water management, filling plan, and erosion control recommendations.
- Discusses options for final cover systems for eventual closure of the DSTF.

Shell construction took place on Shell 1 of the DSTF during all four quarters. The DSTF Construction and Maintenance Plan was updated during 2022 based on recommendations from the geotechnical review report and previous 2019 and 2020 geotechnical investigations. Compaction testing was completed as described below:

- On May 24, 2021, GPA Compaction Testing QA was completed by Mappa to provide points for a soil model analysis on the NSR Humboldt Electrical Density Gauge (EDG). Of the 10 points tested, 9 met the percent proctor of 90%. The percent proctor values ranged from 89.2-96.0%, with an average of 93%. Moisture contents ranged from 12.3-19.8%, with an average of 15.2%. NSR performed density testing at the same locations to create a soil model for the EDG. In addition to the onsite testing, three standard proctor tests were completed by Mappa. Maximum dry densities were determined to be 110.0, 111.5, and 112.0 pcf at 15.0, 15.5, and 15.5 % moisture contents, respectively.
- On June 11th, 2021, NSR performed compaction testing using the EDG on the GPA. All points met the standard proctor of 90%, with an average of 92.4%. Moisture contents ranged from 11.7-13.4%, with an average of 12.5% moisture.
- Compaction testing was attempted on June 18th, 2021 by NSR personnel; however, the cable for the EDG was damaged and testing was unable to be completed.
- NSR purchased a Troxler E-Gauge to replace the damaged Humboldt EDG. The instrument arrived in late October. On November 24, a tailings test plot was prepared with varying degrees of compaction to calibrate the NSR Troxler E-Gauge with the Mappa Troxler Nuclear Gauge. 10 samples were collected to determine moisture content values in the lab, and results varied from 15-18% moisture.
- Three tailings samples were sent to Mappa in November for standard proctor testing. Maximum dry densities were determined to be 112.5, 114.0, and 113.5 pcf at moisture contents of 13.5, 14.0, and 14.5%, respectively. The maximum dry density for purposes compaction testing was set at 113.3 pcf.
- The majority of the fourth quarter was spent calibrating the gauge for winter conditions, as low temperatures, frozen tailings, and significant snowfall posed challenges for instrument usage and personnel safety. Compaction tests were performed on December 10 and December 21. Moisture content tests were completed in the lab for calibration and ranged from 10.34-20.18%.

2.10 Spill Reporting

ADEC APDES AK0053341 (8/1/17), Appendix A, 1.14; ADEC Waste Management Permit 2018DB0001 (5/24/2018), 1.4.10

During 2021 there were a total of 279 spills reported. Refer to **Figure 6**, 2021 Annual NSR Pogo Spill Reporting.

Figure 6: 2021 Pogo Spill Reporting

3. AS-BUILT REPORTS AND MAPS

The Pogo Mine Site 2021 as-built maps are presented in **Appendix A. Figure 1.4** provides an overview of all facilities within the Pogo Millsite lease boundary at the end of 2021. **Figures 1.4a** through **1.4d** provide additional detail for the major areas of the mine.

4. RECLAMATION AND FINANCIAL RESPONSIBILITY

ADEC Waste Management Permit 2018DB0001 (5/24/18), 1.11, 3. ADNR Plan of Operations Approval F20189500 (5/24/2018), pg. 3, 9; ADNR Pogo Mine Millsite Lease ADL416949 (3/9/04), Section 8.

The Pogo Mine reclamation and closure bond including the road/transmission line is currently \$71.91 million (refer to **Table 5**). The road/transmission line reclamation and closure cost estimate is currently at \$7.08 million (**Table 6**). Reclamation and Financial Responsibility will be updated in 2022 as part of the Waste Management and Plan of Operations renewal process.

Summary of Estimated Reclamation and Closure Costs					
Item Description					
Earthwork/Recontouring					
Subtotal	\$8,526,670				
Revegetation/Stabilization					
Subtotal	\$3,694,623				
Detoxification/Water Treatment/Disposal of Wastewater					
Subtotal	\$5,669,769				
Structure, Equipment and Facility Removal					
Subtotal	\$10,402,219				
Monitoring					
Subtotal	\$2,369,650				
Construction Management and Support					
Subtotal	\$1,093,448				
Closure Planning					
Subtotal	\$16,663,398				
Subtotal Operational and Maintenance Costs					
Subtotal	\$48,419,777				
Indirect Costs					
Subtotal	\$18,161,463				
Total Direct and Indirect	\$66,581,240				
Inflation Proofing	\$5,326,499				
Grand Total	\$71,907,739				

Table 5: Mine Reclamation and Closure Cost Estimates as of 2017

Table 6: Pogo Access Road/Transmission Line Reclamation and Closure Cost Estimates as of 2017

Summary of Estimated Right of Way Closure Costs				
Item Description				
Earthwork/Recontouring				
Subtotal	\$646,544			
Revegetation/Stabilization				
Subtotal	\$1,554,352			
Detoxification/Water Treatment/Disposal of Wastewater				
Subtotal	\$0			
Structure, Equipment and Facility Removal				
Subtotal	\$1,451,958			
Monitoring				
Subtotal	\$0			
Construction Management and Support				
Subtotal	\$400,440			
Closure Planning				
Subtotal	\$726,229			
Subtotal Operational and Maintenance Costs				
Subtotal	\$4,779,523			
Indirect Costs				
Subtotal	\$1,784,132			
Total Direct and Indirect	\$6,563,655			
Inflation Proofing	\$525,092			
Grand Total	\$7,088,747			

5. PERMIT ACTIVITIES

5.1 Annual 2021 Permit activities

Regulatory notifications and major permitting activities completed in 2021 are identified below.

- Potable water system notifications:
 - o Pogo Mine Wastewater Treatment Plant Operator Certification Submission: NSR

Pogo updated ADEC with the current water operators and their certifications monthly (ADEC).

- Northern Star (Pogo) Permanent Camp LLC 2021 Sanitary Survey Response Letter PWSID #: 372685; Classification: Non-Transient Source Type: Ground Water Under the Direct Influence of Surface Water (GWUDISW): This letter was in response to a Sanitary Survey conducted by Mr. Stephen Hammond of M2C1 Construction and Engineering on April 13th, 2021. This letter designated that Pogo's operating system has one deficiency per the survey that has since been corrected. The deficiency was a sanitary seal that was not properly sealed where heat trace entered the well on WL003.
- Northern Star (Pogo) Water Operations Summary for Additional Camp Units (Temporary Tents) Serviced by PWSID# 372643 and PWSID# 372685: Notification of a temporary tent facility constructed adjacent to F-wing due to increased camp population projections and the COVID-19 restricted rooming situation. The temporary facility is serviced by the F-wing potable water haul truck and is not connected to the Pogo potable water or sewage distribution system. (This tent facility was removed in September 2021)
- Ozone Excursion- PWSID 372685: On July 21st, NSR reported an ozone excursion that occurred at approximately 12:50 pm at PWSID #327685. Potable 2 was monitored after the ozone generator was increased.
- Ozone Excursion-PWSID 372685: On August 23rd, NSR reported an ozone excursion at PWSID #327685. Two consecutive days, August 21st and August 22nd, ozone residual fell below 0.3 mg/L. The reason for the low readings is believed to be the result of performing a repair on a leak found in the waterline that transports water from our deep wells to the plant. After corrected, the plant saw ozone residual build back up towards the permit minimum of 0.3 mg/L ozone residual. On August 27th through 31st, the ozone probe was undergoing maintenance and replacement, which resulted in a reading of 0.05 on August 27th and no readings on August 29th and 30th.
- Pogo Mine Camp Expansion Request to Construct Potable Water Line Connections (Phase I): NSR requested approval to construct potable water infrastructure additions for Phase I of Pogo's Lower Camp capacity expansion on July 24th. This was approved through ADEC on September 1st.
- Multi-Sector General Permit (MSGP) Annual Report AKR06AC58: NSR Pogo submitted the required 2020 MSGP Annual Report via ADEC OASYS on January 28th.
- Air Permitting:
 - Semiannual Facility Operating Report, Second Half 2020, Permit No. AQ0406MSS07: On January 25th, NSR Pogo submitted the Semiannual Facility Operating Report, Second Half 2021 (ADEC/EPA).
 - Semiannual Facility Operating Report, Second Half 2020, Permit No. AQ0406TVP02: On January 25th, NSR Pogo submitted the Semiannual Facility Operating Report, Second Half 2020 (ADEC/EPA).
 - 2020 Annual Report CISWI Unit ID 412, Permit No. AQ0406TVP02: NSR Pogo submitted this report on January 25th (ADEC / EPA).
 - Assessable Emissions Estimates for Calendar Year 2020, Permit No. AQ0406MSS07:

NSR Pogo submitted the 2020 Assessable Emissions Estimates on January $\rm 25^{th}$ (ADEC / EPA).

- Annual Compliance Certification, Air Quality Operating Permit No. AQ0406TVP02: On January 25th, NSR Pogo submitted the Annual Compliance Certification for Permit No. AQ0406TVP02 (ADEC / EPA). 2021 Mercury Performance Test Plan Submittal: On July 12th, NSR Pogo submitted the 2021 Mercury Performance Test Plan to ADEC regarding permit AQ0406TVP02.
- Semiannual Facility Operating Report, First Half 2021, Air Quality Control Permit No. AQ0406MSS07: Northern Star submitted the Semiannual Facility Operating Report for the first half of the year on July 26th to ADEC.
- Semiannual Facility Operating Report, First Half 2021, Title V Operating Permit No. AQ0406TVP02: Northern Star submitted the Semiannual Facility Operating Report for the first half of the year on July 30th to ADEC.
- **2021 Mercury Performance Test 10-Day Notification:** NSR submitted the 2021 Mercury Performance Test 10-Day Notification to ADEC on August 30th.
- 2021 Mercury Compliance Performance Test: NSR completed the annual compliance testing during September 10-13, on the sources to NESHAP Subpart EEEEEEE.
- Asbestos-Notification of Demolition and Renovation: Northern Star submitted an Asbestos-Notification of Demolition and Renovation notification on September 3rd.
- 2021 Annual Stack Testing Final Report: Cover letter and test report documenting NESHAP Subpart EEEEE testing completed for the refinery processes at Pogo Mine were submitted for Condition 10.1 of the facility's Title V permit on November 9th, 2021, to ADEC.
- Title V Permit Renewal Application: Northern Star submitted the Title V permit renewal application on December 6th, 2021. This is due to requirements under 18 AAC 50.326 (c), 40 CFR 71.7 (b), and 40 CFR 71.5 (a)(1)(iii). The application provided documents specific to Emission Unit IDs 1-3 (Electrowinning Cells), 5 (Induction Furnace), and 6 (Carbon Kiln).
- Air Quality Full Compliance Evaluation, Information Request: On October 8th, 2021, Northern Star received the information request for data related to Pogo Mine Air Quality Operating Permits No. AQ0406MSS07 and No. AQ406TVP02. A response letter was submitted by Northern Star to fulfill this request on October 19th, 2021.
- APDES Permit No. AK0053341 activities:
 - Proposed Pogo Mine Water Treatment Plant 2 Clarifier Conversion to Equalization Tank: The modification will convert the MWTP2 clarifier into an equalization tank to accept surges in water from the underground influent flow. The clarifier is currently unused and has been offline since Mine Water Treatment Plant 3 (MWTP3) was commissioned. The equalization tank will reduce fluctuations and provide a steady flow of water through MWTP3, allowing more consistent operation of the plant.
 - Accidental Discharge/Spill Notification form for RTP pipeline breach: On April 11, Pogo submitted an accidental discharge notification to the ADEC Division of Water. The RTP water pipeline was struck by heavy equipment working near the

storm water pond. Maintenance shut the water off to the affected pipe within 31 minutes and repaired the break shortly after.

- Accidental Discharge/Spill Notification form for RTP pipeline breach: On April 11, Pogo submitted an accidental discharge notification to the ADEC Division of Water. The RTP water pipeline was struck by heavy equipment working near the storm water pond. Maintenance shut the water off to the affected pipe within 31 minutes and repaired the break shortly after.
- Accidental Discharge/Spill Notification for Gray Water Discharge at Temporary Tents: Gray water was discharged from a line that fell to the ground due to a failure of an original fastener when the discharge line and tank were installed. The discharge line was placed back into the discharge tank and secured with additional fasteners/ tie-offs. Lime was applied to neutralize any potential for bacteria formation. The contacted material was disposed of in the DSTF.
- DMR-QA Study 41: A data report form for laboratory checklists was submitted to ADEC regarding the DMR-QA study performed at Pogo for 2021. One analyte, Silver, was recorded as not acceptable after results came back from SGS Laboratories. All other analytes were graded as acceptable.
- Shell 1 Proposed Design Change for the Pogo Mine DSTF (NID ID # AK00304) and Submittal of Ongoing DSTF Expansion Project Reports: Two reports were submitted in the support of the ongoing DSTF Expansion Project as part of the Certificate of Approval to Modify a Dam. The DSTF Pre-Design Considerations and Design Basis and the 2021 Geotechnical Review Report were completed by AECOM to evaluate pre-design considerations and provide a design basis for the DSTF Expansion.
- 2021 Aquatic Resource Permit Application submitted: On July 19th, NSR Pogo submitted a request for the Aquatic Resource Permit through ADFG for annual fish tissue sampling.
- Accidental Discharge/Spill Notification for Kitchen Sink Pipe: Approximately 100 gallons of kitchen sink graywater appears to have spilled in the crawl space under the kitchen area after a drainage pipe broke and pulled away from the bottom side of the floor. No runoff occurred and was localized over an area of no greater than 10'x10'. All solids and topsoil were removed, totaling nearly half a cubic yard of soil and gravel. The pipe was replaced, and drainpipes were braced underneath the building to prevent future occurrences.
- Request for Approval to Construct Sewage Treatment Plant Distribution Lines: NSR requested approval to construct sewage treatment plant distribution system lines on July 30th through ADEC. This was approved through ADEC on August 18th.
- Notification of Completion of 2021 Emergency Action Plan Orientation: The annual orientation exercise for the Pogo Recycle Tailings Pond (RTP) Dam Emergency Action Plan (EAP) in accordance with the special conditions of the Certificate of Approval to Operate a Dam, RTP Dam (NID ID#AK00304) was completed on November 8th, 2021.
- **Updated Pogo Mine QAPP:** Minor updates were made in the Quality Assurance Plan to address changes in personnel. A more thorough review is due to be completed as part of the Waste Management Permit and Plan of Operations renewal applications in 2022.

- RO Addition Form ADEC AQ-Adding Michael Eckert as GM: Due to operational changes at Northern Star, a new Responsible Official was appointed. Jim Coxon will remain as a Responsible Official, but will be taking on a new role with Northern Star Resources as Vice President- Operations, North America. Michael Eckert, Pogo's current Mine Manager, has accepted the General Manager position and will begin his role in January 2022.
- Accidental Discharge/Spill Notification for CN Recovery at Pogo Mill: Approximately 20 gallons of CN Recovery fluid was discovered precipitating as icicles on the roof below the CN Recovery silo. The initial cause is believed to be a rotted out panel that allowed CN Recovery overflow to escape the silo onto the roof. Contaminated snow and ice were placed back into the mill process.
- Renewal of Alaska Pollutant Discharge Elimination System Permit No. AK0053341
- 2021 Aquatic Resource Final Report: Pogo submitted an Aquatic Resource Final Report in regard to Fish Tissue sampling on the Goodpaster River on November 10th, 2021.
- Waste Management Permit No. 2018DB0001 activities:
 - Minor Modification: Pogo submitted a minor modification to amend the waste 0 rock characterization method. To streamline the previously approved waste rock characterization process, would resume using the Rigaku benchtop XRF instrument in lieu of the Niton XL5 handheld XRF to analyze waste rock samples for sulfur and arsenic. Underground personnel will communicate assay tag information to dispatch and directly transfer the drill cuttings collected to the Assay Lab. Lab technicians will analyse the material with the Rigaku benchtop XRF to determine the designation of mineralized (red) or unmineralized (green). Samples from underground headings are reviewed daily to ensure waste rock is being characterized correctly and identify any missing samples or process issues. Assay lab XRF results are transferred from the internal Laboratory Information Management System directly into InMine, a new PowerBi based software being utilized for easier reporting between departments across the mine site. The environmental department will be tasked with daily QC checking of the data and waste rock process for any issues.
 - Minor Modification: Pogo Mine STP MBR Planned Changes will allow for increased efficiency, less plant downtime, and redundancy of the MBR system in the event of maintenance Phase I includes a retrofit to the two present MBR modules with the NHP series modules. The NHP210-300S unit is from the same vendor and has the same dimensions as the existing TMR140-100S, allowing for a simple retrofit. The NHP series MBR modules contain more densely packed plates for a reduction in clogging of the system. Phase II will include installation of two identical NHP series MBR modules in parallel to the existing MBR system. The parallel system will allow for system redundancy, which is needed for minimizing downtime and increasing the availability of the plant for operation at the original permitted capacity.
 - Minor Modification: DSTF Radio Controlled Pump System Construction involves installation of a larger sump and a remote radio-controlled pump station above the right finger drain of the DSTF and directly below the diversion ditches. The larger system will reroute additional surface water runoff to the diversion ditch during high flow periods to bolster the diversion system. The pump will be VFD capable and operate with set levels in the standpipe column that are

programmed to shutoff when water level is low and start up when the water level reaches a high set point.

- Re: Clarifier Conversion As-Built Submittal: Northern Star submitted a planned change to convert the Mine Water Treatment Plant 2 (MWTP2) clarifier into an equalization tank on January 19th. This work was approved by ADEC on January 20th. The construction for the converted equalization tank was completed and NSR submitted the most recent as-built drawings for MWTP2 clarifier conversion in accordance with Condition 1.4.9 of the Pogo Mine Waste Management Permit #2018DB0001.
- Minor Modification: DSTF Radio Controlled Pump System Construction involves installation of a larger sump and a remote radio-controlled pump station above the right finger drain of the DSTF and directly below the diversion ditches. The larger system will reroute additional surface water runoff to the diversion ditch during high flow periods to bolster the diversion system. The pump will be VFD capable and operate with set levels in the standpipe column that are programmed to shutoff when water level is low and start up when the water level reaches a high set point.
- Request Extension per 40 CFR 262-17(b): Extension was requested for waste beyond 90-days, since TSDF's have a backlog of incineration waste and are not accepting anymore at this time.
- Resource Conservation and Recovery Act (RCRA) Notice of Violation (NOV): NSR Pogo is in discussions with the EPA in response to a Notice of Violation following a RCRA audit in 2019 (EPA).
- Other:
 - Nationwide Permit Pre-construction notification Goodpaster Exploration Road Project (USACE NWP): On July 22st, NSR submitted a Pre-construction notification form under the Nationwide Permit 14, proposing construction of an exploration road through a wetland area. This would disturb 0.06 acres of wetlands.
 - Nationwide Permit Pre-construction notification Liese Creek Bridge Pogo Mine Road Project (USACE NWP): On August 19th, NSR submitted a Pre-construction notification form under the Nationwide Permit 14, proposing construction of a bypass road over Liese Creek. This would disturb 0.23 acres of wetlands.
 - Request for Extension per 40 CFR 262-17(b) for Waste Beyond 90-Days (EPA): Northern Star requested an extension for accumulated Hazardous Waste beyond the 90-day time limit. Some of Pogo's waste is treated via incineration, there is a backlog of waste to be incinerated at TSDF's across the nation and therefore TSDF's are not accepting any further waste. The waste to be incinerated is kept in a CAA that is inspected weekly, in containment, and locked. A subsequent extension was requested on September 30th.
 - Plan of Operations Modification-Liese Creek Culvert Project: On August 26th, Northern Star submitted a request for approval to amend the Pogo Mine Plan of Operations by adding a bypass road and culvert over Liese Creek. This request was received by the Division of Mining, Land, and Water, Mining Section (DMLW) and was approved on September 13th.

Request to Channel Flow at ORTW- Emergency Request Approval: Northern Star requested emergency approval to remove the buildup of sediment and ice

where the water from the Goodpaster River flows into NSR Pogo's inlet pond. The build-up of sediment and ice has decreased the Goodpaster River's flow into the inlet pond for NSR Pogo's Off-River Treatment Works (ORTW) on October 18th, 2021.

APPENDIX A – MAPS

Figure 1.1: General Location Map Figure 1.2: Pogo Mine Monitoring Locations Figure 1.3: Surface Water Monitoring Stations Figure 1.4: Pogo Mine As-Built Figure 1.4a: 1525 Portal Area and Lower Camp As-Built Figure 1.4b: Airstrip Area As-Built Figure 1.4c: Mill and Permanent Camp Bench As-Built Figure 1.4d: RTP & Dry Stack Area As-Built

Figure 1.2 Monitoring Locations Pogo Mine

Coordinate Sytem: NAD 1983 StatePlane Alaska 3 FIPS 5003 Feet Projection: Transverse Mercator Datum: North American 1983 False Easting: 1,640,416.67 False Northing: 0.00 Central Meridian: -146.00 Latitude of Origin: 54.00 Author: Jeremiah Drewel, Environmental Coordinator

Inlet Pond

Mixing Pond

NPDES001B

Runway Protection Zone

Growth Media Stockpile

(Commissioned in December 2017)

APPENDIX B –

WASTE ROCK GEOCHEMISTRY AND FLOTATION TAILINGS SOLIDS CHEMISTRY DATA

 Table 1: Whole Rock Geochemistry for Rock Placed in Dry Stack 2021

 Table 2: Geochemistry of Flotation Tailings Solids Placed in Dry Stack 2021

PC002	units	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
Antimony, Total	mg/kg	1.52	1.2	1.58	2.37
Arsenic, Total	mg/kg	555	568	997	2070
Carbon	%	0.36	0.53	0.33	0.36
Copper, Total	mg/kg	96.4	33.4	36.6	38.3
Inorganic Carbon	%	1.3	1.9	1.2	1.2
Iron, Total	mg/kg	38,100	41,200	34,000	42,400
Lead, Total	mg/kg	20.1	20.1	22.5	16
Maximum Potential Acidity	tCaCO3/1000t	13.8	9.4	10.9	11.9
Net Neutralization Potential	tCaCO3/1000t	22	43	30	37
pH, Paste	pH units	8.3	8.2	8.6	8.4
Potassium, Total	mg/kg	24,800	26,500	26,800	23,900
Ratio (NP/MPA)	su	2.62	5.55	3.75	4.13
Selenium, Total	mg/kg	2	1	<1	2
Sodium, Total	mg/kg	11,200	13,900	13,900	15,400
Sulfate Sulfur (CO ₃ Leach)	%	0.02	<0.01	0.02	0.01
Sulfate Sulfur (HCL Leach)	%	<0.01	<0.01	0.02	<0.01
Sulfide Sulfur (Calculated)	%	0.42	0.3	0.33	0.37
Sulfur, Total (LECO)	%	0.44	0.3	0.35	0.38
Zinc, Total	mg/kg	60	68	60	63

Appendix B. Table 1. Whole Rock Geochemistry for Rock placed into Drystack 2020

Appendix B. Table 2. Geochemistry of Flotation Tailings Solids placed into Drystack 2020

PC003 Solid	units	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
Antimony, Total	mg/kg	0.85	0.8	1.03	2.63
Arsenic, Total	mg/kg	161	340	505	248
Carbon	%	0.3	0.36	0.37	0.39
Copper, Total	mg/kg	44.9	39	72.4	56.7
Inorganic Carbon	%	1.1	1.3	1.4	1.4
Iron, Total	mg/kg	28,800	23,200	27,300	32,200
Lead, Total	mg/kg	8.4	7.3	9.8	8.8
Maximum Potential Acidity	tCaCO3/1000t	5	2.2	4.7	3.4
Net Neutralization Potential	tCaCO3/1000t	25	37	32	48
pH, Paste	pH units	8.2	8.2	8.4	8.3
Potassium, Total	mg/kg	16,700	18,300	22,900	19,800
Ratio (NP/MPA)	su	6	17.83	7.89	14.84
Selenium, Total	mg/kg	1	<1	<1	1
Sodium, Total	mg/kg	9,200	7,800	8,500	9,700
Sulfate Sulfur (CO ₃ Leach)	%	0.04	0.02	0.01	0.02
Sulfate Sulfur (HCL Leach)	%	<0.01	0.01	0.01	0.03
Sulfide Sulfur (Calculated)	%	0.12	0.05	0.14	0.09
Sulfur, Total (LECO)	%	0.16	0.07	0.15	0.11
Zinc, Total	mg/kg	30	21	30	32

APPENDIX C -

TIME SERIES GRAPHS OF MONITORING DATA

APPENDIX C – OUTFALL 011 GRAPHS

APPENDIX C – OUTFALL 001 GRAPHS

APPENDIX C – NPDES001B GRAPHS

APPENDIX C – OUTFALL 002 GRAPHS

APPENDIX C – STP GRAPHS

APPENDIX C – SURFACE WATER GRAPHS

APPENDIX C – FISH TISSUE DATA GRAPHS

APPENDIX C –

MW11-001A AND MW11-001B GRAPHS

APPENDIX C – MW12-500, MW12-501, MW12-502 GRAPHS WATER QUALITY STANDARDS AND SEEPAGE TRIGGER LIMITS

APPENDIX C –

MW18-001, MW18-002, MW18-003A, MW18-003B GRAPHS WATER QUALITY STANDARDS

APPENDIX C – MW11-216 GRAPHS

APPENDIX C – MW99-216 AND LT99-009 GROUNDWATER ELEVATION GRAPHS

APPENDIX C – PC001 GRAPH

APPENDIX C – PC003 INTERSTITIAL WATER GRAPHS

APPENDIX D – 2021 WHOLE EFFLUENT TOXICITY TESTING WET LABORATORY REPORTS

eurofins | Environment Testing
TestAmerica

AQUATIC TOXICOLOGY REPORT

Project Name:

NORTHERN STAR (POGO) LLC

Location:

DELTA JUNCTION, ALASKA

Prepared by:

Eurofins TestAmerica - Corvallis

1100 NE Circle Boulevard, Suite 310 Corvallis, Oregon 97330 541-243-6137

Oregon Environmental Laboratory Accreditation Program #OR100022 (NELAP) State of Washington DOE Environmental Laboratory Accreditation Program, Lab ID C556 California State Environmental Laboratory Accreditation Program, Certificate No.: 1726

> Report Date: July 14, 2021 Released by: Michelle Bennett

Eurofins TestAmerica - Corvallis Lab I.D. No. B5084

CONTENTS

Section Pa	ge
INTRODUCTION	3
OVERVIEW OF REGULATORY GUIDANCE	3
SUMMARY OF TEST RESULTS	4 4
METHODS AND MATERIALS TEST METHODS DEVIATIONS FROM PROTOCOLS TEST DESIGN DILUTION WATER SAMPLE COLLECTION AND STORAGE SAMPLE PREPARATION DATA ANALYSIS	5 5 5 6 6 6 6
RESULTS AND DISCUSSION CHRONIC BIOASSAYS REFERENCE TOXICANT TESTS	7 7 8

APPENDIX A. RAW DATA SHEETS APPENDIX B. REFERENCE TOXICANT DATA SHEETS APPENDIX C. CHAIN OF CUSTODY

LABORATORY CONTACT: Alise Lampi, Aquatic Toxicity Department Manager Alyssa.Lampi@eurofinset.com (541) 243-0964

INTRODUCTION

Eurofins TestAmerica – Corvallis (ET-C) Aquatic Toxicology Laboratory conducted toxicity testing on samples from Northern Star (Pogo) LLC.

Testing was initiated on: June 22, 2021

The test was conducted using:

• the fathead minnow (*Pimephales promelas*)

OVERVIEW OF REGULATORY GUIDANCE

The following provides an overview and excerpts of applicable permit specifics, regulatory guidance, and other relevant information. This is intended only as a helpful guide, from a laboratory perspective, for understanding test outcomes. The final responsibility for interpretation of results remains with the client and/or regulatory agency.

The following guidance is taken from ET-C reading of the NPDES permit for Northern Star - Pogo (permit #AK0053341, effective July 1, 2017, expires June 30, 2022).

Whole Effluent Toxicity Testing (WET) Requirements:

- "1.7.2 Chronic toxicity testing must be conducted on grab sample of effluent."
- "1.7.3 Chronic Test Species and Methods"
 - "1.7.3.1 For Outfall 001, chronic tests must be conducted annually prior to August 1."
 - o "1.7.3.2 ... using the fathead minnow, Pimephales promelas."
 - "1.7.3.3 The presence of chronic toxicity must be determined as specified in Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, Fourth Edition (EPA/821-R-02-013, October 2002)."
 - o "1.7.3.4 Results must be reported in TUc, where $TUc = 100/IC_{25}$."
- 1.7.4 Quality Assurance
 - 1.7.4.3.1 If organisms are not cultured in-house, concurrent testing with reference toxicants must be conducted. If organisms are cultured in-house, monthly reference toxicant testing is sufficient. Reference toxicant tests must be conducted using the same test conditions as the effluent toxicity tests.
- "1.7.5 A trigger for chronic toxicity of 2 TUc shall apply for the purposes of determining compliance with Permit Part 1.7.6 [accelerated testing] and 1.7.7 [TIE/TRE]."

SUMMARY OF TEST RESULTS

Exhibit 1 provides a summary of the final test results.

EXHIBIT 1 Summary of Chronic Test Results

	NOFC	LOEC	ICar		Was chronic toxicity
Species	(%)	LUEC	1C25	TUc	demonstrated
	(70)	(70)	(70)		(a TUc value > 2.0)?
P. promelas	100	> 100	> 100	< 1	No
	1 (1	11 1			

Note: acronyms are as defined below.

From the NPDES permit - *Chronic Toxicity Trigger*: "Toxicity Triggers. Since data does not exist to support the development of a WET limit at this time, a target level for chronic toxicity of 2 TUc shall apply ..."

More detailed information is provided in the Results and Discussion section.

ACRONYM DEFINITIONS (from EPA guidance):

NOEC = No Observed Effect Concentration: The highest test concentration that causes no observable adverse effects on the test organisms (i.e. no statistically significant reduction from the control).

LOEC = Low Observed Effect Concentration: The lowest test concentration that does cause an observable adverse effect on the test organisms (i.e. is statistically significant reduction from the control).

 $IC_{25} =$ Inhibition Concentration (25%): A point estimate of the test concentration that would cause a 25 percent reduction of a non-quantal biological measurement (i.e. growth, reproduction, etc.) for the test population.

TUc = Toxic Units (Chronic): Calculated as 100% sample divided by the chronic IC_{25} value.

