Aquatic Studies at Kensington Gold Mine, 2014

by

Katrina M. Kanouse

with Southeast Region Habitat Staff

February 2015

Alaska Department of Fish and Game

Division of Habitat

Symbols and Abbreviations

The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in the following reports by the Divisions of Sport Fish and of Commercial Fisheries: Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figure or figure captions.

Weights and measures (metric)	•	General		Mathematics, statistics	
centimeter	cm	Alaska Administrative		all standard mathematical	
deciliter	dL	Code	AAC	signs, symbols and	
gram	g	all commonly accepted		abbreviations	
hectare	ha	abbreviations	e.g., Mr., Mrs.,	alternate hypothesis	H_A
kilogram	kg		AM, PM, etc.	base of natural logarithm	e
kilometer	km	all commonly accepted		catch per unit effort	CPUE
liter	L	professional titles	e.g., Dr., Ph.D.,	coefficient of variation	CV
meter	m		R.N., etc.	common test statistics	$(F, t, \chi^2, etc.)$
milliliter	mL	at	@	confidence interval	CI
millimeter	mm	compass directions:		correlation coefficient	
		east	E	(multiple)	R
Weights and measures (English)		north	N	correlation coefficient	
cubic feet per second	ft ³ /s	south	S	(simple)	r
foot	ft	west	W	covariance	cov
gallon	gal	copyright	©	degree (angular)	0
inch	in	corporate suffixes:		degrees of freedom	df
mile	mi	Company	Co.	expected value	E
nautical mile	nmi	Corporation	Corp.	greater than	>
ounce	oz	Incorporated	Inc.	greater than or equal to	≥
pound	lb	Limited	Ltd.	harvest per unit effort	HPUE
quart	qt	District of Columbia	D.C.	less than	<
yard	yd	et alii (and others)	et al.	less than or equal to	≤
•	·	et cetera (and so forth)	etc.	logarithm (natural)	ln
Time and temperature		exempli gratia		logarithm (base 10)	log
day	d	(for example)	e.g.	logarithm (specify base)	log ₂ , etc.
degrees Celsius	°C	Federal Information		minute (angular)	1
degrees Fahrenheit	°F	Code	FIC	not significant	NS
degrees kelvin	K	id est (that is)	i.e.	null hypothesis	H_{O}
hour	h	latitude or longitude	lat. or long.	percent	%
minute	min	monetary symbols		probability	P
second	S	(U.S.)	\$, ¢	probability of a type I error	
		months (tables and		(rejection of the null	
Physics and chemistry		figures): first three		hypothesis when true)	α
all atomic symbols		letters	Jan,,Dec	probability of a type II error	
alternating current	AC	registered trademark	®	(acceptance of the null	
ampere	A	trademark	TM	hypothesis when false)	β
calorie	cal	United States		second (angular)	"
direct current	DC	(adjective)	U.S.	standard deviation	SD
hertz	Hz	United States of		standard error	SE
horsepower	hp	America (noun)	USA	variance	
hydrogen ion activity	pН	U.S.C.	United States	population	Var
(negative log of)		TT C	Code	sample	var
parts per million	ppm	U.S. state	use two-letter		
parts per thousand	ppt,		abbreviations		
	‰		(e.g., AK, WA)		
volts	V				
watts	W				

TECHNICAL REPORT NO. 15-02

AQUATIC STUDIES AT KENSINGTON GOLD MINE, 2014

by

Katrina M. Kanouse Southeast Region Habitat Staff

Alaska Department of Fish and Game Division of Habitat, Region I 802 W. 3rd Street, Douglas, Alaska, 99824-0024 February 2015

This investigation was fully financed by Coeur Alaska, Inc. through a Reimbursable Services Agreement, No. 1059558, with the Alaska Department of Natural Resources, Office of Project Management and Permitting.

Cover: Lower Slate Creek during benthic macroinvertebrate sampling in April 2014.

Technical Reports are available through the Alaska State Library, Alaska Resources Library and Information Services (ARLIS) and on the Internet: http://www.adfg.alaska.gov/index.cfm?adfg=habitat_publications.main. This publication has undergone editorial and peer review.

Note: Product names used in the publication are included for completeness but do not constitute product endorsement. The Alaska Department of Fish and Game does not endorse or recommend any specific company or their products.

Alaska Department of Fish and Game, Division of Habitat 802 3rd Street, Douglas, AK 99824, USA

This document should be cited as:

Kanouse, K. M. 2015. Aquatic studies at Kensington Gold Mine, 2014. Alaska Department of Fish and Game, Technical Report No. 15-02, Douglas, AK.

The Alaska Department of Fish and Game (ADF&G) administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The department administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972.

If you believe you have been discriminated against in any program, activity, or facility please write:

- ADF&G ADA Coordinator, P.O. Box 115526, Juneau, AK 99811-5526
- U.S. Fish and Wildlife Service, 4401 N. Fairfax Drive, MS 2042, Arlington, VA 22203
- Office of Equal Opportunity, U.S. Department of the Interior, 1849 C Street NW MS 5230, Washington DC 20240.

The department's ADA Coordinator can be reached via phone at the following numbers: (VOICE) 907-465-6077

- (Statewide Telecommunication Device for the Deaf) 1-800-478-3648
- (Juneau TDD) 907-465-3646
- (FAX) 907-465-6078

For information on alternative formats and questions on this publication, please contact the ADF&G Division of Habitat at 802 3rd Street, Juneau, AK 99824, or 907-465-4105.

TABLE OF CONTENTS

	Page
LIST OF TABLES	ii
LIST OF FIGURES	ii
LIST OF APPENDICES	iii
ACKNOWLEDGEMENTS	iv
EXECUTIVE SUMMARY	1
INTRODUCTION	4
Purpose	5
Study Area	6
Slate Creek Drainage	6
Johnson Creek Drainage	
Sherman Creek Drainage	
Aquatic Studies	
Monitoring Schedule	
METHODS	
RESULTS	
Slate Creek	
Lower Slate Creek	
Periphyton Density and Composition	
Benthic Macroinvertebrate Density and Composition	
Adult Salmon Counts	
Spawning Substrate Quality	
Sediment Metals Concentrations	
Sediment Toxicity	
West Fork Slate Creek	
Periphyton Density and Composition	
Benthic Macroinvertebrate Density and Composition	
East Fork Slate Creek	
Periphyton Density and Composition	
Benthic Macroinvertebrate Density and Composition	
Sediment Metals Concentrations	
Sediment Toxicity	
Upper Slate Creek	
Periphyton Density and Composition	
Benthic Macroinvertebrate Density and Composition	
Resident Fish Population and Condition	
Sediment Metals Concentrations	
Sediment Toxicity	
Johnson Creek	
Lower Johnson Creek	
Adult Salmon Counts	
Sediment Metals Concentrations	
Sediment Toxicity	
Upper Johnson Creek	
Benthic Macroinvertebrate Density and Composition	
J	

TABLE OF CONTENTS (Continued)

	Page
Sherman Creek	36
Lower Sherman Creek	36
Periphyton Density and Composition	36
Benthic Macroinvertebrate Density and Composition	37
Adult Salmon Counts	
Sediment Metals Concentrations	39
Sediment Toxicity	40
REFERENCES CITED	42
LIST OF TABLES	
Table	Page
1. 2014 aquatic studies sampling locations	
Aquatic studies required by the APDES Permit and Plan of Operations.	
3. Latitude and longitude of the 2014 sample sites.	
4. Lower Slate Creek reach markers.	
Lower Johnson Creek reach markers.	
6. Lower Sherman Creek reach markers.	
7. 2014 Aquatic studies sampling schedule.	
8. Lower Slate Creek chlorophylls <i>a</i> , <i>b</i> , and <i>c</i> mean densities	
9. Lower Slate Creek adult salmon counts.	
10. Lower Slate Creek Sample Points 1 and 2 geometric mean particle sizes (mm).	
11. West Fork Slate Creek chlorophylls <i>a</i> , <i>b</i> , and <i>c</i> mean densities	
12. East Fork Slate Creek chlorophylls <i>a</i> , <i>b</i> , and <i>c</i> mean densities	
13. Upper Slate Creek chlorophylls <i>a</i> , <i>b</i> , and <i>c</i> mean densities	
14. Lower Johnson Creek adult salmon counts	
15. Lower Sherman Creek Sample Point 1 chlorophylls a, b, and c mean densities	
16. Lower Sherman Creek Sample Point 2 chlorophylls a, b, and c mean densities	
17. Lower Sherman Creek adult salmon counts.	39
LICT OF FIGURES	
LIST OF FIGURES	ъ
Figure	Page
1. Kensington Gold Mine area map.	
2. Lower Slate Creek.	
3. West Fork Slate Creek.	
4. East Fork Slate Creek.	
5. Upper Slate Creek	
6. Lower Johnson Creek.	
7. Lower Sherman Creek	
Slate Creek aquatic studies. Johnson Creek aquatic studies.	
Johnson Creek aquatic studies. 10. Sherman Creek aquatic studies.	
11. Lower Slate Creek chlorophyll <i>a</i> sample densities.	
12. Lower State Creek enforophyll <i>a</i> sample densities	
13. Lower State Creek Brample Points 1 and 2 benthic macroinvertebrate densities and compositions	
14. 2014 Lower State Creek weekly pink salmon counts	
15. 2014 Lower State Creek weekly plink salmon counts.	
16. 2014 Lower State Creek sediment metals concentrations.	
17. Lower Slate Creek sediment metals concentrations.	
18. West Fork Slate Creek chlorophyll <i>a</i> sample densities.	

LIST OF FIGURES (Continued)

Figur	re	Page
19.	West Fork Slate Creek mean chlorophylls <i>a</i> , <i>b</i> , and <i>c</i> proportions	22
	West Fork Slate Creek benthic macroinvertebrate densities and compositions	
21.	East Fork Slate Creek discharge.	23
22.	East Fork Slate Creek chlorophyll a sample densities.	24
	East Fork Slate Creek mean chlorophylls a, b, and c proportions.	
	East Fork Slate Creek benthic macroinvertebrate densities and compositions.	
25.	East Fork Slate Creek resident fish population estimates.	25
26.	East Fork Slate Creek resident fish population estimates by habitat type	25
27.	2014 East Fork Slate Creek sediment metals concentrations.	26
28.	East Fork Slate Creek sediment metals concentrations	27
29.	Upper Slate Creek chlorophyll a sample densities.	28
30.	Upper Slate Creek mean chlorophylls <i>a</i> , <i>b</i> , and <i>c</i> proportions	28
31.		29
32.	Upper Slate Creek resident fish population estimates	29
33.	Upper Slate Creek resident fish population estimates by habitat types.	29
34.	2014 Upper Slate Creek sediment metals concentrations.	30
35.	Upper Slate Creek sediment metals concentrations.	31
	2014 Lower Johnson Creek weekly pink salmon counts.	
37.	2014 Lower Johnson Creek weekly adult pink salmon distribution.	32
38.	2014 Lower Johnson Creek sediment metals concentrations.	33
39.	Lower Johnson Creek sediment metals concentrations.	34
40.	Upper Johnson Creek benthic macroinvertebrate densities and compositions.	35
41.	Lower Sherman Creek Sample Point 1 mean chlorophylls a, b, and c proportions	36
42.	Lower Sherman Creek Sample Point 1 chlorophyll a mean densities.	36
43.	Lower Sherman Creek Sample Point 2 chlorophyll a mean densities.	37
44.	Lower Sherman Creek Sample Point 2 mean chlorophylls a, b, and c proportions	37
45.	Lower Sherman Creek Sample Points 1 and 2 benthic macroinvertebrate densities and compositions	38
46.	2014 Lower Sherman Creek weekly adult pink salmon counts.	38
47.	2014 Lower Sherman Creek weekly adult pink salmon distribution.	39
48.	2014 Lower Sherman Creek sediment metals concentrations.	40
49.	Lower Sherman Creek sediment metals concentrations.	41

LIST OF APPENDICES

Appendix

- A PERIPHYTON DATA
- B BENTHIC MACROINVERTEBRATE DATA
- C RESIDENT FISH DATA
- D ADULT SALMON DATA
- E SPAWNING SUBSTRATE DATA
- F SEDIMENT METALS CONCENTRATION DATA & TOXICITY LAB REPORTS

ACKNOWLEDGEMENTS

The Alaska Department of Fish and Game thanks Coeur Alaska Inc. for contracting the Division of Habitat to perform the aquatic studies at the Kensington Gold Mine. Coeur Alaska Inc. Environmental staff, Kevin Eppers and Pete Strow, provided logistical support, East Fork Slate Creek discharge data, and water quality data.

Division of Habitat biologists who assisted with this year's report include Benjamin Brewster, Gordon Willson-Naranjo, Tess Quinn, Richard Hoffman, Greg Albrecht, Nicole Legere, Matthew Kern, and Johnny Zutz. The draft report was reviewed by Division of Habitat Southeast Regional Supervisor Jackie Timothy and Commercial Fisheries Division Publication Specialist Amy Carroll, and Commercial Fisheries Division Biometrician Kray Van Kirk performed the fish population power analysis. Thank you all for your contribution.

EXECUTIVE SUMMARY

The Alaska Department of Fish and Game (ADF&G) completes the aquatic resource monitoring the U.S. Forest Service (USFS) and Alaska Department of Environmental Conservation (ADEC) require for Coeur Alaska, Inc.'s (Coeur) Kensington Gold Mine. This partnership provides ADF&G the opportunity to gather and review data throughout the year, and help identify, assess, and resolve issues at the Kensington Gold Mine as they arise.

The 2014 summer was the wettest on record for Juneau, and overall, 2014 was the seventh warmest year on record (Richard Lam, Meteorologist, National Weather Service, personal communication).

The July 2014 mean periphyton density at each sampling site was lower than most previous years, especially in East Fork Slate Creek. Though not required, we also sampled periphyton in Lower Slate and East Fork Slate Creeks in February, April, and October to observe variability throughout the year, and continue monitoring for changes that may occur from the tailing treatment facility (TTF) upstream. Periphyton biomass in Lower Slate Creek fluctuated seasonally, as in previous years, while biomass in East Fork Slate Creek remained low all year.

Since August 2011, Coeur staff sampled surface waters monthly for ammonia, chlorophyll, nitrate, organic carbon, phosphorus, potassium, and sulfur in and around the TTF to investigate the cause of algal blooms in the TTF. Sample sites included the TTF, upstream of the TTF at the outlet of Upper Slate Lake^c (USL), the TTF water treatment plant effluent, and downstream of the outfall 002 effluent discharge in East Fork Slate Creek. In the TTF during 2014, chlorophyll *a* and phosphorus concentrations were lower than in previous years. Ammonia, nitrate, potassium, and sulfur concentrations in the effluent continued to be greater than background USL concentrations, while organic carbon concentrations were usually greatest in USL. ADEC requires an effluent limit for ammonia and concentrations have not exceeded the limit.

We sampled benthic macroinvertebrates at a new sample site in Lower Slate Creek for the second year in a row where riffle habitats appear to be better suited for sampling than at established Sample Point 1. At the new site, we observed about half the number of benthic macroinvertebrates compared to the Sample Point 1 both years, though a greater proportion of sensitive aquatic insects. Compared to the 2013 sample results, in 2014 we observed fewer mayflies and a change in sensitive aquatic insect taxa dominance from mayflies to stoneflies at both sites. We also observed fewer mayflies in West Fork Slate Creek. We will sample both Lower Slate Creek sites again in 2015.

Benthic macroinvertebrates were less abundant and diverse in East Fork Slate Creek than the previous three years, with the same low proportion of sensitive aquatic insects observed in 2013. Because the number of sensitive aquatic insects did not increase between years, we did

-

^a Ben Brewster, Habitat Biologist, ADF&G Habitat Division, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Habitat Division. Memorandum: Kensington Gold Mine Periphyton Trip Report; dated 2/12/15.

b (1) Ben Brewster, Habitat Biologist, ADF&G Habitat Division, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Habitat Division. Memorandum: Kensington Gold Mine February Sampling Trip Report; dated 4/8/14. (2) Ben Brewster, Habitat Biologist, ADF&G Habitat Division, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Habitat Division. Memorandum: Kensington Gold Mine April Periphyton Trip Report; dated 10/3/14.

^c Coeur's water quality monitoring station MLA.

^d Ben Brewster, Habitat Biologist, ADF&G Habitat Division, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Habitat Division. Memorandum: 2014 Kensington Gold Mine Benthic Macroinvertebrate Trip Report; dated 12/24/14.

not sample a second time in East Fork Slate Creek as we recommended in the previous annual report. Instead, we sampled Lower Slate Creek Sample Point 1 in the fall to detect changes that could occur downstream, and observed fewer chironomids compared to the spring samples, similar to the 2013 results. We also observed this trend among Sherman Creek samples collected in spring and fall 2014. The difference in numbers of chironomids between seasons may be due to emergence timing after spring sampling and larval size smaller than our sampler net during fall.

We observed a change in the spring Lower Sherman Creek benthic macroinvertebrate community at both sample sites. The spring samples contained the lowest proportion of sensitive aquatic insects and the greatest proportion of chironomids since sampling began in 2006 (Flory 2007). We sampled Sample Point 1 again in November and found more sensitive aquatic insects and fewer chironomids than in the spring samples. The November sampling was part of a collaborative investigation of a white substance on the Sherman Creek stream bed downstream of outfall 001. Beginning during the 2013/2014 winter, Coeur reported periodic presence of the white substance, which became more persistent in fall 2014. With Coeur and ADEC staff, we investigated the extent of the white substance and sampled benthic macroinvertebrates upstream and downstream of outfall 001. We found fewer insects and a lower proportion of sensitive insects among the samples collected downstream of outfall 001 compared to samples collected upstream. With Coeur and ADEC, we will continue to monitor Sherman Creek in 2015. Habitat biologists continued to observe a white substance on the East Fork and Lower Slate Creek stream beds during 2014.

The 2014 Upper Slate Creek Dolly Varden char *Salvelinus malma* population estimate was similar to population estimates from 2011 and 2013. For the second year in a row, we did not capture fish during our East Fork Slate Creek resident fish survey, however, habitat biologists captured Dolly Varden char in the plunge pool at the outlet of the diversion pipeline on four occasions. We again recommend ADEC discontinue the East Fork Slate Creek resident fish population surveys as the studies do not provide reliable information to assess stream health or determine if TTF operations impact resident fish populations downstream. Further studies in Upper Slate Creek are not necessary as 10 years of surveys provide sufficient baseline information for TTF reclamation. If ADEC discontinues these studies, we would recommend continuing opportunistic fish presence monitoring in East Fork Slate Creek each year.

In 2014, we observed the fewest numbers of adult pink salmon *Oncorhynchus gorbuscha* in Slate, Johnson, and Sherman Creeks since we began surveying in 2011,^g which mirrors the return trend observed throughout most of northern southeast Alaska (Randy Bachman, Commercial Fisheries Area Management Biologist, ADF&G, Haines, personal communication). In Johnson Creek, we observed two pulses of returning adult coho salmon *O. kitsutch*, in early and late October, and the greatest number of adult coho salmon in four years. Adult salmon returns depend on marine survival rates and other factors we cannot quantify. Therefore, we cannot use the data to determine if Kensington Gold Mine construction and operations impact adult salmon populations. We again recommend the USFS and the Berners

^e Ben Brewster, Habitat Biologist, ADF&G Habitat Division, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Habitat Division. Memorandum: 2014 Kensington Gold Mine Resident Fish Trip Report; dated 1/20/15.

Gordon Willson-Naranjo, Habitat Biologist, ADF&G Habitat Division, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Habitat Division. Memorandum: Kensington Gold Mine TTF and Slate Creek Trapping; dated 11/7/14.

Ben Brewster, Habitat Biologist, ADF&G Habitat Division, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Habitat Division. Memorandum: 2014 Kensington Gold Mine Adult Salmon Count Report; dated 1/20/15.

Bay working group discontinue the spawning salmon escapement survey requirement for all species.

The geometric mean particle size of pink salmon spawning substrate in Lower Slate Creek has increased several millimeters at both sample sites since 2011. Most sediment metals, arsenic, and selenium concentrations in Slate, Johnson, and Sherman Creeks were similar to or less than concentrations observed since 2011. Concentrations among the Slate Creek samples were greatest in East Fork Slate Creek, except aluminum and chromium, which were greatest in Upper Slate Creek. Cadmium and zinc concentrations in East Fork Slate Creek were similar to the 2013 concentrations, and remain above the NOAA guidelines for freshwater sediments (Buchman 2008; MacDonald et al. 2000). Arsenic, copper, and nickel concentrations at all sample sites, including upstream reference sites, were generally above the NOAA guidelines each year since sampling began in 2005 (Flory 2006–2011), five years prior to mining.

We continued the TTF Environmental Monitoring Plan studies in 2014. We retrieved benthic macroinvertebrate sample trays from Upper Slate Lake in June^j and October and collected water column data in March^k and August.¹ Coeur staff continued sampling tailings for geochemical analyses. We issued a trip report^m summarizing the 2014 data, and we will complete the studies in 2015.

_

b Ben Brewster, Habitat Biologist, ADF&G Habitat Division, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Habitat Division. Memorandum: Kensington Gold Mine Slate Creek Spawning Substrate; dated 1/7/15.

Ben Brewster, Habitat Biologist, ADF&G Habitat Division, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Habitat Division. Memorandum: 2014 Kensington Gold Mine Sediment Sampling Trip Report; dated 1/7/15.

Matthew Kern, Habitat Biologist, ADF&G Habitat Division, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Habitat Division. Memorandum: Stream No. 115-20-10030 KGM TTF EMP Tray Pull 2; dated 8/27/14.

Ben Brewster, Habitat Biologist, ADF&G Habitat Division, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Habitat Division. Memorandum: Kensington Gold Mine Upper Slate Lake Trip Report; dated 4/8/14.

Ben Brewster, Habitat Biologist, ADF&G Habitat Division, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Habitat Division. Memorandum: 2014 Kensington Gold Mine Upper Slate Lake Trip Report; dated 1/20/15.

^m Gordon Willson-Naranjo, Habitat Biologist, ADF&G Habitat Division, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Habitat Division. Memorandum: Kensington Gold Mine 2014 TTF EMP Studies; dated 2/12/15.

INTRODUCTION

The Kensington Gold Mine is located near Berners Bay in southeast Alaska; about 72 km north of Juneau by air and about 56 km south of Haines by air (Figure 1). The site, where mining began near the end of the 19th century, is within the City and Borough of Juneau and the Tongass National Forest (Tetra Tech Inc. et al. 2004a, b). The mine is owned and operated by Coeur Alaska, Inc., a wholly owned subsidiary of Coeur Mining, Inc., Chicago, Illinois.

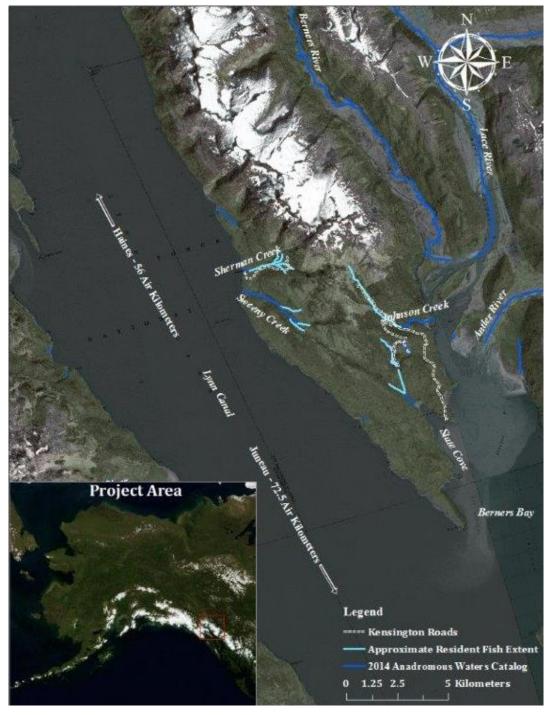


Figure 1.-Kensington Gold Mine area map.

Coeur connected the Kensington and Jualin adits in July 2007, making travel through the ore body between the Johnson and Sherman Creek drainages possible. The mine began production on June 24, 2010 and produces gold concentrate that is exported for processing. Tailings are disposed as slurry from the mill through a pipeline into the TTF. Mine infrastructure is located in three drainages that support resident and anadromous fish; the TTF in the Slate Creek drainage, the camp and mill facilities in the Johnson Creek drainage, and the mine water treatment facility in the Sherman Creek drainage.

Contractors gathered aquatic data for the Kensington Gold Mine from the late 1980s through 2005 which provided a basis for Division of Habitat permit decisions, Coeur's USFS approved 2005 Plan of Operations monitoring requirements (Coeur 2005), the Environmental Protection Agency (EPA) National Pollutant Elimination Discharge System (NPDES) Permit No. AK-005057-1 (Timothy and Kanouse 2012, Appendix A), and the DEC Alaska Pollutant Elimination System (APDES) Permit No. AK0050571 (Timothy and Kanouse 2012, Appendix A). Contractor reports include Archipelago Marine Research Ltd. (1991), Dames and Moore (1991), Earthworks Technology, Inc. (2002), EVS Environment Consultants (2000), Flory (1998, 1999, 2000, 2001a, 2001b, 2002, 2004), HDR Alaska, Inc. (2003), Kline (2003) Kline Environmental Research, LLC (2001, 2003, 2005), Konopacky Environmental (1992a, 1992b, 1993a, 1993b, 1993c, 1995, 1996a, 1996b, 1996c, 1996d), Pentec Environmental (1990, 1991), and Steffen Robertson and Kirsten Consulting Engineers and Scientists (1997). Monitoring reports include Flory (2006, 2007, 2008, 2009a, 2009b, 2009c, 2009d, 2011) and Timothy and Kanouse (2012, 2013, 2014).

The Division of Habitat began the aquatic studies for the Kensington Gold Mine in Slate, Johnson, and Sherman Creeks in 2011. The APDES Permit requires periphyton, benthic macroinvertebrate, resident fish and sediment sampling. We assess stream health using estimates of periphyton density and community composition, benthic macroinvertebrate density and community composition, sediment metals concentrations, sediment toxicity, and pink salmon spawning substrate quality. The Division of Habitat also completes resident Dolly Varden char abundance and condition studies required by the APDES Permit, adult salmon counts required by Coeur's USFS approved Plan of Operations (2005), and the tailings habitability studies required by the Division of Habitat and the USFS in the Tailings Treatment Facility Environmental Monitoring Plan (TPEC 2014).

PURPOSE

The purpose of this technical report is to summarize our 2014 aquatic study data and document the condition of biological communities and sediments in the Slate, Johnson, and Sherman Creek drainages near mine development and operations. This report satisfies the aquatic study requirements of Coeur's USFS approved Plan of Operations (2005) and ADEC APDES Permit AK0050571.

STUDY AREA

In 2014, we sampled the stream reaches listed in Table 1.

Table 1.–2014 aquatic studies sampling locations.

Slate Creek	Johnson Creek	Sherman Creek
Lower Slate Creek	Lower Johnson Creek	Lower Sherman Creek
West Fork Slate Creek	Upper Johnson Creek	Middle Sherman Creek
East Fork Slate Creek		
Upper Slate Creek		

Note: Studies in the TTF and Middle Sherman Creek were not required.

Slate Creek Drainage

Slate Creek drains a 10.5 km² watershed (Coeur 2005) into Slate Cove on the northwest side of Berners Bay. Two waterfalls about 1 km upstream of the mouth prevent anadromous fish passage to the West and East Forks. There are two lakes in this drainage; Lower Slate and Upper Slate Lakes, both upstream of East Fork Slate Creek. Coeur operates the TTF in Lower Slate Lake and discharges TTF water treatment plant effluent via outfall 002 in East Fork Slate Creek. West Fork Slate Creek and Upper Slate Creek are upstream of mine influence. Many of the plants and animals that inhabit lakes differ from those that inhabit rivers, so results of samples taken downstream of lakes will differ from those of West Fork Slate and Upper Slate Creeks, Johnson Creek, and Sherman Creek where lakes are not present.

The Catalog of Waters Important for the Spawning, Rearing, or Migration of Anadromous Fishes (Catalog; Johnson and Daigneault 2013) lists Lower Slate Creek (Stream No. 115-20-10030) providing habitat for chum salmon *O. keta*, coho salmon, and pink salmon, and eulachon *Thaleichthys pacificus* (Figure 2). Dolly Varden char and cutthroat trout *O. clarkii* are also present downstream of the waterfalls. Upstream of the waterfalls, Dolly Varden char are present in the West (Figure 3) and East Forks (Figure 4), Upper Slate Lake, and Upper Slate Creek (Figure 5)—a tributary to Upper Slate Lake.

Figure 2.-Lower Slate Creek.

Figure 3.-West Fork Slate Creek.

Figure 4.-East Fork Slate Creek.

Figure 5.-Upper Slate Creek.

Johnson Creek Drainage

Johnson Creek drains a 14.6 km² watershed (Coeur 2005) to the north side of Berners Bay. A waterfall about 1.5 km upstream of the mouth prevents anadromous fish passage to the middle and upper reaches. Middle Johnson Creek is the reach between the Lower Johnson Creek waterfall barrier and Jualin Road Bridge 2, and Upper Johnson Creek is the reach between Jualin Road Bridge 2 and the headwaters. At Upper Johnson Creek, an infiltration gallery near the mill bench withdraws water to support the camp, and the Jualin adit waste rock pile and upper camp facilities are adjacent.

The Catalog (Johnson and Daigneault 2013) lists Lower Johnson Creek (Stream No. 115-20-10070) providing habitat for chum, coho, and pink salmon (Figure 6). Dolly Varden char and cutthroat trout are also present downstream of the waterfall. Upstream of the waterfalls, Dolly Varden char are present in the middle and upper reaches.

Figure 6.-Lower Johnson Creek.

Sherman Creek Drainage

Sherman Creek drains a 10.84 km² watershed (Coeur 2005) to the east shore of Lynn Canal. A waterfall about 360 m upstream of the mouth prevents anadromous fish passage to the middle and upper reaches. Middle Sherman Creek is the reach between the Lower Sherman Creek waterfall barrier and the Comet Road bridge, and Upper Sherman Creek is the reach between the Comet Road bridge and the headwaters. South Fork Sherman Creek drains to Middle Sherman Creek upstream of the Ophir Creek confluence. At Middle Sherman Creek, the mine water treatment plant discharges via outfall 001, the Kensington adit waste rock pile is adjacent to Ophir Creek, and bridges and culverts along the Comet Road cross tributaries that drain to the middle reach. Upper Sherman Creek is upstream of mine influence.

The Catalog (Johnson and Daigneault 2013) lists Sherman Creek (Stream No. 115-31-10330) providing habitat for pink and chum salmon (Figure 7). Dolly Varden char are present in the lower, middle, and upper reaches of Sherman Creek.



Figure 7.-Lower Sherman Creek.

AQUATIC STUDIES

We complete the Kensington Gold Mine aquatic studies at the frequency specified in Coeur's USFS approved Plan of Operations (2005) and ADEC APDES Permit AK0050571 (Table 2). Figures 8–10 illustrate stream reaches and sampling locations for the aquatic studies we completed in 2014, and Table 3 lists the latitude and longitude of each sampling site.

Table 2.—Aquatic studies required by the APDES Permit and Plan of Operations.

Location	Description	Aquatic Study	Frequency
Lower Slate Creek	1 km anadromous fish reach between the	Periphyton density and composition	1/year
	stream mouth in Berners Bay and a 25 m	Benthic macroinvertebrate density and composition	1/year
	barrier waterfall.	Adult salmon counts	Annually
		Spawning substrate quality	1/year
		Sediment metals concentrations and toxicity	1/year
East Fork Slate Creek	1 km of riffles and cascades downstream of	Periphyton density and composition	1/year
	the TTF to the 25 m waterfall in Lower Slate	Benthic macroinvertebrate density and composition	1/year
	Creek.	Resident fish population and condition	1/year
		Sediment metals concentrations and toxicity	1/year
West Fork Slate	Reference stream, a tributary to Lower Slate	Periphyton density and composition	1/year
Creek	Creek and upstream of mine influence.	Benthic macroinvertebrate density and composition	1/year
Upper Slate Creek	Reference stream, a tributary to Upper Slate	Periphyton density and composition	1/year
	Lake and upstream upstream of mine	Benthic macroinvertebrate density and composition	1/year
	influence.	Resident fish population and condition	1/year
		Sediment metals concentrations and toxicity	1/year
Lower Johnson Creek	1.5 km anadromous fish reach between the	Adult salmon counts	Annually
	stream mouth in Berners Bay and a 30 m barrier waterfall.	Sediment metals concentrations and toxicity	1/year
Upper Johnson Creek	Upstream of Bridge #2 to the headwaters, adjacent to the upper camp and mill bench.	Benthic macroinvertebrate density and composition	1/year
Lower Sherman	360 m anadromous fish reach between the	Periphyton density and composition	1/year
Creek	stream mouth in Lynn Canal and a 15 m	Benthic macroinvertebrate density and composition	1/year
	barrier waterfall.	Adult salmon counts	Annually
		Sediment metals concentrations and toxicity	1/year

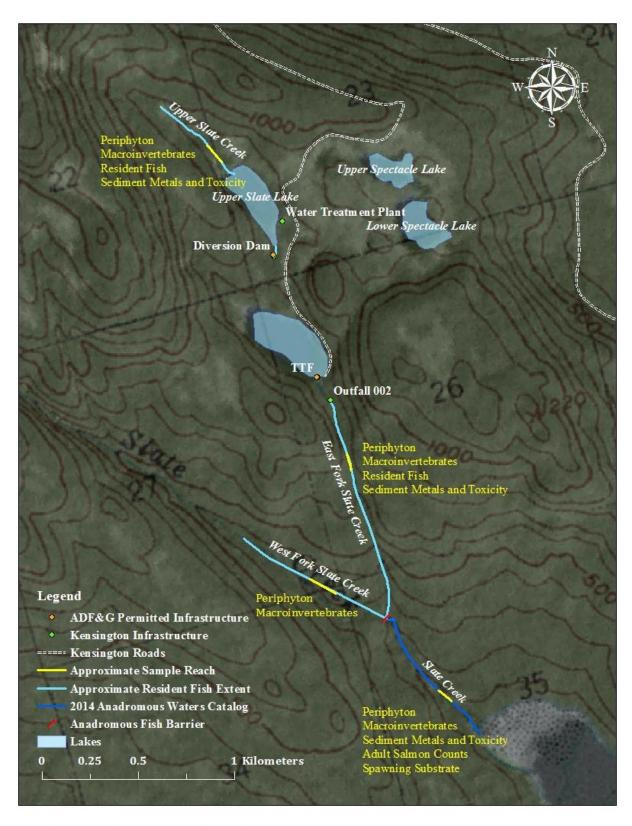


Figure 8.–Slate Creek aquatic studies.

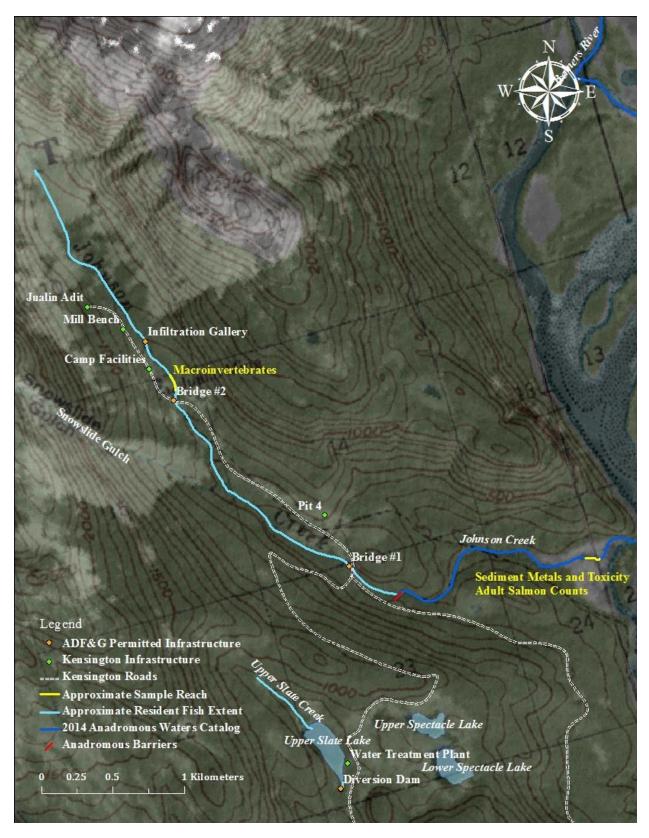


Figure 9.-Johnson Creek aquatic studies.

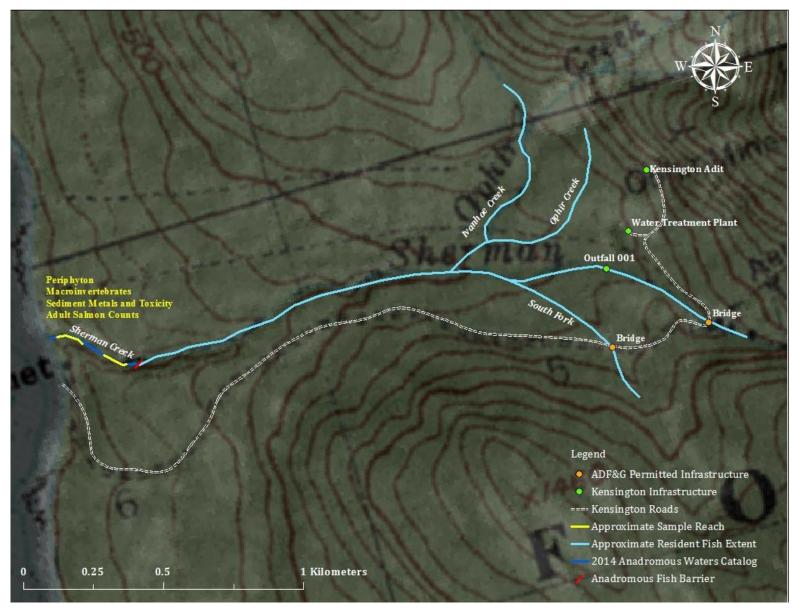


Figure 10.-Sherman Creek aquatic studies.

Table 3.—Latitude and longitude of the 2014 sample sites.

Location	Sample Site	Latitude	Longitude
Lower Slate Creek	Periphyton	58.7900°N	135.0343°W
	Benthic Macroinvertebrates Sample Point 1	58.7901°N	135.0342°W
	Benthic Macroinvertebrates Sample Point 2	58.7919°N	135.0359°W
	Adult Salmon Counts	Table 4	
	Spawning Substrate Sample Point 1	58.7905°N	135.0345°W
	Spawning Substrate Sample Point 2	58.7916°N	135.0356°W
	Sediment Metals and Toxicity	58.7920°N	135.0360°W
West Fork Slate Creek	Periphyton	58.7992°N	135.0460°W
	Benthic Macroinvertebrates	58.7995°N	135.0459°W
East Fork Slate Creek	Periphyton	58.8046°N	135.0382°W
	Benthic Macroinvertebrates	58.8045°N	135.0381°W
	Resident Fish	58.8040°N	135.0382°W
	Sediment Metals and Toxicity	58.8053°N	135.0383°W
Upper Slate Creek	Periphyton	58.8191°N	135.0416°W
	Benthic Macroinvertebrates	58.8189°N	135.0415°W
	Resident Fish	58.8199°N	135.0425°W
	Sediment Metals and Toxicity	58.8189°N	135.0416°W
Lower Johnson Creek	Adult Salmon Counts	Table 5	
	Sediment Metals and Toxicity	58.8235°N	135.0048°W
Upper Johnson Creek	Benthic Macroinvertebrates	58.8407°N	135.0450°W
Lower Sherman Creek	Periphyton Sample Point 1	58.8687°N	135.1414°W
	Periphyton Sample Point 2	58.8672°N	135.1376°W
	Benthic Macroinvertebrates Sample Point 1	58.8688°N	135.1412°W
	Benthic Macroinvertebrates Sample Point 2	58.8674°N	135.1381°W
	Adult Salmon Counts	Table 6	
	Sediment Metals and Toxicity	58.8687°N	135.1413°W

Source: World Geodetic System (WGS) 84 datum.

Table 4.-Lower Slate Creek reach markers.

Location	Latitude	Longitude
100 m	58.7884°N	135.0324°W
200 m	58.7893°N	135.0337°W
300 m	58.7905°N	135.0349°W
400 m	58.7915°N	135.0359°W
500 m	58.7920°N	135.0366°W
600 m	58.7933°N	135.0375°W
700 m	58.7936°N	135.0379°W
800 m	58.7944°N	135.0384°W
900 m	58.7952°N	135.0386°W
Falls	58.7964°N	135.0389°W

Table 5.-Lower Johnson Creek reach markers.

Location	Latitude	Longitude
Lace	58.8215°N	135.0010°W
Mouth	58.8236°N	134.9987°W
Trap	58.8235°N	135.0007°W
#4	58.8236°N	135.0039°W
#7	58.8243°N	135.0072°W
#10	58.8254°N	135.0109°W
Power House	58.8259°N	135.0148°W
Log Falls	58.8256°N	135.0169°W
#15	58.8255°N	135.0194°W
Falls	58.8240°N	135.0260°W

Table 6.-Lower Sherman Creek reach markers.

Location	Latitude	Longitude
50 m	58.8687°N	135.1415°W
100 m	58.8687°N	134.1408°W
150 m	58.8684°N	135.1401°W
200 m	58.8682°N	135.1394°W
250 m	58.8679°N	135.1388°W
300 m	58.8674°N	135.1376°W
350 m	58.8671°N	135.1368°W
Falls	58.8670°N	135.1367°W

MONITORING SCHEDULE

Table 7 presents the dates we collected data in 2014.

Table 7.–2014 Aquatic studies sampling schedule.

