

# DRAFT ENVIRONMENTAL BASELINE STUDIES

# **2004 PROGRESS REPORTS**

CHAPTER 8. GEOCHEMICAL CHARACTERIZATION AND ARD/ML

JUNE 2005

# TABLE OF CONTENTS

| TA                                                                    | BLE ( | OF CON  | TENTS                                                                                                      | 8-i   |  |  |  |  |  |
|-----------------------------------------------------------------------|-------|---------|------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|--|
| LIS                                                                   | ST OF | TABLE   | S                                                                                                          | 8-ii  |  |  |  |  |  |
| LIS                                                                   | ST OF | FIGUR   | ES                                                                                                         | 8-ii  |  |  |  |  |  |
| AP                                                                    | PEND  | ICES    |                                                                                                            | 8-ii  |  |  |  |  |  |
| AC                                                                    | RON   | YMS     |                                                                                                            | 8-iii |  |  |  |  |  |
| 8. Geochemical Characterization and Metal Leaching/Acid Rock Drainage |       |         |                                                                                                            |       |  |  |  |  |  |
|                                                                       | 8.1   | Introdu | ction                                                                                                      |       |  |  |  |  |  |
|                                                                       | 8.2   | Study ( | Objectives                                                                                                 |       |  |  |  |  |  |
|                                                                       | 8.3   | •       | Area                                                                                                       |       |  |  |  |  |  |
|                                                                       | 8.4   | -       | of Work                                                                                                    |       |  |  |  |  |  |
|                                                                       | 8.5   | -       | ls                                                                                                         |       |  |  |  |  |  |
|                                                                       |       | 8.5.1   | Site Visit                                                                                                 |       |  |  |  |  |  |
|                                                                       |       | 8.5.2   | Pre-2004 Rock Sample Selection and Collection                                                              |       |  |  |  |  |  |
|                                                                       |       | 8.5.3   | 2004 Drill-hole Location Selection and Sample Collection                                                   |       |  |  |  |  |  |
|                                                                       |       | 8.5.4   | Laboratory Selection                                                                                       |       |  |  |  |  |  |
|                                                                       |       | 8.5.5   | Rock Sample Analysis                                                                                       |       |  |  |  |  |  |
|                                                                       |       |         | 8.5.5.1         Pre-2004 Core           8.5.5.2         2004 Core                                          |       |  |  |  |  |  |
|                                                                       |       | 8.5.6   | Selection of Samples for Leach and Kinetic Testing of Rock                                                 |       |  |  |  |  |  |
|                                                                       |       |         | 8.5.6.1 Shake Flask Extractions                                                                            |       |  |  |  |  |  |
|                                                                       |       | 0 5 7   | 8.5.6.2 Humidity Cells                                                                                     |       |  |  |  |  |  |
|                                                                       | 8.6   | 8.5.7   | Characterization of Metallurgical Waste Products                                                           |       |  |  |  |  |  |
|                                                                       |       |         |                                                                                                            |       |  |  |  |  |  |
|                                                                       |       | 8.6.1   | Rock Testing                                                                                               |       |  |  |  |  |  |
|                                                                       |       |         | <ul><li>8.6.1.1 Acid-Base Accounting on Pre-2004 Core</li><li>8.6.1.2 Element Scans on 2004 Core</li></ul> |       |  |  |  |  |  |
|                                                                       |       | 8.6.2   | Metallurgical Waste Products                                                                               |       |  |  |  |  |  |
|                                                                       | 8.7   | Summa   | ıry                                                                                                        |       |  |  |  |  |  |
|                                                                       | 8.8   | Referen | nces                                                                                                       |       |  |  |  |  |  |

# LIST OF TABLES

| Table 1. Tally of Samples Selected for Shake Flask extractions | 8-6  |
|----------------------------------------------------------------|------|
| Table 2. Sample Selection Matrix for Humidity Cells            | 8-7  |
| Table 3. Samples Selected for Kinetic Testing—Pre-Tertiary     | 8-8  |
| Table 4. Samples Selected for Kinetic Testing—Tertiary         | 8-9  |
| Table 5. Number of Samples of Each Type Tested                 | 8-10 |
| Table 6. Number of Samples By Drilling Year                    | 8-11 |
| Table 7. Process Water Chemistry from Bench-scale Testing      | 8-13 |

# LIST OF FIGURES (following Page 8-14)

- Figure 1. Example of Distribution of Samples for Unit Y
- Figure 2. Location of Drill-holes Sampled
- Figure 3. Speciation of Sulfur
- Figure 4. Comparison of Neutralization Potential and Total Inorganic Carbon
- Figure 5. Neutralization Potential vs. Acid Potential
- Figure 6. Sulfate to Total Sulfur Ratio as a Function of Age
- Figure 7. Neutralization Potential as a Function of Age
- Figure 8. Down-hole ICP Sulfur Concentrations (in %) for Near Wall Drill-holes

# **APPENDICES**

- 8-A Example of Core Log Prepared by SRK
- 8-B List of Samples Selected for Static Testing

# ACRONYMS

| ABA             | acid-base accounting                                      |
|-----------------|-----------------------------------------------------------|
| ADEC            | Alaska Department of Environmental Conservation           |
| ADF&G           | Alaska Department of Fish and Game                        |
| ADOT/PF         | Alaska Department of Transportation and Public Facilities |
| agl             | above ground level                                        |
| AHRS            | Alaska Heritage Resource Survey                           |
| ALS             | ALS Environmental Laboratory                              |
| ANCSA           | Alaska Native Claims Settlement Act                       |
| AP              | acid potential                                            |
| APE             | area of potential effect                                  |
| ASTM            | American Society for Testing and Materials                |
| ASTt            | Arctic Small Tool tradition                               |
| BBNA            | Bristol Bay Native Association                            |
| BLM             | Bureau of Land Management                                 |
| BP              | before present                                            |
| <sup>14</sup> C | Carbon 14                                                 |
| CEMI            | Canadian Environmental and Metallurgical Laboratory       |
| CRM             | cultural resources management                             |
| CUEQ%           | copper equivalent grade                                   |
| DEM             | digital elevation model                                   |
| EIS             | environmental impact statement                            |
| EPA             | Environmental Protection Agency                           |
| FAA             | Federal Aviation Administration                           |
| FR              | Federal Register                                          |
| GIS             | geographic information system                             |
| GMU             | Game Management Unit                                      |
| GPS             | global positioning system                                 |
| GLM             | general linear model                                      |
| ICP             | inductively coupled plasma                                |
| LIDAR           | light detection and ranging                               |
| M.A.            | Master of Arts                                            |
| MCHTWG          | Mulchatna Caribou Herd Technical Working Group            |
| m <sup>2</sup>  | square meter(s)                                           |
| MEND            | mine environment meutral drainage                         |
| mi <sup>2</sup> | square mile(s)                                            |
|                 |                                                           |

| ML/ARD | metal leaching/acid rock drainage             |
|--------|-----------------------------------------------|
| MMS    | Minerals Management Service                   |
| MODIS  | moderate resolution imaging spectroradiometer |
| mph    | miles per hour                                |
| NASA   | National Aeronautics and Space Administration |
| NDM    | Northern Dynasty Mines Inc.                   |
| NEPA   | National Environmental Policy Act             |
| NMFS   | National Marine Fisheries Service             |
| NP     | neutralization potential                      |
| NPS    | National Park Service                         |
| NRCS   | Natural Resource Conservation Service         |
| NRHP   | National Register of Historic Places          |
| NWR    | National Wildlife Refuge                      |
| PAG    | potentially acid-generating                   |
| PSD    | Prevention of Significant Deterioration       |
| QA     | quality assurance                             |
| QAPP   | quality assurance project plan                |
| SHPO   | State Historic Preservation Officer           |
| SRB&A  | Stephen R. Braund & Associates                |
| SRK    | SRK Consulting (Canada) Inc.                  |
| SWE    | snow water equivalent                         |
| USC    | United States Code                            |
| USDA   | United States Department of Agriculture       |
| USFS   | United States Forest Service                  |
| USFWS  | U.S. Fish and Wildlife Service                |
| USGS   | U.S. Geological Survey                        |
| VHF    | very high frequency                           |
|        |                                               |

# 8. GEOCHEMICAL CHARACTERIZATION AND METAL LEACHING/ACID ROCK DRAINAGE

## 8.1 Introduction

This report presents the preliminary findings of the 2004 study of metal leaching/acid rock drainage (ML/ARD). The results presented in this report are for:

- Static acid-generation testing of rock core obtained prior to 2004 (including previous drilling by Cominco Alaska),
- Element scans for core collected in 2004 from the Tertiary cover rocks and periphery of the deposit near the eventual pit walls of the mine, and
- Static acid-generation testing of metallurgical waste products and water-chemistry analysis from process flowsheet development.

The report does not include results from leach tests and kinetic geochemical tests which are currently underway. As such, the data obtained provide an early indication of the possible geochemical nature of mine wastes but do not allow water-quality predictions to be provided.

## 8.2 Study Objectives

The ML/ARD study has been designed to characterize the materials that will be produced from the mining and milling process in terms of geochemical behavior and the chemistry of waters in contact with the wastes. The data produced from the geochemical testing will be used for prediction of tailings and mine-rock water chemistry and for the evaluation of alternative mine-waste deposition plans for operation and closure. Therefore, the overall objective of the geochemical characterization program is to provide data for assessment of environmental impact and for the design and mitigation measures to minimize potential for adverse environmental impact from mine-rock (or mine-waste) management facilities.

## 8.3 Study Area

The study area covers all mineral waste materials that could conceivably be generated by mining of economic mineralization to the maximum extent possible based on current understanding of the occurrence of metals within the deposit. The study area therefore comprises waste rock produced by extraction of rock for metal recovery, the pit walls of the deposit and rock extracted in the pit footprint for construction, and the tailings products.

The study area does not include the access or pipeline corridors.

## 8.4 Scope of Work

The research and field work for this study were conducted during 2004. The study was conducted by Linda Broughton, Professional Engineer, and Stephen Day, Professional Geologist. The study was

conducted according to the approach described in the Draft Environmental Baseline Studies, Proposed 2004 Study Plan (NDM, 2004).

The major scope items of this study in 2004 were as follows:

- Site visit to view existing rock core.
- Selection of samples from existing rock core for static acid-generation testing.
- Selection of a laboratory for geochemical testing of samples.
- Initiation of static testing.
- Review of results and selection of samples for leach and kinetic geochemical tests.
- Input to selection of additional drill-holes to characterize eventual pit walls and review of element scan data for the cores.
- Liaison with the project metallurgists to characterize tailings products.

## 8.5 Methods

#### 8.5.1 Site Visit

The Pebble Project site was visited in August 2004 by Linda Broughton and Stephen Day. The following activities were completed during the site visit:

- An overview of the site geology was provided by site personnel.
- A selection of diamond drill-holes were examined to better understood the project geology.
- A single hole in the Tertiary geological units was logged by SRK Consulting (Canada) Inc. (SRK) to provide guidance to site personnel on the level of detail expected to support the ML/ARD study. The resulting log is provided in Appendix 8-A).
- The deposit area and potential tailings deposition areas were inspected by helicopter. Locations of natural seepage were examined.

#### 8.5.2 Pre-2004 Rock Sample Selection and Collection

NDM provided SRK with an Excel database containing drill-hole lithological and assay data for all previous drilling at the Pebble Deposit. The results include drilling undertaken by Cominco Alaska and Northern Dynasty Mines Inc. (NDM). The drilling undertaken by Cominco occurred between 1988 and 1997, while the NDM drilling occurred during 2002 and 2003. The database contains in excess of 16,300 sample intervals.

Sample selection was designed to ensure the following components would be represented in the testwork:

- All lithologies.
- All alteration types and zones identified in the database.
- The range of potential contaminant and sulfide values covering typical and extreme values.

As the core available for sampling has been in storage for a variable length of time, representative samples of the same lithology were collected from the older (Cominco) and newer (NDM) core. The purpose of this was to assess the extent of natural oxidation that has occurred during core storage.

Several iterative steps were followed to identify sampling intervals, as described below. The assay database was used primarily, with elements of the lithological database used and imported where required. The lithological database provided coding on alteration zones and types for the samples selected.

The database provided data relating to the Pebble Deposit and neighboring prospects. Therefore, a filter was first added that identified the drill-holes within the Pebble Deposit. This was done by using the X-Y coordinates of the resource land for the Pebble Deposit.

Within the resource land, drill-holes were selected to provide adequate spatial coverage for the 2 billion tonne pit outline. Approximately five boreholes per 2500 square meters  $(m^2)$  were initially selected, resulting in a total of 65 holes. The selection of samples also considered the availability of core based on a catalogue provided by NDM.

Simplified primary lithological codes based on the major rock type reported (the first character of NDM's lithology codes) were then assigned to each logged interval.

The lithological changes with depth at each of these drill-holes then was assessed using the database and was used to select samples. This process was assisted by color-coding of intervals according to the following parameters:

- Copper equivalent grade (CUEQ%, calculated by NDM).
- Percent sulfur (S%) determined by *aqua regia* digestions with inductively coupled plasma (ICP) finish used as an initial surrogate for total sulfur and acid potential.
- Percent calcium (Ca%) similarly determined and used as an initial surrogate for neutralization potential.
- Pyrite (calculated by NDM from sulfur less the sulfur associated with copper, zinc, and molybdenum).
- Sodium/potassium (Na/K—calculated by SRK as an indicator of degree of alteration).

The sulfur and calcium concentrations provided best available initial surrogates for acid potential and neutralization potential. The method used to determine sulfur is only an approximation of acid potential since the rock was expected to contain some gypsum ( $CaSO_4.2H_2O$ ) which is not acid-generating. Sulfur determined by this method may underestimate acid potential due to the digestion used, or overestimate acid potential if sulfur is present in forms other than sulfides. Similarly, the use of calcium to represent neutralization potential is only an approximation based on experience at other sites since calcium occurs in minerals other than carbonates, including sulfates and silicates. In general, the calculation overestimates actual neutralization potential. All samples selected were subsequently tested using specific methods for sulfur forms and neutralization potential. Comparison of these results with the surrogates showed that the surrogates provided a reliable initial basis for sample selection.

To ensure that samples selected were representative of geochemical variations, scatter plots for each lithological type were carefully reviewed. Based on this gap analysis, further samples were selected to ensure all variations observed were represented in the intervals selected. Figure 1 provides an example of the distribution of samples selected for geological Unit Y (hornfelsed and mineralized host sedimentary units of Jurassic and Cretaceous age) with respect to copper, sulfur, and calcium content.

The list of 424 sample intervals selected is provided in Appendix 8-B. The locations of the drill-holes are shown in Figure 2. Using the list, NDM obtained the samples from core storage at Iliamna. Not all intervals requested were available, and the actual number of samples was 399. The samples were collected as whole or half core over the entire interval requested. Each sample typically consisted of two original sample intervals. Each separate interval was individually bagged, tagged, and shipped to Vancouver for testing.

#### 8.5.3 2004 Drill-hole Location Selection and Sample Collection

Review of the pre-2004 database indicated that additional rock samples were needed to characterize the potential ultimate pit walls. Approximately nine equally spaced locations were chosen with reference to the project pit limits and contours of estimated pyrite content in the rock prepared by NDM. The final locations of the holes are shown on Figure 2.

The holes were drilled, logged, and sampled as part of NDM's exploration program in 2004.

#### 8.5.4 Laboratory Selection

A request-for-proposal to perform the specific geochemical tests required for the project was issued to three qualified laboratories in the Vancouver, B.C., area in June 2004. Two of the laboratories (ALS Environmental, and Canadian Environmental and Metallurgical [CEMI]) submitted a joint proposal. Vizon Scitech prepared a proposal in combination with another local water-testing laboratory (Cantest). After consideration of technical and cost factors, the team of ALS/CEMI was selected to do the work

#### 8.5.5 Rock Sample Analysis

#### 8.5.5.1 Pre-2004 Core

Prior to preparation and analysis of the core, SRK visually inspected all samples and photographed some samples at NDM's Port Kells warehouse, primarily to document that the materials in each sample were relatively homogeneous.

Sample preparation involved several crushing, grinding, and splitting steps to reduce sample volume and to provide materials for static and kinetic testing.

All samples were analyzed for acid-base accounting (ABA) using the method of mine environment neutral drainage (MEND Program, 1991). The ABA included total sulfur, sulfur as sulfate, rinse pH, total inorganic carbon and neutralization potential (NP). Neutralization potentials were also determined on 10 percent of samples using the method of Sobek et al. (1978) for comparative purposes. Since the majority of samples had already been analyzed for metal concentrations as part of the exploration program, metal concentrations were only determined for the Tertiary rock types that had not been previously analyzed.

#### 8.5.5.2 2004 Core

Samples collected during 2004 were tested as part of NDM's exploration drilling programs. Element scans were performed by ALS-Chemex in North Vancouver, British Columbia

#### 8.5.6 Selection of Samples for Leach and Kinetic Testing of Rock

Based on results from testing of pre-2004 core samples (Section 8.6.1), samples were selected for leach and kinetic testing. Leach extractions will be performed as shake flasks tests using the protocol of Price (1997). At this stage, kinetic tests will be performed as humidity cells using a modification of ASTM (American Society for Testing and Materials) D5744-96.

#### 8.5.6.1 Shake Flask Extractions

The objective of shake flask extractions is to evaluate the accumulation and solubility of contaminant load under a range of pH conditions. The distribution of paste pH in the acid-base accounting was used as a basis for selection of samples. Paste pH tends to overestimate actual pH of rock at low pHs due to the liberation of reactive carbonate and silicate fines by pulverization prior to ABA testing. Experience indicates that paste pHs below 5 are typically 1 pH unit higher than the coarse crushed rock. Therefore, paste pHs were grouped into the following categories for sample selection:

- Group 1 Paste pH <5.5 (actual pH <~4.5)—Rock pH controlled by soluble aluminum and ferric iron species.
- Group 2 Paste pH between 5.5 and 7—Rock with pH controlled by soluble aluminum and copper species.
- Group 3 Paste pH greater than 7—Pre-Tertiary rock (elevated S) with pH controlled by carbonate mineral solubility.
- Group 4 Paste pH greater than 7—Tertiary rock (low S) with pH controlled by carbonate mineral solubility.

Samples were chosen separately for Groups 3 and 4 to reflect the major differences in the rock types and possible differences in solubility of potential contaminants.

The target number for shake flask extractions for this testing was defined as 30. For Groups 1 and 2, the target number of samples was 10 each. For Groups 3 and 4, the target was five samples each. Selection of actual samples within the group was made using a random number generator. The target proportion of samples in each group was selected based on the proportion of available samples to target (Table 1). Each sample was assigned a random number which was compared to the proportion. If the random number was less than the proportion, the sample was selected. The resulting numbers of samples selected from each pH group are shown in Table 1.

| Tally of Samples Selected for Shake Flask Extraction |                      |        |        |  |  |  |  |  |  |
|------------------------------------------------------|----------------------|--------|--------|--|--|--|--|--|--|
| pH<br>Group                                          | Available<br>Samples | Target | Actual |  |  |  |  |  |  |
| 1                                                    | 39                   | 10     | 11     |  |  |  |  |  |  |
| 2                                                    | 72                   | 10     | 11     |  |  |  |  |  |  |
| 3                                                    | 214                  | 5      | 4      |  |  |  |  |  |  |
| 4                                                    | 51                   | 5      | 6      |  |  |  |  |  |  |

TABLE 1. Tally of Samples Selected for Shake Flask Extractions

#### 8.5.6.2 Humidity Cells

The following primary criteria were considered when selecting humidity cell samples:

- Age of the Core. The varying age of the core enables testing of material that has already undergone oxidation and therefore potentially indicates weathering rates beyond the usual time frame for kinetic testing and project permitting.
- **Sulfur Content**. Rates of oxidation are invariably correlated with sulfur content. Testing of materials with a range of sulfur concentrations enables oxidation rates to be interpolated beyond the dataset.
- **Rock Type**. Rock type may be a factor due to differences in style of mineralization and gangue mineralogy. At least 15 different rock types have been identified, though at present the only relationships to rock type are the differences between the mineralized rock and Tertiary cover. For the mineralized rock, the different rock types were grouped into two logical major groups (country rock and intrusion), but the final selections were also checked to ensure that samples were selected from the major intrusive rock types.

Table 2 shows the matrix of primary selection criteria.

Secondary criteria were

- **Neutralization Potential**. The availability of neutralization potential determines whether rock will generate acid and timing of acidic leachate release. Samples with lower levels of NP were included in the selection to evaluate the transition to acidic conditions, and the availability and depletion of NP.
- **Concentration of Potential Contaminants.** Samples were selected to include a range of concentrations of arsenic, copper, molybdenum, selenium, and zinc.

Actual sample selection involved sorting the samples into the primary criteria indicated in Table 2. Within the criteria groupings, samples were sorted using an assigned random number. The sample near the middle of the sorted group was selected initially but then adjusted to reflect the secondary criteria. The resulting sample lists are shown in Tables 3 (pre- Tertiary) and 4 (Tertiary). Roughly two of each of the major pre-Tertiary intrusive rock units were selected and represent the range of compositional variation (gabbro, diorite, granodiorite, quartz monzodiorite, monzodiorite, monzonite, and intrusive breccia). The samples of Tertiary units were selected to characterize median and extreme sulfur concentrations.