METHODS AND MATERIALS

TEST METHODS

The chronic test methods were performed according to: *Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms*, Fourth Edition, (EPA 2002), EPA-821-R-02-013.

Additional guidance was provided by:

• *Method Guidance and Recommendations for Whole Effluent Toxicity (WET) Testing* (40 CFR Part 136), (EPA August 2000), EPA 821-B-00-004.

DEVIATIONS FROM PROTOCOLS

Deviations from required procedures in the test methods:

• None noted.

Deviations from <u>recommended</u> procedures in the test methods:

• None noted.

TEST DESIGN

The following summarizes the conditions used for both overall testing and the specifics for each test (observations and notations can be found on the datasheets in Appendix A):

Overall Test Design:

Chronic tests: 6.25, 12.5, 25, 50, and 100 percent sample + dilution water for the control.

Test Organism Conditions:

All organisms tested were fed and maintained during culturing, acclimation, and testing as prescribed by the EPA (2002).

The test organisms appeared vigorous and in good condition prior to testing.

P. promelas chronic test:

- Source: Aquatox Inc., Hot Springs, Arkansas
- Age: Less than 48 hours old and within an 24 hour age range
- Design: Four test vessels per concentration, ten organisms per vessel
- Test Solution Renewal: Daily
- Monitoring:
 - o Daily: Survival
 - o Daily: DO and pH in pre and post-renewal solutions, all concentrations
 - o Daily: Temperature in pre-renewal solutions, all concentrations

- With each new sample: Conductivity in post-renewal solutions, control and highest sample concentration
- Termination: 7 days after test initiation.
- Endpoints: Survival and Growth (average dry weight per organism added @ initiation)

DILUTION WATER

The dilution water used was the standard culture water used by ET-C:

• Reconstituted, moderately hard water (as per EPA protocol) with a total hardness of 75 to 105 mg/L as CaCO₃ and an alkalinity of 50 to 75 mg/L as CaCO₃.

SAMPLE COLLECTION AND STORAGE

Samples were collected by Northern Star (Pogo) LLC personnel. The samples were accepted as scheduled by ET-C. Chain of Custody and Sample Receipt Records are provided in Appendix C.

- All samples were received within the EPA recommended 0 to 6 °C range.
- All samples were initially used for test initiation or test solution renewal within the EPA recommended maximum holding time of 36 hours of sample collection.
- All subsequent uses of a sample occurred within the EPA recommended maximum holding time of 72 hours past the time of initial use of that sample.
- Following receipt, the samples were stored in the dark at 0 to 6 °C until test solutions were prepared and tested.

SAMPLE PREPARATION

Samples used during these tests were:

• Temperature adjusted prior to test initiation and each daily renewal.

DATA ANALYSIS

The statistical analyses performed for the chronic test were those outlined in *Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms*, USEPA Office of Water, Fourth Edition (EPA 2002), EPA-821-R-02-013, CETIS.

- The specific statistical analysis and CETIS version used for each endpoint evaluation is listed with the statistical outputs included with each test in Appendix A.
- If any additional analysis methods were also used, an explanation of the rationale and reference to the source method is included with the presentation of those results below.

RESULTS AND DISCUSSION

The raw data sheets for all tests are presented in Appendix A.

CHRONIC BIOASSAY

Table 1 summarizes the survival and reproduction data for the P. promelas chronic test.

S	Table 1 Summary of Chronic Result <i>P. promelas</i>	s
Sample Concentration (%)	Percent Survival	Mean Dry Weight per Organism Added (mg)
Control	97.5	0.902
6.25	97.5	0.984
12.5	100	0.954
25.0	92.5	0.919
50.0	90.0	0.889
100	87.5	0.860

Statistical analysis in accordance with the EPA protocol results in:

- NOEC = 100%
- LOEC > 100 %
- $IC_{25} > 100 \%$
- TUc < 1

From the NPDES permit - *Chronic Toxicity Trigger*: "Toxicity Triggers. Since data does not exist to support the development of a WET limit at this time, a target level for chronic toxicity of 2 TUc shall apply ..."

• The TUc (calculated as = $100/IC_{25}$) <u>did not</u> exceed 2.0.

The dissolved oxygen levels in the chronic tests remained above 4.0 mg/L. Test temperatures remained at 25 ± 1 °C.

The test meets Test Acceptability Criteria (TAC) for a minimum 80 percent control survival and a minimum weight of 0.250 mg per surviving control organism. Except as referenced above, the *P. promelas* chronic test proceeded without any noted deviations or interruptions that could have affected test results. The testing should be considered "valid".

REFERENCE TOXICANT TESTS

Reference toxicant (reftox) testing is performed to document both initial and ongoing laboratory performance of the test method(s). While the health of the test organisms is primarily evaluated by the performance of the laboratory control, reftox test results also may be used to assess the health and sensitivity of the test organisms. Reftox test results within their respective cumulative summary (Cusum) chart limits are indicative of consistent laboratory performance and normal test organism sensitivity.

The results of the reftox tests indicate that the test organisms were within their respective cusum chart limits based on EPA guidelines. This demonstrates ongoing laboratory proficiency of the test methods and suggests normal test organism sensitivity in the associated client testing.

The *P. promelas* reftox test was conducted using potassium chloride. The data sheets for the reference toxicant tests are provided in Appendix B.

Tal	ble 2	
Chronic Reference	Toxicant Tests	(g/L)
Species	IC25	Cusum Chart Limits
<i>P. promelas</i> (survival)	0.61	0.52 to 0.70
<i>P. promelas</i> (growth)	0.60	0.44 to 0.72

Table 2 summarizes the reference toxicant test results and Cusum chart limits.

APPENDIX A

RAW DATA SHEETS

FRESHWATER TOXICITY TEST: SAMPLE AND DILUTION WATER DATA

TestAmerica

Control Test Transing Description Description Test Transing Description Test Transing Description Test Transing Description Test Transing Description	Control Test Test notion Description Description Test Test notion Description	Contract National Kolore (1)/1 Van Petron 907-305-2010 (97-697-371) Test Termination: Dia Test Termination: Dia <thtest dia<="" termination:="" th=""> Test Termi</thtest>	Client		No	orthern St	ar			1	SDG# B SOE	125	Test In	uitiation: L	Jate	W/2	12/2	
		Straigle In Number Fraction Table Tools Table Tools <thtable th="" tools<=""></thtable>	Contact	Nathan Kehoe / J	ill Van P	atten 907-	-895-276	0 / 907-687-	3579	1			Test Tern.	nination: L	Date	6-0)	10-6	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sample ID Number Fradition Number Time Number Time Number<	Strange: Different mediation Find ID Time models (models) (mode			_	Collecte	pa	Receiv	red	Temn	Total Residual	Ammonia	Traduent	A 11-11				
Mutute Time and the field of	Multication Tender Multication Tender Multication Mul	Multication Tensor (mindot) (partin (mindot) (mindot) (partin (partin) (partin) (pari	Sample ID	Riald ID		Date	Time	Date	Time	(0°)	Chlorine (mg/l)	NH ₃ -N	mo/1 ac	Alkalinity mo/1 ac	DU (1)	Нd	Cond.	60 um
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Signal Interface atom	Number			mm/dd/yy)	(Pacific	(mm/dd/yy)	(Pacific		Dechlorination allowe	l/gm be	CaCO ₃	CaCO ₃	(7 (2m)		(cn)	Initered
DSGMP101 Model Noted 1001 Model Noted Not	DSGMP11 Outant 1001 V (2,1/2) 07:31 U (2,1/2) U (2,	Discription V (M / N / N / N / N / N / N / N / N / N /	1		-		Zone)		Zone)	as Rc'vd	as Rc'vd / after Dechlo	Nr. as Rc'vd	as Rc'vd	as Rc'vd	as Rc'vd	as Rc'vđ	as Rc'vd	
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SS0394.0 Overal tool (b / 23/3) OF M (b / 24/12) (c / 24/12) (10,0059	Outfall 001	>	121/21	12:00	212210	CP: H	200	0.021 -	0.58	75	1				AN
BEOR4 40 0x13 0x12 123 72 - - - - - - - - - - - 0	BEOR4 d0 Intall 001 (v, y_5, y_1) (v', y_5, y_1) Indicated to a conduction or total con	BEC084 30 Outbit 1001 1 1 23 72 - - - 1 23 72 - - 1 23 1 23 72 - - 1 23 1 23 72 - - 1 23 1 23 72 - - 1 <th< td=""><td>SS194-02</td><td>Outfall 001</td><td>9</td><td>123/21</td><td>4:L0</td><td>6124121</td><td>D : 11</td><td>25</td><td>- 70.02</td><td>0.31</td><td>64</td><td></td><td></td><td></td><td></td><td></td></th<>	SS194-02	Outfall 001	9	123/21	4:L0	6124121	D : 11	25	- 70.02	0.31	64					
Image: constraint of the	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Note: Image: Image: </td <td>B5084 -03</td> <td>Outfall 001</td> <td>6</td> <td>10:501</td> <td>0543</td> <td>1610Cio</td> <td>09:00</td> <td>01</td> <td>0.03/ -</td> <td>1 23</td> <td></td> <td></td> <td>1</td> <td>1</td> <td></td> <td></td>	B5084 -03	Outfall 001	6	10:501	0543	1610Cio	09:00	01	0.03/ -	1 23			1	1		
Image: constraint of the state of	Image: black Image: black <th< td=""><td>Image: constraint of the state of</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>C=1</td><td>-</td><td>07-</td><td>7</td><td></td><td></td><td></td><td></td><td>Ŷ</td></th<>	Image: constraint of the state of								C=1	-	07-	7					Ŷ
Image: contract of the	Image: constraint of the state of	Image: constraint of the sector was labeled of									-							
Note Note <th< td=""><td>Note: "</td><td>Note: "-" Indicates data collection or decision; Indicates data collection; Indicates data collecticates d</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Note: "	Note: "-" Indicates data collection or decision; Indicates data collection; Indicates data collecticates d									-							
Relation Image	Ret Image I	Image: constraint of the state of									/							
Reson Final Here Fina Final Here Final Here	Resonant Image	Image: second			-						_							
Image: Constraint of the state of	Image: constraint of the state of	Image: control in the sector of the sector in the	Dogo								-							
Image: constraint of the line o	Image: line	Image: constraint of the state of									-		,					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Image: Note: "* Indicates data collection or dechtorination not needed. Any other adjustments to samples prior to use are documented in Comments below or on Dilutions page. Image: Note: "* Sample not dechtorinated, not needed. Any other adjustments to samples prior to use are documented in Comments below or on Dilutions page. Dilution Water ID# Adj Adj Note: "* sample not dechtorination not needed. Any other adjustments to samples prior to use are documented in Comments below or on Dilutions page. Dilution Water ID# Adj Adj Note: "* = sample not dechtorinated. S3445 Adj Adj Note N= sample not dechtorinated, or analyte not collected/needed. S3446 Adj Adj Note Note N= sample not dechtorinated, or analyte not collected/needed. S3447 Adj Adj Note N= sample not dechtorinated, or analyte not collected/needed. S3448 Adj Adj Note Note N= sample not dechtorinated, or analyte not collected/needed.	Image: Note: Image: Note:<									/							
$ \begin{array}{ $	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Image: Note: Image: Note:<									/							
Note: "-" IndicatesReporting Limits:na 0.02 mg/L 5 mg/L 5 mg/L na na na Note: "-" IndicatesAttainingReporting Limits: na na na na na Note: "-" IndicatesAttainingCompation of dechorination not needed. Any other adjustments to samples prior to use are documented in Comments below or on Dilutions page.Dilution Water $D\#$ $mg/l as$ 5344 $9,2$ $0,0$ $0,2$ 5344 40 $0,0$ 5344 40 $0,0$ 5344 40 $0,0$ 5344 40 $0,0$ 5344 40 $0,0$ 5344 40 63 63 40 <	Reporting Limits: na 1 na na<	Note: "" Indicates data collection or dechlorination not needed. Any other adjustments to samples prior to use are documented in Comments below or on Dilutions page. Image and a collection or dechlorination not needed. Any other adjustments to samples prior to use are documented in Comments below or on Dilutions page. Dilution Water ID# Media Marchess Attaininy comments. Ed Indicates the action was taken, (I= action not taken): ""= sample not dechlorinated, or analyte not collected/needed. Dilution Water ID# mg/l as mg/l									-							
Reporting Linuis:naReporting Linuis:nananananaNote: "-" Indicates data collection or dechlorination not needed. Any other adjustments to samples prior to use are documented in Comments below or on Dilutions page.nanananaDilution WaterD#HardnessAlkalinityComments: Ed Indicates the action was taken, (\Box = action not taken):"" = sample not dechlorinated, or analyte not collected/needed.Dilution WaterD#g/gcaCo3caCo3caCo3S/34/T%00/0////////S/34/Gg/g////////S/34/Gg/g//////S/34/Gg/g//////S/34/Gg/g////S/34/Gg/g////S/34/Gg/g////S/34/Gg/g////S/34/Gg/g//S/34/Gg/g//S/34/Gg/g//S/34/Gg/g//S/34/Gg/g//S/34/Gg/gg/g//S/34/Gg/gg/g//S/34/Gg/gg/g//g/g//g/g//g/g//g/g//g/g//g/g//g/g//g/g//g/g//g/g//g/g//g/g//	Note: "-" Indicates data collection or dechorinationReporting Limits:na 0.02 mg/L 5 mg/L 5 mg/L $a \text{ ma}$ Diminion WaterDiminion	Reporting Limits: na 0.02 mg/L 5 mg/L 5 mg/L na									/							
Note: "-" Indicates data collection or dechlorination not needed. Any other adjustments to samples prior to use are documented in Comments below or on Dilutions page. Indicates the action was taken, (\Box = action not taken): "- " = sample not dechlorinated, or analyte not collected/needed. Dilution Water D# mg/l as	Note: "-" Indicates data collection or dechlorination not needed. Any other adjustments to samples prior to use are documented in Comments below or on Dilutions page. Indicates the action was taken, (\Box action not taken):	Note: "-" Indicates data collection or dechlorination not needed. Any other adjustments to samples prior to use are documented in Comments below or on Dilutions page. Hardness Alkalinity Comments: Ed Indicates the action was taken, (□- action not taken): "-" = sample not dechlorinated, or analyte not collected/needed. Dilution Water D# mg/l as mg/l as mg/l as mg/l as Recon MH (FHM) 5347 40 40 econometer (D) econometer (D) 53443 40 60 econometer (D) econometer (D) econometer (D) 53443 40 60 econometer (D) econometer (D) econometer (D) 53443 40 60 econometer (D) econometer (D) econometer (D) 63343 40 60 econometer (D) econometer (D) econometer (D)					Ř	eporting Limit		na	0.02 mg/L	0.10 mg/L	5 mø/L	5 mo/T	64	ç	1	
Dilution Water $D\#$ Hardness Atkalinity Comments: Indicates the action was taken, (\Box = action not taken): $n = sample not dechlorinated, or analyte not collected/needed. Dilution Water D\# mg/l as mg/l as mg/l as Recon MH (FHM) 5344b q_2 c_0 c_0 S3447 40^\circ c_0 c_0 c_0 S3448 40^\circ c_0 c_0 c_0 S3448 40^\circ c_0 c_0 c_0 $	Inition Water ID# Hardness Alkalinity Comments: Indicates the action was taken, (\Box = action not taken): " = sample not collected/needed Dilution Water ID# mg/l as mg/l as caCo ₃ mg/l as caCo ₃ Indicates the action was taken, (\Box = action not taken): " = sample not collected/needed Recon MH (FHM) 5/3/4/b 9/3 $u/0$ Indicates the action was taken, (\Box = action not taken): " = sample not dechlorinated, or analyte not collected/needed Recon MH (FHM) 5/3/4/b 9/3 $u/0$ Indicates taken Indicates taken S3/4/3 9/4 $u/0$ Indicates taken Indicates taken Indicates taken Indicates taken S3/4/3 9/4 $u/0$ Indicates taken Indicates taken Indicates taken Indicates taken S3/4/3 9/4 $u/0$ Indicates taken Indicates taken Indicates taken Indicates taken S3/4/3 9/4 0/0 Indicates taken Indicates taken Indicates taken Indicates taken S3/4/3 9/4 0/0 Indicates taken Indicates taken Indicates tak	Dilution WaterID#HardnessAlkalinityComments:Idicates the action was taken, (\Box - action not taken):" - " = sample not dechlorinated, or analyte not collected/needed.Dilution Watermg/ asmg/ asmg/ asmg/ asCaCoscaCoscaCoscaCoscaCosSAUDG2G2caCoscaCoscaCosSAUDG2G2G2caCoscaCosSAUDG3G4MoCaCoscaCosSAUDG3G3G4MoCaCosSAUDG3G4MoMoCaCosSAUDG3G4MoMoSAUDG3MoMoSAUDMoMoMoSAUDMoMoMoSAUDMoMoMoSAUDMoMoMoSAUDMoMoMoSAUDMoMoMoSAUDMoMoMoSAUDMoMoMoSAUDMoMoMoSAUDMoMoMoSAUDMoMoMoSAUDMoMoMoSAUDMoMoMoSAUDMoMoMoSAUDMoMoMoSAUDMoMoMoSAUDMoMoSAUDMoMoSAUDMoMoSAUDMoMoSAUDMoMo<		Note: "-" Indicates	s data colle.	ction or dech	lorination 1	not needed. An	ly other adju	istments to	samples prior to use an	e documente	d in Comme	ants below o	r on Dilutio	III DAGE	PIT	PII
Dilution Water $D#$ mg/l as mg/l as CaCO3mg/l as caCO3Recon MH (FHM) 5340 $q3$ c/q 5347 40 $c/0$ 5343 44 $c/0$ 5344 40 $c/0$ 5344 40 $c/0$	Dilution Water $D\#$ $mg/l asmg/l asRecon MH (FHM)5 3 4 76 06 053 4 740u_053 4 740u_053 4 740u_053 4 740u_053 4 740u_053 4 740u_053 4 740u_0$	Dilution Water ID# mg/l as mg/l as caco, caca			Hardness	3 Alkalinity	Comments	: 🗹 Indicate	s the action	was taken,	(□= action not taken):		# = #	mule not de	chlorinated	or analysis	and and look	
Recon MH (FHM) 5346 Q2 CaCO3 5347 30 60 5343 34 60 5343 40 60 5343 40 60	Recon MH (FHM) 5346 Q2 caco ₃ 5347 40 60 5343 44 60 5343 40 60 5344 40 60	Recon MH (FHM) 5341 9.0 CaCO3 CaCO3 8600 MH (FHM) 5344 40 6.0 5347 40 6.0 5347 40 6.0 5349 40 6.0 5349 40 6.0 5349 40 6.0 Staude 40 6.0 Mater Quality Meters Used/ID#: Dissolved Oxygen # // pH # // Conductivity # //	Dilution Water	Đ#	mg/l as	mg/l as												cu/necaea.
Recon MH (FHM) 53 いし ieq 53 い日 50 iu0 53 い日 40 iu0 53 い日 40 iu0 53 い日 40 iu0 53 い日 40 iu0	Recon MH (FHM) 5 3 4/5 ieq 5347 50 io0 5343 54 io0 5343 50 io0 5343 40 io0 5349 40 io0	Recon MH (FHM) 5346 92 69 5347 30 60 5348 34 60 5348 34 60 5348 40 60 5348 40 60 5348 40 80 Sature Vaclity Meters Used/ID#: Dissolved Oxygen # I Conductivity # Z			CaCO ₃	CaCO ₃												
5347 40 (40 5348 44 (40 5349 40 (40	5347 40 60 5348 44 60 5349 40 60	5347 % % 5343 % % 5344 % % 5343 % % 5344 % % 5343 % % 5344 % % 5343 % % 5344 % % 6344 % % 7 Mater Quality Meters Used/ID#: Dissolved Oxygen #	Recon MH (FHA	A) 5346	66	60)												
5348 44 60 6349 40 60	5348 44 60 5349 40 60	5343 34 60 5349 40 60 5349 40 60 Atter Quality Meters Used/ID#: Dissolved Oxygen # 4 pH # 1 Conductivity # 7		5347	20	(00)												
5349 40 60	5349 20 60	5349 40 60 Water Quality Meters Used/ID#: Dissolved Oxygen # 4 pH # 1 Conductivity # 7		5348	24	100												
		Water Quality Meters Used/ID#: Dissolved Oxygen # U pH # [[Conductivity # 7]		5349	99	00												
		Water Quality Meters Used/ID#: Dissolved Oxygen # 4 pH # 11 Conductivity # 7																T

Northern Star Pogo Mine - FHM chronic Doc Control ID: ASL899-0917

TestAmerica

FRESHWATER TOXICITY TEST: TEST ORGANISM INFORMATION

Client

Northern Star

Sample Designation (SDG): B 5084

		
Test Species Information	FHM # 9169 Pimephales promelas	
	Chronic	
Organism Age at Initiation	<48 hrs, all within a 24 hour window	
Test Container Size	400 ml	
Test Volume	500 ml	
Feeding: Type and Amount	0.15 ml Artemia, 2 x Daily	
Aeration:	 None Prior to use 	
In Test Chambers via Slow Bubble :	<u> </u>	
Acclimation Period	<24 hrs	
Organism Source	Agricutox	
Size	0	
Loading Rate	-	

Dissolved Oxygen aeration justifications (in test chambers):

Test(s):
All

Date:

Comments:

Test Solution Preparation and Dilution Record

Client: Northern Star

Note: \Box Indicates task not done, \mathbf{v} Indicates task was done. Temp adj. = Temperature adjusted to ambient or test temp Ditto marks ('') indicate that the same SDG, batch of dilution water, or food as the previous day's entry was used.

	Daily San Inrior	Temn ad	Temp ad	Temn ad	Temp ad	Temn ad		Temp ad	4
	Sample ID Used	BSKM - NI	BUDY - NI	BG NH- 07	BADY	B Gilet - 02	BCOWI - C2	BG094 - 02	
	Test Day	0 (Initiation)	1	7	m	4	ŝ	9	•
	Final Volume	(mls)	2000	2000	2000	2000	2000	2000	3875 mls
nic			↑	î	Î	↑	↑	↑	day =
w - Chro	Sample Volume	(mls)	0.00	125	250	500	1,000	2,000	needed per (
Fathead minne	Test Concentration	(%)	Control	6.25	12.5	25	50	100	otal Sample volume

Initials	HHASHH
Time	23-18-18-18-18-18-18-18-18-18-18-18-18-18-
Date	6 122/2021 6 124"21 6 15/"21 6 121"21 6 121"21 6 121"21
Dilution Water Used	D# 5346 D# 5346 D# 5346 D# 5343 D# 5343 D# 5343 D# 5343
umple Preparation or to dilution)	dj, 🗆 Aerated dj, 🗆 Aerated dj, 🗀 Aerated dj, 🗀 Aerated dj, 🗂 Aerated dj, 🗂 Aerated dj, 🗂 Aerated

THE LEADER IN ENV	IRONMENTAL I	TSTING	FA	THEAD MIN	NOW 7-DAY	SURVIVAL A	ND WATER	QUALITY DA	АТА	-		
Ran	idom Te	emplate Used:	6 conc. x 4 re	ps. # 1	Wate	rbath/incubato	r Used:	Date Initiated	61221	20 9 i 1	Time	15:00
Initial san	nple ID	в 508	4	- 121		# 10	D	ate Terminated	612911	2071 1	Time	09:4-
Client			No	tham Star	-			1. Description		0.45-11.00	11	
Chem	_		1001	them Star		-	- Sam	ple Description		Outrall OC	Л	
Tech:	Day 0	0/21/T Day	1 1 Da	y 2 <u>C</u>	Day 3 BC	Day 4 day	_ Day 5TC	Day 6 1	Day 7	TC		
Time	Day 0	1 <u>500</u> Day	11037 Da	y2 1420	Day 3 1330	Day 4 135	1 Day 5 12	25 Day 6 1	419 Day 7	0847		
Conc.			Number of I	ivo Organisma		Disso	lved O ₂	-	U	Temp.	#0	Conductivity
or	Day		Number of L			(n	ng/l)	P		(°C)	II. II	(µS)
Percent		A	В	С	D	Pre	Post	Pre	Post	Pre	The	Post (1 st use)
1.00	0	10	10	10	10		7.45	0	8.2	11ost: 29.4 1	63	338
1.1.1.1	1	10	01	10	10	667-71	7.01	73	80	29.32	53	
ō	2	10	110	91	10	61	177	7.6	5.1	1931	251	303
tt l	3	10	10	q	10	6.2	7.6	7.4	7.3	1.7.3	251	220
Ŭ	4	10	10	9	10	54	0.5	-1-5	1.9	254	161	3.29
	6	100	10	0	10	611		mill	12 10	26.2 5	14 Q	
	7	10	10	a	10	12.0	11-7	7.4	0,0	26.2 2	71.10	
	0	10	2. 199	10	10	10.0	74	U I	9.1	Post: 26	7	
	1	10	WIZ3 GM	10	10	1050 GT 15	8.0	76	6.0	26.3	2	
	2	9	9	10	10	10	1 7.9	7.18	9.0	761	4	
2%	3	9	9	10	10	6.2	7.8	7.0	75	25.0		10
2.2	4	9	9	10	10	5.7	6.9	7.5	80	25.4		
	5	à	9	1011	10-	2.0	7.8	7.5	7.9	25.4		
	6	9	9	10	10	5.7	7.6	74	8.0	25.4		
	7	9	9	10	10	10-1		7.3		25.3		
	0	10	10	10	10		78		8.1	Post 25.2		
	1	10	01	10	10	6.67.50	8.1	7.9	8.0	29.2	_	
8	2	10	10	10	10	6.1	8.	7.5	8.0	29.3		
.5	3	10	10	40	10	6.5	7.4 	7.0	t.5	15.0	-	
12	4	10	10	10	10	5.1	1.0	7.4	1.9	25.3	-	
	6	10	10	10	10	GH	120	7.2	00	766	-	
	7	10	10	10	10	6.9	10.0	7-10	0.0	76.7	-	Concession of the
	0	10	10	10	9 10 40		70		4.0	Post: 76 7		
	1	10	10	10	10 42	1010	0.2	7.4	7.9	25.2		
	2	10	9	10	9M	(2.0	8.2	7.9	7.9	76.3	1	
%	3	9	9	0	9	6.6	81	6.8	7.4	29.		
25	4	9	9	10 1	a	Sil	72	7.3.	7.4	25.5		
	5	9	8	10	9	7.0	pay 8.1	7.10	7.3	25.7		
-	6	6	3	10	9~	9.3	biest Buy	7.3	7.9	25.10	2	
	/	10	0	10	10	9.9		7.0		26.4	_	-
-	0	10	10	10	10	100	83		7.7	FONT: 29.2.	,	
	2	10	10	9	10.2	0.0	Dile	7.4	7.7	25.3	2	
~	3	9	10	q	10	12.3	2	41	24	251	-	
20	4	là	11)	à	10	610	32	7.0	710	2011	-	
	5	9	10	TE	10	21	0,2	-26	7.7	264	+	
[6	0	(0)		10	5.1	012	72	7.8	76.4	1	
	7	01	10	٦	10	UNV.	- UNE	7.4		75.4		
	0	10	10	10	10		4.7		7.4	Post: 25,2		191.9
	1	10	10	10	10	6.9	9,1	7.2	7.3	25.2	>	
	2	101	10	10	10	64	01.1	7.3	7.3	25.2	2	163,9
60	3	0	0	0	0	6.6	8.5	6.6	7.0	25.0		
10	4	10	10	10	10	67	7.9	7.2	71	255		255
-	3	8F	10	TF	10	7.1	9.1	7.4	7.2	24.5		
	7	a	-10	<u>ر</u>	10	5.2	6.0	Tit	1.4	25.5	2	
	,	- 1	14		10	U.I	A DESCRIPTION OF TAXABLE	1.4	and the second division of the local divisio	19.3		

 \checkmark Indicates one organism inadvertently poured off during solution renewal, replaced into container. "M" = organism missing, start count reduced. "Inj" = organism injured, remove from stats.

"F" = fungus noted on dead organisms.

Aeration in test chambers begun @ _____ (Note observations on Test Organism Info sheet)

r. Pre =Pre-renewal solutions. Post =Post-renewal solutions. Day 0 Temperatures = Post-renewals Therm ID# = Thermometer ID used for all measurements that day.