	Lower	East Fork	West Fork	Upper	Lower	Upper	Lower	Middle
Aquatic Study	Slate	Slate	Slate	Slate	Johnson	Johnson	Sherman	Sherman
Periphyton	2/19/2014						7/28/2014 (2)	
	4/30/2014	4/28/2014						
	7/30/2014	7/30/2014	7/30/2014	7/30/2014				
	10/7/2014	10/7/2014						
Benthic	2/19/2014							
Macroinvertebrates	4/30/2014 (2)	4/28/2014	4/30/2014	4/28/2014		4/29/2014	4/29/2014 (2)	
	10/6/2014						11/20/2014	11/20/2014 (2)
Resident Fish		8/20/2014		8/19/2014				
Adult Salmon	7/21/2014-				7/22/2014-		7/21/2014-	
Counts	11/4/2014				11/11/2014		9/15/2014	
Spawning Substrate	7/1/2014 (2)							
Sediment Metals	7/28/2014	7/30/2014		7/30/2014	7/30/2014		7/28/2014	
Sediment Toxicity	7/28/2014	6/30/2014		7/30/2014	7/30/2014		6/30/2014	

Note: Cells highlighted in grey indicate sampling was not required per the APDES Permit or Plan of Operations, and the number in parenthesis was the number of sites sampled..

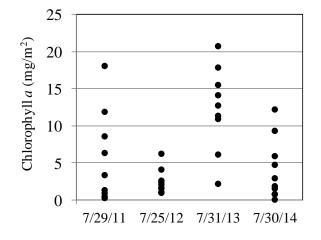
METHODS

We used the methods described in Timothy and Kanouse (2014), and footnote differences in the *Results* section. Sample data are in Appendix A–F.

We occasionally review data sets to ensure accuracy and report corrections in the document and appendices. The most recent technical report presents the current data sets and should be used to analyze data from previous years. In this report, we adjusted the 2011-2013 periphyton data by excluding chlorophylls b and c data when chlorophyll a was not detected, and corrected the 2013 estimated detection limit from 0.06 to 0.24.

RESULTS

SLATE CREEK


Lower Slate Creek

Periphyton Density and Composition

The July 2014 mean chlorophyll a density was within the range observed since 2011 (Table 8). Chlorophyll a density for each sample collected is presented in Figure 11, and proportions of mean chlorophylls a, b, and c each year are presented in Figure 12.

Table 8.–Lower Slate Creek chlorophylls a, b, and c mean densities.

Sample Date	Chlorophyll a (mg/m²)	Chlorophyll b (mg/m²)	Chlorophyll $c \text{ (mg/m}^2\text{)}$
July 29, 2011	5.65	0.43	0.26
July 25, 2012	2.31	0.05	0.18
July 31, 2013	12.59	0.00	1.64
July 30, 2014	3.97	0.85	0.30

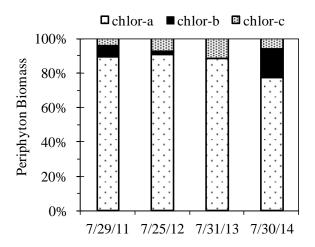


Figure 11.–Lower Slate Creek chlorophyll *a* sample densities.

Figure 12.–Lower Slate Creek mean chlorophylls *a*, *b*, and *c* proportions.

Benthic Macroinvertebrate Density and Composition

Sample Point 1

Among the spring 2014 samples, we observed fewer EPT insects, a change in the EPT taxa dominance from mayflies to stoneflies, and more chironomids compared to the spring 2012 and 2013 results. We identified 32 taxa and estimate benthic macroinvertebrate density at 4,136 insects/m², of which 19% were EPT insects (Figure 13). The dominant taxon was Diptera: Chironomidae, representing 68% of samples.

Numbers of EPT insects among samples collected in February and October 2014 were similar to the April 2014 results. We observed more chironomids in February than in October, which may be due to insect life stage during those seasons.

Sample #1 contained nearly half of all benthic macroinvertebrates counted among the six samples, and about 90% of the those insects were chironomids. If we exclude sample #1 from the data set, benthic macroinvertebrate density would be 2,695 insects/m², of which 28% were EPT insects.

Sample Point 2

Similar to the spring 2014 sample results for Sample Point 1, we observed a change in the EPT taxa dominance from mayflies to stoneflies, and more chironomids compared to the spring 2013 results. We identified 31 taxa and estimate benthic macroinvertebrate density at 1,986 insects/m², of which 48% were EPT insects (Figure 13). The dominant taxa were Diptera: Chironomidae representing 33% of the samples, and Plecoptera: Sweltsa representing 19% of samples.

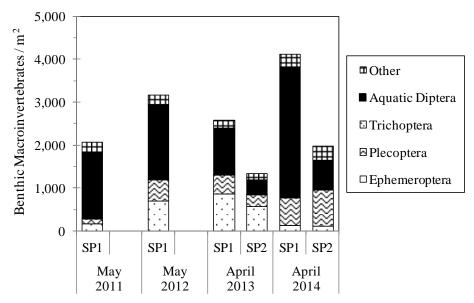


Figure 13.—Lower Slate Creek Sample Points 1 and 2 benthic macroinvertebrate densities and compositions.

Adult Salmon Counts

We counted 41 live adult pink salmon, 0 chum salmon, and 5 live coho salmon^p during the 2014 spawning season. Figure 14 presents the adult pink salmon count for each survey, and Figure 15 presents the distribution of pink salmon. Table 9 presents the 2011–2014 adult salmon counts.

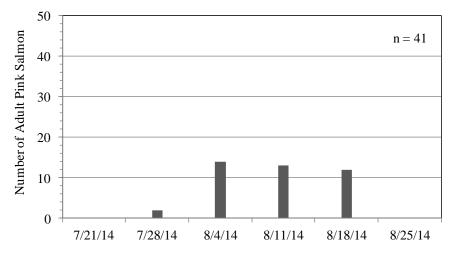


Figure 14.–2014 Lower Slate Creek weekly pink salmon counts.

-

We did not survey during the weeks of September 29 or October 27 due to weather conditions that prevented visibility, therefore our series of counts was incomplete.

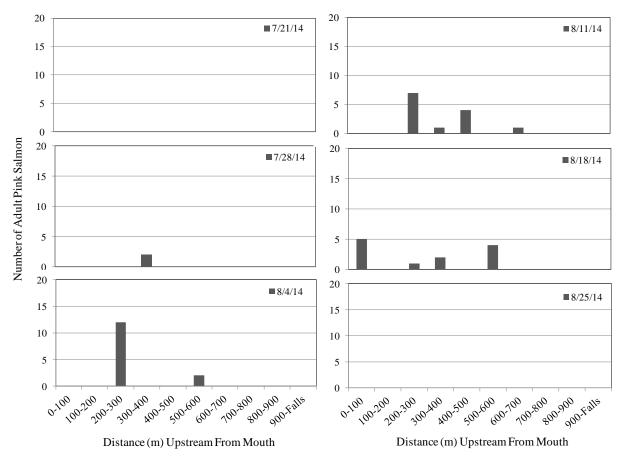


Figure 15.–2014 Lower Slate Creek weekly adult pink salmon distribution.

Table 9.-Lower Slate Creek adult salmon counts.

	2011	2012	2013	2014
Pink Salmon	6,275	7,272	3,337	41
Chum Salmon	61	1	1	0
Coho Salmon	0	0	26	5

Spawning Substrate Quality

Sample Point 1

The geometric mean particle size among samples collected at Sample Point 1 was 12.7 mm, within the range of sizes observed since 2011 (Table 10).^q

Sample Point 2

The geometric mean particle size among samples collected at Sample Point 2 was 16.2 mm, the greatest observed since 2011 (Table 10). Geometric mean particle size at this site increased each year since 2011.

^q We do not convert the 0.15 mm sieve contents from wet weight to dry weight as described in Timothy and Kanouse (2014).

Table 10.-Lower Slate Creek Sample Points 1 and 2 geometric mean particle sizes (mm).

	2011	2012	2013	2014
Sample Point 1	10.1	10.6	13.9	12.7
Sample Point 2	10.9	11.0	12.9	16.2

Sediment Metals Concentrations

The 2014 sediment metals, As, and Se concentrations (mg/kg) were similar to or less than concentrations observed 2011–2013.^{r,s} Figure 16 presents the 2014 sample results, and Figure 17 presents the 2011–2014 data.

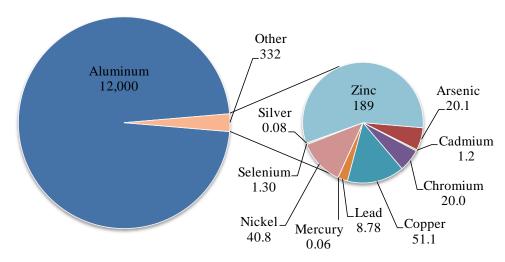


Figure 16.–2014 Lower Slate Creek sediment metals concentrations.

Sediment Toxicity

C. dilutus and *H. azteca* growth and survival on the Lower Slate Creek sediment sample were not significantly different than organism growth and survival on the control sediment.^t

-

ALS Environmental of Kelso, WA performed the 2014 bioassays, while AECOM Environmental Toxicology of Fort Collins, CO performed the 2011–2013 bioassays.

 $^{^{\}rm s}$ We accidentally analyzed and reported acid volatile sulfide, instead of total sulfide, 2011–2013.

CH2M Hill of Corvallis, OR performed the 2014 analyses and used sediment collected from Beaver Creek near Newport, Oregon as the control. AECOM Environmental Toxicology of Fort Collins, CO performed the 2011–2013 analyses using commercial grade sand and formulated sediment as the controls.

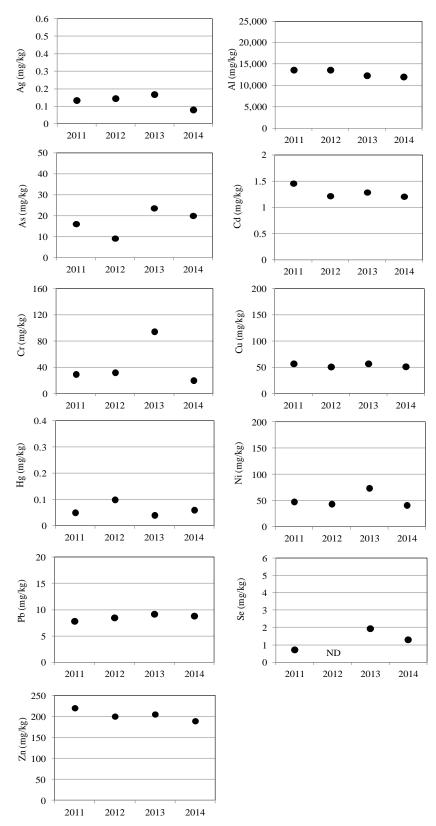


Figure 17.–Lower Slate Creek sediment metals concentrations.

West Fork Slate Creek

Periphyton Density and Composition

The July 2014 mean chlorophyll *a* density was within the range observed since 2011 (Table 11). Chlorophyll *a* density for each sample collected is presented in Figure 18, and proportions of mean chlorophylls *a*, *b*, and *c* each year are presented in Figure 19.

Table 11.–West Fork Slate Creek chlorophylls a, b, and c mean densities.

Sample Date	Chlorophyll $a \text{ (mg/m}^2\text{)}$	Chlorophyll $b \text{ (mg/m}^2\text{)}$	Chlorophyll $c \text{ (mg/m}^2\text{)}$
July 29, 2011	3.92	0.00	0.27
July 25, 2012	1.01	0.00	0.10
July 31, 2013	4.22	0.00	0.61
July 30, 2014	0.77	0.00	0.06

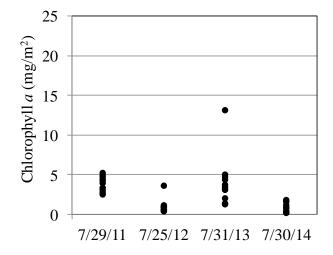


Figure 18.–West Fork Slate Creek chlorophyll *a* sample densities.

Figure 19.–West Fork Slate Creek mean chlorophylls *a*, *b*, and *c* proportions.

Benthic Macroinvertebrate Density and Composition

We observed fewer mayflies among the 2014 samples than in 2012 and 2013, a trend we also observed at Lower Slate Creek. We identified 29 taxa and estimate benthic macroinvertebrate density at 973 insects/m², of which 71% were EPT insects (Figure 20). The dominant taxa were Diptera: Chironomidae representing 22% of the samples, and Ephemeroptera: Baetis representing 17% of samples.

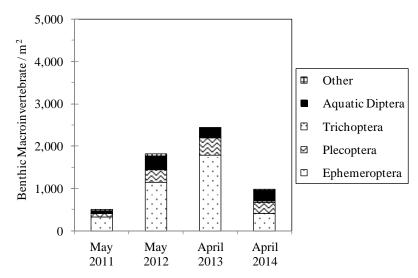


Figure 20.-West Fork Slate Creek benthic macroinvertebrate densities and compositions.

East Fork Slate Creek

East Fork Slate Creek discharge is dependent on Upper Slate Lake discharge, routed through the diversion pipeline around the TTF, and effluent discharge^u from the TTF water treatment plant. East Fork Slate Creek mean daily discharge^v during July was greater than we observed in previous years (Figure 21), and may have affected periphyton density prior to sampling.

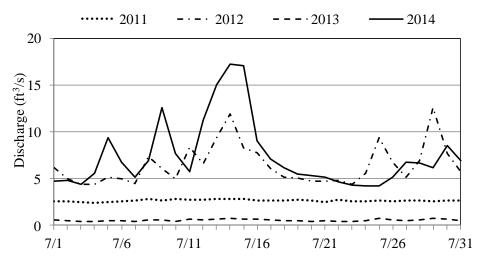
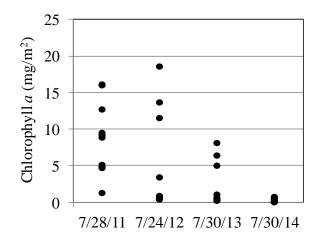


Figure 21.-East Fork Slate Creek discharge.

Note: Calculated using Parshall Flume discharge data and TTF WTP discharge data.

^u The TTF water treatment plant began discharging to East Fork Slate Creek in December 2010.


Calculated by combining the diversion pipeline Parshall Flume and TTF water treatment plant mean daily discharge data.

Periphyton Density and Composition

The July 2014 mean chlorophyll a density was the lowest observed since 2011 (Table 12). Chlorophyll a density for each sample collected is presented in Figure 22, and proportions of mean chlorophylls a, b, and c each year are presented in Figure 23.

Table 12.—East Fork Slate	Creek chlorophylls a.	b. and c mean densities.
Tuest 12. Eust 1 offi State		e, une e mensiones.

Sample Date	Chlorophyll a (mg/m²)	Chlorophyll b (mg/m²)	Chlorophyll $c \text{ (mg/m}^2\text{)}$
July 28, 2011	8.84	1.56	0.24
July 24, 2012	5.08	0.57	0.18
July 30, 2013	2.28	0.06	0.20
July 30, 2014	0.27	0.02	0.02

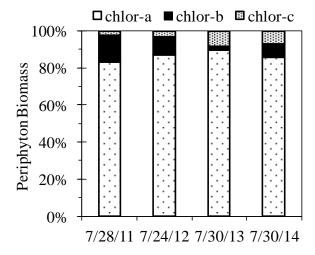


Figure 22.–East Fork Slate Creek chlorophyll \boldsymbol{a} sample densities.

Figure 23.–East Fork Slate Creek mean chlorophylls *a*, *b*, and *c* proportions.

Benthic Macroinvertebrate Density and Composition

We observed the fewest number of insects among the spring 2014 samples compared to 2011–2013 data. We identified 24 taxa and estimate benthic macroinvertebrate density at 2,048 insects/m² (Figure 24) of which 2% were EPT insects—the same percentage observed in 2013. The dominant taxa were Diptera: Chironomidae representing 35% of the samples, and Bivalvia: Sphaeriidae (pea clams) representing 26% of samples.

Resident Fish Population and Condition

We did not capture fish during our East Fork Slate Creek survey, therefore the 2014 Dolly Varden char population estimate was 0 fish—the same as in 2013 (Figures 25, 26). During sampling, stream flow was again variable due to maintenance at the TTF water treatment plant and the effluent accounted for about 30% of stream flow.

w As part of U.S. Fish and Wildlife Service Study # 11-741-14-083F, in 2014 we used AQUI-SE (10% eugenol) to anesthetize fish with dosages ranging 5–18 mg/L, not clove oil as described in Timothy and Kanouse (2014).

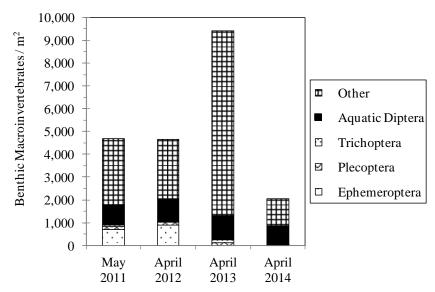


Figure 24.– East Fork Slate Creek benthic macroinvertebrate densities and compositions.

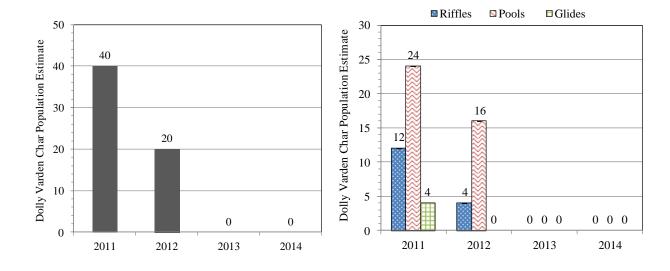


Figure 25.– East Fork Slate Creek resident fish population estimates.

Figure 26.–East Fork Slate Creek resident fish population estimates by habitat type.

Sediment Metals Concentrations

The 2014 sediment metals, As, and Se concentrations (mg/kg) were similar to or less than concentrations observed 2011–2013. Figure 27 presents the 2014 sample results, and Figure 28 presents the 2011–2014 data.

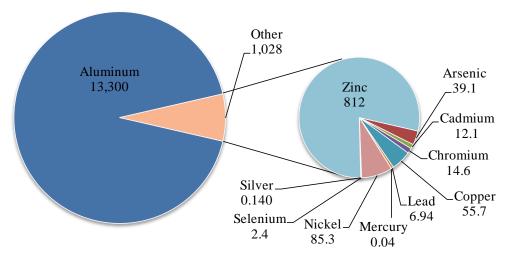


Figure 27.–2014 East Fork Slate Creek sediment metals concentrations.

Sediment Toxicity

C. dilutus and *H. azteca* growth and survival on the East Fork Slate Creek sediment sample were not significantly different than organism growth and survival on the control sediment.

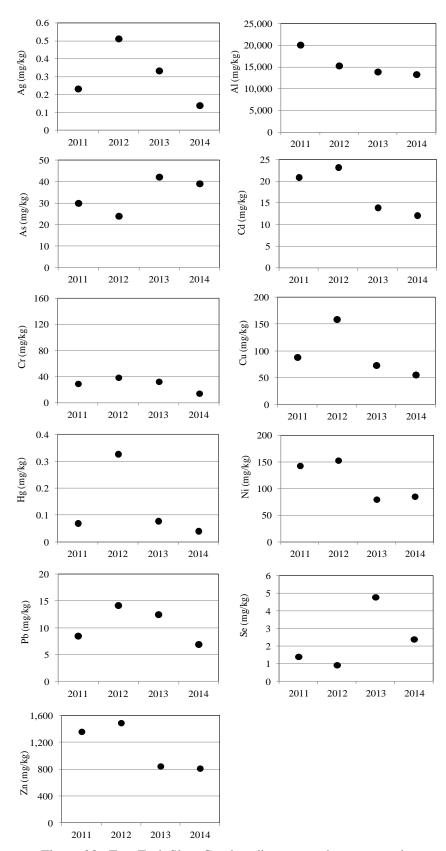
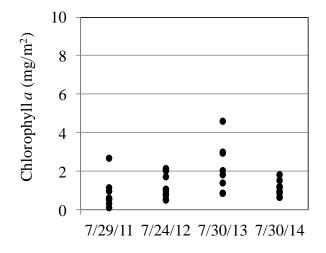


Figure 28.–East Fork Slate Creek sediment metals concentrations.


Upper Slate Creek

Periphyton Density and Composition

The July 2014 mean chlorophyll a density was within the range observed since 2011 (Table 13). Chlorophyll a density for each sample collected is presented in Figure 29, and proportions of mean chlorophylls a, b, and c each year are presented in Figure 30.

Table 13.–Upper Slate Creek chlorophylls a, b, and c mean densities.

Sample Date	Chlorophyll $a \text{ (mg/m}^2\text{)}$	Chlorophyll $b \text{ (mg/m}^2\text{)}$	Chlorophyll $c \text{ (mg/m}^2)$
July 29, 2011	0.87	0.00	0.05
July 24, 2012	1.26	0.00	0.07
July 30, 2013	2.13	0.00	0.13
July 30, 2014	1.09	0.00	0.06

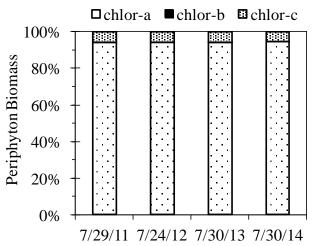


Figure 29.–Upper Slate Creek chlorophyll *a* sample densities.

Figure 30.–Upper Slate Creek mean chlorophylls *a*, *b*, and *c* proportions.

Benthic Macroinvertebrate Density and Composition

We observed the greatest density of benthic macroinvertebrates among the spring 2014 samples compared to 2011–2013 data. We identified 36 taxa and estimate benthic macroinvertebrate density at 3,125 insects/m², of which 63% were EPT insects (Figure 31). The dominant taxa were Diptera: Chironomidae representing 28% of the samples, and Plecoptera: Despaxia representing 14% of the samples.

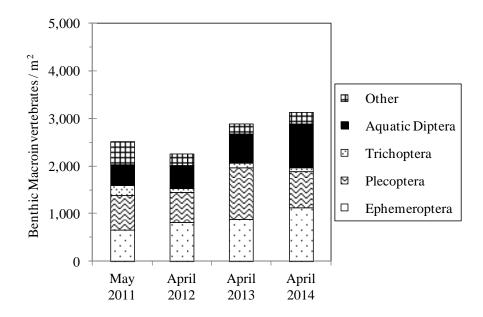
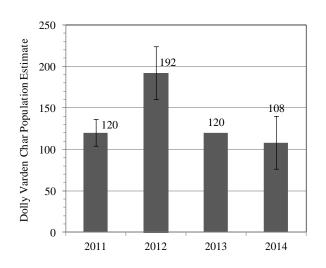



Figure 31.–Upper Slate Creek benthic macroinvertebrate density and composition.

Resident Fish Population and Condition

The 2014 Dolly Varden char population estimate was 108 ± 32 fish, similar to the 2011 and 2013 estimates and significantly less than the 2012 estimate (Figure 32). We captured more Dolly Varden char in pools than in riffles or glides (Figure 33), and captured fish represented several age classes, both similar to previous years. Mean fish condition was 0.99 g/mm³.

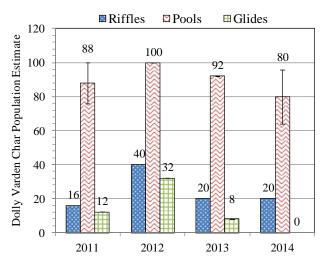


Figure 32.–Upper Slate Creek resident fish population estimates.

Figure 33.–Upper Slate Creek resident fish population estimates by habitat types.

Sediment Metals Concentrations

The 2014 sediment metals and Se concentrations (mg/kg) were similar to or less than concentrations observed 2011–2013, and As concentration was greater than all years. Figure 34 presents the 2014 sample results, and Figure 35 presents the 2011–2014 data.

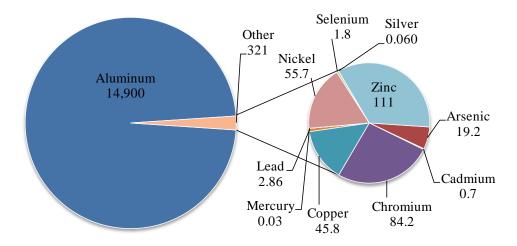


Figure 34.–2014 Upper Slate Creek sediment metals concentrations.

Sediment Toxicity

C. dilutus and *H. azteca* growth and survival on the Upper Slate Creek sediment sample were not significantly different than organism growth and survival on the control sediment.

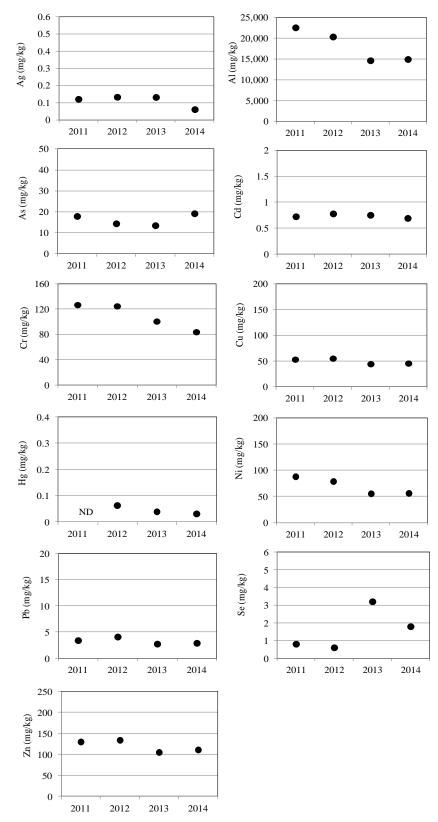


Figure 35.–Upper Slate Creek sediment metals concentrations.

JOHNSON CREEK

Lower Johnson Creek

Adult Salmon Counts

We counted 471 live adult pink salmon, 6 live chum salmon, and 107 live coho salmon^x during the 2014 spawning season. Figure 36 presents the adult pink salmon count for each survey, and Figure 37 presents the distribution of pink salmon. Table 14 presents the 2011–2014 adult salmon counts.

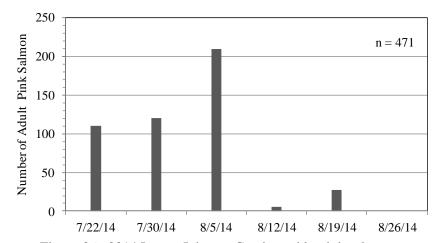


Figure 36.–2014 Lower Johnson Creek weekly pink salmon counts.

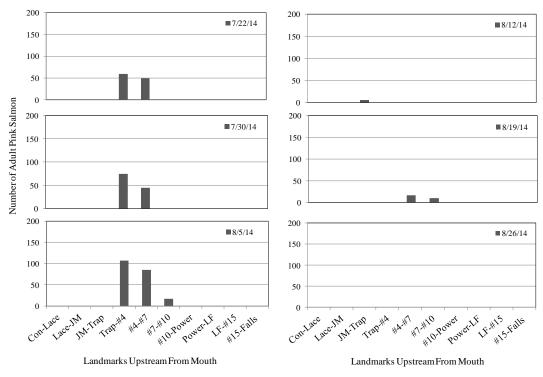


Figure 37.–2014 Lower Johnson Creek weekly adult pink salmon distribution.

We did not survey during the week of September 29 due to weather conditions that prevented visibility, therefore our series of counts was incomplete.

Our 2014 average aerial survey underestimation for pink salmon was a factor of 1.5.

Table 14.-Lower Johnson Creek adult salmon counts.

	2011	2012	2013	2014
Pink Salmon	44,181	12,533	20,451	471
Chum Salmon	52	248	40	6
Coho Salmon	33	90	64	107

Sediment Metals Concentrations

The 2014 sediment metals and As concentrations (mg/kg) were similar to or less than concentrations observed 2011–2013, except Pb concentration was greater. Se was not detected for the fourth year in a row. Figure 38 presents the 2014 sample results, and Figure 39 presents the 2011–2014 data.

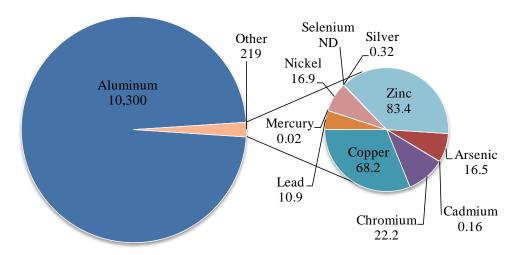


Figure 38.–2014 Lower Johnson Creek sediment metals concentrations.

Sediment Toxicity

C. dilutus growth and survival on the Lower Johnson Creek sediment sample was not significantly different than growth and survival on the control sediment. *H. azteca* growth on the Lower Johnson Creek sediment sample was significantly less than growth on the control sediment, while survival was not significantly different.

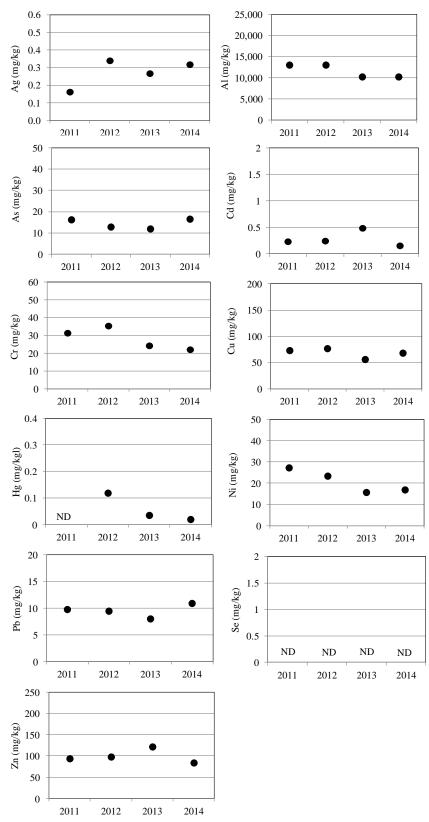


Figure 39.–Lower Johnson Creek sediment metals concentrations.

Upper Johnson Creek

Benthic Macroinvertebrate Density and Composition

We observed a lower density of benthic macroinvertebrates and the greatest percent EPT among the 2014 samples, compared to 2011–2013 data. We identified 32 taxa and estimate benthic macroinvertebrate density at 2,658 insects/m², of which 69% were EPT insects (Figure 40). The dominant taxa were Ephemeroptera: Baetis representing 41% of the samples, and Diptera: Chironomidae representing 26% of the samples.

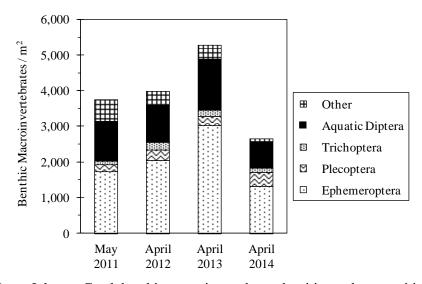
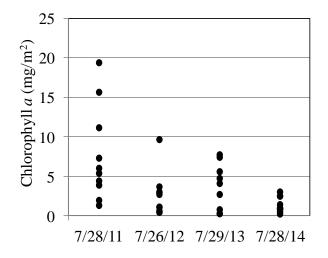


Figure 40.–Upper Johnson Creek benthic macroinvertebrate densities and compositions.

SHERMAN CREEK

Lower Sherman Creek


Periphyton Density and Composition

Sample Point 1

The July 2014 mean chlorophyll a density was the lowest observed since 2011 (Table 15). Chlorophyll a density for each sample collected is presented in Figure 41, and proportions of mean chlorophylls a, b, and c each year are presented in Figure 42.

Table 15.–Lower Sherman Creek Sample Point 1 chlorophylls a, b, and c mean densities.

Sample Date	Chlorophyll a (mg/m ²)	Chlorophyll b (mg/m²)	Chlorophyll c (mg/m²)
July 28, 2011	7.60	0.69	0.49
July 26, 2012	2.54	0.93	0.08
July 29, 2013	3.70	0.00	0.51
July 28, 2014	1.34	0.00	0.18

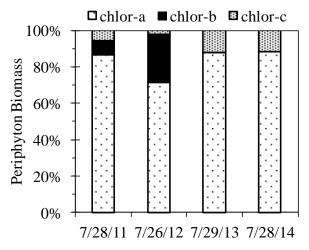
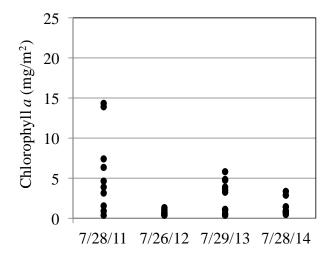


Figure 41.–Lower Sherman Creek Sample Point 1 mean chlorophylls a, b, and c proportions.


Figure 42.—Lower Sherman Creek Sample Point 1 chlorophyll *a* mean densities.

Sample Point 2

The July 2014 mean chlorophyll a density was within the range observed since 2011 (Table 16). Chlorophyll a density for each sample collected is presented in Figure 43, and proportions of mean chlorophylls a, b, and c each year are presented in Figure 44.

Table 16.–Lower Sherman Creek Sample Point 2 chlorophylls a, b, and c mean densities.

Sample Date	Chlorophyll $a \text{ (mg/m}^2\text{)}$	Chlorophyll b (mg/m²)	Chlorophyll $c \text{ (mg/m}^2\text{)}$
July 28, 2011	5.61	0.02	0.32
July 26, 2012	0.67	0.01	0.09
July 29, 2013	2.87	0.00	0.33
July 28, 2014	1.32	0.00	0.11

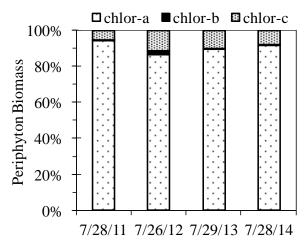


Figure 43.–Lower Sherman Creek Sample Point 2 chlorophyll *a* mean densities.

Figure 44.—Lower Sherman Creek Sample Point 2 mean chlorophylls *a*, *b*, and *c* proportions.

Benthic Macroinvertebrate Density and Composition

Sample Point 1

We observed fewer mayflies and more non-EPT insects among the spring 2014 samples compared to 2011–2013 data, resulting in a reduced percent EPT and a change in taxa dominance. We identified 30 taxa and estimate benthic macroinvertebrate density at 3,023 insects/m², of which 14% were EPT insects (Figure 45). The dominant taxa were Annelida: Oligochaeta representing 41% of the samples, and Diptera: Chironomidae representing 33% of the samples.

Sample Point 2

Similar to the spring 2014 Sample Point 1 data and to a greater degree, we observed fewer EPT insects among the spring 2014 samples compared to 2011–2013 data. We identified 28 taxa and estimate benthic macroinvertebrate density at 1,185 insects/m², of which 12% were EPT insects (Figure 45). The dominant taxa were Diptera: Chironomidae representing 48% of the samples, and Annelida: Oligochaeta representing 29% of the samples.

We sampled Sample Point 1 again in November 2014 and observed twice as many EPT insects and less than half the number of chironomids compared to the April 2014 results.

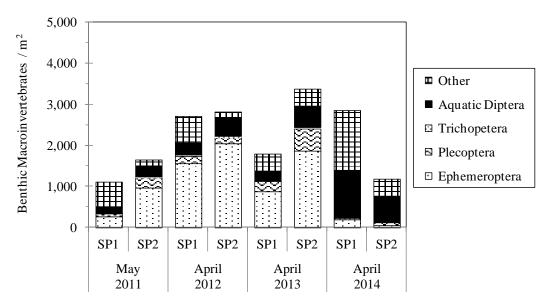


Figure 45.–Lower Sherman Creek Sample Points 1 and 2 benthic macroinvertebrate densities and compositions.

Adult Salmon Counts

We counted 70 live adult pink salmon, and 0 chum salmon during the 2014 spawning season. Coho salmon do not use Sherman Creek so we did not survey later in the year. Figure 46 presents the adult pink salmon count for each survey, and Figure 47 presents the distribution of pink salmon. Table 17 presents the 2011–2014 adult salmon counts.

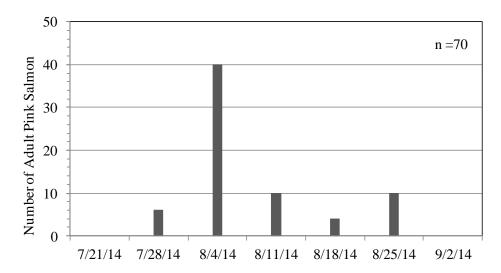


Figure 46.–2014 Lower Sherman Creek weekly adult pink salmon counts.

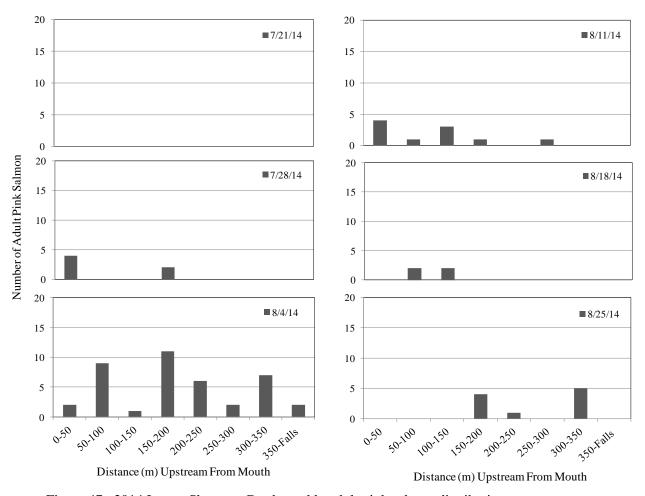


Figure 47.–2014 Lower Sherman Creek weekly adult pink salmon distribution.

Table 17.-Lower Sherman Creek adult salmon counts.

	2011	2012	2013	2014
Pink Salmon	4,624	1,608	4,981	70
Chum Salmon	0	0	12	0

Sediment Metals Concentrations

The 2014 sediment metals, As, and Se concentrations were similar to or less than concentrations observed 2011–2013. Figure 48 presents the 2014 sample results, and Figure 49 presents the 2011–2014 data.

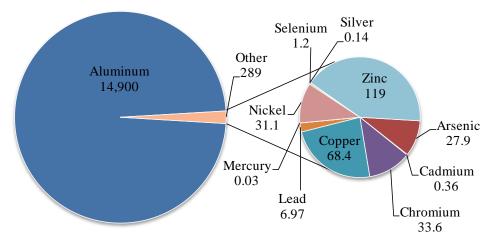


Figure 48.–2014 Lower Sherman Creek sediment metals concentrations.

Sediment Toxicity

C. dilutus and H. azteca growth and survival on the 2014 Lower Sherman Creek sediment sample were not significantly different than organism growth and survival on the control sediment.

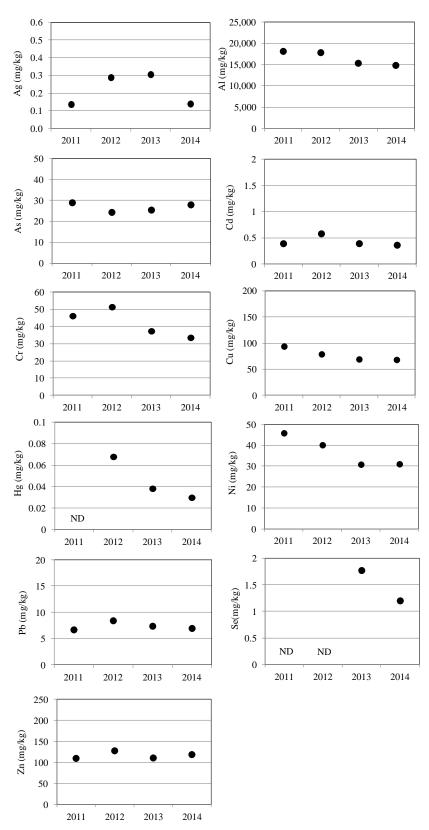


Figure 49.-Lower Sherman Creek sediment metals concentrations.

REFERENCES CITED

- Archipelago Marine Research Ltd. 1991. Use of nearshore habitat by juvenile salmonids near Point Sherman, Lynn Canal, Alaska. Prepared for Kensington Venture, Juneau, AK.
- Buchman, M. F., 2008. NOAA Screening Quick Reference Tables, NOAA OR&R Report 08-1, Seattle WA, Office of Response and Restoration Division, National Oceanic and Atmospheric Administration.
- Coeur Alaska, Inc. 2005. Final plan of operations for the Kensington gold project. Prepared for the USDA Forest Service, Juneau Ranger District, Tongass National Forest. Juneau, AK.
- Dames & Moore. 1991. Nearshore marine biological baseline survey Pt. Sherman, Lynn Canal, Alaska April 18–21, 1988 (16325-002-020). Prepared for Kensington Venture, Boise, ID.
- Earthworks Technology, Inc. 2002. Kensington Project August–September 2001 Slate Lakes Basin. Prepared for Coeur Alaska, Inc. Juneau, AK.
- EVS Environment Consultants. 2000. Year 2000 Outmigration counts of juvenile pink salmon in Sherman and Sweeny Creeks. Prepared for Coeur Alaska, Inc. Juneau, AK.
- Flory, E. 1998. Kensington gold project 1998 aquatic resource surveys. Prepared for Coeur Alaska Inc., Aquatic Science Inc., Juneau, AK.
- Flory, E. 1999. Kensington gold project 1999 aquatic resource surveys. Prepared for Coeur Alaska Inc., Aquatic Science Inc., Juneau, AK.
- Flory, E. 2000. Kensington gold project 2000 aquatic resource surveys. Prepared for Coeur Alaska Inc., Aquatic Science Inc., Juneau, AK.
- Flory, E. 2001a. Kensington gold project invertebrate tissue analysis. December 2001. aa Prepared for Coeur Alaska Inc., Aquatic Science Inc., Juneau, AK.
- Flory, E. 2001b. Kensington gold project resident fish surveys December 2001. Prepared for Coeur Alaska Inc., Aquatic Science Inc., Juneau, AK.
- Flory, E. 2002. Kensington gold project aquatic resource surveys December 2002. Prepared for Coeur Alaska Inc., Aquatic Science Inc., Juneau, AK.
- Flory, E. 2004. Kensington gold project benthic invertebrate surveys Slate and Johnson Creeks. Prepared for Coeur Alaska Inc., Aquatic Science Inc., Juneau, AK.
- Flory, E. 2006. Kensington gold project NPDES permit AK-005057-1 annual water quality monitoring summary Volume 1: Aquatic resource surveys 2005. Prepared for Coeur Alaska. Aquatic Science Inc., Juneau, AK.
- Flory, E. 2007. Kensington gold project NPDES permit AK-005057-1 annual water quality monitoring summary Volume 1: Aquatic resource surveys 2006. Prepared for Coeur Alaska. Aquatic Science Inc., Juneau, AK..
- Flory, E. 2008. NPDES Annual report 2007 Volume 1: Aquatic resources. Prepared for Coeur Alaska Inc., Aquatic Science Inc., Juneau, AK..
- Flory, E. 2009a. Johnson Creek fish habitat channel types and aquatic capability. A review by Liz Flory Ph.D. Aquatic Science Inc., Juneau, AK.
- Flory, E. 2009b. Out-migrating salmon fry, Sherman, Johnson and Slate Creeks. Prepared for ADF&G (Permit No. SF-2009-059). Aquatic Science Inc., Juneau, AK.
- Flory, E. 2009c. NPDES annual report 2008 Volume 1: Aquatic resources. Prepared for Coeur Alaska Inc., Aquatic Science Inc., Juneau, AK.
- Flory, E. 2009d [sic]^{cc}. NPDES annual report 2009 Volume 1: Aquatic resources. Prepared for Coeur Alaska Inc., Aquatic Science Inc., Juneau, AK.