#### TABLE 2.

#### Sample Selection Matrix for Humidity Cells

|                        | Core Age                                               | 1.               | 1989-1992            | 2            |                 | 2. 1997              |              | 3.         | 2002-20              | 03           |
|------------------------|--------------------------------------------------------|------------------|----------------------|--------------|-----------------|----------------------|--------------|------------|----------------------|--------------|
| Rock<br>Types          | Sulfur as<br>Sulfide<br>Concentration<br>Range, %      | i.<br><1.5       | ii.<br>1.5 to<br>2.5 | iii.<br>>2.5 | i.<br><1.5      | ii.<br>1.5 to<br>2.5 | iii.<br>>2.5 | i.<br><1.5 | ii.<br>1.5 to<br>2.5 | iii.<br>>2.5 |
| Tertiary               | Sediments                                              | 2 tests          |                      |              |                 |                      |              |            |                      |              |
| Cover                  | Volcano-<br>Sediments                                  | 2 tests          |                      |              |                 |                      |              |            |                      |              |
| Tertiary<br>Intrusions | Basalt Dykes                                           | 2 tests          |                      |              |                 |                      |              |            |                      |              |
| Intrusions             | A. Plutonic<br>Rocks                                   | 1Ai <sup>1</sup> | 1Aii                 | 1Aiii        | 2Ai             | 2Aii                 | 2Aiii        | 3Ai        | 3Aii                 | 3Aiii        |
| Host<br>Rocks          | B. Sedimentary<br>and Volcano-<br>sedimentary<br>Units | 1Bi              | 1Bii                 | 1Biii        | NS <sup>2</sup> | 2Bii                 | 2Biii        | 3Bi        | 3Bii                 | 3Biii        |

Notes:

1. Designation of samples in Table 3.

2. NS = Dataset contains only one sample. No test proposed.

#### TABLE 3.

Samples Selected for Kinetic Testing—Pre-Tertiary

| Rock Type                                                      | Sample ID<br># | Paste pH<br>s.u. | Total S<br>% | S-SO₄<br>% | S-S <sup>2-</sup><br>% | NP <sub>modified</sub><br>kg CaCO <sub>3</sub> /t | NP <sub>modified</sub> /AP | As<br>ppm | Cu<br>% | Mo<br>ppm | Zn<br>ppm | Selection |
|----------------------------------------------------------------|----------------|------------------|--------------|------------|------------------------|---------------------------------------------------|----------------------------|-----------|---------|-----------|-----------|-----------|
| Granodiorite-Quartz-<br>Monzodiorite                           | 046-0580-0600  | 8.0              | 1.45         | 0.01       | 1.44                   | 8.0                                               | 0.18                       | 9         | 0.22    | 102       | 21        | 1Ai       |
| Monzodiorite                                                   | 046-0113-0133  | 7.2              | 1.73         | 0.02       | 1.71                   | 6.1                                               | 0.11                       | 25        | 0.32    | 194       | 56        | 1Aii      |
| Diorite/Gabbro                                                 | 025-0617-0637  | 5.0              | 3.56         | 0.19       | 3.37                   | 9.8                                               | 0.09                       | 1013      | 0.60    | 157       | 96        | 1Aiii     |
| Monzonite (near Stock A)                                       | 118-0468-0488  | 8.4              | 1.19         | 0.02       | 1.17                   | 37.5                                              | 1.03                       | 14        | 0.27    | 109       | 24        | 2Ai       |
| Monzodiorite                                                   | 117-0190-0210  | 7.5              | 1.90         | 0.04       | 1.86                   | 5.6                                               | 0.10                       | 0         | 0.32    | 0         | 0         | 2Aii      |
| Intrusion Breccia                                              | 112-0460-0480  | 6.7              | 2.98         | 0.05       | 2.93                   | 5.6                                               | 0.06                       | 86        | 0.36    | 84        | 23        | 2Aiii     |
| Intrusion Breccia                                              | 3124-0872-0887 | 8.4              | 1.47         | 0.05       | 1.42                   | 45.5                                              | 1.03                       | 24        | 0.10    | 244       | 86        | 3Ai       |
| Granodiorite-Quartz-<br>Monzodiorite                           | 3069-0927-0947 | 6.5              | 2.48         | 0.04       | 2.44                   | 3.2                                               | 0.04                       | 54        | 0.24    | 137       | 59        | 3Aii      |
| Diorite/Gabbro                                                 | 3123-0438-0458 | 8.7              | 4.88         | 0.01       | 4.87                   | 41.8                                              | 0.27                       | 30        | 0.17    | 37        | 27        | 3Aiii     |
| Andesitic Bedded Rocks<br>(Volcaniclastic Sandstone,<br>Wacke) | 019-0072-0090  | 6.9              | 0.78         | 0.38       | 0.40                   | 0.4                                               | 0.04                       | 3         | 0.14    | 242       | 29        | 1Bi       |
| Andesitic Bedded Rocks<br>(Argillite, Siltstone)               | 033-0137-0155  | 8.4              | 2.21         | 0.02       | 2.19                   | 26.5                                              | 0.39                       | 48        | 0.22    | 123       | 56        | 1Bii      |
| Andesitic Bedded Rocks<br>(Volcaniclastic Sandstone,<br>Wacke) | 047-0350-0365  | 6.8              | 3.43         | 0.08       | 3.35                   | 6.1                                               | 0.06                       | 43        | 0.49    | 120       | 113       | 1Biii     |
| Andesitic Bedded Rocks<br>(Volcaniclastic Sandstone,<br>Wacke) | 118-1220-1238  | 7.7              | 2.59         | 0.11       | 2.48                   | 32.6                                              | 0.42                       | 11        | 0.27    | 199       | 16        | 2Bii      |
| Andesitic Bedded Rocks<br>(Argillite, Siltstone)               | 118-0520-0535  | 7.0              | 3.1          | 0.14       | 2.96                   | 30.9                                              | 0.33                       | 80        | 0.32    | 39        | 29        | 2Biii     |
| Andesitic Bedded Rocks<br>(Argillite, Siltstone)               | 3115-0988-1008 | 8.5              | 1.49         | 0.01       | 1.48                   | 10.0                                              | 0.22                       | 28        | 0.27    | 113       | 19        | 3Bi       |
| Andesitic Bedded Rocks<br>(Argillite, Siltstone)               | 3124-0188-0209 | 6.1              | 2.49         | 0.02       | 2.47                   | 0.1                                               | 0.00                       | 10        | 0.29    | 43        | 27        | 3Bii      |
| Andesitic Bedded Rocks<br>(Argillite, Siltstone)               | 3102-0568-0588 | 7.9              | 3.23         | 0.1        | 3.13                   | 18.5                                              | 0.19                       | 138       | 0.21    | 93        | 71        | 3Biii     |

| Sample ID                 | Paste pH | Total S | S-SO <sub>4</sub> | S-S <sup>2-</sup> | <b>NP</b> modified | NP/AP |
|---------------------------|----------|---------|-------------------|-------------------|--------------------|-------|
|                           | s.u.     | %       | %                 | %                 | kg CaCO₃/t         |       |
| Sedimentary Units         |          |         |                   |                   |                    |       |
| 115-0054-0066             | 7.9      | 0.25    | 0.05              | 0.20              | 29.0               | 4.6   |
| 115-0142-0163             | 7.4      | 0.60    | 0.30              | 0.30              | 41.4               | 4.4   |
| Volcano-sedimentary Units |          |         |                   |                   |                    |       |
| 3129-0253-0272            | 9.1      | 0.11    | 0.01              | 0.10              | 83.8               | 26.8  |
| 3129-0417-0435            | 8.5      | 0.03    | 0.01              | 0.02              | 98.5               | 157.6 |
| Intrusive Dykes           |          |         |                   |                   |                    |       |
| 117-1055-1071             | 8.2      | 0.26    | 0.01              | 0.25              | 108.5              | 13.89 |
| 3102-0958-0978            | 8.7      | 0.69    | 0.01              | 0.68              | 103.3              | 4.86  |

#### TABLE 4.

Samples Selected for Kinetic Testing—Tertiary

#### 8.5.7 Characterization of Metallurgical Waste Products

In 2004, bench-scale testing of potential ore-type materials were conducted by Process Research Associates in Vancouver under the supervision of Morris Beattie. Tailings from the testing were shipped to CEMI. Currently, three types of tailings have been generated, designated as follows:

- 1. Scavenger Tails—Produced by rougher flotation followed by scavenger flotation.
- 2. Bulk Cleaner Tails—Produced by cleaner flotation followed by scavenger flotation.
- 3. Pyrite Tails—Produced by copper sulfide flotation and cleaning.

The first two types of tailings, which will be combined, represent a low sulfide product produced by bulk sulfide flotation.

The tailings products from process testing of five samples have been tested as follows:

- Solids samples are tested for ABA and metal content.
- Filtered solution samples are tested for general major ions and a metal scan.

One bioassay has been performed on a solution sample.

In December 2004, bulk tailings samples from process testing at G&T in Kamloops, British Columbia were shipped to CEMI. A testing program for these samples is currently being defined.

## 8.6 Results and Discussion

#### 8.6.1 Rock Testing

#### 8.6.1.1 Acid-Base Accounting on Pre-2004 Core

The overall number of samples of each rock tested are shown in Table 5

#### TABLE 5.

Number of Samples of Each Type Tested

| Stratigraphic Section                         | Rock Type                                                | Unit<br>Designation | n  |
|-----------------------------------------------|----------------------------------------------------------|---------------------|----|
| Quataman / Danasita                           | Ferricrete                                               | Fc                  | 2  |
| Quaternary Deposits                           | Overburden                                               | Ob                  | 8  |
| Tortion / Doolso                              | Sedimentary Units                                        | TC/TW/TY            | 24 |
| Tertiary Rocks                                | Volcanic Units                                           | TA/TB/TD            | 17 |
|                                               | Diorite/Gabbro                                           | D                   | 45 |
|                                               | Granodiorite-Quartz-Monzodiorite                         | G (Gp and Gs)       | 70 |
|                                               | Monzodiorite                                             | N                   | 39 |
| Cretaceous Stratiform and                     | Monzonite                                                | F (and X2)          | 17 |
| Cross-cutting Plutonic<br>Rocks               | Monzonite (near Stock A)                                 | М                   | 12 |
|                                               | Intrusion Breccia                                        | Х                   | 23 |
|                                               | Porphyritic Monzodiorite to Quartz Monzodiorite          | Р                   | 13 |
|                                               | Skarn                                                    | К                   | 5  |
| Jurassic to Cretaceous                        | Andesitic Bedded Rocks (Argillite, Siltstone)            | Y                   | 90 |
| Sedimentary and Volcano-<br>sedimentary Rocks | Andesitic Bedded Rocks (Volcaniclastic Sandstone, Wacke) | W                   | 8  |
| Other                                         |                                                          | R                   | 17 |
| Other                                         |                                                          | Z                   | 9  |

The following paragraphs provide initial discussion of the data in terms of sulfur speciation, neutralization potential, and rock type characteristics.

Figure 3 compares total sulfur and sulfur as sulfate concentrations. As shown, the majority of samples contained much less sulfate than total sulfur, indicating the sulfur occurs primarily as sulfide minerals. A few samples contain primarily sulfur in the form of sulfate. The sulfate mineral is expected to be mainly gypsum, but in some cases, sulfide oxidation products (such as jarosite) may also be present. The difference in sulfur concentrations for pre-Tertiary and Tertiary (T) rock types is apparent. Tertiary rock types consistently have lower sulfur concentrations and relatively more sulfate. Sulfur concentrations in the pre-Tertiary rock types are typically between 1 and 5 percent sulfur up to maximum concentrations near 9 percent.

Figure 4 compares neutralization potential (NP) with total inorganic carbon (TIC carbon as carbonate). TIC has been converted to the same units as NP. The chart shows that carbonate tends to exceed

neutralization potential. This indicates that carbonate probably occurs in forms such as ankerite that do not neutralize acid. Some negative neutralization potentials were obtained due to the presence of acidity in the sample formed in storage. Paste pHs as low as 4.1 were recorded.

Figure 5 is an overall chart of acid potential (AP—calculated from total sulfur less sulfur as sulfate) and NP. Diagonal lines on the chart indicate NP/AP = 1 (below which the rock is classified as potentially acid-generating, PAG) and NP/AP = 2 (above which the rock is classified as non-acid-generating, non-PAG). Between these lines, the classification is uncertain. The plot indicates that the pre-Tertiary rocks affected by mineralization are almost exclusively PAG, whereas Tertiary rocks are non-PAG due to the lower sulfur content and higher neutralization potential. A few samples of pre-Tertiary rock could not be classified but these represent an insignificant proportion of the material.

Due to the requirement for Tertiary rock as a construction material for the project, NDM completed a detailed geological assessment of rock core. This study confirmed the results of this ABA assessment that sulfur content is low and that carbonate content shown by a fizz test is high.

The data were assessed to evaluate the effects of age of the samples. Table 6 shows the number of samples in each age category. For each year grouping, percentiles for critical parameters (total S, S as sulfide, paste pH, and NP) were calculated.

Number of Samples By Drilling Year

TABLE 6.

| amber of bampies by brining real |                   |  |  |  |  |  |
|----------------------------------|-------------------|--|--|--|--|--|
| Drilled Year                     | Number of Samples |  |  |  |  |  |
| 1989                             | 2                 |  |  |  |  |  |
| 1990                             | 20                |  |  |  |  |  |
| 1991                             | 59                |  |  |  |  |  |
| 1992                             | 10                |  |  |  |  |  |
| 1997                             | 55                |  |  |  |  |  |
| 2002                             | 15                |  |  |  |  |  |
| 2003                             | 199               |  |  |  |  |  |

Evidence that oxidation has occurred in storage is illustrated by the general increase in sulfate sulfur relative to sulfur as the age of the core increased (Figure 6). The oxidized core (95th percentile) indicates that as much as 50 percent of sulfur in the core has oxidized, though more typically no more than 3 percent has oxidized, indicating that oxidation can be expected to continue for many more decades if the core is exposed to weathering. The increase in sulfate content is also matched by generally decreasing pH from a median value of 8 for the 2003 core to 6.6 for the 1990 core. The 5th percentile pHs decreased from 5.8 in 2002 to 4.7 in 1990. The 95th percentile indicates that some of the core remained relatively fresh (pH above 8). Neutralization potential showed an erratic though generally decreasing trend for each percentile (Figure 7). The 5th percentile NPs were all effectively zero and indicate that this low NP material has already generated acid in storage. The regression line for the 50th percentile implies that if core had been produced in 1983 it would be acidic (i.e., NP = 0 kg CaCO<sub>3</sub>/t). Similarly, 95th percentile NP exposed in 1964 would be completely depleted.

These preliminary calculations indicate that it would take about 40 years for nearly all pre-Tertiary rock to become acidic under site conditions.

#### 8.6.1.2 Element Scans on 2004 Core

To date, samples collected from drill-holes located near the ultimate pit walls have been analyzed for an element scan which includes sulfur. Sulfur concentrations determined by this method are semiquantitative due to the type of digestion used. Down-hole sulfur trends are shown in Figure 8. Distances along core are shown relative to the approximate lowest elevation on the ultimate pit limits (289.6 meters). This would correspond to the final flood level. Elevations above this level ("zero" in the profiles) are therefore approximately the unflooded high wall of the pit at closure. The profiles are grouped approximately into three pit-wall sectors.

The South Wall (SRK-5, -6 and -7) show a range of sulfur concentrations above the pit wall. SRK-5 starts with approximately 33 meters of overburden which was not tested. The mineralized pre-Tertiary rock below the overburden contains over 3 percent sulfur. SRK-6 shows a similar profile but mineralized pre-Tertiary rock could be exposed. SRK-7 had generally low sulfur concentrations (<1 percent) due to intersection of unmineralized Tertiary dykes to a depth of 136 meters. Below this depth, sulfur concentrations increase in pre-Tertiary Rocks.

The Northwest Wall at SRK-8 and SRK-1 is primarily in mineralized pre-Tertiary rocks containing high concentrations of sulfur (exceeding 2 percent and generally over 5 percent). SRK-9 is also entirely in pre-Tertiary rocks but for the first 60 meters of core, sulfur concentrations were relatively low (below 1 percent). Below this depth, sulfur concentrations increased abruptly to greater than 5 percent. This may reflect a natural leached cap.

The East Wall is characterized by a thick sequence of unmineralized Tertiary cover rocks which is apparent in all three holes. Sulfur concentrations in the cover rocks tend to be below 1 percent. The sudden increase in sulfur concentrations at depth marks the contact between Tertiary cover and pre-Tertiary mineralized rocks. Both SRK-2 and I-204 showed a gradual decline in sulfur concentrations with depth.

Overall, the initial results from these holes are similar to the pre-2004 holes. The Tertiary cover rocks tend to have lower sulfur concentrations, whereas much higher sulfur concentrations are found in the mineralized pre-Tertiary rocks. Further testing of selected samples will evaluate the potential for acid generation by analysis of sulfur species and neutralization potential.

#### 8.6.2 Metallurgical Waste Products

ABA testing of scavenger tails and bulk cleaner tails has confirmed that they are expected to contain low sulfur as sulfide concentrations resulting in acid potential of about 3 kg  $CaCO_3/t$ . Neutralization potentials were about 11 kg  $CaCO_3/t$ , resulting in NP/AP of 3.7. These tailings are not expected to generate acid.

No ABA results are available for the pyrite tails, but it is likely that these tailings will be potentially acidgenerating by comparison with the mineralized pre-Tertiary rock. Analysis of water samples produced from metallurgical testing indicates that process water can be expected to have relatively low concentrations of most parameters. Selected results are provided in Table 7. The pyrite tailings samples have been stored in pails with very shallow (1 inch) water covers. Two of the samples have shown acidic pHs (at different times), probably due to oxygen diffusion through the shallow water. The main effect of acidification was apparently a slight increase in copper concentrations.

| Tailings<br>Type | рН       | Sulfate   | Hardness         | Alkalinity       | Sb    | As    | Cd       | Cu    | Mn   | Мо   | Se     | Zn     |
|------------------|----------|-----------|------------------|------------------|-------|-------|----------|-------|------|------|--------|--------|
| Statistic        |          | mg/L      | mgCaCO₃<br>per L | mgCaCO₃<br>per L | mg/L  | mg/L  | mg/L     | mg/L  | mg/L | mg/L | mg/L   | mg/L   |
| Scavenge         | r + Bul  | k Cleaner | Tails            |                  |       |       |          |       |      |      |        |        |
| Median           | 8.15     | 287       | 322              | 58               | 0.006 | 0.021 | -0.00005 | 0.009 | 0.07 | 0.06 | 0.013  | 0.0003 |
| Max              | 7.64     | 389       | 390              | 102              | 0.013 | 0.030 | 0.00023  | 0.017 | 0.14 | 0.35 | 0.017  | 0.006  |
| Pyrite Tai       | ls (non· | acidic)   |                  |                  |       |       |          |       |      |      |        |        |
| Median           | 7.26     | 978       | 1062             | 30               | 0.007 | 0.003 | -0.00030 | 0.016 | 0.18 | 0.02 | -0.003 | 0.005  |
| Max              | 7.92     | 1830      | 1880             | 50               | 0.019 | 0.013 | -0.00010 | 0.029 | 0.37 | 0.05 | 0.005  | 0.032  |
| Pyrite Tai       | ls (acid | ic)       |                  |                  |       |       |          |       |      |      |        |        |
| Median           | 3.48     | 1615      | 1580             | 0                | 0.009 | 0.005 | -0.00008 | 0.070 | 0.31 | 0.05 | 0.016  | 0.022  |

#### TABLE 7. Process Water Chemistry from Bench-scale Testing

## 8.7 Summary

In 2004, geochemical studies were focused on the collection and testing of rock samples to estimate acidgeneration potential, and the initial characterization of waste products from metallurgical testing. The results of these studies indicate the following:

- Tertiary cover rocks are dominantly non-acid-generating and contain low sulfur concentrations.
- The majority of mineralized pre-Tertiary waste rock is potentially acid-generating.
- Testing of rock core with variable ages (1 to 15 years) stored at the site showed progressive oxidation by conversion of sulfide to sulfate and decreasing neutralization potentials. Based on these results, the overall time frame for acidification of waste rock at Pebble Project appears to vary from 0 to 40 years.
- Testing of metallurgical products indicates that scavenger cleaner tailings are not potentially acidgenerating. Pyrite tailings are expected to be potentially acid-generating.
- Process waters are not expected to contain elevated metal concentrations.

## 8.8 References

- Mine Environment Neutral Drainage (MEND) Program. (1991). Acid Rock Drainage Prediction Manual. Mine Environment Neutral Drainage Program, Report 1.16.1b.
- Northern Dynasty Mines Inc. (NDM). 2004. Draft Environmental Baseline Studies, Proposed 2004 Study Plan. Prepared for State of Alaska Large Mine Permitting Team, Department of Natural Resources. July 2.
- Price, W. 1997. Draft Guidelines and Recommended Methods for the Prediction of Metal Leaching and Acid Rock Drainage at Minesites in British Columbia. Reclamation Section, British Columbia Ministry of Energy and Mines. April.
- Sobek A.A., W.A. Schuller, J.R. Freeman, and R.M. Smith. 1978. Field and laboratory methods applicable to overburden and minesoils. USEPA Report No. 600/2-78-054, 203 pp.

# FIGURES

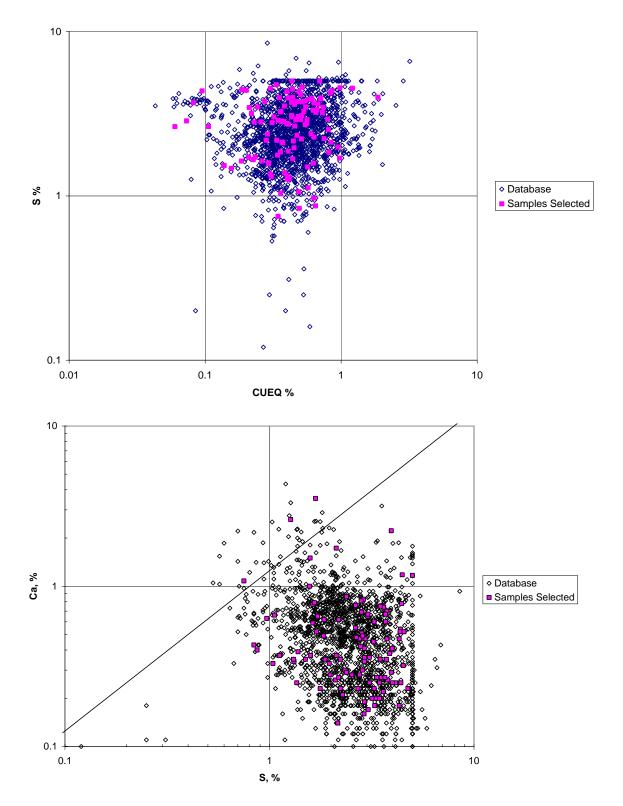



FIGURE 1. Example of Distribution of Samples for Unit Y with Respect to Copper, Sulfur, and Calcium Concentrations. The diagonal line on the lower graph indicates equivalent AP and NP if sulfur and calcium are used as AP and NP surrogates.

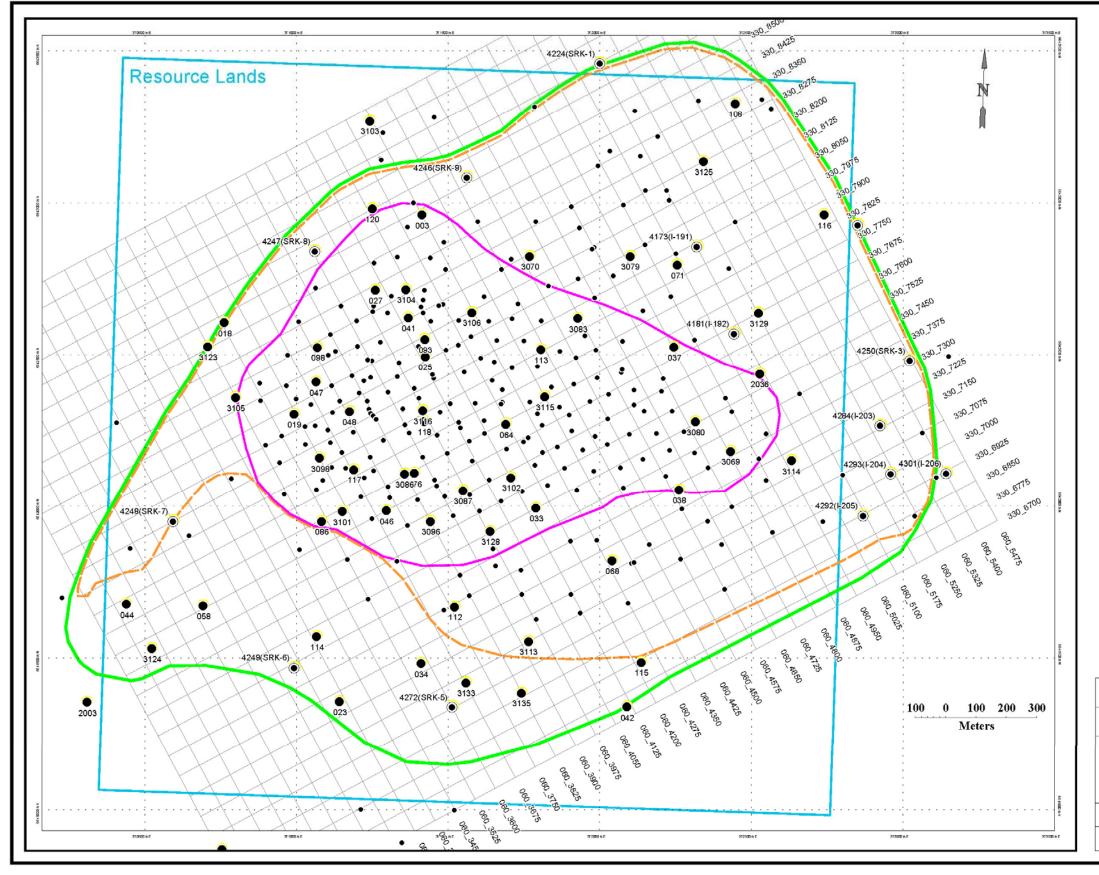



FIGURE 2. Location of Drill-holes Sampled

#### LEGEND

|   | 2004 holes drilled for pit  |
|---|-----------------------------|
| ۲ | wall characterization       |
|   | (exploration assay results) |

- exploration assay results plus selected samples for ABA
- exploration assay results

#### Pit Outlines

| <br>Stage 1                     |
|---------------------------------|
| <br><ul> <li>Stage 1</li> </ul> |
| <br><ul> <li>Stage 1</li> </ul> |

| 979 | Northern | Dynasty | Mines | Inc. |
|-----|----------|---------|-------|------|
|-----|----------|---------|-------|------|

Pebble Gold-Copper Project

## SRK Sampled Drill Holes

Date: 25/01/2005

File: 20050125\_PebbleDrilling2004\_SRK.wor

Prepared by: YL

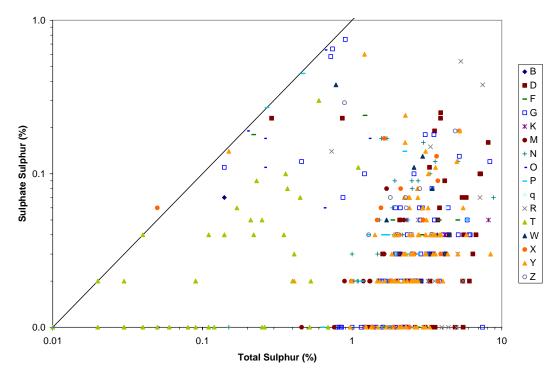



FIGURE 3. Speciation of Sulfur. Letters indicate rock type codes (refer to Table 5). The diagonal line indicates equivalent concentrations.