(23.8) = Temp. out of recommended range

() por te 123/21

TestAmerica

CETIS Summary Report

Fathead Minn	iow 7-d Larval S	Survival ar	nd Growtl	n Test					E	Eurofins Tes	stAmerica -	Corval	lis
Batch ID: Start Date: Ending Date: Test Length:	06-3225-2173 22 Jun-21 15:0 29 Jun-21 08:4 6d 18b	Te 0 Pr 7 Sp Ta	est Type: otocol: oecies:	Growth-Surviva EPA/821/R-02-0 Pimephales pro	l (7d) 013 (2002) omelas			Analyst: Diluent: Brine:	Mich Mod	nelle Bennett -Hard Synth	t etic Water	Age: 1	
Test Length.	ou ron	10		Actinopterygi				Source.	Лүи			Aye.	
Sample ID:	01-7005-2064	Co	ode:	B5084-01				Project:					
Sample Date:	21 Jun-21 07:3	1 M a	aterial:	Industrial Efflue	nt			Source:	Nort	hern Star (P	ogo) LLC (A	K00533	641
Receipt Date:	22 Jun-21 11:4	7 C/	AS (PC):					Station:					
Sample Age:	31h (1.5 °C)	CI	ient:										
Multiple Com	parison Summa	ary											
Analysis ID	Endpoint		Comp	arison Method			NOE	EL LO	EL	TOEL	PMSD	TU	S
20-4934-2560	7d Survival Rat	е	Steel I	Vany-One Rank	Sum Test		100	>1	00		16.0%	1	1
07-2878-9171	Mean Dry Biom	ass-mg	Dunne	ett Multiple Comp	parison Test		100	>1	00		25.1%	1	1
Point Estimat	e Summary												
Analysis ID	Endpoint		Point	Estimate Metho	bd		Lev	el %		95% LCL	95% UCL	TU	s
06-6414-9391	Mean Dry Biom	ass-mg	Linear	Interpolation (IC	CPIN)	(IC25	5 >1	00			<1	1
Test Acceptal	oility					TACI	imit						
Analysis ID	Endpoint		Attrib	ute	Test Stat	Lower	Upp	er Ov	erlap	Decision			
20-4934-2560	7d Survival Rat	е	Contro	ol Resp	0.975	0.8	>>	Ye	s	Passes Cr	iteria		
06-6414-9391	Mean Dry Biom	ass-mg	Contro	ol Resp	0.9015	0.25	>>	Ye	s	Passes Cr	iteria		
07-2878-9171	Mean Dry Biom	ass-mg	Contro	ol Resp	0.9015	0.25	>>	Ye	s	Passes Cr	iteria		
07-2878-9171	Mean Dry Biom	ass-mg	PMSD	1	0.2514	0.12	0.3	Ye	s	Passes Cr	iteria		
7d Survival R	ate Summary												
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Мах	sto	d Err	Std Dev	CV%	%Effe	ct
0	D	4	0.9750	0.8954	1.0550	0.9000	1.00	0.0 0.0	250	0.0500	5.13%	0.00%	
6.25		4	0.9750	0.8954	1.0550	0.9000	1.00	0.0 0.0	250	0.0500	5.13%	0.00%	
12.5		4	1.0000	1.0000	1.0000	1.0000	1.00	0.0 0.0	000	0.0000		-2.56%	6
25		4	0.9250	0.7727	1.0770	0.8000	1.00	0.0 0.0	479	0.0957	10.35%	5.13%	
50		4	0.9000	0.6750	1.1250	0.7000	1.00	0.0 0.0	707	0.1414	15.71%	7.69%	
100		4	0.8750	0.6363	1.1140	0.7000	1.00	0.0 0.0	750	0.1500	17.14%	10.269	%
Mean Dry Bio	mass-mg Sumi	mary											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	<u>Sto</u>	d Err	Std Dev	CV%	%Effe	ct
0	D	4	0.901	5 0.7078	1.095	0.726	1.00	0.0	6085	0.1217	13.50%	0.00%	(
6.25		4	0.9837	7 0.8068	1.161	0.854	1.08	88 0.0	556	0.1112	11.30%	-9.12%	6
12.5		4	0.953	5 0.8425	1.064	0.855	1.01	8 0.0	3486	0.06973	7.31%	-5.77%	6
25		4	0.9186	6 0.6243	1.213	0.735	1.17	6 0.0	9249	0.185	20.14%	-1.90%	6
50		4	0.8887	7 0.665	1.112	0.679	0.97	' 4 0.0	703	0.1406	15.82%	1.41%	1
100		4	0.8595	5 0.6323	1.087	0.681	1.01	9 0.0	714	0.1428	16.62%	4.66%	

12 Jul-21 14:50 (p 2 of 2) B508401ppc / 12-0366-5858

Fathead Minnow 7-d Larval Survival and Growth Test

Test Code/ID:	B50

Eurofins	TestAmerica	- Corvallis

7d Survival R	ate Detail			MD5: 71587F65EE84335589CF23CED19F9B4A		
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	D	1.0000	1.0000	0.9000	1.0000	
6.25		0.9000	1.0000	1.0000	1.0000	
12.5		1.0000	1.0000	1.0000	1.0000	
25		0.9000	0.8000	1.0000	1.0000	
50		0.9000	1.0000	0.7000	1.0000	
100		0.8000	1.0000	0.7000	1.0000	

Mean Dry Biomass-mg Detail

Mean Dry Bior	nass-mg Deta	il		MD5: F88CE24FB0A86C1AA9C254E9164EE0EE		
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	D	0.92	0.958	0.726	1.002	
6.25		1.064	1.088	0.929	0.854	
12.5		0.979	0.855	0.962	1.018	
25		0.893	0.735	0.871	1.176	
50		0.963	0.974	0.679	0.939	
100		0.826	1.019	0.681	0.912	

7d Survival Rate Binomials

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	10/10	10/10	9/10	10/10
6.25		9/10	9/9	10/10	10/10
12.5		10/10	10/10	10/10	10/10
25		9/10	8/10	10/10	9/9
50		9/10	10/10	7/10	10/10
100		8/10	10/10	7/10	10/10

CETIS Ana	alytio	cal Rep	ort		Repo Test	ort Date: Code/ID:	12 Jul-21 14:50 (p 1 of 3) B508401ppc / 12-0366-5858							
Fathead Mini	now 7	d Larval S	Survival an	d Growth Te	st						E	Eurofins Te	stAmerica	- Corvallis
Analysis ID: Analyzed: Edit Date:	20-4 12 Ju	934-2560 JI-21 14:48	Survival Rat	te -Control v 13355890	/s T	reatments	B4A	CET Statu	S Version: us Level:	rsion: CETISv1.9.7				
Dete Trevefe	12 00	a 21 14.47				10000000						T U	MCD	DMCD
Angular (Corrected)								100	>100		10EL	10	0 1563	16.03%
Steel Many C	Dec De	nk Sum T						100	- 100			ŗ	0.1000	10.0070
Control		Conc-%	est	Tost Stat	Critical	Tios	DE	P-Type	P_Va	مىا	Decision(a:5%)		
Dilution Water		6 25		18	10	2	6		0.833	33	Non-Signi	ficant Effect		
Didton Water		12.5		20	10	1	6	CDF	0.000	16	Non-Signi	ficant Effect		
		25		15 5	10	2	6	CDF	0.543	38	Non-Signi	ficant Effect		
		50		15.5	10	2	6	CDF	0.543	38	Non-Signi	ficant Effect		
		100		15	10	1	6	CDF	0.476	50 51	Non-Signi	ficant Effect		
Auxiliary Tes	ts													
Attribute		Test				Test St	at	Critical	P-Va	lue	Decision(α:5%)		
Outlier		Grubbs E	Extreme Va	lue Test	2.201		2.802	0.500)6	No Outliers Detected				
ANOVA Table)													
Source	Source Sum Squares		ares	Mean Squ	DF		F Stat	P-Va	lue	Decision(α:5%)			
Between		0.100268		0.0200536		5		1.006	0.442	26	Non-Signi	ficant Effect		
Error		0.358868		0.0199371		18					•			
Total		0.459136				23		_						
ANOVA Assu	mptio	ns Tests												
Attribute		Test				Test St	at	Critical	P-Va	lue	Decision(α:1%)		
Variance		Bartlett E	quality of Va	ariance Test							Indetermir	nate		
Distribution		Shapiro-V	Vilk W Norr	nality Test		0.9389		0.884	0.154	41	Normal Di	stribution		
7d Survival F	Rate S	ummary												
Conc-%		Code	Count	Mean	95% LCL	95% UC	CL	Median	Min		Мах	Std Err	CV%	%Effect
0		D	4	0.9750	0.8954	1.0000		1.0000	0.900	00	1.0000	0.0250	5.13%	0.00%
6.25			4	0.9750	0.8954	1.0000		1.0000	0.900	00	1.0000	0.0250	5.13%	0.00%
12.5			4	1.0000	1.0000	1.0000		1.0000	1.000	00	1.0000	0.0000	0.00%	-2.56%
25			4	0.9250	0.7727	1.0000		0.9500	0.800	00	1.0000	0.0479	10.35%	5.13%
50			4	0.9000	0.6750	1.0000		0.9500	0.700	00	1.0000	0.0707	15.71%	7.69%
100			4	0.8750	0.6363	1.0000		0.9000	0.700	00	1.0000	0.0750	17.14%	10.26%
Angular (Cor	rected	l) Transfor	med Sumr	nary										
Conc-%	<u> </u>	Code	Count	Mean	95% LCL	95% UC	CL	Median	Min		Max	Std Err	CV%	%Effect
0		D	4	1.3710	1.2420	1.5010		1.4120	1.249	90	1.4120	0.0407	5.94%	0.00%
6.25			4	1.3690	1.2420	1.4970		1.4080	1.249	90	1.4120	0.0401	5.85%	0.16%
12.5			4	1.4120	1.4120	1.4120		1.4120	1.412	20	1.4120	0.0000	0.00%	-2.97%
25			4	1.2930	1.2930 1.0630			1.3260	1.107	070 1.4120		0.0724	11.19%	5.72%
50			4	1.2660	0.9499	1.5820		1.3310	0.991	12	1.4120 0.0994 15.70		15.70%	7.67%
100 4				1.2310	0.8888	1.5720		1.2600	0.991	12	1.4120	0.1074	17.45%	10.26%

CETIS Analytical Report

0.0

0 D

6.25

12.5

Conc-%

25

50

100

-0.30

-2.0

-1.5

-1.0

-0.5

Rankits

0.0

0.5

1.0

1.5

2.0

QA:

CETIS Ana	alyti	cal Repor	t	Report Date: Test Code/ID:		12 Jul-21 14:50 (p 3 of 3) B508401ppc / 12-0366-5858								
Fathead Minr	10w 7	-d Larval Su	rvival and	Growth Te	st					E	Eurofins Te	stAmerica	- Corvallis	
Analysis ID: 07-2878-9171 End Analyzed: 12 Jul-21 14:48 Ana Edit Date: 12 Jul-21 14:47 MD			End Ana MD4	point: Mea lysis: Par Hash: E88	an Dry Biom ametric-Cor	ass-mg htrol vs 1	Freat	tments	CETIS Version: Status Level:		CETISv1 1 006-834-			
							1002							
Data Transform Alt Hyp Untransformed C > T								NOEL 100	>100	TOEL	1 1	MSDu 0.2267	25.14%	
Dunnett Mult	iple C	omparison 1	Fest											
Control	vs	Conc-%		Test Stat	Critical	MSD	DF	P-Type	P-Value	Decision(α:5%)			
Dilution Water	•	6.25		-0.8728	2.407	0.227	6	CDF	0.9758	Non-Signi	ficant Effect	t		
		12.5		-0.5522	2.407	0.227	6	CDF	0.9465	Non-Signi	ficant Effect	t		
		25		-0.182	2.407	0.227	6	CDF	0.8813	Non-Signi	ficant Effect	t		
		50		0.1354	2.407	0.227	6	CDF	0.7904	Non-Signi	ficant Effect	t		
		100		0.446	2.407	0.227	6	CDF	0.6707	Non-Signi	ficant Effect	t		
Auxiliary Tes	ts													
Attribute		Test				Test Stat		Critical	P-Value	Decision(
Outlier		Grubbs Ext	reme Valu	ie Test		2.181		2.802	0.5332	No Outliers Detected				
ANOVA Table)													
Source		Sum Squar	es	Mean Square		DF		F Stat	P-Value	Decision(α:5%)				
Between		0.0405014		0.0081003		5		0.4567	0.8030	Non-Significant Effect				
Error		0.319252		0.0177362	18		_							
Total		0.359753				23								
ANOVA Assu	mptic	ons Tests												
Attribute		Test				Test Stat Critical			P-Value	Decision(α:1%)				
Variance		Bartlett Equ	ality of Va	riance Test		2.47		15.09	0.7810	Equal Variances				
Distribution		Shapiro-Wil	k W Norm	ality Test		0.958 0.884			0.4004	Normal Distribution				
Mean Dry Bio	mass	-mg Summa	ry											
Conc-%		Code	Count	Mean	95% LCL	95% U	ICL	Median	Min	Max	Std Err	CV%	%Effect	
0		D	4	0.9015	0.7078	1.095		0.939	0.726	1.002	0.06085	13.50%	0.00%	
6.25			4	0.9837	0.8068	1.161		0.9965	0.854	1.088	0.0556	11.30%	-9.12%	
12.5			4	0.9535	0.8425	1.064		0.9705	0.855	1.018	0.03486	7.31%	-5.77%	
25			4	0.9186	0.6243	1.213		0.882	0.735	1.176	0.09249	20.14%	-1.90%	
50			4	0.8887	0.665	1.112		0.951	0.679	0.974	0.0703	15.82%	1.41%	
100			4	0.8595	0.6323	1.087		0.869	0.681	1.019	0.0714	16.62%	4.66%	
Graphics														
1.2 ┌								0.30 F		1				
-								0.25					•	

Analyst: MB

QA:

CETI	S Ana	alvti	cal Repo	ort								Rep	ort Date:	1	12 Jul-21 14:	50 (p 1 of 1)	
Test Code														B50	08401ppc / 1	2-0366-5858	
Fathe	ad Minr	10w 7	'-d Larval S	urviva	al and	Growt	h Te	st					E	urofins 1	FestAmerica	- Corvallis	
Analysis ID: 06-6414-9391				End	point:	Mea	an Dry Biom	ass-mg			CEI	IS Version:	CETIS	v1.9.7			
Analy	zed:	12 J	lul-21 14:48		Anal	ysis:	Line	ear Interpola	tion (ICPI	N)		Stat	us Level:	1			
Edit Date: 12 Jul-21 14:47 N					MD5	Hash:	Hash: F88CE24FB0A86C1AA9C254E9164EE0EE E						or ID:	ID: 006-834-630-9			
Linea	r Interp	olatio	on Options														
X Trai	X Transform		Y Transform		Seed		Resamples		Exp 95% CL		Method						
Log(X	Log(X+1)		Linear		321966		200		Yes		Two-Poin	Two-Point Interpolation					
Point	Estima	tes															
Level	%		95% LCL	95%	UCL	τu		95% LCL	95% UC	L							
IC25	>100)				<1											
Mean	Dry Bio	mass	s-mg Summ	nary					С	alculat	ed Variate				Isoton	ic Variate	
Conc-	-%		Code (Count Mea		Median		Min Max		x CV	%	%Effect		Mean	%Effect	
0			D	4		0.901	5	0.939	0.726	1.0	02 13	50%	0.00%		0.9462	0.00%	
6.25				4		0.983	7	0.9965	0.854	1.08	88 11	30%	-9.12%		0.9462	0.00%	
12.5				4		0.953	5	0.9705	0.855	1.0	18 7.3	1%	-5.77%		0.9462	0.00%	
25				4		0.918	6	0.882	0 735	1 1	76 20	14%	-1 90%		0 9186	2 92%	

0.679

0.681

0.974

1.019

15.82%

16.62%

1.41%

4.66%

0.8887

0.8595

6.07%

9.17%

Graphics

50

100

4

4

0.8887

0.8595

0.951

0.869

APPENDIX B

REFERENCE TOXICANT DATA SHEETS

	Test/	America		FATHEAD M	INNOW 7-DAY	Y SURVIVAL A	ND WATER QU	ALITY DATA			
R	andom	Template Used:	6 conc. x 4 reps.	# /	Wa	terbath/incubator	Used:	Date Initiated	612212	0 21 Time	15:50
Stock	Sol. ID	3B 088		-01		# 10		Date Terminated	12 129 12	0 21 Time	10:50
Organ	ism ID:	FHM 211	04		-	Te	st Container Size:	800 ml	Solu	tion Volume / rep:	500 ml
Client			04/0	C . Reff	0¥		Sa	male Description		KCl (50 g/L stock)	
Chem		1	T	TT	no br	infin -	-	TT hear	n n clas		
Tech:	Day 0	LEET Day	112 Day	LIZE Da	1200 p	ay 4 200 1	Days 1236 1	Day 6 1216	Day 7 10000	5	
Come	Day 0	Day Day	10 Day	2 1-191 Da	y 3 (00 0 D	Diana	had 0	1919	Day 1 1050	Temp	Conductivity
or	Day		Number of L	ive Organisms		(n	ng/l	p	H	(°C)	(µS)
Percent		A	В	С	D	Pre	Post	Pre	Post	Pre 🛱	Post (daily)
	0	10	10	10	10	1.1	7.0	710	3.2	25.1 251	334
	7	10	10	10	10	6.0	7.6	7.5	61	760 761	317
utrol	3	10	10	10	10	100	7.0	7.5	\$.0	25.3 253	31
Con	4	10	10	101	101	7-2	7.7	7.4	7.9	25.1 2640	327
1	5	(0~	10	10-	10	6.6	100 T.C.	7.0	5.0	26.1 260	324
	7	10	10	10	18	10.9	1040 11	7.19	72.1	25.3 214	217
	0	10	10	10	10	10.01	7.6		8.2	Post 25.0	791
	1	10	10	i0	10	6.3	3.0	7.6	9.1	25.1	7104
Z	2	0	10	10	10	101	1.7	7.5	8.1	24.9	742
25 8	3	0	10	10	10	0:3	7.0		¥.0	25.1	745
0	5	19	101	18	10	(0,42	7.8	7.5	20	25.1	764
	6	9	10	10	1QV	9.9	7.7	7.5	8,1	29.2	721
	7	- 4	10	10	10	12.5	1.10	7-0	01.7	Post: 75.0	121.4
	1	10	5	10	10	6.9	4.0	7.4	8.2	29.1	1139
1	2	10	10	9	9	6.2	7.3	7.6	8.1	25.0	1169
0 B/J	3	10	(0	9	4	10.2	8.0	7.5	\$.0	252	1210
0.5	4	10	182	9	- 2	7.2	- 5.0	24	8.0	261	1243
	6	10	10 1	q	9	(0,0	7.9	7.6	- Gi	26.2	1192
	7	ii)	10	g	g	10.10		7-6		75.3	
	0	10	10	10	10		7.4		5.2	Post: 25.0	2140
·	1	5	2	4	8	lan	8.0	710	0.2	29.2	2040
J/a	3	5	6	4	8	10.7	\$.0	7.5	8.1	25.2	2000
1.0	4	2	3	ÿ	5	7.1	8.0	7.4	Q.1	35.2	2100
	5	2	2	2	1	10-0	79	7.5	81	29.2	2110
	6		7	d'		land	1.9	144	9.1	25.5	2010
	0	10	10	10	10	10	7.7	1.00	5.2	Test: 25.0	3440
	1	0	υ	υ	0	7.0	3.0	7.4	8.2	25.1	31050
4	2			1	i	1			1		
/B ()	3										
5	5										
	6										
	7	10	10	10	10		21		00		
1	1	10	10	10	10 V	7.1	-1- (W	7.18	2.0	29.1	7160
2	2		ľ.			P		j)			
0 B/	3										
4.	5										
	6								1		
	7						14		-	1	
🗸 Indica	ates one	organism inadvo	rtently poured of	f during solution	renewal, replace	d into container.			Day	0 Temperatures =	Post-renewals
"M" = org	ganism r	nissing, start con	int reduced. "Inj"	= organism inju	red, remove from	stats.		Therm ID# = The	mometer ID us	ed for all measurem	ents that day.
'r" = fun	gus note	a on dead organ	ISINS.	Pre =Pre-ren	ewal solutions. F	ost =Post-renewa	at solutions.	1.1.1	20.0 =	temp. out of recom	mended range
E	napoi	<u>01</u>			Cusum Cl	part Limits	T	ask Manager	reyos	the down	n
Sur	vival - E	C25	0.61		0.52	to 0.70	Proj	ject Manager-	TOWN	\sim	
0	owels T	-	0.60		0.44	0.70		OA Officer	ME	3	
Git	owni - 10	-25	0.00	1.1	0.44	0.12		REPTOX - FHM chronic	(KCI) ASI 1282-1118, sla	n Doc Control ID: ASL1282-	1118

Pimephales promelas - Chronic (EPA Test Method 1000.0)

POTASSIUM CHLORIDE (g/L)

Endpoint: Chronic Survival

Stats Method: Linear Interpolation

Test Conditions: Recon MH, 25 oC

From EPA 833-R-00-003:

- 10th Quartile CV (control limit) = 0.03
- 25th Quartile CV (warning limit) = 0.11
- 75th Quartile CV (warning limit) = 0.32
- 90th Quartile CV (control limit) = 0.52

Intralab CV is compared to EPA Warning limits (25th and 75th CV's) and Control limits (10th and 90th CV's), If lab CV is outside EPA Control limits, the EPA Control limits are used to set Cusum chart limits.

Event #	FHM ID #	Test Start Date	EC25	Running Average	Running SD	Cusum Cl AVG-2SD	art Limits AVG+2SD	Intralab CV
61	2124	9/3/2020	0.62	0.6	0.05	0.49	0.68	0.08
62	2129	10/6/2020	0.63	0.6	0.05	0.49	0.68	0.08
63	2131	10/20/2020	0.61	0.6	0.05	0.49	0.68	0.07
64	2133	10/27/2020	0.58	0.6	0.04	0.51	0.68	0.07
65	2138	12/3/2020	0.61	0.6	0.04	0.51	0.67	0.07
66	2141	12/29/2020	0.67	0.6	0.04	0.51	0.67	0.07
67	2143	1/12/2021	0.64	0.6	0.04	0.51	0.68	0.08
68	2147	2/2/2021	0.64	0.6	0.04	0.51	0.69	0.08
69	2151	3/23/2021	0.62	0.6	0.05	0.51	0.69	0.07
70	2155	4/15/2021	0.63	0.6	0.04	0.52	0.69	0.07
71	2158	5/11/2021	0.64	0.6	0.04	0.52	0.69	0.07
72	2164	6/22/2021	0.61	0.6	0.04	0.52	0.70	0.07
73	-							
74			1					

Pimephales promelas - Chronic (EPA Test Method 1000.0)

POTASSIUM CHLORIDE (g/L)

Endpoint: Chronic Growth (Biomass)

Stats Method: Linear Interpolation

Test Conditions: Recon MH, 25 oC

From EPA 833-R-00-003:

10th Quartile CV (control limit) = 0.12

25th Quartile CV (warning limit) = 0.21

75th Quartile CV (warning limit) = 0.38

90th Quartile CV (control limit) = 0.45

Intralab CV is compared to EPA Warning limits (25th and 75th CV's) and Control limits (10th and 90th CV's), If lab CV is outside EPA Control limits, the EPA Control limits are used to set Cusum chart limits.

Event #	FHM	Test Start Date	IC25	Running Average	Running SD	Cusum Ch AVG-2SD	art Limits AVG+2SD	Intralab CV
61	2124	9/3/2020	0.60	0.57	0.05	0.44	0.71	0.08
62	2129	10/6/2020	0.55	0.58	0.05	0.44	0.71	0.08
63	2131	10/20/2020	0.52	0.57	0.05	0.44	0.71	0.08
64	2133	10/27/2020	0.54	0.58	0.04	0.44	0,72	0.08
65	2138	12/3/2020	0.60	0.58	0.04	0.44	0.71	0.07
66	2141	12/29/2020	0.65	0.57	0.04	0.44	0.71	0.08
67	2143	1/12/2021	0.62	0.58	0.05	0.44	0.72	0.08
68	2147	2/2/2021	0.56	0.58	0.05	0.44	0.72	0.08
69	2151	3/23/2021	0.55	0.58	0.05	0.44	0.72	0.08
70	2155	4/15/2021	0.58	0.58	0.05	0.44	0.72	0.08
71	2158	5/11/2021	0.65	0.58	0.05	0.44	0.72	0.08
72	2164	6/22/2021	0.60	0.58	0.05	0.44	0.72	0.08
73								
74								

APPENDIX C

CHAIN OF CUSTODY

Sample Receipt Record
Date Received: 62222
Yes No N/A
🗌 Ice 🕅 Blue Ice 🗌 Box
served: 1,1,2, Actual Temp: 1,4 °C X: Yes No N/A
en or partially frozen?
Yes No N/A
🔯 Yes 🗌 No 🗌 N/A
king)?
Yes No N/A
] UPS, Greyhound, X Other: See N/A
(The following exceptions were noted)
Goldstreak
7 FAL 6264 0554

Date

Pieces

1

Total Weight **76**

Piece Weight

Box Number

Goldstreak

21 JUN 21

SEA 0050

2264 PDX 0744

Goldstreak

234

AS

AS

Client was notif

Resolution to E

SHIPPER

PHONE #

PHONE #

CONSIGNEE

9076873579

541 926 7300

AIR CARGO

sipt verification 0: ASL993-1119

Client: Northern Star (Pc Address: <u>90 Box 145</u> Contact Person: Nuthun Ke Phone: <u>907-895-2760</u> PO# 2025060 PO# 2025060	المنافعة لمنافعة المنافعة منافعة م منافعة منافعة منافعة المنافعة المنافعة المنافعة منافعة منافعة منافعة منافعة منافعة منافعة منافعة منافعة المنافعة منافعة ملمافعة منافعة منافعة منافعة منافعة ملمة منافعة منافعة منافعة منافعة ملمنافعة م	# AK0053341		Ship Samples to:	Environment lesting TestAmerica
Contact Person: Nutllun Ke Phone: 907-895-2760 PO# 2025060 Sample ID Date 7 Outhillool-wet 6/21/21 06	KK 99737 Sample Choe Ented Ended: Chilled I				
Contact Person: Nutling Ke Phone: 907-895-2760 PO# 2025060 Sample ID Date 7 Outfullool-Wet 6/21/21 06	Ehoe Ended:	Composite Sa s/HourV	mple Information olume/Sample	Eurof	ins TestAmerica tion: Aquatic Toxicoloov Laboratory
PO# 2025 06 0 Sample ID Date 7 Outfullool-Wet 6/21/21 06	Chilled [Durs T : Date T Date T	otal Volume	1100 Corve	NE Circle Blvd. Suite 310 Illis, OR 97330
Sample ID Date 7 Outfullool-Wet 6/21/21 06		During Collection			s: 041-243-6137
Sample ID Date 7 Outicitiool-wet 6/21/21 06	-			Analysis Required / Cor	nments
Sample ID Date 7 Ouild 1001-Wet 6/21/21 06	Sample	sters Acute	A Chronic cute hronic a Acute cute	riconic te onic ute wronic Waste Waste	Concentration
Outfall001-wet 6/21/21 06	Time Comp. Grab	netro Contair Contair C	A chead A chead C chio C C chio C C chio C C chio C	MM CI MM CI MS Chr MS Chr MS Chr MS Chr MS Haz MS Haz	and/or Comments
	31	D Deventan V	2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
		In long the	,		
Complete D. 0 Titt.		_	_		
Nothan Kehve - Enviro (Mer	ase sign and print name)	Date/Time 6(21/21 07:33	Relinquished By	(Please sign and print name)	Date/Time
HUY IN CONTRACTION	ase sign and print name) <u>VÍ CVU vv VÍ v</u> C	Date/Time	Relinquished By	(Please sign and print name)	Date/Time
Received By (Plea	ase sign and print name)	Date/Time	Relinquished By	(Please sign and print name)	Date/Time
Received By (Plea	ase sign and print name)	Date/Time	Shipped Via		Shipping #
Work Authorized By (Plea	ase sign and print name)	Remarks	sha pip	rea-EX Hand Other X	Doc Control ID: ASI 613 0540

U27 FAI 6264 95 Shipper's Name and Address	554		Chinad										027-6264 9554
Northern Star (Pogo)	LLC		274	4248	6983		Not Ne	gotiab					
Mile 50 Pogo Mile Ro Delta Junction, AK 99	ad 737		Custor	^{ner's ID} 4892	Number 7		Issued	By			A	aska. RCARGO	
	Tel:	90768	373579	9							P.O. BOX	(68900 SEATTLE, WA 9 5-2752 ALASKACARGO.0	8168 :OM
onsignee's Name and Address			Consignee	's Accou	int Number		Also not	iify	7				
VITY DELIVERY SER	VIC L			_			N						
ORVALLIS, OR 973	39						1						
ISA								1	J				
	Tel: 5	541 92	26 730	0								Tel:	
uing Carrier's Agent and City						-	Accounti	ng Info	ormation				48927
							Northe	ern S	Star (Po	ogo)	LLC		
							Delta.	U Po Junc	go Mile tion Al	e Ra K aa	0ad 0737		
ent's IATA Code		A	ccount No.			-	USA				5107		
							SDN/2	0.055	160				
airbanks	rier) and Ri	equested	Routing				GoldS	treak	(
By First Carrier			To / By	11	To / By		urrency		WTAVA	11	Other	Declared Value For Oracian	
EA Alaska Airlines			PDX	AS		ι	JSD	PX	X	-	<		Declared Value For Cus
ortland	Fligh	t/Date	24/00	Flight/	Date	A	mount of	f Insur	ance	Ť			
ndling Information		A5 Z.	34/22	AS	5 2264/	22	>	XX					
													801
of Gross	0		0										301
eces Weight Ib	Item No		Wei	ght	CI	kate / harge			Tota	a!		Nature and (Incl. Dime	Quantity of Goods ensions or Volume)
76.0 L G			76	5.0				1	AS AG	GR	EED	NONHAZAR	DOUS WA
												Dims: 24 x 13 x	14 x 1
												GSX	
1 76.0								A	S AGI	RF	FD	Volume: 2 E29	
aid Weight Ch	arge	11	Collect	Other C	harges							Volume. 2.526	
AS AGREED				ХВ	C 10	0.00							
Valuation Cl	large												
Tax													
Total Other Charges	Due Agen	t		Shipper	certifies the	at the part	ticulars o	n the t	face here	eof ar	e correct	and that insofar as any part	of the consignment
Total Other Charges	Due Corrio			by air	according t	us goods to the app	, such p plicable	art is Dange	properly arous Go	/ des oods	cribed by Regulation	name and is in proper con ons. I consent to the inspec	dition for carriage
				For: LLC	Northe	ern Sta	ar (Po	ogo))			Signature of Shipper or his	Aaent
				NK.	HIS SHIP		DES NO	CON	ITAIN		6	THIS SHIPMENT DOES CON	ITAIN
Total Prepaid	Total	Collect			- NOERL		00				<u> </u>	DANGEROUS GOODS	
AS AGREED				21 J	un 202	1 11:	:28		Fa	irb	anks	Alask	a Airlines
				LACCUI	Ja on Date	ij		T	at	(Plac	xe)	Signature of Issuing	Carrier or its Agent
												027	-6264 9554

Contraction Contraction Contraction	
TestAmerica	Sample Receipt Record
Batch Number: $BG034-02$ Client/Project: $D0G0$	Date Received: 0124121 Received By: 7C
Were custody seals intact?	POLE TE 10/24
Packing Material:	Ice Blue Ice Box
Temp OK? (≤ 6°C) Therm ID: 173 Expires:9 /9 /2021Observed:	°C, Actual Temp:
If sample is noted @ ≤ 0.0 °C, is the sample frozen or partia	ally frozen?
Was a Chain of Custody (CoC) Provided?	Yes No N/A
Was the CoC correctly filled out? (If No, document below)	Yes 🗌 No 🗌 N/A
Were the sample containers in good condition (not broken or leaking)?	Yes 🗌 No 🗌 N/A
Are all samples within 36 hours of collection?	Yes 🗌 No 🗌 N/A
Method of Shipment: Hand Delivered, FedEx, UPS,	Greyhound, 🕅 Other: N/A
Sample Exception Report (The follow	ving exceptions were noted)