^{aa} This publication is actually the resident fish survey report.

bb This publication is actually the invertebrate tissue analysis.

^{cc} Actually published February 2010.

REFERENCES CITED (Continued)

- Flory, E. 2011. NPDES annual report 2010 Volume 1: Aquatic resources. Prepared for Coeur Alaska Inc., Aquatic Science Inc., Juneau, AK.
- HDR Alaska, Inc. 2003. Slate and Johnson Creek water years 2000, 2001, 2002, and 2003 streamflow analysis. Prepared for Coeur Alaska, Inc., Juneau, AK.
- Johnson, J. and M. Daigneault. 2013. Catalog of waters important for spawning, rearing, or migration of anadromous fishes Southeastern Region, Effective July 1, 2013. Alaska Department of Fish and Game, Special Publication No. 13-09, Anchorage, AK.
- Kline, E. 2003. Technical Memorandum: Preliminary results of 2003 Slate Lakes field work; dated 11/19/2003. Kline Environmental Research, LLC. Somerset, WI.
- Kline Environmental Research, LLC. 2001. Kensington project June 2000 Slate Creek Basin survey data report. Prepared for Coeur Alaska, Inc.
- Kline Environmental Research, LLC. 2003. Kensington Project: Summary of adult salmon counts during 1995–2000 in Slate Creek and Johnson Creek. Prepared for Earthworks Technology, Inc., Coeur d'Alene, ID.
- Kline Environmental Research, LLC. 2005. Data report for aquatic studies conducted in the Slate Lakes Drainage during 2003-2004. Prepared for Coeur Alaska, Inc., Juneau, AK.
- Konopacky Environmental. 1992a. Reconnaissance photograph study of Sherman and Sweeny Creeks, located near the Kensington Mine, Alaska, during mid-July 1991. Volume 1 of 2. Prepared for Kensington Venture. Boise, ID.
- Konopacky Environmental. 1992b. Baseline monitoring studies of fish and fish habitat in Sherman and Sweeny Creeks, located near the Kensington Mine, Alaska, during 1991. Volume 2 of 2. Prepared for Kensington Venture. Boise, ID.
- Konopacky Environmental. 1993a. Second-year reconnaissance photograph study of Sherman and Sweeny Creeks, located near the Kensington Mine, Alaska, during Mid-July 1992. Volume 1 of 2. Prepared for Kensington Venture. Boise, ID.
- Konopacky Environmental. 1993b. Counts of adult pink, chum, and coho salmon in Sherman and Sweeny Creeks, located Near the Kensington Mine, Alaska, during spawning periods in 1990 through 1993. Prepared for Coeur-Alaska, Inc., Juneau, AK.
- Konopacky Environmental. 1993c. Ongoing and completed monitoring studies of fish and fish habitat in Sherman and Sweeny Creeks, located near the Kensington Mine, Alaska, during 1992. Volume 2 of 2. Prepared for Kensington Venture. Boise, ID.
- Konopacky Environmental. 1995. Baseline studies of aquatic habitat and salmonid populations in the Slate Creek System, located near Berner's Bay, Southeast Alaska, during Summer-1994. Volume 2 of 2. Prepared for Coeur Alaska, Inc. Juneau, AK.
- Konopacky Environmental. 1996a. Presence-absence survey for fish in small unnamed streams, located in and near the area proposed for the dry tailings storage facility associated with the Kensington Mine, Alaska, during May 1996. Volume 1 of 2. Prepared for Coeur-Alaska, Inc., Juneau, AK.
- Konopacky Environmental. 1996b. Counts of adult pink, chum, and coho salmon in Sherman Creek, located near the Kensington Mine, Southeast Alaska, during spawning periods in 1990 through 1993 and 1995. Prepared for Coeur-Alaska, Inc., Juneau, AK.
- Konopacky Environmental. 1996c. Analyses of aquatic macroinvertebrate communities in selected stream reaches in the Sherman Creek Drainage, located near the Kensington Mine, Southeast Alaska, during September 1991, July 1995, and December 1995. Volume 1 of 2. Prepared for Coeur-Alaska, Inc., Juneau, AK.
- Konopacky Environmental. 1996d. Concentrations of nine trace elements in various size-classes of Dolly Varden char, prickly sculpin, and pink salmon collected from Sherman Creek, located near the Kensington Mine, Southeast Alaska, during 1995 and 1996. Prepared for Coeur-Alaska, Inc., Juneau, AK.

REFERENCES CITED (Continued)

- MacDonald, D. D., C. G. Ingersoll, and T. A. Berger. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination Toxicology 39(1):20–31.
- Pentec Environmental, Inc. 1990. Escapement counts of pink and coho salmon and habitat surveys in three streams near the Kensington Mine, Alaska, from August to October 1990. Prepared for Kensington Venture, Boise, Idaho.
- Pentec Environmental, Inc. 1991. Additional analyses of pink salmon counts and habitat composition in three streams near the Kensington Mine, Alaska, during August and September 1990. Prepared for Kensington Venture, Boise, ID.
- Steffen Robertson and Kirsten Consulting Engineers and Scientists. 1997. Kensington gold project report on construction activity related to creek crossings and alterations. Prepared for Coeur Alaska, Inc., Juneau, AK.
- Tetra Tech, Inc, Tongass National Forest (Alaska), U.S. Environmental Protection Agency (Region X), U.S. Army Corps of Engineers (Alaska District), Alaska Department of Natural Resources. 2004a. Kensington Gold Project: final supplemental environmental impact statement Volume 1. U.S. Dept. of Agriculture, Forest Service, Tongass National Forest, Juneau AK.
- Tetra Tech, Inc, Tongass National Forest (Alaska), U.S. Environmental Protection Agency (Region X), U.S. Army Corps of Engineers (Alaska District), Alaska Department of Natural Resources. 2004b. Kensington Gold Project: final supplemental environmental impact statement Volume 2. U.S. Dept. of Agriculture, Forest Service, Tongass National Forest, Juneau AK.
- Timothy, J. and K. M. Kanouse. 2012. Aquatic studies at Kensington Mine, 2011. Alaska Department of Fish and Game, Division of Habitat Technical Report No. 11-08, Douglas, AK.
- Timothy, J. and K. M. Kanouse. 2013. Aquatic studies at Kensington Gold Mine, 2012. Alaska Department of Fish and Game, Division of Habitat Technical Report No.12-10, Douglas, AK.
- Timothy, J. and K. M. Kanouse. 2014. Aquatic studies at Kensington Gold Mine, 2013. Alaska Department of Fish and Game, Division of Habitat Technical Report No. 14-01, Douglas, AK.
- TPEC (Travis/Peterson Environmental Consulting, Inc.). 2014. Tailings treatment facility environmental monitoring plan for Kensington Gold Mine. Prepared for Coeur Alaska, Inc., Fairbanks, AK.

APPENDIX A: PERIPHYTON DATA

Appendix A1.–Lower Slate Creek chlorophylls a, b, and c densities, 2011–2014.

_		July 2011	-	O	ctober 201	1	Fe	bruary 201	12		April 2012	
mg/m²	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c
	0.21	0.05	0.00	6.41	0.00	0.87	2.56	0.01	0.16	0.56	0.00	0.06
	1.28	0.02	0.11	11.85	1.30	0.99	2.46	0.00	0.21	0.46	0.00	0.07
	0.85	0.01	0.07	2.99	0.15	0.13	-	-	-	0.85	0.00	0.10
	3.31	0.08	0.25	2.10	0.00	0.21	2.14	0.04	0.14	0.50	0.00	0.13
	11.85	3.11	0.30	5.23	0.03	0.63	-	-	-	1.32	0.00	0.25
	18.05	0.42	0.91	1.50	0.00	0.18	0.41	0.04	0.04	2.15	0.00	0.20
	-	0.13	0.00	0.32	0.00	0.00	0.90	0.11	0.05	0.41	0.00	0.00
	0.43	0.05	0.00	8.22	0.25	0.77	2.23	0.10	0.10	1.60	0.16	0.13
	8.54	0.39	0.58	2.24	0.00	0.23	3.10	0.00	0.30	1.07	0.00	0.11
_	6.30	0.03	0.38	5.87	0.00	0.85	0.07	0.03	0.05	0.69	0.00	0.07
mean	5.65	0.43	0.26	4.67	0.17	0.48	1.73	0.04	0.13	0.96	0.02	0.11
max	18.05	3.11	0.91	11.85	1.30	0.99	3.10	0.11	0.30	2.15	0.16	0.25
min	0.21	0.01	0.00	0.32	0.00	0.00	0.07	0.00	0.04	0.41	0.00	0.00
	July	2012		O	ctober 201	2	Fe	bruary 201	13		April 2013	
mg/m²	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c
	1.60	0.13	0.07	0.96	0.00	0.08	1.28	0.00	0.05	0.55	0.00	0.02
	4.06	0.00	0.39	2.03	0.00	0.21	0.24	-	-	0.24	-	-
	2.03	0.00	0.18	0.75	0.00	0.05	1.06	0.00	0.09	7.80	0.00	1.47
	0.96	0.00	0.04	0.34	-	-	1.92	0.00	0.19	0.24	-	-
	2.56	0.04	0.22	1.92	0.00	0.20	0.82	0.08	0.00	1.50	0.12	0.03
	0.92	0.00	0.01	1.42	0.00	0.24	0.41	0.00	0.00	0.24	-	-
	1.49	0.13	0.13	4.06	0.00	0.33	4.81	0.00	0.29	0.64	0.00	0.01
	2.35	0.12	0.19	0.96	0.00	0.00	1.71	0.00	0.05	0.24	-	-
	6.19	0.05	0.54	0.34	-	-	5.02	0.00	0.39	0.53	0.00	0.00
_	0.96	0.00	0.06	0.34	-	-	0.43	0.00	0.07	1.28	0.00	0.10
mean	2.31	0.05	0.18	1.31	0.00	0.16	1.77	0.01	0.13	1.33	0.02	0.27
max	6.19	0.13	0.54	4.06	0.00	0.33	5.02	0.08	0.39	7.80	0.12	1.47
min	0.92	0.00	0.01	0.34	0.00	0.00	0.24	0.00	0.00	0.24	0.00	0.00
	July	2013			ctober 201	3	Fe	bruary 201	14		April 2014	
mg/m²	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c
	14.10	0.00	1.56	0.85	0.00	0.09	0.24	-	-	0.75	0.00	0.02
	20.72	0.00	3.11	1.28	0.00	0.20	0.24	-	-	3.63	0.00	0.43
	10.89	0.00	1.01	1.92	0.00	0.26	0.24	-	-	0.96	0.06	0.13
	17.84	0.00	2.66	10.57	0.00	1.43	0.24	-	-	2.14	0.00	0.34
	2.14	0.00	0.24	10.47	0.00	1.31	0.24	-	-	0.43	0.04	0.04
	6.09	0.00	0.95	2.03	0.00	0.33	0.24	-	-	0.24	-	-
	15.49	0.00	1.99	0.32	0.00	0.03	0.24	-	-	0.24	-	-
	12.71	0.00	1.58	0.96	0.00	0.09	0.24	-	-	0.24	-	-
	11.32	0.00	1.87	10.89	0.00	1.96	0.24	-	-	3.84	0.00	0.34
	14.63	0.00	1.46	0.24	-	-	0.24	-	-	0.64	0.00	0.07
mean	12.59	0.00	1.64	3.95	0.00	0.63	0.24	-		1.31	0.01	0.20
max	20.72	0.00	3.11	10.89	0.00	1.96	0.24	-	-	3.84	0.06	0.43
min	2.14	0.00	0.24	0.24	0.00	0.03	0.24	-	-	0.24	0.00	0.02
	TL.	2014			ataban 201	4						

	July	2014		O	ctober 2014	4
mg/m²	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c
	0.00	0.00	0.00	1.60	0.00	0.23
	9.29	3.22	0.48	2.35	0.00	0.31
	1.50	0.00	0.23	3.42	0.36	0.17
	12.18	5.27	0.38	9.08	0.00	1.24
	0.75	0.00	0.05	0.05	-	-
	4.70	0.00	0.67	0.00	1.60	1.33
	2.88	0.00	0.49	0.11	0.01	0.05
	1.82	0.00	0.15	0.43	0.00	0.06
	0.73	0.00	0.07	6.62	0.00	0.74
_	5.87	0.00	0.51	0.32	0.00	0.08
mean	3.97	0.85	0.30	3.95	0.00	0.63
max	12.18	5.27	0.67	10.89	0.00	1.96
min	0.00	0.00	0.00	0.24	0.00	0.03
M D . 1.1	. 1 1	4	1			1. 1 1

Note: Bolded values are the spectrophotometer estimated detection limit, chlorophyll a not detected.

Appendix A2.—West Fork Creek chlorophylls a, b, and c densities, 2011–2014.

		July 2011			July 2012			July 2013			0.32 0.00 0 0.19 0.00 0 0.75 0.00 0 0.88 0.00 0 1.60 0.00 0 0.23 0.00 0 0.41 0.00 0 0.33 0.00 0 1.17 0.00 0	
mg/m²	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c
	2.52	0.00	0.19	1.15	0.00	0.04	4.70	0.00	0.74	0.32	0.00	0.01
	4.70	0.00	0.43	0.41	0.00	0.08	1.39	0.00	0.16	0.19	0.00	0.00
	2.78	0.00	0.26	0.53	0.00	0.02	13.14	0.00	2.19	0.75	0.00	0.05
	3.35	0.00	0.04	0.64	0.00	0.16	4.38	0.00	0.47	0.88	0.00	0.00
	4.27	0.00	0.25	3.62	0.00	0.24	1.28	0.00	0.11	1.60	0.00	0.19
	4.91	0.00	0.42	0.85	0.00	0.14	3.10	0.00	0.50	0.23	0.00	0.03
	3.95	0.00	0.27	0.96	0.01	0.07	3.74	0.00	0.53	0.41	0.00	0.00
	3.10	0.00	0.25	0.41	0.00	0.08	2.03	0.00	0.33	0.33	0.00	0.02
	4.38	0.00	0.39	0.60	0.00	0.12	5.02	0.00	0.67	1.17	0.00	0.13
	5.23	0.00	0.20	0.96	0.00	0.06	3.40	0.00	0.36	1.82	0.00	0.15
mean	3.92	0.00	0.27	1.01	0.00	0.10	4.22	0.00	0.61	0.77	0.00	0.06
max	5.23	0.00	0.43	3.62	0.01	0.24	13.14	0.00	2.19	1.82	0.00	0.19
min	2.52	0.00	0.04	0.41	0.00	0.02	1.28	0.00	0.11	0.19	0.00	0.00

Appendix A3.—East Fork Creek chlorophylls a, b, and c densities, 2011–2014.

		July 2011		O	ctober 201	1	Fe	ebruary 201	2		May 2012	
mg/m²	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c
	9.51	2.16	0.24	18.90	7.97	1.11	0.53	0.00	0.00	7.80	0.74	0.34
	9.18	0.02	0.20	10.68	1.30	0.36	0.96	0.11	0.00	0.34	-	-
	1.28	0.03	0.00	2.99	0.79	0.12	1.34	0.37	0.09	5.23	0.00	0.16
	5.13	1.15	0.11	6.73	1.88	0.64	-	0.03	0.00	4.81	1.56	0.19
	16.02	0.18	0.44	22.53	5.43	0.99	1.07	0.09	0.00	7.48	0.00	0.50
	8.86	1.94	0.70	-	-	-	0.50	0.08	0.00	1.33	0.00	0.08
	4.70	0.70	0.13	-	-	-	6.41	2.04	0.09	2.78	0.00	0.09
	16.13	5.35	0.28	-	-	-	0.07	-	-	4.59	0.00	0.33
	4.91	0.49	0.12	-	-	-	5.55	1.44	0.19	4.59	0.00	0.17
_	12.71	3.59	0.15		-		1.92	0.14	0.07	9.72	0.00	0.47
mean	8.84	1.56	0.24	12.37	3.47	0.64	2.04	0.48	0.05	4.87	0.26	0.26
max	16.13	5.35	0.70	22.53	7.97	1.11	6.41	2.04	0.19	9.72	1.56	0.50
min	1.28	0.02	0.00	2.99	0.79	0.12	0.07	0.00	0.00	0.34	0.00	0.08
_	July 2	2012		O	ctober 201	2	Fe	ebruary 201	.3	-	April 2013	
mg/m²	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c
	11.53	3.24	0.28	0.60	0.00	0.02	0.53	0.02	0.09	2.03	0.07	0.05
	0.41	0.04	0.04	0.73	0.00	0.07	0.24	-	-	3.84	0.00	0.19
	0.88	0.00	0.05	0.34	-	-	3.31	0.59	0.15	2.88	0.00	0.24
	0.50	0.00	0.03	1.50	0.00	0.16	0.50	0.00	0.03	2.03	0.00	0.10
	3.42	0.00	0.11	0.85	0.00	0.03	1.60	0.00	0.16	0.24	-	-
	0.64	0.08	0.05	0.64	0.00	0.07	0.24	-	-	1.82	0.00	0.02
	18.58	0.00	0.66	0.75	0.00	0.02	5.34	0.77	0.23	0.96	0.00	0.06
	13.67	2.32	0.57	1.34	0.00	0.02	1.92	0.28	0.00	1.07	0.00	0.06
	0.69	0.00	0.00	0.41	0.00	0.08	2.67	0.38	0.08	0.24	-	-
-	0.43	0.00	0.00	0.64	0.00	0.07	0.24	-	_	1.92	0.00	0.15
mean	5.08	0.57	0.18	0.78	0.00	0.06	1.66	0.29	0.11	1.70	0.01	0.11
max	18.58	3.24	0.66	1.50	0.00	0.16	5.34	0.77	0.23	3.84	0.07	0.24
min	0.41	0.00	0.00	0.34	0.00	0.02	0.24	0.00	0.00	0.24	0.00	0.02
	July 2	2013		O	ctober 201	3		April 2014			July 2014	
mg/m²	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c
	8.12	0.00	0.67	3.95	0.93	0.07	0.24	-	-	0.14	0.00	0.00
	0.24	-	-	0.43	0.26	0.05	0.64	0.13	0.05	0.64	0.00	0.07
	1.07	0.03	0.07	0.32	0.04	0.04	0.24	-	-	0.05	0.04	0.00
	0.32	0.07	0.00	0.32	0.14	0.02	0.96	0.30	0.08	0.75	0.14	0.10
	0.64	0.10	0.00	0.24	-	- 0.02	0.32	0.06	0.05	0.05	0.00	0.00
	5.02	0.16	0.35	1.17	0.00	0.14	0.24	-	-	0.37	0.00	0.00
	0.43	0.00	0.03	0.75	0.26	0.00	0.32	0.01	0.00	0.05	-	0.00
	6.41	0.11	0.50	0.73	0.14	0.00	0.32	- 0.01	-	0.11	0.00	0.00
	0.32	0.00	0.00	2.24	0.14	0.02	0.24	_	_	0.53	0.00	0.01
	0.32	-	-	0.43	0.14	0.02	0.43	0.32	0.15	0.05	-	0.01
mean	2.28	0.06	0.20	1.02	0.14	0.05	0.39	0.16	0.07	0.27	0.02	0.02
max	8.12	0.16	0.20	3.95	0.23	0.03	0.96	0.32	0.15	0.75	0.14	0.10
min	0.12	0.00	0.00	0.24	0.00	0.00	0.24	0.01	0.00	0.75	0.00	0.00
111111	0.24	0.00	0.00	0.24	0.00	0.00	0.24	0.01	0.00	0.03	0.00	0.00

	Octobe	r 2014	
mg/m²	chlor-a	chlor-b	chlor-c
	0.32	0.00	0.00
	0.21	0.00	0.03
	0.09	0.00	0.00
	0.05	-	-
	0.05	-	-
	0.75	0.00	0.09
	0.11	0.02	0.00
	0.14	0.00	0.00
	0.64	0.04	0.04
_	0.53	0.30	0.05
mean	0.29	0.05	0.03
max	0.75	0.30	0.09
min	0.05	0.00	0.00

Note: Bolded values are the spectrophotometer estimated detection limit, chlorophyll a not detected.

Appendix A4.—Upper Slate Creek chlorophylls a, b, and c densities, 2011–2014.

		July 2011		O	ctober 201	1	Fe	bruary 201	2		April 2012	
mg/m²	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c
	-	0.00	0.00	6.62	0.00	0.25	0.32	0.00	0.02	0.96	0.00	0.10
	0.32	0.00	0.04	0.46	0.00	0.02	0.75	0.00	0.06	0.53	0.00	0.01
	0.96	0.01	0.07	0.75	0.00	0.05	0.33	0.00	0.02	0.83	0.00	0.05
	0.11	0.00	0.00	0.53	0.00	0.04	1.14	0.00	0.01	0.34	-	-
	2.67	0.00	0.26	0.55	0.00	0.02	0.07	-	-	0.34	-	-
	-	0.00	0.00	1.47	0.00	0.03	1.15	0.00	0.04	0.45	0.01	0.04
	0.60	0.00	0.12	0.14	0.01	0.05	1.71	0.00	0.10	0.34	-	-
	1.14	0.00	0.01	-	0.00	0.15	0.21	0.00	0.03	0.60	0.00	0.02
	0.53	0.00	0.00	0.64	0.00	0.11	0.07	-	-	0.34	-	-
_	0.60	0.00	0.02		-		0.64	0.00	0.01	2.24	0.00	0.15
mean	0.87	0.00	0.05	1.40	0.00	0.08	0.64	0.00	0.04	0.70	0.00	0.06
max	2.67	0.01	0.26	6.62	0.01	0.25	1.71	0.00	0.10	2.24	0.01	0.15
min	0.11	0.00	0.00	0.14	0.00	0.02	0.07	0.00	0.01	0.34	0.00	0.01
	July 2	2012		O	ctober 201	2	Fe	bruary 201	.3		April 2013	
mg/m²	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c
	2.03	0.00	0.14	0.34	-	-	1.24	0.00	0.03	0.64	0.00	0.00
	0.96	0.00	0.09	0.70	0.00	0.00	0.53	0.04	0.09	0.64	0.00	0.00
	0.75	0.00	0.00	0.84	0.00	0.00	2.14	0.00	0.07	0.85	0.00	0.01
	0.50	0.00	0.03	0.96	0.00	0.10	0.50	0.00	0.03	0.53	0.00	0.02
	2.03	0.00	0.14	2.67	0.00	0.23	0.79	0.00	0.09	1.17	0.00	0.13
	1.07	0.00	0.14	0.37	0.00	0.11	1.06	0.00	0.09	0.53	0.00	0.02
	0.55	0.00	0.02	0.32	0.00	0.01	0.24	-	-	0.21	0.00	0.00
	1.71	0.00	0.06	0.96	0.00	0.00	0.32	0.06	0.05	0.32	0.00	0.02
	2.14	0.00	0.12	0.34	-	-	0.69	0.00	0.00	-	-	-
	0.83	0.00	0.00	0.34	-	-	1.39	0.00	0.00	0.96	0.00	0.27
mean	1.26	0.00	0.07	0.78	0.00	0.06	0.89	0.01	0.05	0.65	0.00	0.05
max	2.14	0.00	0.14	2.67	0.00	0.23	2.14	0.06	0.09	1.17	0.00	0.27
min	0.50	0.00	0.00	0.32	0.00	0.00	0.24	0.00	0.00	0.21	0.00	0.00

	July 2	2013		O	ctober 201	3	-	July 2014	
mg/m²	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c
	1.82	0.00	0.27	1.50	0.00	0.04	0.92	0.00	0.11
	0.85	0.01	0.07	2.14	0.00	0.12	1.20	0.00	0.07
	2.94	0.00	0.13	0.85	0.00	0.05	1.52	0.00	0.06
	1.39	0.00	0.12	2.78	0.00	0.14	1.82	0.00	0.15
	2.99	0.00	0.11	0.85	0.00	0.04	0.85	0.00	0.00
	4.59	0.00	0.20	2.14	0.00	0.10	0.64	0.00	0.01
	0.85	0.00	0.01	1.71	0.00	0.12	1.17	0.00	0.07
	2.03	0.00	0.20	1.71	0.00	0.10	0.96	0.00	0.00
	0.85	0.00	0.00	0.24	-	-	0.64	0.00	0.01
	2.94	0.00	0.20	0.24	-	-	1.17	0.00	0.12
mean	2.13	0.00	0.13	1.42	0.00	0.09	1.09	0.00	0.06
max	4.59	0.01	0.27	2.78	0.00	0.14	1.82	0.00	0.15
min	0.85	0.00	0.00	0.24	0.00	0.04	0.64	0.00	0.00

Note: Bolded values are the spectrophotometer estimated detection limit, chlorophyll $\boldsymbol{a}\,$ not detected.

Appendix A5.–Lower Sherman Creek Sample Point 1 chlorophylls a, b, and c densities, 2011–2014.

		July 2011			July 2012			July 2013 July 2014 chlor-a chlor-b chlor-c chlor-a chlor-b c				
mg/m²	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c
	1.28	0.00	0.05	1.07	0.00	0.14	4.06	0.00	0.38	2.46	0.00	0.30
	5.34	0.00	0.36	2.88	0.87	0.16	5.55	0.00	0.73	0.74	0.00	0.10
	5.98	0.00	0.54	0.41	0.04	0.04	0.24	-	-	0.19	0.00	0.00
	3.84	0.10	0.48	2.67	1.27	0.00	4.70	0.00	0.55	0.92	0.00	0.14
	15.59	3.98	0.17	0.60	0.00	0.12	7.69	0.00	0.89	0.83	0.00	0.15
	11.11	2.64	0.28	1.07	0.00	0.11	7.37	0.00	0.62	2.99	0.00	0.47
	19.33	0.00	1.65	3.63	1.56	0.03	0.24	-	-	1.39	0.00	0.17
	7.26	0.00	0.74	9.61	4.12	0.08	2.67	0.00	0.35	2.46	0.00	0.25
	1.92	0.04	0.19	2.99	1.43	0.02	0.75	0.03	0.08	0.45	0.01	0.04
	4.38	0.17	0.44	0.43	0.00	0.06	-	-	-	0.96	0.00	0.16
mean	7.60	0.69	0.49	2.54	0.93	0.08	3.70	0.00	0.51	1.34	0.00	0.18
max	19.33	3.98	1.65	9.61	4.12	0.16	7.69	0.03	0.89	2.99	0.01	0.47
min	1.28	0.00	0.05	0.41	0.00	0.00	0.24	0.00	0.08	0.19	0.00	0.00

Note: Bolded values are the spectrophotometer estimated detection limit, chlorophyll \boldsymbol{a} not detected.

Appendix A6.–Lower Sherman Creek Sample Point 2 chlorophylls a, b, and c densities, 2011–2014.

		July 2011			July 2012			July 2013		July 2014		
mg/m²	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c
	3.10	0.00	0.26	1.05	0.04	0.12	1.07	0.00	0.14	0.74	0.00	0.10
	6.30	0.19	0.62	0.64	0.00	0.11	3.84	0.00	0.34	1.38	0.00	0.18
	4.59	0.00	0.38	0.73	0.00	0.07	0.96	0.00	0.15	2.83	0.00	0.15
	0.32	0.00	0.00	0.50	0.07	0.10	4.81	0.00	0.49	3.31	0.00	0.31
	13.88	0.00	0.54	0.34	-	-	5.77	0.00	0.78	0.75	0.00	0.06
	7.37	0.00	0.46	0.51	0.00	0.06	0.32	0.02	0.10	0.85	0.03	0.08
	1.50	0.00	0.09	0.96	0.00	0.16	4.70	0.00	0.44	0.85	0.00	0.01
	14.31	0.00	0.59	0.37	0.00	0.00	3.52	0.00	0.35	1.39	0.00	0.16
	0.85	0.00	0.01	1.28	0.00	0.09	0.53	0.00	0.02	0.43	0.01	0.04
	3.84	0.00	0.25	0.34	-	-	3.20	0.00	0.44	0.69	0.00	0.07
mean	5.61	0.02	0.32	0.67	0.01	0.09	2.87	0.00	0.33	1.32	0.00	0.11
max	14.31	0.19	0.62	1.28	0.07	0.16	5.77	0.02	0.78	3.31	0.03	0.31
min	0.32	0.00	0.00	0.34	0.00	0.00	0.32	0.00	0.02	0.43	0.00	0.01

Note: Bolded values are the spectrophotometer estimated detection limit, chlorophyll a not detected.

APPENDIX B: BENTHIC MACROINVERTEBRATE DATA

Appendix B1.-Lower Slate Creek Sample Point 1 benthic macroinvertebrate data, 2011-2014.

	May 2011	May 2012	Apr 2013	Feb 2014	Apr 2014	Oct 2014
Total Aquatic Insect Taxa Counted	29	32	27	29	32	30
Total Ephemeroptera	85	387	400	67	73	66
Total Plecoptera	70	274	203	436	352	330
Total Trichoptera	2	8	6	8	17	7
Total Aquatic Diptera	862	975	503	1,360	1,711	273
Total Other	129	116	88	128	155	208
% Ephemeroptera	7.4%	22%	33%	3.4%	3.2%	7.5%
% Plecoptera	6.1%	16%	17%	22%	15%	37%
% Trichoptera	0.2%	0.5%	0.5%	0.4%	0.7%	0.8%
% Aquatic Diptera	75%	55%	42%	68%	74%	31%
% Other	11%	6.6%	7.3%	6.4%	6.7%	24%
% EPT	14%	38%	51%	26%	19%	46%
% Chironomidae	72%	53%	35%	64%	68%	25%
Shannon Diversity Score (H)	0.51	0.69	0.85	0.66	0.64	0.88
Evenness Score (E)	0.48	0.58	0.70	0.53	0.52	0.73
Total Aquatic Insects Counted	1,148	1,760	1,200	1,999	2,308	884
Total Terrestrial Insects Counted	0	4	0	0	1	5
Total Insects Counted	1,148	1,764	1,200	1,999	2,309	889
% Sample Aquatic	100%	99.8%	100%	100%	99.96%	99.4%
% Sample Terrestrial	0%	0.2%	0%	0%	0.04%	0.6%
Total Sample Area (m ²)	0.558	0.558	0.465	0.558	0.558	0.558
Mean # Aquatic Insects / Sample	191	293	240	333	385	147
1 StDev	97	172	51	172	334	72
Estimated Mean # Aquatic Insects / m ²	2,057	3,154	2,581	3,582	4,136	1,584
1 StDev	1,046	1,849	551	1,845	3,592	775
Juvenile Fish	1	0	0	0	1	0

Appendix B2.-Lower Slate Creek Sample Point 2 benthic macroinvertebrate data, 2011–2014.

	Apr 2013	Apr 2014
Total Aquatic Insect Taxa Counted	24	31
Total Ephemeroptera	311	58
Total Plecoptera	156	466
Total Trichoptera	4	7
Total Aquatic Diptera	189	396
Total Other	84	181
% Ephemeroptera	42%	5%
% Plecoptera	21%	42%
% Trichoptera	0.5%	0.6%
% Aquatic Diptera	25%	36%
% Other	11%	16%
% EPT	63%	48%
% Chironomidae	22%	33%
Shannon Diversity Score (H)	0.93	0.72
Evenness Score (E)	0.78	0.62
Total Aquatic Insects Counted	744	1,108
Total Terrestrial Insects Counted	2	7
Total Insects Counted	746	1,115
% Sample Aquatic	99.7%	99.4%
% Sample Terrestrial	0.3%	0.6%
Sample Area (m ²)	0.558	0.558
Mean # Aquatic Insects / Sample	124	185
1 StDev	43	72
Estimated Mean # Aquatic Insects / m ²	1,333	1,986
1 StDev	460	773
Juvenile Fish	0	1

Appendix B3.-West Fork Slate Creek benthic macroinvertebrate data, 2011–2014.

	May 2011	May 2012	Apr 2013	Apr 2014
Total Aquatic Insect Taxa Counted	21	31	28	29
Total Ephemeroptera	181	634	991	223
Total Plecoptera	41	166	233	150
Total Trichoptera	3	11	10	15
Total Aquatic Diptera	35	175	118	136
Total Other	20	29	13	19
% Ephemeroptera	65%	63%	73%	41%
% Plecoptera	15%	16%	17%	28%
% Trichoptera	1.1%	1.1%	0.7%	2.8%
% Aquatic Diptera	13%	17%	8.6%	25%
% Other	7.1%	2.9%	1.0%	3.5%
% EPT	80%	80%	90%	71%
% Chironomidae	10%	15%	7.2%	22%
Shannon Diversity Score (H)	0.63	0.84	0.73	0.91
Evenness Score (E)	0.78	0.71	0.61	0.79
Total Aquatic Insects Counted	280	1,015	1,365	543
Total Terrestrial Insects Counted	2	0	0	0
Total Insects Counted	282	1,015	1,365	543
% Sample Aquatic	99%	100%	100%	100%
% Sample Terrestrial	1%	0%	0%	0%
Total Sample Area (m ²)	0.558	0.558	0.558	0.558
Mean # Aquatic Insects / Sample	47	169	228	91
1 StDev	38	94	72	45
Estimated Mean # Aquatic Insects / m ²	502	1,819	2,446	973
1 StDev	410	1,009	777	482
Juvenile Fish	0	0	0	0

Appendix B4.—East Fork Slate Creek benthic macroinvertebrate data, 2011–2014.

	May 2011	Apr 2012	Apr 2013	Apr 2014
Total Aquatic Insect Taxa Counted	27	33	33	24
Total Ephemeroptera	387	490	19	9
Total Plecoptera	70	73	45	10
Total Trichoptera	28	23	66	3
Total Aquatic Diptera	507	547	598	454
Total Other	1,624	1,451	4,521	667
% Ephemeroptera	15%	19%	0.4%	0.8%
% Plecoptera	2.7%	2.8%	0.9%	0.9%
% Trichoptera	1.1%	0.9%	1.3%	0.3%
% Aquatic Diptera	19%	21%	11%	40%
% Other	62%	56%	86%	58%
% EPT	19%	23%	2.5%	1.9%
% Chironomidae	17%	15%	9.6%	35%
Shannon Diversity Score (H)	0.64	0.78	0.57	0.70
Evenness Score (E)	0.54	0.61	0.47	0.63
Total Aquatic Insects Counted	2,616	2,585	5,249	1,143
Total Terrestrial Insects Counted	3	1	0	0
Total Insects Counted	2,619	2,586	5,249	1,143
% Sample Aquatic	99.9%	99.96%	100%	100%
% Sample Terrestrial	0.1%	0.04%	0%	0%
Total Sample Area (m ²)	0.558	0.558	0.558	0.558
Mean # Aquatic Insects / Sample	436	431	875	191
1 StDev	101	123	356	89
Estimated Mean # Aquatic Insects / m ²	4,688	4,633	9,407	2,048
1 StDev	1,081	1,325	3,830	952
Juvenile Fish	0	0	0	0

Appendix B5.-Upper Slate Creek benthic macroinvertebrate data, 2011-2014.

	May 2011	Apr 2012	Apr 2013	Apr 2014
Total Aquatic Insect Taxa Counted	33	39	34	36
Total Ephemeroptera	368	454	492	622
Total Plecoptera	401	349	604	429
Total Trichoptera	116	48	55	44
Total Aquatic Diptera	248	273	338	518
Total Other	275	135	118	131
% Ephemeroptera	26%	36%	31%	36%
% Plecoptera	29%	28%	38%	25%
% Trichoptera	8.2%	3.8%	3.4%	2.5%
% Aquatic Diptera	18%	22%	21%	30%
% Other	20%	11%	7.3%	7.5%
% EPT	63%	68%	72%	63%
% Chironomidae	15%	20%	19%	28%
Shannon Diversity Score (H)	0.97	1.04	1.02	1.03
Evenness Score (E)	0.76	0.79	0.78	0.76
Total Aquatic Insects Counted	1,408	1,259	1,607	1,744
Total Terrestrial Insects Counted	1	0	0	1
Total Insects Counted	1,409	1,259	1,607	1,745
% Sample Aquatic	99.9%	100%	100%	99.9%
% Sample Terrestrial	0.1%	0%	0%	0.1%
Total Sample Area (m ²)	0.558	0.558	0.558	0.558
Mean # Aquatic Insects / Sample	235	210	268	291
1 StDev	109	123	98	61
Estimated Mean # Aquatic Insects / m ²	2,523	2,256	2,880	3,125
1 StDev	1,173	1,321	1,049	660
Juvenile Fish	0	0	0	0

Appendix B6.–Upper Johnson Creek benthic macroinvertebrate data, 2011–2014.

	May 2011	Apr 2012	Apr 2013	Apr 2014
	1,14, 2011	11012012	11p1 2013	1101 2011
Total Aquatic Insect Taxa Counted	24	28	34	32
Total Ephemeroptera	962	1,139	1,680	740
Total Plecoptera	114	163	147	217
Total Trichoptera	59	118	95	68
Total Aquatic Diptera	619	586	799	407
Total Other	330	208	217	51
% Ephemeroptera	46%	51%	57%	50%
% Plecoptera	5.5%	7.4%	5.0%	15%
% Trichoptera	2.8%	5.3%	3.2%	4.6%
% Aq. Diptera	30%	27%	27%	27%
% Other	16%	9.4%	7.4%	3.4%
% EPT	55%	64%	65%	69%
% Chironomidae	29%	26%	27%	26%
Shannon Diversity Score (H)	0.76	0.81	0.74	0.74
Evenness Score (E)	0.66	0.68	0.59	0.59
Total Aquatic Insects Counted	2,084	2,214	2,938	1,483
Total Terrestrial Insects Counted	1	1	1	4
Total Insects Counted	2,085	2,215	2,939	1,487
% Sample Aquatic	99.95%	99.95%	99.97%	99.7%
% Sample Terrestrial	0.05%	0.05%	0.03%	0.3%
Total Sample Area (m ²)	0.558	0.558	0.558	0.558
Mean # Aquatic Insects / Sample	347	369	490	247
1 StDev	178	214	234	188
Estimated Mean # Aquatic Insects / m ²	3,735	3,968	5,265	2,658
1 StDev	1,918	2,305	2,512	2,017
Juvenile Fish	0	0	0	0

Appendix B7.-Lower Sherman Creek Sample Point 1 benthic macroinvertebrate data, 2011-2014.

	May 2011	Apr 2012	May 2013	Apr 2014
Total Aquatic Insect Taxa Counted	26	31	28	30
Total Ephemeroptera	157	876	499	114
Total Plecoptera	36	103	135	97
Total Trichoptera	7.0	14	6	18
Total Aquatic Diptera	89	160	131	648
Total Other	335	372	231	810
% Ephemeroptera	25%	58%	50%	6.8%
% Plecoptera	5.8%	6.8%	13%	5.7%
% Trichoptera	1.1%	0.9%	0.6%	1.1%
% Aquatic Diptera	14%	11%	13%	38%
% Other	54%	24%	23%	48%
% EPT	32%	66%	64%	14%
% Chironomidae	6%	8%	12%	33%
Shannon Diversity Score (H)	0.76	0.74	0.85	0.71
Evenness Score (E)	0.71	0.62	0.71	0.57
Total Aquatic Insects Counted	624	1,525	1,002	1,687
Total Terrestrial Insects Counted	1	0	14	1
Total Insects Counted	625	1,525	1,016	1,688
% Sample Aquatic	99.8%	100%	99%	99.9%
% Sample Terrestrial	0.2%	0%	1%	0.1%
Total Sample Area (m ²)	0.558	0.558	0.558	0.558
Mean # Aquatic Insects / Sample	104	254	167	281
1 StDev	93	131	23	87
Estimated Mean # Aquatic Insects / m ²	1,118	2,733	1,796	3,023
1 StDev	1,000	1,410	247	936
Juvenile Fish	10	12	0	8

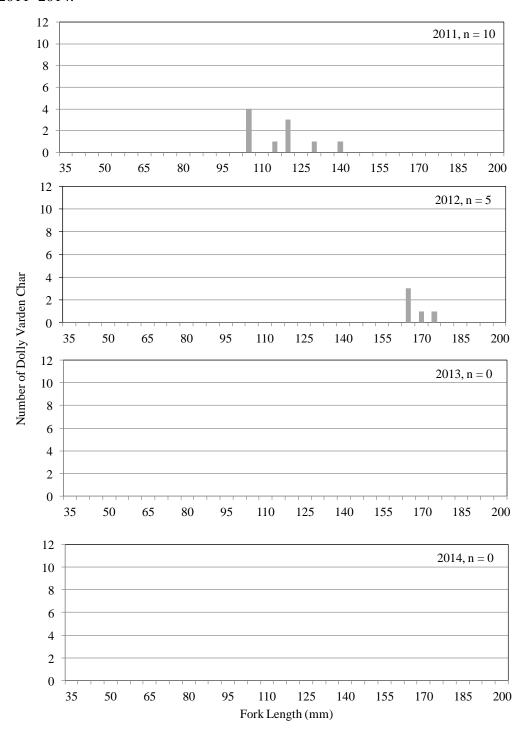
Appendix B3.-Lower Sherman Creek Sample Point 2 benthic macroinvertebrate data, 2011-2014.