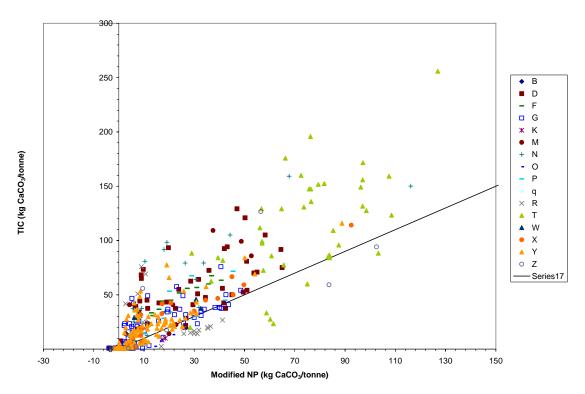



FIGURE 4. Comparison of Neutralization Potential and Total Inorganic Carbon. The diagonal line indicates equivalent concentrations.

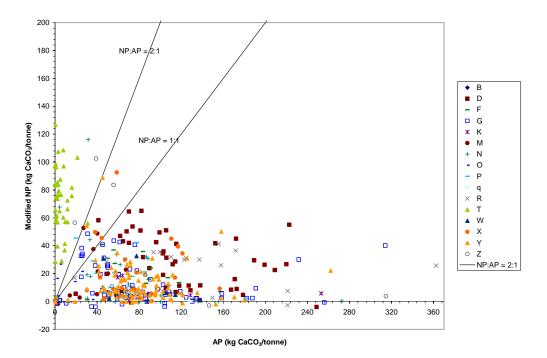
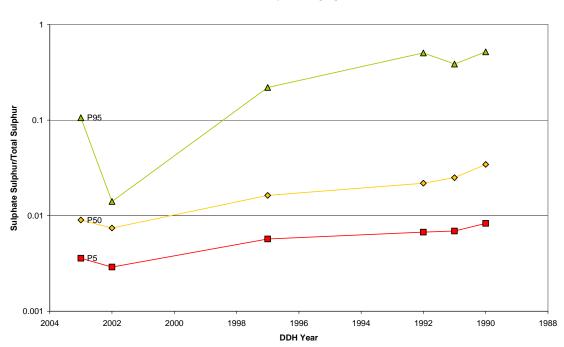




FIGURE 5. Neutralization Potential vs. Acid Potential



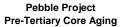



FIGURE 6. Sulfate to Total Sulfur Ratio as a Function of Age. Note that age increases from left to right.

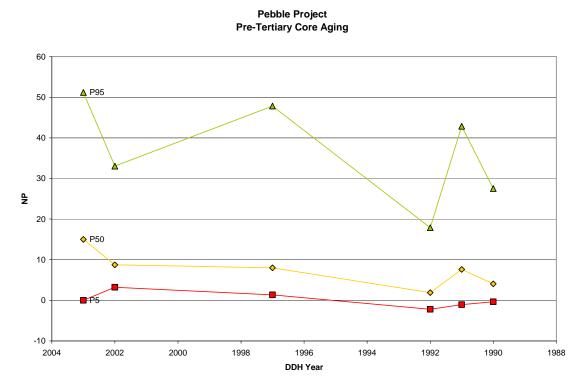



FIGURE 7. Neutralization Potential as a Function of Age

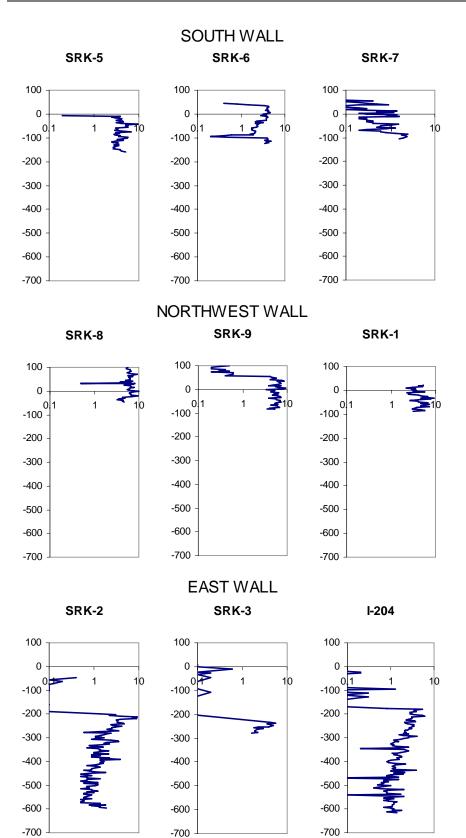



FIGURE 8. Down-hole ICP Sulfur Concentrations (in %) for Near Wall Drill-holes. The vertical axis is in meters relative to the lowest point on the pit boundary.

## APPENDICES

## Appendix 8-A Example of Core Log Prepared by SRK

Project Pebble Hole: GH04-37 Date: 25-Aug-04 Logged by:S. Day, SRK

| Major U | Major Unit Interval |            | ther<br>ription                                                                                                                                                                            | Description                                                                                                                                                                                | Alteration | Pyrite | HCI Reaction (n, |
|---------|---------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|------------------|
| Start   | Finish              | Start      | Finish                                                                                                                                                                                     | Description                                                                                                                                                                                | Alteration | %      | sl, mod, st)     |
| feet    | feet                | feet       | feet                                                                                                                                                                                       |                                                                                                                                                                                            |            |        |                  |
| 4       | 147                 | 4          | GRAVEL<br>Rounded/sub-rounded, 0.5" to greater than 6"<br>Components: Granodiorite (60%), basalt (20%), serpentinite (?) (5%), other<br>(andesite, tuff) (15%)<br>No sulfides, no HCI fizz |                                                                                                                                                                                            |            | 0      | n                |
|         |                     | 4          | 30                                                                                                                                                                                         | Brown sand                                                                                                                                                                                 | n          | -      | -                |
| 147     | 180                 |            |                                                                                                                                                                                            | REGOLITH/DIAMICTON<br>Brown clayey silt, 1 mm brown spots, hard to tell original lithologies due to<br>extensive weathering and conversion to clays, becomes more competent with<br>depth. | n          | -      | -                |
|         |                     | 163<br>176 |                                                                                                                                                                                            | Cored interval of basaltic tuff<br>black oxide coatings on fractures                                                                                                                       | n<br>n     | -      | -                |

Project Pebble Hole: GH04-37 Date: 25-Aug-04 Logged by:S. Day, SRK

| Major Unit Interval |             | Other       |        |                                                                                   |            |        |                  |
|---------------------|-------------|-------------|--------|-----------------------------------------------------------------------------------|------------|--------|------------------|
| Major Un            | it interval | Description |        | Description                                                                       | Alteration | Pyrite | HCI Reaction (n, |
| Start               | Finish      | Start       | Finish | Description                                                                       | Alteration | %      | sl, mod, st)     |
| feet                | feet        | feet        | feet   |                                                                                   |            |        |                  |
| 180                 | 205         |             |        | FINE-GRAINED ANDESITE TUFF                                                        | n          | -      | -                |
|                     |             |             |        | Grades from regolith above                                                        |            |        |                  |
|                     |             |             |        | Fresh rock has maroon matrix with grey to grey/green angular clasts 1mm to 10     |            |        |                  |
|                     |             |             |        | mm                                                                                |            |        |                  |
|                     |             | 180         | 180.5  | Orange/hbrown weathered, competent                                                | n          | -      | -                |
|                     |             | 180.5       | 182    | Maroon with 2 orange weathered fractures, light grey/green soft clay (~50%), 2-   | n          | 2-3    | n                |
|                     |             |             |        | 3% cubic disseminated pyrite, fresh, 0.5 mm, no HCI reaction.                     |            |        |                  |
|                     |             | 182.5       | 183    | clay-rich, grey grading into regolith type material, no visible pyrite.           | n          | 0      | -                |
|                     |             | 183         | 183.5  | Brown/yellow, completely weathered, no visible pyrite                             | n          | 0      | -                |
|                     |             | 183.5       |        | Grey/green, v. finely disseminated cubic pyrite (3%)                              | n          | 3      | -                |
|                     |             | 184         | 186    | Brown/yellow oxidized, orange/brown fracture coating at 185', black fracture      | n          | -      | -                |
|                     |             |             |        | coating at 185.5', becomes less oxidized at 186'                                  |            |        |                  |
|                     |             | 186         |        | Partially oxidized, 10% finely disseminated pyrite, cubic, ~1 mm.                 | n          | 10     | -                |
|                     |             | 187         | 189    | Maroon grey green, more competent, 1-2% v. fine grained disseminated cubic        | n          | 1-2    | n                |
|                     |             |             |        | pyrite, fresh, no HCI reaction.                                                   |            |        |                  |
|                     |             | 189         |        | Brown/yellow oxidized, no pyrite                                                  | n          | 0      | -                |
|                     |             | 189.8       |        | Maroon grey green, 5% disseminated cubic 0.5 mm pyrite.                           | n          | 5      | -                |
|                     |             | 190.5       |        | Brown/yellow oxidized, no pyrite.                                                 | n          | 0      | -                |
|                     |             | 195.5       | 196.5  | Sharp contact with oxidized rock, maroon grey/green. 1% to 2% finely              | n          | 1-2    | -                |
|                     |             |             |        | disseminated cubic pyrite                                                         |            |        |                  |
|                     |             | 196.5       |        | Olive/brown weathering, no pyrite                                                 | n          | 0      | -                |
|                     |             | 199.5       |        | Orange brown fracture coating (two directions - across and through core). Interva | n          | -      | -                |
|                     |             |             |        | labelled incorrectly.                                                             |            |        |                  |
|                     |             | 199         | 200    | Sharp contact to maroon grey green 0.5% disseminated pyrite, no HCI reaction,     | n          | 0.5    | n                |
|                     |             |             |        | cubic 0.1 mm                                                                      |            |        |                  |
|                     |             | 200         |        | 2-3% disseminated cubic pyrite mottles.                                           | n          | 2-3    | -                |
|                     |             | 200         | 203    | Brown/yellow oxidized, black coating on fractures. Brown/red coatings on          | n          | -      | -                |
|                     |             |             |        | fractures, strongly oxidized, clay rich.                                          |            |        |                  |
|                     |             | 203         | 204.5  | Sharp contact to maroon grey/green, 1% fine grained dissemineated pyrite, 0.5     | n          | 1      | -                |
|                     |             |             |        | mm, cubic                                                                         |            |        |                  |
|                     |             | 204.5       | 205    | Sharp contact with brown/yellow oxidized, black coatings on fractures             | n          | -      | -                |
|                     |             |             |        |                                                                                   |            |        |                  |

ProjectPebbleHole:GH04-37Date:25-Aug-04Logged by: S. Day, SRK

| Major Unit Interval |        | Description         |       | Description                                                                                    |            | Pyrite   | HCI Reaction (n, |
|---------------------|--------|---------------------|-------|------------------------------------------------------------------------------------------------|------------|----------|------------------|
| Start               | Finish | Finish Start Finish |       | Description                                                                                    | Alteration | %        | sl, mod, st)     |
| feet                | feet   | feet                | feet  |                                                                                                |            |          |                  |
| 205                 | 206.5  |                     |       | AGGLOMERATE                                                                                    | n          | -        | -                |
|                     |        |                     |       | Maroon matrix with 1" light grey/green angular clasts, matrix supported.                       |            |          |                  |
|                     |        | 205                 | 205.2 | 5 to 10% disseminated cubic pyrite, 2-3 mm, twinned clusters of cubes, no HCl                  | n          | 5-10     | n                |
|                     |        |                     |       | reaction.                                                                                      |            |          |                  |
|                     |        | 205.2               | 206.5 | Pyrite disseminated throughout matrix and clasts                                               | n          | -        | -                |
| 206.5               | 208.5  |                     |       | DACITE TUFF                                                                                    | n          | 1-2      | -                |
|                     |        |                     |       | Grey/green, very competent, 1-2% disseminated cubic pyrite, less than 0.5 mm.                  |            |          |                  |
|                     |        | 2000 5              | 200   | No. LICI reaction                                                                              |            |          | -                |
|                     |        | 206.5               |       | No HCI reaction                                                                                | n          | -<br>0.5 | n                |
|                     |        | 208                 | 208.5 | Green acicular mineral (~25%), grey-brown matrix with strong HCI reaction. 0.5% pyrite, cubic. | n          | 0.5      | st               |
|                     |        |                     |       | pyrite, cubic.                                                                                 |            |          |                  |
| 208.5               | 210    |                     |       | VOLCANIC BRECCIA                                                                               | n          | 5        | n                |
|                     |        |                     |       | Maroon matrix, grey green angular to sub-angular clasts (<1%). Matrix supported                |            |          |                  |
|                     |        |                     |       | 5% disseminated pyrite, cubic. No HCI reaction                                                 |            |          |                  |
|                     |        | 208                 | 210   | Orange brown oxidation along fractures parralel to core axis.                                  | n          | -        | -                |
| 210                 | 229    |                     |       | FRACTURED AND OXIDIZED                                                                         | n          | -        | n                |
|                     |        |                     |       | Rock type unclear, mostly competent, but clay altered in places                                |            |          |                  |
|                     |        |                     |       | Yellow brown stain on core surfaces, dark brown stain on fracture surfaces,                    |            |          |                  |
|                     |        |                     |       | almost black. No reaction with HCI.                                                            |            |          |                  |
|                     |        | 216                 | 217   | Andesite, green with diffuse pink masses (1 to 2 cm), strong HCl reaction, less                | n          | 1        | st               |
|                     |        | 040                 |       | than 1% disseminated pyrite grains (no crystals).                                              |            |          |                  |
|                     |        | 218                 |       | 1 mm pink veinlets, no HCI reaction.                                                           | n          | -        | n                |
| 229                 | 235    |                     |       | AGGLOMERATE                                                                                    | n          | 1-2      | mod              |
|                     |        |                     |       | Maroon matrix, grey/green fragments (up to 2"), 1 to 2% disseminated pyrite                    |            |          |                  |
|                     |        |                     |       | (<0.5 mm), cubic. Moderate HCI reaction in matrix. Matrix and framework                        |            |          |                  |
|                     |        |                     |       | supported.                                                                                     |            |          |                  |
|                     |        |                     |       |                                                                                                |            |          |                  |

ProjectPebbleHole:GH04-37Date:25-Aug-04Logged by: S. Day, SRK

| Major II | Major Unit Interval |             | her    |                                                                                                                                                                                                       |            |        |                  |
|----------|---------------------|-------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|------------------|
|          |                     | Description |        | Description                                                                                                                                                                                           | Alteration | Pyrite | HCI Reaction (n, |
| Start    | Finish              | Start       | Finish |                                                                                                                                                                                                       |            | %      | sl, mod, st)     |
| feet     | feet                | feet        | feet   |                                                                                                                                                                                                       |            |        |                  |
| 235      | 238.5               |             |        | OXIDIZED ROCK<br>Brown/yellow, incompetent, heavily fractured, black stains on fractures. No pyrite,<br>no HCI reaction.                                                                              | n          | 0      | n                |
| 238.5    | 241                 |             |        | DACITE<br>Grey/green, 2% disseminated non-crystalline pyrite (~1 mm). Moderate HCI<br>reaction with matrix                                                                                            | n          | 2      | mod              |
|          |                     | 238.5       | 238.6  | 5% pyrite (pyritohedrons), grey blue sulfide (unknown), sample collected.                                                                                                                             | n          | 5      |                  |
| 241      | 243.5               |             |        | AGGLOMERATE<br>Maroon matrix, grey-green clasts (up to 0.5"), 1-2% fine-grained disseminated<br>cubic pyrite. Moderate HCI reaction with matrix. 0.2 mm calcite veinlets.                             | n          | 1-2    | mod              |
|          |                     | 242         | 242.5  | Grey/orange mottles, clay-altered, 1% cubic disseminated pyrite.                                                                                                                                      | n          | 1      |                  |
|          |                     | 242.5       |        | Darker green, 3 mm pyrite blebs                                                                                                                                                                       | n          | -      |                  |
| 243.5    | 252                 |             |        | ANDESITE<br>Dark green/grey. 1% disseminated pyrite 1 mm, non-crystalline. Strong HCI<br>reaction with matrix. 1 mm calcite veinlets. Pyrite content decreases downhole,<br>variable but less than 1% | n          | 1      | st               |
|          |                     | 247         |        | White, soft frature coating.                                                                                                                                                                          | n          | -      | -                |
|          |                     | 248         | 249    | No pyrite, strong HCI reaction with matrix.                                                                                                                                                           | n          | 0      | st               |
| 252      | 258                 |             |        | OXIDIZED ROCK<br>Brown yellow with dark brown mottles. Brown/black fracture coatings. No pyrite,<br>no HCI reaction, transition to fresh andesite.                                                    |            | 0      | n                |

Project Pebble Hole: GH04-37 Date: 25-Aug-04 Logged by:S. Day, SRK

| Major Unit Interval |             | Init Interval Other |       |                                                                             |            |         |                  |
|---------------------|-------------|---------------------|-------|-----------------------------------------------------------------------------|------------|---------|------------------|
|                     | it interval | Description         |       | Description                                                                 | Alteration | Pyrite  | HCI Reaction (n, |
| Start               | Finish      | Start               | _     |                                                                             | Alteration | %       | sl, mod, st)     |
| feet                | feet        | feet                | feet  |                                                                             |            |         |                  |
| 258                 | 278         |                     |       | ANDESITE                                                                    | n          | 1       | st               |
|                     |             |                     |       | 1% 1mm disseminated pyrite, non-crystalline. Hematite coating on fractures. |            |         |                  |
|                     |             |                     |       | Strong HCI reaction in matrix.                                              |            |         |                  |
|                     |             | 262                 |       | Calcite amygdules                                                           | n          | -       | -                |
|                     |             | 264                 |       | 3% pyrite                                                                   | n          | 3       | -                |
|                     |             | 265                 |       | Trace pyrite                                                                | n          | Tr      | -                |
|                     |             | 267                 |       | 5% pyrite                                                                   | n          | 5       | -                |
|                     |             | 267.2               |       | Trace pyrite                                                                | n          | Tr      | -                |
|                     |             | 271                 |       | 0.5 mm 2 to 3% pyrite                                                       | n          | 2-3     | -                |
|                     |             | 272                 |       | 2 mm calcite veinlet                                                        | n          | -       | -                |
|                     |             | 273                 |       | Trace to 0.5% pyrite                                                        | n          | Tr -0.5 | -                |
|                     |             | 275.5               | 278   | 3% pyrite round 2 mm                                                        | n          | 3       | -                |
| 278                 | 280         |                     |       | DACITE                                                                      | n          | 3       | st               |
|                     |             |                     |       | Light green, 3% disseminated pyrite, 1 mm, weakly cubic. Very competent,    |            |         |                  |
|                     |             |                     |       | Strong HCI reaction with matrix. Pyritte partially oxidized in most core.   |            |         |                  |
| 280                 | 283         |                     |       | ANDESITE AGGLOMERATE                                                        | n          | 1       | mod-st           |
|                     |             |                     |       | Large green fragments (40%) in maroon matrix. 1% 2 mm disseminmated cubic   |            |         |                  |
|                     |             |                     |       | pyrite. Moderate to strong HCI reaction with matrix                         |            |         |                  |
|                     |             | 281                 | 281.6 | Purple chert, no sulphide. Moderate HCl reaction with matrix.               | n          | 0       | mod              |
| 283                 | 295         |                     |       | ANDESITE TUFF                                                               | n          | 1       | st               |
|                     |             |                     |       | Maroon matrix. Grey green clasts (<1"). 1% disseminated pyrite, 0.5 to 1mm  |            |         |                  |
|                     |             | 000                 |       | cubes. Competent. Strong HCI reactin with clasts.                           |            |         | _                |
|                     |             | 289                 | 292   | Slightly oxidized. No Hcl reaction. Mn-oxide dendrites                      | n          |         | n                |
| 292                 |             |                     |       | END OF HOLE                                                                 |            |         |                  |

## Appendix 8-B List of Samples Selected for Static Testing

APPENDIX 8-B List of Samples Selected for Kinetic Testing

|         |      | IN         | FERVAL |       | ALTERATION |                        |              |                 |  |
|---------|------|------------|--------|-------|------------|------------------------|--------------|-----------------|--|
| COMPANY | HOLE | _ID FROM_3 |        | LITHO | Early 1    | <b>Fype Early Inte</b> | ens. Late Ty | pe Late Intens. |  |
| СОМ     | 003  | 31         | 36     | Y     |            |                        |              |                 |  |
| СОМ     | 003  | 36         | 41     | Y     |            |                        |              |                 |  |
| COM     | 013  | 107        | 112    | G     |            |                        |              |                 |  |
| COM     | 013  | 112        | 117    | G     |            |                        |              |                 |  |
| COM     | 013  | 117        | 122    | G     |            |                        |              |                 |  |
| СОМ     | 013  | 122        | 127    | G     |            |                        |              |                 |  |
| COM     | 018  | 74         | 85     | D     |            |                        |              |                 |  |
| COM     | 018  | 85         | 95     | D     |            |                        |              |                 |  |
| COM     | 018  | 135        | 145    | D/D   | *р         | m                      | t            | S               |  |
| COM     | 018  | 145        | 155    | D/D   | *р         | m                      | t            | S               |  |
| COM     | 018  | 225        | 235    | D/D   | *р         | m                      | t            | S               |  |
| COM     | 018  | 235        | 245    | D/D   | *р         | m                      | t            | S               |  |
| COM     | 019  | 30         | 42     | OB    |            |                        |              |                 |  |
| COM     | 019  | 42         | 51     | OB    |            |                        |              |                 |  |
| COM     | 019  | 72         | 82     | WY    |            |                        |              |                 |  |
| СОМ     | 019  | 82         | 90     | WY    |            |                        |              |                 |  |
| COM     | 019  | 200        | 209    | N.Y   | b          | m                      |              |                 |  |
| СОМ     | 019  | 209        | 220    | N.Y   | b          | m                      |              |                 |  |
| COM     | 019  | 240        | 250    | Y     | b          | W                      |              |                 |  |
| COM     | 019  | 250        | 260    | Y     | b          | W                      |              |                 |  |
| COM     | 019  | 390        | 400    | Gp-Pl | b          | m                      | S            | m               |  |
| СОМ     | 019  | 400        | 410    | Gp-Pl | b          | m                      | S            | m               |  |
| СОМ     | 023  | 75         | 80     | TDt   |            |                        |              |                 |  |
| СОМ     | 023  | 80         | 90     | TDt   |            |                        |              |                 |  |
| COM     | 023  | 110        | 120    | X.MP  |            |                        |              |                 |  |
| СОМ     | 023  | 120        | 130    | X.MP  |            |                        |              |                 |  |
| COM     | 025  | 179        | 189    | Y     | k          | m                      |              |                 |  |
| COM     | 025  | 189        | 199    | Y     | k          | m                      |              |                 |  |
| COM     | 025  | 453        | 463    | Y     | k          | W-S                    |              |                 |  |
| СОМ     | 025  | 463        | 473    | Y     | k          | W-S                    |              |                 |  |
| COM     | 025  | 617        | 627    | D     | bl         | m                      | k            | m               |  |
| СОМ     | 025  | 627        | 637    | D     | bl         | m                      | k            | m               |  |
| COM     | 027  | 70         | 80     | Y     | kb         | m                      | qspyi        | m               |  |
| СОМ     | 027  | 80         | 90     | Y     | kb         | m                      | qspyi        | m               |  |
| COM     | 027  | 110        | 120    | W     | kb         | m                      | qsp          | m               |  |
| СОМ     | 027  | 120        | 130    | W     | kb         | m                      | qsp          | m               |  |
| СОМ     | 027  | 200        | 210    | Y     | kb         | m                      | qsp          | m               |  |
| СОМ     | 027  | 210        | 220    | Y     | kb         | m                      | qsp          | m               |  |
| СОМ     | 027  | 260        | 270    | Y     | kb         | m                      | qsp          | m               |  |
| СОМ     | 027  | 270        | 280    | Y     | kb         | m                      | qsp          | m               |  |
| СОМ     | 033  | 137        | 146    | Y     | b          | m-w                    | S            | m               |  |
| СОМ     | 033  | 146        | 155    | Y     | b          | m-w                    | S            | m               |  |
| СОМ     | 033  | 304        | 314    | TBpd  | е          | m                      |              |                 |  |
| COM     | 033  | 314        | 323    | TBpd  | e          | m                      |              |                 |  |
| СОМ     | 033  | 343        | 353    | G-p   | slk        | W                      | b            | W               |  |
| COM     | 033  | 353        | 363    | G-p   | slk        | W                      | b            | W               |  |
| СОМ     | 034  | 60         | 90     | OB    |            |                        |              |                 |  |
|         |      |            |        |       |            |                        |              |                 |  |