Environment Toctine	TestAmerica	s TestAmerica ni: Aquatic Toxicology Laboratory E Circle Blvd Suite 310	E Olicie Diva. Sulle 310 s, OR 97330 541-243-6137	ments Concentration and/or Comments			Date/Time 07:35	Date/Time // 20 //	Date/Time	Shipping # COC_Bioassay.xlsx	Doc Control ID: ASL 612-0519
eurofins	Ship Samples to:	Attentio	Corvalli	Analysis Required / Chronic MS Chronic MYS Chronic Jgae Jgae Jgae MA Haz Waste MA Haz Waste	N N N D O O		ase sign and point pame	ase signand print names all	ase sign and print name)	x Hand Other X	
ling		ample Information /olume/Sample Fotal Volume	lime	athead Acute athead Chronic Serio Chronic Sphnia Acute Fout Acute MM Acute MM Chronic			Relinquished By (Plex National Kelve	Relinquished By (Plea	Relinquished By (Plea	Shipped Via UPS Bus Fed-E	
с тохісіту тезі	* AKO05334	Composite Sa s/Hour	Date	to tainers	2 BSO PH-OC		Date/Time 6(23/21 07:35	Date/Time 6 23-2/ 07:3	Date/Time	Date/Time	Remarks
LD - FOR AQUATI	LU NPDES	K 94 737 Samples Total Ho	Ended: Chilled E	Sample Type			and print name)	and printhame)	CV UMV INC	and print name)	and print name)
DY RECOR	u (Perjo)	ichan, A	in Keluce	i E	06:47		(Please sign	(Please sign	(Please sign	(Please sign	(Please sign
F CUSTO	HLERN Ste	Ih tu	01: Nath 7- 895		(23/21		& Title Chur En	(SOSKI)	R	1	zed By
CHAIN O	Client: Nor1 Address: PO	DC	Contact Pers Phone: <u>90</u> PO# 20		Duitfallool-wet		Sampled By &	Received By	Received By	Received By	Work Authori

eurofins Environment Testing TestAmerica	Sample Receipt Record
Batch Number: 135084-03 Client/Project: P090	Date Received: <u>6-216-21</u> Received By: <u>APM</u>
Were custody seals intact?	Yes No N/A
Packing Material:	Ice 📈 Blue Ice 🗌 Box
Temp OK? (\leq 6°C) Therm ID: THIT3 Expires: $9/9/2031$ If sample is noted @ \leq 0.0 °C, is the sample	Observed: 2.3 C, Actual Temp: 2.0 Yes No N/A frozen or partially frozen? Yes No N/A
Was a Chain of Custody (CoC) Provided?	Yes No N/A
Was the CoC correctly filled out? (If No, document below)	Yes No N/A
Were the sample containers in good condition (not broken or	leaking)?
Are all samples within 36 hours of collection?	Yes No N/A
Method of Shipment: Hand Delivered, FedEx,	UPS, Greyhound, Other: <u>Courier</u> N/A See attached
Client was notified on: Client contact:	
Resolution to Exception:	

It: Northern Ste ess: 10 Box 1	ar (Payo)	LLC	NPDES#	AK	00 53	341							Ship	Sam	oles to:	Environment Testing TestAmerica
Della Jun	NON, AL	19737	Samples/I	-Jour	omposite	Samp Volu	e Info me/Sa	rmati	u						Eurofi	ns TestAmerica ion: Aquatic Toxicology Laborato
act Person: Nut	hen keho	2	Total Hou Initiated:	rs		Tota	Volur	ne				-			1100 Corva	VE Circle Blvd. Suite 310 Ilis, OR 97330
10: 707-845	- 2760		Ended: Chilled Du	Date Iring Co	Ilection -	Lime									Phone	:: 541-243-6137
											A	nalys	is Re	auire	d / Cor	ıments
		San Tyi	pe pe	of iners		ad Acute	Acute	ia Acute	/cnte	pronic cure	eine	cute cute	pronic	- 9126W z	ateW z	Concentration
ple ID Date	Time	Comp.	Grab) # Conta	ab ID#	=athe	Cerio .	Saphn Cerio	1001		o av	A SYN	D SYN	eH A	sH AV	Comments
Gallool-wet clast	1 06:42	-	>	え	12084-03	2				3			V	/	٨	
								-				-		-		
												$\left \right $		+		
oled By & Title	(Please sign	and print nam	e)	Date/T	6 07:		elinqu	ished	B	- - -	ase si	gn and	d print	- name	101	Date/Time
pred By	(Please sign	and print name	(e)	Date/T	ime 13 /3C		elinqu	ished	By	(Ple	sase si	ign and	d print	Mame	2	6/23/2021 11.00 Date/Time
ived By	(Please sign	and print nam	(e)	Date/T	ime	1 CZ	elinqu	ished	By	(Ple	ase si	ign and	d print	name		Date/Time
ived By	(Please sign	and print nam	e)	Date/Ti	ime	<u></u>	hipped	I Via						l		Shipping #
Authorized By	(Please sign	and print nam	e)	Remar	ks pH	24	2	ő		-	Ĭ	Пап	5	Ď	2	Doc Control ID: ASL612-0519

027 FAI 6264 960)2				027-6264 9602
Shipper's Name and Address Northern Star (Pogo) L Mile 50 Pogo Mile Roa Delta Junction, AK 997	LC d 37	Shipper's Account Number 27442486983 Customer's ID Number 48927	Not Negotiable Air Waybill Issued By	Alaska. Air cargo	
USA	Tel· 00768	73579	1	P.O. BOX 68900 SEAT 300-225-2752 ALASK	TLE, WA 98168 ACARGO.COM
Consignee's Name and Address		Consignee's Account Number	Also notify		
CITY DELIVERY SER\ PO BOX 311 CORVALLIS, OR 9733	/IC 9				
USA	Tel: 5/1 02	26 7300		Tel	
Issuing Carrier's Agent and City	161. 041 92	07500	Accounting Information	101.	48927
			Northern Star (Pogo) Mile 50 Pogo Mile Ro Delta Junction, AK 99	LLC bad 9737	
Agent's IA : A Code	A	count No.	00A		
Airport of Departure (Addr. of First Car Fairbanks	rier) and Requested	Routing	— SRN/2027126 GoldStreak		
To By First Carrier		To/By To/By	Currency WT/VAL	Other Declared Value	For Carriage Declared Value For Custon
Airport of Destination	Flight/Date	Flight/Date	Amount of Insurance		
Portland	AS 1	24/25 AS 1247/2	6 XXX		
STORE IN COOLE	ER WHEN PO	SSIBLE			
					SCI
No of Gross g Pieces Weight Ib	Commodity Item No.	Chargeable Ra Weight Ch	rge Total		Nature and Quantity of Goods (Incl. Dimensions or Volume)
1 79.0 L G		79.0	ASAG	REED NON Dims:	IHAZARDOUS WA 24 x 13 x14 x 1 COL
1 79.0			AS AGR	EED Volum	e: 2.528
repaid Weight C AS AGREED Valuation Ta:	Charge Charge	Collect Other Charges XBC 1).00		
Total Other Char Total Other Charg	ges Due Agent les Due Carrier	Shipper certifies th contains dangerd by air according For: North LLC	at the particulars on the face hered us goods, such part is properly to the applicable Dangerous Gor ern Star (Pogo) MENT <u>DOES NOT</u> CONTAIN DUS GOODS	f are correct and that ins described by name and ods Regulations. I cons Signature THIS SHIPP ANGERO	ofar as any part of the consignment is in proper condition for carriage ent to the inspection of this cargo. of Shipper or his Agent MENT <u>DOES</u> CONTAIN US GOODS
Total Prepaid AS AGREED	Total Colle	25 Jun 202 Executed On (Da	1 10:48 Fa	irbanks Place) Si	Alaska Airlines gnature of Issuing Carrier or its Agent 027-6264 9602

Rei'd	6-26-21	AB- Page 32
		Fage 52

July 5, 2021

Mr. Nathan Kehoe Northern Star Resources Limited Pogo Operations P.O. Box 145 Delta Junction, Alaska 99737

RE: Results of WET test – June 2021

Dear Mr. Kehoe,

Attached is a copy of the report for the *Pimephales promelas* (fathead minnow) toxicity test initiated in June 2021 with effluent from your facility.

TRE Environmental Strategies, LLC greatly appreciates this opportunity to provide our services to you. Please do not hesitate to call if you have any questions.

Sincerely,

Whitney Nadd

Report Author naddywm.tre@gmail.com

Enclosures

14001-412-030

Rami B. Naddy, Ph.D.

Manager/Environmental Toxicologist naddyrb.tre@gmail.com

Report of Short-Term Chronic Toxicity Testing using the Fathead Minnow (*Pimephales promelas*)

Project ID: 14001-412-030 June 2021

Sponsor and Laboratory Information

Sponsor	Northern Star Resources Limited Pogo Operations P.O. Box 145 Delta Junction, AK 99737
Project Officer	Nathan Kehoe (907) 895-2760
Testing Facility	TRE Environmental Strategies, LLC 100 Racquette Drive, Unit A Fort Collins, CO 80524 Fax: (970) 490-2963 State of Florida NELAP Laboratory ID: E87972
Study Director	Rami B. Naddy, Ph.D. (970) 416-0916 email: naddyrb.tre@gmail.com
Report Author	Whitney Naddy (970) 416-0916 email: naddywm.tre@gmail.com

Test Information

Test	Short-Term Chronic under Static-Renewal Conditions
Basis	USEPA (2002), method 1000.0
Test Dates and Time	June 22, 2021 @ 1420 to June 29, 2021 @ 1500
Test Length	7 days
Species	Pimephales promelas
Test Material	Effluent (Grab)
Outfall	001
Permit Number	AK-005334-1
Receiving Stream	Goodpaster River
Dilution Water	Moderately Hard Reconstituted Water
Test Concentrations	MH, 6.25, 12.5, 25, 50, and 100% effluent
IWC	100% effluent
Permit Compliance	<u>X</u> PassFail

- Results described in this report apply only to the samples submitted to the laboratory and analyzed, as listed in the report
- Test results comply with The NELAC Institute (TNI) standards. Reports are intended to be considered in their entirety; TRE is not responsible for consequences arising from use of a partial report
- This report contains 6 pages plus 2 appendices

Effluent Collection and Receipt

Sample No.	Field No.	Collection Date & Time	TRE No.	Date of Receipt	Temp. at Arrival (°C)	Qual.
1	NA	06/21/21 @ 0624 - 0630	35265	06/22/21	5.9	
2	NA	06/23/21 @ 0638 - 0647	35277	06/24/21	2.5	
. 3	NA	06/25/21 @ 0637 - 0640	35294	06/26/21	2.9	

Note: See Appendix A for chain of custody records

Effluent Characterization

Sample No.	рН	Hard. (mg/L) ^{HA}	Alk. (mg/L) ^{HA}	Spec. Cond. (μS/cm)	TRC (mg/L) ^G	NH ₃ -N (mg/L)		
1	7.6	62	33	178	<0.02	<1.0		
2	7.8	62	32	166	0.03	<1.0		
3	7.8	74	38	241	0.02	<1.0		

Initial Dilution/Control Water Characterization

Batch No.	рН	Hard. (mg/L) ^{HA}	Alk. (mg/L) ^{HA}	Spec. Cond. (µS/cm)	TRC (mg/L) ^G	NH₃-N (mg/L)
14356	8.2	92	63	291	<0.02	<1.0

Test Conditions

Туре	Static-Renewal Short-term Chronic
Test Endpoints	Survival and Growth (Dry Weight Per Original Fish)
Test Chambers	473-ml plastic cups
Test Solution Volume	250 ml
Replicates per Treatment	4
Organisms per Replicate	10
Test Temperature	$25 \pm 1^{\circ}$ C ($\leq 3^{\circ}$ C differential)
Lighting	Fluorescent, 16 hours light:8 hours dark
Chamber Placement	Random according to computer-generated chart
Aeration?	X No Yes
Test Solution Renewal	Daily

Test Organism

Species	Pimephales promelas
Age	<24 hours
Source	TRE In-house culture, batch 062221
Acclimation	None
Feeding	0.1 ml brine shrimp nauplii per test chamber 3x/day during the test
Reference Toxicant Testing	Initiated June 1, 2021 using sodium chloride (NaCl)

TEST RESULTS

Biological Data

Treatment (% Effluent)		Percen	t Surviva	al of <i>Pim</i> e	ephales p		Mean Dry Weight - (ma) ^{W1}	Significant Reduction Relative to Control?		
	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	(9)	Surv.	Growth
0 (MH)	100	100	97.5	97.5	97.5	97.5	97.5	0.648	N/A	N/A
6.25	100	100	100	100	100	100	100	0.663	No	No
12.5	100	100	100	100	100	100	100	0.617	No	No
25	100	100	100	100	92.5	87.5	87.5	0.549	No	No
50	100 100		97.5	90	87.5	87.5	87.5	0.592	No	No
100	100	100	95	85	80	80	80	0.543	No	No
	Percent	Minimum	Significar	nt Differer	nce (Grow	rth)		29.8	Acc	eptable

Note: See Appendix B for copies of laboratory data sheets

Data Analysis and Test Endpoints

Biological Endpoint	Statistical Endpoint	Value (% Effluent)	Endpoint < IWC?		
	NOEC	100	No		
Survival	LOEC	>100			
	NOEC	100	No		
	LOEC	>100			
Growth	ChV	>100			
(per original lish)	IC25	>100	No		
	TUc (100/IC ₂₅)	<1.0			

NOEC = No Observed Effect Concentration LOEC = Lowest Observed Effect Concentration

ChV = Chronic Value

 $IC_{25} = 25\%$ Inhibition Concentration

 TU_c = Chronic Toxic Units

Note: Analyses completed using, where appropriate, CETIS version 1.8.7 (2014).

	p	H	Disso Oxygen	olved (mg/L)	Condι (μS	uctivity /cm)	Temp (°	erature C)	Qual.
(% Enluent)	Low	High	Low	High	Low	High	Low	High	
0 (MH)	7.6	8.3	5.2	6.9	291	340	24	25	
100	7.4	8.0	4.9	8.3	161	241	24	25	
						23	25	T1, T3	
All Treatments	7.4 8.		≥4	.6	Ν	IA	24	26	T4

Physical and Chemical Data

Reference Toxicant Test Results for *P. promelas*

	TRE Historical 95% Control I	_imits (mg CI /L)
	Low	High
2,201 ^R	671	2,070

References

CETIS. 2014. Comprehensive Environmental Toxicity Information System. User Guide (version 1.8.7). Tidepool Scientific, LLC. McKinleyville, CA.

USEPA. 2002. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. Fourth Edition. EPA-821-R-02-013.

Explanation of Qualifiers

Note: study-specific narratives within the body of the report are denoted, if necessary, with the superscript letters **a** - **d**, and associated footnotes. Other qualifications and definitions are defined below.

- S Sample temperature upon receipt was outside the range recommended by USEPA (2002), (i.e., 0 to 6°C or ambient if collected and used on the same day).
- I lce was present in the sample upon receipt.
- N1 Sample was not used for testing.
- N2 Liquid from container with ice was not used for testing.
- F Sample was filtered to remove indigenous organisms prior to use.
- HT Sample hold time (normally 36 hours) was exceeded.
- HA Hardness and alkalinity concentrations are presented as CaCO₃.
- G TRC = Total Residual Chlorine
- T1 Temperatures measured in some of the old test solutions were outside the recommended test temperature range but the allowed 3°C differential was not exceeded.
- T2 Temperatures measured in some of the old test solutions were outside the recommended test temperature range and the allowed 3°C differential was exceeded.
- T3 Temperatures measured in test solutions.
- T4 Continuous temperatures measured in the environmental chamber or water bath.
- X1 Mean young per original female. If any 4th or higher broods were produced, they were excluded from calculation of mean young per female and statistical analysis of reproduction.
- X2 One or more organisms in this treatment were lost or not found in the test chamber and were excluded from analysis, as the loss was attributed to technician error. See laboratory data sheets for additional detail, as appropriate.
- X3 One or more male *C. dubia* were found in this treatment and were included in analysis of survival but excluded from analysis of reproduction. See laboratory data sheets for additional detail, as appropriate.
- X4 One or more fish were alive at test termination but were lost during the drying/weighing process. These fish were included in analysis of survival but excluded from analysis of growth. See laboratory data sheets for additional detail, as appropriate.
- $Ol Dissolved oxygen concentrations were \leq 4.0 mg/L in one or more treatments during the test; aeration was initiated in all test chambers. See laboratory data sheets for additional detail, as appropriate.$
- O2 Dissolved oxygen concentrations ≤4.0 mg/L were observed in one or more treatments only at test termination.
- O3 Dissolved oxygen concentrations were $\leq 4.0 \text{ mg/L}$ in one or more treatments during the test but aeration was not possible. See laboratory data sheets for additional detail, as appropriate.
- W1 Weight per original number of organisms introduced at test initiation.
- W2 Weight per surviving number of organisms at test termination.
- V1 Value was statistically (α =0.05 or 0.01, as appropriate) reduced relative to the control, but was considered a Type l error (anomalous false positive), and was disregarded. The NOEC was interpreted accordingly.
- V2 Value was not statistically (α =0.05 or 0.01, as appropriate) less than the control, but was considered a Type II error (anomalous false negative). The NOEC was interpreted accordingly.
- P1 PMSD was below the lower bound indicated by USEPA (2002). A statistically significant reduction for a treatment was disregarded if the RPD for that treatment was less than the lower bound.
- P2 PMSD was above the upper bound indicated by USEPA (2002), and statistically significant reductions in organism performance were detected.
- P3 PMSD was above the upper bound indicated by USEPA (2002), and no statistically significant reductions in organism performance were detected.
- R Monthly reference toxicant test endpoint for this species was outside the 95% control limits for the 20 most recent endpoints.

Statement of Quality Assurance

The test data were reviewed by the Quality Assurance Unit to assure that the study was performed in accordance with the protocol (if applicable) and standard operating procedures, and that the resulting data and report meet the requirements of TNI standards. This report is an accurate reflection of the raw data.

Quality Assurance Unit

RE

5,2021 Date

TRE Environmental Strategies, LLC

APPENDIX A

Chain of Custody Records

					1.		Т		Т	T		Ţ									1	1
		01 91	dws	ntern b Sa	e7 7	35265								and a more than a second s		Strategies, LLC rive, Unit A	O 80524 0916	53 (FAX)	Charle and T		No No	
levi	nA noq	U.qr	i9T s T	əlqm	eS.	5								u):		ental ette D	ins, C 416-	0-29(1-1-1			
sted														Laboratory (Destinatio	×.	TRE Environme 100 Racque	Fort Coll (970)	(970) 49		FedEx Other	Received on Ice:	
Test Reques		·····		<u></u>	<u> </u>									te:			te:	е:	te: 6[zv/z]	ne: 1020		
	(.ɔt	ə 'tuəu	iibə2 ,	,lio2 ,.	(riq	X		_						Dat		Tin	Dat	<u></u>	Dai	_ <u>i</u> =		
Project #: 14001-412-030	Yes No Not Used	i pull	Sample Type			V 2.5gal 0-6'C 1	2							Received By: (Print Name/Affiliation)		Signature:	Received By: (Print Name/Affiliation)	Signature:	Received By: (Print Name/Affiliation)	Signature:	hilly hurbid they wry	0
Pace	Intact?(circle):	Signature	ollection	Ending	Date Time	6 21121 6:30		-						Date: <u>6/21/21</u>	1	Time: 07:15	Date:	Time:	Date:	Time:	River voi stie	10
Star	તુ	chue Pogo	Sample C	ning	Time	06:24								(ffiliation)	000	7	Affiliation)		Affiliation)			
Norther	=#: <u>20</u> 3	Nuthan K		Begir	Date	6/21/21								': (Print Name/#	NJR PC	Y	/: (Print Name//		1: (Print Name/		13,9%	
Client/Project Name:	Chain of Custody Tap	Sampler (Print/Affiliation):		Client / Sample ID		1418日								Sample Relinquished By	Nathan Kelve /	Signature:	Sample Relinquished By	Signature:	Sample Relinquished By	Signature:	Comments: temp:	

TRE Environmental Strategies, LLC - Chain of Custody

100 Racquette Drive, Unit A Fort Collins, CO 80524 Phone: (970) 416-0916 Fax: (970) 490-2963

Page 9 of 29

Serial No. 06114

35277 35277 **TRE Environmental Strategies, LLC** Temp Blank? (² **Gi** alqme2 deJ å 100 Racquette Drive, Unit A Fort Collins, CO 80524 (970) 490-2963 (FAX) Courier | Yes (970) 416-0916 اتر 5 J° (<u>1×1</u> # .mnəhT) Yes Sample Temp. Upon Arrival 2 Sample Shipped Via (circle): Laboratory (Destination): Other Received on Ice: UPS (FedEx) **Test Requested** Time: 7: 35a4 Date: 6-23-21 Date: 6/24/2 Time: 0740 Pot 2024986 Time: _ 24 Date: X × (Liq., Soil, Sediment, etc.) J xinteM シター Not Used Preservation (i.e.: 0-6°C) 0-6° 0- é ^c Tasso (H ر م م Received By: (Print Name/Affiliation) Received By: (print Name/Affiliation) Received By: (Print Name/Affiliation) Project #: 14001-412 Volume 2.5 cm å 1901 Jurs hussing Javic Sample Type Yes Signature: ·dwoj Signature Time: <u>// , oo ay</u> Signature: Grab Sampler (Print/Affiliation): Nathun Kelnoe (Nor Poro Signature: Intact?(circle): Time 166:47 Date: 6-23-21 61:43 Time: 07:20 Date: <u>6/23|</u>11 Ending 6,23 NTV Sample Collection Date (2)21) 12/22/2 Time: Part Date: Time 06:38 ORIVIA Client/Project Name: Nochurn Star Sample Relinquished By: (Print Name/Affiliation) Sample Relingu/shed By: (Print Name/Affiliation) iample Relfiquished Bys (Print Name/Affiliation) Beginning NSR Pogu Chain of Custody Tape #: 50255 temp: II bec Texel 7.39 Date 6 23 21 12321 off. Client / Sample ID Jusser Effective Date: 02/13/1 Comments: でま (1913) رب # Signature: Signature: Signatupe: Eff

Serial No. 06115

TRE Environmental Strategies, LLC - Chain of Custody

Phone: (970) 416-0916 Fax: (970) 490-2963 Fort Collins, CO 80524 100 Racquette Drive, Unit A

age of l

Page [

35294 **TRE Environmental Strategies, LLC** °Z Temp Blank? ٩ CI alqme2 deJ 100 Racquette Drive, Unit A Fort Collins, CO 80524 (970) 490-2963 (FAX) Courier Yes (970) 416-0916 9 Yes לדherm. #<u>לאר</u>) °C IsvinA noqU .qmaT alqms2 sample Shipped Via (circle): 2 Laboratory (Destination): Other Received on Ice: UPS FedEx Test Requested Date: _6[76/21 Time: 0945 Po# 2024988 Time: Time: \sum_{\pm} Date: Date: X Liq., Soil, Sediment, etc.) J J xinteM Not Used Preservation (*i.e.:* 0-6°C) 2,7-0 J aceded, confirmed by Rawi Project #: 14001 -413-030 د 0 Date: 6/25/2021 Received By: (Print Name/Affiliation) Received By: (Print Name/Affiliation) Received By: (Print Name/Affiliation) ahinowo only one 2.5 inton Volume ۷ 2.5er 25 (VeS) Sample Type 1/N/2 dwoj Signature: Signature: Signature: Grab > Sampler (Print/Affiliation): Ne Unun Kelnoc 158 Pro Signature: 06140 Intact?(circle): Time Time: <u>67</u>° 15 Ending NTV: 3,31 Sample Collection Date 6/25/21 Pose Time: Time: Date: Date: 06:37 Time Client/Project Name: <u>Northarn Stoc</u> Sample Relinguished By: (Print Name/Affiliation) Sample Relinguished By: (Print Name/Affiliation) Sample Relinguished By: (Print Name/Affiliation) Beginning Chain of Custody Tape #: <u>ちのみらら</u> 1500 NSR Poyo 6/25/21 Date チ、コーナ lewp Client / Sample ID CONRE 3 Effective Date: 02/13/1 Comments: # Ngikan Signature: Signature: Signature: ESF. 1

TRE Environmental Strategies, LLC - Chain of Custody

Page

Fax: (970) 490-2963

Phone: (970) 416-0916

Fort Collins, CO 80524

100 Racquette Drive, Unit A

ð

Page 11 of 29

J.A

Serial No. 06116

APPENDIX B

Test Data

Page 1 of 7 QA Form No. 051 Revision 5 Effective 02/14 \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O}

TOXICITY DATA PACKAGE COVER SHEET

To sk Tom se	Chronie	Decised Number 14001 412 020
Test Type:	Chronic	Project Number14001-412-030
Test Substance:	Effluent-(Outfall 001)	Species: Pimephales promelas
Dilution Water Type:	Mod Hard	Organism Lot of Batch Number: 0677
Concurrent Control Water Ty	pe: <u>NA</u>	Age: <u>ZHk (< 24 hr)</u> Supplier: <u>TRB</u>
Date and Time Test Began:	6/221 @1420	Date and Time Test Ended: <u>629/21@ 1500</u>
Protocol Number:	USEPA 2002, Method 1000	0.0 Investigator(s): <u>51/HP/MJLeB/SV/1/16/H</u> B
Background Information		
Type of Test:	Static-Renewal	If yes, give % CO_2 : N/A
Test Temperature:	25 ± 1 °C	Env. Chmbr/Bath #: 25 Test Chmbrs: 473-ml cups/beakers
Test Solution Vol.:	250 ml	Number of Replicates per Treatment:4
Length of Test:	7 days	Number of Organisms per Replicate: 10
Photoperiod:	<u>16 h light : 8 h dark</u>	Light Intensity: 50 to 100 ftc.
Type of Food and Quantity p	er Chamber: 0.1 ml B.S.	Feeding Frequency: <u>3 x Daily</u>
Test Substance Characteriza	ation Parameters and Freque	псу:
Hardness: <u>Sx Receipt</u>	Alkalinity: <u>Sx Receipt</u>	NH ₃ : <u>Sx Receipt</u> TRC: <u>Sx Receipt</u>
pH: <u>Daily</u>	Conductivity: <u>Daily</u>	
Test Concentrations (Volume	ə:Volume):0 (MH), 6	.25, 12.5, 25, 50, and 100%
Agency Summary Sheet(s)?	None	_
Reference Toxicant Data:	Test Dates	to 01/10x 21 1C25-220/m/11
Hist, 95% Control Limits:	il to 2070	Method for Determining Ref. Tox. Value:
Special Procedures and C	onsiderations:	
D.O. maintained \geq 4.0 mg/L	······································	
*Conductivity measured in d	llution water and 100% efflue	nt at test termination
If survival in any test chamb	er falls below 50%, reduce fe	eding in that chamber to 0.05 ml of brine shrimp
Appropriate correction facto	rs have been applied to all ter	nperatures recorded in this data package
Study Director Initials:	for REN Date: 6 3	2)

Page 2 of 7 QA Form No. 014 Revision 1 Effective 02/14

On un 7/5/21

TEST SUBSTANCE USAGE LOG

· ·	Sample 1	Sample 2	Sample 3
Test Substance Number	35265	35277	3:5294
	From: 6/21/21	From: 10 3/2/	From: 6/25/2/
Test Substance Collection	@ 0624	@ 01038	@16137
Date and Time	то: 6/21/21	To: (1/2/2/	To: 6/25/21
	@ 0630	@ 1043	@ 1640
Sample Type (Grab or Comp)	Grub	Greb	Grab
Date Test Substance Received	612212	6124121	6126121
Dilution Water Number	14751	14250	43101
(RW# or TRE#, circle one	17326	14500	11.0001
Concurrent Control Water RW#	NA	NA	MA
	6(22/2)	6/24/21	10/26/21
Date(s) Used	6/23/21	6/25/21	6/27/2
	[° "]		6/28/21

14001-412-030

Project Number:

Preparation of Test Solutions

Test	Test	Dilution	Total	Test	Dilution	Total	Test	Dilution	Total
Substance	Substance	Water	Volume	Substance	Water	Volume	Substance	Water	Volume
Conc.	Volume	Volume	(ml)	Volume	Volume	(ml)	Volume	Volume	(ml)
(% Effluent)	(ml)	(ml)		(ml)	(ml)		(ml)	(ml)	
0 (MH)	0	1000	1000						
6.25%	<u>62.5</u>	938	1000				 		
12.5%	125	875	1000						
25%	250	750	1000						
50%	500	500	1000						
100%	1000	0	1000		-				
Total	1937.5	4062.5	6000						
Initials / Date	5m 618	+2/21 1	hived FC						
Initials / Date	AB 60	321 4	, *						
Initials / Date	SV/HP ist	24/21	_{ll} U						
Initials / Date	PUB 6/	25/21 ~							. <u> </u>
Initials / Date	SV 115	NoIA	u n						
Initials / Date	AB6	12/21							
Initials / Date	Aib	0/28/21	<u> </u>						
Initials / Date									

Page 3 of 7 QA Form No. 060 Revision 3 Effective 02/14

as now Hope

FATHEAD MINNOW (*PIMEPHALES PROMELAS*) CHRONIC BIOLOGICAL DATA

Project Number:

14001-412-030

					1	Number o	f Survivin	ng Organi	sms	61
	Test	Day	Day	Day	Day	Day	Day	Day	Day	10
%Conc.	Replicate	0	1	2	3	4	5	6	7	Remarks JUNSAN
0 (MH)	A	D	10	10	10	10	10	10	10	
	В	10	10	10	10	10	10	10	10	<u> </u>
	с	\mathcal{W}	10	10	10	10	10	10	10	
-	D	10	10		9	9	9	9	9	
6.25%	А	O	10	10	10	ÍO	10	10	10	
	В	10	10	10	10	10	10	10	10	100
	с	10	10	10	10	10	10	10	10	100
	D	10	(0		10	ID	10	10	10	
12.5%	A	10	10	10	10	10	10	10	10	
	В	10	10	10	10	10	10	10	10	[00]
	С	0	10	10	10	60	10	10	10	
	D	ìo	10	19	10	tð	10	(0)	10	
25%	А	\square	10	10	10	10	7	5+	5	+lorg siphoned
	В	10	10	10	10	10	10	10	10	
	С	W	10	10	10	10	10	10	10	81.5
	D	10	10	10	10	10	10	W	10	
50%	A	ω	10	10	10	10	10	10	10	
	В	10	10	10	9	7	6	G	6	075
	С	10	10	10	10	10	10	10	10	0
	D	10	10	10	D	9	9	9	9	
100%	A	10	10	10	9	5	5	5	5	
	В	lo	10	10	10	íð	10	10	10	80
	С	iu	10	10	10	io	10	10	10	
	D	10	10	1D	qΔ	9	7	7	7	Alorgsiphoned
	Α		1 1 1 1							
	В									
	С									
	D									
	Date:	6/22/21	6/27/21	612412	6/25/21	612612	6/27/21	6/28/21	6/29/21	
	Time:	1420	1615	P150	1135	113D	1125	1150	1500	
	Initials:	In Att	7 Ars	S VAR	ALB	SV	ACB	AB	AeB	

Page <u>4</u> of 7 QA Form No. 058 Revision 4 Effective 02/14

CHRONIC CHEMICAL DATA (INITIAL)

Project Number:

14001-412-030

Test Species: Pimephales promelas

%		Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Meter #	Remarks
Conc.:	0 (МН)									All Conc.	
pН		8.2	8.3	8.1	8.0	8.0	8.0	8.0		Fm-32	
D.O. (mg/L)		6.8	6.7	6.6	5,1	Le.S	6.9	609		17	
Temp. (°C)		25	25	25	25	25	25	25		1-42	
Cond. (µS/cm	ı)	291	304	318	340	314	297	311		16	
Hard. (mg/L)		92		92		40				Titr.	
Alk. (mg/L)		63		62		57				Titr.	
TRC (mg/L)		<0.02				0.04				22	
NH_3 (mg/L)		<1.0				4.0				HAL	· · · · · · · · · · · · · · · · · · ·
Conc.:	6.25%										<u></u>
рН		8.2	8.2	8.2	8.1	8.0	9, 1	8.			
D.O. (mg/L)		6.9	6.7	6-7	5.7	6.3	7.0	7.0			
Temp. (°C)		\$	X	×	*	A	*	*			
Cond. (µS/cn	n)	300	304	318	305	312	298	294	·····		
Hard. (mg/L)											
Alk. (mg/L)											
TRC (mg/L)											
NH_3 (mg/L)											
Conc.:	12.5%							8.3			
рН		8.2	8.2	8.2	8.0	8.1	8.1	7.0			
D.O. (mg/L)		6.9	6.8	6.8	5.7	6.2	7.1	000			
Temp. (°C)		A	×	A	*	×	*	×			· · · · · · · · · · · · · · · · · · ·
Cond. (µS/cr	<u>n)</u>	277	297	306	294	308	294	293			
Conc.:	25%							<u> </u>		_	·····
рН		8.1	8.2	8.2	3,1	8.1	8.1	0.2			
D.O. (mg/L)		6.9	6,8	7.2	6.1	6.3	7.1	7.1			
Temp. (°C)		Ø	*	+×	*	4	*	K			
Cond. (µS/c	m)	279	292	286	275	299	238	283			
	Date	6/22/21	6/23/21	10124D	6/25/2	1612612	14/27/21	6/28/21			
	Time	: 1400	1550	MHD	1125	1115	1115	1040			
	Initials	5: 5m	AG	51	AUB	VL	AUB	AiB			

Note: Hardness, alkalinity, TRC, and NH3 data appearing on this page have been transcribed from the wet chemistry log QA Form No. 084.