	May 2011	Apr 2012	May 2013	Apr 2014
Total Aquatic Insect Taxa Counted	30	36	39	28
Total Ephemeroptera	548	1,143	1,049	31
Total Plecoptera	137	77	299	40
Total Trichoptera	14	26	18	7
Total Aquatic Diptera	143	254	289	354
Total Other	79	75	234	229
% Ephemeroptera	60%	73%	56%	4.7%
% Plecoptera	15%	4.9%	16%	6.1%
% Trichoptera	1.5%	1.7%	1.0%	1.1%
% Aquatic Diptera	16%	16%	15%	54%
% Other	8.6%	4.8%	12%	35%
% EPT	76%	79%	72%	12%
% Chironomidae	11%	15%	14%	48%
Shannon Diversity Score (H)	0.93	0.70	0.84	0.70
Evenness Score (E)	0.76	0.57	0.65	0.62
Total Aquatic Insects Counted	921	1,573	1,889	661
Total Terrestrial Insects Counted	1	2	18	1
Total Insects Counted	922	1,575	1,907	662
% Sample Aquatic	99.9%	99.9%	99.1%	99.8%
% Sample Terrestrial	0.1%	0.1%	0.9%	0.2%
Total Sample Area (m ²)	0.558	0.558	0.558	0.558
Mean # Aquatic Insects / Sample	154	263	315	110
1 StDev	86	109	137	72
Estimated Mean # Aquatic Insects / m ²	1,651	2,823	3,385	1,185
1 StDev	927	1,174	1,471	769
Juvenile Fish	0	0	14	0

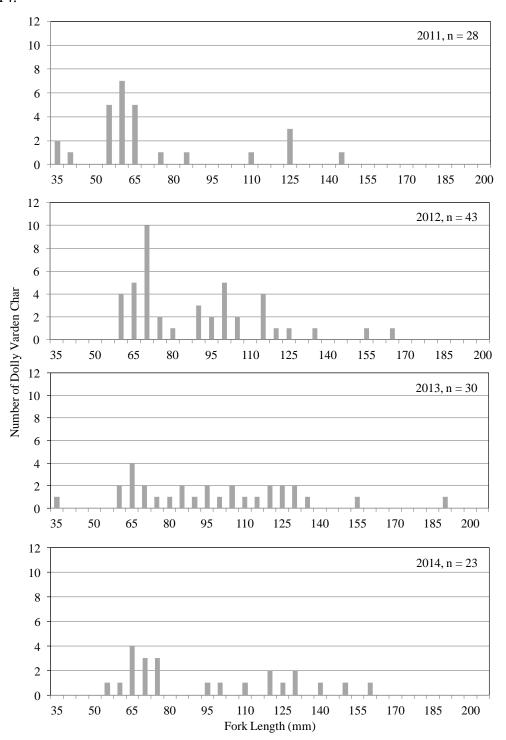
APPENDIX C: RESIDENT FISH DATA

Appendix C1.—East Fork Slate Creek and Upper Slate Creek resident fish capture data and population estimates by reach, 2011–2014.

				Num	ber of l	Fish Ca	ptured				
Site	Year	Species	FL (mm)	Set 1	Set 2	Set 3	Total	MLE	95% CI	Precision	Power
East Fork Slate Creek	2011	DV	105-140	6	2	2	10	40		n/a	
	2012	DV	165-175	2	1	2	5	20		n/a	n/a
	2013	DV		0	0	0	0	0			
	2014	DV		0	0	0	0	0			
Upper Slate Creek	2011	DV	35-145	14	12	2	28	120	104-136	13%	
	2012	DV	60-164	23	14	6	43	192	160-224	17%	0.44
	2013	DV	35-190	21	7	2	30	120	120-120		
	2014	DV	55-160	13	4	6	23	108	76-140	30%	0.03


Appendix C2.—East Fork Slate Creek and Upper Slate Creek resident fish capture data and population estimates by habitat type, 2011–2014.

3	• •	L /							
			Habitat	Num	ber of l	Fish Ca	ptured		
Site	Year	Species	Type	Set 1	Set 2	Set 3	Total	MLE	95% CI
East Fork Slate Creek	2011	DV	Riffle	3	0	0	3	12	
East Fork Slate Creek	2011	DV	Pool	3	1	2	6	24	
East Fork Slate Creek	2011	DV	Glide	0	1	0	1	4	
East Fork Slate Creek	2012	DV	Riffle	0	0	1	1	4	
East Fork Slate Creek	2012	DV	Pool	2	1	1	4	16	
East Fork Slate Creek	2012	DV	Glide	0	0	0	0	0	
East Fork Slate Creek	2013	DV	Riffle	0	0	0	0	0	
East Fork Slate Creek	2013	DV	Pool	0	0	0	0	0	
East Fork Slate Creek	2013	DV	Glide	0	0	0	0	0	
East Fork Slate Creek	2014	DV	Riffle	0	0	0	0	0	
East Fork Slate Creek	2014	DV	Pool	0	0	0	0	0	
East Fork Slate Creek	2014	DV	Glide	0	0	0	0	0	
Upper Slate Creek	2011	DV	Riffle	2	2	0	4	16	
Upper Slate Creek	2011	DV	Pool	11	9	1	22	88	76-100
Upper Slate Creek	2011	DV	Glide	1	1	1	3	12	
Upper Slate Creek	2012	DV	Riffle	2	4	4	10	40	
Upper Slate Creek	2012	DV	Pool	20	3	2	25	100	100-100
Upper Slate Creek	2012	DV	Glide	1	7	0	8	32	
Upper Slate Creek	2013	DV	Riffle	4	1	0	5	20	
Upper Slate Creek	2013	DV	Pool	17	5	1	23	92	92-92
Upper Slate Creek	2013	DV	Glide	0	1	1	2	8	
Upper Slate Creek	2014	DV	Riffle	3	0	2	5	20	
Upper Slate Creek	2014	DV	Pool	10	4	4	18	80	64-96
Upper Slate Creek	2014	DV	Glide	0	0	0	0	0	


Appendix C3.–2014 Upper Slate Creek captured fish length, weight, and condition data.

				Condition
Pass #	Species	FL (mm)	Weight (g)	(g/mm^3)
1	DV	130	21.9	1.00
1	DV	150	32.7	0.97
1	DV	140	27.5	1.00
1	DV	130	21.7	0.99
1	DV	118	15.3	0.93
1	DV	118	16.3	0.99
1	DV	160	35.4	0.86
1	DV	70	3.7	1.08
1	DV	100	9.7	0.97
1	DV	68	2.9	0.92
1	DV	73	3.7	0.95
1	DV	62	2.4	1.01
1	DV	69	2.9	0.88
2	DV	123	19.5	1.05
2	DV	110	14.6	1.10
2	DV	92	8.1	1.04
2	DV	72	4.3	1.15
3	DV	75	3.6	0.85
3	DV	65	2.5	0.91
3	DV	55	2.1	1.26
3	DV	65	2.6	0.95
3	DV	64	2.5	0.95
3	DV	60	2.1	0.97
	Mean Fish Condition =			0.99

Appendix C4.—Length frequency diagrams of Dolly Varden char captured in East Fork Slate Creek, 2011–2014.

Appendix C5.—Length frequency diagrams of Dolly Varden char captured in Upper Slate Creek, 2011–2014.

APPENDIX D: ADULT SALMON DATA

Appendix D1.–2014 Lower Slate Creek adult pink salmon counts by reach.

	7/21/	2014 Pin	k Salmon	Counts	7/28/	2014 Pin	k Salmon	Counts	8/4/2	014 Pink	Salmon	Counts
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass
0-100m	0	0	0	0	0	0	0	0	0	0	0	0
100-200m	0	0	0	0	0	0	0	0	0	0	0	0
200-300m	0	0	0	0	0	0	0	0	12	13	12	0
300-400m	0	0	0	0	2	2	2	0	0	0	0	0
400-500m	0	0	0	0	0	0	0	0	0	0	0	0
500-600m	0	0	0	0	0	0	0	0	2	2	2	0
600-700m	0	0	0	0	0	0	0	0	0	0	0	0
700-800m	0	0	0	0	0	0	0	0	0	0	0	0
800-900m	0	0	0	0	0	0	0	0	0	0	0	0
900-Falls	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	2	2	2	0	14	15	14	0

	8/11/	2014 Pin	k Salmon	Counts	8/18/	/2014 Pin	k Salmon	Counts	8/25/2014 Pink Salmon Counts				
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	
0-100m	0	0	0	0	5	5	5	0	0	0	0	0	
100-200m	0	0	0	0	0	0	0	0	0	0	0	0	
200-300m	7	8	7	0	1	1	1	0	0	0	0	0	
300-400m	1	1	1	1	2	2	2	0	0	0	0	0	
400-500m	4	5	4	0	0	0	0	0	0	0	0	0	
500-600m	0	0	0	0	4	4	4	0	0	0	0	0	
600-700m	1	1	1	0	0	0	0	0	0	0	0	0	
700-800m	0	0	0	0	0	0	0	0	0	0	0	0	
800-900m	0	0	0	0	0	0	0	0	0	0	0	0	
900-Falls	0	0	0	0	0	0	0	0	0	0	0	0	
Total	13	15	13	1	12	12	12	0	0	0	0	0	

Appendix D2.–2014 Lower Slate Creek adult coho salmon counts by reach.

	9/2	2/2014 Col	no Salmon	Counts	10/0	5/2014 Col	no Salmon	Counts	10/13	3/2014 Col	ho Sal mor	Counts
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass
0-100m	0	-	-	0	0	-	-	0	0	-	-	0
100-200m	0	-	-	0	0	-	-	0	0	-	-	0
200-300m	0	-	-	0	0	-	-	0	0	-	-	0
300-400m	0	-	-	0	0	-	-	0	1	-	-	0
400-500m	0	-	-	0	0	-	-	0	0	-	-	0
500-600m	0	-	-	0	1	-	-	0	0	-	-	0
600-700m	0	-	-	0	0	-	-	0	0	-	-	0
700-800m	0	-	-	0	0	-	-	0	1	-	-	0
800-900m	0	-	-	0	0	-	-	0	0	-	-	0
900-Falls	0	-	-	0	1	-	-	0	0	-	-	0
Total	0	-	-	0	2	-	-	0	2	-	-	0

	10/20	/2014 Col	ho Salmoi	1 Counts	11/-	4/2014 Col	ho Salmon	Counts
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass
0-100m	0	-	-	0	0	-	-	0
100-200m	0	-	-	0	0	-	-	0
200-300m	0	-	-	0	0	-	-	0
300-400m	0	-	-	0	0	-	-	0
400-500m	0	-	-	0	0	-	-	0
500-600m	0	-	-	0	0	-	-	0
600-700m	0	-	-	0	0	-	-	0
700-800m	0	-	-	0	0	-	-	0
800-900m	0	-	-	0	0	-	-	0
900-Falls	1	-	-	0	0	-	-	0
Total	1	-	-	0	0	-	-	0

Appendix D3.–2014 Lower Johnson Creek adult pink salmon counts by reach.

	7/22/2	014 Pink	Salmon	Counts	7/30/2	2014 Pink	Salmon	Counts	8/5/2014 Pink Salmon Counts			
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass
Con-Lace	0	0	0	0	1	0	0	0	1	0	0	0
Lace-JM	0	0	0	0	0	0	0	0	0	0	0	0
JM-Trap Site	0	0	0	0	0	0	0	0	0	0	0	0
Trap-Site #4	24	24	24	0	40	20	30	0	40	45	43	0
Site #4-Site #7	20	20	20	0	16	20	18	0	30	38	34	0
Site #7-Site #10	0	0	0	0	0	0	0	0	10	4	7	0
Site #10-PH	0	0	0	0	0	0	0	0	0	0	0	0
PH-LF	0	0	0	0	0	0	0	0	0	0	0	0
LF-Site #15	0	0	0	0	0	0	0	0	0	0	0	0
Site #15-Falls	0	0	0	0	0	0	0	0	0	0	0	0
Total	44	44	44	0	57	40	48	0	81	87	84	0

	8/12/2	014 Pink	Salmon	Counts	8/19/2	2014 Pink	Salmon	Counts	8/26/2014 Pink Salmon Counts			
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass
Con-Lace	0	0	0	0	0	0	0	0	0	0	0	0
Lace-JM	0	0	0	0	0	0	0	0	0	0	0	0
JM-Trap Site	2	2	2	0	0	0	0	0	0	0	0	0
Trap-Site #4	0	0	0	0	0	0	0	0	0	0	0	0
Site #4-Site #7	0	0	0	0	6	8	7	0	0	0	0	0
Site #7-Site #10	0	0	0	0	4	5	4	0	0	0	0	0
Site #10-PH	0	0	0	0	0	0	0	0	0	0	0	0
PH-LF	0	0	0	0	0	0	0	0	0	0	0	0
LF-Site #15	0	0	0	0	0	0	0	0	0	0	0	0
Site #15-Falls	0	0	0	0	0	0	0	0	0	0	0	0
Total	2	2	2	0	10	13	11	0	0	0	0	0

Appendix D4.–2014 Lower Johnson Creek adult chum salmon counts by reach.

	7/22/2	2014 Chui	m Sal mor	Counts	7/30/2	014 Chun	n Salmon	Counts	8/5/2014 Chum Salmon Counts			
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass
Con-Lace	0	0	0	0	0	0	0	0	0	0	0	0
Lace-JM	0	0	0	0	0	0	0	0	0	0	0	0
JM-Trap Site	0	0	0	0	0	0	0	0	0	0	0	0
Trap-Site #4	1	1	1	0	1	1	1	0	0	0	0	0
Site #4-Site #7	0	0	0	0	0	0	0	0	1	1	1	1
Site #7-Site #10	0	0	0	0	0	0	0	0	0	0	0	0
Site #10-PH	0	0	0	0	0	0	0	0	0	0	0	0
PH-LF	0	0	0	0	0	0	0	0	0	0	0	0
LF-Site #15	0	0	0	0	0	0	0	0	0	0	0	0
Site #15-Falls	0	0	0	0	0	0	0	0	0	0	0	0
Total	1	1	1	0	1	1	1	0	1	1	1	1

	8/12/2	2014 Chu	m Salmor	Counts	8/19/2	014 Chun	n Salmon	Counts
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass
Con-Lace	0	0	0	0	0	0	0	0
Lace-JM	0	0	0	0	0	0	0	0
JM-Trap Site	0	0	0	0	0	0	0	0
Trap-Site #4	0	0	0	0	0	0	0	0
Site #4-Site #7	0	0	0	0	0	0	0	0
Site #7-Site #10	0	0	0	0	0	0	0	0
Site #10-PH	0	0	0	0	0	0	0	0
PH-LF	0	0	0	0	0	0	0	0
LF-Site #15	0	0	0	0	0	0	0	0
Site #15-Falls	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0

Appendix D5.–2014 Lower Johnson Creek adult coho salmon counts by reach.

	9/22/2	2014 Coh	o Salmon	Counts	10/6/2	014 Coho	Salmon	Counts	10/13/2014 Coho Salmon Counts			
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass
Con-Lace	0	-	-	0	0	-	-	0	0	-	-	0
Lace-JM	0	-	-	0	0	-	-	0	0	-	-	0
JM-Trap Site	0	-	-	0	0	-	-	0	0	-	-	0
Trap-Site #4	2	-	-	0	2	-	-	0	0	-	-	0
Site #4-Site #7	0	-	-	0	4	-	-	0	0	-	-	0
Site #7-Site #10	0	-	-	0	0	-	-	0	4	-	-	0
Site #10-PH	0	-	-	0	5	-	-	0	5	-	-	0
PH-LF	0	-	-	0	1	-	-	0	1	-	-	0
LF-Site #15	0	-	-	0	0	-	-	0	1	-	-	0
Site #15-Falls	0	-	-	0	0	-	-	0	0	-	-	0
Total	2	-	-	0	12	-	-	0	11	-	-	0

	10/20/	2014 Col	o Salmoi	1 Counts	10/29/2	2014 Coh	o Salmon	Counts	11/4/2014 Coho Salmon Counts			
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass
Con-Lace	0	-	-	0	0	-	-	0	0	-	-	0
Lace-JM	0	-	-	0	0	-	-	0	0	-	-	0
JM-Trap Site	0	-	-	0	42	-	-	0	0	-	-	0
Trap-Site #4	1	-	-	0	1	-	-	0	0	-	-	0
Site #4-Site #7	0	-	-	0	4	-	-	0	0	-	-	0
Site #7-Site #10	8	-	-	0	0	-	-	0	0	-	-	0
Site #10-PH	5	-	-	0	7	-	-	0	1	-	-	0
PH-LF	0	-	-	0	0	-	-	0	0	-	-	0
LF-Site #15	0	-	-	0	0	-	-	0	0	-	-	0
Site #15-Falls	0	-	-	0	1	-	-	0	0	-	-	0
Total	14	-	-	0	55	-	-	0	1	-	-	0

	11/11/	/2014 Col	no Salmon	n Counts
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass
Con-Lace	0	-	-	0
Lace-JM	0	-	-	0
JM-Trap Site	10	-	-	0
Trap-Site #4	0	-	-	0
Site #4-Site #7	0	-	-	0
Site #7-Site #10	2	-	-	0
Site #10-PH	0	-	-	0
PH-LF	0	-	-	0
LF-Site #15	0	-	-	0
Site #15-Falls	0	-	-	0
Total	12	-	-	0

Appendix D6.–2014 Lower Sherman Creek adult pink salmon counts by reach.

	7/21/	7/21/2014 Pink Salmon Counts				7/28/2014 Pink Salmon Counts				8/4/2014/2013 Pink Salmon Counts			
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	
0-50m	0	0	0	0	5	3	4	0	2	2	2	0	
50-100m	0	0	0	0	0	0	0	0	10	8	9	0	
100-150m	0	0	0	0	0	0	0	0	2	1	1	0	
150-200m	0	0	0	0	2	3	2	0	15	6	11	1	
200-250m	0	0	0	0	0	0	0	0	4	9	6	0	
250-300m	0	0	0	0	0	0	0	0	1	2	2	1	
300-350m	0	0	0	0	0	0	0	0	7	7	7	0	
350-Falls	0	0	0	0	0	0	0	0	1	3	2	0	
Total	0	0	0	0	7	6	6	0	42	38	40	2	

	8/11/2014 Pink Salmon Counts					8/18/2014 Pink Salmon Counts				8/25/2014 Pink Salmon Counts			
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	
0-50m	4	4	4	0	0	0	0	0	0	0	0	0	
50-100m	2	0	1	0	2	2	2	0	0	0	0	0	
100-150m	3	3	3	0	2	2	2	0	0	0	0	0	
150-200m	1	1	1	1	0	0	0	0	6	2	4	0	
200-250m	0	0	0	0	0	0	0	0	1	1	1	0	
250-300m	1	1	1	0	0	0	0	0	0	0	0	0	
300-350m	0	0	0	0	0	0	0	0	5	5	5	0	
350-Falls	0	0	0	0	0	0	0	0	0	0	0	0	
Total	11	9	10	1	4	4	4	0	12	8	10	0	

	9/2/2	9/2/2014 Pink Salmon Counts										
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass								
0-50m	0	0	0	0								
50-100m	0	0	0	0								
100-150m	0	0	0	0								
150-200m	0	0	0	0								
200-250m	0	0	0	0								
250-300m	0	0	0	0								
300-350m	0	0	0	0								
350-Falls	0	0	0	0								
Total	0	0	0	0								

Appendix D7.-Lower Slate Creek adult pink salmon counts by statistical week, 2011-2014.

Stat				
Week	2011	2012	2013	2014
29		0	0	0
30		0	7	0
31	0	364	66	2
32	371	1106	604	14
33	765	3152	864	13
34	1396	2331	1199	12
35	1649	318	472	0
36	1816	1	97	
37	232	0	27	
38	46		1	
39	0			

Appendix D8.-Lower Johnson Creek adult pink salmon counts by statistical week, 2011-2014.

Stat				
Week	2011	2012	2013	2014
29		0	147	
30	2	182	499	110
31	448	1026	5623	120
32	4725	1882	3639	209
33	9623	4244	4680	5
34	13159	4538	3890	27
35	3374	494	1360	0
36	9728	150	372	0
37	1673	17	241	
38	1088	0	0	
39	361			

Appendix D9.-Lower Sherman Creek adult pink salmon counts by statistical week, 2011-2014.

Stat				
Week	2011	2012	2013	2014
29		0	2	
30	1	2	164	0
31	301	9	860	6
32	774	97	979	40
33	1051	285	765	10
34	399	521	549	4
35	159	521	785	10
36	873	145	624	0
37	418	25	232	
38	612	3	21	
39	36			

APPENDIX E: SPAWNING SUBSTRATE DATA

Appendix E1.-Lower Slate Creek Sample Point 1 spawning substrate data, 2011–2014.

Sample	Sample	Sample		Volu	me (mL/L) Retaine	ed Each S	Sieve (mr	n)			
Date	Number	Depth (cm)	101.6	50.8	25.4	12.7	6.35	1.68	0.42	0.15	Imhoff	GMPS
08/17/11	1	18.5	0	0	470	260	360	425	225	20	22	9.47
08/17/11	2	20	0	70	460	250	200	280	100	25	8	13.82
08/17/11	3	18.5	0	280	240	210	290	440	100	70	20.5	11.86
08/17/11	4	22.5	0	0	350	350	175	1425	525	55	68	5.07
07/09/12	1	20	1050	140	140	280	190	395	95	15	24	10.35
07/09/12	2	20	0	0	200	225	140	325	140	15	24	8.00
07/09/12	3	21	0	515	310	225	250	580	240	27	65	12.53
07/09/12	4	20	0	570	510	260	290	750	415	53	54	11.61
07/02/13	1	22.5	0	400	460	430	320	365	145	25	66	15.08
07/02/13	2	20	0	150	400	250	245	515	225	36	53	9.59
07/02/13	3	17.5	0	800	325	320	255	445	205	25	60	17.76
07/02/13	4	20	0	275	565	385	245	495	250	19	28	13.31
07/01/14	1	20	600	420	375	225	235	320	165	22	57	15.19
07/01/14	2	17.5	0	50	350	300	175	225	25	7.5	41	13.72
07/01/14	3	20	0	100	510	465	275	420	250	38	52	10.74
07/01/14	4	20	400	275	260	220	225	375	225	19	51	10.98

GMPS = geometric mean particle size.

Appendix E2.—Lower Slate Creek Sample Point 2 spawning substrate data, 2011–2014.

Sample	Sample	Sample		Volu	me (mL/I	L) Retain	ed Each S	Sieve (m	n)			
Date	Number	Depth (cm)	101.6	50.8	25.4	12.7	6.35	1.68	0.42	0.15	Imhoff	GMPS
08/17/11	1	20	0	130	305	200	205	350	200	20	11.5	10.74
08/17/11	2	22.5	0	120	320	405	335	740	415	85	53	7.12
08/17/11	3	22.5	0	400	350	295	290	540	200	40	17.5	13.18
08/17/11	4	21	0	100	450	580	320	390	160	15	28	12.56
07/09/12	1	20	0	250	380	270	260	475	195	23	46.5	11.56
07/09/12	2	20	600	75	395	295	180	375	135	15	18.5	11.82
07/09/12	3	20	0	450	340	370	340	590	295	30	18	12.5
07/09/12	4	19	0	0	320	460	285	545	300	28	16.5	8.13
07/02/13	1	20	0	310	490	440	505	640	410	35	107.5	9.53
07/02/13	2	22.5	0	420	270	240	215	560	150	34	42	12.87
07/02/13	3	18.75	0	550	885	375	290	570	290	45	107.8	14.79
07/02/13	4	21.25	0	785	230	340	240	580	330	30	46.5	14.58
07/01/14	1	22.5	0	1225	450	495	305	760	300	12	110	17.47
07/01/14	2	20	0	450	250	250	200	300	100	11	65	16.25
07/01/14	3	20	0	850	480	200	175	490	175	30	106	18.15
07/01/14	4	17.5	0	150	350	200	225	300	120	15	20	12.97

GMPS = geometric mean particle size.

APPENDIX F: SEDIMENT METALS CONCENTRATION DATA AND TOXICITY LAB REPORTS

Appendix F1.–Stream sediment sample compositions, 2011–2014.

			Particle	Size Dat	a						
									Acid		
					% Course			% Total	Volatile	Total	% Total
	Sample				material		% Total	Volatile	Sulfide	Sulfide	Organic
Sample Site	Date	% Sand	% Silt	% Clay	(> 2 mm)	Texture	Solids	Solids	(µmoles/g)	(mg/kg)	Carbon
Lower Slate Creek	10/03/11	94.0	4.0	2.0	0.4	sand	78.00	3.38	< 0.55		2.04
Lower Slate Creek	07/03/12	98.0	ND	2.0	0.1	sand	79.22	3.37	0.99		1.67
Lower Slate Creek	07/02/13	96.0	2.0	2.0	< 0.05	sand	74.57	1.63	1.84		1.67
Lower Slate Creek	07/28/14	91.8	3.8	2.3	0.9	sand	75.3	3.28		<1.3	0.58
East Fork Slate Creek	10/03/11	86.0	4.0	10.0	1.7	loamy sand	60.17	7.81	< 0.55		11.00
East Fork Slate Creek	07/10/12	26.0	34.0	40.0	ND	clay	23.72	28.54	1.10		16.70
East Fork Slate Creek	07/01/13	82.0	12.0	6.0	< 0.05	loamy Sand	43.66	13.30	5.20		18.30
East Fork Slate Creek	07/30/14	75.0	21.1	3.8	0.1	loamy Sand	65.5	6.21		<1.5	1.84
Upper Slate Creek	10/06/11	94.0	2.0	4.0	ND	sand	72.10	4.12	1.39		5.46
Upper Slate Creek	07/02/12	98.0	ND	2.0	0.3	sand	79.58	2.90	1.35		3.74
Upper Slate Creek	07/01/13	96.0	ND	4.0	0.2	sand	74.21	2.73	<1.40		5.50
Upper Slate Creek	07/30/14	87.5	8.2	4.3	0.0	sand	72.4	3.88		<1.4	0.87
Lower Johnson Creek	10/03/11	96.0	2.0	2.0	ND	sand	74.28	2.01	< 0.55		0.89
Lower Johnson Creek	07/02/12	92.0	ND	8.0	ND	sand	77.67	2.55	1.05		1.19
Lower Johnson Creek	07/01/13	96.0	2.0	2.0	0.3	sand	73.21	0.90	<1.40		1.08
Lower Johnson Creek	07/30/14	91.4	4.8	2.9	0.2	sand	73.7	1.93		<1.4	0.26
Lower Sherman Creek	10/04/11	96.0	2.0	2.0	0.1	sand	73.15	2.75	1.50		0.54
Lower Sherman Creek	07/03/12	96.0	ND	4.0	0.1	sand	78.55	3.05	< 0.55		0.82
Lower Sherman Creek	07/01/13	96.0	2.0	2.0	0.6	sand	75.66	0.75	<1.40		0.61
Lower Sherman Creek	07/28/14	89.9	6.5	3.4	0.3	sand	76.7	2.50		<1.3	0.35

ND = not detected at the method detection limit.

Appendix F2.—Stream sediment sample metals, arsenic, and selenium concentrations, 2011–2014.

		Analytical Data (mg/kg dry weight)									
Sample Site	Sample Date	Ag	Al	As	Cd	Cr	Cu Hg	Ni	Pb	Se	Zn
Lower Slate Creek	10/03/11	0.134	13,600	16.2	1.46	29.4	56.7 0.0502	47.4	7.79	0.720	220
Lower Slate Creek	07/03/12	0.145	13,600	9.31	1.22	32.0	50.7 0.0994	43.2	8.45	< 0.170	200
Lower Slate Creek	07/02/13	0.168	12,300	23.7	1.29	94.5	56.7 0.0402	73.4	9.14	1.94	205
Lower Slate Creek	07/28/14	0.08	12,000	20.1	1.21	20.0	51.1 0.06	40.8	8.78	1.3	189
East Fork Slate Creek	10/03/11	0.233	20,100	30.0	20.9	29.5	88.4 0.0692	143	8.50	1.41	1,360
East Fork Slate Creek	07/10/12	0.513	15,300	24.0	23.2	38.9	159.0 0.3270	153	14.2	0.934	1,490
East Fork Slate Creek	07/01/13	0.334	13,900	42.2	13.9	32.7	73.4 0.0774	79.8	12.5	4.79	844
East Fork Slate Creek	07/30/14	0.14	13,300	39.1	12.1	14.6	55.7 0.04	85.3	6.94	2.4	812
Upper Slate Creek	10/06/11	0.120	22,500	17.9	0.722	127	53.4 < 0.0489	87.5	3.37	0.809	130
Upper Slate Creek	07/02/12	0.132	20,300	14.4	0.776	125	55.4 0.0625	78.4	4.05	0.606	134
Upper Slate Creek	07/01/13	0.131	14,600	13.5	0.750	101	44.6 < 0.0380	55.0	2.70	3.21	105
Upper Slate Creek	07/30/14	0.06	14,900	19.2	0.69	84.2	45.8 0.03	55.7	2.86	1.8	111
Lower Johnson Creek	10/03/11	0.164	13,100	16.2	0.238	31.5	73.1 < 0.0386	27.3	9.76	< 0.181	93.3
Lower Johnson Creek	07/02/12	0.342	13,100	12.8	0.250	35.5	76.8 0.1190	23.4	9.45	< 0.167	97.3
Lower Johnson Creek	07/01/13	0.269	10,300	11.9	0.492	24.4	56.1 < 0.0354	15.7	8.00	< 0.163	121
Lower Johnson Creek	07/30/14	0.32	10,300	16.5	0.16	22.2	68.2 0.02	16.9	10.9	< 0.5	83.4
Lower Sherman Creek	10/04/11	0.137	18,200	28.9	0.389	46.2	94.0 < 0.0455	45.9	6.70	< 0.178	110
Lower Sherman Creek	07/03/12	0.289	17,900	24.3	0.578	51.4	79.1 0.0681	40.2	8.43	< 0.174	128
Lower Sherman Creek	07/01/13	0.306	15,400	25.4	0.390	37.4	69.4 < 0.0384	30.9	7.39	1.77	111
Lower Sherman Creek	07/28/14	0.14	14,900	27.9	0.36	33.6	68.4 0.03	31.1	6.97	1.2	119

September 9, 2014

ALS Environmental ALS Group USA, Corp. 1317 South 13th Avenue Kelso, WA 98626 T: +1 360 577 7222 F: +1 360 636 1068

www.alsglobal.com

Analytical Report for Service Request No: K1408279

Revised Service Request No: K1408279.01

Kate Kanouse Alaska Department of Fish and Game Division of Habitat/Billy Ray Center 1008 F Street P.O. Box 110024 Juneau, AK 99801

RE: **Kensington Gold Mine**

Dear Kate:

Enclosed is the revised report for the samples submitted to our laboratory on August 07, 2014. For your reference, these analyses have been assigned our service request number K1408279.

On September 4, 2014 Ben Brewster with Alaska Department of Fish and Game requested that arsenic be reported for this data.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3363. You may also contact me via Email at Lisa.Domenighini@alsglobal.com.

Respectfully submitted,

Jua & Jamenighin

ALS Group USA Corp. dba ALS Environmental

Lisa Domenighini

Project Manager

LD/aj Page 1 of _____36____

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- \boldsymbol{Q} $\;\;$ See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEC UST	http://dec.alaska.gov/applications/eh/ehllabreports/USTLabs.aspx	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L14-51
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	Not available	_
Idaho DHW	http://www.healthandwelfare.idaho.gov/Health/Labs/CertificationDrinkingWaterLabs/tabid/1833/Default.aspx	-
ISO 17025	http://www.pjlabs.com/	L14-50
Louisiana DEQ	http://www.deq.louisiana.gov/portal/DIVISIONS/PublicParticipationandPermitSupport/LouisianaLaboratoryAccreditationProgram.aspx	03016
Maine DHS	Not available	WA01276
Michigan DEQ	http://www.michigan.gov/deq/0,1607,7-135-3307_4131_4156,00.html	9949
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Montana DPHHS	http://www.dphhs.mt.gov/publichealth/	CERT0047
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/oqa/	WA005
North Carolina DWQ	http://www.dwqlab.org/	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/envserv/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wisconsin DNR	http://dnr.wi.gov/	998386840
Wyoming (EPA Region 8)	http://www.epa.gov/region8/water/dwhome/wyomingdi.html	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

ALS ENVIRONMENTAL

Client: Alaska Department of Fish and Game Service Request No.: K1408279

Project: Kensington Gold Mine Date Received: 08/07/14

Sample Matrix: Sediment

Case Narrative

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), and Matrix/Duplicate Matrix Spike (MS/DMS).

Sample Receipt

Five sediment samples were received for analysis at ALS Environmental on 08/07/14. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

General Chemistry Parameters

Total Sulfide by PSEP:

All samples were received past holding time. The analysis was performed as soon as possible after receipt by the laboratory. The data was flagged to indicate the holding time violation.

The Relative Percent Difference (RPD) criterion for the replicate analysis in sample Batch QC was not applicable because the analyte concentration was not significantly greater than the Method Reporting Limit (MRL). Analytical values derived from measurements close to the detection limit are not subject to the same accuracy and precision criteria as results derived from measurements higher on the calibration range for the method.

No other anomalies associated with the analysis of these samples were observed.

Total Metals

Matrix Spike Recovery Exceptions:

The control criteria for matrix spike recovery of Aluminum, Copper, and Zinc for the Batch QC sample were not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

No other anomalies associated with the analysis of these samples were observed.

Approved by_ Sisa_&_ Jamenighin

___ V. EDD

CHAIN OF CUSTODY

1317 South 13th Ave, Kelso, WA 98626 Phone (360) 577-7222 / 800-695-7222 / FAX (360) 636-1068

001	 	 	

			and the same		gan			and the last of	
The second	SR#	K	12,		X	7		- Samuelle	
Į		YV		4		go	Section of the sectio		
	COC Se	et_↓	01						
	COC#	50	59	RL	The state of the s				

										www.	alsglo	obal.co	om					Page 1011
Project Name Project Manager P	Project No	umber:			5	14D	28D	1001	2081	365D	G666		×		ence esta elécución	**************************************		
Company Coew Alas Ka	4			NERS	ulfide	<u>+</u> 0											-	
Phone # 907-4105-429		Street, Juneau	JK K	CONTAINER	Sulfide / PSEP Sulfide	TOC / PSEP TOC		<u> </u>	Part Size	3/TVS	al Solids						Total Control of the	
Sampler Signature	Sampler F	Printed Name	ru yn	NUMBER OF	P Sulfide	P TOC / F	7471B/Hg	200.8 / Metals	ASTM D422 /	160.4 Modified	TS-MET / Total							
Beyn Brews	Ben	jamin Braust	<u>e/</u>	Ž	PSEP	PSEP	747	200.	AST	160.	TS-N	<u></u>	2	м	4	rO.	Remarks	
CLIENT SAMPLE ID	LABID	SAMPLING Date Time	Matrix															
1. Lowe/ Slate Geek		FIZE/M MOO		3	X	X	X	X	K.	X	X	1			_	<u> </u>		
2. East-Rock Statelread		713/14 1500		3	X	X	X	F	X	K	X	_	_	<u> </u>		<u> </u>		
3. Upper Slate Circk		7/2/4 1700		3	X	X	<u> X</u>	X	X	\times	X	_		<u> </u>		<u> </u>		
4. over Johnson Coop	7	H30/14 0900		3	X.	K.	X	X	X	X	X	ļ	ļ	<u> </u>	<u> </u>	_		
5. Lower Streamen Cred		7/28/4 1000		3	X	X	X	1	X	X	¥	<u></u>		<u> </u>		<u> </u>		
6.	accommence that is a second contract of the s						Ů		<u> </u>		Ľ		<u> </u>	<u> </u>				
7.					<u> </u>											_		
8.																		
9.																		
10.														l				
Report Requirements		oice Information														Circle	e which metals are to be	analyzed
I. Routine Report: Method Blank, Surrogate, as required	P.O.# <u>N</u> Bill To:	Coen Alaka Coen Alaka Clisher De Ste 26	_												(Cd	Co	ිට(Ĉij Fe ුචිb) M	g Mn Mo Nì K Ang Na So Sr TI Sn V 🕼 🗓 Mg Mn Mo Ni K Ang Na Se Sr TI Sn V Zn Hng
II. Report Dup., MS, MSD as required		un, Ak 9980		Specia			////www.											Procedure: AK CA WI Northwest Other(Circle One)
III. CLP Like Summary (no raw data)	2	Dund Requireme: 4 hr48 hr. Day	nts				2,10	20,11						<u> </u>			Taman and a distribution of the state of the	(Sindle Only)
IV. Data Validation Report	→ S	tandard	-															

Requested Report Date				
	Relinguished By:	Received By:	Relinguished By:	Received By:
Man				
gnature	Signature	Signature	Signature	Signature
Hann				
rinted Name	Printed Name	Printed Name	Printed Name	Printed Name
125				
	Firm	Firm	Firm	Firm
ate/Time	Date/Time	Date/Time	Date/Time	Date/Time
ri	Received By: Instance	Received By: Relinquished By: Signature Printed Name Printed Name Firm	Received By: Relinquished By: Received By: Instance Signature Signature Printed Name Printed Name Firm Firm	Received By: Relinquished By: Received By: Relinquished By: Signature Signature Signature Printed Name Printed Name Printed Name Firm Firm Firm

Cooler Receipt and Preservation Form

Client / Pr	oject:		OFUL	West Company of the C			Serv	vice Request	K14	8279	7	- 1	
Received:	8/7	/14	Opened:_	8/7/	14	_ By:	h	Unloa	nded: 8	17/14	_ By:_/	4	
 Sample Were <u>c</u> 	ustody seal	eived in: (ci ls on cooler	s?	Fed Ex Cooler	Box N	DH Enve	elope yes, ho	PDX Cou Other ow many and	where?			NA	
If prese	ent, were cu	istody seals	intact'?	<u> </u>	ン N	e		sent, were the	y signed and	d dated? Tracking	Number	Y	N
Raw Cooler Temp	Corrected. Cooler Temp		Corrected Temp Blank	Corr. Factor	500 min	ometer D		NA					NA Filed
1.9	1.6	5.5	5,2	0.3	33	5	50	984	8001	7252	531	7_	

4. Packing	o material:	Inserts	Raggias /	Ruhhle Wi	an (Go	Packs	Wet I	ce Dry Ice	Sleeves				<u></u>
		ers properly	and the same of th	There are a supplementally of the supplemental supplement		The second second	,, 00 1	ce Diyiee	5,00,00		NA	P	N
6. Did all	bottles arr	ive in good	condition (1	unbroken)?	Indica	te in the t	able be	low.			NA	E	N
7. Were al	ll sample la	bels comple	ete (i.e anal	ysis, preser	vation, e	tc.)?					NA	8	N
8. Did all	sample lab	els and tags	agree with	custody pa	pers? In	dicate me	ijor dis	crepancies in	the table or	page 2.	NA	80	N
9. Were a	ppropriate	bottles/cont	ainers and	volumes re	ceived fo	or the test	s indica	ated?			NA	8	N
10. Were	the pH-pres	served bottle	es (<i>see SMO</i>	GEN SOP)	received	at the ap	propria	te pH? <i>Indic</i>	ate in the tai	ble below	NA	Y	N
11. Were	VOA vials	received wi	thout heads	space? Ind	icate in t	he table l	elow.				NA	Y	N
12. Was C	C12/Res neg	gative?									NA	Y	N
	Sample ID c	n Bottle			Sample II	on COC				Identified by	•		
	77. 11 21MIN 40												
	Sample II		Bottle Bottle		ut of Hea	id- ce Broke	На	Reagent	Volume added	Reagent L Number		tials	Time
	- Campie is		Dottie	Туре	emp spe	Ge Dioke	p.,	Reagent	, mai nauaca	Number		lais	
Notes, Dis	screpancie	es, & Reso	lutions:										NOTE OF THE PROPERTY.
								A					
	2	**************************************			<u></u>		······································	and Annual Management (Annual Ma	ANO.	-			

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1408279 **Date Collected:** 07/28/14 - 07/30/14 **Project:** Kensington Gold Mine

Date Received: 08/7/14 **Sample Matrix:** Sediment

Analysis Method: 160.4 Modified Units: Percent

Prep Method: None Basis: Dry, per Method

Solids, Total Volatile

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
Lower Slate Creek	K1408279-001	3.28	0.010	1	08/12/14 14:18	
East Fork Slate Creek	K1408279-002	6.21	0.010	1	08/12/14 14:18	
Upper Slate Creek	K1408279-003	3.88	0.010	1	08/12/14 14:18	
Lower Johnson Creek	K1408279-004	1.93	0.010	1	08/12/14 14:18	
Lower Sherman Creek	K1408279-005	2.50	0.010	1	08/12/14 14:18	

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game Service Request: K1408279

Project Kensington Gold Mine **Date Collected:** 07/28/14

Sample Matrix: Sediment

Date Received: 08/07/14 Date Analyzed: 08/12/14

Replicate Sample Summary

General Chemistry Parameters

Sample Name: Lower Slate Creek Units: Percent

Lab Code: K1408279-001 Basis: Dry, per Method

Duplicate Sample

K1408279-

001DUP

Analyte Name Analysis Method MRL Solids, Total Volatile 160.4 Modified 0.010 Sample Result 3.28

Result

Average 3.15 3.22

RPD

RPD Limit

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Client: Alaska Department of Fish and Game

Project: Kensington Gold Mine

Sample Matrix: Sediment

Service Request: K1408279 **Date Collected:** 7/28/2014 **Date Received:** 8/7/2014 **Date Analyzed:** 8/14/2014

Particle Size Determination ASTM D422

Sample Name: Lower Slate Creek **Lab Code:** K1408279-001

Gravel and Sand (Sieve Analysis)

Description	Sieve Size		Percent
		Weight (g)	Passing
Gravel (19.0 mm)	No.3/4"(19.0 mm)	0.0000	99.97
Gravel (9.50 mm)	No.3/8"(9.50 mm)	0.0000	99.97
Gravel, Medium	No.4 (4.75 mm)	0.3672	99.56
Gravel, Fine	No.10 (2.00 mm)	0.4138	99.11
Sand, Very Coarse	No.20 (0.850 mm)	20.9142	75.90
Sand, Coarse	No.40 (0.425 mm)	27.7525	45.11
Sand, Medium	No.60 (0.250 mm)	18.7736	24.28
Sand, Fine	No.140 (0.106 mm)	14.5610	8.13
Sand, Very Fine	No.200 (0.0750 mm)	1.0761	6.93

Silt and Clay

Particle Diameter	Percent Passing
0.074 mm	7.32
0.005 mm	3.52
0.001 mm	1.25

Client: Alaska Department of Fish and Game

Project: Kensington Gold Mine

Sample Matrix: Sediment

Service Request: K1408279 **Date Collected:** 7/30/2014 **Date Received:** 8/7/2014 **Date Analyzed:** 8/14/2014