#### APPENDIX 8-B List of Samples Selected for Kinetic Testing

|            |            |              | FERVAL     |            | ALTERATION |               |              |                 |  |
|------------|------------|--------------|------------|------------|------------|---------------|--------------|-----------------|--|
| COMPANY    | _          | _ID FROM_I   |            | LITHO      | Early T    | ype Early Int | ens. Late Ty | pe Late Intens. |  |
| СОМ        | 034        | 100          | 108        | X.DbGY     | b          | m             |              |                 |  |
| СОМ        | 034        | 108          | 117        | X.DbGY     | b          | m             |              |                 |  |
| СОМ        | 037        | 0            | 182        | TC         |            |               |              |                 |  |
| COM        | 037        | 208          | 217        | Y          | bk         | m             | qsp          | m               |  |
| COM        | 037        | 217          | 227        | Y          | bk         | m             | qsp          | m               |  |
| COM        | 037        | 307          | 317        | Gp         | k          | S             | qsp          | m               |  |
| COM        | 038        | 49           | 58         | R          | kels       | m             | sp           | W               |  |
| COM        | 038        | 58           | 68         | R          | kels       | m             | sp           | W               |  |
| COM        | 038        | 189          | 200        | R          | kels       | m             | sp           | W               |  |
| COM        | 038        | 200          | 208        | R          | kels       | m             | sp           | W               |  |
| COM        | 038        | 311          | 321        | Nb?        | b          | m             | sp           | m               |  |
| COM        | 038        | 321          | 331        | Nb?        | b          | m             | sp           | m               |  |
| COM        | 041        | 0            | 10         | Fc         |            |               |              |                 |  |
| COM        | 041        | 10           | 20         | Fc         |            |               |              |                 |  |
| COM        | 041        | 20           | 30         | Y          | bk         | m?            | qsiy         | m/s             |  |
| COM        | 041        | 30           | 40         | Y          | bk         | m?            | qsiy         | m/s             |  |
| COM        | 041        | 94           | 104        | Y          | bk         | m             | qsp          | S               |  |
| COM        | 041        | 104          | 114        | Y          | bk         | m             | qsp          | S               |  |
| COM        | 041        | 244          | 254        | N          | bk         | m             | qsp          | W/m             |  |
| COM        | 041        | 254          | 260        | N          | bk         | m             | qsp          | W/m             |  |
| COM        | 041        | 280          | 290        | D          | bk         | m             | qspi         | W/m             |  |
| COM        | 041        | 290          | 300        | D          | bk         | m             | qspi         | W/m             |  |
| COM        | 041        | 500          | 510        | Z          |            |               | slqyi        | m/s             |  |
| COM        | 041        | 510          | 520        | Z          |            |               | slqyi        | m/s             |  |
| COM        | 041        | 538          | 548        | Y          | bk         | m             | qsp          | m               |  |
| COM        | 041        | 548          | 558        | Y          | bk         | m             | qsp          | m               |  |
| COM<br>COM | 041<br>041 | 728<br>738   | 738<br>748 | *q<br>*a   | k<br>k     | m/s           | q-sp         |                 |  |
|            | 041        | 60           | 740        | *q<br>Y    |            | m/s           | q-sp         |                 |  |
| COM        | 042<br>042 | 60<br>70     | 70<br>75   | ř<br>Y     | sqp        | m             |              |                 |  |
| COM        | 042        | 270.7        | 280        | D/G        | sqp        | m             |              |                 |  |
| COM        | 042<br>042 | 270.7<br>280 | 280<br>290 | D/G<br>D/G |            |               |              |                 |  |
| COM        | 042        | 360          | 370        | Yb         | b          | m/s           |              |                 |  |
| COM        | 042<br>042 | 370          | 380        | Yb         | b          | m/s           |              |                 |  |
| COM        | 042        | 96           | 106        | Gp         | S          | m             | bl           | w-m             |  |
| COM        | 044<br>044 | 90<br>106    | 116        | Gp<br>Gp   | s<br>S     | m             | bl           | w-m             |  |
| COM        | 044        | 190          | 200        | Gp<br>Gp   | S          | m             | bl           | w-m             |  |
| COM        | 044        | 200          | 210        | Gp         | S          | m             | bl           | w-m             |  |
| COM        | 044        | 200          | 235        | X.HGDN-`   |            | m             | S            | m               |  |
| COM        | 044<br>044 | 225          | 235<br>245 | X.HGDN-    |            | m             | S            | m               |  |
| COM        | 044        | 305          | 315        | N.H        | bl         | m/s           | 0            |                 |  |
| COM        | 044<br>044 | 315          | 325        | N.H        | bl         | m/s           |              |                 |  |
| COM        | 044        | 343          | 353        | Gp         | k          | m/s           |              |                 |  |
| COM        | 044        | 353          | 363        | Gp         | k          | m/s           |              |                 |  |
| COM        | 046        | 38           | 50         | Fc         |            |               |              |                 |  |
| COM        | 046        | 50           | 63         | Fc         |            |               |              |                 |  |
| COM        | 046        | 63           | 73         | Gp         |            |               | у            | S               |  |
| COM        | 046        | 73           | 83         | Gp         |            |               | y<br>y       | S               |  |
| COM        | 046        | 113          | 123        | N or Gp-p  |            |               | b            | m               |  |
| COM        | 046        | 123          | 133        | N or Gp-p  |            |               | b            | m               |  |
| COM        | 046        | 195          | 205        | Y          | k          | m/s           |              |                 |  |
| COM        | 046        | 205          | 215        | Ŷ          | k          | m/s           |              |                 |  |
| COM        | 046        | 259          | 269        | N or Gp.Y  |            | m             |              |                 |  |

|         |      |           | TERVAL   |         |       |               | TERATION      |                 |
|---------|------|-----------|----------|---------|-------|---------------|---------------|-----------------|
| COMPANY | HOLE | _ID FROM_ | FT TO_FT | LITH    |       | ype Early Int | tens. Late Ty | pe Late Intens. |
| СОМ     | 046  | 269       | 279      | N or Gp |       | m             |               |                 |
| СОМ     | 046  | 308       | 318      | G-p     | b     | m             |               |                 |
| COM     | 046  | 318       | 328      | G-p     | b     | m             |               |                 |
| COM     | 046  | 363       | 373      | N or Gp |       | m             |               |                 |
| СОМ     | 046  | 373       | 383      | N or Gp | o.YEb | m             |               |                 |
| СОМ     | 046  | 563       | 573      | N-p     |       |               |               |                 |
| COM     | 046  | 573       | 580      | N-p     |       |               |               |                 |
| COM     | 046  | 580       | 590      | GxN     |       |               |               |                 |
| COM     | 046  | 590       | 600      | GxN     |       |               |               |                 |
| COM     | 047  | 117       | 126      | WY      | k     | m-s           |               |                 |
| СОМ     | 047  | 126       | 136      | WY      | k     | m-s           |               |                 |
| COM     | 047  | 226       | 236      | WY      | k     | m-s           |               |                 |
| СОМ     | 047  | 236       | 246      | WY      | k     | m-s           |               |                 |
| COM     | 047  | 350       | 360      | WY      | bl    | m             | qsp           | m               |
| СОМ     | 047  | 360       | 365      | WY      | bl    | m             | qsp           | m               |
| СОМ     | 047  | 462       | 472      | Gph     |       | m             | S             | m               |
| СОМ     | 047  | 472       | 482      | Gph     | I     | m             | S             | m               |
| СОМ     | 047  | 592       | 602      | Gph     |       | m             | S             | m               |
| СОМ     | 047  | 602       | 612      | Gph     | I     | m             | S             | m               |
| СОМ     | 048  | 135       | 145      | Gp      | k     | m             | qsp           | m/s             |
| СОМ     | 048  | 145       | 155      | Gp      | k     | m             | qsp           | m/s             |
| СОМ     | 048  | 172       | 180      | Z       |       |               | yqsp          | S               |
| СОМ     | 048  | 180       | 190      | Gp      | k-b   | m             | qsp           | m/s             |
| СОМ     | 048  | 200       | 210      | Gp      | k-b   | m             | qsp           | m/s             |
| СОМ     | 048  | 210       | 220      | Gp      | k-b   | m             | qsp           | m/s             |
| СОМ     | 048  | 760       | 770      | Gp      | k-b   | m             | qsp           | m/s             |
| СОМ     | 048  | 770       | 780      | Gp      | k-b   | m             | qsp           | m/s             |
| СОМ     | 058  | 58        | 68       | P-k     |       |               | yi            | S               |
| СОМ     | 058  | 68        | 78       | P-k     |       |               | yi            | S               |
| СОМ     | 058  | 348       | 358      | Р       | bl-e  | m/s           | qsp           | S               |
| СОМ     | 058  | 358       | 368      | Р       | bl-e  | m/s           | qsp           | S               |
| СОМ     | 058  | 378       | 388      | Ν       | bk    | m             | qsp           | m/s             |
| СОМ     | 058  | 388       | 398      | Ν       | bk    | m             | qsp           | m/s             |
| СОМ     | 058  | 398       | 408      | Z.NPY   |       |               |               |                 |
| СОМ     | 058  | 408       | 418      | Z.NPY   |       |               |               |                 |
| COM     | 058  | 428       | 438      | X.DPY>  | ٨N    |               |               |                 |
| СОМ     | 058  | 438       | 448      | X.DPYx  | ٨N    |               |               |                 |
| COM     | 064  | 0         | 30       | OB      |       |               |               |                 |
| COM     | 064  | 30        | 40       | G       | qsp   | S             |               |                 |
| COM     | 064  | 40        | 50       | G       | qsp   | S             |               |                 |
| СОМ     | 064  | 132       | 140      | G       | k     | m             |               |                 |
| COM     | 064  | 140       | 146.8    | G       | k     | m             |               |                 |

|         |      | INT        | ERVAL  |         |       | ALT             | ERATION     |                 |
|---------|------|------------|--------|---------|-------|-----------------|-------------|-----------------|
| COMPANY | HOLE | _ID FROM_H | TTO_FT | LITHO   | Early | Type Early Inte | ns. Late Ty | pe Late Intens. |
| COM     | 064  | 156        | 166    | Y       | k     | W               | b           | W               |
| СОМ     | 064  | 166        | 176    | Y       | k     | W               | b           | W               |
| COM     | 064  | 499        | 509    | Y-W     | k     | m               | b           | m               |
| COM     | 064  | 509        | 519    | Y-W     | k     | m               | b           | m               |
| COM     | 064  | 539        | 545    | D/G     | spq   | m               |             |                 |
| COM     | 064  | 545        | 553.7  | D/G     | spq   | m               |             |                 |
| COM     | 068  | 0          | 46     | OB      |       |                 |             |                 |
| COM     | 068  | 46         | 56     | Z.Y     |       |                 |             |                 |
| COM     | 068  | 56         | 66     | Z.Y     |       |                 |             |                 |
| COM     | 068  | 95         | 105    | D       | qsp   | m-s             | b           | m               |
| COM     | 068  | 105        | 115    | D       | qsp   | m-s             | b           | m               |
| COM     | 068  | 235        | 245    | D       | qsp   | m-s             | b           | m               |
| COM     | 068  | 245        | 255    | D       | qsp   | m-s             | b           | m               |
| СОМ     | 068  | 265        | 275    | Y-x     | bl    | m               |             |                 |
| COM     | 068  | 275        | 285    | Y-x     | bl    | m               |             |                 |
| COM     | 068  | 500        | 510    | G       |       |                 |             |                 |
| COM     | 068  | 510        | 520    | G       |       |                 |             |                 |
| COM     | 071  | 313        | 323    | R/Db    | b-k   | m               | qsp         | m               |
| COM     | 071  | 323        | 333    | R/Db    | b-k   | m               | qsp         | m               |
| COM     | 071  | 353        | 363    | R/Db    | b-k   | m               | qsp         | m               |
| COM     | 071  | 363        | 373    | R/Db    | b-k   | m               | qsp         | m               |
| COM     | 071  | 423        | 433    | R/Db    | b-k   | m               | qsp         | m               |
| COM     | 071  | 433        | 443    | R/Db    | b-k   | m               | qsp         | m/s             |
| COM     | 071  | 473        | 483    | R/Db    | b-k   | m               | qsp         | m/s             |
| COM     | 071  | 483        | 493    | R/Db    | b-k   | m               | qsp         | m/s             |
| COM     | 076  | 438        | 448    | D/N     | qsp   | S               |             |                 |
| COM     | 076  | 448        | 458    | D/N     | *m    | m               | b           | m               |
| COM     | 076  | 518        | 528    | D/N     | *m    | m               | b           | m               |
| COM     | 076  | 528        | 538    | D/N     | *m    | m               | b           | m               |
| COM     | 076  | 608        | 618    | D/N?    | q     | S               |             |                 |
| COM     | 076  | 618        | 625.2  | D/N?    | q     | S               |             |                 |
| COM     | 086  | 0          | 67     | OB      |       |                 |             |                 |
| СОМ     | 086  | 279        | 287    | TBd     |       |                 |             |                 |
| СОМ     | 086  | 363        | 370    | Np      | S     | m               |             |                 |
| COM     | 086  | 370        | 377    | Np      | S     | m               |             |                 |
| COM     | 086  | 417        | 427    | Gp-k    | k     | S               |             |                 |
| COM     | 086  | 427        | 437    | Gp-k    | k     | S               |             |                 |
| COM     | 086  | 467        | 477    | N.MH    |       |                 |             |                 |
| СОМ     | 086  | 477        | 487    | N.MH    |       |                 |             |                 |
| COM     | 086  | 617        | 627    | X.Db GN | slb   | m               |             |                 |
| COM     | 086  | 627        | 637    | X.Db GN | slb   | m               |             |                 |
| COM     | 093  | 43         | 53     | G-p     | k     | m               | yqspi       | m-s             |
| COM     | 093  | 53         | 63     | G-p     | k     | m               | yqspi       | m-s             |
| COM     | 093  | 133        | 143    | G-p     | k     | m               | yqspi       | m-s             |
| COM     | 093  | 143        | 148    | G-p     | k     | m               | yqspi       | m-s             |
| COM     | 093  | 158        | 168    | Y       | bk    | m-s             | qsp         | w-m             |
| COM     | 093  | 168        | 178    | Y       | bk    | m-s             | qsp         | w-m             |
|         |      |            |        |         |       |                 |             |                 |