*Dilution/control water and effluent were brought to 25°C prior to making the dilution series. The temperature of resulting effluent dilution is assumed to also be 25°C.

QNEB 6/28/21; WP

06 NW 2/5/2

Page <u>5</u> of 7 QA Form No. 058 Revision 4 Effective 02/14

QA NOV 2/5/21

CHRONIC CHEMICAL DATA (INITIAL)

Project Number:

14001-412-030

Test Species: Pimephales promelas

%		Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Meter #	Remarks
Conc.:	50%	Ū				· · · · ·				All Conc.	
pH		8.0	4.1	4.0	8.0	8,1	8.1	8.2			
D.O. (mg/L)		7.0	6.9	7.7	6.3	6.7	7.3	7.3			
Temp. (°C)		Ø	¥	A	*	*	*	*			
Cond. (µS/cm)		245	2ú4	246	239	285	272	268			
Conc.:											
pН											
D.O. (mg/L)											
Temp. (°C)											
Cond. (µS/cm))										
Conc.:				-							
рН											
D.O. (mg/L)											
Temp. (°C)											
Cond. (µS/cm)										
Conc.:											
рН											
D.O. (mg/L)											
Temp. (°C)											
Cond. (µS/cm	<u>)</u>										
Conc.:	100%			ļ							
рН		7.6	7.9	7.8	7.9	78	7.9	8.0			
D.O. (mg/L)		7.9	7.0	8.3	7.3	7.9	7-8	7.6			
Temp. (°C)		25_	25	25	25	<u>25</u>	25	25			
Cond. (µS/cm	1)	28	180	11000	161	241	240	235		_	
Hard. (mg/L)		62		62	<u> </u>	79					·
Alk. (mg/L)		<u>33</u>		32		38					
TRC (mg/L)		<0.02		0.03	ļ	0.02				_	<u></u>
NH₃ (mg/L)		<(.0		10		<1.0			L		
	Date:	6122124	6/23/21	6124 M	6/25/2	1-11-24/21	6/11/21	6/23/21			
	Time:	1400	1550	0940	1125	1115	1120	1040			· · · · · · · · · · · · · · · · · · ·
	Initials	isn	An	SV	ALB	S√ ¯	AUS	ALB			

Note: Hardness, alkalinity, TRC, and NH3 data appearing on this page have been transcribed from the wet chemistry log QA Form No. 084.

*Dilution/control water and effluent were brought to 25°C prior to making the dilution series. The temperature of resulting effluent dilution is assumed to also be 25°C.

Page <u>6</u> of 7 QA Form No. 059 Revision 3 Effective 02/14

OAnn 2/5/2

CHRONIC CHEMICAL DATA (FINAL)

Project Numb	ber:	1400	1-412-03	0							
Test Species	:	Pimepl	hales pr	omelas							
%		Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Meter #	Remarks
Conc.:	0 (MH)									All Conc.	* conductivity
рН		7.9	7.6	7.8	7.7	7.7	7.7	7.7		Fm2g	*295
D.O. (mg/L)		6,2	5.0	5.7	5.2	6.0	5.4	5.4		17_	
Temp (°C)		25	24	24	24	24	15	25		UN	
Conc.:	6.25%										
<u>р</u> Н		7.9	7.7	7.7	7.5	7.6	7.7	7.6			
D.O. (mg/L)		6.0	6.0	4.7	5.D	5,5	<u>5.0</u>	5.2			
Temp (°C)		25	24	24	24	24	24	25			
Conc.:	12.5%						7.6				
рН	•	7.9	7.7	7.6	7.5	7.6	<u>5.0</u>	7.5		ļ	
D.O. (mg/L)		0.ئ	5.9	4.6	4.9	5.1	7.65.0	5.1			
Temp (°C)		25	24	24	24	24	24	25		<u> </u>	· · · · · · · · · · · · · · · · · · ·
Conc.:	25%						7.6				
рН		7.9	7.7	7.6	15	7.5	5.04	7,5			
D.O. (mg/L)		6.1	5.0	4.7	4.0	5.1	7.6	5.2			
Temp (°C)	r	25	23	24	24	24	24	25		<u> </u>	1
Conc.:	50%										
рН		7.9	7.7	7.6	7.4	7.5	7.6	7.5			
D.O. (mg/L)		6.1	5.9	4.9	4.7	5.2	5.0	5.4			
Temp (°C)		25	24	124	25	24	24	25		<u> </u>	
Conc.:	100%							3.4			* conductivity
рН		7.9	7.7	7.6	7.4	7.5	7.5	7.4			*237
D.O. (mg/L))	<i>©</i> .[6. D	5.4	5.D	5.Z	4.9	5.9			
Temp (°C)		25	24	25	25	24	124	25			
Conc.:									ļ		
pН		_					ļ	ļ	ļ		,
D.O. (mg/L))					1	ļ	ļ			
Temp (°C)									<u> </u>		
Date:		6/23/21	6124 K	6/25hi	612612	427h	6/28/21	6/29/			
Time:		1550	0925	1125	1115	1120	(DHO	1500	×		
Initials:		No.	SV	AUB	SV	AUB	AB	AB			

QALB 6/28/21; EWP

Page 7_ of 7 QA Form No. 055 Revision 3 Effective 02/14

DAILY TOXICITY TEST LOG

Ohner 7/5/21

Project Numb	er: 14001-412	-030			
Test Species:	Pimephales	promelas			
	-				
General Comments	Pandom Chart 1070	Min/May T	horm # M-37_	Feeding * 0.05 BS Day 0-D	Initials/Date Day 4 Noon
Test Day 0	Test Solution Mixed at: 14	IVIII/IVIAX I	$11e_{1111. \#. \underline{c} \cup \underline{\sigma}}$	Fod @	IVI-Day OPIVI
Test Day 0	Test Organisms Added at:	1470			SM
				*[150 Mt/32	6122/21
Test Day 1	Real Time Temp= _{ጋ 5}	°C Range =	°C	Fed @ *0710 HP *1200 SV/M *1200 SV/M	\$ 6/23/21
Test Day 2	Real Time Temp= 25	°C Range = <i>X</i> I ∽ 2 <i>5</i>	°C	Fed @ *0055HP of 1210 H4/Sn \$ 1710 Jn	81/HR 6/24/24
Test Day 3	Real Time Temp= 25	°C Range = 25-26	°C	Fed @ 200835 Aug 1200 SVIEN No 1705 SVEN	AUB 6/25/21
Test Day 4	Real Time Temp= 25	°C Range = <i>ରୁ 5- ରୁ (</i> ଡ	°C	Fed @ * 0045 HR \$1230 NEH + 1700 SV/H	SV 6/26/21 P
Test Day 5	Real Time Temp= 25	°C Range = 24-26	°C	Fed @ +0920 HUB +1220 HUB +1220 HUB	AUB 0/27/21
Test Day 6	Real Time Temp= 25	°C Range = 25-26	°C	Fed @ + 0830 5m + 1215 5m + 1620 Jn	Alb 6/28/21
Test Day 7	Real Time Temp= 2 S	°C Range = 25-26	°C	NONE	AUB. 6/29/21
Test Day 8					

												Page <u>1</u> QA Form Revision 7	of <u>A</u> No.010
					TEST	ORGANISI	M LENGTHS	, WEIGHT	S, AND LOA	DING		QA: A -1	N K
Project	Number:	- d	-100H	12-03	D Test Subs	tance: <i>E</i> F	Pluent 1	outfal	(100)	Comments:	, ,	1 T T	
Specie	S: P. P.G	- 20	Ser		Analyst Te	Ire: AUG	Analyst G	ross: SV/	EN	Analytical Bala	nce ID: いた	< + ++ _L ite: <u>uta/h</u> . Tin	ne: 1605
Date/T	me of Tare	Wt.: (18/ Jal	@1120	Date/Time	of Gross Wt.	: 10/30/31 (2) 0845			to De	ate: <u>(130/14</u> Tii	ne: <u>Ole40</u>
Boat	Treatmen	t Rep). Length	Weight Ty	pe (Circle):	Wet Blot [77 Dry (60-90	°C) Dry (>1	00°C) AFDW	(>500°C)	Lot o Batch	Number: 0	5222
ÖZ			Units:	Tare Weight (g) Gross Weight (g) Net Weight (g)	Adjusted Net Weight	No. of Orig. Organisms	Mean Wt. per Original Organism	Mean Wt. per Treatment	No. of Surv. Organisme	Mean Wt. per Sunviving	Mean Wt. per Treatment (mg)
	°/¢						È.	0	(mg)	(Original)	2	Organism (mg)	(Runno)
	HW	Д		1.07763	5 1.08419	0.000510					01		
		£		1.06050	1.06729	6.00079					91		
				1°05745	1.06378	0.001233					10		
		9		1.07/50	1.07773	0.00 623					9		
	6.25	` <u>द</u>		1.06269	11,06926	0.00057					01		
		Ľ)		1,07081	1,07817	0.00736					10		
		S		1.07362	1.08091	0.00729					10		
		0		1,00065	1. 06095	0.00530					QI		
	12.5	4	Ì.	1-07835	1.08468	0.06634					i D		
	t o	Ś		1,07359	1 1.06003	0.00044					10		
		20		1-06147	1.06731	0.0 0584					10		
		P	5	0 1.07000	1.07613	0.00612					0		
Blank				1.07032	1.07033	0.00001							
- Range									-				
age age													
o D Test So	lution Volun	Je:					Loading Rate:						
29 Add in	weight loss	of blar	rk boat, if a	tppropriate.									

OMB GRA BIT, WP

					per mg)																		
of <u>No.010</u>		ne: 1605	me: <u>0/~40</u>	12220	Mean Wt. I Treatment ((Surviving												7						
Page <u>2</u> QA Form Revision Effective (QA: Ac-7	- 五 	ite: Lanapa Tir	te: <u>(43044</u> Ti	Number: (Mean Wt. per Surviving	Organism (mg)					-												
		1 I I I I I I I I I I I I I I I I I I I	to Da	Lot or Batch	No. of Surv. Organisms	,	5	01	0	21	Ŋ	e	10.	6	à	9	Q	٢					
DING	Comments:	Analytical Balar Dried in Oven #		>500°C)	Mean Wt. per Treatment (mg)	(Original)																	
S, AND LOAE		ر د د		00°C) AFDW (Mean Wt. per Original Organism	(mg)																	
, WEIGHTS	f fall c	oss: SV K	@ 0845	°C) (Dry (>1(No. of Orig. Organisms	0		1															
	ual true	Analyst Gr	6/30/21 (ry Dry (60-90	Adjusted Net Weight (a) ¹)		-														Loading Rate:	
RGANISM	nce: eff	E AB	of Gross Wt.:	Wet Blot D	Net Weight (g)		6.60303	0,06566	0.06643	0.00les4	6,00704	0.00468	0.00057	0.00540	6.00349	0.00719	0,00617	L.8400.0					
TEST O	Test Substa	Analyst Tare	Date/Time c	e (Circle):	Gross Weight (g)		1.079 07	1,07048	1.08213	1.07911	1, 08175	1.078 01	1.08516	1.07726	1.07432	1.074 eS	1.08303	1.074166					
	736		01150	Weight Typ	Tare Weight (g)		1.07504	1.06482	122L0°1	1°07227	12H7011	1.07333	1.07859	1.07186	1.07083	1.06746	1.07685	1.06979					oproprioto
	1-412-0	<u>م</u>	29/216	Length	Units:																		in the state of th
	100	els	vt. 6	Rep.	,			~	် ပ	4		£	5	E	4	S		10	\$ 			j j	1014 30
	Number: 1 ⁶	P ann	ne of Tare V	Treatment		°/°	05	4			с У С	>			8							lution Volum	uniaht loon
	Project I	Species	Date/Tir	Boat	ÖN N														Blank	H Range	Mean	Test So 10 Test	

Page_____of___ QA Form No. 010a Revision 1 Effective 02/14 CJ \$/30/2/ &&{5/30/2/

AND LOADING
WEIGHTS,
LENGTHS,
ORGANISM
TEST (

Project Nu	Imber		4001-412-03	Q		Species:	Fathead	minnow				
		Length	Tare	Gross	Net Weight	Adjusted Net Weight	No of Orig.	Mean Wt./ Original Organism	Mean Wt./ Treatment (mg)	Number of Surv.	Mean Wt./ Surviving Organism	Mean Wt./ Treatment (mg)
Treatment	t Rep	Units:	Weight (g)	Weight (g)	(g)	(g)	Organisms	(mg)	(Original)	Organisms	(mg)	(Surviving)
	A		1.07763	1.08419	0.00656	0.00656	10	0.656	0.6478	10	0.656	0.6651
	m		1.06050	1.06729	0.00679	0.00679	10	0.679		10	0.679	
ЦИ	ပ		1.05745	1.06378	0.00633	0.00633	10	0.633		10	0.633	
			1.07150	1.07773	0.00623	0.00623	10	0.623		ი	0.692	
	∢		1.06269	1.06926	0.00657	0.00657	10	0.657	0.6630	10	0.657	0.6630
0000	m		1.07081	1.07817	0.00736	0.00736	10	0.736		10	0.736	
%CZ'0	ပ		1.07362	1.08091	0.00729	0.00729	10	0.729		10	0.729	
			1.06165	1.06695	0.00530	0.00530	10	0.530		10	0.530	
	∢		1.07839	1.08468	0.00629	0.00629	10	0.629	0.6173	10	0.629	0.6173
	m		1.07359	1.08003	0.00644	0.00644	10	0.644		10	0.644	
%C.21	ပ		1.06147	1.06731	0.00584	0.00584	10	0.584		10	0.584	
	۵		1.07000	1.07612	0.00612	0.00612	10	0.612		10	0.612	
											1	
	∢		1.07504	1.07807	0.00303	0.00303	10	0.303	0.5488	5	0.606	0.6245
200	ш		1.06482	1.07048	0.00566	0.00566	10	0.566		10	0.566	
%,C7	ပ		1.07571	1.08213	0.00642	0.00642	10	0.642		10	0.642	
	۵		1.07227	1.07911	0.00684	0.00684	10	0.684		10	0.684	
										ļ	101 0	
	∢		1.07471	1.08175	0.00704	0.00704	10	0.704	0.5923	10	0.704	0.0853
1001	m		1.07333	1.07801	0.00468	0.00468	10	0.468		9	0.780	
%.nc	ပ		1.07859	1.08516	0.00657	0.00657	10	0.657		10	0.657	
			1.07186	1.07726	0.00540	0.00540	10	0.540		ი	0.600	
						,						
	A		1.07083	1.07432	0.00349	0.00349	10	0.349	0.5430	5	0.698	0.6824
10007	ш		1.06746	1.07465	0.00719	0.00719	10	0.719		10	0.719	
%001	ပ		1.07685	1.08302	0.00617	0.00617	10	0.617		10	0.617	
	۵		1.06979	1.07466	0.00487	0.00487	10	0.487		7	0.696	
Blank			1.07032	1.07033	0.00001							

Page of _____ QA Form No. 010a Revision 1 Effective 02/14 ひ & 30(ゴレ

Project Number:	14001-4	112-030		S	pecies:	Fathead r	ninnow							
	Summary Statisti	ics for S	urvival Data											
	Treatment	Z	Min	Max	<u>Mean</u>	임	<u>></u>							
	MH	4	0.9	1.0	0.9750	0.0500	5.128%							
	6.25%	4	1.0	1.0	1.0000	0.0000	0.000%							
	12.5%	4	1.0	1.0	1.0000	0.0000	0.000%							
	25%	4	0.5	1.0	0.8750	0.2500	28.571%							
	50%	4	0.6	1.0	0.8750	0.1893	21.634%							
	100%	4	0.5	1.0	0.8000	0.2449	30.619%							
	Summary Statist	ice for G	rowth Data (dry wt ner	. original)									
						C C								
	Treatment	Z	<u>uiN</u>	Max	Mean	기	: اد							
	MM	4	0.623	0.679	0.6478	0.0250	3.859%							
	6.25%	4	0.530	0.736	0.6630	0.0956	14.417%							
	12.5%	4	0.584	0.644	0.6173	0.0257	4.169%							
	25%	4	0.303	0.684	0.5488	0.1710	31.154%							
	50%	4	0.468	0.704	0.5923	0.1078	18.198%							
	100%	4	0.349	0.719	0.5430	0.1604	29.547%							
	Summary Statist	ice for G	rowth Data (drv wt pei	survivina (organism)								
	Treatment	z	Min	Max	Mean	SD SD	<u>, <</u>							
	MM	4	0.633	0.692	0.6651	0.0261	3.923%							
	6.25%	4	0.530	0.736	0.6630	0.0956	14.417%							
	12.5%	4	0.584	0.644	0.6173	0.0257	4.169%							
	25%	4	0.566	0.684	0.6245	0.0504	8.065%							
	50%	4	0.600	0.780	0.6853	0.0761	11.112%							
	100%	4	0.617	0.719	0.6824	0.0449	6.574%							
CETIS Anal	ytical Repo	rt							Rep	ort Date	:	30 J	lun-21 13:58 12-030 06	8 (p 1 of 2)
----------------	------------------	---------	-----------------	----------	--------------	---------------	------	-------------	----------	-------------	----------------------	--------------	-----------------------------	------------------
Fathead Minno	ow 7-d Larvai Su	Irviva	and Growth	n Tes	t				103	t coue.	TRE	Environme	ental Strate	gies, LLC
Analysis ID:	20-2815-1361		Endpoint:	7d S	urvival Rate				CE	TIS Versi	ion:	CETISv1	.8.7	. <u></u>
Analyzed:	30 Jun-21 13:58	3	Analysis:	Nonp	oarametric-C	ontrol v	s Tr	eatments	Off	cial Res	ults:	Yes		
Batch ID:	05-4313-7786		Test Type:	Grow	th-Survival	(7d)			Ana	alyst:	Lab 1	Fech		
Start Date:	22 Jun-21 14:20)	Protocol:	EPA	/821/R-02-0	13 (2002	2)		Dilu	uent:	Mod-	Hard Synth	etic Water	
Ending Date:	29 Jun-21 15:00)	Species:	Pime	phales pror	nelas			Bri	ne:	Not A	Applicable		
Duration:	7d 1h		Source:	In-Ho	ouse Culture				Age	ə:				
Sample ID:	08-3038-0426		Code:	317E	5998A				Clie	ent:	Sumi	itomo Minir	ig (Pogo)	
Sample Date:	21 Jun-21 16:30	C	Material:	Amb	ient Sample	1			Pro	ject:	WET	Quarterly	Compliance	Test (2Q)
Receive Date:	22 Jun-21 10:00	C	Source:	Disc	harge Monit	oring Re	port	:		\frown		*		
Sample Age:	22h (3 °C)		Station:	Efflu	ent						3			
Data Transfor	m	Zeta	Alt H	qv	Trials	Seed	-		PMSD /	NOEI	$\overline{\Lambda}$	LOEL	TOEL	τU
Angular (Corre	cted)	NA	C > T		NA	NA			26.1%	100	7	>100	NA	1
Steel Many-Or	ne Rank Sum Te	est								\smile	/			
Control	vs C-%		Test S	Stat	Critical	Ties	DF	P-Value	Р-Туре	Decis	sion(d	a:5%)		
Dilution Water	6.25		20		10	1	6	0.9516	Asymp	Non-	Signif	icant Effect		
	12.5		20		10	1	6	0.9516	Asymp	Non-S	Signif	icant Effect	t	
	25		17.5		10	1	6	0.7867	Asymp	Non-S	Signif	icant Effect		
	50		15.5		10	2	6	0.5438	Asymp	Non-	Signif	icant Effect	[
	100		15		10	1	6	0.4761	Asymp		Sigim			
Test Acceptat	oility Criteria													
Attribute	Test Stat	TAC	Limits		Overlap	Decisi	on							
Control Resp	0.975	0.8 -	NL		Yes	Passes	s Ac	ceptability	Criteria			······		
ANOVA Table														
Source	Sum Squ	ares	Mean	Squ	are	DF		F Stat	P-Value	e Deci	sion(α:5%)		
Between	0.2318974	4	0.046	3794	7	5		1.051	0.4190	Non-	Signif	ficant Effec	t	
Error	0.7943997	7	0.044	1333	2	18		-						
Total	1.026297					23								
Distributional	Tests													
Attribute	Test				Test Stat	Critica	1	P-Value	Decisio	on(α:1%)				
Variances	Mod Leve	ene Eo	quality of Vari	ance	1.876	4.25		0.1487	Equal V	ariances				
Variances	Levene E	-qualit	y of Variance		0.225	4.20 0.884		0.0016	Non-no	rmal Dist	ributio	on		
					0.0710									
7d Survival R	ate Summary	0	t. Moor		95% 1 CI	95% []		Median	Min	Мах		Std Err	CV%	%Effect
<u> </u>	Dilution Water		0 07F	<u>.</u>	0 8954	1		1	0.9	1		0.025	5.13%	0.0%
0 6 25	Dilution vvaler	4	1	•	1	1		1	1	1		0	0.0%	-2.56%
12.5		4	1		1	1		1	1	1		0	0.0%	-2.56%
25		4	0.875	5	0.4772	1		1	0.5	1		0.125	28.6%	10.3%
50		4	0.875	5	0.5738	1		0.95	0.6	1		0.09465	21.6%	10.3%
100		4	0.8		0.4102	1	-	0.85	0.5			0.1225	30.6%	17.9%
Angular (Cor	rected) Transfo	rmed	Summary											
C-%	Control Type	Co	unt Mea	n	95% LCL	95% L	JCL	Median	Min	Max		Std Err	CV%	%Effect
0	Dilution Water	4	1.37	1	1.242	1.501		1.412	1.249	1.41	2	0.04074	5.94%	0.0%
6.25		4	1.41	2	1.412	1.412		1.412	1.412	1.41	2	0	0.0%	-2.97% -2.97%
12.5		4	1.41	2	1.412	1.412		1.412	1.412	1.41 1⊿1	∠ 2	0 1567	25.0%	-2.57 % 8.45%
25		4 ⊿	1.25	0	0.8452	1.634		1.331	0.8861	1.41	2	0.124	20.0%	9.59%
100		4	1.15		0.6508	1.65		1.202	0.7854	1.41	2	0.1569	27.3%	16.1%
		-												

Analyst: EN Page:246,29

CETIS Ana	alytical Rep	ort					Report Date: Test Code:	30 Jun-21 13:58 (p 2 of 2) 412-030 06-4696-8440
Fathead Min	now 7-d Larvai S	urvival a	nd Growth Te	est			TRE	Environmental Strategies, LLC
Analysis ID: Analyzed:	20-2815-1361 30 Jun-21 13:5	E 58 A	ndpoint: 7d nalysis: No	Survival Ra	ite Control vs Treat	ments	CETIS Version: Official Results:	CETISv1.8.7 Yes
7d Survival F	Rate Detail						A.P	
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4			
0	Dilution Water	1	1	1	0.9			
6.25		1	1	1	1			
12.5		1	1	1	1			
25		0.5	1	1	1			
50		1	0.6	1	0.9			
100		0.5	1	1	0.7			
Angular (Cor	rected) Transfor	med Deta	ail					
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4			
0	Dilution Water	1.412	1.412	1.412	1.249			
6.25		1.412	1.412	1.412	1.412			
12.5		1.412	1.412	1.412	1.412			
25		0.7854	1.412	1.412	1.412			
50		1.412	0.8861	1.412	1.249			
100		0.7854	1.412	1.412	0.9912			
7d Survival F	Rate Binomials							
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4			
0	Dilution Water	10/10	10/10	10/10	9/10			
6.25		10/10	10/10	10/10	10/10			
12.5		10/10	10/10	10/10	10/10			
25		5/10	10/10	10/10	10/10			
100		5/10	0/10 10/10	10/10	9/10 7/10			
Crambias								
1.0 0.9 0.8 1.0 0.9 0.8 0.8 0.7 0.7 0.7 0.7 0.6 0.7 0.7 0.4 0.3 0.2 0.1 0.0	•	•			Centered Corr. Angle	0.4 0.3 0.2 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.2 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.0	••••••	••••
	0 D 6.25	12.5	25 50) 100		-2.0 -1.	5 -1.0 -0.5 0.0	0.5 1.0 1.5 2.0

Rankits

C-%

CETIS Ana	lytical Repo	rt							Re Te	epo est	ort Date Code:	:	30 J 4	un-21 13: 12-030 00	56 (p 1 of 2) 6-4696-8440
Fathead Minn	ow 7-d Larval Su	urvival	and Grow	th Tes	st							TRE	Environme	ental Strat	tegies, LLC
Analysis ID: Analyzed:	05-1187-1875 30 Jun-21 13:56	6	Endpoint: Analysis:	Mea Para	n Dry Bioma ametric-Con	ass-mg trol vs T	reat	ments	CE	ET	IS Versi al Res	ion: ults:	CETISv1. Yes	8.7	
Batch ID:	05-4313-7786		Test Type	Gro	wth-Survival	(7d)			Ar	nal	yst:	Lab	Tech		
Start Date:	22 Jun-21 14:20)	Protocol:	EPA	V821/R-02-0	13 (200	2)		Di	ilue	ent:	Mod	-Hard Synth	etic Water	
Ending Date:	29 Jun-21 15:00)	Species:	Pim	ephales pro	melas			Br	rin	e:	Not	Applicable		
Duration:	7d 1h		Source:	In-H	louse Cultur	e			Ag	ge:					
Sample ID:	08-3038-0426		Code:	317	E998A				CI	lier	nt:	Sum	itomo Minin	g (Pogo)	
Sample Date:	21 Jun-21 16:30)	Material:	Amb	pient Sample	•			Pr	roje	ect:	WE	CQuarterly C	Compliance	e Tes t (2Q)
Receive Date:	22 Jun-21 10:00)	Source:	Disc	charge Monif	toring R	ерог	t			\sim				
Sample Age:	22h (3 °C)		Station:	Efflu	lent						\bigcap				
Data Transfor	m	Zeta	Alt	Нур	Trials	Seed			PMSD	1	NOEL	.)	LOEL	TOEL	τu
Untransformed		NA	C > '	ſ	NA	NA			29.8%	Τ	100	Ζ	>100	NA	1
Dunnett Multi	ple Comparison	Test								-					
Control	vs C-%		Test	Stat	Critical	MSD	DF	P-Value	P-Type)	Decis	ion(α:5%)		
Dilution Water	6.25		-0.19	04	2.41	0.193	6	0.8832	CDF		Non-S	Signi	ficant Effe c t		
	12.5		0.38	07	2.41	0.193	6	0.6980	CDF		Non-S	Signi	ficant Effect		
	25		1.23	6 20	2.41	0.193	6 6	0.3228	CDF		Non-S	Signi	ficant Effect		
	100		1.30	20 8	2.41	0.193	6	0.2951	CDF		Non-S	Signi	ficant Effect		
Test Acceptab	oility Criteria														
Attribute	Test Stat	TAC	Limits		Overlap	Decisi	on								
Control Resp	0.6478	0.25 -	- NL		Yes	Passes	s Ac	ceptability	Criteria	-					
PMSD	0.2977	0.12 -	- 0.3		Yes	Passes	s Ac	ceptability	Criteria						
ANOVA Table															
Source	Sum Squa	res	Mea	n Squ	are	DF		F Stat	P-Value	e	Decis	ion(α:5%)		
Between	0.0498330	1	0.00	99666 29246	02 1	5 10		0.7765	0.5792		Non-S	Signi	ficant Effect		
Total	0.280856		0.01	20340	I	23		-							
Distributional	Tests												· · · · · · · · · · · · · · · · · · ·		
Attribute	Test				Test Stat	Critica	l	P-Value	Decisio	on	(α:1%)				
Variances	Bartlett Ed	quality	of Variance)	13.03	15.1		0.0231	Equal \	Var	riances				
Distribution	Shapiro-W	Vilk W	Normality		0.9585	0.884		0.4081	Normal	D	istributio	on			
Mean Dry Bio	mass-mg Summ	ary													
C-%	Control Type	Cour	nt Mea	n	95% LCL	95% U	CL	Median	Min		Max		Std Err	CV%	%Effect
0	Dilution Water	4	0.64	78 2	0.608	0.6875		0.6445	0.623		0.679		0.0125	3.86%	0.0%
6.25		4	0.66	3 72	0.5109	0.8151		0.693	0.53		0.735)	0.04779	14.4% 17%	-2.35% 4.71%
25		4	0.54	88	0.2767	0.8208		0.604	0.303		0.684		0.08548	31.2%	15.3%
50		4	0.59	23	0.4208	0.7637	,	0.5985	0.468		0.704	ļ	0.05389	18.2%	8.57%
100		4	0.54	3	0.2877	0.7983		0.552	0.349		0.719)	0.08022	29.5%	16.2%
Mean Dry Bio	mass-mg Detail														
C-%	Control Type	Rep	1 Rep	2	Rep 3	Rep 4									
0	Dilution Water	0.656	6 0.67	9	0.633	0.623									
6.25		0.657	7 0.73	6	0.729	0.53									
12.5		0.629	0.64	4	0.584	0.612									
25		0.303	0.56	0	0.642	0.684									
100		0.704	+ U.46 A 0.71	9	0.657	0.54									
		0.048	. 0.71	5	0.017	0.407									