Particle Size Determination ASTM D422

Sample Name: East Fork Slate Creek **Lab Code:** K1408279-002

Gravel and Sand (Sieve Analysis)

Description	Sieve Size		Percent
		Weight (g)	Passing
Gravel (19.0 mm)	No.3/4"(19.0 mm)	0.0000	100.00
Gravel (9.50 mm)	No.3/8"(9.50 mm)	0.0000	100.00
Gravel, Medium	No.4 (4.75 mm)	0.0000	100.00
Gravel, Fine	No.10 (2.00 mm)	0.0416	99.95
Sand, Very Coarse	No.20 (0.850 mm)	20.2276	75.58
Sand, Coarse	No.40 (0.425 mm)	22.3249	48.69
Sand, Medium	No.60 (0.250 mm)	9.2395	37.56
Sand, Fine	No.140 (0.106 mm)	9.5411	26.06
Sand, Very Fine	No.200 (0.0750 mm)	1.6566	24.07

Silt and Clay

Particle Diameter	Percent Passing
0.074 mm	24.91
0.005 mm	3.80
0.001 mm	0.00

Client: Alaska Department of Fish and Game

Project: Kensington Gold Mine

Sample Matrix: Sediment

Pate Collected: 7/30/2014
Date Received: 8/7/2014
Date Analyzed: 8/14/2014

Particle Size Determination ASTM D422

Sample Name: Upper Slate Creek **Lab Code:** K1408279-003

Gravel and Sand (Sieve Analysis)

Description	Sieve Size		Percent
		Weight (g)	Passing
Gravel (19.0 mm)	No.3/4"(19.0 mm)	0.0000	100.00
Gravel (9.50 mm)	No.3/8"(9.50 mm)	0.0000	100.00
Gravel, Medium	No.4 (4.75 mm)	0.0000	100.00
Gravel, Fine	No.10 (2.00 mm)	0.0283	99.97
Sand, Very Coarse	No.20 (0.850 mm)	27.3396	70.40
Sand, Coarse	No.40 (0.425 mm)	33.5632	34.10
Sand, Medium	No.60 (0.250 mm)	13.4412	19.56
Sand, Fine	No.140 (0.106 mm)	6.0379	13.03
Sand, Very Fine	No.200 (0.0750 mm)	0.9464	12.01

Silt and Clay (Hydrometer Analysis)

 Particle Diameter
 Percent Passing

 0.074 mm
 12.46

 0.005 mm
 4.29

 0.001 mm
 0.00

Client: Alaska Department of Fish and Game

Project: Kensington Gold Mine

Sample Matrix: Sediment

Service Request: K1408279 **Date Collected:** 7/30/2014 **Date Received:** 8/7/2014

Date Analyzed: 8/14/2014

Particle Size Determination ASTM D422

Sample Name: Lower Johnson Creek **Lab Code:** K1408279-004

Gravel and Sand (Sieve Analysis)

Description	Sieve Size		Percent
		Weight (g)	Passing
Gravel (19.0 mm)	No.3/4"(19.0 mm)	0.0000	100.00
Gravel (9.50 mm)	No.3/8"(9.50 mm)	0.0000	100.00
Gravel, Medium	No.4 (4.75 mm)	0.0000	100.00
Gravel, Fine	No.10 (2.00 mm)	0.1348	99.84
Sand, Very Coarse	No.20 (0.850 mm)	11.9151	85.95
Sand, Coarse	No.40 (0.425 mm)	33.9209	46.42
Sand, Medium	No.60 (0.250 mm)	21.0380	21.89
Sand, Fine	No.140 (0.106 mm)	10.4614	9.70
Sand, Very Fine	No.200 (0.0750 mm)	0.9891	8.55

Silt and Clay

Particle Diameter	Percent Passing
0.074 mm	8.41
0.005 mm	3.60
0.001 mm	0.73

Client: Alaska Department of Fish and Game

Project: Kensington Gold Mine

Sample Matrix: Sediment

Service Request: K1408279 **Date Collected:** 7/28/2014 **Date Received:** 8/7/2014

Date Analyzed: 8/14/2014

Particle Size Determination ASTM D422

Sample Name: Lower Sherman Creek **Lab Code:** K1408279-005

Gravel and Sand (Sieve Analysis)

Description	Sieve Size		Percent
		Weight (g)	Passing
Gravel (19.0 mm)	No.3/4"(19.0 mm)	0.0000	99.99
Gravel (9.50 mm)	No.3/8"(9.50 mm)	0.0000	99.99
Gravel, Medium	No.4 (4.75 mm)	0.1831	99.79
Gravel, Fine	No.10 (2.00 mm)	0.1014	99.68
Sand, Very Coarse	No.20 (0.850 mm)	13.6110	84.73
Sand, Coarse	No.40 (0.425 mm)	26.9791	55.10
Sand, Medium	No.60 (0.250 mm)	21.1438	31.88
Sand, Fine	No.140 (0.106 mm)	17.2296	12.96
Sand, Very Fine	No.200 (0.0750 mm)	2.2787	10.45

Silt and Clay

Particle Diameter	Percent Passing
0.074 mm	9.82
0.005 mm	3.35
0.001 mm	0.00

Client: Alaska Department of Fish and Game

Project: Kensington Gold Mine

Sample Matrix: Sediment

Date Collected: 7/28/2014
Date Received: 8/7/2014
Date Analyzed: 8/14/2014

Service Request: K1408279

Particle Size Determination ASTM D422

Sample Name: Lower Sherman Creek **Lab Code:** K1408279-005 DUP

Gravel and Sand (Sieve Analysis)

Description	Sieve Size		Percent
		Weight (g)	Passing
Gravel (19.0 mm)	No.3/4"(19.0 mm)	0.0000	100.00
Gravel (9.50 mm)	No.3/8"(9.50 mm)	0.0000	100.00
Gravel, Medium	No.4 (4.75 mm)	0.0000	100.00
Gravel, Fine	No.10 (2.00 mm)	0.0870	99.91
Sand, Very Coarse	No.20 (0.850 mm)	15.8381	83.76
Sand, Coarse	No.40 (0.425 mm)	35.4458	47.63
Sand, Medium	No.60 (0.250 mm)	19.6328	27.61
Sand, Fine	No.140 (0.106 mm)	14.2315	13.11
Sand, Very Fine	No.200 (0.0750 mm)	1.6328	11.44

Silt and Clay

Particle Diameter	Percent Passing
0.074 mm	10.66
0.005 mm	4.55
0.001 mm	0.91

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1408279 **Date Collected:** 07/28/14 - 07/30/14 **Project:** Kensington Gold Mine

Date Received: 08/7/14 **Sample Matrix:** Sediment

PSEP Sulfide **Analysis Method:** Units: mg/Kg **Prep Method:** Method Basis: Dry

Sulfide, Total

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Lower Slate Creek	K1408279-001	ND U	1.3	1	08/12/14 22:23	8/12/14	*
East Fork Slate Creek	K1408279-002	ND U	1.5	1	08/12/14 22:23	8/12/14	*
Upper Slate Creek	K1408279-003	ND U	1.4	1	08/12/14 22:23	8/12/14	*
Lower Johnson Creek	K1408279-004	ND U	1.4	1	08/12/14 22:23	8/12/14	*
Lower Sherman Creek	K1408279-005	ND U	1.3	1	08/12/14 22:23	8/12/14	*
Method Blank	K1408279-MB	ND U	1.0	1	08/12/14 22:23	8/12/14	

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game Service Request: K1408279

ProjectKensington Gold MineDate Collected:NA

Sample Matrix: Sediment Date Received: NA

Date Analyzed: 08/12/14

Replicate Sample Summary General Chemistry Parameters

Sample Name: Batch QC Units: mg/Kg

Lab Code: K1408306-001 **Basis:** Dry

Duplicate Sample K1408306-001DUP

Analyte NameAnalysis MethodMRLResultResultAverageRPDRPD LimitSulfide, TotalPSEP Sulfide2.39.54.57.0272 *20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game Service Request: K1408279

Project: Kensington Gold Mine Date Collected: N/A

Sample Matrix: Sediment Date Received: N/A

Date Analyzed: 08/12/14 **Date Extracted:** 08/12/14

Duplicate Matrix Spike Summary

Sulfide, Total

 Sample Name:
 Batch QC
 Units:
 mg/Kg

 Lab Code:
 K1408306-001
 Basis:
 Dry

Analysis Method: PSEP Sulfide Prep Method: Method

Matrix Spike Duplicate Matrix Spike

K1408306-001MS K1408306-001DMS

% Rec **RPD** Sample Spike **Spike** Analyte Name % Rec Result Result Amount % Rec Result Amount Limits **RPD** Limit Sulfide, Total 9.5 1370 1470 1190 1490 20 28-175 15

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game **Service Request:** K1408279

Project: Kensington Gold Mine **Date Analyzed:** 08/12/14

Sample Matrix: Sediment **Date Extracted:**

08/12/14

Lab Control Sample Summary

Sulfide, Total

Analysis Method: PSEP Sulfide **Units:**

mg/Kg

Prep Method: Method **Basis:**

Dry

Analysis Lot:

406290

Spike

% Rec

Sample Name Lab Control Sample Lab Code K1408279-LCS Result 318

Amount 350

% Rec 90

Limits 39-166

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: Alaska Department of Fish and Game

Project: Kensington Gold Mine **Date Collected:** 07/28/14 - 07/30/14

Sample Matrix: Sediment Date Received: 08/7/14

Analysis Method: PSEP TOC Units: Percent

Prep Method: ALS SOP Basis: Dry, per Method

Carbon, Total Organic (TOC)

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Lower Slate Creek	K1408279-001	0.577	0.050	1	08/11/14 16:00	8/11/14	
East Fork Slate Creek	K1408279-002	1.84	0.050	1	08/11/14 16:00	8/11/14	
Upper Slate Creek	K1408279-003	0.868	0.050	1	08/11/14 16:00	8/11/14	
Lower Johnson Creek	K1408279-004	0.263	0.050	1	08/11/14 16:00	8/11/14	
Lower Sherman Creek	K1408279-005	0.354	0.050	1	08/11/14 16:00	8/11/14	
Method Blank	K1408279-MB	ND U	0.050	1	08/11/14 16:00	8/11/14	

Service Request: K1408279

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game Service Request: K1408279

Project Kensington Gold Mine Date Collected: 07/28/14 **Date Received:** 08/07/14

Sample Matrix: Sediment

Date Analyzed: 08/11/14

Replicate Sample Summary General Chemistry Parameters

Sample Name: Lower Slate Creek

Lab Code:

Analyte Name

Carbon, Total Organic (TOC)

Units: Percent

K1408279-001

Basis: Dry, per Method

Duplicate Sample

K1408279-

Analysis Method

PSEP TOC

MRL

0.050

Sample Result 0.577

001DUP Result 0.577

RPD RPD Limit Average

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game **Project:**

Kensington Gold Mine **Date Collected:**

07/28/14 **Sample Matrix:** Sediment **Date Received:** 08/07/14 Date Analyzed: 08/11/14

Date Extracted: 08/11/14

K1408279

Service Request:

Duplicate Matrix Spike Summary Carbon, Total Organic (TOC)

Lower Slate Creek **Sample Name: Units:** Percent

Lab Code: K1408279-001 **Basis:** Dry, per Method

Analysis Method: PSEP TOC Prep Method: ALS SOP

> **Matrix Spike Duplicate Matrix Spike** K1408279-001MS K1408279-001DMS

RPD Sample **Spike** Spike % Rec **Analyte Name** Result Result **Amount** % Rec Result **Amount** % Rec Limits **RPD** Limit Carbon, Total Organic (TOC) 0.577 3.53 3.06 3.44 2.90

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

ALS SOP

Project: Kensington Gold Mine Sample Matrix: Sediment

Service Request: Date Analyzed:

K1408279 08/11/14

Date Extracted:

08/11/14

Lab Control Sample Summary

Carbon, Total Organic (TOC)

Analysis Method: PSEP TOC **Units:**

Percent

Basis:

Dry, per Method

Analysis Lot:

408058

Spike

% Rec

Sample Name Lab Control Sample

Prep Method:

Lab Code K1408279-LCS Result

Amount 0.275

% Rec

Limits

0.254

93

74-118

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: Alaska Department of Fish and Game

Project: Kensington Gold Mine **Date Collected:** 07/28/14 - 07/30/14

Sample Matrix: Sediment Date Received: 08/7/14

Analysis Method: 160.3 Modified Units: Percent

Prep Method: None Basis: As Received

Solids, Total

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
Lower Slate Creek	K1408279-001	75.3	-	1	08/12/14 14:18	
East Fork Slate Creek	K1408279-002	65.5	-	1	08/12/14 14:18	
Upper Slate Creek	K1408279-003	72.4	-	1	08/12/14 14:18	
Lower Johnson Creek	K1408279-004	73.7	-	1	08/12/14 14:18	
Lower Sherman Creek	K1408279-005	76.7	-	1	08/12/14 14:18	

Service Request: K1408279

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

K1408279-001

Service Request: K1408279

Project Kensington Gold Mine

Date Collected: 07/28/14 **Date Received:** 08/07/14

Sample Matrix: Sediment

Date Analyzed: 08/12/14

Replicate Sample Summary

Total Solids

Sample Name: Lower Slate Creek

Lab Code:

Solids, Total

Units: Percent

75.3

Basis: As Received

Duplicate

Result

75.4

Sample KQ1409482-01

Sample
Analyte Name Analysis Method MRL Result

160.3 Modified

 Average
 RPD
 RPD Limit

 75.4
 <1</td>
 10

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Client: Alaska Department of Fish and Ga Service Request: K1408279

Project No.: NA Date Collected: 07/28/14

Project Name: Kensington Gold Mine Date Received: 08/07/14

Matrix: SEDIMENT Units: mg/Kg

Basis: DRY

Sample Name: Lower Slate Creek Lab Code: K1408279-001

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Aluminum	200.8	103	500.0	08/15/14	08/19/14	12000		
Arsenic	200.8	0.3	5.0	08/15/14	08/19/14	20.1		
Cadmium	200.8	0.01	5.0	08/15/14	08/19/14	1.21		
Chromium	200.8	0.1	5.0	08/15/14	08/19/14	20.0		
Copper	200.8	0.1	5.0	08/15/14	08/19/14	51.1		
Lead	200.8	0.03	5.0	08/15/14	08/19/14	8.78		
Mercury	7471B	0.02	1.0	08/13/14	08/14/14	0.06		
Nickel	200.8	0.1	5.0	08/15/14	08/19/14	40.8		
Selenium	200.8	0.5	5.0	08/15/14	08/19/14	1.3		
Silver	200.8	0.01	5.0	08/15/14	08/19/14	0.08		
Zinc	200.8	0.3	5.0	08/15/14	08/19/14	189		

% **Solids:** 75.3

Client: Alaska Department of Fish and Ga Service Request: K1408279

Project No.: NA Date Collected: 07/30/14

Project Name: Kensington Gold Mine Date Received: 08/07/14

Matrix: SEDIMENT Units: mg/Kg

Basis: DRY

Sample Name: East Fork Slate Creek Lab Code: K1408279-002

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Aluminum	200.8	102	500.0	08/15/14	08/19/14	13300		
Arsenic	200.8	0.3	5.0	08/15/14	08/19/14	39.1		
Cadmium	200.8	0.01	5.0	08/15/14	08/19/14	12.1		
Chromium	200.8	0.1	5.0	08/15/14	08/19/14	14.6		
Copper	200.8	0.1	5.0	08/15/14	08/19/14	55.7		
Lead	200.8	0.03	5.0	08/15/14	08/19/14	6.94		
Mercury	7471B	0.02	1.0	08/13/14	08/14/14	0.04		
Nickel	200.8	0.1	5.0	08/15/14	08/19/14	85.3		
Selenium	200.8	0.5	5.0	08/15/14	08/19/14	2.4		·
Silver	200.8	0.01	5.0	08/15/14	08/19/14	0.14		
Zinc	200.8	25.4	500.0	08/15/14	08/19/14	812		

% **Solids:** 65.5

Client: Alaska Department of Fish and Ga Service Request: K1408279

Project No.: NA Date Collected: 07/30/14

Project Name: Kensington Gold Mine Date Received: 08/07/14

Matrix: SEDIMENT Units: mg/Kg

Basis: DRY

Sample Name: Upper Slate Creek Lab Code: K1408279-003

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Aluminum	200.8	91.8	500.0	08/15/14	08/19/14	14900		
Arsenic	200.8	0.2	5.0	08/15/14	08/19/14	19.2		
Cadmium	200.8	0.01	5.0	08/15/14	08/19/14	0.69		
Chromium	200.8	0.1	5.0	08/15/14	08/19/14	84.2		
Copper	200.8	0.0	5.0	08/15/14	08/19/14	45.8		
Lead	200.8	0.02	5.0	08/15/14	08/19/14	2.86		
Mercury	7471B	0.02	1.0	08/13/14	08/14/14	0.03		
Nickel	200.8	0.1	5.0	08/15/14	08/19/14	55.7		
Selenium	200.8	0.5	5.0	08/15/14	08/19/14	1.8		·
Silver	200.8	0.01	5.0	08/15/14	08/19/14	0.06		
Zinc	200.8	0.2	5.0	08/15/14	08/19/14	111		·

% Solids: 72.4

Client: Alaska Department of Fish and Ga Service Request: K1408279

Project No.: NA Date Collected: 07/30/14

Project Name: Kensington Gold Mine Date Received: 08/07/14

Matrix: SEDIMENT Units: mg/Kg

Basis: DRY

Sample Name: Lower Johnson Creek Lab Code: K1408279-004

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Aluminum	200.8	97.6	500.0	08/15/14	08/19/14	10300		
Arsenic	200.8	0.2	5.0	08/15/14	08/19/14	16.5		
Cadmium	200.8	0.01	5.0	08/15/14	08/19/14	0.16		
Chromium	200.8	0.1	5.0	08/15/14	08/19/14	22.2		
Copper	200.8	0.0	5.0	08/15/14	08/19/14	68.2		
Lead	200.8	0.02	5.0	08/15/14	08/19/14	10.9		
Mercury	7471B	0.02	1.0	08/13/14	08/14/14	0.02		
Nickel	200.8	0.1	5.0	08/15/14	08/19/14	16.9		
Selenium	200.8	0.5	5.0	08/15/14	08/19/14	0.5	U	
Silver	200.8	0.01	5.0	08/15/14	08/19/14	0.32		
Zinc	200.8	0.2	5.0	08/15/14	08/19/14	83.4		·

% Solids: 73.7

Client: Alaska Department of Fish and Ga Service Request: K1408279

Project No.: NA Date Collected: 07/28/14

Project Name: Kensington Gold Mine Date Received: 08/07/14

Matrix: SEDIMENT Units: mg/Kg

Basis: DRY

Sample Name: Lower Sherman Creek Lab Code: K1408279-005

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Aluminum	200.8	101	500.0	08/15/14	08/19/14	14900		
Arsenic	200.8	0.3	5.0	08/15/14	08/19/14	27.9		
Cadmium	200.8	0.01	5.0	08/15/14	08/19/14	0.36		
Chromium	200.8	0.1	5.0	08/15/14	08/19/14	33.6		
Copper	200.8	0.1	5.0	08/15/14	08/19/14	68.4		
Lead	200.8	0.03	5.0	08/15/14	08/19/14	6.97		
Mercury	7471B	0.02	1.0	08/13/14	08/14/14	0.03		
Nickel	200.8	0.1	5.0	08/15/14	08/19/14	31.1		
Selenium	200.8	0.5	5.0	08/15/14	08/19/14	1.2		
Silver	200.8	0.01	5.0	08/15/14	08/19/14	0.14		
Zinc	200.8	0.3	5.0	08/15/14	08/19/14	119		

% Solids: 76.7

Client: Alaska Department of Fish and Ga Service Request: K1408279

Project No.: NA Date Collected:

Project Name: Kensington Gold Mine Date Received:

Matrix: SEDIMENT Units: mg/Kg

Basis: DRY

Sample Name: Method Blank Lab Code: K1408279-MB

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Aluminum	200.8	2.0	5.0	08/15/14	08/19/14	2.0	U	
Arsenic	200.8	0.5	5.0	08/15/14	08/19/14	0.5	U	
Cadmium	200.8	0.02	5.0	08/15/14	08/19/14	0.02	U	
Chromium	200.8	0.2	5.0	08/15/14	08/19/14	0.2	U	
Copper	200.8	0.1	5.0	08/15/14	08/19/14	0.1	U	
Lead	200.8	0.05	5.0	08/15/14	08/19/14	0.05	U	
Mercury	7471B	0.02	1.0	08/13/14	08/14/14	0.02	U	
Nickel	200.8	0.2	5.0	08/15/14	08/19/14	0.2	U	
Selenium	200.8	1.0	5.0	08/15/14	08/19/14	1.0	U	
Silver	200.8	0.02	5.0	08/15/14	08/19/14	0.02	U	
Zinc	200.8	0.5	5.0	08/15/14	08/19/14	0.5	U	

% Solids: 100.0

Metals

- 5A -

SPIKE SAMPLE RECOVERY

Client: Alaska Department of Fish and Ga Service Request: K1408279

Project No.: NA Units: MG/KG

Project Name: Kensington Gold Mine Basis: DRY

Matrix: SEDIMENT % Solids: 38.8

Sample Name: Batch QC1S Lab Code: K1408247-001S

Analyte	Control Limit %R	Spike Result C	Sample Result C	Spike Added	%R	Q	Method
Mercury	80 - 120	0.83	0.07	0.88	86.4		7471B

Metals

- 5A -

SPIKE SAMPLE RECOVERY

Client: Alaska Department of Fish and Ga Service Request: K1408279

Project No.: NA Units: MG/KG

Project Name: Kensington Gold Mine Basis: DRY

Matrix: SLUDGE % Solids: 17.8

Sample Name: Batch QC2S Lab Code: K1408377-001S

Analyte	Control Limit %R	Spike Result	C	Sample Result	С	Spike Added	%R	Q	Method
Aluminum		6131.6	ĺ	5288.3		754.1	111.8		200.8
Arsenic	70 - 130	202.1	Ī	6.7		188.5	103.7		200.8
Cadmium	70 - 130	21.60	Ī	1.86		18.9	104.4		200.8
Chromium	70 - 130	99.7	ĺ	20.2		75.4	105.4		200.8
Copper		1094.5		987.6		94.3	113.4		200.8
Lead	70 - 130	225.17	ĺ	27.70		188.5	104.8		200.8
Nickel	70 - 130	225.2	ĺ	20.3		188.5	108.7		200.8
Selenium	70 - 130	205.0	Ī	5.2		188.5	106.0		200.8
Silver	70 - 130	22.05	ĺ	2.50		18.9	103.4		200.8
Zinc		1074.8	Ī	884.1		188.5	101.2		200.8

dba ALS Environmental

Metals

- 6 -DUPLICATES

Client: Alaska Department of Fish and Ga Service Request: K1408279

Project No.: NA Units: MG/KG

Project Name: Kensington Gold Mine Basis: DRY

Matrix: SEDIMENT % Solids: 38.8

Sample Name: Batch QC1D Lab Code: K1408247-001D

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Mercury		0.07		0.07		0.0		7471B

dba ALS Environmental

Metals

- 6 -DUPLICATES

Client: Alaska Department of Fish and Ga Service Request: K1408279

Project No.: NA Units: MG/KG

Project Name: Kensington Gold Mine Basis: DRY

Matrix: SLUDGE % Solids: 17.8

Sample Name: Batch QC2D Lab Code: K1408377-001D

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Aluminum	30	5288.3		5171.4		2.2		200.8
Arsenic	30	6.7		6.9		2.9		200.8
Cadmium	30	1.86		1.90		2.1		200.8
Chromium	30	20.2		20.5		1.5		200.8
Copper	30	987.6		985.9		0.2		200.8
Lead	30	27.70		27.95		0.9		200.8
Nickel	30	20.3		20.9		2.9		200.8
Selenium		5.2		5.3		1.9		200.8
Silver	30	2.50		2.51		0.4		200.8
Zinc	30	884.1		878.1		0.7		200.8

Metals

- 7 -

LABORATORY CONTROL SAMPLE

Client: Alaska Department of Fish and Ga Service Request: K1408279

Project No.: NA

Project Name: Kensington Gold Mine

Aqueous LCS Source:

Solid LCS Source: ERA D080-540

	Aqueo	us (ug/L)			Solid	(mg/kg)	
Analyte	True	Found	%R	True	Found C	Limits	%R
Aluminum				8840	6890.0	42	158 77.9
Arsenic				100	108.0	69	131 108.4
Cadmium				182	196.0	74	126 107.7
Chromium				136	143.0	70	130 105.1
Copper				102	106.0	74	126 103.9
Lead				115	127.0	72	129 110.4
Mercury				19.9	18.7	51	148 94.0
Nickel				153	160.0	73	126 104.6
Selenium				150	167.0	67	133 111.3
Silver				40	46.0	66	134 113.9
Zinc	l '			161	169.0	81	119 105.0

BIOASSAY REPORT CHRONIC DEFINITIVE SEDIMENT BIOASSAYS CONDUCTED August 19 through 29, 2014

Prepared for

ALASKA DEPARTMENT OF FISH AND GAME JUNEAU, ALASKA

Prepared by

1100 NE Circle Boulevard, Suite 300 Corvallis, Oregon 97330 541-768-3160

State of Washington Department of Ecology (WDOE), Lab ID C1233 NELAC #OR100022

> Report Date: September 18, 2014 Lab I.D. No. B3151

CONTENTS

Section Page 1	ge
INTRODUCTION	1
SUMMARY OF TEST RESULTS	
ACRONYM DEFINITIONS	1
METHODS AND MATERIALS	2
TEST METHODS	
DEVIATIONS FROM PROTOCOL	2
TEST ORGANISMS	
CONTROL SEDIMENT AND OVERLYING WATER	2
TEST CONCENTRATIONS	
SAMPLE COLLECTION	_
SAMPLE PREPARATION	3
TEST INITIATION	
TEST SOLUTION RENEWAL	4
TEST TERMINATION	
MONITORING OF BIOASSAYS	4
DATA ANALYSIS	4
RESULTS AND DISCUSSION	5
CHRONIC RESULTS	
REFERENCE TOXICANT TESTS	
APPENDIX A. RAW DATA SHEETS	
APPENDIX B. REFERENCE TOXICANT DATA SHEETS	
APPENDIX C. CHAIN OF CUSTODY	

INTRODUCTION

CH2M HILL conducted 10 day chronic definitive sediment bioassays from August 19 through 29, 2014, on samples provided by the Alaska Department of Fish and Game, Juneau, Alaska on behalf of the Kensington Gold Mine. The tests were conducted using the freshwater amphipod (*Hyallela azteca*) and the freshwater chironomid (*Chironomus tentans*).

SUMMARY OF TEST RESULTS

Exhibit 1 provides a summary of the final test results.

EXHIBIT 1
Summary of Chronic Test Results

Sample ID	Species	NOEC (%)	LOEC (%)	
Lower Sherman Creek	H. azteca	100%	> 100%	
Lower Sherman Creek	C. tentans	100%	> 100%	
East Fork Slate Creek	H. azteca	100%	> 100%	
East Fork Slate Creek	C. tentans	100%	> 100%	
Lower Johnson Creek	H. azteca	< 100%	100%	
Lower Johnson Creek	C. tentans	100%	> 100%	
Lower Slate Creek	H. azteca	100%	> 100%	
Lower Slate Creek	C. tentans	100%	> 100%	
Upper Slate Creek	H. azteca	100%	> 100%	***************************************
Upper Slate Creek	C. tentans	100%	> 100%	

Note: acronyms are as defined below Exhibit 2.

More detailed information is provided in the Chronic Results and Data Interpretation sections.

ACRONYM DEFINITIONS (from EPA guidance):

NOEC = No Observed Effect Concentration: The highest test concentration that causes no observable adverse effects on the test organisms (i.e. no statistically significant reduction from the control).

LOEC = Low Observed Effect Concentration: The lowest test concentration that does cause an observable adverse effect on the test organisms (i.e. is statistically significant reduction from the control).

METHODS AND MATERIALS

TEST METHODS

The tests were performed according to: Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates, Second Edition, EPA 600/R-99/064 (EPA 2000).

DEVIATIONS FROM PROTOCOLS

Deviations from <u>required</u> procedures in the test methods:

• The *H. azteca* test requires "measureable growth" in the control organisms in order to meet Test Acceptability Criteria (TAC). Due to insufficient numbers of test organisms available, no weight calculations at test initiation were available. However, the organisms were noted, from visual observations, to have grown significantly during the test duration.

Deviations from <u>recommended</u> procedures in the test methods:

None noted.

TEST ORGANISMS

The amphipods were obtained from Chesapeake Cultures, Nayes, Virginia, were 8 days old, and acclimated for 6 days prior to test initiation. The chironomids for the test initiated were obtained from Aquatic Biosystems, Fort Collins, Colorado, were 2nd to 3rd instar aged, and acclimated for less than 1 day prior to test initiation. All organisms tested were fed and maintained during culturing, acclimation, and testing as prescribed by the EPA (2000). The test organisms appeared vigorous and in good condition prior to testing.

CONTROL SEDIMENT AND OVERLYING WATER

The dilution sediment used was field collected sediment from Beaver Creek, upstream of Yaquina bay, near the town of Newport, Oregon. The Beaver Creek sediment was press sieved to remove indigenous organisms. The dilution sediment was collected on August 16, 2014.

The overlying water used was reconstituted, moderately hard water with a total hardness of 80 to 100 mg/L as CaCO₃ and an alkalinity of 60 to 70 mg/L as CaCO₃.

TEST CONCENTRATIONS

The concentrations tested were 100 percent sediment with dilution sediment alone for the control. For the amphipod test, 10 organisms per chamber, with eight chambers per concentration for a total of 80 organisms per concentration were used. For the chironomid tests, 10 organisms per chamber, with four chambers per concentration for a total of 40 organisms per concentration were used.

SAMPLE COLLECTION

Five samples, labeled "Lower Sherman Creek", "East Fork Slate Creek", "Lower Johnson Creek", "Lower Slate Creek", and "Upper Slate Creek" were collected by Alaska Department of Fish and Game personnel on June 30, 2014, and transported to CH2M HILL's Corvallis Aquatic Toxicology Laboratory.

Please note there was significant breakage of the sample containers during shipment. Sufficient amounts of the "Lower Sherman Creek" and "East Fork Slate Creek" samples were available to perform the testing.

The "Lower Johnson Creek", "Lower Slate Creek", and "Upper Slate Creek" samples were recollected on July 28 or July 30, 2014. These arrived in good condition.

All samples were stored in the dark at 0 to 6°C until test solutions were prepared and tested. Chain of Custody for sample collection is provided in Appendix C.

All testing was performed within the EPA recommended 8 week holding time.

SAMPLE PREPARATION

One day prior to test initiation (Day -1), test chambers were prepared by placing 100 g of homogenized sediment into a 300 ml tall-form glass beaker and adding 175 ml of overlying water. Test chambers were then positioned within a waterbath following a random position template and allowed to settle overnight at test conditions (23 °C). All test chambers were prepared on August 18.

TEST INITIATION

On the Day 0, the overlying water in each test chamber was renewed by siphoning off approximately 150 ml of water and replacing it with fresh overlying water. Ten test organisms were then randomly selected and placed into each test chamber.

TEST SOLUTION RENEWAL

Once the test was initiated (i.e., when organisms were added), the overlying water was renewed twice daily at approximately 12 hours apart. The amphipod tests were fed 1.0 ml of YCT and the chironomid tests were fed 1.5 ml of a 4 g/L TetraMin® slurry following the evening renewal.

TEST TERMINATION

Test termination occurred after 10 days of exposure. Test vessels were removed from the water bath and the overlying water and sediment was searched to retrieve test organisms. The search may have involved pouring the contents of the test chambers into a large glass (Pyrex 8) pan which was then placed on a light box and the test organisms collected. The use of a #40 sieve (425 μ m mesh) may also have been used with the contents of the sieve transferred to a glass pan for inspection.

The number of live organisms and dead organisms retrieved was recorded. Any organisms not retrieved from the test chamber were considered to have died during the testing period.

The live organisms were then transferred to reweighed aluminum tins for determination of the dry weight (*H. azteca*) or ash-free dry weight (*C. tentans*).

MONITORING OF BIOASSAYS

The overlying water in the sediment tests were monitored at initiation and termination for dissolved oxygen, pH, conductivity, total hardness, total alkalinity, ammonia, and temperature. During the tests, dissolved oxygen and temperature was monitored every 24 hours within the test chambers. In addition, temperature was monitored in the water bath continuously throughout the testing period. Survival was determined at test termination.

DATA ANALYSIS

The effects measured during the amphipod chronic test included survival over the 10-day exposure period. The effects measured during the chironomid Chronic test included survival over the 10-day exposure period. The statistical analyses performed were those outlined in *Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates – Second Edition* (2000); EPA/600/R-99/064, using CETIS version 1.8.1.2. Homescadastic (equal variance) T-test was used to compare the survival data between the control and each sample treatment. When the assumptions of normality or homogeneity of variance necessary for homoscedastic T-test could not be met, heteroscedastic T-test or Wilcoxon Two-Sample Test was used to analyze the data. All statistics were analyzed at the p (alpha) = 0.05 level.

RESULTS AND DISCUSSION

The raw data sheets for all tests are presented in Appendix A.

CHRONIC BIOASSAYS

Table 1 summarizes the survival data for the amphipod test.

Table 1 Amphipod (<i>H. azteca</i>) Bioassay Data								
Sample Concentration (%) 10 day Survival 10 day Dry Weight (mg)								
Control	93.8	0.110						
Lower Sherman Creek	96.3	0.101						
East Fork Slate Creek	95.0	0.101						
Lower Johnson Creek	96.3	0.091 ^a						
Lower Slate Creek	92.5	0.114						
Upper Slate Creek	97.5	0.100						
^a Indicates a statistically significant reduction from control at p equal to 0.05 using Equal Variance t Two-Sample test.								

The amphipod tests resulted in no statistically significant reduction in survival or growth for the "Lower Sherman Creek", "East Fork Slate Creek", "Lower Slate Creek", and "Upper Slate Creek" samples when compared to the control.

However, the test on the "Lower Johnson Creek" sample showed no statistically significant reduction in survival but a statistically significant reduction in growth when compared to the control.

Daily mean test temperatures remained at 23±1°C, and instantaneous temperatures remained at 23±3°C, for the tests. The dissolved oxygen levels in the tests remained above the EPA recommended minimum 2.5 mg/L throughout the test period.

The *H. azteca* test meets Test Acceptability Criteria (TAC) of a minimum 80 percent control survival and measureable growth. Unless referenced above, the tests proceeded without any noted deviations or interruptions that could have affected test results. The testing should be considered "valid".

Table 2 summarizes the survival data for the chironomid test initiated on August 14, 2014.

Table 1 Chironomid (<i>C. tentans</i>) Bioassay Data								
Sample Concentration (%)	10 day % Survival	10 day Ash- Free Dry Weight (mg)						
Control	72.5	0.639						
Lower Sherman Creek	88.8	0.682						
East Fork Slate Creek	87.5	0.740						
Lower Johnson Creek	87.5	0.682						
Lower Slate Creek	90.0	0.850						
Upper Slate Creek	92.5	0.784						

The chironomid tests resulted in no statistically significant reduction in survival or growth for the "Lower Sherman Creek", "East Fork Slate Creek", "Lower Johnson Creek", "Lower Slate Creek", and "Upper Slate Creek" samples when compared to the control.

Daily mean test temperatures remained at 23±1°C, and instantaneous temperatures remained at 23±3°C, for the tests. The dissolved oxygen levels in the tests remained above the EPA recommended minimum 2.5 mg/L throughout the test period.

The *C. tentans* test meets Test Acceptability Criteria (TAC) of a minimum 70 percent control survival and minimum Ash-free dry weight (AFDW) of 0.48 mg. Unless referenced above, the tests proceeded without any noted deviations or interruptions that could have affected test results. The testing should be considered "valid".

REFERENCE TOXICANT TESTS

Reference toxicant (reftox) testing is performed to document both initial and ongoing laboratory performance of the test method(s). While the health of the test organisms is primarily evaluated by the performance of the laboratory control, reftox test results also may be used to assess the health and sensitivity of the test organisms. Reftox test results within their respective cumulative summary (Cusum) chart limits are indicative of consistent laboratory performance and normal test organism sensitivity.

The results of the reftox tests indicate that the test organisms were within their respective cusum chart limits based on EPA guidelines. This demonstrates ongoing laboratory proficiency of the test methods and suggests normal test organism sensitivity in the associated client testing.

The data sheets for the reference toxicant tests conducted with potassium chloride are provided in Appendix B.

The LC₅₀ values and Control Chart Limits are listed in Table 4 below.