| COM         093         248         258         Y         bk         m-s         qsp         w-m           COM         093         258         268         Y         bk         m-s         qsp         w-m           COM         093         377         387         Y         bk         m-s         qsp         w-m           COM         093         387         394         Y         bk         m-s         qsp         w-m           COM         098         161         171         Y         k         m         COM         098         161         171         Y         k         m         COM         098         121         211         Y         kb         m         COM         098         241         251         Y         kb         m         COM         098         521         261         Y         kb         m         COM         098         642         652         Gph         bsk         m         COM         098         642         652         Gph         bsk         m         COM         08         213         266         TW         COM         08         157<7         TF         COM         <                                      | COMPANY | HOLE | INT<br>_ID FROM_I | ERVAL<br>TTTO_FT | LITHO | Early ' | ALTE<br>Fype Early Inter | ERATION<br>is. Late Typ | e Late Intens. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|-------------------|------------------|-------|---------|--------------------------|-------------------------|----------------|
| COM         093         258         268         Y         bk         m-s         qsp         w-m           COM         093         377         394         Y         bk         m-s         qsp         w-m           COM         093         387         394         Y         bk         m-s         qsp         w-m           COM         098         161         171         Y         k         m             COM         098         191         201         Z.Y          m                           Y         kb         m <th></th> <th></th> <th></th> <th></th> <th>Y</th> <th>bk</th> <th>m-s</th> <th>qsp</th> <th>w-m</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |      |                   |                  | Y     | bk      | m-s                      | qsp                     | w-m            |
| COM         093         387         394         Y         bk         m-s         qsp         w-m           COM         098         151         161         Y         k         m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | COM     | 093  | 258               | 268              | Y     | bk      | m-s                      |                         | w-m            |
| COM         098         151         161         Y         k         m           COM         098         161         171         Y         k         m           COM         098         201         211         Y         kb         m           COM         098         201         211         Y         kb         m           COM         098         251         261         Y         kb         m           COM         098         572         582         Gph         bsk         m           COM         098         642         652         Gph         bsk         m           COM         098         642         76         TB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 093  | 377               | 387              | Y     | bk      | m-s                      | qsp                     | w-m            |
| COM         098         161         171         Y         k         m           COM         098         191         201         211         Y         kb         m           COM         098         241         251         Y         kb         m         COM           COM         098         251         261         Y         kb         m         COM           COM         098         572         582         Gph         bsk         m         COM           COM         098         652         Gph         bsk         m         COM         098         652         Gph         bsk         m         COM         098         652         Gph         bsk         m         COM         098         652         662         Gph         bsk         m         COM         108         157         213         TC         COM         108         157         213         TC         COM         108         633         641         Y         COM         108         770         780         G         COM         108         770         780         G         COM         112         170         N.NM         m                                                     | COM     | 093  | 387               | 394              |       | bk      | m-s                      | qsp                     | w-m            |
| COM         098         191         201         Z.Y           COM         098         201         211         Y         kb         m           COM         098         251         261         Y         kb         m           COM         098         572         582         Gph         bsk         m           COM         098         642         652         Gph         bsk         m           COM         098         642         652         Gph         bsk         m           COM         098         642         76         TB          COM         108         27         76         TF           COM         108         76         157         TF          COM         108         266         283         TC           COM         108         641         650         Y           COM         108         641         650         Y <t< td=""><td></td><td></td><td></td><td>161</td><td>Y</td><td>k</td><td>m</td><td></td><td></td></t<>                                                                                                                                                                                                                        |         |      |                   | 161              | Y     | k       | m                        |                         |                |
| COM         098         201         211         Y         kb         m           COM         098         241         251         Y         kb         m           COM         098         572         582         Gph         bsk         m           COM         098         582         592         Gph         bsk         m           COM         098         642         652         Gph         bsk         m           COM         098         652         662         Gph         bsk         m           COM         108         76         157         TF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |      |                   |                  |       | k       | m                        |                         |                |
| COM         098         241         251         Y         kb         m           COM         098         251         261         Y         kb         m           COM         098         572         582         Gph         bsk         m           COM         098         642         652         Gph         bsk         m           COM         098         642         652         Gph         bsk         m           COM         098         642         76         TB             COM         108         42         76         TF             COM         108         157         213         TCk             COM         108         617         213         TCk             COM         108         641         650         Y              COM         108         70         780         G              COM         112         160         170         N.NM         k         m         m           COM         112 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                 |         |      |                   |                  |       |         |                          |                         |                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |      |                   |                  |       |         | m                        |                         |                |
| COM         098         572         582         Gph         bsk         m           COM         098         562         592         Gph         bsk         m           COM         098         662         662         Gph         bsk         m           COM         098         662         662         Gph         bsk         m           COM         108         42         76         TB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |      |                   |                  |       |         | m                        |                         |                |
| COM         098         582         592         Gph         bsk         m           COM         098         642         662         Gph         bsk         m           COM         108         42         76         TB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |      |                   |                  |       |         |                          |                         |                |
| COM         098         642         652         Oph         bsk         m           COM         008         652         662         Gph         bsk         m           COM         108         76         TS         TF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |      |                   |                  |       |         |                          |                         |                |
| COM         098         652         662         Gph         bsk         m           COM         108         42         76         TB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |      |                   |                  | -     |         |                          |                         |                |
| COM         108         42         76         TB           COM         108         76         157         TF           COM         108         213         266         TW           COM         108         232         266         TW           COM         108         633         641         Y           COM         108         633         641         Y           COM         108         633         641         Y           COM         108         770         780         G           COM         108         770         780         G           COM         112         160         170         N.NM         m           COM         112         170         180         N.YM         m           COM         112         230         240         N.H         k         s-m         s         m           COM         112         300         310         N.H         k         s-m         s         m           COM         112         400         410         N.H         s         s-m         s         m           COM         112                                                                                                                                |         |      |                   |                  |       |         |                          |                         |                |
| COM         108         76         157         TF           COM         108         157         213         TCk           COM         108         213         266         TW           COM         108         263         CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |      |                   |                  |       | bsk     | m                        |                         |                |
| COM         108         157         213         TCk           COM         108         213         266         TW           COM         108         266         283         TC           COM         108         633         641         Y           COM         108         641         650         Y           COM         108         770         780         G           COM         108         770         780         G           COM         108         770         780         G           COM         112         160         170         N.NM         m         k         w-m           COM         112         160         170         N.NM         k         m         m           COM         112         230         240         N.H         k         s-m         s         m           COM         112         310         320         N.H         k         s-m         s         m           COM         112         400         410         N.H         s         s-m         s         m           COM         112         470         480                                                                                                                       |         |      |                   |                  |       |         |                          |                         |                |
| COM         108         213         266         TW           COM         108         266         283         TC           COM         108         633         641         Y           COM         108         633         641         Y           COM         108         770         780         G           COM         108         770         780         G           COM         108         780         790         G           COM         112         160         170         N.NM         k         m           COM         112         210         230         N.H         k         s-m         s         m           COM         112         230         240         N.H         k         s-m         s         m           COM         112         300         310         N.H         k         s-m         s         m           COM         112         400         410         N.H         s-m         s         m           COM         112         460         470         X.MDbxN          COM         113         50         60         Y                                                                                                                       |         |      |                   |                  |       |         |                          |                         |                |
| COM         108         266         283         TC           COM         108         633         641         Y           COM         108         641         650         Y           COM         108         770         780         G           COM         108         780         790         G           COM         112         160         170         N.NM         b         m         k         w-m           COM         112         170         180         N.YM         k         m          m           COM         112         230         240         N.H         k         s-m         s         m           COM         112         310         320         N.H         k         s-m         s         m           COM         112         400         410         N.H         s         s-m         s         m           COM         112         460         470         X.MDbxN          COM         112         460         470         X.MDbxN          COM         113         40         50         Y         bk         w-m         qsp <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                            |         |      |                   |                  |       |         |                          |                         |                |
| COM         108         633         641         Y           COM         108         641         650         Y           COM         108         770         780         G           COM         108         770         780         G           COM         112         160         170         N.NM         b         m         k         w-m           COM         112         160         170         N.NM         k         m         C           COM         112         20         230         N.H         k         s-m         s         m           COM         112         200         310         N.H         k         s-m         s         m           COM         112         300         310         N.H         k         s-m         s         m           COM         112         400         410         N.H         s-m         s         m           COM         112         400         470         X.MDbxN         c         c         c           COM         113         40         50         Y         bk         w-m         qsp         w <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                     |         |      |                   |                  |       |         |                          |                         |                |
| COM         108         641         650         Y           COM         108         770         780         G           COM         108         780         790         G           COM         112         160         170         N.NM         b         m         k         w-m           COM         112         170         180         N.YM         k         m            COM         112         230         240         N.H         k         s-m         s         m           COM         112         230         240         N.H         k         s-m         s         m           COM         112         300         310         N.H         k         s-m         s         m           COM         112         400         410         N.H         k         s-m         s         m           COM         112         400         410         N.H         s-m         s         m           COM         113         40         50         Y         bk         w-m         qsp         w           COM         113         90         100 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                         |         |      |                   |                  |       |         |                          |                         |                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |      |                   |                  |       |         |                          |                         |                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |      |                   |                  |       |         |                          |                         |                |
| COM         112         160         170         N.NM         b         m         k         w-m           COM         112         170         180         N.YM         k         m         w-m           COM         112         220         230         N.H         k         s-m         s         m           COM         112         230         240         N.H         k         s-m         s         m           COM         112         2300         310         N.H         k         s-m         s         m           COM         112         310         320         N.H         k         s-m         s         m           COM         112         400         410         N.H         k         s-m         s         m           COM         112         400         470         X.MDbxN         c         com         m         qsp         w           COM         113         40         50         Y         bk         w-m         qsp         w           COM         113         90         100         Y         bk         w-m         qsp         w                                                                                                         |         |      |                   |                  |       |         |                          |                         |                |
| COM         112         170         180         N.YM         k         m           COM         112         220         230         N.H         k         s-m         s         m           COM         112         230         240         N.H         k         s-m         s         m           COM         112         300         310         N.H         k         s-m         s         m           COM         112         300         310         N.H         k         s-m         s         m           COM         112         400         410         N.H         s-m         s         m           COM         112         400         410         N.H         s-m         s         m           COM         112         400         470         X.MDbxN               COM         113         40         50         Y         bk         w-m         qsp         w           COM         113         90         100         Y         bk         w-m         qsp         w           COM         113         170         180 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>h</td><td></td><td>L.</td><td></td></td<>                                     |         |      |                   |                  |       | h       |                          | L.                      |                |
| COM         112         220         230         N.H         k         s-m         s         m           COM         112         230         240         N.H         k         s-m         s         m           COM         112         300         310         N.H         k         s-m         s         m           COM         112         310         320         N.H         k         s-m         s         m           COM         112         400         410         N.H         k         s-m         s         m           COM         112         400         410         N.H         k         s-m         s         m           COM         112         400         420         N.H         s-m         s         m           COM         113         40         50         Y         bk         w-m         qsp         w           COM         113         90         100         Y         bk         w-m         qsp         w           COM         113         100         110         Y         bk         m-s         qsp         w           COM         1                                                                                                   |         |      |                   |                  |       |         |                          | к                       | w-m            |
| COM         112         230         240         N.H         k         s-m         s         m           COM         112         300         310         N.H         k         s-m         s         m           COM         112         310         320         N.H         k         s-m         s         m           COM         112         400         410         N.H         k         s-m         s         m           COM         112         400         420         N.H         K         s-m         s         m           COM         112         460         470         X.MDbxN               COM         113         40         50         Y         bk         w-m         qsp         w           COM         113         90         100         Y         bk         w-m         qsp         w           COM         113         100         110         Y         bk         w-m         qsp         w           COM         113         170         180         G-p         k         m-s         qsp         w           COM                                                                                                                                   |         |      |                   |                  |       |         |                          |                         |                |
| COM         112         300         310         N.H         k         s-m         s         m           COM         112         310         320         N.H         k         s-m         s         m           COM         112         400         410         N.H         k         s-m         s         m           COM         112         410         420         N.H         k         s-m         s         m           COM         112         460         470         X.MDbxN               COM         112         470         480         X.MDbxN                COM         113         40         50         Y         bk         w-m         qsp         w           COM         113         90         100         Y         bk         w-m         qsp         w           COM         113         100         110         Y         bk         m-s         qsp         w           COM         113         170         180         G-p         k         m-s         qsp         w                                                                                                                                                                                  |         |      |                   |                  |       |         |                          |                         |                |
| COM         112         310         320         N.H         k         s-m         s         m           COM         112         400         410         N.H                    N.H                   N.H                 Multiple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |      |                   |                  |       |         |                          |                         |                |
| COM         112         400         410         N.H           COM         112         410         420         N.H           COM         112         460         470         X.MDbxN           COM         112         470         480         X.MDbxN           COM         113         40         50         Y         bk         w-m         qsp         w           COM         113         50         60         Y         bk         w-m         qsp         w           COM         113         90         100         Y         bk         w-m         qsp         w           COM         113         100         110         Y         bk         w-m         qsp         w           COM         113         100         110         Y         bk         m-m         qsp         w           COM         113         180         190         G-p         k         m-s         qsp         w           COM         113         360         370         Y         bk         m         qsp         w           COM         113         510         520         Y         b                                                                                                  |         |      |                   |                  |       |         |                          |                         |                |
| COM         112         410         420         N.H           COM         112         460         470         X.MDbxN           COM         112         470         480         X.MDbxN           COM         113         40         50         Y         bk         w-m         qsp         w           COM         113         50         60         Y         bk         w-m         qsp         w           COM         113         90         100         Y         bk         w-m         qsp         w           COM         113         90         100         Y         bk         w-m         qsp         w           COM         113         100         110         Y         bk         w-m         qsp         w           COM         113         100         110         Y         bk         m-s         qsp         w           COM         113         300         370         Y         bk         m         qsp         w           COM         113         370         380         Y         bk         m         qsp         m-s           COM         113 <td></td> <td></td> <td></td> <td></td> <td></td> <td>N</td> <td>3-111</td> <td>3</td> <td>111</td> |         |      |                   |                  |       | N       | 3-111                    | 3                       | 111            |
| COM         112         460         470         X.MDbxN           COM         112         470         480         X.MDbxN           COM         113         40         50         Y         bk         w-m         qsp         w           COM         113         50         60         Y         bk         w-m         qsp         w           COM         113         50         60         Y         bk         w-m         qsp         w           COM         113         90         100         Y         bk         w-m         qsp         w           COM         113         100         110         Y         bk         w-m         qsp         w           COM         113         100         110         Y         bk         m-s         qsp         w           COM         113         180         190         G-p         k         m-s         qsp         w           COM         113         360         370         Y         bk         m         qsp         m-s           COM         113         510         520         Y         bk         m         qsp <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>    |         |      |                   |                  |       |         |                          |                         |                |
| COM         112         470         480         X.MDbxN           COM         113         40         50         Y         bk         w-m         qsp         w           COM         113         50         60         Y         bk         w-m         qsp         w           COM         113         90         100         Y         bk         w-m         qsp         w           COM         113         100         110         Y         bk         w-m         qsp         w           COM         113         100         110         Y         bk         w-m         qsp         w           COM         113         100         110         Y         bk         m-m         qsp         w           COM         113         170         180         G-p         k         m-s         qsp         w           COM         113         360         370         Y         bk         m         qsp         w           COM         113         510         520         Y         bk         m         qsp         m-s           COM         114         0         55                                                                                                     |         |      |                   |                  |       |         |                          |                         |                |
| COM         113         40         50         Y         bk         w-m         qsp         w           COM         113         50         60         Y         bk         w-m         qsp         w           COM         113         90         100         Y         bk         w-m         qsp         w           COM         113         100         110         Y         bk         w-m         qsp         w           COM         113         100         110         Y         bk         w-m         qsp         w           COM         113         100         110         Y         bk         m-m         qsp         w           COM         113         170         180         G-p         k         m-s         qsp         w           COM         113         360         370         Y         bk         m         qsp         w           COM         113         510         520         Y         bk         m         qsp         m-s           COM         113         520         530         Y         bk         m         qsp         m-s <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>          |         |      |                   |                  |       |         |                          |                         |                |
| COM         113         50         60         Y         bk         w-m         qsp         w           COM         113         90         100         Y         bk         w-m         qsp         w           COM         113         100         110         Y         bk         w-m         qsp         w           COM         113         170         180         G-p         k         m-s         qsp         w           COM         113         170         180         G-p         k         m-s         qsp         w           COM         113         180         190         G-p         k         m-s         qsp         w           COM         113         360         370         Y         bk         m         qsp         w           COM         113         360         370         Y         bk         m         qsp         w           COM         113         510         520         Y         bk         m         qsp         m-s           COM         114         0         55         OB                                                                                                                                                          |         |      |                   |                  |       | bk      | w-m                      | asp                     | W              |
| COM         113         90         100         Y         bk         w-m         qsp         w           COM         113         100         110         Y         bk         w-m         qsp         w           COM         113         170         180         G-p         k         m-s         qsp         w           COM         113         170         180         G-p         k         m-s         qsp         w           COM         113         180         190         G-p         k         m-s         qsp         w           COM         113         360         370         Y         bk         m         qsp         w           COM         113         360         370         Y         bk         m         qsp         w           COM         113         510         520         Y         bk         m         qsp         m-s           COM         113         520         530         Y         bk         m         qsp         m-s           COM         114         0         55         OB                                                                                                                                                        |         |      |                   |                  |       |         |                          |                         |                |
| COM         113         100         110         Y         bk         w-m         qsp         w           COM         113         170         180         G-p         k         m-s         qsp         w           COM         113         180         190         G-p         k         m-s         qsp         w           COM         113         180         190         G-p         k         m-s         qsp         w           COM         113         360         370         Y         bk         m         qsp         w           COM         113         360         370         Y         bk         m         qsp         w           COM         113         510         520         Y         bk         m         qsp         m-s           COM         113         520         530         Y         bk         m         qsp         m-s           COM         114         0         55         OB                                                                                                                                                                                                                                                                |         |      |                   |                  |       |         |                          |                         |                |
| COM         113         170         180         G-p         k         m-s         qsp         w           COM         113         180         190         G-p         k         m-s         qsp         w           COM         113         360         370         Y         bk         m         qsp         w           COM         113         360         370         Y         bk         m         qsp         w           COM         113         370         380         Y         bk         m         qsp         w           COM         113         510         520         Y         bk         m         qsp         m-s           COM         113         520         530         Y         bk         m         qsp         m-s           COM         114         0         55         OB                                                                                                                                                                                                                                                                                                                                                                            |         |      |                   |                  |       |         |                          |                         |                |
| COM         113         180         190         G-p         k         m-s         qsp         w           COM         113         360         370         Y         bk         m         qsp         w           COM         113         370         380         Y         bk         m         qsp         w           COM         113         370         380         Y         bk         m         qsp         w           COM         113         510         520         Y         bk         m         qsp         m-s           COM         113         520         530         Y         bk         m         qsp         m-s           COM         114         0         55         OB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |      |                   |                  |       |         |                          |                         |                |
| COM       113       360       370       Y       bk       m       qsp       w         COM       113       370       380       Y       bk       m       qsp       w         COM       113       510       520       Y       bk       m       qsp       m-s         COM       113       510       520       Y       bk       m       qsp       m-s         COM       113       520       530       Y       bk       m       qsp       m-s         COM       114       0       55       OB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |      |                   |                  |       |         |                          |                         |                |
| COM       113       370       380       Y       bk       m       qsp       w         COM       113       510       520       Y       bk       m       qsp       m-s         COM       113       520       530       Y       bk       m       qsp       m-s         COM       113       520       530       Y       bk       m       qsp       m-s         COM       114       0       55       OB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |      |                   |                  |       |         |                          |                         |                |
| COM       113       510       520       Y       bk       m       qsp       m-s         COM       113       520       530       Y       bk       m       qsp       m-s         COM       114       0       55       OB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |      |                   |                  |       |         |                          |                         |                |
| COM       113       520       530       Y       bk       m       qsp       m-s         COM       114       0       55       OB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |      |                   |                  |       |         |                          |                         |                |
| COM       114       0       55       OB         COM       114       55       62       Pp         COM       114       62       70       Pp         COM       114       90       97       Pp         COM       114       97       104       Pp         COM       114       180       190       Ppk       I       m       kqspm       m-s         COM       114       190       200       Pp-k       e       m       I       m         COM       114       290       296       Ppk       k       w       W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |      |                   |                  |       |         |                          |                         |                |
| COM       114       55       62       Pp         COM       114       62       70       Pp         COM       114       90       97       Pp         COM       114       97       104       Pp         COM       114       180       190       Ppk       I       m       kqspm       m-s         COM       114       190       200       Pp-k       e       m       I       m         COM       114       290       296       Ppk       k       w       W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 114  | 0                 | 55               | OB    |         |                          |                         |                |
| COM         114         62         70         Pp           COM         114         90         97         Pp           COM         114         97         104         Pp           COM         114         180         190         Ppk         I         m         kqspm         m-s           COM         114         190         200         Pp-k         e         m         I         m           COM         114         290         296         Ppk         k         w         V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |      |                   |                  | Рр    |         |                          |                         |                |
| COM         114         97         104         Pp           COM         114         180         190         Ppk         I         m         kqspm         m-s           COM         114         190         200         Pp-k         e         m         I         m           COM         114         290         296         Ppk         k         w         V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |      |                   |                  |       |         |                          |                         |                |
| COM         114         97         104         Pp           COM         114         180         190         Ppk         I         m         kqspm         m-s           COM         114         190         200         Pp-k         e         m         I         m           COM         114         290         296         Ppk         k         w         V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | СОМ     | 114  | 90                | 97               | Рр    |         |                          |                         |                |
| COM         114         190         200         Pp-k         e         m         I         m           COM         114         290         296         Ppk         k         w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | COM     | 114  | 97                | 104              |       |         |                          |                         |                |
| COM         114         190         200         Pp-k         e         m         I         m           COM         114         290         296         Ppk         k         w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |      |                   |                  | Ppk   | Ι       | m                        | kqspm                   | m-s            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |      |                   |                  |       | е       | m                        |                         |                |
| COM 114 296 303 Ppk k w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |      |                   |                  |       |         | W                        |                         |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | СОМ     | 114  | 296               | 303              | Ppk   | k       | W                        |                         |                |

|         |       | IN       | TERVAL   |        | ALTERATION |                 |              |                 |  |
|---------|-------|----------|----------|--------|------------|-----------------|--------------|-----------------|--|
| COMPANY | HOLE_ | ID FROM_ | FT TO_FT | LITHO  | Early I    | Type Early Inte | ens. Late Ty | pe Late Intens. |  |
| СОМ     | 114   | 310      | 320      | X.MDxN | b          | m               |              |                 |  |
| СОМ     | 114   | 320      | 330      | X.MDxN | b          | m               |              |                 |  |
| СОМ     | 114   | 400      | 410      | X.MD#b | k          | m-s             | qsp-k        | S               |  |
| СОМ     | 114   | 410      | 420      | X.MD#b | k          | m-s             | qsp-k        | S               |  |
| СОМ     | 114   | 460      | 470      | X.MD#b | k          | m-s             | qsp-k        | S               |  |
| COM     | 114   | 470      | 481      | X.MD#b | k          | m-s             | qsp-k        | S               |  |
| СОМ     | 115   | 13.5     | 54       | TC     |            |                 |              |                 |  |
| СОМ     | 115   | 54       | 264      | TW     |            |                 |              |                 |  |
| COM     | 115   | 280      | 290      | TA pd  | у          | m-s             | S            | m               |  |
| COM     | 115   | 290      | 300      | TA pd  | у          | m-s             | S            | m               |  |
| COM     | 115   | 300      | 310      | Y-W    | #m         | S               | S            | m-s             |  |
| СОМ     | 115   | 310      | 320      | Y-W    | #m         | S               | S            | m-s             |  |
| СОМ     | 115   | 410      | 420      | Y      | S          | w-m             | qsp          | m               |  |
| СОМ     | 115   | 420      | 430      | Y      | S          | w-m             | qsp          | m               |  |
| СОМ     | 116   | 77       | 116      | TBd    |            |                 |              |                 |  |
| СОМ     | 116   | 116      | 143      | TBd    |            |                 |              |                 |  |
| СОМ     | 116   | 359.5    | 465      | TBd    |            |                 |              |                 |  |
| СОМ     | 116   | 465      | 560      | TBd    |            |                 |              |                 |  |
| COM     | 116   | 570      | 580      | Gp     | kb         | m               | qsp          | m               |  |
| СОМ     | 116   | 580      | 590      | Gp     | kb         | m               | qsp          | m               |  |
| СОМ     | 116   | 630      | 640      | Gp     | kb         | m               | qsp          | m               |  |
| СОМ     | 116   | 640      | 650      | Gp     | kb         | m               | qsp          | m               |  |
| COM     | 116   | 780      | 790      | Gp     | kb         | m               | qsp          | m-s             |  |
| COM     | 116   | 790      | 802      | Gp     | kb         | m               | qsp          | m-s             |  |
| COM     | 116   | 820      | 830      | Y      | b-k        | m               | qsp          | w-m             |  |
| СОМ     | 116   | 830      | 840      | Y      | b-k        | m               | qsp          | w-m             |  |
| COM     | 116   | 890      | 900      | Y      | b-k        | m               | qsp          | w-m             |  |
| СОМ     | 116   | 900      | 908      | Y      | b-k        | m               | qsp          | w-m             |  |
| COM     | 116   | 948      | 957      | D-b    | b-k        | m               | qsp          | m-s             |  |
| COM     | 116   | 957      | 966      | D-b    | b-k        | m               | qsp          | m-s             |  |
| СОМ     | 117   | 0        | 52.5     | OB     |            |                 |              |                 |  |
| СОМ     | 117   | 70       | 80       | N.M    |            |                 | iz           | S               |  |
| COM     | 117   | 80       | 90       | N.M    |            |                 | iz           | S               |  |
| COM     | 117   | 160      | 167      | Mpk-N  |            |                 |              |                 |  |
| СОМ     | 117   | 167      | 174      | Mpk-N  |            |                 |              |                 |  |
| COM     | 117   | 190      | 200      | N.YM   |            |                 |              |                 |  |
| COM     | 117   | 200      | 210      | N.YM   |            |                 |              |                 |  |
| COM     | 117   | 233      | 240      | Mp-k   | b          | m               |              |                 |  |
| COM     | 117   | 240      | 250      | Mp-k   | b          | m               |              |                 |  |
| COM     | 117   | 300      | 310      | Gp-k   | m          | m               | k            | m-s             |  |
| COM     | 117   | 310      | 320      | Gp-k   | m          | m               | k            | m-s             |  |
| COM     | 117   | 560      | 570      | Gpk    | k          | m               | qsp          | w-m             |  |
| СОМ     | 117   | 570      | 579      | Gpk    | k          | m               | qsp          | w-m             |  |

|         |      |            | ERVAL |         |       |                    | RATION    |                  |
|---------|------|------------|-------|---------|-------|--------------------|-----------|------------------|
| COMPANY | HOLE | _ID FROM_F |       | LITHO   | Early | y Type Early Inten | s. Late T | ype Late Intens. |
| COM     | 117  | 590        | 600   | Y       | b     | m-s                | k         | m                |
| СОМ     | 117  | 600        | 610   | Y       | b     | m-s                | k         | m                |
| СОМ     | 117  | 630        | 640   | Y       | b     | m-s                | k         | m                |
| СОМ     | 117  | 640        | 650   | Y       | b     | m-s                | k         | m                |
| COM     | 117  | 1055       | 1063  | TBd     |       |                    |           |                  |
| СОМ     | 117  | 1063       | 1071  | TBd     |       |                    |           |                  |
| СОМ     | 118  | 150        | 160   | NY      | k     | m                  |           |                  |
| СОМ     | 118  | 160        | 170   | NY      | k     | m                  |           |                  |
| COM     | 118  | 190        | 200   | Z.N     |       |                    |           |                  |
| СОМ     | 118  | 200        | 210   | Z.N     |       |                    |           |                  |
| СОМ     | 118  | 220        | 230   | Y       |       |                    |           |                  |
| СОМ     | 118  | 230        | 240   | Y       |       |                    |           |                  |
| COM     | 118  | 260        | 270   | Y       |       |                    |           |                  |
| СОМ     | 118  | 270        | 278   | Y       |       |                    |           |                  |
| COM     | 118  | 336        | 345   | Tbd     |       |                    |           |                  |
| СОМ     | 118  | 345        | 355   | Tbd     |       |                    |           |                  |
| COM     | 118  | 390        | 400   | TBd     |       |                    |           |                  |
| СОМ     | 118  | 400        | 410   | TBd     |       |                    |           |                  |
| COM     | 118  | 468        | 478   | Mkp-x   |       |                    | bl        | m                |
| СОМ     | 118  | 478        | 488   | Mkp-x   |       |                    | bl        | m                |
| СОМ     | 118  | 497        | 507   | N/DYM   | qs    | S                  |           |                  |
| СОМ     | 118  | 507        | 515   | N/DYM   | qs    | S                  |           |                  |
| СОМ     | 118  | 519.5      | 527   | Y       |       |                    |           |                  |
| СОМ     | 118  | 527        | 535   | Y       |       |                    |           |                  |
| COM     | 118  | 565        | 575   | Y       | b     | m                  |           |                  |
| СОМ     | 118  | 575        | 585   | Y       | b     | m                  |           |                  |
| COM     | 118  | 650        | 660   | D/N#b   |       |                    | qs        | m                |
| COM     | 118  | 660        | 670   | D/N#b   |       |                    | qs        | m                |
| COM     | 118  | 710        | 720   | Np#b D? |       |                    | bl        | m                |
| СОМ     | 118  | 720        | 730   | Np#b D? |       |                    | bl        | m                |
| COM     | 118  | 760        | 770   | D       | b     | W                  |           |                  |
| СОМ     | 118  | 770        | 780   | D       | b     | W                  |           |                  |
| COM     | 118  | 890        | 900   | N/D     |       |                    |           |                  |
| COM     | 118  | 900        | 910   | N/D     |       |                    |           |                  |
| COM     | 118  | 980        | 990   | N-pY    | k     | w-m                |           |                  |
| СОМ     | 118  | 990        | 1000  | NY-D    | bl    | m                  |           |                  |
| COM     | 118  | 1040       | 1050  | N.Y-D   | bl    | m                  |           |                  |
| СОМ     | 118  | 1050       | 1060  | N.Y-D   | bl    | m                  |           |                  |
| COM     | 118  | 1220       | 1230  | WY      | 1     | m                  |           |                  |
| COM     | 118  | 1230       | 1238  | WY      |       | m                  |           |                  |
| СОМ     | 118  | 1300       | 1310  | Y       |       |                    | q         | m                |
| СОМ     | 118  | 1310       | 1320  | Y       |       |                    | q         | m                |
| COM     | 118  | 1480       | 1490  | X.YxN   |       |                    |           |                  |
| COM     | 118  | 1490       | 1500  | X.YxN   |       |                    |           |                  |
| СОМ     | 120  | 75         | 85    | OB      |       |                    |           |                  |
| COM     | 120  | 85         | 95    | OB      |       |                    |           |                  |
| СОМ     | 120  | 116        | 124   | R/Db    | b     | m                  | qsp       | m                |
| COM     | 120  | 124        | 130   | R/Db    | b     | m                  | qsp       | m                |