CETI	S Ana	lytical Repo	ort							Repo Test	ort Date: Code:		30 Jun-21 13:56 (p 1 412-030 06-4696	l of 2) 3-8440
Fathea	d Minn	ow 7-d Larval S	urvival and	Grow	th Te	st					TF	REI	Environmental Strategies	, LLC
Analys Analyz	is ID: ed:	21-1069-0997 30 Jun-21 13:5	End 6 Ana	lpoint: Ilysis:	Mea Line	an Dry Biom ear Interpola	ass-mg ation (ICPIN)			CETI	S Versior ial Result	n: ts:	CETISv1.8.7 Yes	
Batch	ID:	05-4313-7786	Tes	t Type:	Gro	wth-Surviva	l (7d)			Anal	yst: La	ıb T	ech	
Start D	ate:	22 Jun-21 14:2	0 Pro	tocol:	EP/	4/821/R-02-	013 (2002)			Dilue	ent: Mo	od-ł	lard Synthetic Water	
Ending	g Date:	29 Jun-21 15:0	0 Sp e	cies:	Pim	ephales pro	omelas			Brine	e: No	ot A	pplicable	
Durati	on:	7d 1h	Sou	Irce:	In-H	louse Cultu	re			Age:				
Sampl	e ID:	08-3038-0426	Co	le:	317	'E998A				Clier	nt: Su	umit	omo Mining (Pogo)	
Sampl	e Date:	21 Jun-21 16:3	0 Mat	erial:	Am	bient Sampl	е			Proje	ect: W	ЕT	Quarterly Compliance Test	(2Q)
Receiv	e Date:	22 Jun-21 10:0	0 So ı	irce:	Dis	charge Mon	itoring Report							
Sampl	e Age:	22h (3 °C)	Sta	tion:	Eff	uent								
Linear	Interpo	lation Options												
X Tran	sform	Y Transforn	n See	d	Res	samples	Exp 95% C	CL Met	thod					
Linear		Linear	146	3770	200)	Yes	Two	-Point	Interp	olation			
Test A	cceptab	ility Criteria												
Attribu	Ite	Test Stat	TAC Lim	ts		Overlap	Decision							
Contro	Resp	0.6478	0.25 - NL			Yes	Passes Acc	eptability	/ Criteri	а				
Point I	Estimate	26												<u>.</u>
l evel	%	95% I CI	95% UCI	тн		95% I CI	95% UCI							
1C5	11.62	N/A	95.49	8.604		1 047	NA							
IC10	19.83	6.914	N/A	5.043		NA	14.46							
IC15	74.42	N/A	N/A	1.344		NA	NA							
IC20	>100	N/A	N/A	<1		NA	NA							
IC25	>100	N/A	N/A	<1		NA	NA							
IC40	>100	N/A	N/A	<1		NA	NA							
1C50	>100	N/A	N/A	<1		NA	NA							
Mean I	Dry Bior	nass-mg Sumn	nary				Calc	ulated V	ariate					
C-%	с	ontrol Type	Count	Mear		Min	Мах	Std Err	Std	Dev	CV%		%Effect	
0	D	ilution Water	4	0.647	8	0.623	0.679	0.0125	0.02	25	3.86%		0.0%	
6.25			4	0.663		0.53	0.736	0.04779	0.09	9559	14.4%		-2.35%	
12.5			4	0.617	2	0.584	0.644	0.01287	0.02	2573	4.17%		4.71%	
20 50			4	0.548	0	0.303	0.684	0.06290	0.17	71 170	31.2%		15.3%	
100			4	0.543	.5	0.349	0.719	0.08022	0.16	504	29.5%		16.2%	
Mean	Dry Bio	nass-mg Detail	·											
C-%	с., <u>с</u> .с.	ontrol Type	Ren 1	Ren	,	Ren 3	Ren 4							
0		ilution Water	0.656	0.679	<u> </u>	0.633	0.623					-		
6 25		auton water	0.657	0.736		0.000	0.53							
12.5			0.629	0.644	l	0.584	0.612							
25			0.303	0.566	5	0.642	0.684							
50			0.704	0.468	}	0.657	0.54							
100			0.349	0.719)	0.617	0.487							
						•								

CETIS Ana	lytical Report			Report Date:	30 Jun-21 13:56 (p 2 of 2)		
	······			Test Code:	412-030 06-4696-8440		
Fathead Minn	ow 7-d Larval Surviva	and Grow	th Test	TRE	Environmental Strategies, LLC		
Analysis ID: Analyzed:	21-1069-0997 30 Jun-21 13:56	Endpoint:	Mean Dry Biomass-mg	CETIS Version:	CETISv1.8.7 Ves		
Graphics							
^{0.7} E							
0.6		•					
500.5 SUC	·		•				
0.4 10 BIO							
Esan D Wear							
0.2							
0.1							
0.0 L 0	20 40	60	80 100				
	C-%	•					

Analyst: EN Page 250 29

APPENDIX E – 2021 FISH TISSUE TESTING LABORATORY REPORTS

Environment Testing America

ANALYTICAL REPORT

Eurofins FGS, Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

Laboratory Job ID: 580-106424-1

Client Project/Site: Chinook - Discrete and Composites

For:

Northern Star (Pogo) LLC PO BOX 145 Delta Junction, Alaska 99737

Attn: Nathan Kehoe

Shind cum-

Authorized for release by: 10/28/2021 10:24:31 AM

Sheri Cruz, Project Manager I (253)922-2310 Sheri.Cruz@Eurofinset.com

LINKS Review your project results through TOTOLACCESS Have a Question? Ask The Expert Visit us at: www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Table of Contents 2 Case Narrative 3	I
Case Narrative	2
	3
Definitions 5	5
Client Sample Results 6	3
QC Sample Results 2	27
Chronicle	32
Certification Summary	37
Sample Summary	38
Chain of Custody 3	39
Receipt Checklists	41

Job ID: 580-106424-1

Laboratory: Eurofins FGS, Seattle

Narrative

CASE NARRATIVE

Client: Northern Star (Pogo) LLC Project: Chinook - Discrete and Composites Report Number: 580-106424-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) resulting from a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are an unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes within the calibration range of the instrument or that reduces the interferences thereby enabling the quantification of target analytes.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

<u>RECEIPT</u>

The samples were received on 10/05/2021; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 0.1 C.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

TOTAL METALS (ICPMS)

Samples SW12F01 (580-106424-1), SW12F02 (580-106424-2), SW12F03 (580-106424-3), SW12F04 (580-106424-4), SW12F05 (580-106424-5), SW12F06 (580-106424-6), SW12F07 (580-106424-7), SW12F08 (580-106424-8), Bait (580-106424-9), SW01F01 (580-106424-11), SW01F02 (580-106424-12), SW01F03 (580-106424-13), SW01F04 (580-106424-14), SW01F05 (580-106424-15), SW01F06 (580-106424-16), SW01F07 (580-106424-17), SW01F08 (580-106424-18), SW01F09 (580-106424-19), SW01F10 (580-106424-20) and SW01FCOMP (580-106424-21) were analyzed for total metals (ICPMS) in accordance with EPA SW-846 Method 6020. The samples were prepared on 10/20/2021 and analyzed on 10/21/2021.

Cadmium, Lead and Silver exceeded the RPD limit for the duplicate of sample SW01FCOMPDU (580-106424-21).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL RECOVERABLE METALS (ICPMS)

Sample SW-FB2 (580-106424-10) was analyzed for total recoverable metals (ICPMS) in accordance with EPA SW-846 Method 6020. The samples were prepared on 10/25/2021 and analyzed on 10/26/2021.

Cadmium was detected in method blank MB 580-371547/21-A at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged.

Sample SW-FB2 (580-106424-10)[5X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Job ID: 580-106424-1 (Continued)

Laboratory: Eurofins FGS, Seattle (Continued)

TOTAL MERCURY

Sample SW-FB2 (580-106424-10) was analyzed for total mercury in accordance with EPA SW-846 Methods 7470A. The samples were prepared on 10/18/2021 and analyzed on 10/19/2021.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL MERCURY

Samples SW12F01 (580-106424-1), SW12F02 (580-106424-2), SW12F03 (580-106424-3), SW12F04 (580-106424-4), SW12F05 (580-106424-5), SW12F06 (580-106424-6), SW12F07 (580-106424-7), SW12F08 (580-106424-8), Bait (580-106424-9), SW01F01 (580-106424-11), SW01F02 (580-106424-12), SW01F03 (580-106424-13), SW01F04 (580-106424-14), SW01F05 (580-106424-15), SW01F06 (580-106424-16), SW01F07 (580-106424-17), SW01F08 (580-106424-18), SW01F09 (580-106424-19), SW01F10 (580-106424-20) and SW01FCOMP (580-106424-21) were analyzed for total mercury in accordance with EPA SW-846 Method 7471A. The samples were prepared on 10/20/2021 and analyzed on 10/21/2021.

Method 7471A: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 580-371106 and analytical batch 580-371229 were outside control limits. Mercury also exceeded the RPD limit. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Definitions/Glossary

Job ID: 580-106424-1

4

Qualifiers

Metals	
Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
F2	MS/MSD RPD exceeds control limits
F5	Duplicate RPD exceeds limit, and one or both sample results are less than 5 times RL, and the absolute difference between results is < the upper reporting limits for both.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites

Client Sample ID: SW12F01 Date Collected: 09/24/21 14:20 Date Received: 10/05/21 14:29

Method: 7471A - Mercury (CVAA)

Lead

Nickel

Silver

Analyte

Mercury

Selenium

	.1 17.25							
Method: 6020 - Metals	s (ICP/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed
Antimony	ND		0.050	0.0068	mg/Kg		10/20/21 11:46	10/21/21 15:53
Arsenic	0.053		0.050	0.0099	mg/Kg		10/20/21 11:46	10/21/21 15:53
Cadmium	0.013	J	0.080	0.0077	mg/Kg		10/20/21 11:46	10/21/21 15:53
Copper	0.63		0.099	0.022	mg/Kg		10/20/21 11:46	10/21/21 15:53
Lead	0.0060	J	0.050	0.0048	mg/Kg		10/20/21 11:46	10/21/21 15:53

0.050

0.15

RL

0.024

0.020

0.019 mg/Kg

0.028 mg/Kg

0.0020 mg/Kg

MDL Unit

0.0071 mg/Kg

D

Prepared

0.030 J

0.38

ND

0.017 J

Result Qualifier

Job ID: 580-106424-1

Lab Sample ID: 580-106424-1 Matrix: Tissue

10/20/21 11:46 10/21/21 15:53

10/20/21 11:46 10/21/21 15:53

10/20/21 11:46 10/21/21 15:53

10/20/21 11:59 10/21/21 13:16

Analyzed

:53 2 53 2

Dil Fac

2

2

2

2

2

2

1

Dil Fac

Eurofins FGS, Seattle

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites

Client Sample ID: SW12F02 Date Collected: 09/24/21 14:20 Date Received: 10/05/21 14:29

I ah	Sample	ID: 580-	106424-2
Lub	Gampie	ID. 000-	

Matrix: Tissue

Method: 6020 - Metals (ICP/MS) 5 Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac 0.0067 mg/Kg Antimony 0.049 10/20/21 11:46 10/21/21 15:49 ND 2 2 0.049 0.0099 mg/Kg 10/20/21 11:46 10/21/21 15:49 Arsenic 0.048 J Cadmium 0.0078 J 0.079 0.0076 mg/Kg 10/20/21 11:46 10/21/21 15:49 2 0.022 mg/Kg 10/20/21 11:46 10/21/21 15:49 2 Copper 0.099 0.38 2 Lead 0.023 J 0.049 0.0047 mg/Kg 10/20/21 11:46 10/21/21 15:49 0.049 0.019 mg/Kg 10/20/21 11:46 10/21/21 15:49 2 Nickel 0.024 J Selenium 0.28 0.15 0.028 mg/Kg 10/20/21 11:46 10/21/21 15:49 2 0.020 0.0020 mg/Kg 2 Silver ND 10/20/21 11:46 10/21/21 15:49 Method: 7471A - Mercury (CVAA) RL MDL Unit Analyte **Result Qualifier** D Prepared Analyzed Dil Fac 0.017 J 0.022 0.0065 mg/Kg 10/20/21 11:59 10/21/21 13:14 Mercury 1

Job ID: 580-106424-1

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites

Client Sample ID: SW12F03 Date Collected: 09/24/21 14:20 Date Received: 10/05/21 14:29

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.049	0.0067	mg/Kg		10/20/21 11:46	10/21/21 15:46	2
Arsenic	0.035	J	0.049	0.0098	mg/Kg		10/20/21 11:46	10/21/21 15:46	2
Cadmium	ND		0.079	0.0076	mg/Kg		10/20/21 11:46	10/21/21 15:46	2
Copper	0.38		0.098	0.022	mg/Kg		10/20/21 11:46	10/21/21 15:46	2
Lead	0.0051	J	0.049	0.0047	mg/Kg		10/20/21 11:46	10/21/21 15:46	2
Nickel	0.020	J	0.049	0.019	mg/Kg		10/20/21 11:46	10/21/21 15:46	2
Selenium	0.50		0.15	0.028	mg/Kg		10/20/21 11:46	10/21/21 15:46	2
Silver	ND		0.020	0.0020	mg/Kg		10/20/21 11:46	10/21/21 15:46	2
Method: 7471A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

JOD ID. JOU-100424-

Lab Sample ID: 580-106424-3

1

Job ID: 580-106424-1

Matrix: Tissue

5

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites

Client Sample ID: SW12F04 Date Collected: 09/24/21 14:20 Date Received: 10/05/21 14:29

Method: 6020 - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.050	0.0067	mg/Kg		10/20/21 11:46	10/21/21 15:42	2
Arsenic	0.031	J	0.050	0.0099	mg/Kg		10/20/21 11:46	10/21/21 15:42	2
Cadmium	ND		0.079	0.0076	mg/Kg		10/20/21 11:46	10/21/21 15:42	2
Copper	0.51		0.099	0.022	mg/Kg		10/20/21 11:46	10/21/21 15:42	2
Lead	0.0057	J	0.050	0.0048	mg/Kg		10/20/21 11:46	10/21/21 15:42	2
Nickel	0.032	J	0.050	0.019	mg/Kg		10/20/21 11:46	10/21/21 15:42	2
Selenium	0.29		0.15	0.028	mg/Kg		10/20/21 11:46	10/21/21 15:42	2
Silver	ND		0.020	0.0020	mg/Kg		10/20/21 11:46	10/21/21 15:42	2
Method: 7471A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Job ID: 580-106424-1 Lab Sample ID: 580-106424-4

Matrix: Tissue

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites

Client Sample ID: SW12F05 Date Collected: 09/24/21 14:20 Date Received: 10/05/21 14:29

Lab Sample	ID:	580-106424-5

Matrix: Tissue

Job ID: 580-106424-1

Method: 6020 - Metals (ICP/M	S)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.049	0.0066	mg/Kg		10/20/21 11:46	10/21/21 15:38	2
Arsenic	0.045	J	0.049	0.0097	mg/Kg		10/20/21 11:46	10/21/21 15:38	2
Cadmium	ND		0.078	0.0075	mg/Kg		10/20/21 11:46	10/21/21 15:38	2
Copper	0.99		0.097	0.021	mg/Kg		10/20/21 11:46	10/21/21 15:38	2
Lead	0.0093	J	0.049	0.0047	mg/Kg		10/20/21 11:46	10/21/21 15:38	2
Nickel	0.051		0.049	0.019	mg/Kg		10/20/21 11:46	10/21/21 15:38	2
Selenium	0.34		0.15	0.028	mg/Kg		10/20/21 11:46	10/21/21 15:38	2
Silver	0.0026	J	0.019	0.0019	mg/Kg		10/20/21 11:46	10/21/21 15:38	2
Method: 7471A - Mercury (CV	AA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.016	J	0.030	0.0089	mg/Kg		10/20/21 11:59	10/21/21 13:07	1

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites

Client Sample ID: SW12F06 Date Collected: 09/24/21 14:20 Date Received: 10/05/21 14:29

Job ID: 580-106424-1

Lab Sample ID: 580-106424-6 Matrix: Tissue

Matrix: lissue

Method: 6020 - Metals (ICP/MS) 5 Analyte **Result Qualifier** RL MDL Unit D Prepared Dil Fac Analyzed 0.0065 mg/Kg Antimony 0.048 10/20/21 11:46 10/21/21 15:35 ND 2 2 0.048 0.0096 mg/Kg 10/20/21 11:46 10/21/21 15:35 Arsenic 0.043 J Cadmium 0.0092 J 0.077 0.0074 mg/Kg 10/20/21 11:46 10/21/21 15:35 2 0.021 mg/Kg 10/20/21 11:46 10/21/21 15:35 2 Copper 0.096 0.47 2 Lead 0.0066 J 0.048 0.0046 mg/Kg 10/20/21 11:46 10/21/21 15:35 0.048 0.019 mg/Kg 10/20/21 11:46 10/21/21 15:35 2 Nickel 0.023 J Selenium 0.44 0.14 0.027 mg/Kg 10/20/21 11:46 10/21/21 15:35 2 0.019 0.0019 mg/Kg 2 Silver ND 10/20/21 11:46 10/21/21 15:35 Method: 7471A - Mercury (CVAA) RL MDL Unit Analyte **Result Qualifier** D Prepared Analyzed Dil Fac 0.027 0.021 0.0064 mg/Kg 10/20/21 11:59 10/21/21 13:05 Mercury 1

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites

Client Sample ID: SW12F07 Date Collected: 09/24/21 14:20 Date Received: 10/05/21 14:29

Lab	Sample	ID:	580-1064	424-7

Matrix: Tissue

Job ID: 580-106424-1

Method: 6020 - Metals (ICP/MS) Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac 0.0068 mg/Kg Antimony 0.050 10/20/21 11:46 10/21/21 15:31 ND 2 2 0.050 0.010 mg/Kg 10/20/21 11:46 10/21/21 15:31 Arsenic 0.042 J Cadmium ND 0.080 0.0077 mg/Kg 10/20/21 11:46 10/21/21 15:31 2 0.022 mg/Kg 10/20/21 11:46 10/21/21 15:31 2 Copper 0.66 0.10 2 Lead ND 0.050 0.0048 mg/Kg 10/20/21 11:46 10/21/21 15:31 10/20/21 11:46 10/21/21 15:31 ND 0.050 0.019 mg/Kg 2 Nickel Selenium 0.38 0.15 0.029 mg/Kg 10/20/21 11:46 10/21/21 15:31 2 0.020 0.0020 mg/Kg 2 Silver ND 10/20/21 11:46 10/21/21 15:31 Method: 7471A - Mercury (CVAA) RL MDL Unit Analyte **Result Qualifier** D Prepared Analyzed Dil Fac 0.019 0.018 0.0055 mg/Kg 10/20/21 11:59 10/21/21 12:57 Mercury 1

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites

Client Sample ID: SW12F08 Date Collected: 09/24/21 14:20 Date Received: 10/05/21 14:29

Method: 6020 - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.049	0.0067	mg/Kg		10/20/21 11:46	10/21/21 15:27	2
Arsenic	0.036	J	0.049	0.0098	mg/Kg		10/20/21 11:46	10/21/21 15:27	2
Cadmium	ND		0.079	0.0076	mg/Kg		10/20/21 11:46	10/21/21 15:27	2
Copper	1.0		0.098	0.022	mg/Kg		10/20/21 11:46	10/21/21 15:27	2
Lead	0.0088	J	0.049	0.0047	mg/Kg		10/20/21 11:46	10/21/21 15:27	2
Nickel	0.023	J	0.049	0.019	mg/Kg		10/20/21 11:46	10/21/21 15:27	2
Selenium	0.30		0.15	0.028	mg/Kg		10/20/21 11:46	10/21/21 15:27	2
Silver	0.0031	J	0.020	0.0020	mg/Kg		10/20/21 11:46	10/21/21 15:27	2
Method: 7471A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.024	J	0.027	0.0080	mg/Kg		10/20/21 11:59	10/21/21 12:55	1

Job ID: 580-106424-1

Matrix: Tissue

Lab Sample ID: 580-106424-8

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites Job ID: 580-106424-1

Client Sample ID: Bait Date Collected: 09/23/21 13:30 Date Received: 10/05/21 14:29

Lab Sample ID: 580-106424-9

Matrix: Tissue

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.049	0.0067	mg/Kg		10/20/21 11:46	10/21/21 15:23	2
Arsenic	0.40		0.049	0.0098	mg/Kg		10/20/21 11:46	10/21/21 15:23	2
Cadmium	0.0087	J	0.078	0.0075	mg/Kg		10/20/21 11:46	10/21/21 15:23	2
Copper	42		0.098	0.022	mg/Kg		10/20/21 11:46	10/21/21 15:23	2
Lead	0.0061	J	0.049	0.0047	mg/Kg		10/20/21 11:46	10/21/21 15:23	2
Nickel	0.025	J	0.049	0.019	mg/Kg		10/20/21 11:46	10/21/21 15:23	2
Selenium	4.3		0.15	0.028	mg/Kg		10/20/21 11:46	10/21/21 15:23	2
Silver	0.11		0.020	0.0020	mg/Kg		10/20/21 11:46	10/21/21 15:23	2
Method: 7471A - Merc	cury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.018	0.0055	mg/Kg		10/20/21 11:59	10/21/21 12:53	1

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites Job ID: 580-106424-1

Client Sample ID: SW-FB2 Date Collected: 09/24/21 16:10 Date Received: 10/05/21 14:29

Lab Sample ID: 580-106424-10 Matrix: Water

wau	IX.	 ater

Method: 6020 - Metals (ICP/MS) - 1	otal Re	coverable								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
Arsenic	ND		0.0050	0.0010	mg/L		10/25/21 18:26	10/26/21 12:47	5	
Antimony	ND		0.0040	0.00063	mg/L		10/25/21 18:26	10/26/21 12:47	5	
Cadmium	ND		0.0020	0.00019	mg/L		10/25/21 18:26	10/26/21 12:47	5	
Copper	ND		0.010	0.0030	mg/L		10/25/21 18:26	10/26/21 12:47	5	
Lead	ND		0.0020	0.00020	mg/L		10/25/21 18:26	10/26/21 12:47	5	
Nickel	ND		0.015	0.00063	mg/L		10/25/21 18:26	10/26/21 12:47	5	8
Selenium	ND		0.040	0.010	mg/L		10/25/21 18:26	10/26/21 12:47	5	
Silver	ND		0.0020	0.00013	mg/L		10/25/21 18:26	10/26/21 12:47	5	9
Method: 7470A - Mercury (CVAA)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Mercury	ND		0.00030	0.00015	ma/L		10/18/21 18:58	10/19/21 14:43	1	

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites

Client Sample ID: SW01F01 Date Collected: 09/24/21 16:20 Date Received: 10/05/21 14:29

_

Job ID: 580-106424-	1
---------------------	---

Lab Sample ID: 580-106424-11 Matrix: Tissue

Method: 6020 - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.049	0.0067	mg/Kg		10/20/21 11:46	10/21/21 13:51	2
Arsenic	0.034	J	0.049	0.0098	mg/Kg		10/20/21 11:46	10/21/21 13:51	2
Cadmium	0.015	J	0.079	0.0076	mg/Kg		10/20/21 11:46	10/21/21 13:51	2
Copper	0.53		0.098	0.022	mg/Kg		10/20/21 11:46	10/21/21 13:51	2
Lead	0.026	J	0.049	0.0047	mg/Kg		10/20/21 11:46	10/21/21 13:51	2
Nickel	0.038	J	0.049	0.019	mg/Kg		10/20/21 11:46	10/21/21 13:51	2
Selenium	0.38		0.15	0.028	mg/Kg		10/20/21 11:46	10/21/21 13:51	2
Silver	0.0044	J	0.020	0.0020	mg/Kg		10/20/21 11:46	10/21/21 13:51	2
Method: 7471A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.0091	J	0.018	0.0055	mg/Kg		10/20/21 11:59	10/21/21 12:50	1

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites

Client Sample ID: SW01F02 Date Collected: 09/24/21 16:20 Date Received: 10/05/21 14:29

Lab	Sam	ple I	D: 58	30-10	6424-	12

Matrix: Tissue

Job ID: 580-106424-1

Method: 6020 - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.050	0.0068	mg/Kg		10/20/21 11:46	10/21/21 15:05	2
Arsenic	0.046	J	0.050	0.010	mg/Kg		10/20/21 11:46	10/21/21 15:05	2
Cadmium	ND		0.080	0.0077	mg/Kg		10/20/21 11:46	10/21/21 15:05	2
Copper	0.49		0.10	0.022	mg/Kg		10/20/21 11:46	10/21/21 15:05	2
Lead	0.010	J	0.050	0.0048	mg/Kg		10/20/21 11:46	10/21/21 15:05	2
Nickel	0.023	J	0.050	0.019	mg/Kg		10/20/21 11:46	10/21/21 15:05	2
Selenium	0.24		0.15	0.029	mg/Kg		10/20/21 11:46	10/21/21 15:05	2
Silver	ND		0.020	0.0020	mg/Kg		10/20/21 11:46	10/21/21 15:05	2
Method: 7471A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.011	J	0.026	0.0077	mg/Kg		10/20/21 11:59	10/21/21 12:48	1

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites

Client Sample ID: SW01F03 Date Collected: 09/24/21 16:20 Date Received: 10/05/21 14:29

Job ID: 580-106424	1-1
--------------------	-----

Lab Sample ID: 580-106424-13 Matrix: Tissue

Method: 6020 - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.049	0.0067	mg/Kg		10/20/21 11:46	10/21/21 15:01	2
Arsenic	0.040	J	0.049	0.0098	mg/Kg		10/20/21 11:46	10/21/21 15:01	2
Cadmium	ND		0.078	0.0075	mg/Kg		10/20/21 11:46	10/21/21 15:01	2
Copper	0.50		0.098	0.022	mg/Kg		10/20/21 11:46	10/21/21 15:01	2
Lead	0.011	J	0.049	0.0047	mg/Kg		10/20/21 11:46	10/21/21 15:01	2
Nickel	0.021	J	0.049	0.019	mg/Kg		10/20/21 11:46	10/21/21 15:01	2
Selenium	0.34		0.15	0.028	mg/Kg		10/20/21 11:46	10/21/21 15:01	2
Silver	ND		0.020	0.0020	mg/Kg		10/20/21 11:46	10/21/21 15:01	2
Method: 7471A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.012	J	0.027	0.0080	mg/Kg		10/20/21 11:59	10/21/21 12:46	1

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites

Client Sample ID: SW01F04 Date Collected: 09/24/21 16:20 Date Received: 10/05/21 14:29

Lab	Sam	ple	ID:	580-1	06424-	14

Matrix: Tissue

5

Job ID: 580-106424-1

Method: 6020 - Metals (ICP/MS) Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac 0.0068 mg/Kg Antimony 0.050 10/20/21 11:46 10/21/21 14:57 ND 2 2 0.050 0.010 mg/Kg 10/20/21 11:46 10/21/21 14:57 Arsenic 0.041 J Cadmium ND 0.080 0.0077 mg/Kg 10/20/21 11:46 10/21/21 14:57 2 0.48 0.022 mg/Kg 10/20/21 11:46 10/21/21 14:57 2 Copper 0.10 2 Lead 0.0096 J 0.050 0.0048 mg/Kg 10/20/21 11:46 10/21/21 14:57 0.050 0.019 mg/Kg 10/20/21 11:46 10/21/21 14:57 2 Nickel ND Selenium 0.49 0.15 0.029 mg/Kg 10/20/21 11:46 10/21/21 14:57 2 0.020 0.0020 mg/Kg 2 Silver ND 10/20/21 11:46 10/21/21 14:57 Method: 7471A - Mercury (CVAA) RL MDL Unit Analyte **Result Qualifier** D Prepared Analyzed Dil Fac 0.028 0.027 J 0.0085 mg/Kg 10/20/21 11:59 10/21/21 12:43 Mercury 1

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites

Client Sample ID: SW01F05 Date Collected: 09/24/21 16:20 Date Received: 10/05/21 14:29

Job ID: 580-106424-1

Lab Sample ID: 580-106424-15 Matrix: Tissue

Method: 6020 - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.049	0.0067	mg/Kg		10/20/21 11:46	10/21/21 14:54	2
Arsenic	0.033	J	0.049	0.0098	mg/Kg		10/20/21 11:46	10/21/21 14:54	2
Cadmium	ND		0.078	0.0075	mg/Kg		10/20/21 11:46	10/21/21 14:54	2
Copper	0.48		0.098	0.022	mg/Kg		10/20/21 11:46	10/21/21 14:54	2
Lead	0.0050	J	0.049	0.0047	mg/Kg		10/20/21 11:46	10/21/21 14:54	2
Nickel	0.019	J	0.049	0.019	mg/Kg		10/20/21 11:46	10/21/21 14:54	2
Selenium	0.35		0.15	0.028	mg/Kg		10/20/21 11:46	10/21/21 14:54	2
Silver	ND		0.020	0.0020	mg/Kg		10/20/21 11:46	10/21/21 14:54	2
- Method: 7471A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.014	J	0.022	0.0065	mg/Kg		10/20/21 11:59	10/21/21 12:41	1