Refer	Table 4 ence Toxicant Tests	
Species	LC ₅₀	Control Chart
Hyalella azteca	0.369 (g/L)	0.310 to 0.451
Chironomus tentans	4.11 (g/L)	1.43 to 7.22

$\begin{array}{c} \textbf{APPENDIX A} \\ \\ \textbf{RAW DATA SHEETS} \end{array}$

Ĕ
A
7
\mathcal{L}
7
Z
2
<u>ر</u>
Ξ
7
7
$\overline{}$
3
V
V
S
\geq
4
×
T ORGANISM AND WATER OUALITY DAT.
- 5 7
TES
7
7
=
ŏ
TOXICIT
E
_
\equiv
I
4
7
U
_

Test Termination: Date 8-29-14	/	/		#OI #OI															second alse	(Indicates action not taken):	noticuting larger than	sour, Bom)			ADALAM DESIGNATION AND A STATE OF THE STATE	D#	
Test Termi		The second secon	1 1701	*1															Or Seals ins		THY IS MORE AL	> 10. How					Water Quality Meters Used/ID#	
3/19/2014			# u .	AMP 80	Chronic	7 to 14 days	(1 day range)	300 ml	100 ml sample,	water	1 ml YCT	daily	1	Swel	1	Seebelon	days	L #	MA - instact	sates the following	Drywis & Dr	DAYD to say					Water Qu	
Initiation: Date	_	T THE THE PARTY OF	Toot	Species	Information	Organism Age at	Initiation	Test Container Size	Test Volume		Feeding: Type	Amount		Aeration: Began	Amount	Dilution Water ID#	Acclimation Period	Test Location	Initial Size (mg/org)	Comments: Indicates the following action was taken,	* Tast ons.	The organisms)					
13	•			Alkalinity	mg/l as	CaCO	nmonia		1	l l	ı			7		I	7	(,	I	Initial	Hd		1	.√. √.	8:3	8.7	% (S)	
Technician	AMP 82			Hardness	mg/l as	CaCO	See Titration and Ammonia	sheet	ı	1	ı									Alkalinity	mg/l as	CaCO ₃	ı	29	07	42	49	1
					NH3-N	mg/l	See Titra		I	1	I									Hardness	mg/l as	CaCO3	ı	88	96	88	80	
ıgton		7	motion	Total Residual Ammonia	Chlorine (mg/l)	As As Received / Dechlor.	- / -	I /	- / -	- / -	- / -	\	/	/	/	/	/	/	/		ID#		2015	Soon	1014	A103	4106	
Kensington	Hyallela azteca		Sample Information	num aidi	Collected	Time	300	عده	0000	ahi	(DC)																	
	Hyallel		San	Can	Coll	Date	ek 5/2	ب <i>ااعاد</i> لم	r <i>1021L</i> Xc	WZZ IVU	4130/14																	
	· · · · · · · · · · · · · · · · · · ·				Field	Œ	Lower Sherman Creek	East Fork Slate Creek 712/14	Lower Jonhson Creek 7 (2014)	Lower Slate Creek	Upper Slate Creek						3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7				Dilution Water		nent	HM)				
Client	Test Species/ID				Sample ID	Number	B3151-01	B3151-02	B3151-03	B3151-04	B3151-05												Dilution Sediment	Recon MH (FHM)				

Hyallela RANDOMIZATION SHEET									
Client:	Kensington		Test Start Date:	8/19/14					
Laboratory ID:	Field ID:	Alternate ID / Dilutions:	Replicate ID:	Random Number	Test Chamber Number:				
B3151-03	Lower Jonhson Creek		Α	0.78882	54				
B3151-05	Upper Slate Creek		Α	0.78207	56				
Sediment Control	Beaver Creek	Control	Α	0.71242	60				
B3151-04	Lower Slate Creek		Α	0.46164	72				
B3151-01	Lower Sherman Creek		A	0.38832	75				
B3151-02	East Fork Slate Creek		A	0.19079	87				
B3151-04	Lower Slate Creek		В	0.44720	73				
B3151-01	Lower Sherman Creek		В	0.38827	76				
Sediment Control	Beaver Creek	Control	В	0.34993	78				
B3151-02	East Fork Slate Creek		В	0.32825	80				
B3151-05	Upper Slate Creek		В	0.29932	81				
B3151-03	Lower Jonhson Creek		В	0.13371	93				
B3151-03	Lower Jonhson Creek		С	0.66810	61				
B3151-01	Lower Sherman Creek		С	0.61218	64				
Sediment Control	Beaver Creek	Control	С	0.48528	69				
B3151-04	Lower Slate Creek		С	0.47414	71				
B3151-02	East Fork Slate Creek		С	0.15998	90				
B3151-05	Upper Slate Creek		С	0.04623	95				
B3151-04	Lower Slate Creek		D	0.90335	50				
Sediment Control	Beaver Creek	Control	D	0.78242	55				
B3151-05	Upper Slate Creek		D	0.77642	57				
B3151-02	East Fork Slate Creek		D	0.65780	63				
B3151-01	Lower Sherman Creek		D	0.47545	70				
B3151-03	Lower Jonhson Creek		D	0.25165	83				
Sediment Control	Beaver Creek	Control	E	0.76409	58				
B3151-01	Lower Sherman Creek		E	0.59312	65				
B3151-02	East Fork Slate Creek		E	0.52040	68				
B3151-04	Lower Slate Creek	7	E	0.24559	84				
B3151-05	Upper Slate Creek		E	0.22618	85				
B3151-03	Lower Jonhson Creek		E	0.13564	91				
B3151-01	Lower Sherman Creek		F	0.89476	52				
B3151-02	East Fork Slate Creek		F	0.66196	62				
B3151-03	Lower Jonhson Creek		F	0.56023	66				
B3151-05	Upper Slate Creek		F	0.54094	67				
Sediment Control	Beaver Creek	Control	F	0.34933	79				
B3151-04	Lower Slate Creek		F	0.18770	88				
B3151-01	Lower Sherman Creek		G	0.89718	51				
B3151-05	Upper Slate Creek		G	0.43141	74				
B3151-04	Lower Slate Creek		G	0.28392	82				
B3151-03	Lower Jonhson Creek		G	0.20763	86				
B3151-02	East Fork Slate Creek	,	G	0.16905	89				
Sediment Control	Beaver Creek	Control	G	0.11634	94				
B3151-03	Lower Jonhson Creek		Н	0.90406	49				
B3151-04	Lower Slate Creek		Н	0.85427	53				
B3151-02	East Fork Slate Creek		Н	0.72156	59				
B3151-05	Upper Slate Creek		H	0.36310	77				
Sediment Control	Beaver Creek	Control	Н	0.13414	92				
B3151-01	Lower Sherman Creek		H	0.01545	96				
			Z						
	<u> </u>								
					""				
			Z Z						

TITRATION AND AMMONIA DATA

Client	Kensington	Species ID#	AMP 80	
Sample Description:	See Randomization Sheet.	Start Date	8/19/14	

Laboratory ID	(mg/L as	dness s CaCO ₃)	Alka (mg/L as	Ammonia (mg/L as NH ₃ -N)			
	Initial	Final	Initial	Final	Initial	Final	
Sediment Control	77.2	107.7	53.7	73.39	0.164 40+ P	0.47	
B3151-01	91.6	116.7	64.3	73.1	20.1	0.12	
B3151-02	101.6	109.0	64.9	72.3	201	< 0.1	
B3151-03	89.4	110.3	59.9	71.3	< O-1	0,20	
B3151-04	93.8	112.8	64.5	73.6	20.1	0.12	
B3151-05	84.1	120.1	68.8	74.9	20.1	0.26	
						<u></u>	

Hyallela GROWTH DATA

Client			Kensington	Sp	ecies ID#	AMP >
Lab ID: _	see randomizat	ion sheet bat	ch number: B	Sta	art Date	
Sample De	scription:	Weights of Amphi	ρods at test initiat	ion (= number of r	eplicates as	s the test, 10 Hyallela each)
Bal	Technician: Date: ance Serial #:	50309851	503	309851		

Tin ID Number	Total Weight (mg) (after 60°C for 24 hr)	Tare Weight (mg) (after 60°C for 24 hr)	No. of Amphipods Surviving	No. of Amphipods in Tin
@ Initiation A			na	10
@ Initiation B			na	10
@ Initiation C			na	10
@ Initiation D			na	10
@ Initiation E		Maline	na	10
@ Initiation F			na	10
@ Initiation G	-		na	10
@ Initiation H			na	10

weigh to 0.01 mg

is insufficient health arganisms available & intention of weight determination. In 2/19/14

НШ	! 	FF	RESHWATER	TOXICITY TEST						
Client Kensington Sample Description See Randomization Sheet(s). Batch number: B 3151						Beginning, Date <u>8-19-14</u> Time 1245 Ending, Date <u>8/29/14</u> Time <u>0800</u>				
on:					Test Ten	nination:	Tech:	Tech:	DW/MS/	MC Time: <u>0800 –</u>
Start Count	# alive found	# dead found	Comments:		Beaker	Start Count	# alive found	# dead found	Comments	
		_						Ö	Comments.	
	9	0								
10	10	0			66	10	9			
10	01	0			67	10	10			<u></u>
10	\emptyset	0			68	10	9	Ö		
10	Oj	0			69	10	9	0		
10	10	0			70	10	10	0		
10	10	0			71	10	9	0		
10	10	0			72	10	9	0		
10	9	0			73	10	10	10	MSRO6	8-29-14
10	10	0			74	10	9	9	ms Rob	
10	9	0			75	10	4	G	MS Rob	
10	10	\bigcirc			76	10	9	1		
10		0			77	10	9	90	MS Role	
10	10	0			78	10	10	160	M5 206	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
							· · · · · · · · · · · · · · · · · · ·			
	Start count 0 10 10 10 10 10 10 10 10 10 10 10 10 1	Start	See Randomizat Hyallela azteca		Kensington See Randomization Sheet(s). Batch number: B 3 15 1 Hyallela azteca ID#: AMP 80	Kensington See Randomization Sheet(s). Batch number: B 3 5	Rensington Beginnin Ending, I	Rensington See Randomization Sheet(s). Batch number: B 3.15. Ending, Date Ending, Date	Real Property Real Propert	Rensington Beginning, Date R-19-14 Time Time Rending, Date R-19-14 Time R-19-14 Time R-19-14 Time R-19-14 Rending, Date R-19-

CHM HILL FRESHWATER TOXICITY TEST SURVIVAL AND WATER QUALITY DATA											
Client Kensington Sample Description See Randomization Sheet(s). Batch number: B 3\5\ Test Species: Hyallela azteca ID#: AMP SO						Beginning, Date <u>8-19-14</u> Time <u>1245</u> Ending, Date <u>8-89-14</u> Time <u>0800</u>					
Test Initi		Tech:			Time: 1245	Test Ten	mination:	Tech:	Tech:	Ms/vc	Time: 💇 🛇
Beaker Number	Start Count	# alive found	# dead found 10	Comments:		Beaker Number	Start Count	# alive found 10	# dead found 10	Comments:	
79	10	10	120-	M5A06		94	10	9	0		
80	10	10	100			95	10	01	0		
81	10	10	100	<u> </u>		96	10	10	0		
82	10	10	18			97	10				
83	10	9	0			98	10				
84	10	9	0			99	10				
85	10	10	0			100	10				
86	10	10	O			101	10				
87	10	9	0			102	10				
88	10	10	٥			103	10				
89	10	10	0			104	10				
90	10	9	0	<u></u>		105	10				
91	10	10	0			106	10				
92	10	9	0			107	10				
93	10	9	0		· · · · · · · · · · · · · · · · · · ·	108	10				
·											

X8/25/14 Beabart 92 had a mosquite the fly in it, after

15 31 25/14 bester # 79 had a technolor " worn " of 12

Hyallela GROWTH DATA

Client _		Kens	sington	Tins Labeled As:	KENS. HYAL.
Lab ID:	see randomization s	heet batch nu	mber: B3151	Start Date	8/19/2014
Sample D	escription:		***************************************		
	Technician:	KJ	KJ		
	Date:	9/2/2014	8/15/2014		
В	alance Serial #:	B328543647	B328543647		

Tin ID Number	Total Weight (mg) (after 60°C for 24 hr)	Tare Weight (mg) (after 60°C for 24 hr)	No. of Amphipods Surviving	No. of Amphipods in Tin
49	69.56	68.42		10
50	69.13	68.05		9
51	69.39	68.37	- meanleite man a constant of the constant of	10
52	69.06	68.04		10
53	68.81	68.09		8
54	68.59	67.63		10
55	68.87	67.93		10
56	68.90	68.06		10
57	68.17	67.24		10
58	68.73	67.74		9
59	69.24	68.21		10
60	68.96	67.97		9
61	69.02	68.01		10
62	69.42	68.43		9
63	69.20	68.19		10
64	69.35	68.39	ulina assuma astrona amana an c	10
65	68.84	67.89		10
66	68.96	68.19		9
67	69.39	68.43		10
68	69.32	68.50		9
69	68.99	68.14		9
70	68.95	67.85	***************************************	10
71	68.87	67.75		9
72	68.78	67.69		9
73	70.05	68.77		10
74	69.58	68.43		9
75	68.56	67.86		8
76	69.37	68.42		9
77	68.98	68.00		9
78	69.02	67.92		10

weigh to 0.01 mg

Client		Kens	ington	Tins Labeled As:	KENS. HYAL		
Lab ID:	see randomization	ı sheet batch nur	Start Date	8/19/2014			
Sample I	Description:						
	Technician:	KJ	KJ				
	Date:	9/2/2014	8/15/2014				
В	alance Serial #:	B328543647	B328543647				

Tin ID Number	Total Weight (mg) (after 60°C for 24 hr)	Tare Weight (mg) (after 60°C for 24 hr)	No. of Amphipods Surviving	No. of Amphipods in Tin
79	69.04	67.76		10
80	68.80	67.62		10
81	69.38	68.61		10
82	69.64	68.56	white the state of	10
83	69.17	68.48		9
84	68.84	67.71		9
85	68.90	67.80		10
86	68.49	67.69		10
87	68.69	67.80		9
88	69.56	68.58		10
89	69.40	68,51		10
90	69.49	68.65		9
91	68.34	67.49		10
92	69.32	68.18		9
93	68.89	68.07		9
94	68.93	67.97		9
95	69.57	68.55		10
96	68.75	67.65		10
			, , , , , , , , , , , , , , , , , , ,	

Client _		Kensii	Tins Labeled As:	KENS. HYAL		
Lab ID:	see randomization shee	t batch num	ber: B3151	Start Date	8/10/14	
Sample I	Description:					
	Technician:		KJ			
	Date:		8/15/2014			
F	Ralance Serial #· R3	28543647	B328543647			

Tin ID Number	Total Weight (mg) (after 60°C for 24 hr)	Tare Weight (mg) (after 60°C for 24 hr)	No. of Amphipods Surviving	No. of Amphipods in Tin
79		67.76	175	1 7
80		67.62	<u>lo</u>	10
81		68.61	10	
82		68.56	10	10
83		68.48	9	10
84		67.71	9	9
85		67.80	, , , , , , , , , , , , , , , , , , , ,	7
86		67.69	10	10
87		67.80	<u> </u>	
88		68.58	1 0	9
89			10	10
90		68.51	10	10
		68.65	9	9
91		67.49	10	10
92		68.18	9	9
93		68.07	9	9
94		67.97	9	9
95		68.55	10	10
96		67.65	[0	10

Client	Kens	Tins Labeled As:	KENS. HYAL.		
Lab ID: see randomization	n sheet batch nu	mber: B3151	Start Date	3/19/14	
Sample Description:		· , , , , , , , , , , , , , , , , , , ,			
Technician:		KJ			
Date:		8/15/2014			
Balance Serial #	B328543647	B328543647			

Tin ID Number	Total Weight (mg) (after 60°C for 24 hr)	C (after 60°C Survivin		No. of Amphipods in Tin
49		68.42	10	10
50		68.05	9	9
51		68.37	10	10
52		68.04	10	10
53		68.09	8	8
54		67.63	10	[0
55		67.93	10	10
56		68.06	10	10
57		67.24	10	10
58		67.74	9	9
59		68.21	10	10
60		67.97	9	q
61		68.01	10	10
62		68.43	9	9
63		68.19	10	10
64		68.39	1/)	10
65		67.89	10	10
66		68.19	9	9
67		68.43	10	10
68		68.50	9	a
69		68.14	9	a
70		67.85	10	10
71		67.75	9	9
72		67.69	9	9
73		68.77	10	[B
74		68.43	9	9
75		67.86	<u>පි</u>	8
76		68.42	10	q
77		68.00	9	g
78		67.92	. 10	10

CETIS Summary Report

Report Date:

03 Sep-14 14:30 (p 1 of 1)

Test Code: B315101hac | 14-0504-6252

										· · · · · · · · · · · · · · · · · · ·	
Hyallela 10-d	Survival and Gr	owth Sedir	nent Te	st						CH2M	HILL - AS
Batch ID: Start Date: Ending Date: Duration:	02-7863-2507 19 Aug-14 12:4 29 Aug-14 08:0 9d 19h	5 Pro 0 Spe	t Type: tocol: cies: irce:	Survival-Growth EPA/600/R-99/ Hyalella azteca Chesapeak Cul	064 (2000)	s, Virginia		ne:	I-Hard Syntl	netic Water	
Sample ID:	14-5240-4181	Coc		B3151-01	\supset		Clie				
	30 Jun-14 07:0		erial:	Sediment			Pro	ject:			
Receive Date:			Irce:	Kensington Gol	d Mine (AK	0050571)					
Sample Age:	50d_6h	Sta	tion:								
Sample Note:	Lower Sherman	n Creek									
Comparison S	Summary										
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Method			
20-7230-1351	Mean Dry Weig	jht-mg	100	>100	N/A	8.4%	1	Equal Var	iance t Two	-Sample Te	st
14-4145-9417	Survival Rate		100	>100	N/A	5.83%	1	Wilcoxon	Rank Sum `	Two-Sample	e Test
Test Acceptab	oility										
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Lim	its	Overlap	Decision		
14-4145-9417	Survival Rate		Contro	l Resp	0.9375	0.8 - NL		Yes	Passes A	cceptability	Criteria
Mean Dry Wei	ght-mg Summa	ry									7000 4 0
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec
0	Dilution Water	8	0.11	0.1053	0.1147	0.094	0.128	0.004454	0.0126	11.46%	0.0%
100		8	0.101	0.09809	0.1039	0.0875	0.11	0.002765	0.00782	7.74%	8.15%
Survival Rate	Summary										
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec
0	Dilution Water	8	0.9375	0.9182	0.9568	0.9	1	0.0183	0.05175	5.52%	0.0%
100		8	0.9625	0.9347	0.9903	8.0	1	0.02631	0.0744	7.73%	-2.67%
Mean Dry Wei	ght-mg Detail										
					54	D 5	Rep 6	Rep 7	Rep 8		
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	iveh o	itop i	1100		
· · · · · · · · · · · · · · · · · · ·	Control Type Dilution Water	Rep 1 0.11	Rep 2 0.11	Rep 3 0.09444	0.094	0.11	0.128	0.1067	0.1267		
0				0.09444	<u> </u>			<u>·</u>			
0 100	Dilution Water	0.11	0.11	0.09444	0.094	0.11	0.128	0.1067	0.1267		
0 100 Survival Rate	Dilution Water	0.11	0.11	0.09444	0.094	0.11	0.128	0.1067	0.1267		
0 100 Survival Rate Conc-%	Dilution Water Detail	0.11 0.0875	0.11 0.1056	0.09444 0.096	0.094 0.11	0.11 0.095	0.128 0.102	0.1067 0.102	0.1267 0.11		

Report Date:	03 Sep-14 14:30 (p 3 of 4)
Test Code:	B315101hac 14-0504-6252

Hyalleia 10-d	Survival and G	rowth Se	diment Te	st						CH2M	HILL - ASL
Analysis ID: Analyzed:	14-4145-9417 02 Sep-14 16:		indpoint:	Survival Rate Nonparametric	Two Sampl	Δ.		IS Version:		.8.1	
Allalyzeu.	02 Sep-14 10.	01 A	anaiysis.	Nonparametric	-i wo Sampi		Onic	ial Results	: res		
Batch ID:	02-7863-2507	T	est Type:	Survival-Growth	ו		Anal	lyst:			
Start Date:	19 Aug-14 12:	45 F	rotocol:	EPA/600/R-99/	064 (2000)		Dilu	ent: Mod	l-Hard Syntl	netic Wate	•
Ending Date:	: 29 Aug-14 08:	00 S	pecies:	Hyalella azteca			Brin	e:			
Duration:	9d 19h	S	ource:	Chesapeak Cul	tures, Naye	s, Virginia	Age				
Sample ID:	14-5240-4181	C	ode:	B3151-01			Clie	nt:			
•	: 30 Jun-14 07:0	00 N	/laterial:	Sediment			Proj	ect:			
Receive Date	e: 03 Jul-14	S	ource:	Kensington Gol	ld Mine (AK	0050571)					
Sample Age:	50d 6h	S	Station:								
Sample Note	: Lower Sherma	n Creek									
Data Transfo	rm	Zeta	Alt H	yp MC Trials		Test Res	ult			PMSD	
Angular (Corr	ected)	0	C > T	Not Run		Sample p	asses surviv	val rate endp	oint	5.83%	
Wilcoxon Ra	nk Sum Two-Sa	mple Tes	t								•
Control	vs Conc-%		Test S	Stat Critical	DF	Ties	P-Value	Decision((a:5%)		
Dilution Water	r 100		77.5		14	2	0.8089	Non-Signi	ficant Effect	į	
ANOVA Table	9										
Source	Sum Squ	ares	Mean	Square	DF	F Stat	P-Value	Decision((α:5%)		
Between	0.007526	168	0.007	526168	1	0.7423	0.4034	Non-Signi	ficant Effect	İ	
Error	0.141943	2	0.010	1388	14	_					
Total	0.149469	4	0.017	66497	15						
Distributiona	l Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Variance	Ratio F		1.85	8.885	0.4355	Equal Var	iances			
Distribution	Shapiro-	Wilk W N	ormality	0.837	0.8408	8800.0	Non-norm	al Distribution	on		
Survival Rate	Summary										
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	0.937	5 0.9178	0.9572	0.9	1	0.0183	0.05175	5.52%	0.0%
100		8	0.962	5 0.9342	0.9908	8.0	1	0.02631	0.0744	7.73%	-2.67%
Angular (Cor	rected) Transfor	med Sui	mmary								
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	1.31	1.278	1.342	1.249	1.412	0.02982	0.08435	6.44%	0.0%
100		8	1.354	1.31	1.397	1.107	1.412	0.04056	0.1147	8.48%	-3.31%

Analyst: B QA:_____

Report Date:

03 Sep-14 14:30 (p 4 of 4)

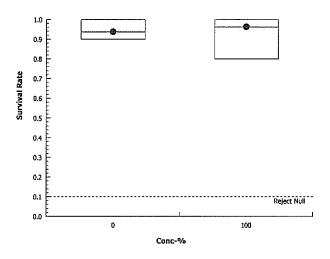
Test Code:

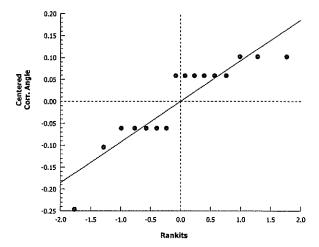
B315101hac | 14-0504-6252

Hyallela 10-d Survival and Growth Sediment Test

CH2M HILL - ASL

Analysis ID: Analyzed: 14-4145-9417 02 Sep-14 16:51 Endpoint: Survival Rate
Analysis: Nonparametri


Nonparametric-Two Sample


CETIS Version: CET
Official Results: Yes

CETISv1.8.1

Survival Rate Detail

Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8
0	Dilution Water	0.9	1	0.9	1	0.9	1	0.9	0.9
100		0.8	0.9	1	1	1	1	1	1

Report Date:

03 Sep-14 14:30 (p 1 of 4)

B315101hac | 14-0504-6252 Test Code:

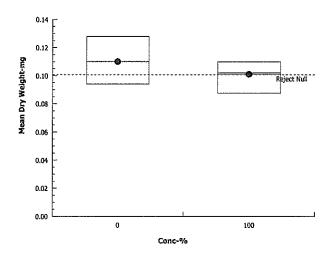
0 Dilution Water 8 0.11 0.1052 0.1148 0.094 0.128 0.004454 0.0126 11.46% 0.0%	Hyallela 10-d	Survival and G	rowth Sedi	ment Te	st						CH2M	HILL - ASI
Start Date 19 Aug - 14 12:45 Spacies -			-	-	-					.8.1	•	
Part	Batch ID:	02-7863-2507	Tes	st Type:	Survival-Grov	wth		Ana	lyst:			
No control No	Start Date:	19 Aug-14 12:4	45 Pr o	tocol:	EPA/600/R-9	9/064 (2000)		Dilu	ent: Mod	l-Hard Synth	netic Water	r
Sample ID:	Ending Date:	29 Aug-14 08:0	00 Sp	ecies:	Hyalella azte	ca		Brin	e:			
Sample Date 30 Jun-14 07:00 Material: Sodiment Sodiment	Duration:	9d 19h	So	urce:	Chesapeak C	Cultures, Naye	s, Virginia	Age	:			
Receive Date: 03 Jul-14 Source: Kensington Gold Mine (AK0050571) Station: Stati	Sample ID:	14-5240-4181	Co	de:	B3151-01			Clie	nt:			
Sample Age: 50d 6h Station: Sample Note: Lower Sherman Creek Sample Note: Not Run Sample passes mean dry weight-mg endpoint 8.4% Sample passes mean dry weight-mg endpoint 8.4% Sample Note: Not Run Sample passes mean dry weight-mg endpoint 8.4% Sample Note: Not Run Note: Not Run Sample Note: Not Run Note: N	Sample Date:	30 Jun-14 07:0	00 M a	terial:	Sediment			Proj	ect:			
Sample Note: Lower Shermar Creek	Receive Date	: 03 Jul-14	So	urce:	Kensington G	old Mine (AK	0050571)					
Data Transform Zeta Alt Hyp MC Trials Test Result PMSD	Sample Age:	50d 6h	Sta	tion:								
Decision C > T Not Run Sample passes mean dry weight-πg endpoint 8.4%	Sample Note:	Lower Sherma	n Creek									
Equal Variance Two-Sample Test Control vs Conc-% Test Stat Critical DF MSD P-Value Decision(α:5%) Dilution Water 100 1.71 1.761 14 0.009233 0.0546 Non-Significant Effect Non-Significant Non-Sign	Data Transfor	·m	Zeta	Alt H	yp MC Tria	ls	Test Resu	ılt			PMSD	
Control vs Conc-% Test Stat Critical DF MSD P-Value Decision(α:5%) Dilution Water 100 1.71 1.761 14 0.009233 0.0546 Non-Significant Effect ANOVA Table Source Sum Squares Mean Square DF F Stat P-Value Decision(α:5%) Between 0.000321516 0.000321516 1 2.925 0.1093 Non-Significant Effect Error 0.001538865 0.0001099189 14 15 15 O.1093 Non-Significant Effect Distributional Tests Attribute Test Test Stat Critical P-Value Decision(α:1%) Variances Ratio F 2.595 8.885 0.2315 Equal Variances Distribution Shapiro-Wilk W Normality 0.9505 0.8408 0.4979 Normal Distribution Mean Dry Weight-mg Summary Conc-% Control Type Count Mean 95% LCL 95% UCL	Untransformed	j	0	C > T	Not Run		Sample pa	esses mear	dry weight-	mg endpoin	t 8.4%	
Dilution Water 100 1.71 1.761 14 0.009233 0.0546 Non-Significant Effect	Equal Variand	e t Two-Sample	e Test									
ANOVA Table Source Sum Square Mean Square DF F Stat P-Value Decision(α:5%)	Control	vs Conc-%		Test S	Stat Critical	DF	MSD	P-Value	Decision(α:5%)		
Source Sum Squ = Squ Mean Squ = DF F Stat P-Value Decision(α:5%)	Dilution Water	100		1.71	1.761	14	0.009233	0.0546	Non-Signi	ficant Effect	ŧ	
Between 0.000321516 0.000321516 1 2.925 0.1093 Non-Significant Effect	ANOVA Table											
Error 0.001538865 0.0001099189 14 Total 0.001860381 0.0004314349 15 Distributional Tests Test Stat Critical P-Value Decision(α:1%) Variances Variance Ratio F 2.595 8.885 0.2315 Equal Variances Distribution Shapiro-Wilk W Normality 0.9505 0.8408 0.4979 Normal Distribution Mean Dry Weight-mg Summary Conc-% Control Type Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effe O Dilution Water 8 0.11 0.1052 0.1148 0.094 0.128 0.004454 0.0126 11.46% 0.0% O Dilution Water 8 0.11 0.1052 0.1148 0.094 0.128 0.004454 0.0126 11.46% 0.0% O Dilution Water 8 0.11 0.1052 0.1148 0.094 0.128 0.004454 0.0126 11.46% 0.0% O Dilution Water 8 0.11 0.1052 0.1148 0.094 0.128 0.004454 0.0126 11.46% 0.0% O Dilution Water 8 0.11 0.1052 0.1148 0.094 0.128 0.004454 0.0126 11.46% 0.0% O Dilution Water 8 0.11 0.1052 0.1148 0.094 0.128 0.004454 0.0126 11.46% 0.0% O Dilution Water 8 0.11 0.1052 0.1148 0.094 0.128 0.004454 0.0126 11.46% 0.0% O Dilution Water 8 0.11 0.1052 0.1148 0.094 0.128 0.004454 0.0126 11.46% 0.0% O Dilution Water 8 0.11 0.1052 0.1148 0.094 0.128 0.004454 0.0126 11.46% 0.0% O Dilution Water 8 0.11 0.1052 0.1148 0.094 0.128 0.004454 0.0126 11.46% 0.0% O Dilution Water 9 0.004454 0.0126 0.004454 0.00	Source	Sum Squ	ares	Mean	Square	DF	F Stat	P-Value	Decision(α:5%)		
Total 0.001860381 0.0004314349 15	Between	0.000321	516	0.000	321516	1	2.925	0.1093	Non-Signi	ficant Effect	t	
Distributional Tests							_					
Attribute Test Test Stat Critical P-Value Decision(α:1%) Variances Variance Ratio F 2.595 8.885 0.2315 Equal Variances Distribution Shapiro-Wilk W Normality 0.9505 0.8408 0.4979 Normal Distribution Mean Dry Weight-mg Summary Conc-% Control Type Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effe 0 Dilution Water 8 0.11 0.1052 0.1148 0.094 0.128 0.004454 0.0126 11.46% 0.0%	Total	0.001860	381	0.000	4314349	15						
Variances Variance Ratio F 2.595 8.885 0.2315 Equal Variances Distribution Shapiro-Wilk W Normality 0.9505 0.8408 0.4979 Normal Distribution Mean Dry Weight-mg Summary Conc-% Control Type Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effe 0 Dilution Water 8 0.11 0.1052 0.1148 0.094 0.128 0.004454 0.0126 11.46% 0.0%	Distributional	Tests										
Distribution Shapiro-Wilk W Normality 0.9505 0.8408 0.4979 Normal Distribution Mean Dry Weight-mg Summary Conc-% Control Type Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effe 0 Dilution Water 8 0.11 0.1052 0.1148 0.094 0.128 0.004454 0.0126 11.46% 0.0%	Attribute	Test			Test Sta	t Critical	P-Value	Decision	(α:1%)			
Mean Dry Weight-mg Summary Conc-% Control Type Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effe 0 Dilution Water 8 0.11 0.1052 0.1148 0.094 0.128 0.004454 0.0126 11.46% 0.0%	Variances				2.595	8.885	0.2315	Equal Va	riances			
Conc-% Control Type Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effe 0 Dilution Water 8 0.11 0.1052 0.1148 0.094 0.128 0.004454 0.0126 11.46% 0.0%	Distribution	Shapiro-\	Wilk W Nori	mality	0.9505	0.8408	0.4979	Normal D	istribution			
0 Dilution Water 8 0.11 0.1052 0.1148 0.094 0.128 0.004454 0.0126 11.46% 0.0%	Mean Dry We	ight-mg Summa	ігу									
	Conc-%	Control Type	Count	Mean	95% LC	L 95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
100 8 0.101 0.09803 0.104 0.0875 0.11 0.002765 0.00782 7.74% 8.15%	0	Dilution Water	8	0.11	0.1052	0.1148	0.094	0.128	0.004454	0.0126	11.46%	0.0%
	100		8	0.101	0.09803	0.104	0.0875	0.11	0.002765	0.00782	7.74%	8.15%

Analyst: 3~ QA:___

Report Date: Test Code: 03 Sep-14 14:30 (p 2 of 4) B315101hac | 14-0504-6252

Hyallela 10-d Survival and Growth Sediment Test

CH2M HILL - ASL


Analysis ID: Analyzed: 20-7230-1351 03 Sep-14 14:30 **Endpoint:** Mean Dry Weight-mg **Analysis:** Parametric-Two Sample


CETIS Version: CET
Official Results: Yes

CETISv1.8.1

Mean Dry Weight-mg Detail

Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8
0	Dilution Water	0.11	0.11	0.09444	0.094	0.11	0.128	0.1067	0.1267
100		0.0875	0.1056	0.096	0.11	0.095	0.102	0.102	0.11

CETIS Summary Report

100

Report Date:

03 Sep-14 14:30 (p 1 of 1)

Test Code:

B315102hyc | 13-3972-7180

							16	st coue.	0010	JIOZIIYO [I	0-00/2-//0
Hyallela 10-d	Survival and G	owth Se	diment Tes	t						CH2M	HILL - ASL
Batch ID: Start Date: Ending Date: Duration:	02-7863-2507 19 Aug-14 12:4 29 Aug-14 08:0 9d 19h	15 F 00 S	Protocol: Species:	Survival-Growtl EPA/600/R-99/ Hyalella azteca Chesapeak Cu	'064 (2000) I	s, Virginia	Di	ine:	l-Hard Synth	netic Water	
Sample ID: Sample Date: Receive Date: Sample Age:) N	/laterial:	33151-02 Sediment Kensington Go	ld Mine (AKI	0050571)		ient: oject:			
Sample Note:	East Fork Slate	Creek									
Comparison S	Summary		***************************************								
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Method			
05-4864-8735	Mean Dry Weig	ght-mg	100	>100	N/A	9.05%	1	•	iance t Two	•	
01-0910-1379	Survival Rate		100	>100	N/A	4.94%	1	Wilcoxon	Rank Sum 1	Two-Sampl	e Test
Test Acceptab	oility										
Analysis ID	Endpoint		Attribu	te	Test Stat	TAC Lin	nits	Overlap	Decision		
01-0910-1379	Survival Rate		Control	Resp	0.9375	0.8 - NL		Yes	Passes A	cceptability	Criteria
Mean Dry Wei	ight-mg Summa	iry									
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	0.11	0.1053	0.1147	0.094	0.128	0.004454	0.0126	11.46%	0.0%
100		8	0.1005	0.09687	0.1042	0.089	0.118	0.003478	0.009837	9.78%	8.58%
Survival Rate	Summary										
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	0.9375	0.9182	0.9568	0.9	1	0.0183	0.05175	5.52%	0.0%
100		8	0.95	0.93	0.97	0.9	1	0.0189	0.05345	5.63%	-1.33%
Mean Dry Wei	ght-mg Detail										
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	0.11	0.11	0.09444	0.094	0.11	0.128	0.1067	0.1267		
100		0.0988	9 0.118	0.09333	0.101	0.09111	0.11	0.089	0.103		
Survival Rate	Detail										
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	0.9	1	0.9	1	0.9	1	0.9	0.9	-	
					_						

Analyst: 3 QA:____

0.9

1

0.9

1

0.9

0.9

1

1

Report Date:

03 Sep-14 14:30 (p 3 of 4)

Test Code: B315102hyc | 13-3972-7180

Hyallela 10-d	Survival and Gr	rowth Sed	liment Te	st						CH2M	HILL - ASL
Analysis ID:	01-0910-1379		ndpoint:	Survival Rate				'IS Version:	CETI\$v1	.8.1	
Analyzed:	02 Sep-14 16:	54 A:	nalysis:	Nonparametric	- I wo Sampl	e 	Offic	cial Results	: Yes		
Batch ID:	02-7863-2507	Те	st Type:	Survival-Growt	h		Ana	lyst:			
Start Date:	19 Aug-14 12:4		otocol:	EPA/600/R-99/	(064 (2000)		Dilu	ent: Mod	l-Hard Synth	netic Wate	r
Ending Date:	29 Aug-14 08:0	00 S r	oecies:	Hyalella azteca	1		Brin	e:			
Duration:	9d 19h	Sc	ource:	Chesapeak Cu	ltures, Naye	s, Virginia	Age	:			
Sample ID:	03-0055-2849	Co	ode:	B3151-02			Clie	nt:			
Sample Date:	02 Jul-14 07:00	D M :	aterial:	Sediment			Proj	ect:			
Receive Date:	: 03 Jul-14	Sc	ource:	Kensington Go	ld Mine (AK	0050571)					
Sample Age:	48d 6h	St	ation:								
Sample Note:	East Fork Slate	e Creek									
Data Transfor	m	Zeta	Alt Hy	yp MC Trials	ì	Test Result PN					
Angular (Corre	ected)	0	C > T	Not Run		Sample p	asses survi	val rate endp	ooint	4.94%	
Wilcoxon Rar	nk Sum Two-Sai	mple Test									
Control	vs Conc-%		Test S	Stat Critical	DF	Ties	P-Value	Decision	(a:5%)		
Dilution Water	on Water 100 72					2	0.6395	Non-Signi	ficant Effect		
ANOVA Table											
Source	Sum Squ	ares	Mean	Square	DF	F Stat	P-Value	Decision	(α:5%)		
Between	0.0016599	958	0.0016	659958	1	0.2258	0.6420	Non-Signi	ficant Effect		
Error	0.1029174	4	0.0073	351243	14	_					
Total	0.1045774	4	0.0090)11202	15						
Distributional	Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(a:1%)			
Variances	Variance	Ratio F		1.067	8.885	0.9343	Equal Var	riances			
Distribution	Shapiro-\	Nilk W No	rmality	0.731	0.8408	0.0004	Non-norm	nal Distributio	on		
Survival Rate	Summary										
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	0.9375	0.9178	0.9572	0.9	1	0.0183	0.05175	5.52%	0.0%
100		8	0.95	0.9297	0.9703	0.9	1	0.0189	0.05345	5.63%	-1.33%
Angular (Corr	ected) Transfor	med Sum	ımary								
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	1.31	1.278	1.342	1.249	1.412	0.02982	0.08435	6.44%	0.0%
100		8	1.331	1.297	1.364	1.249	1.412	0.0308	0.08711	6.55%	-1.56%

Analyst:________ QA:______

Report Date: Test Code:

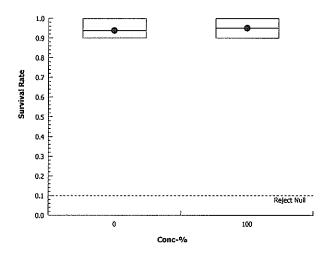
03 Sep-14 14:30 (p 4 of 4)

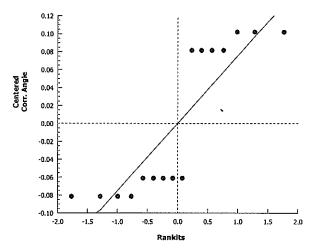
B315102hyc | 13-3972-7180

Hyallela 10-d Survival and Growth Sediment Test

CH2M HILL - ASL

Analysis ID: Analyzed:


01-0910-1379 02 Sep-14 16:54 Endpoint: Survival Rate Analysis: Nonparametric-Two Sample **CETIS Version:**


CETISv1.8.1

Official Results: Yes

Survival Rate Detail

Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8
0	Dilution Water	0.9	1	0.9	1	0.9	1	0.9	0.9
100		0.9	1	0.9	1	0.9	0.9	1	1

Report Date: Test Code: 03 Sep-14 14:30 (p 1 of 4) B315102hyc | 13-3972-7180

Hyallela 10-d Survival and Growth Sediment Test Analysis ID: 05-4864-8735 Endpoint: Mean Dry Weight-mg Analyzed: 03 Sep-14 14:30 Analysis: Parametric-Two Sample Batch ID: 02-7863-2507 Test Type: Survival-Growth Start Date: 19 Aug-14 12:45 Protocol: EPA/600/R-99/064 (2000) Ending Date: 29 Aug-14 08:00 Species: Hyalella azteca Duration: 9d 19h Source: Chesapeak Cultures, Nayes, Virginia Sample ID: 03-0055-2849 Code: B3151-02 Sample Date: 02 Jul-14 07:00 Material: Sediment Receive Date: 03 Jul-14 Source: Kensington Gold Mine (AK0050571) Sample Age: 48d 6h Station: Sample Note: East Fork Slate Creek Data Transform Zeta Alt Hyp MC Trials Test Result	CH2M HILL - A CETIS Version: CETISv1.8.1 Official Results: Yes Analyst: Diluent: Mod-Hard Synthetic Water Brine: Age: Client: Project:
Analyzed: 03 Sep-14 14:30 Analysis: Parametric-Two Sample Batch ID: 02-7863-2507 Test Type: Survival-Growth Start Date: 19 Aug-14 12:45 Protocol: EPA/600/R-99/064 (2000) Ending Date: 29 Aug-14 08:00 Species: Hyalella azteca Duration: 9d 19h Source: Chesapeak Cultures, Nayes, Virginia Sample ID: 03-0055-2849 Code: B3151-02 Sample Date: 02 Jul-14 07:00 Material: Sediment Receive Date: 03 Jul-14 Source: Kensington Gold Mine (AK0050571) Sample Age: 48d 6h Station:	Official Results: Yes Analyst: Diluent: Mod-Hard Synthetic Water Brine: Age: Client: Project:
Start Date: 19 Aug-14 12:45 Protocol: EPA/600/R-99/064 (2000) Ending Date: 29 Aug-14 08:00 Species: Hyalella azteca Duration: 9d 19h Source: Chesapeak Cultures, Nayes, Virginia Sample ID: 03-0055-2849 Code: B3151-02 Sample Date: 02 Jul-14 07:00 Material: Sediment Receive Date: 03 Jul-14 Source: Kensington Gold Mine (AK0050571) Sample Age: 48d 6h Station: Sample Note: East Fork Slate Creek	Diluent: Mod-Hard Synthetic Water Brine: Age: Client: Project:
Ending Date: 29 Aug-14 08:00 Species: Hyalella azteca Duration: 9d 19h Source: Chesapeak Cultures, Nayes, Virginia Sample ID: 03-0055-2849 Code: B3151-02 Sample Date: 02 Jul-14 07:00 Material: Sediment Receive Date: 03 Jul-14 Source: Kensington Gold Mine (AK0050571) Sample Age: 48d 6h Station: Sample Note: East Fork Slate Creek	Brine: Age: Client: Project:
Duration: 9d 19h Source: Chesapeak Cultures, Nayes, Virginia Sample ID: 03-0055-2849 Code: B3151-02 Sample Date: 02 Jul-14 07:00 Material: Sediment Receive Date: 03 Jul-14 Source: Kensington Gold Mine (AK0050571) Sample Age: 48d 6h Station: Sample Note: East Fork Slate Creek	Age: Client: Project:
Sample ID: 03-0055-2849 Code: B3151-02 Sample Date: 02 Jul-14 07:00 Material: Sediment Receive Date: 03 Jul-14 Source: Kensington Gold Mine (AK0050571) Sample Age: 48d 6h Station: Sample Note: East Fork Slate Creek	Client: Project:
Sample Date: 02 Jul-14 07:00 Material: Sediment Receive Date: 03 Jul-14 Source: Kensington Gold Mine (AK0050571) Sample Age: 48d 6h Station: Sample Note: East Fork Slate Creek	Project:
Receive Date: 03 Jul-14 Source: Kensington Gold Mine (AK0050571) Sample Age: 48d 6h Station: Sample Note: East Fork Slate Creek	
Sample Age: 48d 6h Station: Sample Note: East Fork Slate Creek	DMSD
Sample Note: East Fork Slate Creek	DMSD
	DMSD
Data Transform Zeta Alt Hyp MC Trials Test Result	DMSD
	r mod
Untransformed 0 C > T Not Run Sample pass	sses mean dry weight-mg endpoint 9.05%
Equal Variance t Two-Sample Test	
Control vs Conc-% Test Stat Critical DF MSD P	P-Value Decision(α:5%)
Dilution Water 100 1.669 1.761 14 0.009953 0	0.0587 Non-Significant Effect
ANOVA Table	
Source Sum Squares Mean Square DF F Stat P	P-Value Decision(α:5%)
Between 0.0003557552 0.0003557552 1 2.785 0	0.1173 Non-Significant Effect
Error 0.001788197 0.0001277284 14	
Total 0.002143952 0.0004834835 15	
Distributional Tests	
Attribute Test Test Test Stat Critical P-Value D	Decision(a:1%)
Variances Variance Ratio F 1.64 8.885 0.5297 E	Equal Variances
Distribution Shapiro-Wilk W Normality 0.9263 0.8408 0.2125 N	Normal Distribution
Mean Dry Weight-mg Summary	
Conc-% Control Type Count Mean 95% LCL 95% UCL Min N	Max Std Err Std Dev CV% %Effect
Dilution Water 8 0.11 0.1052 0.1148 0.094 0	0.128 0.004454 0.0126 11.46% 0.0%
100 8 0.1005 0.0968 0.1043 0.089 0	0.118 0.003478 0.009837 9.78% 8.58%

Analyst:______ QA:_____

Report Date:

03 Sep-14 14:30 (p 2 of 4) B315102hyc | 13-3972-7180

Test Code:

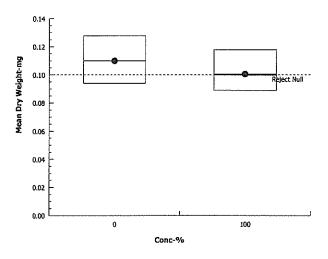
Hyallela 10-d Survival and Growth Sediment Test

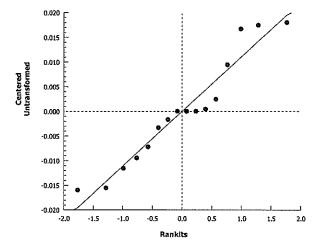
CH2M HILL - ASL

Analysis ID: Analyzed:

05-4864-8735 03 Sep-14 14:30

Analysis:


Endpoint: Mean Dry Weight-mg Parametric-Two Sample **CETIS Version:**


CETISv1.8.1

Official Results: Yes

Mean Dry Weight-mg Detail

Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8
0	Dilution Water	0.11	0.11	0.09444	0.094	0.11	0.128	0.1067	0.1267
100		0.09889	0.118	0.09333	0.101	0.09111	0.11	0.089	0.103

CETIS Summary Report

Report Date:

03 Sep-14 14:31 (p 1 of 1)

Test Code: B315103hyc | 03-2587-4363

							10	si code.	D010	o racinyo po	J-2301-43C
Hyallela 10-d	Survival and Gro	wth Sec	diment Tes	st						CH2M	HILL - ASI
Batch ID: Start Date: Ending Date: Duration:	02-7863-2507 19 Aug-14 12:49 29 Aug-14 08:00 9d 19h	5 P 5 S	rotocol: pecies:	Survival-Growt EPA/600/R-99/ Hyalella azteca Chesapeak Cu	/064 (2000) a	s, Virginia	Dil	ne:	l-Hard Synti	hetic Water	
-	17-7304-5180 30 Jul-14 09:00 07 Aug-14 11:00 20d 4h	M S	ode: laterial: ource: tation:	B3151-03 Sediment Kensington Go	old Mine (AK	0050571)		ent: oject:			
Sample Note:	Lower Johnson	Creek									
Comparison S	Summary										
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Method			
01-0811-1577	Mean Dry Weigl	ht-mg	≤100-	100	N/A	9.94%	>1	Equal Var	iance t Two	-Sample Te	st
14-9681-2065	Survival Rate		100	>100)N/A	4.86%	1	Wilcoxon	Rank Sum	Two-Sample	e Test
Test Acceptal	oility		-								
Analysis ID	Endpoint		Attribu	ute	Test Stat	TAC Lim	its	Overlap	Decision		
14-9681-2065	Survival Rate		Contro	l Resp	0.9375	0.8 - NL		Yes	Passes A	cceptability	Criteria
Mean Dry Wei	ght-mg Summar	'y									
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	0.11	0.1053	0.1147	0.094	0.128	0.004454	0.0126	11.46%	0.0%
100		8	0.0911	7 0.0866	0.09573	0.07667	0.114	0.004322	0.01222	13.41%	17.1%
Survival Rate	Summary										
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec
0	Dilution Water	8	0.9375	0.9182	0.9568	0.9	1	0.0183	0.05175	5.52%	0.0%
100		8	0.9625	0.9432	0.9818	0.9	1	0.0183	0.05175	5.38%	-2.67%
Mean Dry Wei	ght-mg Detail										
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	0.11	0.11	0.09444	0.094	0.11	0.128	0.1067	0.1267		
100		0.096	0.0911	1 0.101	0.07667	0.085	0.08556	80.0	0.114		
Survival Rate	Detail										
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
	50 W 144 W										

0.9

1

1

0.9

0.9

1

0.9

1

Analyst: _____ QA:_____

0

100

Dilution Water

0.9

1

1

0.9

0.9

1

1

0.9

Report Date: Test Code: 03 Sep-14 14:30 (p 3 of 4) B315103hyc | 03-2587-4363

Hyallela 10-d	Survival and Grov	wth Sediment Test		CH2M HILL - ASL
Analysis ID:	14-9681-2065	Endpoint: Survival Rate	CETIS Version:	CETISv1.8.1

Analysis ID:14-9681-2065Endpoint:Survival RateCETIS Version:CETIS Version:CETIS Version:Analyzed:02 Sep-14 16:55Analysis:Nonparametric-Two SampleOfficial Results:Yes

Batch ID: 02-7863-2507 Test Type: Survival-Growth Analyst:

Start Date: 19 Aug-14 12:45 Protocol: EPA/600/R-99/064 (2000) Diluent: Mod-Hard Synthetic Water
Ending Date: 29 Aug-14 08:00 Species: Hyalella azteca Brine:

Duration:9d 19hSource:Chesapeak Cultures, Nayes, VirginiaAge:Sample ID:17-7304-5180Code:B3151-03Client:

Sample Date: 30 Jul-14 09:00 Material: Sediment Project: Receive Date: 07 Aug-14 11:00 Source: Kensington Gold Mine (AK0050571)

Sample Age: 20d 4h Station:

Sample Note: Lower Johnson Creek

Data Transform	Zeta	Alt Hyp	MC Trials	Test Result	PMSD
Angular (Corrected)	0	C > T	Not Run	Sample passes survival rate endpoint	4.86%

Wilcoxon Rank Sum Two-Sample Test

Control	٧S	Conc-%	Test Stat	Critical	DF	Ties	P-Value	Decision(a:5%)
Dilution Water		100	76		14	2	0.7791	Non-Significant Effect

ANOVA Table

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(a:5%)	
Between	0.006639833	0.006639833	1	0.9333	0.3504	Non-Significant Effect	
Error	0.09959749	0.007114107	14				
Total	0.1062373	0.01375394	15				

Distributional Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(a:1%)
Variances	Variance Ratio F	1	8.885	1.0000	Equal Variances
Distribution	Shapiro-Wilk W Normality	0.8138	0.8408	0.0042	Non-normal Distribution

Survival Rate Summary

Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	0.9375	0.9178	0.9572	0.9	1	0.0183	0.05175	5.52%	0.0%
100		8	0.9625	0.9428	0.9822	0.9	1	0.0183	0.05175	5.38%	-2.67%

Angular (Corrected) Transformed Summary

Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	1.31	1.278	1.342	1.249	1.412	0.02982	0.08435	6.44%	0.0%
100		8	1.351	1.319	1.383	1.249	1.412	0.02982	0.08435	6.24%	-3.11%

Report Date:

03 Sep-14 14:30 (p 4 of 4)

Test Code:

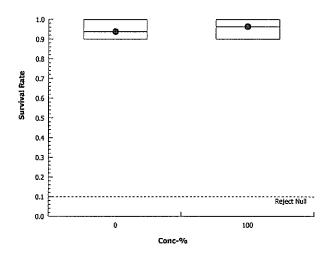
B315103hyc | 03-2587-4363

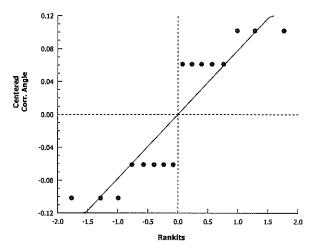
Hyallela 10-d Survival and Growth Sediment Test

CH2M HILL - ASL

Analysis ID: Analyzed:

14-9681-2065 02 Sep-14 16:55 Endpoint: Survival Rate


Analysis: Nonparametric-Two Sample


CETIS Version:

CETISv1.8.1 Official Results: Yes

Survival Rate Detail

Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8
0	Dilution Water	0.9	1	0.9	1	0.9	1	0.9	0.9
100		1	0.9	1	0.9	1	0.9	1	1

Report Date: **Test Code:**

P-Value

0.0090

F Stat

9.183

Decision(a:5%)

Significant Effect

03 Sep-14 14:30 (p 1 of 4) B315103hyc | 03-2587-4363

Hyallela 10-d Survival and Growth Sediment Test CH2M HILL - ASL Analysis ID: Mean Dry Weight-mg **CETISv1.8.1** 01-0811-1577 Endpoint: **CETIS Version:** Parametric-Two Sample Analyzed: 03 Sep-14 14:30 Analysis: Official Results: Yes Test Type: Survival-Growth Batch ID: 02-7863-2507 Analyst: Start Date: 19 Aug-14 12:45 Protocol: EPA/600/R-99/064 (2000) Diluent: Mod-Hard Synthetic Water Ending Date: 29 Aug-14 08:00 Species: Hyalella azteca Brine: **Duration:** 9d 19h Source: Chesapeak Cultures, Nayes, Virginia Age: 17-7304-5180 B3151-03 Sample ID: Code: Client: Sample Date: 30 Jul-14 09:00 Sediment Project: Material: Receive Date: 07 Aug-14 11:00 Source: Kensington Gold Mine (AK0050571) Sample Age: 20d 4h Station: Sample Note: Lower Johnson Creek **Data Transform** Zeta Alt Hyp MC Trials Test Result **PMSD** Untransformed 0 C > TNot Run Sample fails mean dry weight-mg endpoint 9.94% **Equal Variance t Two-Sample Test** Control ٧S Conc-% Critical DF MSD P-Value Decision(a:5%) **Test Stat** Dilution Water 3.03 100* 1.761 14 0.01093 0.0045 Significant Effect

Total	0.003571384
Distribution	al Tests

ANOVA Table Source

Between

Error

Total

Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variances	Variance Ratio F	1.062	8.885	0.9387	Equal Variances
Distribution	Shapiro-Wilk W Normality	0.9368	0.8408	0.3121	Normal Distribution

DF

1

14

15

Mean Dry Weight-mg Summary

Sum Squares

0.001414639

0.002156745

Mean Square

0.001414639

0.001568692

0.0001540532

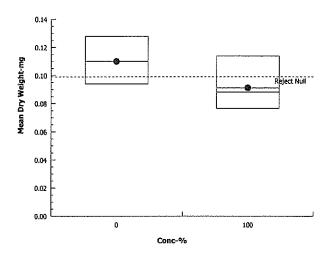
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	0.11	0.1052	0.1148	0.094	0.128	0.004454	0.0126	11.46%	0.0%
100		8	0.09117	0.08652	0.09582	0.07667	0.114	0.004322	0.01222	13.41%	17.1%

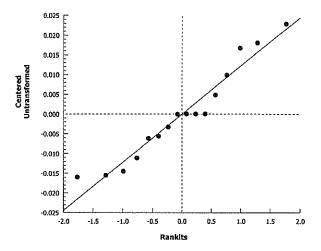
&<u>~</u> QA:___ Analyst:

Report Date: Test Code: 03 Sep-14 14:30 (p 2 of 4) B315103hyc | 03-2587-4363

Hyallela 10-d Survival and Growth Sediment Test

CH2M HILL - ASL


Analysis ID: Analyzed: 01-0811-1577 03 Sep-14 14:30 Endpoint: Mean Dry Weight-mg
Analysis: Parametric-Two Sample


CETIS Version: CET Official Results: Yes

CETISv1.8.1

Mean Dry Weight-mg Detail

Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8
0	Dilution Water	0.11	0.11	0.09444	0.094	0.11	0.128	0.1067	0.1267
100		0.096	0.09111	0.101	0.07667	0.085	0.08556	80.0	0.114

CETIS Summary Report

Report Date:

03 Sep-14 14:31 (p 1 of 1)

Test Code:

B315104hyc | 05-0979-0219

							1.6	st Code.	0010	JIOTHYO OC	J-0313-02 I	
Hyallela 10-d	Survival and Gro	wth Sec	diment Tes	t						CH2M	HILL - ASL	
Batch ID:	02-7863-2507	Te	est Type:	Survival-Growth	ì		Ar	nalyst:				
Start Date:	19 Aug-14 12:45	Pı	rotocol:	EPA/600/R-99/	064 (2000)		Di	luent: Mod	-Hard Synti	hetic Water		
Ending Date:	29 Aug-14 08:00	S	pecies:	Hyalella azteca			Bı	ine:				
Duration:	9d 19h	S	ource:	Chesapeak Cul	tures, Naye	s, Virginia	Ag	je:				
Sample ID:	17-1573-2640	C	ode:	B3151-04			CI	ient:				
Sample Date:	28 Jul-14 14:00	M	aterial:	Sediment	Project:							
Receive Date:	07 Aug-14 11:00	S	ource: 1									
Sample Age:	21d=23h	==St	tation:									
Sample Note:	Lower Slate Cree	ek)									
Comparison S	Summary											
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Method				
01-5872-0768	Mean Dry Weigh	it-mg	100	>100	N/A	10.7%	1	Equal Vari	iance t Two	-Sample Te	st	
06-1798-4435	Survival Rate		100	>100	N/A	5.67%	1	Wilcoxon	Wilcoxon Rank Sum Two-Sample Test			
Test Acceptab	oility											
Analysis ID	Endpoint		Attribu	te	Test Stat	TAC Lin	nits	Overlap	Decision			
06-1798-4435	Survival Rate Cont			Resp	0.9375	0.8 - NL		Yes	Passes A	cceptability	Criteria	
Mean Dry Wei	ght-mg Summary	y										
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect	
0	Dilution Water	8	0.11	0.1053	0.1147	0.094	0.128	0.004454	0.0126	11.46%	0.0%	
100		8	0.1144	0.1091	0.1197	0.09	0.128	0.004986	0.0141	12.33%	-4.02%	
Survival Rate	Summary											
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect	
0	Dilution Water	8	0.9375	0.9182	0.9568	0.9	1	0.0183	0.05175	5.52%	0.0%	
100		8	0.925	0.8986	0.9514	8.0	1	0.025	0.07071	7.64%	1.33%	
Mean Dry Wei	ght-mg Detail											
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8			
0	Dilution Water	0.11	0.11	0.09444	0.094	0.11	0.128	0.1067	0.1267			
100		0.1211	0.128	0.1244	0.12	0.1256	0.098	0.108	0.09			
Survival Rate	Detail							· · · · · · · · · · · · · · · · · · ·				
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8			
0	Dilution Water	0.9	1	0.9	1	0.9	1	0.9	0.9			

0.8

100

0.9

1

0.9

0.9

0.9

1

1

Report Date: Test Code: 03 Sep-14 14:31 (p 3 of 4) B315104hyc | 05-0979-0219

Hyailela 10-d	Survival and G	rowth Se	ediment Te	st						CH2N	HILL - AS	
Analysis ID:	06-1798-4435	1	Endpoint:	Survival Rate			CET	'IS Version	: CETISv1	1.8.1	***************************************	
Analyzed:	02 Sep-14 16:	57	Analysis:	Nonparametric	-Two Sampl	le	Offi	Official Results: Yes				
Batch ID:	02-7863-2507		Test Type:	Survival-Growt	th		Ana	lyst:				
Start Date:	19 Aug-14 12:		Protocol:	EPA/600/R-99				-	d-Hard Synt	hetic Wate	r	
Ending Date:	29 Aug-14 08:	00 :	Species:	Hyalella azteca	a . ,		Brin	ıe:	•			
Duration:	9d 19h	;	Source: Chesapeak Cultures, Nayes, Virginia Age:									
Sample ID:	17-1573-2640	(Code:	B3151-04	•		Clie	nt:				
Sample Date:	ate: 28 Jul-14 14:00 Material: Sec			Sediment			Proj	ect:				
=	Date: 07 Aug-14 11:00 Source: Kensington Gold Mine (AK0050571)											
Sample Age:	Age: 21d 23h Station:											
Sample Note:	Lower Slate C	reek		,								
Data Transfor	rm	Zeta	Alt H	yp MC Trials	3	Test Res	ult			PMSD		
Angular (Corrected) 0 C > T				Not Run		Sample p	asses survi	sses survival rate endpoint 5.67%				
Wilcoxon Rar	nk Sum Two-Sa	mple Te	st									
Control	vs Conc-%		Test \$	Stat Critical	DF	Ties	P-Value	Decision	(a:5%)			
Dilution Water	100		65.5		14	2	0.3992	Non-Sign	ificant Effec	t		
ANOVA Table												
Source	Sum Squ	ares	Mean	Square	DF	F Stat	P-Value	Decision	(a:5%)			
Between	0.001258	423	0.001	258423	1	0.1309	0.7229	Non-Sign	ificant Effec	t	••	
Error	0.134559	2	0.009	61137	14	_						
Total	0.135817	6	0.010	86979	15							
Distributional	Tests											
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)				
Variances	Variance	Ratio F		1.702	8.885	0.4996	Equal Va	riances				
Distribution	Shapiro-	Wilk W N	lormality	0.8128	0.8408	0.0041	Non-norm	nal Distributi	on			
Survival Rate	Summary											
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect	
0	Dilution Water	8	0.937	5 0.9178	0.9572	0.9	1	0.0183	0.05175	5.52%	0.0%	
100		8	0.925	0.8981	0.9519	8.0	1	0.025	0.07071	7.64%	1.33%	
Angular (Corr	ected) Transfor	med Su	mmary									
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect	
0	Dilution Water	8	1.31	1.278	1.342	1.249	1.412	0.02982	0.08435	6.44%	0.0%	

100

8

1.292

1.251

1.334

1.107

1.412

0.0389

0.11

8.51%

1.35%

Report Date: Test Code:

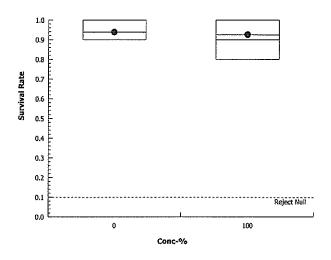
03 Sep-14 14:31 (p 4 of 4) B315104hyc | 05-0979-0219

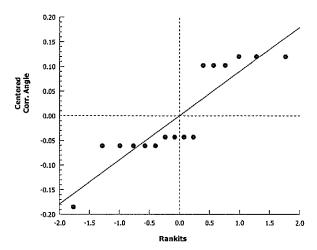
Hyallela 10-d Survival and Growth Sediment Test

CH2M HILL - ASL

Analysis ID: Analyzed:

06-1798-4435 02 Sep-14 16:57 Endpoint: Survival Rate Analysis:


Nonparametric-Two Sample


CETIS Version: Official Results: Yes

CETISv1.8.1

Survival Rate Detail

Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8
0	Dilution Water	0.9	1	0.9	1	0.9	1	0.9	0.9
100		0.9	1	0.9	0.9	0.9	1	1	0.8

Report Date: Test Code: 03 Sep-14 14:31 (p 1 of 4) B315104hyc I 05-0979-0219

									Tes	t Code:	B315	104hyc 0	5-0979-0219	
Hyallela 10-d	Survival	and G	rowth S	Sediment 1	Гest							CH2M	HILL - ASL	
Analysis ID:	01-587	2-0768		Endpoint	: Ме	ean Dry Weig	ght-mg		CET	IS Version:	CETISv1	.8.1		
Analyzed:	03 Sep	-14 14:	31	Analysis:	Pa	rametric-Twe	o Sample		Offi	Official Results: Yes				
Batch ID:	02-786	3-2507		Test Type	a: Su	ırvival-Growtl	h		Ana	Analyst:				
Start Date:	19 Aug	-14 12:4	45	Protocol:	EF	A/600/R-99/	064 (2000)		Dilu	ent: Mod	l-Hard Synth	netic Water		
Ending Date:	29 Aug	-14 08:0	00	Species:	Ну	alella azteca	1		Brin	ie:				
Duration:	9d 19h	ì		Source:	Ch	esapeak Cu	ltures, Naye	s, Virginia	Age	:				
Sample ID:	17-157	3-2640		Code:	B3151-04					nt:				
Sample Date:	28 Jul-	14 14:00	0	Material: Sediment						ect:				
Receive Date:	: 07 Aug	-14 11:0	00	Source:	Ke	nsington Go	ld Mine (AK	0050571)						
Sample Age:	21d 23	Bh		Station:										
Sample Note:	Lowers	Slate Cr	eek						,				7.11.010	
Data Transform Zeta Alt Hyp						MC Trials		Test Res	ult			PMSD		
Untransformed 0 C > T						Not Run		Sample p	asses meai	n dry weight-	mg endpoin	t 10.7%		
Equal Varianc	ce t Two-	Sample	e Test											
Control	vs C	onc-%		Tes	t Stat	Critical	DF	MSD	P-Value	Decision(a:5%)			
Dilution Water	1	00		-0.6	606	1.761	14	0.01177	0.7402	Non-Signi	ficant Effect			
ANOVA Table	l													
Source	Sı	ım Squ	ares	Mea	ın Sq	uare	DF	F Stat	P-Value	Decision(α:5%)			
Between	7.8	802558	E-05	7.80	2558	E-05	1	0.4364	0.5196	Non-Signi	ficant Effect			
Error	0.0	0025028	833	0.00	0178	7738	14							
Total	0.0	0025808	859	0.00	0256	7994	15	_						
Distributional	Tests													
Attribute	T	est				Test Stat	Critical	P-Value	Decision	(a:1%)				
Variances						1.253	8.885	0.7736	Equal Variances					
Distribution Shapiro-Wilk W Normality					0.9469	0.8408	0.4421	Normal D	istribution					
Mean Dry Wei	ight-mg	Summa	ігу											
Conc-%	Control	Туре	Coun	nt Mea	เท	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect	
0	Dilution	Water	8	0.11		0.1052	0.1148	0.094	0.128	0.004454	0.0126	11.46%	0.0%	

12.33% -4.02%

100

8

0.1144

0.109

0.1198

0.09

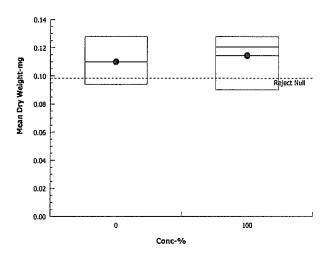
0.128

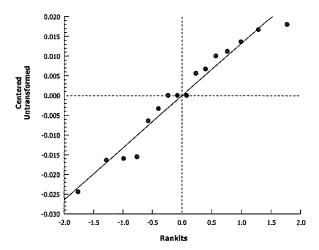
0.004986 0.0141

Report Date: Test Code: 03 Sep-14 14:31 (p 2 of 4) B315104hyc | 05-0979-0219

Hyallela 10-d Survival and Growth Sediment Test

CH2M HILL - ASL


Analysis ID: Analyzed: 01-5872-0768 03 Sep-14 14:31 **Endpoint:** Mean Dry Weight-mg **Analysis:** Parametric-Two Sample


CETIS Version: CET Official Results: Yes

CETISv1.8.1

Mean Dry Weight-mg Detail

Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8
0	Dilution Water	0.11	0.11	0.09444	0.094	0.11	0.128	0.1067	0.1267
100		0.1211	0.128	0.1244	0.12	0.1256	0.098	0.108	0.09

CETIS Summary Report

CETIS Sun	nmary Report						Report Date: Test Code:	03 Sep-14 14:31 (p 1 of 1) B315105hyc 14-8956-0499
Hyallela 10-d	Survival and Growth	Sediment Te	st					CH2M HILL - ASL
Batch ID: Start Date: Ending Date: Duration:	02-7863-2507 19 Aug-14 12:45 29 Aug-14 08:00 9d 19h	Test Type: Protocol: Species: Source:	EPA/600/R-9 Hyalella azte	9/064 (2000)	s, Virginia		Analyst: Diluent: Mod Brine: Age:	l-Hard Synthetic Water
Sample ID: Sample Date: Receive Date: Sample Age:	19-8240-7616 30 Jul-14 17:00 07 Aug-14 11:00 19d-20h	Code: Material: Source: Station:	B3151-05 Sediment Kensington G	Gold Mine (AKC	0050571)		Client: Project:	
Sample Note:	Upper Slate Creek							
Comparison S	Summary							
Analysis ID	Endpoint	NOEL	LOEL	TOEL	PMSD	TU	Method	
14-9869-5376 09-4852-1884	Mean Dry Weight-mg Survival Rate	100 100	>100 >100	N/A N/A	11.6% 4.61%	1	•	iance t Two-Sample Test iance t Two-Sample Test
Test Acceptab	pility							
Analysis ID	Endpoint	Attrib	ute	Test Stat	TAC Lim	nits	Overlap	Decision
09-4852-1884	Survival Rate	Contro	ol Resp	0.9375	0.8 - NL		Yes	Passes Acceptability Criteria
Mean Dry Wei	ght-mg Summary							

Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	0.11	0.1053	0.1147	0.094	0.128	0.004454	0.0126	11.46%	0.0%
100		8	0.09983	0.09384	0.1058	0.077	0.1278	0.005676	0.01606	16.08%	9.22%
Survival Ra	ate Summary					•		1 11111			
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	0.9375	0.9182	0.9568	0.9	1	0.0183	0.05175	5.52%	0.0%
100		8	0.975	0.9577	0.9923	0.9	1	0.01637	0.04629	4.75%	-4.0%
Mean Dry V	Veight-mg Detail			- 1111111111111111111111111111111111111							
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	0.11	0.11	0.09444	0.094	0.11	0.128	0.1067	0.1267		
100		0.084	0.077	0.102	0.093	0.11	0.096	0.1278	0.1089		

Survival Ra	ate Detail								
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8
0	Dilution Water	0.9	1	0.9	1	0.9	1	0.9	0.9
100		1	1	1	1	1	1	0.9	0.9

Analyst: 3~ QA:

Report Date: Test Code: 03 Sep-14 14:31 (p 3 of 4) B315105hyc | 14-8956-0499

							1631	Code:	2010	1001130	4-0900-049
Hyallela 10-d \$	Survival and Gr	owth Sec	liment Te	st						CH2M	HILL - ASL
Analysis ID:	09-4852-1884	Е	ndpoint:	Survival Rate			CET	IS Version:	CETISv1	.8.1	
Analyzed:	02 Sep-14 16:	58 A i	nalysis:	Parametric-Tw	o Sample		Offic	cial Results	: Yes		
Batch ID:	02-7863-2507	Te	st Type:	Survival-Growt	h		Anal	yst:			
Start Date:	19 Aug-14 12:4	15 P i	rotocol:	EPA/600/R-99	(2000)		Dilu	ent: Mo	d-Hard Synth	netic Wate	r
Ending Date:	29 Aug-14 08:0	00 S	oecies:	Hyalella azteca	3		Brin	e:			
Duration:	9d 19h	S	ource:	Chesapeak Cu	Itures, Naye	s, Virginia	Age	;			
Sample ID:	19-8240-7616	C	ode:	B3151-05			Clie	nt:			
Sample Date:	30 Jul-14 17:00	О М	aterial:	Sediment			Proj	ect:			
Receive Date:	07 Aug-14 11:0	00 S (ource:	Kensington Go	ld Mine (AKI	0050571)					
Sample Age:	19d 20h	St	ation:								
Sample Note:	Upper Slate Cr	eek									
Data Transforr	n	Zeta	Alt H	yp MC Trials	5	Test Res	ult			PMSD	
Angular (Correc	cted)	0	C > T	Not Run		Sample p	asses surviv	/al rate end	point	4.61%	
Equal Variance	e t Two-Sample	Test									
Control	vs Conc-%		Test 9	Stat Critical	DF	MSD	P-Value	Decision	(α:5%)		
Dilution Water	100		-1.528	1.761	14	0.07047	0.9255	Non-Sign	ificant Effect		
ANOVA Table											
Source	Sum Squ	ares	Mean	Square	DF	F Stat	P-Value	Decision	(α:5%)		
Between	0.0149396	52	0.0149	93962	1	2.333	0.1489	Non-Sign	ificant Effect		
Error	0.0896377	74	0.0064	102696	14	_					
Total	0.1045774	1	0.0213	34232	15						
Distributional `	Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Variance	Ratio F		1.25	8.885	0.7760	Equal Var	iances			
Distribution	Shapiro-\	Vilk W No	rmality	0.8678	0.8408	0.0252	Normal D	istribution			
Survival Rate S	Summary										
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0 1	Dilution Water	8	0.9375	0.9178	0.9572	0.9	1	0.0183	0.05175	5.52%	0.0%
100		8	0.975	0.9574	0.9926	0.9	1	0.01637	0.04629	4.75%	-4.0%
Angular (Corre	cted) Transfor	med Sun	ımary								
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0 1	Dilution Water	8	1.31	1.278	1.342	1.249	1.412	0.02982	0.08435	6.44%	0.0%

Analyst:____3~__ QA:_____

100

1.371

1.343

1.4

1.249

1.412

0.02667

0.07544

5.5%

-4.67%

Report Date:

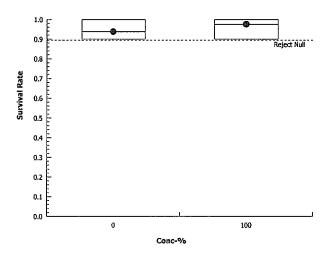
03 Sep-14 14:31 (p 4 of 4)

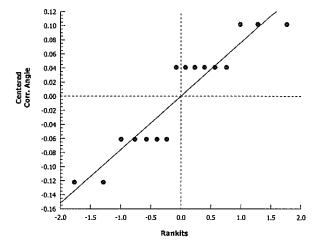
Test Code: B315105hyc | 14-8956-0499

Hyallela 10-d Survival and Growth Sediment Test

CH2M HILL - ASL

Analysis ID: Analyzed: 09-4852-1884 02 Sep-14 16:58 Endpoint: Survival Rate


Analysis: Parametric-Two Sample


CETIS Version: CET
Official Results: Yes

CETISv1.8.1

Survival Rate Detail

Сопс-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8
0	Dilution Water	0.9	1	0.9	1	0.9	1	0.9	0.9
100		1	1	1	1	1	1	0.9	0.9

Report Date: Test Code: 03 Sep-14 14:31 (p 1 of 4) B315105hyc | 14-8956-0499

											. 0000 0 10
Hyallela 10-d	Survival and G	rowth Se	ediment Te	st						CH2M	HILL - ASI
Analysis ID:	14-9869-5376	-	Endpoint:	Mean Dry We	ight-mg		CET	IS Version:	CETISv1	8.1	
Analyzed:	03 Sep-14 14:	31 .	Anaiysis:	Parametric-Tv	vo Sample		Offic	cial Results:	Yes		
Batch ID:	02-7863-2507	•	Test Type:	Survival-Grow	· ∕th		Ana	yst:			
Start Date:	19 Aug-14 12:	45 i	Protocol:	EPA/600/R-99	9/064 (2000)		Dilu	ent: Mod	-Hard Synth	etic Water	
Ending Date:	29 Aug-14 08:	00 :	Species:	Hyalella azteo	a		Brin	e:			
Duration:	9d 19h	;	Source:	Chesapeak C	ultures, Naye	s, Virginia	Age	;			
Sample ID:	19-8240-7616		Code:	B3151-05			Clie	nt:			
Sample Date:	30 Jul-14 17:0	0 I	Material:	Sediment			Proj	ect:			
=	07 Aug-14 11:0		Source:	Kensington G	old Mine (AK	0050571)	·				
Sample Age:	19d 20h	;	Station:	_	,	,					
Sample Note:	Upper Slate Ci	eek									
Data Transfor	m	Zeta	Alt H	yp MC Trial	s	Test Res	ult			PMSD	
Untransformed		0	C > T	Not Run		Sample p	asses mear	dry weight-r	ng endpoint	11.6%	***************************************
Equal Varianc	e t Two-Sample	e Test									
Control	vs Conc-%		Test S	Stat Critical	DF	MSD	P-Value	Decision(α:5%)		
Dilution Water	100		1.405	1.761	14	0.01271	0.0909	Non-Signif	icant Effect		
ANOVA Table								•			
Source	Sum Squ	ares	Mean	Square	DF	F Stat	P-Value	Decision(α:5%)		
Between	0.000411	1877	0.000	4111877	1	1.975	0.1818	Non-Signif	icant Effect		
Error	0.002915	259	0.000	2082328	14						
Total	0.003326	447	0.000	6194205	15	-					
Distributional	Tests										
Attribute	Test			Test Sta	t Critical	P-Value	Decision	(α:1%)			
Variances	Variance	Ratio F		1.624	8.885	0.5376	Equal Var	iances			
Distribution	Shapiro-	Wilk W N	Vormality	0.9686	0.8408	0.8149	Normal D	istribution			
Mean Dry Wei	ght-mg Summa	ту									
Conc-%	Control Type	Count	Mean	95% LCI	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	0.11	0.1052	0.1148	0.094	0.128	0.004454	0.0126	11.46%	0.0%

0.077

0.1278

0.005676 0.01606

0.09983 0.09373 0.1059

16.08% 9.22%

100

Report Date: Test Code:

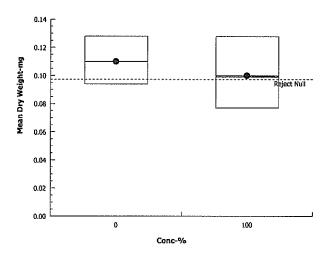
03 Sep-14 14:31 (p 2 of 4) B315105hyc | 14-8956-0499

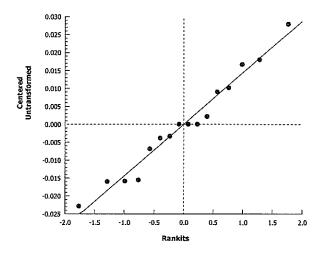
Hyallela 10-d Survival and Growth Sediment Test

CH2M HILL - ASL

Analysis ID: Analyzed:

14-9869-5376 03 Sep-14 14:31


Analysis:


Endpoint: Mean Dry Weight-mg Parametric-Two Sample **CETIS Version:** Official Results: Yes

CETISv1.8.1

Mean	Dry	We	ight-	·mg	Detail
------	-----	----	-------	-----	--------

Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8
0	Dilution Water	0.11	0.11	0.09444	0.094	0.11	0.128	0.1067	0.1267
100		0.084	0.077	0.102	0.093	0.11	0.096	0.1278	0.1089

CHM HILL TOXICITY TEST ORGANISM AND WATER QUALITY DATA

Client		Kens	sington (Kensington Gold Mine			T	Test Initiation: Date	11/2/12	Test Ten	Test Termination: Date	4/24/2
Contact						Technician	A	Go-				
Test Species/ID					\		!				/	
	T PO MANUAL								**************************************		/	
		Sam	Sample Information	mation				Test	#QI	# Q I	ID#	ID#
	•	;		Total Residual Ammonia	Ammonia	Hardness	_	Species	СНІ 19			
Sample ID Number	Field ID	Colle	Collected	Chlorine (mg/l) As As Received / Dechlor	NH ₃ -N mg/l	mg/l as CaCO ₃	mg/l as CaCO ₃	Information	Chronic			
B3151-01	Lower Sherman Creek ばかん	ek uszil	~	- / -	Coo Titre	Cos Titrotion and Ammonia	i nom	Initiation	(~10 day old)			
B3151-02	East Fork Slate Creek	* Free	שרסה	- / -	200 111	sheet	TITIOTIS	Test Container Size	300 ml			
B3151-03	Lower Johnson Creek 7/34/14	* 7134m	0300	1 / -	•	1	1	Test Volume	100 ml sample,			
B3151-04	Lower Slate Creek	7128114	1400	- / -	I		1		water			
B3151-05	Upper Slate Creek	7130/14	1700	- / -	•	-	ı	Feeding: Type	1.5 ml of a 4 g/L			The second of th
				/				Amount	Cetrafin slurry daily			
				/					1			
				/				Aeration: Began	Nowe			
				/				Amount				
				/				Dilution Water ID#	seebelow			
				/				Acclimation Period	days			
				/				Test Location	2 #			
				/				Initial Size (mg/org)	Granded Loss			
					Hardness	Alkalinity	Initial	Comments: 🗹 Indic	☑ Indicates the following action was taken, (☐ Indicates action not taken):	ction was taken,	(Indicates action	on not taken):
	Dilution Water			ID#	mg/l as	mg/l as	Hď					
					$CaCO_3$	$CaCO_3$						
Dilution Sediment	nent			7017	ı	ŧ	1					
Recon MH (FHM)	HM)			4095	88	79	€′8					
				4101	96	09	2.8					
				4103	88	09	2'8					HARMING AND
				4106	86	64	8,3		Water Qua	Water Quality Meters Used/ID#	VID#	
						-		Dissolved Oxygen	xygen # 2 3	11 ∮ # Hd	Conductivity	# 2
									V)Va			

후신당 N.선 시15 | 1년 Kensington Chironomid with randomization 10 day.xism Doc. Control ID: ASL1120-0814

	Chiron	omid RANDC	MIZATION SHEET	Ī	
Client:	Kensington Gold	Mine	Test Start Date:	8/19/14	
Laboratory ID:	Field ID:	Alternate ID / Dilutions:	Replicate ID:	Random Number	Test Chamber Number:
B3151-01	Lower Sherman Creek		A	0.92117	4
B3151-03	Lower Johnson Creek		A	0.71907	13
B3151-05	Upper Slate Creek		Α	0.62524	18
B3151-04	Lower Slate Creek		Α	0.51942	22
B3151-02	East Fork Slate Creek		Α	0.04823	45
Sediment Control	Beaver Creek	Control	А	0.01989	48
B3151-04	Lower Slate Creek		В	0.93243	3
B3151-05	Upper Slate Creek		В	0.71210	14
B3151-03	Lower Johnson Creek		В	0.65510	17
Sediment Control	Beaver Creek	Control	В	0.42332	25
B3151-02	East Fork Slate Creek		В	0.22938	33
B3151-01	Lower Sherman Creek		В	0.06775	43
B3151-02	East Fork Slate Creek		С	0.86065	6
B3151-05	Upper Slate Creek		С	0.77573	9
Sediment Control	Beaver Creek	Control	С	0.45364	24
B3151-04	Lower Slate Creek		C	0.37166	27
B3151-03	Lower Johnson Creek		С	0.28149	32
B3151-01	Lower Sherman Creek		С	0.03509	47
B3151-03	Lower Johnson Creek		D	0.90258	5
B3151-04	Lower Slate Creek		D	0.59097	20
B3151-01	Lower Sherman Creek		D	0.22137	34
B3151-05	Upper Slate Creek		D	0.14045	38
B3151-02	East Fork Slate Creek		D	0.10711	40
Sediment Control	Beaver Creek	Control	D	0.08348	42
B3151-03	Lower Johnson Creek		Е	0.97641	2
B3151-04	Lower Slate Creek		E	0.84820	7
B3151-01	Lower Sherman Creek		E	0.76789	10
B3151-02	East Fork Slate Creek		E	0.34211	28
B3151-05	Upper Slate Creek		E	0.10396	41
Sediment Control	Beaver Creek	Control	Е	0.05331	44
B3151-02	East Fork Slate Creek		F	0.99566	1
B3151-01	Lower Sherman Creek		F	0.75479	11
B3151-05	Upper Slate Creek		F	0.67009	16
Sediment Control	Beaver Creek	Control	F	0.31801	29
B3151-04	Lower Slate Creek		F	0.12864	39
B3151-03	Lower Johnson Creek		F	0.03544	46
Sediment Control	Beaver Creek	Control	G	0.83808	8
B3151-05	Upper Slate Creek		G	0.55680	21
B3151-03	Lower Johnson Creek		G	0.46115	23
B3151-02	East Fork Slate Creek		G	0.37245	26
B3151-04	Lower Slate Creek		G	0.30101	30
B3151-01	Lower Sherman Creek		G	0.17411	37
B3151-04	Lower Slate Creek		H	0.75397	12
B3151-05	Upper Slate Creek		Н	0.67795	15
B3151-02	East Fork Slate Creek	_	Н	0.60476	19
B3151-03	Lower Johnson Creek		H	0.28912	31
B3151-01	Lower Sherman Creek		Н	0.21370	35
Sediment Control	Beaver Creek	Control	Н	0.19136	36
	***************************************		Z		
			Z		
**************************************			Z		
			z		

TITRATION AND AMMONIA DATA

Client	Kensington Gold Mine	Species ID#	CHI	19	
Sample Description:	See Randomization Sheet.	Start Date	8/19	14	

Sample Description:	See Kandomizat		1		Start Date	
Laboratory ID		dness s CaCO ₃) Final	1	linity CaCO ₃) Final	i	monia s NH ₃ -N) Final
Sediment Control	77.2	109.3	53.7	72.9	0.16	0.69
B3151-01	91.6	120.4	64.3	78.5	< 0. i	0.17
B3151-02	101.Ce	120.7	64.9	75.8	40,1	0.18
B3151-03	89.4	114.0	59.9	74.5	40-1	0.29
B3151-04	93.8	112.0	(e4.5	74.3	< 0.1	0.11
B3151-05	84.1	114.7	58.8	76.4	20.1	0,66
		•				
	4					

_		_	1
=	ī		
ï	į		
ľ	į	ì	
ì	Ì		
C)	

FRESHWATER TOXICITY TEST SURVIVAL AND WATER QUALITY DATA Beginning (Day 0), Date 8/13/7

MG 01 40 01	1321 332 332 332 332 332 332 332 332 332
NIVAL AND WATER QUALITY DATA	Condu (umo o o o o o o o o o o o o o o o o o o
Time Time Time Time Time Time Day	C Days PH 0 0 10 10 10 10 10 10 10 10 10 10 10 10
	22.7 22.7 22.8 22.7 22.8 22.9 22.7 22.8 22.7 22.8 22.7 22.8 22.7 22.8 23.1 22.9 23.1 22.9 23.1 22.9 23.1 22.9 23.1 22.9 23.1 22.9 22.8 23.1 22.9 22.8 23.1 22.9 22.8 23.1 22.9 22.8 23.1 22.9 22.8 23.1 22.9 22.8 23.1 22.9 22.8 23.1 22.9 22.8 23.1 22.9 23.1 22.1 22.1 22.1 22.1 22.1 22.1 22.1
ER QUALITY D. E. 8/19/1/ 8	bay 6 V Day 7 C Day 8 C 10 0 0 10 0 0 10 0 0 0 0 0 0 0 0 0 0
WATER (0), Date (1), Date (2), Day 6 (3) (4) (4) (5) (4) (6) (7) (6) (7) (7) (7) (7) (7	Day 6 7 . 2.28 27.4 . 2.28 27.4 . 2.28 27.4 . 3.0 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 .
SURVIVAL AND WATER QUALITY DATA Beginning (Day 0), Date	Days C. 1 Camperature (°C) 12.8 12.8 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9
HEST SURVIVAL	Day 4 Day 5 Day 6 2 3 4 5 6 23 0 33.9 72.4 22.8 32.8 72.7 33.0 72.4 22.8 32.8 23.1 23.0 73.0 22.8 22.8 23.1 23.0 73.0 22.8 22.8 23.1 23.0 73.0 22.8 22.8 23.1 23.0 73.0 22.8 22.8 23.1 23.0 73.0 22.8 22.8 23.1 23.0 73.0 22.8 22.8 23.1 23.0 23.4 23.3 23.0 23.4 24.8 22.9 23.1 22.9 22.9 25.1 22.9 22.9 22.9 25.1 22.9 22.9 22.9 26.1 22.9 22.9 22.9 27.8 22.9 22.9 22.9 27.9 22.9 22.9 22.9 27.9 22.9 22.9 22.9 27.9 22.9 22.9 22.9 27.9 22.9 22.9 22.9 27.9 22.9 22.9 22.9 27.9 22.9 22.9 22.9 27.9 22.9 22.9 22.9 27.9 22.9 22.9 22.9 27.9 22.9 22.9 22.9 27.9 22.9 22.9 22.9 27.9 22.9 22.9 22.9 27.9 22.9 22.9 22.9 27.9 27.9 22.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27
RESHWATER TOXICITY TEST SURVIVAL AND WATER QUALITY DATA Beginning (Day 0), Date B / 19 / 10 / 10	Temperature (°C) 1 2 3 4 5 6 22.6 23.0 23.0 22.4 22.8 :2.8 22.8 22.7 22.8 23.1 23.0 22.9 22.8 22.8 23.1 23.0 23.0 22.9 22.8 23.0 23.1 23.0 23.3 23.0 22.9 22.7 22.8 22.1 23.0 23.3 23.0 22.9 22.7 22.8 22.1 22.9 22.9 22.9 22.7 22.9 22.9 22.9 22.9 22.7 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.
MC * Day 3 1 1 1 1 1 1 1 1 1	Day 3 22 23 24 25 25 25 27 27 28 28 28 28 28 28 28 28
3151 DW Day 2 MC/ 0630 Day 2 MC/ 177 Day 2 MC/	
1 1 101 48	Day1 Day2
Itoh Nu Sec. 177	7 (Light of 27 27 27 27 27 27 27 27 27 27 27 27 27
zation Sh	Dissolved Oxygen (mg/l) 3 4 5 6 1. 5 4 7 1 7 3 2. 0 5 4 7 1 7 3 3. 1 5 5 6 7 7 7 5. 5 6 4 7 7 7. 5 6 7 7 7. 5 6 7 7 7. 5 6 7 7 7. 5 6 7 7 7. 5 6 7 7 7. 5 7 7 7. 5 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
See Randomii Tech. Time There 10;	Feeding: 4
SI	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Client Client Sample Description Test Species: Chironomus tentans ID#:	Beaker Number 13 18 22 22 45 48 6

Kensington Chironomid with randomization 10 day.xlsm Doc. Control ID: ASL 1120-0614

CHA	VI HIL	<u>L</u>	FR	RESHWATER TOXICITY TEST	SURVIV	AL AN	D WAT	ER QUA	ALITY DATA	
Client			Kencir	ogton Gold Mine						.45
Sample D	escription	See Ra	ndomizati	on Sheet(s). Batch number: B 3151		Ending, I	Date	2,/29/14	7 Time 12 Time 12	٥٥
Test Spec	ies: <u>C</u>	hironomus	tentans	ID#: AMPCAI G						
Test Initia	ation:	Tech:	Tech:	Time: <u>082</u>	Test Ten	mination:	Tech:	Tech:	MC JON	Time: (2.00
Beaker	Start Count	# alive found	# dead found		Beaker	Start Count	# alive found	# dead found		
Number	0	10	10	Comments:	Number	0	10	10	Comments:	
1	10	8	0		16	10	9	0		
2	10	9	ی		17	10	9	0		
3	10	8	0		18	10	9	O		
4	10	9	0		19	10	9	0		
5	10	9	0		20	10	8	0		
6	10	9	Ò		21	10	10	0		
7	10	9	0		22	10	9	0		
8	10	9	Ò		23	10	Oi	0		
9	10	910	0 0		24	10	10	0		
10	10	9	0	italizinous notel.	25	10	ID	0		
11	10	9	0		26	10	9	0	indige native	ntal
12	10	ID	0		27	10	9	0		
13	10	[0	0		28	10	9	0		
14	10	9	0		29	10	9	0		
15	10	8	0		30	10	10	Ò		
										
									A CONTRACTOR OF THE CONTRACTOR	

lient ample D	escription	see Ra	ndomizati	gton Gold Mine on Sheet(s). Batch	number: B 3151 #: AMP C41 19	.	Beginning Ending, D	g, Date Date	2119. Esza11	//4 Time 1245 Y Time 1200
		hironomus Tech:	Tech:	ID:	#: AMP C41 19 19 19 19 19 19 19 19 19 19 19 19 19	Test Terr	nination:	Tech:	Tech:	BN/JDC /M ³ Time: 120
Beaker	Start Count	# alive found	# dead found 10	Comments:	thank i	Beaker Number	Start Count	# alive found 10	# dead found	Comments:
31	10	8	()			46	10	7)	
32	10	8	0		· · · · · · · · · · · · · · · · · · ·	47	10	8	P	
33	10	8	0			48	10		0	no bokies
34	10	19	9		_	49	10			
35	10	9	0			50	10			
36	10	00	O	.		51	10			
37	10	ĝ	0			52	10			
38	10	9	0			53	10	:		
39	10	9	0			54	10			
40	10 800 X	10	0			55	10			
41	وراني 10	M/10	O			56	10			
42	10	ĺ	0	-nu bubies		57	10			
43	10	8	0			58	10			
44	10	<i>j</i> o	0			59	10			
45	10	8	()			60	10			
., "	<u> </u>									
										

Client	Kensington	Gold Mine	Species ID# AMP #19
Lab ID: see randomiza	ation sheet batch number: B 3151		Start Date
Sample Description:	Weights of Chironomids	at test initiation (= m	umber of replicates as the test, 10 Midge each)
Technician: Date: Balance Serial #:	50309851	50309851	

Tin ID Number	Total Weight (mg) (after 60°C for 24 hr)	Tare Weight (mg) (after 60°C for 24 hr)	No. of Amphipods Surviving	No. of Amphipods in Tin
	·			10
@ Initiation A			na	10
@ Initiation B			na	10
@ Initiation C			na	10
@ Initiation D			na	10
@ Initiation E			na	10
@ Initiation F			na	10
@ Initiation G			na	10
@ Initiation H			na	10

weigh to 0.01 mg

* insufficient organisms evaluable (<10) following test initiation for allection of initial wts.