|            |              |            | ERVAL      |        |              | AL            | <b>TERATION</b> |                |
|------------|--------------|------------|------------|--------|--------------|---------------|-----------------|----------------|
| COMPANY    | HOLE_        | ID FROM_F  |            | LITHO  | Early T      | ype Early Int | ens. Late Typ   | e Late Intens. |
| СОМ        | 120          | 260        | 270        | R/Db   | bela         | m             | qsp             | m-w            |
| COM        | 120          | 270        | 280        | R/Db   | bela         | m             | qsp             | m-w            |
| COM        | 120          | 380        | 390        | R/Db   | bela         | m             | qsp             | m-w            |
| COM        | 120          | 390        | 400        | R/Db   | bela         | m             | qsp             | m-w            |
| NDM        | 2001         | 0          | 130        | Ob     |              |               |                 |                |
| NDM        | 2001         | 130        | 150        | Kqs    |              |               |                 |                |
| NDM        | 2003         | 210        | 230        | Kgde   |              |               |                 |                |
| NDM        | 2003         | 335        | 356        | Kgde   |              |               |                 |                |
| NDM        | 2026         | 50         | 70         | Kq     |              |               |                 |                |
| NDM        | 2026         | 190        | 210        | Kq     |              |               |                 |                |
| NDM        | 2028         | 55         | 75.5       | G/N    |              |               |                 |                |
| NDM        | 2028         | 155        | 175        | Y      |              |               |                 |                |
| NDM        | 2028         | 310        | 330        | G      |              |               |                 |                |
| NDM        | 2028         | 430        | 450        | Y      |              |               |                 |                |
| NDM        | 2036         | 421        | 430        | W      | b-k          | m-s           | qsp             | w-m            |
| NDM        | 2036         | 430        | 440        | W      | b-k          | m-s           | qsp             | w-m            |
| NDM        | 2036         | 500        | 510        | G-p    | bk           | m             | qsp             | m-s            |
| NDM        | 2036         | 510        | 520        | G-p    | bk           | m             | qsp             | m-s            |
| NDM        | 2036         | 540        | 550        | Y      | b-k          | m-s           | qsp             | w              |
| NDM        | 2036         | 550        | 563.5      | Y      | b-k          | m-s           | qsp             | W              |
| NDM        | 2036         | 570        | 580        | G-p    | bk           | m             | qsp             | m-s            |
| NDM        | 2036         | 580        | 590        | G-p    | bk           | m             | qsp             | m-s            |
| NDM        | 2036         | 660        | 670        | G-p    | bk           | m             | qsp             | m-s            |
| NDM        | 2036         | 670        | 681.8      | G-p    | bk           | m             | qsp             | m-s            |
| NDM        | 2036         | 700        | 710        | G-p    | bk           | m             | qsp             | m-s            |
| NDM        | 2036         | 710        | 720        | G-p    | bk           | m             | qsp             | m-s            |
| NDM        | 3069         | 0          | 95.5       | Ob     | -            |               |                 |                |
| NDM        | 3069         | 127        | 137        | D      | b            |               | sp              |                |
| NDM        | 3069         | 137        | 147        | D      | b            |               | sp              |                |
|            | 3069         | 247        | 257        | Z      | У            |               |                 |                |
| NDM        | 3069         | 257        | 267        | Z      | у            |               |                 |                |
| NDM        | 3069         | 287        | 297        | G      | sq           |               | -b              |                |
| NDM        | 3069         | 297        | 307        | G      | sq           |               | -b              |                |
| NDM<br>NDM | 3069<br>3069 | 347<br>257 | 357        | D<br>D | b            |               | -sqp            |                |
|            |              | 357        | 367        | D      | b            |               | -sqp            |                |
| NDM<br>NDM | 3069<br>3069 | 397<br>407 | 407<br>417 | D      | b<br>b       |               | -sqp            |                |
| NDM        | 3069         | 407        | 417        | Y      | b<br>b-k     |               | -sqp            |                |
|            |              |            |            |        |              |               | sq              |                |
| NDM<br>NDM | 3069<br>3069 | 487<br>497 | 497<br>507 | Y<br>Y | b-k<br>b-k   |               | sq              |                |
| NDM        | 3069         | 627        | 637        | Y      | b-k          |               | sq<br>sq-p      |                |
| NDM        | 3069<br>3069 | 637        | 647        | Y      | b-k          |               | sq-p<br>sq-p    |                |
| NDM        | 3069         | 707        | 717        | G      |              |               | k-b             |                |
| NDM        | 3069<br>3069 | 707        | 727        | G      | sqyp<br>sqyp |               | k-b             |                |
| NDM        | 3069         | 807        | 817        | G      | sqp          |               | k-b             |                |
| NDM        | 3069         | 817        | 827        | G      | sqp<br>sqp   |               | k-b             |                |
| NDM        | 3069         | 927        | 937        | G      | sqp          |               | k-b             |                |
| NDM        | 3069         | 937        | 947        | G      | sqp          |               | k-b             |                |
|            | 3003         | 501        | 170        | 0      | JAh          |               | ΝD              |                |

| COMPANY | HOLE_ | INT<br>ID FROM_I | FERVAL     | LITHO  | Early Type | ALTERATION<br>Early Intens. Late Type Late Intens. |
|---------|-------|------------------|------------|--------|------------|----------------------------------------------------|
| NDM     | 3069  | 1077             | 1087       | G      | sqp        | k-b                                                |
| NDM     | 3069  | 1087             | 1097       | G      | sqp        | k-b                                                |
| NDM     | 3070  | 0                | 45         | Ob     |            |                                                    |
| NDM     | 3070  | 74               | 84         | D      | sy-q       | b                                                  |
| NDM     | 3070  | 84               | 94         | D      | sy-q       | b                                                  |
| NDM     | 3070  | 204              | 214        | D      | b          | sp                                                 |
| NDM     | 3070  | 214              | 224        | D      | b          | sp                                                 |
| NDM     | 3070  | 284              | 294        | D      | b          | sp                                                 |
| NDM     | 3070  | 294              | 304        | D      | b          | sp                                                 |
| NDM     | 3070  | 464              | 474        | Y      | b          | sqp                                                |
| NDM     | 3070  | 474              | 484        | Y      | b          | sqp                                                |
| NDM     | 3070  | 594              | 604        | G-p    | +qsp       | "                                                  |
| NDM     | 3070  | 604              | 614        | G-p    | +qsp       |                                                    |
| NDM     | 3070  | 634              | 644        | G-p    | +qsp       |                                                    |
| NDM     | 3070  | 644              | 654        | G-p    | +qsp       |                                                    |
| NDM     | 3079  | 499              | 509        | D      | b          | qsp                                                |
| NDM     | 3079  | 509              | 519        | D      | b          | qsp                                                |
| NDM     | 3079  | 589              | 599        | TAd    |            | ٦٣٢                                                |
| NDM     | 3080  | 75.4             | 85         | D      | eb         | р                                                  |
| NDM     | 3080  | 85               | 95         | D      | eb         | p                                                  |
| NDM     | 3080  | 129              | 139        | G      | sd         | s                                                  |
| NDM     | 3080  | 139              | 149        | G      | sd         | s<br>s                                             |
| NDM     | 3080  | 179              | 149        | G      | sd         |                                                    |
| NDM     | 3080  | 189              | 199        | G      |            | S                                                  |
| NDM     | 3080  | 375              | 385        | D      | qsp<br>b   |                                                    |
| NDM     | 3080  | 385              | 385<br>394 | D      | b          |                                                    |
| NDM     | 3080  | 394              | 409        | Y<br>Y | b          |                                                    |
| NDM     | 3080  | 394<br>409       | 409<br>419 | Y      | b          |                                                    |
| NDM     | 3080  | 409 479          | 419        | Y      |            |                                                    |
| NDM     | 3080  | 479<br>489       | 489<br>499 | r<br>Y | sqp        |                                                    |
| NDM     | 3080  | 489<br>549       | 499<br>559 | G^f    | sqp        |                                                    |
| NDM     |       | 549<br>559       |            | G^f    | spq        |                                                    |
|         | 3080  |                  | 569        |        | sd         |                                                    |
|         | 3080  | 669<br>670       | 679<br>680 | G^f    | qsp        |                                                    |
| NDM     | 3080  | 679              | 689        | G^f    | s-d        |                                                    |
| NDM     | 3080  | 799              | 809        | G^f    | -sd        | qsp                                                |
| NDM     | 3080  | 809              | 819        | G^f    | -sd        | qsp                                                |
| NDM     | 3080  | 869              | 879        | Y      | -bk        | -qsp                                               |
| NDM     | 3080  | 879              | 889        | Y      | -bk        | -qsp                                               |
| NDM     | 3083  | 599              | 608        | Y      | b-k        | -qsp                                               |
| NDM     | 3083  | 608              | 619        | Y      | b-k        | -qsp                                               |
| NDM     | 3083  | 639              | 649        | Y      | b-k        | -qsp                                               |
| NDM     | 3083  | 649              | 652        | Y      | b-k        | -qsp                                               |
| NDM     | 3083  | 719              | 729        | Y      | b          | -qsp                                               |
| NDM     | 3083  | 729              | 739        | Y      | b          | -qsp                                               |
| NDM     | 3086  | 629              | 639        | N.Y-M  | b          | -qs                                                |
| NDM     | 3086  | 639              | 649        | N.Y-M  | b          | -qs                                                |
| NDM     | 3086  | 779              | 789        | N.D-YM | b          | S                                                  |
| NDM     | 3086  | 789              | 799        | N.D-YM | b          | S                                                  |
| NDM     | 3086  | 865.5            | 879        | N.M    | b          | -k                                                 |

|         |       |           | ERVAL   |          |              | ALTERATION                           |
|---------|-------|-----------|---------|----------|--------------|--------------------------------------|
| COMPANY | HOLE_ | ID FROM_F | Г TO_FT | LITHO    | Early Type 1 | Early Intens. Late Type Late Intens. |
| NDM     | 3086  | 879       | 889     | N.M      | b            | -k                                   |
| NDM     | 3086  | 908.6     | 919     | TDd      |              |                                      |
| NDM     | 3086  | 949       | 959     | N.M      | b            | -k                                   |
| NDM     | 3086  | 959       | 969     | N.M      | b            | -k                                   |
| NDM     | 3086  | 979       | 980.9   | N.MY     | b            |                                      |
| NDM     | 3086  | 980.9     | 991.6   | TBd      |              |                                      |
| NDM     | 3086  | 1009      | 1018.5  | P-k      |              | b                                    |
| NDM     | 3086  | 1018.5    | 1027    | Pk       |              | bk                                   |
| NDM     | 3086  | 1109      | 1117.3  | Y        | b            |                                      |
| NDM     | 3086  | 1117.3    | 1121.1  | Y        | b            | k                                    |
| NDM     | 3086  | 1121.1    | 1126.2  | TBd      |              |                                      |
| NDM     | 3086  | 1236.4    | 1245.4  | N        | bk           | d                                    |
| NDM     | 3086  | 1245.4    | 1255.4  | N        | bk           | d                                    |
| NDM     | 3086  | 1319      | 1329    | G        | wy           | b                                    |
| NDM     | 3086  | 1329      | 1338    | G        | wy           | b                                    |
| NDM     | 3087  | 22.5      | 29      | Y        |              |                                      |
| NDM     | 3087  | 29        | 39.8    | Y        |              |                                      |
| NDM     | 3087  | 164       | 165.7   | G        | qspd         |                                      |
| NDM     | 3087  | 165.7     | 170.5   | G        | qspd         |                                      |
| NDM     | 3087  | 170.5     | 180.5   | G        | qspd         |                                      |
| NDM     | 3087  | 209       | 219     | Y        |              | d                                    |
| NDM     | 3087  | 219       | 229     | Y        |              | d                                    |
| NDM     | 3087  | 359       | 369     | Y        |              |                                      |
| NDM     | 3087  | 369       | 379     | Y        |              |                                      |
| NDM     | 3087  | 509       | 519     | Y        |              |                                      |
| NDM     | 3087  | 519       | 528.4   | Y        |              |                                      |
| NDM     | 3087  | 539       | 549     | D        | b            |                                      |
| NDM     | 3087  | 549       | 559     | D        | b            |                                      |
| NDM     | 3087  | 786.5     | 798.5   | Dxq      | q-p          |                                      |
| NDM     | 3087  | 798.5     | 809     | D        |              |                                      |
| NDM     | 3087  | 869.3     | 879     | Yxq      | qd           |                                      |
| NDM     | 3087  | 879       | 889     | Yxq      | qd           |                                      |
| NDM     | 3087  | 905.2     | 911.7   | Mk.Y     | •            |                                      |
| NDM     | 3087  | 911.7     | 919.3   | Mk.Y     |              |                                      |
| NDM     | 3087  | 979       | 989     | М        | b            |                                      |
| NDM     | 3087  | 989       | 999     | M        | b            |                                      |
| NDM     | 3087  | 1046.7    | 1057    | YxN/N.Y  | q            |                                      |
| NDM     | 3087  | 1057      | 1067    | YXN,Yxq  | q            |                                      |
| NDM     | 3087  | 1143.2    | 1155.1  | X.YP     | ·            |                                      |
| NDM     | 3087  | 1155.1    | 1159    | X.YP     | qs           |                                      |
| NDM     | 3096  | 0         | 58      | OB       | ·            |                                      |
| NDM     | 3096  | 58        | 68      | X.YMxN(? | ' <b>)</b>   | k,s,y                                |
| NDM     | 3096  | 68        | 78      | X.YM-DxN |              | k,s,y                                |
| NDM     | 3096  | 108       | 118     | X.YM-DxN |              | k,s,y                                |
| NDM     | 3096  | 118       | 128     | X.YM-DxN |              | k,s,y                                |
| NDM     | 3096  | 168       | 178     | N.DYM-   |              |                                      |
| NDM     | 3096  | 178       | 188     | N.DYM-   |              |                                      |
| NDM     | 3096  | 235       | 248     | Y        | k            | y,s                                  |
| NDM     | 3096  | 248       | 258     | Ŷ        | k            | y,s                                  |
|         |       | -         |         |          |              | J / -                                |

|            |              |            | ERVAL        |          |          | ALTERATION                              |
|------------|--------------|------------|--------------|----------|----------|-----------------------------------------|
| COMPANY    | HOLE         | _ID FROM_F | T TO_FT      | LITHO    | Early Ty | pe Early Intens. Late Type Late Intens. |
| NDM        | 3096         | 318        | 328          | Y        | k        | y,s                                     |
| NDM        | 3096         | 328        | 338          | Y        | k        | y,s                                     |
| NDM        | 3096         | 418        | 428          | Y        | k        | s,y                                     |
| NDM        | 3096         | 428        | 438          | Y        | k        | s,y                                     |
| NDM        | 3096         | 718        | 728          | Х        | k        | y,s                                     |
| NDM        | 3096         | 728        | 738          | Х        | k        | y,s                                     |
| NDM        | 3096         | 788        | 798          | Ν        | k,h      | y,p                                     |
| NDM        | 3096         | 798        | 808          | N        | k,h      | y,p                                     |
| NDM        | 3096         | 1006       | 1014         | Х        | k        | y,I,s                                   |
| NDM        | 3096         | 1014       | 1018         | Х        | k        | y,l,s                                   |
| NDM        | 3096         | 1088       | 1098         | Tbd      |          |                                         |
| NDM        | 3096         | 1098       | 1108         | Tbd      |          |                                         |
| NDM        | 3096         | 1158       | 1168         | Х        | k        | l,s                                     |
| NDM        | 3096         | 1228       | 1238         | М        | k        | I                                       |
| NDM        | 3096         | 1238       | 1248         | Μ        |          |                                         |
| NDM        | 3096         | 1258       | 1268         | Y        | q        | k,s,l                                   |
| NDM        | 3096         | 1328       | 1338         | М        | k        | l,s                                     |
| NDM        | 3096         | 1338       | 1348         | M        | k        | l,s                                     |
| NDM        | 3096         | 1388       | 1398         | Р        | k        | s,i                                     |
| NDM        | 3096         | 1398       | 1408         | Р        | k        | s,i                                     |
| NDM        | 3096         | 1518       | 1528         | Р        | k        | s,i                                     |
| NDM        | 3096         | 1528       | 1538         | P        | k        | s,i                                     |
| NDM        | 3096         | 1748       | 1758         | G-q      | k        |                                         |
| NDM        | 3096         | 1758       | 1768         | G-q      | k        |                                         |
| NDM        | 3098         | 138        | 148          | N-p      | b        |                                         |
| NDM        | 3098         | 148        | 158          | N-p      | b        |                                         |
| NDM        | 3098         | 238        | 248          | Mpk      | y        |                                         |
| NDM        | 3098         | 248        | 258.2        | Mpk      | y        |                                         |
| NDM        | 3098         | 353        | 362.6        | M-k      | k        |                                         |
| NDM        | 3098         | 362.6      | 370.6        | M-k      | k        |                                         |
| NDM        | 3098         | 418        | 428          | Y        | kb       |                                         |
| NDM        | 3098         | 428        | 438          | Ŷ        | kb       |                                         |
| NDM        | 3098         | 488        | 498          | Y-xk-pd  | k        |                                         |
| NDM        | 3098         | 498        | 508          | Y-xk-pd  | k        |                                         |
| NDM        | 3098         | 656        | 666          | Y-w      | kb       |                                         |
| NDM        | 3098         | 666        | 676          | Y-w      | kb       |                                         |
| NDM        | 3098         | 712.2      | 717          | G        | ky       | V                                       |
| NDM        | 3098         | 717        | 727          | G        | ky<br>ky | У<br>У                                  |
| NDM        | 3098         | 778        | 788          | G        | ky<br>ky |                                         |
| NDM        | 3098         | 788        | 788<br>792   | G        | ку<br>ky | У<br>У                                  |
| NDM        | 3098         | 908        | 918          | G        | ку       | y<br>ykd                                |
| NDM        | 3098<br>3098 | 908<br>918 | 918<br>928   | G<br>G\  | yk       | уки                                     |
| NDM        | 3098         | 1198       | 1208         | G        | уп       |                                         |
| NDM        | 3098         | 1208       | 1208         | G        |          |                                         |
|            |              |            |              | X.M/Mx   |          |                                         |
| NDM<br>NDM | 3101         | 110        | 118          |          |          |                                         |
|            | 3101         | 118        | 138          | X.M/Mx   |          | and                                     |
|            | 3101         | 240.3      | 251<br>261 5 | Yxqd     | У        | dbq<br>ada                              |
| NDM        | 3101         | 251        | 261.5        | Yxqd     | у        | qdp                                     |
| NDM        | 3101         | 308        | 328          | TD<br>TD |          |                                         |
| NDM        | 3101         | 328        | 345.5        | TD       |          |                                         |

| COMPANY        |              | INTE<br>ID FROM_F        | ERVAL          |                | Fouls: True | ALTERATION<br>E Early Intens. Late Type Late Intens. |
|----------------|--------------|--------------------------|----------------|----------------|-------------|------------------------------------------------------|
| COMPANY<br>NDM | 3101         | <u>_ID FKOW_F</u><br>378 | 388            | LITHO          |             |                                                      |
| NDM            | 3101         | 376                      | 300<br>398     | Yxq-p<br>Yxq-p | q<br>q      | -k<br>-k                                             |
| NDM            | 3101         | 548                      | 558            | Тхар<br>Үхар   | qр          | k                                                    |
| NDM            | 3101         | 558                      | 568            | Yxq-p\         | qk          | p                                                    |
| NDM            | 3101         | 738                      | 748            | M.ky/X.mk      |             | P                                                    |
| NDM            | 3101         | 748                      | 761.2          | M.ky/X.mk      |             |                                                      |
| NDM            | 3101         | 978                      | 985.3          | YxP\P/M-k      |             |                                                      |
| NDM            | 3101         | 985.3                    | 994.6          | Y-x            |             |                                                      |
| NDM            | 3101         | 1038                     | 1048           | Mp-k           | у           |                                                      |
| NDM            | 3101         | 1048                     | 1058           | Mp-k           | y           |                                                      |
| NDM            | 3101         | 1160.6                   | 1171.6         | TBd            |             |                                                      |
| NDM            | 3101         | 1201.4                   | 1208.4         | TBd            |             |                                                      |
| NDM            | 3101         | 1226.1                   | 1236           | TBd            |             |                                                      |
| NDM            | 3102         | 0                        | 44             | O/B            |             |                                                      |
| NDM            | 3102         | 44                       | 58             | Y              | k           | y,d                                                  |
| NDM            | 3102         | 58                       | 68             | Y              | k           | y,d                                                  |
| NDM            | 3102         | 88                       | 98             | G^fp           | k           | y,d,l                                                |
| NDM            | 3102         | 254                      | 268            | TBd            |             |                                                      |
| NDM            | 3102         | 268                      | 276            | TBd            |             |                                                      |
| NDM            | 3102         | 398                      | 408            | Y              | k           | s,l                                                  |
| NDM            | 3102         | 408                      | 418            | Y              | k           | s,l                                                  |
| NDM            | 3102         | 568                      | 578            | Y              | k           | s,I                                                  |
| NDM            | 3102         | 578                      | 588            | Y              | k           | s,I                                                  |
|                | 3102         | 623                      | 628<br>628     | D              | k<br>k      | b,s                                                  |
| NDM            | 3102         | 628                      | 638            | D              | k           | b,s                                                  |
| NDM<br>NDM     | 3102<br>3102 | 798<br>808               | 808<br>818     | D<br>D         | k<br>k      | b,s<br>b,s                                           |
| NDM            | 3102         | 938                      | 948            | D              | k           | b,s                                                  |
| NDM            | 3102         | 938<br>948               | 940<br>952     | D              | k           | b,s<br>b,s                                           |
| NDM            | 3102         | 958                      | 968            | TBd            | N           | 5,5                                                  |
| NDM            | 3102         | 968                      | 978            | TBd            |             |                                                      |
| NDM            | 3102         | 1074                     | 1078           | Y              | k           | y,s                                                  |
| NDM            | 3103         | 36                       | 46             | R              | et          | ,,                                                   |
| NDM            | 3103         | 46                       | 56             | R              | et          |                                                      |
| NDM            | 3103         | 128.7                    | 138.7          | R              | et          |                                                      |
| NDM            | 3103         | 138.7                    | 142.8          | *qp            |             |                                                      |
| NDM            | 3103         | 159                      | 159.3          | R              |             | qsp                                                  |
| NDM            | 3103         | 159.3                    | 171.8          | R              | et          |                                                      |
| NDM            | 3103         | 176                      | 186            | R              | е           | t                                                    |
| NDM            | 3103         | 186                      | 196            | R              | е           | t                                                    |
| NDM            | 3103         | 236                      | 246            | R              | et          |                                                      |
| NDM            | 3103         | 246                      | 251.7          | R              | et          |                                                      |
| NDM            | 3103         | 376                      | 384            | R              |             |                                                      |
| NDM            | 3103         | 384                      | 392.5          | R              |             |                                                      |
| NDM            | 3103         | 546                      | 556            | R              | e/a         |                                                      |
| NDM            | 3103         | 556                      | 566            | R              | e/a         | <i>'</i>                                             |
|                | 3103         | 617<br>624 5             | 624.5          | R              | kq-b        | e/a                                                  |
|                | 3103         | 624.5                    | 636            | R              | e/a         | kq-b                                                 |
|                | 3103         | 786<br>701 5             | 791.5<br>706 7 | R              | e/a         | У                                                    |
| NDM            | 3103         | 791.5                    | 796.7          | R              | e/a         | У                                                    |

|         |      |           | ERVAL  |       |                 | ALTERATION                       |
|---------|------|-----------|--------|-------|-----------------|----------------------------------|
| COMPANY | _    | ID FROM_F |        | LITHO | Early Type Earl | y Intens. Late Type Late Intens. |
| NDM     | 3103 | 888       | 896    | R     | e/a             | У                                |
| NDM     | 3103 | 896       | 901    | R     | e/a             | У                                |
| NDM     | 3104 | 0         | 18     | O/B   |                 |                                  |
| NDM     | 3104 | 77        | 87     | G^p   | S,y             | k                                |
| NDM     | 3104 | 87        | 98     | G^p   | S,y             | k                                |
| NDM     | 3104 | 128       | 138    | G^p   | S,y             | k                                |
| NDM     | 3104 | 138       | 148    | G^p   | S,y             | k                                |
| NDM     | 3104 | 238       | 248    | G^p   | K,y             | S                                |
| NDM     | 3104 | 248       | 258    | G^p   | K,y             | S                                |
| NDM     | 3104 | 378       | 388    | Y     |                 |                                  |
| NDM     | 3104 | 388       | 398    | Y     |                 |                                  |
| NDM     | 3104 | 458       | 468    | M/P   |                 |                                  |
| NDM     | 3104 | 468       | 479.5  | M/P   |                 |                                  |
| NDM     | 3104 | 538       | 548    | Y     | y/+/-d          | q/k/                             |
| NDM     | 3104 | 548       | 558    | Y     |                 |                                  |
| NDM     | 3104 | 588       | 598    | Ν     |                 |                                  |
| NDM     | 3104 | 598       | 608    | Ν     |                 |                                  |
| NDM     | 3104 | 718       | 728    | Y     | K/q             | d,w                              |
| NDM     | 3104 | 728       | 738    | Υ     | K/q             | d,w                              |
| NDM     | 3104 | 848       | 858    | Р     | k/q             | d/w                              |
| NDM     | 3104 | 858       | 868    | Р     | k/q             | d/w                              |
| NDM     | 3104 | 978       | 988    | Y     | k/q             | w/d,b                            |
| NDM     | 3104 | 988       | 998    | Y     | k/q             | w/d,b                            |
| NDM     | 3104 | 1228      | 1238   | D     |                 |                                  |
| NDM     | 3104 | 1238      | 1244   | D     |                 |                                  |
| NDM     | 3104 | 1328      | 1338   | D     | b               | k/d                              |
| NDM     | 3104 | 1338      | 1346   | D     | b               | k/d                              |
| NDM     | 3104 | 1458      | 1468   | Y     | k/b             | q/y                              |
| NDM     | 3104 | 1468      | 1478   | Y     | k/b             | q/y                              |
| NDM     | 3105 | 138       | 148    | Ν     | qsp             | -k                               |
| NDM     | 3105 | 148       | 158    | Ν     | qsp             | -k                               |
| NDM     | 3105 | 198       | 200    | N     | qsp             |                                  |
| NDM     | 3105 | 200       | 208    | N     | qsp             |                                  |
| NDM     | 3105 | 268       | 278    | G^c   | qpw             |                                  |
| NDM     | 3105 | 418       | 428    | G^c   | -qpw            | -bk                              |
| NDM     | 3105 | 428       | 438    | G^c   | -qpw            | -bk                              |
| NDM     | 3105 | 638       | 648    | G^c   | qpws            | bk                               |
| NDM     | 3105 | 648       | 653    | G^c   | qpws            | bk                               |
| NDM     | 3105 | 1008      | 1018   | G^c   | qpwl            | bk                               |
| NDM     | 3105 | 1018      | 1028   | G^c   | qpwl            | bk                               |
| NDM     | 3105 | 1138      | 1148   | G^c   | bk              | -qpwl                            |
| NDM     | 3105 | 1148      | 1158   | G^c   | bk              | -qpwl                            |
| NDM     | 3105 | 1284.3    | 1291.5 | Z     | ys              | а                                |
| NDM     | 3105 | 1291.5    | 1299.5 | Z     | ys              | а                                |
| NDM     | 3105 | 1313      | 1321   | Z.TBd | у               | а                                |
| NDM     | 3105 | 1321      | 1331.5 | Z     | -               |                                  |
| NDM     | 3105 | 1331.5    | 1348   | TBd   |                 | У                                |
| NDM     | 3105 | 1348      | 1368.7 | TBd   |                 | ý                                |
| NDM     | 3105 | 1388      | 1398   | G^c   | bk              | -qpw                             |
| NDM     | 3105 | 1398      | 1408   | G^c   | bk              | -qpw                             |