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites

Client Sample ID: SW01F06 Date Collected: 09/24/21 16:20 Date Received: 10/05/21 14:29

_

		ID	500	400	404	

Lab Sample ID: 580-106424-16 Matrix: Tissue

5

Job ID: 580-106424-1

Method: 6020 - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.0079	J	0.050	0.0068	mg/Kg		10/20/21 11:46	10/21/21 14:50	2
Arsenic	0.20		0.050	0.010	mg/Kg		10/20/21 11:46	10/21/21 14:50	2
Cadmium	0.023	J	0.080	0.0077	mg/Kg		10/20/21 11:46	10/21/21 14:50	2
Copper	0.77		0.10	0.022	mg/Kg		10/20/21 11:46	10/21/21 14:50	2
Lead	0.034	J	0.050	0.0048	mg/Kg		10/20/21 11:46	10/21/21 14:50	2
Nickel	0.061		0.050	0.019	mg/Kg		10/20/21 11:46	10/21/21 14:50	2
Selenium	0.47		0.15	0.029	mg/Kg		10/20/21 11:46	10/21/21 14:50	2
Silver	0.0032	J	0.020	0.0020	mg/Kg		10/20/21 11:46	10/21/21 14:50	2
Method: 7471A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.017	J	0.026	0.0077	mg/Kg		10/20/21 11:59	10/21/21 12:39	1

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites

Client Sample ID: SW01F07 Date Collected: 09/24/21 16:20 Date Received: 10/05/21 14:29

Job I	D: 58	0-106	424-1
1 dot	D. 20	0-100	424-1

Lab Sample ID: 580-106424-17 Matrix: Tissue

Method: 6020 - Metals (ICF Analyte	P/MS) Result G	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
Antimony		<u> </u>	0.051	0.0069	mg/Kg		10/20/21 11:46	10/21/21 14:46	2	
Arsenic	0.039 J	J	0.051	0.010	mg/Kg		10/20/21 11:46	10/21/21 14:46	2	
Cadmium	ND		0.081	0.0078	mg/Kg		10/20/21 11:46	10/21/21 14:46	2	
Copper	0.52		0.10	0.022	mg/Kg		10/20/21 11:46	10/21/21 14:46	2	
Lead	0.013 J	J	0.051	0.0049	mg/Kg		10/20/21 11:46	10/21/21 14:46	2	
Nickel	0.044 J	J	0.051	0.020	mg/Kg		10/20/21 11:46	10/21/21 14:46	2	9
Selenium	0.33		0.15	0.029	mg/Kg		10/20/21 11:46	10/21/21 14:46	2	
Silver	0.0022 J	I	0.020	0.0020	mg/Kg		10/20/21 11:46	10/21/21 14:46	2	9
Method: 7471A - Mercury ((CVAA)									
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Mercury	0.025		0.024	0.0072	mg/Kg		10/20/21 11:59	10/21/21 12:36	1	

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites

Client Sample ID: SW01F08 Date Collected: 09/24/21 16:20 Date Received: 10/05/21 14:29

Job ID: 580-106424-1	1
----------------------	---

Lab Sample ID: 580-106424-18 Matrix: Tissue

Method: 6020 - Metals (ICP/MS)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
Antimony	ND		0.050	0.0067	mg/Kg		10/20/21 11:46	10/21/21 14:42	2	
Arsenic	0.080		0.050	0.0099	mg/Kg		10/20/21 11:46	10/21/21 14:42	2	
Cadmium	0.0097	J	0.079	0.0076	mg/Kg		10/20/21 11:46	10/21/21 14:42	2	
Copper	1.6		0.099	0.022	mg/Kg		10/20/21 11:46	10/21/21 14:42	2	
Lead	0.021	J	0.050	0.0048	mg/Kg		10/20/21 11:46	10/21/21 14:42	2	
Nickel	0.033	J	0.050	0.019	mg/Kg		10/20/21 11:46	10/21/21 14:42	2	8
Selenium	0.39		0.15	0.028	mg/Kg		10/20/21 11:46	10/21/21 14:42	2	
Silver	0.012	J	0.020	0.0020	mg/Kg		10/20/21 11:46	10/21/21 14:42	2	9
Method: 7471A - Mercury (CVAA)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Mercury	0.022	J	0.023	0.0070	mg/Kg		10/20/21 11:59	10/21/21 12:29	1	

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites

Client Sample ID: SW01F09 Date Collected: 09/24/21 16:20 Date Received: 10/05/21 14:29

Job	ID:	580)-10	642	4-1

Lab Sample ID: 580-106424-19 Matrix: Tissue

Matrix: Tissue

5

Method: 6020 - Metals (ICP/MS) Analyte **Result Qualifier** RL MDL Unit D Prepared Dil Fac Analyzed 0.0068 mg/Kg Antimony 0.050 10/20/21 11:46 10/21/21 14:39 ND 2 2 0.050 0.0099 mg/Kg 10/20/21 11:46 10/21/21 14:39 Arsenic 0.094 0.0090 J Cadmium 0.080 0.0077 mg/Kg 10/20/21 11:46 10/21/21 14:39 2 0.022 mg/Kg 10/20/21 11:46 10/21/21 14:39 2 Copper 0.099 0.58 2 Lead 0.050 0.0048 mg/Kg 10/20/21 11:46 10/21/21 14:39 0.031 J 0.050 0.019 mg/Kg 10/20/21 11:46 10/21/21 14:39 2 Nickel 0.053 Selenium 0.44 0.15 0.028 mg/Kg 10/20/21 11:46 10/21/21 14:39 2 0.020 0.0020 mg/Kg 2 Silver 10/20/21 11:46 10/21/21 14:39 0.0034 J Method: 7471A - Mercury (CVAA) RL MDL Unit Analyte **Result Qualifier** D Prepared Analyzed Dil Fac 0.024 J 0.027 0.0082 mg/Kg 10/20/21 11:59 10/21/21 12:27 Mercury 1

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites

Client Sample ID: SW01F10 Date Collected: 09/24/21 16:20 Date Received: 10/05/21 14:29

Job ID: 580-106424-1

Lab Sample ID: 580-106424-20 Matrix: Tissue

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.050	0.0068	mg/Kg		10/20/21 11:46	10/21/21 14:35	2
Arsenic	0.045	J	0.050	0.010	mg/Kg		10/20/21 11:46	10/21/21 14:35	2
Cadmium	0.011	J	0.080	0.0077	mg/Kg		10/20/21 11:46	10/21/21 14:35	2
Copper	0.60		0.10	0.022	mg/Kg		10/20/21 11:46	10/21/21 14:35	2
Lead	0.034	J	0.050	0.0048	mg/Kg		10/20/21 11:46	10/21/21 14:35	2
Nickel	0.060		0.050	0.019	mg/Kg		10/20/21 11:46	10/21/21 14:35	2
Selenium	0.49		0.15	0.029	mg/Kg		10/20/21 11:46	10/21/21 14:35	2
Silver	0.0064	J	0.020	0.0020	mg/Kg		10/20/21 11:46	10/21/21 14:35	2
Method: 7471A - Mercury (CVA)	A)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.014	J	0.030	0.0089	mg/Kg		10/20/21 11:59	10/21/21 12:24	1

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites

Client Sample ID: SW01FCOMP Date Collected: 09/24/21 16:20 Date Received: 10/05/21 14:29

Lab	Sam	ple	ID:	580-1	064	424-	·21

Matrix: Tissue

Dil Fac

2

2

2

2

2

2

2

2

Job ID: 580-106424-1

Method: 6020 - Metals (ICP/MS) Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed 0.050 0.0068 mg/Kg 10/20/21 11:46 10/21/21 13:54 Antimony 0.0078 J 0.050 0.010 mg/Kg 10/20/21 11:46 10/21/21 13:54 Arsenic 0.055 Cadmium 0.014 J 0.080 0.0077 mg/Kg 10/20/21 11:46 10/21/21 13:54 0.022 mg/Kg 10/20/21 11:46 10/21/21 13:54 Copper 0.10 0.62 Lead 0.042 J 0.050 0.0048 mg/Kg 10/20/21 11:46 10/21/21 13:54 0.050 0.019 mg/Kg 10/20/21 11:46 10/21/21 13:54 Nickel 0.078 Selenium 0.45 0.15 0.029 mg/Kg 10/20/21 11:46 10/21/21 13:54 0.020 0.0020 mg/Kg 10/20/21 11:46 10/21/21 13:54 Silver 0.0054 J Method: 7471A - Mercury (CVAA)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.028	J F1 F2	0.030	0.0091	mg/Kg		10/20/21 11:59	10/21/21 12:15	1

Eurofins FGS, Seattle

Method: 6020 - Metals (ICP/MS)

Lab Sample ID: MB 580-371104/24-A Matrix: Tissue Analysis Batch: 371299

	MB MB							
Analyte Res	ult Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND	0.10	0.014	mg/Kg		10/20/21 11:46	10/21/21 13:47	2
Arsenic	ND	0.10	0.020	mg/Kg		10/20/21 11:46	10/21/21 13:47	2
Cadmium	ND	0.16	0.015	mg/Kg		10/20/21 11:46	10/21/21 13:47	2
Copper	ND	0.20	0.044	mg/Kg		10/20/21 11:46	10/21/21 13:47	2
Lead	ND	0.10	0.0096	mg/Kg		10/20/21 11:46	10/21/21 13:47	2
Nickel	ND	0.10	0.039	mg/Kg		10/20/21 11:46	10/21/21 13:47	2
Selenium	ND	0.30	0.057	mg/Kg		10/20/21 11:46	10/21/21 13:47	2
Silver	ND	0.040	0.0040	mg/Kg		10/20/21 11:46	10/21/21 13:47	2

Lab Sample ID: LCS 580-371104/25-A Matrix: Tissue Analysis Batch: 371299

Analysis Batch: 371299		Prep Batch: 371104
Spike LCS LCS		%Rec.
Analyte Added Result Qualifier Unit D	%Rec	Limits
Antimony 50.0 56.0 mg/Kg	112	80 - 120
Arsenic 50.0 52.4 mg/Kg	105	80 - 120
Cadmium 50.0 55.1 mg/Kg	110	80 - 120
Copper 50.0 51.1 mg/Kg	102	80 - 120
Lead 50.0 50.2 mg/Kg	100	80 - 120
Nickel 50.0 51.5 mg/Kg	103	80 - 120
Selenium 50.0 49.8 mg/Kg	100	80 - 120
Silver 50.0 52.5 mg/Kg	105	80 - 120

Lab Sample ID: LCSD 580-371104/26-A **Matrix: Tissue**

Analysis Batch: 371299

Analysis Batch: 371299							Prep Ba	tch: 3	71104
-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	50.0	55.6		mg/Kg		111	80 - 120	1	20
Arsenic	50.0	52.1		mg/Kg		104	80 - 120	1	20
Cadmium	50.0	54.7		mg/Kg		109	80 - 120	1	20
Copper	50.0	50.6		mg/Kg		101	80 - 120	1	20
Lead	50.0	49.8		mg/Kg		100	80 - 120	1	20
Nickel	50.0	51.0		mg/Kg		102	80 - 120	1	20
Selenium	50.0	49.5		mg/Kg		99	80 - 120	1	20
Silver	50.0	51.8		mg/Kg		104	80 - 120	1	20

Lab Sample ID: 580-106424-21 MS Matrix: Tissue

Analysis Batch: 371299

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	0.0078	J	25.0	25.6		mg/Kg		102	80 - 120	
Arsenic	0.055		25.0	26.1		mg/Kg		104	80 - 120	
Cadmium	0.014	J	25.0	27.4		mg/Kg		109	80 - 120	
Copper	0.62		25.0	26.4		mg/Kg		103	80 - 120	
Lead	0.042	J	25.0	24.6		mg/Kg		98	80 - 120	
Nickel	0.078		25.0	25.1		mg/Kg		100	80 - 120	
Selenium	0.45		25.0	26.0		mg/Kg		102	80 - 120	

Eurofins FGS, Seattle

Client Sample ID: SW01FCOMP

Prep Type: Total/NA

Prep Batch: 371104

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

10/28/2021

Prep Batch: 371104 5 6

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites

Lab Sample ID: 580-106424-21 MS

Lab Sample ID: 580-106424-21 MSD

Lab Sample ID: 580-106424-21 DU

Matrix: Tissue

Matrix: Tissue

Analyte

Analyte

Antimony

Cadmium

Arsenic

Copper

Lead

Nickel

Silver

Analyte Antimony Arsenic Cadmium Copper Lead

Nickel

Selenium

Selenium

Matrix: Tissue

Analysis Batch: 371299

Silver

Analysis Batch: 371299

Analysis Batch: 371299

Method: 6020 - Metals (ICP/MS) (Continued)

Sample Sample

Sample Sample

Result Qualifier

0.0054 J

0.0078 J

0.055

0.014 J

0.042 J

0.62

0.078

0.45

0.0054 J

0.078

0.45

Result Qualifier

QC Sample Results

Spike

Added

25.0

Spike

Added

25.8

25.8

25.8

25.8

25.8

25.8

25.8

25.8

Job ID: 580-106424-1

Prep Type: Total/NA

Prep Batch: 371104

Client Sample ID: SW01FCOMP

%Rec.

Limits

80 - 120

Client Sample ID: SW01FCOMP Prep Type: Total/NA Prep Batch: 371104 PD nit

5

5

18

4

56

Prep Batch: 371547

20

20

20

20

20

		%Rec.		RPD	
[D %Rec	Limits	RPD	Limit	
	104	80 - 120	5	20	
	107	80 - 120	5	20	
	111	80 - 120	5	20	
	104	80 - 120	4	20	
	100	80 - 120	4	20	

80 - 120

80 - 120

103 80 - 120 5 20 Client Sample ID: SW01FCOMP

Client Sample ID: Method Blank

Prep Type: Total Recoverable

						Prep Type: Tot Prep Batch: 3	al/NA 71104
Sample	Sample	DU	DU				RPD
Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
 0.0078	J	ND		mg/Kg			20
0.055		0.0480	J	mg/Kg		14	20
0.014	J	0.00886	J F5	mg/Kg		44	20
0.62		0.584		mg/Kg		6	20
0.042	J	0.0329	J F5	mg/Kg		25	20

Silver 0.0054 J Lab Sample ID: MB 580-371547/21-A Matrix: Water

Analysis Batch: 371668

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.00080	0.00013	mg/L		10/25/21 18:26	10/26/21 11:33	1
Arsenic	ND		0.0010	0.00020	mg/L		10/25/21 18:26	10/26/21 11:33	1
Cadmium	0.0000400	J	0.00040	0.000037	mg/L		10/25/21 18:26	10/26/21 11:33	1
Copper	ND		0.0020	0.00060	mg/L		10/25/21 18:26	10/26/21 11:33	1
Lead	ND		0.00040	0.000040	mg/L		10/25/21 18:26	10/26/21 11:33	1
Nickel	ND		0.0030	0.00013	mg/L		10/25/21 18:26	10/26/21 11:33	1
Selenium	ND		0.0080	0.0021	mg/L		10/25/21 18:26	10/26/21 11:33	1
Silver	ND		0.00040	0.000025	mg/L		10/25/21 18:26	10/26/21 11:33	1

Lab Sample ID: LCS 580-371547/22-A		Client Sample ID: Lab Control Sample							
Matrix: Water	Prep Type: Total Recove							ecoverable	
Analysis Batch: 371668						ch: 371547			
	Spike	LCS	LCS				%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Antimony	1.00	1.03		mg/L		103	80 - 120		

Eurofins FGS, Seattle

MS MS

MSD MSD

26.8

27.6

28.7

27.5

25.7

26.4

27.3

26.7

0.0648

0.431

0.00304 JF5

Result Qualifier

25.3

Result Qualifier

Unit

Unit

mg/Kg

D %Rec

101

102

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 580-371547/22-A Matrix: Water			Client Sample ID: Lab Control Samp Prep Type: Total Recoverat						
Analysis Batch: 371668						Prep Batch: 371547			
	Spike	LCS	LCS			%Rec.			
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits			
Arsenic	1.00	1.01		mg/L		80 - 120			
Cadmium	1.00	1.02		mg/L	102	80 - 120			
Copper	1.00	1.03		mg/L	103	80 - 120			
Lead	1.00	1.05		mg/L	105	80 - 120			
Nickel	1.00	1.04		mg/L	104	80 - 120			
Selenium	1.00	0.985		mg/L	98	80 - 120			
Silver	1.00	1.03		mg/L	103	80 - 120			

Lab Sample ID: LCSD 580-371547/23-A Matrix: Water

						Ргер ва	atch: 3	(154/
Spike	LCSD	LCSD				%Rec.		RPD
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1.00	1.03		mg/L		103	80 - 120	0	20
1.00	1.03		mg/L		103	80 - 120	2	20
1.00	1.02		mg/L		102	80 - 120	0	20
1.00	1.03		mg/L		103	80 - 120	0	20
1.00	1.06		mg/L		106	80 - 120	0	20
1.00	1.03		mg/L		103	80 - 120	1	20
1.00	1.01		mg/L		101	80 - 120	2	20
1.00	1.02		mg/L		102	80 - 120	1	20
	Spike Added 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Spike LCSD Added Result 1.00 1.03 1.00 1.03 1.00 1.03 1.00 1.03 1.00 1.03 1.00 1.03 1.00 1.03 1.00 1.03 1.00 1.03 1.00 1.03 1.00 1.03 1.00 1.03 1.00 1.01 1.00 1.02	Spike LCSD LCSD Added Result Qualifier 1.00 1.03	Spike LCSD LCSD Added Result Qualifier Unit 1.00 1.03 mg/L 1.00 1.01 mg/L 1.00 1.02 mg/L	Spike LCSD LCSD Added Result Qualifier Unit D 1.00 1.03 mg/L mg/L D 1.00 1.03 mg/L mg/L D 1.00 1.03 mg/L 100 1.03 mg/L 1.00 1.03 mg/L 100 1.03 mg/L 1.00 1.06 mg/L 100 1.03 mg/L 1.00 1.03 mg/L 100 1.03 mg/L 1.00 1.03 mg/L 100 1.03 mg/L 1.00 1.01 mg/L 1.00 1.02 mg/L	Spike LCSD LCSD Added Result Qualifier Unit D %Rec 1.00 1.03 mg/L 103 1.00 1.03 mg/L 103 1.00 1.02 mg/L 102 1.00 1.03 mg/L 103 1.00 1.01 mg/L 101 1.00 1.02 mg/L 102	Spike LCSD LCSD Write %Rec. Added Result Qualifier Unit D %Rec. Limits 1.00 1.03 mg/L 103 80.120 1.00 1.03 mg/L 103 80.120 1.00 1.02 mg/L 103 80.120 1.00 1.03 mg/L 103 80.120 1.00 1.01 mg/L 101 80.120 1.00 1.02 mg/L 102 80.120	Spike LCSD LCSD Wrep Batch: Source Added Result Qualifier Unit D %Rec. Limits RPD 1.00 1.03 mg/L 103 80-120 0 1.00 1.03 mg/L 103 80-120 0 1.00 1.02 mg/L 103 80-120 0 1.00 1.03 mg/L 106 80-120 1 1.00 1.01 mg/L 101 80-120 2 1.00 1.02 mg/L 101 80-120 2

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 580-370940/2 Matrix: Water Analysis Batch: 371068	3-A	MR							Cli	ent Samı	ole ID: M Prep Ty Prep Ba	ethod pe: Tot itch: 3	Blank al/NA 70940
Analyto	Bocult	Qualifier		ы		י וחוא	Init			roparad	Analys	od	
	Result	Quaimer					JIII				Analyz	44.00	
Mercury	ND		0.0	0030	0.00	JU15 h	ng/L		10/	18/21 18:58	10/19/21	14:30	1
Lab Sample ID: LCS 580-370940/ Matrix: Water Analysis Batch: 371068	24-A							Clie	ent Sa	mple ID:	Lab Cor Prep Ty Prep Ba	trol Sa pe: Tot tch: 3	ample al/NA 70940
			Spike		LCS	LCS					%Rec.		
Analyte			Added		Result	Quali	fier	Unit	D	%Rec	Limits		
Mercury			0.00200		0.00204			mg/L		102	80 - 120		
Lab Sample ID: LCSD 580-37094 Matrix: Water Analysis Batch: 371068	0/25-A						C	lient S	ample	ID: Lab	Control S Prep Ty Prep Ba	Sample pe: Tot itch: 3	e Dup al/NA 70940
-			Spike		LCSD	LCSD)				%Rec.		RPD
Analyte			Added		Result	Quali	fier	Unit	D	%Rec	Limits	RPD	Limit
Mercury			0.00200		0.00194			mg/L		97	80 - 120	5	20

Client Sample ID: Lab Control Sample Dup Prep Type: Total Recoverable Prep Batch: 371547
Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites

QC Sample Results

Job ID: 580-106424-1

Method: 7470A - Mercury (CVAA) (Continued)

Lab Sample ID. 500-100424	1-10 MS							Client	t Sample	ID: SV	V-FB2
Matrix: Water									Prep Ty	pe: Tot	al/NA
Analysis Batch: 371068									Prep Ba	tch: 3	70940
-	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Mercury	ND		0.00200	0.00204		mg/L		102	80 - 120		
Lab Sample ID: 580-106424	1-10 MSD							Client	t Sample	ID: SV	V-FB2
Matrix: Water									Prep Ty	pe: Tot	al/NA
Analysis Batch: 371068									Prep Ba	tch: 3	70940
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	ND		0.00200	0.00199		mg/L		99	80 - 120	3	20
Lab Sample ID: 580-106424	4-10 DU							Client	t Sample	ID: SV	V-FB2
Matrix: Water									Prep Tv	pe: Tot	al/NA
Analysis Batch: 371068									Prep Ba	tch: 3	70940
·····,···	Sample	Sample		DU	DU						RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D			RPD	Limit
Mercury	ND			ND		mg/L				NC	20
		`				-					
Method: 7471A - Mercur	ry (CVAA)									
Lab Sample ID: MB 580-37	1106/24-A						Clie	ent Sami	ole ID: M	ethod	Blank
Matrix: Tissue									Prep Tv	pe: Tot	al/NA
Analysis Batch: 371229									Drop D	tch: 3	74400
									Pred Da	11011. J	/1106
		MB MB							Ргер Ба	aton. J	/1106
Analyte	Re	MB MB sult Qualifi	er	RL I	MDL Unit	C) P	repared	Analyz	zed	Dil Fac
Analyte Mercury	Re	MB MB esult Qualifi	er 0.	RL 018 0.0	MDL Unit	<u>C</u> g) P 10/2	repared 0/21 11:59	Апаlуз 10/21/21	zed 12:08	Dil Fac
Analyte Mercury	Re	MB MB esult Qualifi	er 0.	RL 018 0.0	MDL Unit	g Clier	P 10/2	repared 0/21 11:59	Analyz 10/21/21	zed 12:08	Dil Fac 1
Analyte Mercury Lab Sample ID: LCS 580-37	Re 71106/25-A	MB MB esult Qualifi	er 0.	RL 018 0.0	MDL Unit	g Clier	0 P 10/2 nt Sai	repared 0/21 11:59 mple ID:	Analy: 10/21/21	zed 12:08	Dil Fac
Analyte Mercury Lab Sample ID: LCS 580-37 Matrix: Tissue	Re 71106/25-A	MB MB esult Qualifi	er 0.	RL 018 0.0	MDL Unit	g Clier	2 P 10/2 nt Sai	repared 0/21 11:59 mple ID:	Analyz 10/21/21 Lab Cor Prep Ty	trol Sape: Tot	Dil Fac 1 ample cal/NA
Analyte Mercury Lab Sample ID: LCS 580-37 Matrix: Tissue Analysis Batch: 371229	Re 71106/25-A	MB MB esult Qualifi	er0.	RL 0.0	MDL Unit	g Clier	2 P 10/2 nt Sai	repared 0/21 11:59 mple ID:	Analyz 10/21/21 Lab Cor Prep Ty Prep Ba	ntrol Sape: Tot	Dil Fac 1 ample al/NA 71106
Analyte Mercury Lab Sample ID: LCS 580-37 Matrix: Tissue Analysis Batch: 371229	Re	MB MB esult Qualifi	er0. Spike	RL 018 0.0	MDL Unit 0054 mg/K	g Clier	2 P 10/2 nt Sai	repared 0/21 11:59 mple ID:	Analyz 10/21/21 Lab Cor Prep Ty Prep Ba %Rec.	ntrol Sa pe: Tot atch: 3	Dil Fac 1 ample al/NA 71106
Analyte Mercury Lab Sample ID: LCS 580-37 Matrix: Tissue Analysis Batch: 371229 Analyte Marcury	Re 71106/25-A	MB MB esult Qualifi ND	er0. Spike Added	RL 0.0 018 0.0 LCS Result 0.0001 0.0001	MDL Unit 0054 mg/K LCS Qualifier	g Clier Unit) P 10/2 nt Sai	repared 0/21 11:59 mple ID:	Analyz 10/21/21 Lab Cor Prep Ty Prep Ba %Rec. Limits	ntrol Sa pe: Tot atch: 3	Dil Fac 1 ample al/NA 71106
Analyte Mercury Lab Sample ID: LCS 580-37 Matrix: Tissue Analysis Batch: 371229 Analyte Mercury	Re 71106/25-A	MB MB esult Qualifi ND	er0. Spike Added 0.100	RL 0.0 018 0.0 LCS Result 0.0991	MDL Unit 0054 mg/K LCS Qualifier	g Clier Unit mg/Kg	2 <u>P</u> 10/2 nt Sar	repared 0/21 11:59 mple ID: <u>%Rec</u> 99 -	Analyz 10/21/21 Lab Cor Prep Ty Prep Ba %Rec. Limits 80 - 120	ntrol Sa pe: Tot atch: 3	Dil Fac 1 ample cal/NA 71106
Analyte Mercury Lab Sample ID: LCS 580-37 Matrix: Tissue Analysis Batch: 371229 Analyte Mercury Lab Sample ID: LCSD 580-3	Re 71106/25-A 371106/26-	MB MB esult Qualifi ND	er0. Spike Added 0.100	RL 0.0 018 0.0 LCS Result 0.0991	MDL Unit 0054 mg/K LCS Qualifier	g Clier Unit mg/Kg Client Sa	<u>P</u> <u>P</u> 10/2 nt Sai <u>D</u> mple	repared 0/21 11:59 mple ID: <u>%Rec</u> 99 - ID: Lab	Analyz 10/21/21 Lab Cor Prep Ty Prep Ba %Rec. Limits 80 - 120 Control	ntrol Sample	Dil Fac 1 ample cal/NA 71106
Analyte Mercury Lab Sample ID: LCS 580-37 Matrix: Tissue Analysis Batch: 371229 Analyte Mercury Lab Sample ID: LCSD 580-3 Matrix: Tissue	Re 71106/25-A 371106/26-	MB MB esult Qualifi ND	er 0. Spike Added 0.100	RL 0.0 018 0.0 LCS Result 0.0991	MDL Unit 0054 mg/K LCS Qualifier	g Clier Unit mg/Kg	<u>P</u> <u>P</u> 10/2 nt Sai <u>D</u> mple	repared 0/21 11:59 mple ID: <u>%Rec</u> 99 - ID: Lab	Analyz 10/21/21 Lab Cor Prep Ty Prep Ba %Rec. Limits 80 - 120 Control Prep Ty	atch: 3 12:08 - htrol Sa pe: Tot atch: 3 Sample pe: Tot	Dil Fac 1 ample cal/NA 71106 e Dup cal/NA
Analyte Mercury Lab Sample ID: LCS 580-37 Matrix: Tissue Analysis Batch: 371229 Analyte Mercury Lab Sample ID: LCSD 580-3 Matrix: Tissue Analysis Batch: 371229	Re 71106/25-A 371106/26-	MB MB esult Qualifi ND	er0. Spike Added 0.100	RL 0.0 018 0.0 LCS Result 0.0991	MDL Unit 0054 mg/K LCS Qualifier	g Clier Unit mg/Kg Client Sa	<u>P</u> <u>10/2</u> nt Sai <u>D</u> mple	repared 0/21 11:59 mple ID: <u>%Rec</u> 99 - ID: Lab	Analyz 10/21/21 Lab Cor Prep Ty Prep Ba %Rec. Limits 80 - 120 Control Prep Ty Prep Ba	atch: 3 atch: 3 atrol Sa pe: Tot atch: 3 Sample pe: Tot atch: 3	Dil Fac 1 ample al/NA 71106 e Dup al/NA 71106
Analyte Mercury Lab Sample ID: LCS 580-37 Matrix: Tissue Analysis Batch: 371229 Analyte Mercury Lab Sample ID: LCSD 580-3 Matrix: Tissue Analysis Batch: 371229	Re 71106/25-A 371106/26-	MB MB sult Qualifi ND	er 0. Spike Added 0.100 Spike	RL 0.0 018 0.0 LCS Result 0.0991 0.0991	MDL Unit 0054 mg/K LCS Qualifier	g Clier Unit mg/Kg Client Sa	<u>P</u> 10/2 nt Sai <u>D</u> mple	repared 0/21 11:59 mple ID: <u>%Rec</u> 99 - ID: Lab	Analyz 10/21/21 Lab Cor Prep Ty Prep Ba %Rec. Limits 80 - 120 Control Prep Ty Prep Ba %Rec.	atch: 3 atch: 3 atrol Sa pe: Tot atch: 3 Sample pe: Tot atch: 3	Dil Fac 1 ample al/NA 71106 e Dup al/NA 71106 RPD
Analyte Mercury Lab Sample ID: LCS 580-37 Matrix: Tissue Analysis Batch: 371229 Analyte Mercury Lab Sample ID: LCSD 580-3 Matrix: Tissue Analysis Batch: 371229 Analyte	Re 71106/25-A 371106/26-	MB MB sult Qualifi ND	er0. Spike Added 0.100 Spike Added	RL 018 LCS Result 0.0991 LCSD Result	MDL Unit D054 mg/K LCS Qualifier LCSD Qualifier	g Clier Unit mg/Kg Client Sa	<u>P</u> 10/2 nt Sai <u>D</u> mple	repared 0/21 11:59 mple ID: <u>%Rec</u> %Rec	Analyz 10/21/21 Lab Cor Prep Ty Prep Ba %Rec. Limits 80 - 120 Control Prep Ty Prep Ba %Rec. Limits	atch: 3 atch: 3 atch: 3 atch: 3 atch: 3 Sample pe: Tot atch: 3 RPD	Dil Fac 1 ample cal/NA 71106 e Dup cal/NA 71106 RPD Limit
Analyte Mercury Lab Sample ID: LCS 580-37 Matrix: Tissue Analysis Batch: 371229 Analyte Mercury Lab Sample ID: LCSD 580-3 Matrix: Tissue Analysis Batch: 371229 Analyte Mercury	Re 71106/25-A 371106/26-	MB MB sult Qualifi ND A	er 0. Spike Added 0.100 Spike Added 0.100	RL 0.0 018 0.0 LCS Result 0.0991 LCSD Result 0.105	MDL Unit 0054 mg/K LCS Qualifier	g Clier Unit mg/Kg Client Sa	P 10/2 nt Sai D mple _ D	repared 10/21 11:59 mple ID: <u>%Rec</u> 99 ID: Lab <u>%Rec</u> 105	Analyz 10/21/21 Lab Cor Prep Ty Prep Ba %Rec. Limits 80 - 120 Control Prep Ty Prep Ba %Rec. Limits 80 - 120	red 12:08 pe: Tot atch: 3 Sample pe: Tot atch: 3 RPD 6	Dil Fac 1 ample cal/NA 71106 e Dup cal/NA 71106 RPD Limit 20
Analyte Mercury Lab Sample ID: LCS 580-37 Matrix: Tissue Analysis Batch: 371229 Analyte Mercury Lab Sample ID: LCSD 580-3 Matrix: Tissue Analysis Batch: 371229 Analysis Batch: 371229 Analyte Mercury	Re 71106/25-A 371106/26- 371106/26-	MB MB sult Qualifi ND	er 0. Spike Added 0.100 Spike Added 0.100 	RL 0.0 018 0.0 LCS Result 0.0991 LCSD Result 0.105	MDL Unit 0054 mg/K LCS Qualifier	g Clier Unit mg/Kg Client Sa	P P 10/2 nt Sai	repared .0/21 11:59 mple ID:	Analyz 10/21/21 Lab Cor Prep Ty Prep Ba %Rec. Limits 80 - 120 Control Prep Ty Prep Ba %Rec. Limits 80 - 120	trol Sample pe: Tot atch: 3 Sample pe: Tot atch: 3 <u>Sample</u> pe: Tot atch: 3	Dil Fac 1 ample al/NA 71106 P Dup al/NA 71106 RPD Limit 20
Analyte Mercury Lab Sample ID: LCS 580-37 Matrix: Tissue Analysis Batch: 371229 Analyte Mercury Lab Sample ID: LCSD 580-3 Matrix: Tissue Analysis Batch: 371229 Analysis Batch: 371229 Analyte Mercury Lab Sample ID: 580-106424 Matrix: Tissue	Re 71106/25-A 371106/26- 371106/26-	MB MB sult Qualifi ND A	er 0. Spike Added 0.100 Spike Added 0.100 -	RL 0.0 018 0.0 LCS Result 0.0991 0.0991 LCSD Result 0.105 0.105	MDL Unit D054 mg/K LCS Qualifier LCSD Qualifier	g Clier Unit mg/Kg Client Sa	P 10/2 nt Sai Clic	repared 0/21 11:59 mple ID: <u>%Rec</u> 99 ID: Lab <u>%Rec</u> 105 - ent Sam	Analyz 10/21/21 Lab Cor Prep Ty Prep Ba %Rec. Limits 80 - 120 Control Prep Ty Prep Ba %Rec. Limits 80 - 120 Sec. Limits 80 - 120	trol Sample pe: Tot atch: 3 Sample pe: Tot atch: 3 <u>RPD</u> 6 W01FC	Dil Fac 1 ample al/NA 71106 e Dup al/NA 71106 RPD Limit 20 COMP cal/NA
Analyte Mercury Lab Sample ID: LCS 580-37 Matrix: Tissue Analysis Batch: 371229 Analyte Mercury Lab Sample ID: LCSD 580-3 Matrix: Tissue Analysis Batch: 371229 Analyte Mercury Lab Sample ID: 580-106424 Matrix: Tissue Analysis Batch: 371229	Re 71106/25-A 371106/26- 4-21 MS	MB MB sult Qualifi ND A	er 0. Spike Added 0.100 Spike Added 0.100 -	RL 0.0 018 0.0 LCS Result 0.0991 LCSD Result 0.105	MDL Unit D054 mg/K LCS Qualifier LCSD Qualifier	g Clier Unit mg/Kg Client Sa	P 10/2 nt Sai Clic	repared 0/21 11:59 mple ID: - - 99 - ID: Lab - - 105 - ent Sam	Analyz 10/21/21 Lab Cor Prep Ty Prep Ba %Rec. Limits 80 - 120 Control Prep Ty Prep Ba %Rec. Limits 80 - 120 prep Iy Prep Ba %Rec. Limits 80 - 120	attrol Sa pe: Tot atch: 3 Sample pe: Tot atch: 3 <u>RPD</u> 6 W01FC pe: Tot	Dil Fac 1 ample cal/NA 71106 e Dup cal/NA 71106 RPD Limit 20 COMP cal/NA 71106
Analyte Mercury Lab Sample ID: LCS 580-37 Matrix: Tissue Analysis Batch: 371229 Analyte Mercury Lab Sample ID: LCSD 580-3 Matrix: Tissue Analysis Batch: 371229 Analyte Mercury Lab Sample ID: 580-106424 Matrix: Tissue Analysis Batch: 371229	Re 71106/25-A 371106/26- 4-21 MS	MB MB Sample	er 0. Spike Added 0.100 Spike Added 0.100	RL 0.0 018 0.0 LCS Result 0.0991 LCSD Result 0.105	MDL Unit D054 mg/K LCS Qualifier LCSD Qualifier	g Clier Unit mg/Kg Client Sa	P 10/2 nt Sai D mple D Cline	repared 0/21 11:59 mple ID:	Analyz 10/21/21 Lab Cor Prep Ty Prep Ba %Rec. Limits 80 - 120 Control Prep Ty Prep Ba %Rec. Limits 80 - 120 prep Ba %Rec. Limits 80 - 120 Prep Ty Prep Ba %Rec. Limits 80 - 120 Prep Ty Prep Ba %Rec. Limits 80 - 120 Prep Ty Prep Ba %Rec. Prep Ty Prep Ba %Rec. Prep Ty Prep Ba	atch: 3 atrol Sa pe: Tot atch: 3 Sample pe: Tot atch: 3 RPD 6 W01FC pe: Tot atch: 3	Dil Fac 1 ample cal/NA 71106 e Dup cal/NA 71106 RPD Limit 20 COMP cal/NA 71106
Analyte Mercury Lab Sample ID: LCS 580-37 Matrix: Tissue Analysis Batch: 371229 Analyte Mercury Lab Sample ID: LCSD 580-3 Matrix: Tissue Analysis Batch: 371229 Analyte Mercury Lab Sample ID: 580-106424 Matrix: Tissue Analysis Batch: 371229 Analyte Analysis Batch: 371229 Analyte	Re 71106/25-A 371106/26- 371106/26- 4-21 MS Sample Result	MB MB sult Qualifi ND A Sample Qualifier	er 0. Spike Added 0.100 Spike Added 0.100 Spike Added Added	RL 0.0 018 0.0 LCS Result 0.0991 LCSD Result 0.105 MS Result	MDL Unit 0054 mg/K LCS Qualifier	g Clier Unit mg/Kg Client Sa Unit mg/Kg	P 10/2 nt Sai D mple Clin	repared 0/21 11:59 mple ID:	Analyz 10/21/21 Lab Cor Prep Ty Prep Ba %Rec. Limits 80 - 120 Control Prep Ty Prep Ba %Rec. Limits 80 - 120 prep Ty Prep Da %Rec. Limits 80 - 120 Prep Ty Prep Ba %Rec. Limits 80 - 120 Control Prep Ty Prep Ba %Rec. Limits %Rec. Limits	sample pe: Tot atch: 3 Sample pe: Tot atch: 3 <u>RPD</u> 6 W01FC pe: Tot atch: 3	Dil Fac 1 ample cal/NA 71106 e Dup cal/NA 71106 RPD Limit 20 COMP cal/NA 71106