| NDM         3106         20         33         D         y,s,w         r           NDM         3106         158         168         D         y,s,w         k           NDM         3106         158         168         P         y,s,w         k           NDM         3106         236         248         Y         y,s,w         k-           NDM         3106         236         248         Y         y,s,w         k-           NDM         3106         558         568         D         w,s,h,m         k,y           NDM         3106         758         768         Y         k         b,s           NDM         3106         768         Y         k         b,s         s           NDM         3106         918         Y         k         b,s         s           NDM         3106         1128         1138 <y< td="">         b/k         d's         s/y           NDM         3106         1288         1298         Y         b/k         s/y           NDM         3106         1288         1298         Y         b/k         s/y           NDM         3113</y<>                                                                                          |         |        | INT      | ERVAL    |       |                | ALTERATION                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|----------|----------|-------|----------------|-----------------------------------|
| NDM         3106         20         33         D         y,s,w         r           NDM         3106         158         168         D         y,s,w         k           NDM         3106         158         168         D         y,s,w         k           NDM         3106         236         248         Y         y,s,w         k-           NDM         3106         548         558         D         w,s,h,m         k,y           NDM         3106         558         568         D         w,s,h,m         k,y           NDM         3106         758         768         Y         k         b,s           NDM         3106         768         Y         k         b,s           NDM         3106         918         Y         k         b,s           NDM         3106         1128         1148         Y         b/k         d/s           NDM         3106         1288         1298         Y         b/k         d/s           NDM         3106         1288         1298         Y         b/k         s/y           NDM         3113         157         167                                                                                                     | COMPANY | HOLE_I | D FROM_I | FT TO_FT | LITHO | Early Type Ear | ly Intens. Late Type Late Intens. |
| NDM         3106         158         168         D         y,s,w         k           NDM         3106         168         178         D         y,s,w         k-           NDM         3106         266         248         Y         y,s,w         k-           NDM         3106         548         558         D         w,s,h,m         k,y           NDM         3106         558         568         D         w,s,h,m         k,y           NDM         3106         758         768         Y         k         b,s           NDM         3106         758         768         Y         k         b,s           NDM         3106         918         Y         k         b,s         mode           NDM         3106         1128         1138         Y         b/k         d/s           NDM         3106         1128         1298         Y         b/k         g/s           NDM         3106         1288         1298         Y         b/k         s/y           NDM         3113         157         167         N.F.DV         k         s/y           NDM         3113 <th>NDM</th> <th>3106</th> <th>-</th> <th></th> <th>O/B</th> <th></th> <th></th>             | NDM     | 3106   | -        |          | O/B   |                |                                   |
| NDM         3106         168         178         D         y.s.w         k           NDM         3106         236         248         Y         y.s.w         k-           NDM         3106         548         558         D         w.s.h.m         k.y           NDM         3106         548         558         D         w.s.h.m         k.y           NDM         3106         758         768         Y         k         b.s           NDM         3106         768         778         Y         k         b.s           NDM         3106         918         928         Y         k         b.s           NDM         3106         1138         1148         Y         b/k         d/s           NDM         3106         1288         1298         Y         b/k         s/y           NDM         3106         1288         1308         Y         b/k         s/y           NDM         3113         157         167         N.F-DY         k         qs           NDM         3113         157         167         N.F-DY         k         mod           NDM         3113 <td>NDM</td> <td>3106</td> <td>20</td> <td>33</td> <td>D</td> <td>y,s,w</td> <td>r</td>      | NDM     | 3106   | 20       | 33       | D     | y,s,w          | r                                 |
| NDM         3106         236         248         Y         y,s,w         k-           NDM         3106         248         258         Y         y,s,w         k-           NDM         3106         5548         558         D         w,s,h,m         k,y           NDM         3106         558         568         D         w,s,h,m         k,y           NDM         3106         768         76         Y         k         b,s           NDM         3106         768         77         K         b,s         b,s           NDM         3106         918         928         Y         k         b,s           NDM         3106         1128         1138         Y         b/k         d/s           NDM         3106         1288         1298         Y         b/k         s/y           NDM         3106         1288         1298         Y         b/k         s/y           NDM         3106         1288         1298         Y         b/k         s/y           NDM         3113         167         177         NF-DY         k         s/y           NDM         3113 <td>NDM</td> <td></td> <td></td> <td></td> <td>D</td> <td>y,s,w</td> <td>k</td>             | NDM     |        |          |          | D     | y,s,w          | k                                 |
| NDM         3106         248         258         Y         y.s.w         k-           NDM         3106         558         568         D         w.s.h.m         k.y           NDM         3106         758         768         Y         k         b,s           NDM         3106         758         768         Y         k         b,s           NDM         3106         908         918         Y         k         b,s           NDM         3106         918         Y         k         b,s           NDM         3106         918         Y         k         b,s           NDM         3106         1138         1148         Y         b/k         d/s           NDM         3106         1288         1298         Y         b/k         s/y           NDM         3106         1288         1308         Y         b/k         s/y           NDM         3113         157         167         NF-DY         k         qs           NDM         3113         346.5         353         N-FDZ         y         NDM           NDM         3113         767         797                                                                                                      | NDM     | 3106   | 168      | 178      |       | y,s,w          | k                                 |
| NDM         3106         548         558         D         w,s,h,m         k,y           NDM         3106         558         568         D         w,s,h,m         k,y           NDM         3106         758         768         Y         k         b,s           NDM         3106         768         Y         k         b,s           NDM         3106         918         Y         k         b,s           NDM         3106         918         Y         k         b,s           NDM         3106         1128         1138         Y         b/k         d/s           NDM         3106         1288         1298         Y         b/k         s/y           NDM         3106         1288         1298         Y         b/k         s/y           NDM         3113         167         N/F.FD         k         qs           NDM         3113         167         N.F.DY         k         NDM           NDM         3113         707         T1.8         F.F-DY         k           NDM         3113         717         F.F-DY         k         NDM           NDM <td>NDM</td> <td></td> <td></td> <td></td> <td>Y</td> <td>y,s,w</td> <td>k-</td>                     | NDM     |        |          |          | Y     | y,s,w          | k-                                |
| NDM         3106         558         568         D         w,s,h,m         k,y           NDM         3106         758         778         Y         k         b,s           NDM         3106         978         778         Y         k         b,s           NDM         3106         908         918         Y         k         b,s           NDM         3106         918         928         Y         k         b,s           NDM         3106         1128         1128         Y         b/k         d's           NDM         3106         1288         1298         Y         b/k         s/y           NDM         3106         1288         1298         Y         b/k         s/y           NDM         3113         19         27         N/F.FD         k         qs           NDM         3113         167         177         N.F.DY         k            NDM         3113         365         353         N.FDZ         y            NDM         3113         707         711.8         F.F.DY         k            NDM         3113                                                                                                                                 |         | 3106   | 248      | 258      | Y     | y,s,w          | k-                                |
| NDM         3106         758         768         Y         k         b,s           NDM         3106         768         778         Y         k         b,s           NDM         3106         908         918         Y         k         b,s           NDM         3106         918         928         Y         k         b,s           NDM         3106         1128         1138         Y         b/k         d/s           NDM         3106         1128         128         Y         b/k         d/s           NDM         3106         1288         1298         Y         b/k         s/y           NDM         3106         1288         1298         Y         b/k         s/y           NDM         3113         167         177         N/F.FD         k         qs           NDM         3113         167         177         N.F.PDY         k         N           NDM         3113         363         357         N/DX         y         b           NDM         3113         718.         F.F.PY         k         N           NDM         3113         797                                                                                                        | NDM     | 3106   | 548      |          | D     | w,s,h,m        | k,y                               |
| NDM         3106         768         778         Y         k         b,s           NDM         3106         908         918         Y         k         b,s           NDM         3106         918         928         Y         k         b,s           NDM         3106         1128         1138         Y         b/k         d/s           NDM         3106         1128         1288         Y         b/k         s/y           NDM         3106         1288         1308         Y         b/k         s/y           NDM         3106         1288         1308         Y         b/k         s/y           NDM         3113         19         27         N/F.FD         k         qs           NDM         3113         167         177         N.F-DY         k         mode           NDM         3113         365         353         N.FDZ         y         b           NDM         3113         707         711.8         F.F-DY         k         mode           NDM         3113         797         807         F.F-PY         k         mode           NDM         3113<                                                                                           | NDM     | 3106   | 558      | 568      | D     | w,s,h,m        | k,y                               |
| NDM         3106         908         918         Y         k         b,s           NDM         3106         918         928         Y         k         b,s           NDM         3106         1128         1138         Y         b/k         d/s           NDM         3106         1128         1148         Y         b/k         d/s           NDM         3106         1288         1298         Y         b/k         s/y           NDM         3106         1288         1298         Y         b/k         s/y           NDM         3106         1288         1298         Y         b/k         s/y           NDM         3113         19         27         N/F.FD         k         qs           NDM         3113         157         167         N.F-DY         k            NDM         3113         353         357         N/DX         y         b           NDM         3113         707         711.8         F.F-DY         k            NDM         3113         787         707         F.F-DY         k            NDM         3114                                                                                                                             | NDM     |        | 758      | 768      |       |                | b,s                               |
| NDM         3106         918         928         Y         k         b,s           NDM         3106         1128         1138         Y         b/k         d/s           NDM         3106         1128         1138         Y         b/k         d/s           NDM         3106         1288         1298         Y         b/k         s/y           NDM         3106         1288         1308         Y         b/k         s/y           NDM         3113         19         27         N/F.FD         k         qs           NDM         3113         157         167         N.F-DY         k            NDM         3113         167         177         N.F-DY         k            NDM         3113         346.5         353         N.FDZ         y         b           NDM         3113         707         711.8         F.F-DY         k            NDM         3113         787         797         F.F-DY         k            NDM         3113         981.4         992         F.H(FDY)             NDM         3114                                                                                                                                               |         |        |          |          |       |                | b,s                               |
| NDM         3106         1128         1138         Y         b/k         d/s           NDM         3106         1138         1148         Y         b/k         s/y           NDM         3106         1288         1298         Y         b/k         s/y           NDM         3106         1298         1308         Y         b/k         s/y           NDM         3113         19         27         N/F.FD         k         qs           NDM         3113         157         167         N.F.DY         k            NDM         3113         167         177         N.F.DY         k            NDM         3113         363         357         N/DX         y         b           NDM         3113         707         711.8         F.F.OY         k            NDM         3113         787         797         F.F.OY         k            NDM         3113         797         807         F.F.OY         k            NDM         3113         992         F.H(FDY)          NDM         3114         042         459         YW <td>NDM</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>b,s</td>                                                          | NDM     |        |          |          |       |                | b,s                               |
| NDM         3106         1138         1148         Y         b/k         d/s           NDM         3106         1288         1298         Y         b/k         s/y           NDM         3106         1288         1308         Y         b/k         s/y           NDM         3113         19         27         N/F.FD         k         qs           NDM         3113         157         167         N.F.DY         k         qs           NDM         3113         167         177         N.F.PD         k         qs           NDM         3113         346.5         353         N.FDZ         y         b           NDM         3113         707         711.8         F.F.DY         k            NDM         3113         707         711.8         F.F.DY         k            NDM         3113         787         797         F.F.DY         k            NDM         3113         981.4         992         F.H(FDY)             NDM         3113         981.4         992         F.H(FDY)             NDM                                                                                                                                                           |         | 3106   | 918      | 928      |       | k              | b,s                               |
| NDM         3106         1288         1298         Y         b/k         s/y           NDM         3106         1298         1308         Y         b/k         sly           NDM         3113         19         27         N/F.FD         k         qs           NDM         3113         157         167         N.F.DV         k         qs           NDM         3113         167         177         N.F.DV         k         qs           NDM         3113         363         357         N/DX         y         b           NDM         3113         707         711.8         F.F.DY         k            NDM         3113         707         711.8         F.F.DY         k            NDM         3113         787         797         F.F.DY         k            NDM         3113         797         807         F.F.PY         k            NDM         3113         992         F.H(FDY)              NDM         3114         499         459         YW         qspy         -bk           NDM         3114                                                                                                                                                         | NDM     |        |          |          |       |                |                                   |
| NDM         3106         1298         1308         Y         b/k         s/y           NDM         3113         19         27         N/F.FD         k         qs           NDM         3113         167         177         N.F.PD         k         qs           NDM         3113         167         177         N.F.PY         k            NDM         3113         346.5         353         N.FDZ         y         b           NDM         3113         346.5         353         N.FDZ         y         b           NDM         3113         707         711.8         F.F-DY         k            NDM         3113         707         711.8         F.F-DY         k            NDM         3113         797         807         F.F-DY         k            NDM         3113         917         807         F.FCPY         k            NDM         3113         921         1002         F.H(FDY)             NDM         3114         0         427         TC'k             NDM         3114                                                                                                                                                                           |         |        |          |          |       |                | d/s                               |
| NDM         3113         19         27         N/F.FD         k         qs           NDM         3113         157         167         N.F.DY         k         qs           NDM         3113         157         167         N.F.DY         k         qs           NDM         3113         167         177         N.F.DY         k         NDM           NDM         3113         346.5         353         N.FDZ         y         b           NDM         3113         707         711.8         F.F.PYD         k         NDM           NDM         3113         707         F.F.PYD         k         NDM         NDM           NDM         3113         797         807         F.F.PYV         k         NDM           NDM         3113         797         807         F.H(FDY)         k         NDM           NDM         3113         981.4         992         F.H(FDY)         k         NDM           NDM         3114         449         459         YW         qspy         -bk           NDM         3114         459         600         D         bk         qsp           NDM <td>NDM</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>            | NDM     |        |          |          |       |                |                                   |
| NDM         3113         27         37         N/F.FD         k         qs           NDM         3113         157         167         N.F-DY         k           NDM         3113         167         177         N.F-DY         k           NDM         3113         346.5         353         N.FDZ         y           NDM         3113         353         357         N/DX         y         b           NDM         3113         707         711.8         F.F-DY         k            NDM         3113         707         711.8         F.F-DY         k            NDM         3113         787         797         F.F-DY         k            NDM         3113         797         807         F.F-DY         k            NDM         3113         992         F.H(FDY)              NDM         3114         0         427         TC'A             NDM         3114         459         469         YW         qspy         -bk           NDM         3114         599         599         D                                                                                                                                                                              |         | 3106   | 1298     | 1308     |       | b/k            | s/y                               |
| NDM         3113         157         167         N.F-DY         k           NDM         3113         167         177         N.F-DY         k           NDM         3113         346.5         353         N.FDZ         y           NDM         3113         346.5         353         N.FDZ         y           NDM         3113         707         711.8         F.F-DY         k           NDM         3113         707         711.8         F.F-DY         k           NDM         3113         787         797         F.F-DY         k           NDM         3113         981.4         992         F.H(FDY)         NDM           NDM         3113         981.4         992         F.H(FDY)         NDM           NDM         3114         0         427         TC/k         NDM           NDM         3114         459         469         YW         qspy         -bk           NDM         3114         589         599         D         bk         qsp           NDM         3114         609         619         Y         bk         qsp           NDM         3114 <td< td=""><td>NDM</td><td></td><td></td><td></td><td></td><td>k</td><td>qs</td></td<>          | NDM     |        |          |          |       | k              | qs                                |
| NDM         3113         167         177         N.F-DY         k           NDM         3113         346.5         353         N.FDZ         y           NDM         3113         353         357         N/DX         y         b           NDM         3113         707         711.8         F.F-DY         k         N           NDM         3113         711.8         717         F.F-DY         k         N           NDM         3113         787         797         F.F-DY         k         N           NDM         3113         787         807         F.F-DY         k         N           NDM         3113         981.4         992         F.H(FDY)         NDM         3114         992         1002         F.H(FDY)           NDM         3114         459         469         YW         qspy         -bk           NDM         3114         599         600         D         bk         qsp           NDM         3114         599         600         D         bk         qsp           NDM         3114         619         629         Y         bk         qsp                                                                                              | NDM     |        |          |          |       |                | qs                                |
| NDM         3113         346.5         353         N.FDZ         y           NDM         3113         353         357         N/DX         y         b           NDM         3113         707         711.8         F.F-DY         k           NDM         3113         711.8         717         F.F-DY         k           NDM         3113         787         797         F.F-DY         k           NDM         3113         797         807         F.F-DY         k           NDM         3113         797         807         F.F-DY         k           NDM         3113         992         1002         F.H(FDY)         NDM           NDM         3114         0         427         TC^k         NDM           NDM         3114         459         469         YW         qspy         -bk           NDM         3114         599         600         D         bk         qsp           NDM         3114         619         629         Y         bk         qsp           NDM         3114         619         629         Y         bk         qsp           NDM                                                                                                      | NDM     |        |          |          |       |                |                                   |
| NDM         3113         353         357         N/DX         y         b           NDM         3113         707         711.8         F.F-DY         k           NDM         3113         711.8         717         F.F-DY         k           NDM         3113         717.8         717         F.F-DY         k           NDM         3113         797         807         F.F-DY         k           NDM         3113         797         807         F.F-DY         k           NDM         3113         981.4         992         F.H(FDY)            NDM         3114         0         427         TC^k            NDM         3114         449         459         YW         qspy         -bk           NDM         3114         459         469         YW         qspy         -bk           NDM         3114         599         600         D         bk         qsp           NDM         3114         609         619         Y         bk         qsp           NDM         3114         619         629         Y         bk         qsp                                                                                                                             | NDM     |        |          |          |       | k              |                                   |
| NDM         3113         707         711.8         F.F-DY         k           NDM         3113         711.8         717         F.F-DY         k           NDM         3113         787         797         F.F-DY         k           NDM         3113         787         797         F.F-DY         k           NDM         3113         981.4         992         F.H(FDY)           NDM         3113         992         1002         F.H(FDY)           NDM         3114         0         427         TC^k           NDM         3114         459         469         YW         qspy         -bk           NDM         3114         599         D         bk         qsp           NDM         3114         589         599         D         bk         qsp           NDM         3114         609         619         Y         bk         qsp           NDM         3114         619         629         Y         bk         qsp           NDM         3114         717         789         G^m         bk         qsp           NDM         3114         1019         1029                                                                                                | NDM     |        |          |          |       | У              |                                   |
| NDM         3113         711.8         717         F.F-YD         k           NDM         3113         787         797         F.F-DY         k           NDM         3113         787         807         F.F-DY         k           NDM         3113         981.4         992         F.H(FDY)         NDM           NDM         3113         992         1002         F.H(FDY)         NDM           NDM         3114         0         427         TC^k         NDM           NDM         3114         449         459         YW         qspy         -bk           NDM         3114         589         599         D         bk         qsp           NDM         3114         589         600         D         bk         qsp           NDM         3114         609         619         Y         bk         qsp           NDM         3114         609         629         Y         bk         qsp           NDM         3114         797         789         G^m         bk         qsp           NDM         3114         709         G^m         bk         qsp                                                                                                         | NDM     |        |          |          |       | у              | b                                 |
| NDM         3113         787         797         F.F.DY         k           NDM         3113         797         807         F.F.DY         k           NDM         3113         981.4         992         F.H(FDY)           NDM         3113         992         1002         F.H(FDY)           NDM         3114         0         427         TC^k           NDM         3114         459         YW         qspy         -bk           NDM         3114         459         469         YW         qspy         -bk           NDM         3114         589         599         D         bk         qsp           NDM         3114         599         600         D         bk         qsp           NDM         3114         599         600         D         bk         qsp           NDM         3114         619         629         Y         bk         qsp           NDM         3114         619         629         Y         bk         qsp           NDM         3114         779         789         G^m         bk         qsp           NDM         3114                                                                                                           | NDM     |        |          |          |       |                |                                   |
| NDM         3113         797         807         F.F-DY         k           NDM         3113         981.4         992         F.H(FDY)           NDM         3113         992         1002         F.H(FDY)           NDM         3114         0         427         TC^k           NDM         3114         449         459         YW         qspy         -bk           NDM         3114         459         469         YW         qspy         -bk           NDM         3114         589         599         D         bk         qsp           NDM         3114         599         600         D         bk         qsp           NDM         3114         609         619         Y         bk         qsp           NDM         3114         619         629         Y         bk         qsp           NDM         3114         619         629         Y         bk         qsp           NDM         3114         779         789         G^m         bk         qsp           NDM         3114         1019         1029         G^m         bk         qsp           N                                                                                                  |         |        |          |          |       |                |                                   |
| NDM         3113         981.4         992         F.H(FDY)           NDM         3113         992         1002         F.H(FDY)           NDM         3114         0         427         TC <sup>A</sup> k           NDM         3114         449         459         YW         qspy         -bk           NDM         3114         459         469         YW         qspy         -bk           NDM         3114         589         599         D         bk         qsp           NDM         3114         599         600         D         bk         qsp           NDM         3114         609         619         Y         bk         qsp           NDM         3114         609         629         Y         bk         qsp           NDM         3114         619         629         Y         bk         qsp           NDM         3114         779         789         G^m         bk         qsp           NDM         3114         789         799         G^m         bk         qsp           NDM         3114         1029         1036         G <sup>A</sup> m         bk         qsp <td>NDM</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | NDM     |        |          |          |       |                |                                   |
| NDM         3113         992         1002         F.H(FDY)           NDM         3114         0         427         TC^k           NDM         3114         449         459         YW         qspy         -bk           NDM         3114         459         469         YW         qspy         -bk           NDM         3114         599         600         D         bk         qsp           NDM         3114         599         600         D         bk         qsp           NDM         3114         609         619         Y         bk         qsp           NDM         3114         619         629         Y         bk         qsp           NDM         3114         619         629         Y         bk         qsp           NDM         3114         619         629         Y         bk         qsp           NDM         3114         779         789         G^m         bk         qsp           NDM         3114         779         789         G^m         bk         qsp           NDM         3114         1029         1036         G^m         bk                                                                                                  |         | 3113   |          |          |       | k              |                                   |
| NDM         3114         0         427         TC^k           NDM         3114         449         459         YW         qspy         -bk           NDM         3114         459         469         YW         qspy         -bk           NDM         3114         589         599         D         bk         qsp           NDM         3114         599         600         D         bk         qsp           NDM         3114         609         619         Y         bk         qsp           NDM         3114         619         629         Y         bk         qsp           NDM         3114         619         629         Y         bk         qsp           NDM         3114         619         629         Y         bk         qsp           NDM         3114         699         709         G^m         bk         qsp           NDM         3114         789         799         G/m         bk         qsp           NDM         3114         1029         1036         G^m         bk         qsp           NDM         3114         1059         1069                                                                                                      | NDM     |        |          |          |       |                |                                   |
| NDM         3114         449         459         YW         qspy         -bk           NDM         3114         459         469         YW         qspy         -bk           NDM         3114         589         599         D         bk         qsp           NDM         3114         599         600         D         bk         qsp           NDM         3114         609         619         Y         bk         qsp           NDM         3114         609         619         Y         bk         qsp           NDM         3114         619         629         Y         bk         qsp           NDM         3114         619         629         Y         bk         qsp           NDM         3114         619         629         Y         bk         qsp           NDM         3114         779         789         G^m         bk         qsp           NDM         3114         1019         1029         G^m         bk         qsp           NDM         3114         1059         1069         Y         bk         -qsp           NDM         3114         <                                                                                               |         |        | 992      |          | , ,   |                |                                   |
| NDM         3114         459         469         YW         qspy         -bk           NDM         3114         589         599         D         bk         qsp           NDM         3114         599         600         D         bk         qsp           NDM         3114         609         619         Y         bk         qsp           NDM         3114         619         629         Y         bk         qsp           NDM         3114         699         709         G^m         bk         qsp           NDM         3114         699         709         G^m         bk         qsp           NDM         3114         779         789         G^m         bk         qsp           NDM         3114         709         64m         bk         qsp           NDM         3114         1019         1029         G^m         bk         qsp           NDM         3114         1029         1036         G^m         bk         -qsp           NDM         3114         1069         1079         Y         bk         -qsp           NDM         3115         38                                                                                                  |         |        |          |          |       |                |                                   |
| NDM         3114         589         599         D         bk         qsp           NDM         3114         599         600         D         bk         qsp           NDM         3114         609         619         Y         bk         qsp           NDM         3114         619         629         Y         bk         qsp           NDM         3114         699         709         G^m         bk         qsp           NDM         3114         699         709         G^m         bk         qsp           NDM         3114         779         789         G^m         bk         qsp           NDM         3114         799         799         G^m         bk         qsp           NDM         3114         1019         1029         G^m         bk         qsp           NDM         3114         1029         1036         G^m         bk         -qsp           NDM         3114         1059         1069         Y         bk         -qsp           NDM         3115         38         48         G^m         qsp         k-b           NDM         3115                                                                                                   | NDM     | 3114   | 449      |          |       | qspy           |                                   |
| NDM         3114         599         600         D         bk         qsp           NDM         3114         609         619         Y         bk         qsp           NDM         3114         619         629         Y         bk         qsp           NDM         3114         619         629         Y         bk         qsp           NDM         3114         619         629         Y         bk         qsp           NDM         3114         699         709         G^m         bk         qsp           NDM         3114         779         789         G^m         bk         qsp           NDM         3114         1019         1029         G^m         bk         qsp           NDM         3114         1029         1036         G^m         bk         qsp           NDM         3114         1059         1069         Y         bk         -qsp           NDM         3114         1069         1079         Y         bk         -qsp           NDM         3115         38         48         G^m         qsp         k-b           NDM         3115                                                                                                     |         | 3114   | 459      |          | YW    | qspy           | -bk                               |
| NDM         3114         609         619         Y         bk         qsp           NDM         3114         619         629         Y         bk         qsp           NDM         3114         699         709         G^m         bk         qsp           NDM         3114         779         789         G^m         bk         qsp           NDM         3114         779         789         G^m         bk         qsp           NDM         3114         789         799         G^m         bk         qsp           NDM         3114         1019         1029         G^m         bk         qsp           NDM         3114         1029         1036         G^m         bk         qsp           NDM         3114         1029         1036         G^m         bk         -qsp           NDM         3114         1059         1069         Y         bk         -qsp           NDM         3114         1069         1079         Y         bk         -qsp           NDM         3115         38         48         G^m         qsp         -qsp           NDM         3115<                                                                                          | NDM     |        |          |          |       | bk             | qsp                               |
| NDM         3114         619         629         Y         bk         qsp           NDM         3114         699         709         G^m         bk         qsp           NDM         3114         779         789         G^m         bk         qsp           NDM         3114         779         789         G^m         bk         qsp           NDM         3114         789         799         G^m         bk         qsp           NDM         3114         1019         1029         G^m         bk         qsp           NDM         3114         1029         1036         G^m         bk         qsp           NDM         3114         1029         1036         G^m         bk         qsp           NDM         3114         1029         1036         G^m         gsp            NDM         3114         1069         1079         Y         bk         -qsp           NDM         3115         38         48         G^m         qsp         k-b           NDM         3115         298         308         Y         bk         -qspp           NDM         3115 </td <td></td> <td></td> <td>599</td> <td></td> <td></td> <td></td> <td>qsp</td>                   |         |        | 599      |          |       |                | qsp                               |
| NDM         3114         699         709         G^m         bk         qsp           NDM         3114         779         789         G^m         bk         qsp           NDM         3114         789         799         G^m         bk         qsp           NDM         3114         789         799         G^m         bk         qsp           NDM         3114         1019         1029         G^m         bk         qsp           NDM         3114         1029         1036         G^m         bk         qsp           NDM         3114         1029         1036         G^m         bk         -qsp           NDM         3114         1059         1069         Y         bk         -qsp           NDM         3114         1069         1079         Y         bk         -qsp           NDM         3115         38         48         G^m         qsp         k-b           NDM         3115         308         318         Y         bk         -qsp           NDM         3115         478         488         Y         bk         -qsp           NDM         3115                                                                                          | NDM     |        |          |          |       |                | qsp                               |
| NDM         3114         779         789         G^m         bk         qsp           NDM         3114         789         799         G^m         bk         qsp           NDM         3114         1019         1029         G^m         bk         qsp           NDM         3114         1029         1036         G^m         bk         qsp           NDM         3114         1029         1036         G^m         bk         qsp           NDM         3114         1029         1036         G^m         bk         qsp           NDM         3114         1059         1069         Y         bk         -qsp           NDM         3114         1069         1079         Y         bk         -qsp           NDM         3115         38         48         G^m         qsp         k-b           NDM         3115         298         308         Y         bk         -qsp           NDM         3115         308         318         Y         bk         -qsp           NDM         3115         478         488         Y         bk         -qsp           NDM         3115                                                                                          |         |        |          |          |       |                | qsp                               |
| NDM         3114         789         799         G^m         bk         qsp           NDM         3114         1019         1029         G^m         bk         qsp           NDM         3114         1029         1036         G^m         bk         qsp           NDM         3114         1029         1036         G^m         bk         qsp           NDM         3114         1059         1069         Y         bk         -qsp           NDM         3114         1069         1079         Y         bk         -qsp           NDM         3115         38         48         G^m         qsp         k-b           NDM         3115         298         308         Y         bk         -qsp           NDM         3115         298         308         Y         bk         -qsp           NDM         3115         308         318         Y         bk         -qsp           NDM         3115         478         488         Y         bk         -qsp           NDM         3115         488         498         Y         bk         -qsp           NDM         3115 <td>NDM</td> <td></td> <td>699</td> <td>709</td> <td>G^m</td> <td>bk</td> <td>qsp</td>       | NDM     |        | 699      | 709      | G^m   | bk             | qsp                               |
| NDM       3114       1019       1029       G^m       bk       qsp         NDM       3114       1029       1036       G^m       bk       qsp         NDM       3114       1059       1069       Y       bk       -qsp         NDM       3114       1069       1079       Y       bk       -qsp         NDM       3115       38       48       G^m       qsp       k-b         NDM       3115       298       308       Y       bk       -qsp         NDM       3115       298       308       Y       bk       -qsp         NDM       3115       298       308       Y       bk       -qsp         NDM       3115       478       488       Y       bk       -qsp         NDM       3115       478       488       Y       bk       -qsp         NDM       3115       488       498       Y       bk       -qsp         NDM       3115       678       688       D       b-k       qspw         NDM       3115       688       698       D       b-k       qspw         NDM       3115       7                                                                                                                                                                                           | NDM     |        |          |          |       |                | qsp                               |
| NDM         3114         1029         1036         G^m         bk         qsp           NDM         3114         1059         1069         Y         bk         -qsp           NDM         3114         1069         1079         Y         bk         -qsp           NDM         3115         38         48         G^m         qsp         k-b           NDM         3115         298         308         Y         bk         -qsp           NDM         3115         298         308         Y         bk         -qsp           NDM         3115         308         318         Y         bk         -qsp           NDM         3115         478         488         Y         bk         -qsp           NDM         3115         478         488         Y         bk         -qsp           NDM         3115         488         498         Y         bk         -qsp           NDM         3115         678         688         D         b-k         qspw           NDM         3115         688         698         D         b-k         qspw           NDM         3115                                                                                                   | NDM     |        |          |          |       |                | qsp                               |
| NDM       3114       1059       1069       Y       bk       -qsp         NDM       3114       1069       1079       Y       bk       -qsp         NDM       3115       38       48       G^m       qsp       k-b         NDM       3115       38       48       G^m       qsp       k-b         NDM       3115       298       308       Y       bk       -qsp         NDM       3115       298       308       Y       bk       -qsp         NDM       3115       308       318       Y       bk       -qsp         NDM       3115       478       488       Y       bk       -qsp         NDM       3115       478       488       Y       bk       -qsp         NDM       3115       678       688       D       b-k       qspw         NDM       3115       678       688       D       b-k       qspw         NDM       3115       768       778       D       b-k       qspw                                                                                                                                                                                                                                                                                                      | NDM     |        |          |          |       |                | qsp                               |
| NDM         3114         1069         1079         Y         bk         -qsp           NDM         3115         38         48         G^m         qsp         k-b           NDM         3115         38         48         G^m         qsp         k-b           NDM         3115         298         308         Y         bk         -qsp           NDM         3115         308         318         Y         bk         -qsp           NDM         3115         478         488         Y         bk         -qsp           NDM         3115         478         488         Y         bk         -qsp           NDM         3115         678         688         D         b-k         qspw           NDM         3115         678         688         D         b-k         qspw           NDM         3115         688         698         D         b-k         qspw           NDM         3115         768         778         D         b-k         qspw                                                                                                                                                                                                                      | NDM     |        |          |          |       |                | qsp                               |
| NDM         3115         38         48         G^m         qsp         k-b           NDM         3115         298         308         Y         bk         -qsp           NDM         3115         298         308         Y         bk         -qsp           NDM         3115         308         318         Y         bk         -qsp           NDM         3115         478         488         Y         bk         -qsp           NDM         3115         488         498         Y         bk         -qsp           NDM         3115         678         688         D         b-k         qspw           NDM         3115         688         698         D         b-k         qspw           NDM         3115         768         778         D         b-k         qspw                                                                                                                                                                                                                                                                                                                                                                                                   | NDM     |        |          |          |       |                | -qsp                              |
| NDM         3115         298         308         Y         bk         -qsp           NDM         3115         308         318         Y         bk         -qsp           NDM         3115         308         318         Y         bk         -qsp           NDM         3115         478         488         Y         bk         -qsp           NDM         3115         488         498         Y         bk         -qsp           NDM         3115         678         688         D         b-k         qspw           NDM         3115         688         698         D         b-k         qspw           NDM         3115         768         778         D         b-k         qspw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NDM     | 3114   |          |          |       | bk             | -qsp                              |
| NDM         3115         308         318         Y         bk         -qsp           NDM         3115         478         488         Y         bk         -qsp           NDM         3115         488         498         Y         bk         -qsp           NDM         3115         488         498         Y         bk         -qsp           NDM         3115         678         688         D         b-k         qspw           NDM         3115         688         698         D         b-k         qspw           NDM         3115         768         778         D         b-k         qspw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NDM     | 3115   | 38       | 48       |       | qsp            | k-b                               |
| NDM         3115         308         318         Y         bk         -qsp           NDM         3115         478         488         Y         bk         -qsp           NDM         3115         488         498         Y         bk         -qsp           NDM         3115         488         498         Y         bk         -qsp           NDM         3115         678         688         D         b-k         qspw           NDM         3115         688         698         D         b-k         qspw           NDM         3115         768         778         D         b-k         qspw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NDM     |        | 298      | 308      |       | bk             | -qsp                              |
| NDM         3115         488         498         Y         bk         -qsp           NDM         3115         678         688         D         b-k         qspw           NDM         3115         688         698         D         b-k         qspw           NDM         3115         688         698         D         b-k         qspw           NDM         3115         768         778         D         b-k         qspw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NDM     | 3115   | 308      | 318      |       | bk             | -qsp                              |
| NDM         3115         678         688         D         b-k         qspw           NDM         3115         688         698         D         b-k         qspw           NDM         3115         768         778         D         b-k         qspw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NDM     |        |          |          |       | bk             | -qsp                              |
| NDM         3115         688         698         D         b-k         qspw           NDM         3115         768         778         D         b-k         qspw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NDM     | 3115   | 488      | 498      | Υ     | bk             | -qsp                              |
| NDM 3115 768 778 D b-k qspw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NDM     |        |          |          | D     | b-k            | qspw                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NDM     | 3115   | 688      | 698      | D     | b-k            |                                   |
| NDM 3115 778 788 D b-k qspw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NDM     |        |          |          |       |                | qspw                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NDM     | 3115   | 778      | 788      | D     | b-k            | qspw                              |

| COMPANY        |      | INT<br>D FROM_F | ERVAL      |                | Forly Type I | ALTERATION<br>Early Intens. Late Type Late Intens. |
|----------------|------|-----------------|------------|----------------|--------------|----------------------------------------------------|
| COMPANY<br>NDM | 3115 | 838             | 848        | LITHO<br>D     | b-k          |                                                    |
| NDM            | 3115 | 030<br>848      | 040<br>858 | D              | b-k          | qspw<br>qspw                                       |
| NDM            | 3115 | 988             | 998        | Y              | b-k          | -qsp                                               |
| NDM            | 3115 | 900<br>998      | 1008       | Y              | b-k          | -dsb                                               |
| NDM            | 3115 | 1168            | 1178       | G^c            | qs           | -435<br>-k                                         |
| NDM            | 3115 | 1178            | 1188       | G^c            | qs<br>qs     | -ĸ<br>-k                                           |
| NDM            | 3116 | 728             | 733        | D              | bk-d         | S                                                  |
| NDM            | 3116 | 733             | 733        | D              |              | s<br>bkd                                           |
| NDM            | 3116 | 934.5           | 948        | M?             | syp<br>k-b   |                                                    |
| NDM            | 3116 | 934.5<br>948    | 948<br>958 | M?             | k-b<br>k-b   | -qsp                                               |
| NDM            | 3116 | 1018            | 1028       | YxP/M          | bk-d         | -qsp                                               |
| NDM            | 3116 | 1018            | 1028       | YxP/M<br>YxP/M | bk-d         |                                                    |
|                |      |                 |            |                |              |                                                    |
|                | 3116 | 1248<br>1250 5  | 1259.5     | WC?            | b-k          |                                                    |
| NDM            | 3116 | 1259.5          | 1268       | WC?            | kb           | -qspy                                              |
|                | 3116 | 1348            | 1358       | G              | yqs          |                                                    |
| NDM            | 3116 | 1358            | 1368       | G              |              |                                                    |
| NDM            | 3123 | 148             | 158        | X.H(DNNx       |              | k, s                                               |
| NDM            | 3123 | 158             | 168        | X.H(DNNx       |              | k, s                                               |
| NDM            | 3123 | 178             | 188        | X.H(DNNx       |              | k, s                                               |
| NDM            | 3123 | 188             | 198        | X.H(DNNx       |              | k, s                                               |
| NDM            | 3123 | 248             | 258        | Yxbp(l?)       | b,           | p, q                                               |
| NDM            | 3123 | 258             | 268        | Yxbp(l?)       | b,           | p, q                                               |
| NDM            | 3123 | 438             | 448        | D?             | bp           | l, q                                               |
| NDM            | 3123 | 448             | 458        | Dp             | s, p         | b-k, l                                             |
| NDM            | 3123 | 488             | 498        | Dp             | s, p         | b-k, l                                             |
| NDM            | 3123 | 498             | 503        | Dp             | s, p         | b-k, l                                             |
| NDM            | 3123 | 648             | 658        | D              | b-k          | s,p                                                |
| NDM            | 3123 | 658             | 668        | D              | b-k          | s,p                                                |
| NDM            | 3123 | 744             | 754        | X.HxN/X.Y      |              |                                                    |
| NDM            | 3123 | 754             | 766        | X.HxN/X.Y      |              |                                                    |
| NDM            | 3124 | 0               | 137        | OB             |              |                                                    |
| NDM            | 3124 | 188             | 198        | Y              | b            | k                                                  |
| NDM            | 3124 | 198             | 209        | Υ              | b            | k                                                  |
| NDM            | 3124 | 328             | 338        | N/P            |              | k,s                                                |
| NDM            | 3124 | 338             | 348        | Ν              |              | k,s                                                |
| NDM            | 3124 | 388             | 398        | N/P            |              | k,s                                                |
| NDM            | 3124 | 398             | 408        | N/P            |              | k,s                                                |
| NDM            | 3124 | 428             | 438        | N/P            |              | k,s                                                |
| NDM            | 3124 | 438             | 450        | N              |              | k,s                                                |
| NDM            | 3124 | 518             | 528        | N/P            |              | k,s,l                                              |
| NDM            | 3124 | 528             | 538        | N/P            |              | k,s,l                                              |
| NDM            | 3124 | 871.5           | 875.5      | X.HxN^f        |              |                                                    |
| NDM            | 3124 | 875.5           | 887        | X.HxN^f        |              |                                                    |
| NDM            | 3124 | 1218            | 1235       | ТВ             |              |                                                    |
| NDM            | 3125 | 99              | 109        | D              | bkpcm        | qsp                                                |
| NDM            | 3125 | 109             | 119        | D              | bkpcm        | qsp                                                |
| NDM            | 3125 | 239             | 249        | D              | bkmpc        | qsp                                                |
| NDM            | 3125 | 249             | 259        | D              | bkmpc        | qsp                                                |
| NDM            | 3125 | 349             | 359        | D              | bkmpc        | qsp                                                |
| NDM            | 3125 | 359             | 369        | D              | bkmpc        | qsp                                                |
| NDM            | 3125 | 379             | 389        | D              | bkmpc        | qsp                                                |
| NDM            | 3125 | 389             | 399        | D              | bkmpc        | qsp                                                |
|                | 0.20 | 000             | 000        | 2              | ~111120      | 47F                                                |

|            |              |              |              |           | ALTER                    |            |
|------------|--------------|--------------|--------------|-----------|--------------------------|------------|
| COMPANY    |              | D FROM_F     |              | LITHO     | Early Type Early Intens. |            |
|            | 3125         | 719          | 729          | D         | b/lp                     | kmp<br>kmp |
| NDM        | 3125         | 729          | 739          | D<br>D/D  | b/lp                     | kmp        |
|            | 3125         | 919          | 933          | D/R       | kmp                      | slp        |
| NDM<br>NDM | 3125         | 1049         | 1059         | N         | qsp                      | k<br>k     |
| NDM        | 3125<br>3128 | 1059<br>39.3 | 1069<br>48.5 | N<br>D    | qsp                      | k          |
| NDM        | 3128         | 39.3<br>48.5 | 46.5<br>56   | D         | lp<br>lp                 | dbs<br>dbs |
| NDM        | 3128         | 76           | 88           | X.FDM/pxr | •                        | qps<br>qp  |
| NDM        | 3128         | 88           | 98           | X.FDM/pxr | •                        | db<br>db   |
| NDM        | 3128         | 298          | 308          | X.FDM/pxr | -                        | db<br>db   |
| NDM        | 3128         | 308          | 322.7        | X.FDM/pxr | •                        | db<br>db   |
| NDM        | 3128         | 518          | 528          | P/N.DN/p  | -                        | dbs        |
| NDM        | 3128         | 528          | 538          | P/N.DN/p  |                          | dbs<br>dbs |
| NDM        | 3128         | 658          | 668          | X.DFxN/P  |                          | kpbc       |
| NDM        | 3128         | 668          | 678          | X.DFxN/P\ |                          | kpbc       |
| NDM        | 3128         | 738          | 748          | P.DF      | kbmpc                    | lsy        |
| NDM        | 3128         | 748          | 758          | P.DF      | kbmpc                    | lsy        |
| NDM        | 3128         | 808          | 818          | P.DF      | kbmpc                    | lsy        |
| NDM        | 3128         | 818          | 828          | P.DF      | kbmpc                    | lsy        |
| NDM        | 3128         | 938          | 948          | X.DFxN/P/ |                          | qps        |
| NDM        | 3128         | 948          | 958          | X.DFxN/P/ |                          | qps        |
| NDM        | 3129         | 0            | 499.8        | ТС        | •                        | "          |
| NDM        | 3129         | 550          | 560          | Y         | sq                       | b          |
| NDM        | 3129         | 560          | 573.5        | Υ         | sq                       | b          |
| NDM        | 3129         | 573.5        | 580          | Gp        | sqk                      | W          |
| NDM        | 3129         | 580          | 590          | Gp        | sqk                      | W          |
| NDM        | 3129         | 610          | 620          | Gp        | sqk                      | W          |
| NDM        | 3129         | 620          | 630          | Gp        | sqk                      | W          |
| NDM        | 3129         | 970          | 980          | Υ         |                          |            |
| NDM        | 3129         | 1200         | 1210         | Υ         | qs                       | qsbk       |
| NDM        | 3129         | 1210         | 1220         | Y         | qs                       | qsbk       |
| NDM        | 3129         | 1220         | 1230         | Y         | qs                       | qsbk       |
| NDM        | 3129         | 1230         | 1240         | Y         | qs                       | qsbk       |
| NDM        | 3129         | 1300         | 1310         | G         | SW                       | qskb       |
| NDM        | 3129         | 1310         | 1320         | G         | SW                       | qskb       |
| NDM        | 3133         | 100          | 118          | X2        |                          |            |
| NDM        | 3133         | 348          | 358          | X2xx2qpw  |                          | h          |
| NDM        | 3133         | 358          | 368          | X2xX2qpw  |                          | lw         |
| NDM        | 3133         | 668          | 678          | X2        | kw                       | h          |
| NDM        | 3133         | 678          | 688          | X2        | kw                       | h          |
| NDM        | 3133         | 688          | 698          | Fh        | kw                       |            |
| NDM        | 3133         | 698          | 708          | Fh        | k                        | W          |
| NDM        | 3133         | 758          | 768          | Fh        | k                        | W          |
| NDM        | 3133         | 768          | 778          | Fh        | k                        | W          |
|            | 3133         | 808          | 818          | X2        | kb<br>kb                 | ws-h       |
| NDM        | 3133         | 818          | 828          | X2        | kb                       | ws-h       |
| NDM        | 3133         | 1148         | 1158         | X2        | kb                       | wds        |
| NDM        | 3133         | 1158         | 1168         | X2        | kb                       | wds        |
|            | 3135         | 80           | 88           | X2        | iw                       | qpk<br>gpk |
|            | 3135         | 88           | 98           | X2        | iW<br>k.h                | qpk<br>iw  |
|            | 3135         | 198<br>208   | 208<br>218   | X2        | k-b                      | iw         |
| NDM        | 3135         | 208          | 218          | X2        | k-b                      | iw         |

|         | INTERVAL |          |          |       | ALTERATION |                                         |
|---------|----------|----------|----------|-------|------------|-----------------------------------------|
| COMPANY | HOLE_    | ID FROM_ | FT TO_FT | LITHO | Early Ty   | pe Early Intens. Late Type Late Intens. |
| NDM     | 3135     | 388      | 398      | X2    | S          | W                                       |
| NDM     | 3135     | 398      | 408      | X2    | S          | W                                       |
| NDM     | 3135     | 748      | 758      | X2    | S          | W                                       |
| NDM     | 3135     | 758      | 768      | X2    | S          | W                                       |
| NDM     | 3135     | 988      | 998      | X2    | S          | kw                                      |
| NDM     | 3135     | 998      | 1008     | X2    | S          | kw                                      |
| NDM     | 3135     | 1038     | 1048     | Fh    | S          | wk                                      |
| NDM     | 3135     | 1048     | 1058     | Fh    | S          | wk                                      |
| NDM     | 3135     | 1098     | 1108     | Fh    | S          | wk                                      |
| NDM     | 3135     | 1108     | 1118     | Fh    | S          | wk                                      |
| NDM     | 3135     | 1238     | 1248     | Fh    | S          | wk                                      |
| NDM     | 3135     | 1248     | 1258     | Fh    | S          | wk                                      |