Job ID: 580-106424-1

Method: 7471A - Mercury (CVAA) (Continued)

Lab Sample ID: 580-106424-21 MSD									Client Sample ID: SW01FCOMP				
Matrix: Tissue									Prep Ty	oe: Tot	al/NA		
Analysis Batch: 371229									Prep Ba	tch: 37	71106		
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D %F	Rec	Limits	RPD	Limit		
Mercury	0.028	J F1 F2	0.152	0.138	F1 F2	mg/Kg		73	80 - 120	73	20		
Lab Sample ID: 580-106424	4-21 DU						Client	Sam	ple ID: S	W01FC	OMP		
Matrix: Tissue									Prep Ty	be: Tot	al/NA		
Analysis Batch: 371229									Prep Ba	tch: 37	71106		
-	Sample	Sample		DU	DU						RPD		
Analyte	Result	Qualifier		Result	Qualifier	Unit	D			RPD	Limit		
Mercury	0.028	J F1 F2		0.0233	J	mg/Kg				17	20		

Client Sample ID: SW12F01 Date Collected: 09/24/21 14:20 Date Received: 10/05/21 14:29

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			371104	10/20/21 11:46	ТМН	FGS SEA
Total/NA	Analysis	6020		2	371299	10/21/21 15:53	FCW	FGS SEA
Total/NA	Prep	7471A			371106	10/20/21 11:59	ТМН	FGS SEA
Total/NA	Analysis	7471A		1	371229	10/21/21 13:16	JLS	FGS SEA

Client Sample ID: SW12F02 Date Collected: 09/24/21 14:20 Date Received: 10/05/21 14:29

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			371104	10/20/21 11:46	ТМН	FGS SEA
Total/NA	Analysis	6020		2	371299	10/21/21 15:49	FCW	FGS SEA
Total/NA	Prep	7471A			371106	10/20/21 11:59	ТМН	FGS SEA
Total/NA	Analysis	7471A		1	371229	10/21/21 13:14	JLS	FGS SEA

Client Sample ID: SW12F03 Date Collected: 09/24/21 14:20 Date Received: 10/05/21 14:29

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			371104	10/20/21 11:46	ТМН	FGS SEA
Total/NA	Analysis	6020		2	371299	10/21/21 15:46	FCW	FGS SEA
Total/NA	Prep	7471A			371106	10/20/21 11:59	TMH	FGS SEA
Total/NA	Analysis	7471A		1	371229	10/21/21 13:12	JLS	FGS SEA

Client Sample ID: SW12F04 Date Collected: 09/24/21 14:20 Date Received: 10/05/21 14:29

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			371104	10/20/21 11:46	ТМН	FGS SEA
Total/NA	Analysis	6020		2	371299	10/21/21 15:42	FCW	FGS SEA
Total/NA	Prep	7471A			371106	10/20/21 11:59	ТМН	FGS SEA
Total/NA	Analysis	7471A		1	371229	10/21/21 13:09	JLS	FGS SEA

Client Sample ID: SW12F05 Date Collected: 09/24/21 14:20 Date Received: 10/05/21 14:29

	Batch	Batch		Dilution	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			371104	10/20/21 11:46	TMH	FGS SEA
Total/NA	Analysis	6020		2	371299	10/21/21 15:38	FCW	FGS SEA
Total/NA	Prep	7471A			371106	10/20/21 11:59	ТМН	FGS SEA
Total/NA	Analysis	7471A		1	371229	10/21/21 13:07	JLS	FGS SEA

Lab Sample ID: 580-106424-1 Matrix: Tissue

Lab Sample ID: 580-106424-2

Matrix: Tissue

7

Lab Sample ID: 580-106424-3 Matrix: Tissue

Lab Sample ID: 580-106424-4

Lab Sample ID: 580-106424-5

Matrix: Tissue

Matrix: Tissue

Matrix: Tissue

Matrix: Tissue

Matrix: Tissue

Matrix: Water

Lab Sample ID: 580-106424-6

Lab Sample ID: 580-106424-7

Lab Sample ID: 580-106424-8

Lab Sample ID: 580-106424-9

Lab Sample ID: 580-106424-10

Client Sample ID: SW12F06 Date Collected: 09/24/21 14:20 Date Received: 10/05/21 14:29

_	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			371104	10/20/21 11:46	ТМН	FGS SEA
Total/NA	Analysis	6020		2	371299	10/21/21 15:35	FCW	FGS SEA
Total/NA	Prep	7471A			371106	10/20/21 11:59	ТМН	FGS SEA
Total/NA	Analysis	7471A		1	371229	10/21/21 13:05	JLS	FGS SEA

Client Sample ID: SW12F07 Date Collected: 09/24/21 14:20 Date Received: 10/05/21 14:29

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analvst	Lab
Total/NA	Prep				371104	10/20/21 11:46	ТМН	FGS SEA
Total/NA	Analysis	6020		2	371299	10/21/21 15:31	FCW	FGS SEA
Total/NA	Prep	7471A			371106	10/20/21 11:59	ТМН	FGS SEA
Total/NA	Analysis	7471A		1	371229	10/21/21 12:57	JLS	FGS SEA

Client Sample ID: SW12F08 Date Collected: 09/24/21 14:20 Date Received: 10/05/21 14:29

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			371104	10/20/21 11:46	ТМН	FGS SEA
Total/NA	Analysis	6020		2	371299	10/21/21 15:27	FCW	FGS SEA
Total/NA	Prep	7471A			371106	10/20/21 11:59	ТМН	FGS SEA
Total/NA	Analysis	7471A		1	371229	10/21/21 12:55	JLS	FGS SEA

Client Sample ID: Bait Date Collected: 09/23/21 13:30 Date Received: 10/05/21 14:29

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			371104	10/20/21 11:46	ТМН	FGS SEA
Total/NA	Analysis	6020		2	371299	10/21/21 15:23	FCW	FGS SEA
Total/NA	Prep	7471A			371106	10/20/21 11:59	ТМН	FGS SEA
Total/NA	Analysis	7471A		1	371229	10/21/21 12:53	JLS	FGS SEA

Client Sample ID: SW-FB2 Date Collected: 09/24/21 16:10 Date Received: 10/05/21 14:29

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			371547	10/25/21 18:26	ТМН	FGS SEA
Total Recoverable	Analysis	6020		5	371668	10/26/21 12:47	FCW	FGS SEA
Total/NA	Prep	7470A			370940	10/18/21 18:58	ТМН	FGS SEA
Total/NA	Analysis	7470A		1	371068	10/19/21 14:43	JLS	FGS SEA

Matrix: Tissue

Lab Sample ID: 580-106424-11

Lab Sample ID: 580-106424-12

Client Sample ID: SW01F01 Date Collected: 09/24/21 16:20 Date Received: 10/05/21 14:29

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			371104	10/20/21 11:46	ТМН	FGS SEA
Total/NA	Analysis	6020		2	371299	10/21/21 13:51	FCW	FGS SEA
Total/NA	Prep	7471A			371106	10/20/21 11:59	ТМН	FGS SEA
Total/NA	Analysis	7471A		1	371229	10/21/21 12:50	JLS	FGS SEA

Client Sample ID: SW01F02 Date Collected: 09/24/21 16:20 Date Received: 10/05/21 14:29

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			371104	10/20/21 11:46	ТМН	FGS SEA
Total/NA	Analysis	6020		2	371299	10/21/21 15:05	FCW	FGS SEA
Total/NA	Prep	7471A			371106	10/20/21 11:59	ТМН	FGS SEA
Total/NA	Analysis	7471A		1	371229	10/21/21 12:48	JLS	FGS SEA

Client Sample ID: SW01F03 Date Collected: 09/24/21 16:20 Date Received: 10/05/21 14:29

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			371104	10/20/21 11:46	ТМН	FGS SEA
Total/NA	Analysis	6020		2	371299	10/21/21 15:01	FCW	FGS SEA
Total/NA	Prep	7471A			371106	10/20/21 11:59	TMH	FGS SEA
Total/NA	Analysis	7471A		1	371229	10/21/21 12:46	JLS	FGS SEA

Client Sample ID: SW01F04 Date Collected: 09/24/21 16:20 Date Received: 10/05/21 14:29

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			371104	10/20/21 11:46	ТМН	FGS SEA
Total/NA	Analysis	6020		2	371299	10/21/21 14:57	FCW	FGS SEA
Total/NA	Prep	7471A			371106	10/20/21 11:59	ТМН	FGS SEA
Total/NA	Analysis	7471A		1	371229	10/21/21 12:43	JLS	FGS SEA

Client Sample ID: SW01F05 Date Collected: 09/24/21 16:20 Date Received: 10/05/21 14:29

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			371104	10/20/21 11:46	ТМН	FGS SEA
Total/NA	Analysis	6020		2	371299	10/21/21 14:54	FCW	FGS SEA
Total/NA	Prep	7471A			371106	10/20/21 11:59	ТМН	FGS SEA
Total/NA	Analysis	7471A		1	371229	10/21/21 12:41	JLS	FGS SEA

Lab Sample ID: 580-106424-13

Matrix: Tissue

Lab Sample ID: 580-106424-14

Lab Sample ID: 580-106424-15

Matrix: Tissue

Matrix: Tissue

Matrix: Tissue

Matrix: Tissue

Matrix: Tissue

Matrix: Tissue

Lab Sample ID: 580-106424-16

Lab Sample ID: 580-106424-17

Lab Sample ID: 580-106424-18

Lab Sample ID: 580-106424-19

Lab Sample ID: 580-106424-20

Client Sample ID: SW01F06 Date Collected: 09/24/21 16:20 Date Received: 10/05/21 14:29

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			371104	10/20/21 11:46	ТМН	FGS SEA
Total/NA	Analysis	6020		2	371299	10/21/21 14:50	FCW	FGS SEA
Total/NA	Prep	7471A			371106	10/20/21 11:59	ТМН	FGS SEA
Total/NA	Analysis	7471A		1	371229	10/21/21 12:39	JLS	FGS SEA

Client Sample ID: SW01F07 Date Collected: 09/24/21 16:20 Date Received: 10/05/21 14:29

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			371104	10/20/21 11:46	ТМН	FGS SEA
Total/NA	Analysis	6020		2	371299	10/21/21 14:46	FCW	FGS SEA
Total/NA	Prep	7471A			371106	10/20/21 11:59	ТМН	FGS SEA
Total/NA	Analysis	7471A		1	371229	10/21/21 12:36	JLS	FGS SEA

Client Sample ID: SW01F08 Date Collected: 09/24/21 16:20 Date Received: 10/05/21 14:29

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			371104	10/20/21 11:46	ТМН	FGS SEA
Total/NA	Analysis	6020		2	371299	10/21/21 14:42	FCW	FGS SEA
Total/NA	Prep	7471A			371106	10/20/21 11:59	ТМН	FGS SEA
Total/NA	Analysis	7471A		1	371229	10/21/21 12:29	JLS	FGS SEA

Client Sample ID: SW01F09 Date Collected: 09/24/21 16:20 Date Received: 10/05/21 14:29

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			371104	10/20/21 11:46	ТМН	FGS SEA
Total/NA	Analysis	6020		2	371299	10/21/21 14:39	FCW	FGS SEA
Total/NA	Prep	7471A			371106	10/20/21 11:59	ТМН	FGS SEA
Total/NA	Analysis	7471A		1	371229	10/21/21 12:27	JLS	FGS SEA

Client Sample ID: SW01F10 Date Collected: 09/24/21 16:20 Date Received: 10/05/21 14:29

—	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			371104	10/20/21 11:46	TMH	FGS SEA
Total/NA	Analysis	6020		2	371299	10/21/21 14:35	FCW	FGS SEA
Total/NA	Prep	7471A			371106	10/20/21 11:59	ТМН	FGS SEA
Total/NA	Analysis	7471A		1	371229	10/21/21 12:24	JLS	FGS SEA

Lab Sample ID: 580-106424-21

Client Sample ID: SW01FCOMP Date Collected: 09/24/21 16:20 Date Received: 10/05/21 14:29

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			371104	10/20/21 11:46	ТМН	FGS SEA
Total/NA	Analysis	6020		2	371299	10/21/21 13:54	FCW	FGS SEA
Total/NA	Prep	7471A			371106	10/20/21 11:59	ТМН	FGS SEA
Total/NA	Analysis	7471A		1	371229	10/21/21 12:15	JLS	FGS SEA

Laboratory References:

FGS SEA = Eurofins FGS, Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Accreditation/Certification Summary

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites Job ID: 580-106424-1

Laboratory: Eurofins FGS, Seattle

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		Program	Identification Number	Expiration Date
Alaska (UST)		State	20-004	02-19-22
The following analyte the agency does not o	s are included in this re offer certification.	eport, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
6020	3005A	Water	Antimony	
6020	3005A	Water	Arsenic	
6020	3005A	Water	Cadmium	
6020	3005A	Water	Copper	
6020	3005A	Water	Lead	
6020	3005A	Water	Nickel	
6020	3005A	Water	Selenium	
6020	3005A	Water	Silver	
6020	3050B	Tissue	Antimony	
6020	3050B	Tissue	Arsenic	
6020	3050B	Tissue	Cadmium	
6020	3050B	Tissue	Copper	
6020	3050B	Tissue	Lead	
6020	3050B	Tissue	Nickel	
6020	3050B	Tissue	Selenium	
6020	3050B	Tissue	Silver	
7471A	7471A	Tissue	Mercury	
Oregon		NELAP	4167	07-07-22

The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification.

Analysis Method	Prep Method	Matrix	Analyte	
6020	3050B	Tissue	Antimony	
6020	3050B	Tissue	Arsenic	
6020	3050B	Tissue	Cadmium	
6020	3050B	Tissue	Copper	
6020	3050B	Tissue	Lead	
6020	3050B	Tissue	Nickel	
6020	3050B	Tissue	Selenium	
6020	3050B	Tissue	Silver	
7471A	7471A	Tissue	Mercury	

Sample Summary

Client: Northern Star (Pogo) LLC Project/Site: Chinook - Discrete and Composites

-	Sample Summary						
Client: Northei Project/Site: C	n Star (Pogo) LLC hinook - Discrete and Cor	nposites			Job ID: 580-106424-1		
Lab Sample ID	Client Sample ID	Matrix	Collected	Received			
580-106424-1	SW12F01	Tissue	09/24/21 14:20	10/05/21 14:29			
580-106424-2	SW12F02	Tissue	09/24/21 14:20	10/05/21 14:29			
580-106424-3	SW12F03	Tissue	09/24/21 14:20	10/05/21 14:29		E	
580-106424-4	SW12F04	Tissue	09/24/21 14:20	10/05/21 14:29		Э	
580-106424-5	SW12F05	Tissue	09/24/21 14:20	10/05/21 14:29			
580-106424-6	SW12F06	Tissue	09/24/21 14:20	10/05/21 14:29			
580-106424-7	SW12F07	Tissue	09/24/21 14:20	10/05/21 14:29			
580-106424-8	SW12F08	Tissue	09/24/21 14:20	10/05/21 14:29			
580-106424-9	Bait	Tissue	09/23/21 13:30	10/05/21 14:29			
580-106424-10	SW-FB2	Water	09/24/21 16:10	10/05/21 14:29		8	
580-106424-11	SW01F01	Tissue	09/24/21 16:20	10/05/21 14:29			
580-106424-12	SW01F02	Tissue	09/24/21 16:20	10/05/21 14:29		9	
580-106424-13	SW01F03	Tissue	09/24/21 16:20	10/05/21 14:29			
580-106424-14	SW01F04	Tissue	09/24/21 16:20	10/05/21 14:29			
580-106424-15	SW01F05	Tissue	09/24/21 16:20	10/05/21 14:29			
580-106424-16	SW01F06	Tissue	09/24/21 16:20	10/05/21 14:29			
580-106424-17	SW01F07	Tissue	09/24/21 16:20	10/05/21 14:29			
580-106424-18	SW01F08	Tissue	09/24/21 16:20	10/05/21 14:29			
580-106424-19	SW01F09	Tissue	09/24/21 16:20	10/05/21 14:29			
580-106424-20	SW01F10	Tissue	09/24/21 16:20	10/05/21 14:29			
580-106424-21	SW01FCOMP	Tissue	09/24/21 16:20	10/05/21 14:29			

dian -

Northern Star (Pogo) LLC Chain of Custody

Page 1 of 2

of Coolers: 1

Comr 580-100	424 Chain of Custody		I					Laboratory	Name:								
Northern Star (Pogo) LLC		Nathan Kehoe (907) 895-276(2760	Furofine TestAmerica										
Report Mail Address:						2,00	Mail Address:										
3204 International Street		Invoice to:					Eurofins TestAmerica - Seattle										
Fairbanks, Alaska 99701		P.O. or Contract #: PO# 2032082						5755 8th Street East									
Email: pogoenvironment@nsrltd.com			Turnaround Time for Results (TAT) X Standard					Lab Phone: AP vd (253)922-2310 Put				APDES Permit #: AK0053341 Public Water System (PWS) ID#:					
																Req	uesteu
Lab ID#							Pre: None	Pre: None		5.5							
Client	Sample Identification / Locatio	on	Date Sampled	Time Sampled	Matrix (S- DW-WW-Other)	No. of Containers	EPA 6020 Metals Sb, As, Cd, Cu, Pb, Ni, Se, Ag	EPA 7471A Mercury								Field Preserved	
	SW12F01		9/24/2021	14:20	Fish	1	x	х								N	
	SW12F02		9/24/2021	14:20	Fish	1	x	х								N	
	SW12F03		9/24/2021	14:20	Fish	1	x	х					1			N	
	SW12F04		9/24/2021	14:20	Fish	1	x	x					-			N	
SW/12E05		9/24/2021	14:20	Fish	1	x	x						1		N		
	SW12F06		9/24/2021	14:20	Fish	1	х	x			1				· · · · ·	N	
	SW12F07		9/24/2021	14.20	Fish		x	x								NI	
	SW/12F08		9/24/2021	14:20	Fich		Y	v v								N	
	Pait		9/23/2021	13:30	EISH		× ×	^ 						 		<u>N</u>	
				10.00	TION											14	
						\square											
											-+						
	<u></u>											······,					
Relinguished by:	*	Date	Time	Received by:					Date	Tim	ie l	Section To	Be Compl	ated by Lat	pratory		
ANUDON	Tauron fame igneling Michael						plin.	1736	0	Custody Se	al Intact?	DIN		7246180			
Relinquished by:	d by: Date Time Received by:				S		Date	<u>در ۲</u> ۲ Tim	ie l	Therm II	A2 0	ar D.I	· Unc: D.4	/ •			
										Cooler Ds	c:6	Blue					
Relinguished by: Date Time Received by:					·····		Date	Tim	e	Packing:_	But	ге UP	1EX: 'S:				
											Cust. Seal	Yes Y No	La	b Cour: 🗡			
lamo of Camalace for	Ninted)	Kahea / K	atia Cak	macharl	lamas	84-	wore/l -	uron la	nninee			Blue Ice	verni, N	nie Otl	Her:	<u></u> w	
varite of pampier: (p		Nenue / N	ALLE OCHU	macher /	James	- MIG	yers/La	uren Je	mings		/ [*]	1441110000			0000	-	
Second 1.0	GUENVROIPHV	ace is a mpility is UC	01118101165		Pag	ge 3	9 of 41				L				1	10/2	

10

10/28/2021

Northern Star (Pogo) LLC Chain of Custody

Page 2 of 2

of Coolers: 1

Company Name:		Contact Name: Phone:				Laborator	v Name:	÷		I				
Northern Star (Pogo) L	Nathan Kehoe (907) 895-2760					TestAn	TestAmerica Seattle							
Report Mail Address: 3204 International Street Fairbanks, Alaska 99701		Invoice to: pogo.ap@r P.O. or C	082	Mail Addd Eurotins 5755 8th Tacoma.	ress: TestAmeri Street Eas WA 98424	ica - Seatt t	e							
_	Turnarou	AT)	Lab Phone: A			PDES Permit #: AK0053341								
pogoenvironment@nsrlto	l.com	<u> </u>	lited	ited (253)922-2310 Pt			ublic Water	System (PW	S) ID#:					
Special Instructions/Comments:						Req	uested	Analysi	s/Meth	od:	Fish T	issue p 580169	er Quot 59	e
Lab ID#						Pre: None	Pre: None							
Client Sample Identification / Loc	cation	Date Sampled	Time Sampled	Matrix (S- DW-WW-Other)	No. of Containers	EPA 6020 Metals Sb, As, Cd, Cu, Pb, Ni, Şe, Ag	EPA '7471A Mercury							Field Preserved
SW-FB2		9/24/2021	16:10	Water	1	x	x				Pres	served with	HNO3	+ ·
SW01F01		9/24/2021	16:20	Fish	1	x	х						1	N
SW01F02		9/24/2021	16:20	Fish	1	x	x						1	N
SW01F03		9/24/2021	16:20	Fish	1	x	х							N
SW01F04		9/24/2021	16:20	Fish	1	x	x							
SW01F05		9/24/2021	16:20	Fish	1	х	x				1			
SW01F06		9/24/2021	16:20	Fish	1	x	x							
SW01F07		9/24/2021	16:20	Fish	1	x	x							
SW01F08		9/24/2021	16:20	Fish	1	x	x		1					
SW01F09		9/24/2021	16:20	Fish	1	x	x			-				
SW01F10		9/24/2021	16:20	Fish	1	x	x		1		1	~ ·		
SW01COMP		9/24/2021	16:20	Fish	5	x	X		1					
elinguished by:	Date	Time	Received by:			<u>f</u>		Date	Time	Section To	Be Comple	ted by Lat	oratory	N
Treurenten	10/04/21	08:00	The	low	l			rolshi	1235	Custody Se	eal Intact?	Y/N		
elipquished by:	Date	Time	Received by:					Date	Time	Samples C	n Ice?	YIN		
										Receipt Te	mperature:		C	
elinquished by:	Date	Time	Time Received by:					Date	Time	Signatures Complete? Y / N				
										Signatures	Match?	Y/N		
ame of Sampler: (printed) Nathan Kehoe / James Meyers / Katie Schumacher/Lauren Jennings								Add'l Notes	i.					
rsion 1.0 G:\Enviro\F	vrivate\Sampling\COC	Forms_Profiles		Pag	e 40) of 41				1			1()/28/2

10

Client: Northern Star (Pogo) LLC

Login Number: 106424 List Number: 1 Creator: Greene, Ashton R

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 580-106424-1

List Source: Eurofins FGS, Seattle

APPENDIX F –

ELECTRONIC MONITORING DATA

[SUBMITTED ELECTRONICALLY VIA ALASKA ZENDTO (STATE OF ALASKA)]