From supplier: deposted on 8/7/14
Sceond mister on 2/17/14

Chironomus tentans GROWTH DATA

Client _		Kensington	Gold Mine	Tins Labeled As:	KENS. CHIRO.	
Lab ID: see randomization sheet		sheet batch nur	nber: B3151	Start Date	8/19/2014	
Sample I	Description:					
	Technician:	KJ	KJ			
	Date:	9/2/2104	8/15/2104			
Ė	Balance Serial #:	B328543647	B328543647			

Tin ID Number	Total Weight (mg) (after 60°C for 24 hr)	Tare Weight (mg) (after 60°C for 24 hr)	Total Ash Weight after 550°C for 2 hrs.	No. of Chironomids in Tin
•	70.00	60.05	71.01	_
1	78.09	68.95	71.34	8
2	77.42	68.03	70.81	9
3	78.45	67.56	71.59	8
4	80.48	67.99	73.45	9
5	80.53	67.81	73.42	9
6	78.61	67.68	71.04	9
7	81.51	68.49	74.41	9
8	77.81	67.36	70.61	9
9	80.44	68.50	72.56	10
10	78.65	67.20	71.79	9
11	80.00	67.19	73.03	9
12	80.93	68.32	73.39	10
13	81.51	68.74	74.57	10
14	80.00	68.25	72.88	9
15	79.60	68.16	72.17	8
16	81.01	68.18	73.03	9
17	81.58	68.54	75.96	9
18	80.34	67.87	72.03	9
19	80.95	68.17	73.25	9
20	80.66	67.37	72.23	8
21	80.21	67.57	72.36	10
22	83.64	68.88	74.63	9
23	81.02	67.72	73.61	10
24	82.13	67.32	72.50	10
25	80.61	68.17	75.39	10
26	77.48	67.92	72.06	9
27	82.94	68.88	73.37	9
28	81.61	68.92	74.98	9
29	80.26	67.65	70.73	9
30	83.18	68.57	72.40	10

Chironomus tentans GROWTH DATA

Client _		Kensington	Gold Mine	Tins Labeled As:	KENS. CHIRO.		
Lab ID:	see randomization she	et batch nur	nber: B3151	Start Date	8/19/2014		
Sample D	Description:						
	Technician:	KJ	KJ				
	Date:	9/2/2014	8/15/2014				
В	alance Serial #: B	328543647	B328543647				

Tin ID Number	Total Weight (mg) (after 60°C for 24 hr)	Tare Weight (mg) (after 60°C for 24 hr)	Total Ash Weight	No. of Chironomids in Tin	
31	79.63	69.06	72.84	8	
32	77.49	67.25	70.57	8	
33	78.80	68.07	71.00	8	
34	79.20	67.81	72.21	10	
35	79.56	68.51	73.74	9	
36	79.87	68.26	72.08	8	
37	78.52	67.54	71.96	9	
38	80.06	68.99	72.30	9	
39	80.70	68.01	71.97	9	
40	80.90	68.07	72.30	10	
41	79.50	67.11	71.11	10	
42	70.16	68.25	68.75	1	
43	79.86	67.96	72.33	8	
44	81.46	68.36	72.89	10	
45	80.38	67.99	71.65	8	
46	79.41	67.74	72.28	7	
47	80.74	67.95	73.97	8	
48	70.41	67.98	68.62	1	
			AND CONTRACTOR OF THE CONTRACT		

weigh to 0.01 mg

Chironomus tentans GROWTH DATA

Client		Kensington Gol	d Mine	_ Tins Labeled As	3:	KENS. CHIRO.
Lab ID:	see randomization sheet	batch number: B3151		Start Date	8/19/14	
Sample D	escription:					
	Technician:		КJ			
	Date:		8/15/2104			
B	alance Serial #: B32	8543647	B328543647			

Tin ID Number	Total Weight (mg) (after 60°C for 24 hr)	Tare Weight (mg) (after 60°C for 24 hr)	No. of Chironomids Surviving	No. of Chironomids in Tin	
1		68.95	8	8	
2		68.03		9	
3		67.56	8	8	
4		67.99		9	
5		67.81	9	9	
6		67.68		9	
7		68.49	g	9	
8				9	
9		67.36			
		68.50		rb G	
10		67.20	9	9	
11		67.19	9		
12		68.32	10	10	
13		68.74		lo	
14		68.25		9	
15		68.16		8	
16		68.18	9	9	
17		68.54		9	
18		67.87		9	
19		68.17	9	9	
20		67.37		8	
21		67.57		10	
22		68.88		9	
23		67.72		10	
24		67.32		10	
25		68.17		10	
26		67.92		9	
27		68.88		9	
28		68.92		9	
29		67.65		9	
30		68.57		10	

weigh to 0.01 mg

Chironomus tentans GROWTH DATA

Client		Kensington C	Tins Labeled As:	KENS. CHIRO.		
Lab ID:	see randomization sheet	batch numb	er: B3151	Start Date	8/19/14	
Sample D	escription:				•	
	Technician:		KJ			
	Date:		8/15/2014		•	
Ba	alance Serial #: B32	28543647	B328543647			

		L	
	69.06		
			<u> </u>
			&
			10
			8
			9
			9
			9
			10
			10
			1
1,000			<i>8</i>
		***************************************	10
			8
	67.74		7
	67.95		ි
	67.98		
_		. 1111111111111111111111111111111111111	
		67.95	68.07 67.81 68.51 68.26 67.54 68.99 68.01 68.07 67.11 68.25 67.96 68.36 67.99 67.74 67.95

weigh to 0.01 mg

CETIS Summary Report

Report Date: Te

03 Sep-14 14:52 (p 1 of 1)

report Date.	00 00p-17 17.02 (p 1 01 1
est Code:	B315101ctc 18-6865-572

Chironomus 1	0-d Survival and	Growth Sedime	ent Test						CH2M I	HILL - ASL
Batch ID:	09-0601-4656	Test Type:	: Survival-AF G	Survival-AF Growth						
Start Date:	19 Aug-14	Protocol:	EPA/600/R-99	9/064 (2000)		Dil	luent: Lab	oratory Sea	water	
Ending Date:	28 Aug-14	Species:	Chironomus te	entans		Br	ine:			
Duration:	9d 0h	Source:	Aquatic Biosy	stems, CO		Ag	e:			
Sample ID:	14-5240-4181	Çode:	B3151-01			Cli	ent:			
Sample Date:	30 Jun-14 07:00	Material:	_Sediment			Pr	oject:			
Receive Date:	03 Jul-14	Source:	Kensington G	old Mine (AK	0050571)					
Sample Age:	_49d-17h	Station:								
Sample Note:	Lower Sherman	Creek								.,
Comparison S	Summary									
Analysis ID	Endpoint	NOE	L LOEL	TOEL	PMSD	TU	Method			
17-2565-6922	Mean AF Biomas	s-mg 100	>100	n)/A	34.7%	1	Unequal \	/ariance t Tv	vo-Sample	Test
09-1965-8464	Survival Rate	100	>100	/N/A	34.1%	1	Wilcoxon	Rank Sum ⁻	Fwo-Sample	e Test
Test Acceptab	ility									
Analysis ID	Endpoint	Attril	bute	Test Stat	TAC Lim	its	Overlap	Decision		
09-1965-8464	Survival Rate	Cont	rol Resp	0.725	0.7 - NL		Yes	Passes A	cceptability	Criteria
Mean AF Bion	nass-mg Summar	у								
Conc-%	Control Type	Count Mear	n 95% LCI	_ 95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8 0.639	92 0.517	0.7615	0.141	0.963	0.1158	0.3274	51.22%	0.0%
100		8 0.68	16 0.6634	0.6999	0.582	0.753	0.01728	0.04886	7.17%	-6.63%
Survival Rate	Summary									
Conc-%	Control Type	Count Mear	າ 95% LCI	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8 0.725	0.5787	0.8713	0.1	1	0.1386	0.3919	54.05%	0.0%
100		8 0.887	75 0.8636	0.9114	8.0	1	0.02266	0.06409	7.22%	-22.41%
Mean AF Bion	nass-mg Detail									
Conc-%	Control Type	Rep 1 Rep	2 Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		

Survival Rate Detail									
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8
0	Dilution Water	0.1	1	1	0.1	1	0.9	0.9	0.8
100		0.9	0.8	8.0	1	0.9	0.9	0.9	0.9

0.141

0.699

0.857

0.686

0.953

0.697

0.72

0.656

0.779

0.582

0.179

0.703

Dilution Water

0.522

0.753

0.963

0.677

0

100

CETIS	Analytical	Report
--------------	------------	--------

Report Date: Test Code: 03 Sep-14 14:52 (p 1 of 4) B315101ctc | 18-6865-5722

								. oouc.		3.0.010 1	0 0000 011
Chironomus 1	0-d Survival an	d Growth	Sedimen	ıt Test						CH2M	HILL - AS
Analysis ID: Analyzed:	09-1965-8464 03 Sep-14 14:5				-Two Sampl	e		IS Version: cial Results		.8.1	
Batch ID:	09-0601-4656	Te	est Type:	Survival-AF Gro	owth		Anal	lyst:			
Start Date:	19 Aug-14	Pr	rotocol:	EPA/600/R-99/	064 (2000)		Dilu	ent: Lab	oratory Sea	water	
Ending Date:	28 Aug-14	S	pecies:	Chironomus ter	ntans		Brin	e:			
Duration:	9d 0h	Sc	ource:	Aquatic Biosyst	tems, CO		Age	:			
Sample ID:	14-5240-4181	Co	ode:	B3151-01			Clie	nt:			
Sample Date:	30 Jun-14 07:0	0 M :	aterial:	Sediment			Proj	ect:			
Receive Date:	03 Jul-14	Sc	ource:	Kensington Gol	ld Mine (AK	0050571)					
Sample Age:	49d 17h	St	ation:								
Sample Note:	Lower Sherman	n Creek									
Data Transforr	n	Zeta	Alt Hy	p MC Trials		Test Res	ult			PMSD	
Angular (Correc	cted)	0	C > T	Not Run	Not Run Sample passe			sses survival rate endpoint			
Wilcoxon Ran	k Sum Two-Sar	nple Test									
Control	vs Conc-%		Test S	itat Critical	DF	Ties	P-Value	Decision	(α:5%)		
Dilution Water	100		67.5		14	3	0.4796 Non-Significant E		ificant Effect		- N
ANOVA Table										-	
Source	Sum Squ	ares	Mean	Square	DF	F Stat	P-Value	Decision	(α:5%)		
Between	0.1201927	7	0.1201	927	1	1.051	0.3226	Non-Signi	Non-Significant Effect		
Error	1.600471		0.1143	3194	14						
Total	1.720664		0.2345	121	15	_					
Distributional '	Tests			•							
Attribute	Test			Test Stat	Critical	P-Value	Decision	(a:1%)			
Variances	Variance	Ratio F		23.62	8.885	0.0005	Unequal \	/ariances			
Distribution	Shapiro-V	Vilk W No	rmality	0.8051	0.8408	0.0032	Non-norm	al Distributi	on		
Survival Rate	Summary										
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	0.725	0.5759	0.8741	0.1	1	0.1386	0.3919	54.05%	0.0%
100		8	0.8875	0.8631	0.9119	0.8	1	0.02266	0.06409	7.22%	-22.41%
Angular (Corre	cted) Transfor	med Sum	ımary								
		Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
Conc-%	Control Type	Count	moun								
	Dilution Water	8	1.061	0.8824	1.239	0.3218	1.412	0.1656	0.4684	44.16%	0.0%

Report Date:

03 Sep-14 14:52 (p 2 of 4)

Test Code:

B315101ctc | 18-6865-5722

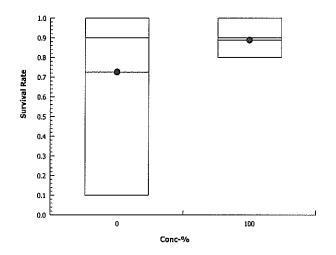
Chironomus 10-d Survival and Growth Sediment Test

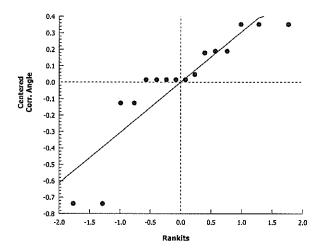
CH2M HILL - ASL

Analysis ID: Analyzed:

09-1965-8464 03 Sep-14 14:52 Endpoint: Survival Rate

Analysis: Nonparametric-Two Sample


CETIS Version:


CETISv1.8.1

Official Results: Yes

Survival Rate Detail

Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	
0	Dilution Water	0.1	1	1	0.1	1	0.9	0.9	0.8	
100		0.9	0.8	0.8	1	0.9	0.9	0.9	0.9	

Report Date:	03 Sep-14 14:52 (p 3 of 4)
Test Code:	B315101ctc 18-6865-5722

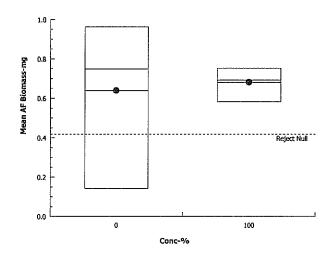
							1031	ocac.	5011	31010101	0 0000 072
Chironomus 1	l0-d Survival ar	nd Growth	Sedimen	t Test						CH2M	HILL - AS
Analysis ID:	17-2565-6922	E	ndpoint:	Mean AF Biom	ass-mg		ÇET	S Version:	CETISv1	.8.1	
Analyzed:	03 Sep-14 14:	51 A ı	nalysis:	Parametric-Two	o Sample		Offic	ial Results	: Yes		
Batch ID:	09-0601-4656	Te	est Type:	Survival-AF Gro	owth		Anal	yst:			
Start Date:	19 Aug-14	Pı	rotocol:	EPA/600/R-99/	064 (2000)		Dilue	ent: Lab	oratory Sea	water	
Ending Date:	28 Aug-14	SI	pecies:	Chironomus ter	ntans		Brin	e:			
Duration:	9d 0h	S	ource:	Aquatic Biosyst	tems, CO		Age:				
Sample ID:	14-5240-4181	C	ode:	B3151-01			Clier	nt:			
Sample Date:	30 Jun-14 07:0	00 M	aterial:	Sediment			Proje	ect:			
Receive Date:	03 Jul-14	Sc	ource:	Kensington Gol	ld Mine (AK(0050571)					
Sample Age:	49d 17h	St	tation:								
Sample Note:	Lower Sherma	n Creek									***
Data Transfor	m	Zeta	Alt Hy	p MC Trials		Test Res	ult			PMSD	
Untransformed		0	C>T	Not Run		Sample p	asses mean	af biomass	-mg endpoir	nt 34.7%	
Jnequal Varia	nce t Two-Sam	ple Test									
Control	vs Conc-%		Test S	tat Critical	DF	MSD	P-Value	Decision((α:5%)		
Dilution Water	100		-0.362	1.895	7	0.2218	0.6360	Non-Signi	ficant Effect		
ANOVA Table											
Source	Sum Squ	ares	Mean :	Square	DF	F Stat	P-Value	Decision((α:5%)		
Between	0.007182	563	0.0071	82563	1	0.1311	0.7227	Non-Signi	ficant Effect		
Error	0.767260	7	0.0548	0433	14	-					
Total	0.7744432	2	0.0619	8689	15						
Distributional	Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision(α:1%)			
/ariances						<0.0001	Unequal \	/ariances			
Distribution	Shapiro-\	Wilk W No	rmality	0.8878	0.8408	0.0515	Normal Di	stribution			
lean AF Bion	nass-mg Summ	ary									
Conc-%	Control Type	Count	Mean		95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
	Dilution Water	8	0.6392	0.5147	0.7638	0.141	0.963	0.1158	0.3274	E4 000/	0.0%
)	Dilution water	0	0.0582	0.0147	0.7030	0.141	0.903	0.1100	0.3274	51.22%	0.0%

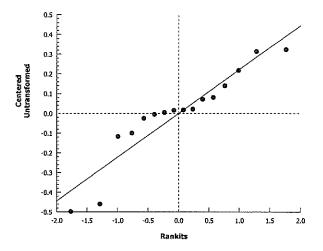
Report Date: Test Code: 03 Sep-14 14:52 (p 4 of 4) B315101ctc | 18-6865-5722

Chironomus 10-d Survival and Growth Sediment Test

CH2M HILL - ASL

Analysis ID: Analyzed:


17-2565-6922 03 Sep-14 14:51 Endpoint: Mean AF Biomass-mg
Analysis: Parametric-Two Sample


CETIS Version: CET Official Results: Yes

CETISv1.8.1

Mean AF Biomass-mg Detail

Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8
0	Dilution Water	0.179	0.522	0.963	0.141	0.857	0.953	0.72	0.779
100		0.703	0.753	0.677	0.699	0.686	0.697	0.656	0.582

CETIS Sur	ETIS Summary Report									•	53 (p 1 of 1) 7-6326-6222
Chironomus	10-d Survival ar	d Grow	th Sedime	nt Test						CH2M	HILL - ASL
Batch ID: Start Date: Ending Date: Duration:	rt Date: 19 Aug-14 Protocol: EPA/600/R-99/064 (2000 ling Date: 28 Aug-14 Species: Chironomus tentans ation: 9d 0h Source: Aquatic Biosystems, CO						Dil	ne:	oratory Sea	water	
Sample ID: Sample Date: Receive Date: Sample Age:	03-0055-2849 02 Jul-14 07:00 : 03 Jul-14 47d 17h)	Code: Material: Source: Station:	B3151-02 Sediment Kensington Go	d Mine (AK	0050571)		ent: oject:			
Sample Note:	East Fork Slate	Creek									
Comparison S	Summary Endpoint	are to survive recognition	NOEL	. LOEL	TOEL	PMSD	TU	Method			
14-0267-3450 17-2925-8820	Mean AF Biom	ass-mg	100 100	>100 >100 >100	N/A N/A	35.5% 34.3%	1 1	Unequal \		wo-Sample Two-Sample	
Test Acceptat	•	-									
Analysis ID 17-2925-8820	Endpoint Survival Rate		Attrib Contro	ute ol Resp	7est Stat 0.725	0.7 - NL	its	Overlap Yes	Decision Passes A	cceptability	Criteria
Mean AF Bion	nass-mg Summ	ary									
Conc-%	Control Type	Count	t Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	0.639	2 0.517	0.7615	0.141	0.963	0.1158	0.3274	51.22%	0.0%
100		8	0.74	0.699	0.781	0.542	0.873	0.03878	0.1097	14.82%	-15.76%
Survival Rate	Summary										
Conc-%	Control Type	Count	t Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	0.725	0.5787	0.8713	0.1	1	0.1386	0.3919	54.05%	0.0%
		_									

000-092-181-2 CETIS™ v1.8.1.2 Analyst:____

0.875

Rep 2

0.522

0.78

Rep 2

0.8

0.8486

Rep 3

0.963

0.757

Rep 3

1

0.9

0.9014

Rep 4

0.141

0.86

Rep 4

0.1

1

8.0

Rep 5

0.857

0.663

Rep 5

0.9

1

Rep 6

0.953

0.675

Rep 6

0.9

0.8

0.025

Rep 7

0.72

0.542

Rep 7

0.9

0.9

0.07071

Rep 8

0.779

0.77

Rep 8

0.8

0.9

8.08%

-20.69%

QA:_

8

Rep 1

0.179

0.873

Rep 1

0.1

8.0

100

0

0

100

100

Conc-%

Conc-%

Mean AF Biomass-mg Detail

Survival Rate Detail

Control Type

Dilution Water

Control Type

Dilution Water

Report Date: Test Code:

03 Sep-14 14:53 (p 1 of 4) B315102ctc | 17-6326-6222

Chironomus 1	I0-d Survival an	d Growth	Sedimen	t Test						CH2M	HILL - ASL
Analysis ID: Analyzed:	17-2925-8820 03 Sep-14 14:5			Survival Rate Nonparametric	-Two Sampl	e		IS Version: cial Results		.8.1	
Batch ID:	09-0601-4656	Te	st Type:	Survival-AF Gre	Survival-AF Growth Analyst:						
Start Date:	19 Aug-14	Pr	otocol:	EPA/600/R-99/	064 (2000)		Dilu	ent: Lab	oratory Seav	water	
Ending Date:	28 Aug-14	Sp	ecies:	Chironomus ter	ntans		Brin	e:			
Duration:	9d 0h	Sc	ource:	Aquatic Biosys	tems, CO		Age:	:			
Sample ID:	03-0055-2849	Cc	de:	B3151-02			Clie	nt:			
Sample Date:	02 Jul-14 07:00) Ma	aterial:	Sediment			Proj	ect:			
Receive Date:	03 Jul-14	So	urce:	Kensington Gol	ld Mine (AK	0050571)					
Sample Age:	47d 17h	Sta	ation:								
Sample Note:	East Fork Slate	Creek									
Data Transfori	m	Zeta	Alt Hy	p MC Trials		Test Res	ult			PMSD	
Angular (Corre	rected) 0 C > T Not Run Sample passes survival rate endpoint						34.3%	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Wilcoxon Ran	k Sum Two-Sar	nple Test									
Control	vs Conc-%		Test S	tat Critical	DF	Ties	P-Value	Decision	(α:5%)		
Dilution Water	100		66		14	3	0.4392	Non-Signi	ficant Effect		
ANOVA Table								. ,			1030
Source	Sum Squ	ares	Mean	Square	DF	F Stat	P-Value	Decision	(a:5%)		
Between	0.0968541		0.0968	541	1	0.8402	0.3749	Non-Signi	ficant Effect		
Error	1.613803		0.1152	717	14						
Total	1.710657		0.2121	257	15						
Distributional	Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision((α:1%)			
Variances	Variance	Ratio F		19.6	8.885	0.0009	Unequal \	/ariances			
Distribution	Shapiro-V	Vilk W Nor	mality	0.8122	0.8408	0.0040	Non-norm	al Distribution	òπ		
Survival Rate	Summary										
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	0.725	0.5759	0.8741	0.1	1	0.1386	0.3919	54.05%	0.0%
100		8	0.875	0.8481	0.9019	0.8	1	0.025	0.07071	8.08%	-20.69%
Angular (Corre	ected) Transform	ned Sum	mary		<u> </u>						
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	cv%	%Effect
	50 111 .	8	4.004	0.0004	4.000	0.2040	4 4 4 5	0.4050	0.4004	44.400/	0.0%
0	Dilution Water	8	1.061	0.8824	1.239	0.3218	1.412	0.1656	0.4684	44.16%	0.076

Report Date:

03 Sep-14 14:53 (p 2 of 4)

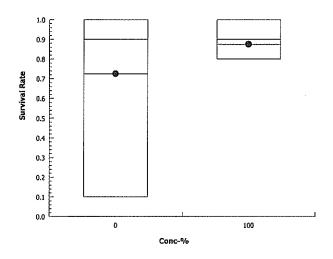
Test Code:

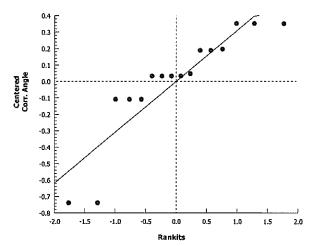
B315102ctc | 17-6326-6222

Chironomus 10-d Survival and Growth Sediment Test

CH2M HILL - ASL

Analysis ID: Analyzed:


17-2925-8820 03 Sep-14 14:53 Endpoint: Survival Rate


Analysis: Nonparametric-Two Sample **CETIS Version:** Official Results: Yes

CETISv1.8.1

Survival Rate Detail

Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8
0	Dilution Water	0.1	1	1	0.1	1	0.9	0.9	0.8
100		0.8	0.8	0.9	1	0.9	0.8	0.9	0.9

Report Date: Test Code: 03 Sep-14 14:53 (p 3 of 4) B315102ctc | 17-6326-6222

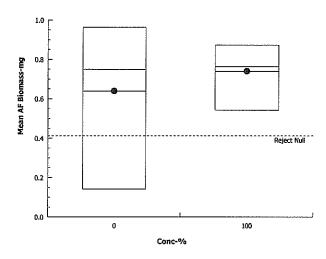
							1636	Joue.	501.	0102010 1	1-0020-022
Chironomus 1	10-d Survival ar	nd Growth	Sedimer	nt Test						CH2M	HILL - ASI
Analysis ID:	14-0267-3450		dpoint:	Mean AF Bio	_			IS Version:		.8.1	
Analyzed:	03 Sep-14 14:	b3 Ana	alysis:	Parametric-T	vo Sample		Offic	ial Results	: Yes		
Batch ID:	09-0601-4656	Tes	t Type:	Survival-AF G	Frowth		Anai	yst:			
Start Date:	19 Aug-14	Pro	tocol:	EPA/600/R-9	9/064 (2000)		Dilu	ent: Lab	oratory Sea	water	
Ending Date:	28 Aug-14	Spe	ecies:	Chironomus t	entans		Brin	e:			
Duration:	9d 0h	Sot	urce:	Aquatic Biosy	stems, CO		Age				
Sample ID:	03-0055-2849	Cod	de:	B3151-02			Clie	nt:			
Sample Date:	02 Jul-14 07:00	D Mat	terial:	Sediment			Proj	ect:			
Receive Date:	03 Jul-14	Sou	лсе:	Kensington G	old Mine (AK	0050571)					
Sample Age:	47d 17h	Sta	tion:								
Sample Note:	East Fork Slate	e Creek									
Data Transfor	m	Zeta	Alt H	yp MC Tria	S	Test Res	uit			PMSD	
Untransformed		0	C > T	Not Run		Sample p	asses mear	af biomass	-mg endpoir	nt 35.5%	
Unequal Varia	nce t Two-Sam	ple Test									
Control	vs Conc-%		Test S	Stat Critical	DF	MSD	P-Value	Decision	(α:5%)		
Dilution Water	100		-0.825	2 1.86	8	0.227	0.7834	Non-Signi	ficant Effect		
ANOVA Table											
Source	Sum Squ	ares	Mean	Square	DF	F Stat	P-Value	Decision	(α:5%)		
Between	0.040602	23	0.0406	50223	1	0.6809	0.4231	Non-Signi	ficant Effect		
Error	0.834784	4	0.0596		14						
Total	0.875386	6	0.1002	2297	15						w
Distributional	Tests										
Attribute	Test			Test Sta	t Critical	P-Value	Decision	(α:1%)			
Variances Variance Ratio F 8.91					8.885	0.0099	Unequal \				
Distribution	Shapiro-\	Wilk W Norr	mality	0.9234	0.8408	0.1914	Normal Di	istribution			
Mean AF Biom	nass-mg Summ	агу									
Conc-%	Control Type	Count	Mean	95% LCI	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	0.6392	2 0.5147	0.7638	0.141	0.963	0.1158	0.3274	51.22%	0.0%
100		8	0.74	0.6983	0.7817	0.542	0.873	0.03878	0.1097	14.82%	-15.76%

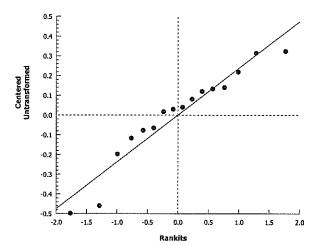
Report Date: Test Code: 03 Sep-14 14:53 (p 4 of 4) B315102ctc | 17-6326-6222

Chironomus 10-d Survival and Growth Sediment Test

CH2M HILL - ASL

Analysis ID: Analyzed:


14-0267-3450 03 Sep-14 14:53 Endpoint: Mean AF Biomass-mg
Analysis: Parametric-Two Sample


CETIS Version: CET
Official Results: Yes

CETISv1.8.1

Mean AF Biomass-mg Detail

Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	
0	Dilution Water	0.179	0.522	0.963	0.141	0.857	0.953	0.72	0.779	
100		0.873	0.78	0.757	0.86	0.663	0.675	0.542	0.77	

CETIS	Summary	Report
--------------	---------	--------

Report Date: Test Code: 03 Sep-14 14:54 (p 1 of 1) B315103ctc | 03-7511-2795

)-d Survival and	d Growth S	edimen	t Test						CHOSE		
									CHZIVI	HILL - ASI	
09-0601-4656	Tes	Type:	Survival-AF Gro	owth		A	nalyst:				
19 Aug-14	Prof	ocol:	EPA/600/R-99/	064 (2000)		D	i luent: Lab	oratory Sea	water		
28 Aug-14	Spe	cies:	Chironomus ter	ntans		Brine:					
9d 0h	Sou	rce:	Aquatic Biosyst	tems, CO		A	ge:				
17-7304-5180	Cod	e:	B3151-03			С	lient:	•			
30 Jul-14 09:00	Mat	erial:	Sediment			Pi	roject:				
07 Aug-14 11:00) Sou	rce:	Kensington Gol	ld Mine (AK0	0050571)						
19d 15h	Stat	ion:									
Lower Johnson	Creek				·						
ummary							7 110 111				
Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Method				
Mean AF Bioma	iss-mg	100	>100	N/A	34.8%	1	Unequal \	/ariance t T	wo-Sample	Test	
Survival Rate		100	>100	N/A	35.3%	1	Wilcoxon	Rank Sum	Rank Sum Two-Sample Test		
lity							•		,,,		
Endpoint		Attribu	ite	Test Stat	TAC Lin	nits	Overlap	Decision			
Survival Rate		Contro	l Resp	0.725	0.7 - NL		Yes	Passes Acceptability Criteria			
ass-mg Summa	ıry						· · · · · · · · · · · · · · · · · · ·				
Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect	
Dilution Water	8	0.6392	0.517	0.7615	0.141	0.963	0.1158	0.3274	51.22%	0.0%	
	8	0.6816	0.6615	0.7018	0.562	0.741	0.01907	0.05395	7.92%	-6.63%	
Summary										,	
Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect	
Dilution Water	8	0.725	0.5787	0.8713	0.1	1	0.1386	0.3919	54.05%	0.0%	
	8	0.875	0.8363	0.9137	0.7	1	0.0366	0.1035	11.83%	-20.69%	
ass-mg Detail											
Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8			
Dilution Water	0.179	0.522	0.963	0.141	0.857	0.953	0.72	0.779			
	0.694	0.562	0.692	0.711	0.661	0.713	0.741	0.679			
)etail							•				
Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8			
	28 Aug-14 9d 0h 17-7304-5180 30 Jul-14 09:00 07 Aug-14 11:00 19d 15h Lower Johnson Jimmary Endpoint Mean AF Bioma Survival Rate lity Endpoint Survival Rate ass-mg Summa Control Type Dilution Water Control Type Dilution Water Dilution Water Dilution Water	28 Aug-14 Spe 9d 0h Sou 17-7304-5180 Cod 30 Jul-14 09:00 Mate 07 Aug-14 11:00 Sou 19d 15h Stat Lower Johnson Creek Lower Johnson Creek Lower Johnson Creek Lity Endpoint Mean AF Biomass-mg Survival Rate Lity Endpoint Survival Rate ass-mg Summary Control Type Count Dilution Water 8 8 Summary Control Type Count Dilution Water 8 8 Bass-mg Detail Control Type Rep 1 Dilution Water 0.179 0.694	28 Aug-14 Species: 9d 0h Source: 17-7304-5180 Code: 30 Jul-14 09:00 Material: 07 Aug-14 11:00 Source: 19d 15h Station: Lower Johnson Creek Immary Endpoint NOEL Mean AF Biomass-mg Survival Rate 100 Iity Endpoint Attribu Survival Rate Control ass-mg Summary Control Type Count Mean Oilution Water 8 0.6392 8 0.6816 Summary Control Type Count Mean Oilution Water 8 0.725 8 0.875 ass-mg Detail Control Type Rep 1 Rep 2 0.694 0.562	28 Aug-14	Species: Chironomus tentans 9d 0h Source: Aquatic Biosystems, CO	28 Aug-14	28 Aug-14	28 Aug-14 Species: Chironomus tentans Brine: 9d 0h Source: Aquatic Biosystems, CO Age:	Species	28 Aug-14	

100

1

0.9

8.0

0.9

0.9

0.7

1

8.0

Report Date: Test Code: 03 Sep-14 14:54 (p 1 of 4) B315103ctc | 03-7511-2795

Chironomus 1	10-d Survival an	d Growth	Sedimer	nt Test						CH2M	HILL - AS
Analysis ID: Analyzed:	10-9498-4502 03 Sep-14 14:5		ndpoint: nalysis:	Survival Rate Nonparametric-	-Two Sampl	e		IS Version		.8.1	
Batch ID:	09-0601-4656	Te	est Type:	Survival-AF Gro	owth		Anal	yst:			
Start Date:	19 Aug-14	Pr	otocol:	EPA/600/R-99/	064 (2000)		Dilu	ent: Lat	oratory Sea	water	
Ending Date:	28 Aug-14	Sp	ecies:	Chironomus ter	ntans		Brin	e:			
Duration:	9d 0h	Sc	ource:	Aquatic Biosyst	tems, CO		Age:	:			
Sample ID:	17-7304-5180	C	ode:	B3151-03			Clie	nt:			
Sample Date:	30 Jul-14 09:00) M:	aterial:	Sediment			Proj	ect:			
Receive Date:	07 Aug-14 11:0	10 S c	ource:	Kensington Gol	ld Mine (AK	0050571)					
Sample Age:	19d 15h	St	ation:								
Sample Note:	Lower Johnson	Creek									
Data Transfor	m	Zeta	Alt H	yp MC Trials		Test Res	ult			PMSD	
Angular (Corre	cted)	C > T	Not Run		Sample p	asses surviv	vival rate endpoint 35.3%				
Wilcoxon Ran	ık Sum Two-Sar	nple Test									
Control	vs Conc-%		Test S	Stat Critical	DF	Ties	P-Value	Decision	(a:5%)		
Dilution Water	100		68		14	3	0.4796	Non-Sign	ificant Effect		
ANOVA Table											
Source	Sum Squa	ares	Mean	Square	DF	F Stat	P-Value	Decision	(a:5%)		
Between	0.1043022	<u>.</u>	0.104	3022	1	0.8643	0.3683	Non-Sign	ificant Effect		
Error	1.689544		0.1206	6817	14						
Total	1.793846		0.2249	9839	15						
Distributional	Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision((α:1%)			
Variances	Variance	Ratio F		9.966	8.885	0.0071	Unequal \	/ariances			
Distribution	Shapiro-V	Vilk W No	rmality	0.833	0.8408	0.0077	Non-norm	al Distributi	on		
Survival Rate	Summary										
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	0.725	0.5759	0.8741	0.1	1	0.1386	0.3919	54.05%	0.0%
100		8	0.875	0.8356	0.9144	0.7	1	0.0366	0.1035	11.83%	-20.69%
Angular (Corr	ected) Transforr	ned Sum	nmary								
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	1.061	0.8824	1.239	0.3218	1.412	0.1656	0.4684	44.16%	0.0%

100

1.222

1.166

1.279

0.9912

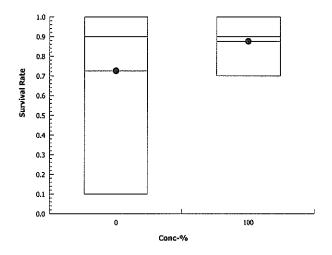
1.412

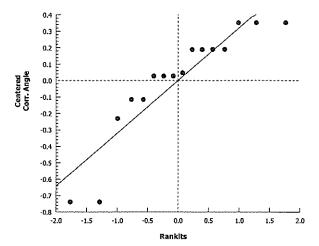
0.05245

0.1484

12.14% -15.23%

Report Date: Test Code: 03 Sep-14 14:54 (p 2 of 4) B315103ctc | 03-7511-2795


Chironomus 10-d Survival and Growth Sediment Test


CH2M HILL - ASL

Analysis ID:	10-9498-4502	Endpoint:	Survival Rate	CETIS Version:	CETISv1.8.1
Analyzed:	03 Sep-14 14:54	Analysis:	Nonparametric-Two Sample	Official Results:	Yes

Survival Rate Detail

Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8
0	Dilution Water	0.1	1	1	0.1	1	0.9	0.9	0.8
100		1	0.9	8.0	0.9	0.9	0.7	1	0.8

Report Date: Test Code: 03 Sep-14 14:54 (p 3 of 4) B315103ctc | 03-7511-2795

	10-d Survival ar	ia Growth	Sedimei	nt Test						CH2M	HILL - AS
Analysis ID:	00-4010-6385 03 Sep-14 14:5		ndpoint:	Mean AF Biom Parametric-Tw	-			IS Version:		.8.1	
Analyzed:	U3 Sep-14 14:	04 Ar	nalysis:	Parametric-Tw	o Sample		Offic	cial Results	: Yes		
Batch ID:	09-0601-4656	Te	est Type:	Survival-AF G			Ana	lyst:			
Start Date:	19 Aug-14	Pr	otocoi:	EPA/600/R-99			Dilu	ent: Lab	oratory Sea	water	
Ending Date:	28 Aug-14	Sp	oecies:	Chironomus te			Brin	e:			
Duration:	9d 0h	Sc	ource:	Aquatic Biosys	tems, CO		Age				
Sample ID:	17-7304-5180	Co	ode:	B3151-03			Clie	nt:			
Sample Date:	30 Jul-14 09:00) Ma	aterial:	Sediment			Proj	ect:			
Receive Date:	07 Aug-14 11:0	00 S c	ource:	Kensington Go	old Mine (AK	0050571)					
Sample Age:	19d 1 5h	St	ation:								
Sample Note:	Lower Johnson	Creek									
Data Transfor	m	Zeta	Alt H	yp MC Trials	\$	Test Res	ult			PMSD	
Untransformed		0	C > T	Not Run		Sample p	asses mear	af biomass	-mg endpoir	nt 34.8%	
Unequal Varia	ınce t Two-Sam	ple Test									
Control	vs Conc-%		Test \$	Stat Critical	DF	MSD	P-Value	Decision((a:5%)		
Dilution Water	100		-0.361	1.895	7	0.2223	0.6357	Non-Signi	ficant Effect		
ANOVA Table											
Source	Sum Squ	ares	Mean	Square	DF	F Stat	P-Value	Decision((a:5%)		
Between	0.0071825	59	0.007	18259	1	0.1304	0.7234	Non-Signi	ficant Effect		
Error	0.7709245		0.055	06604	14	_					
Total	0.778107	<u> </u>	0.062	24863	15						
Distributional	Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(a:1%)			
Variances	Variance	Ratio F		36.84	8.885	0.0001	Unequal \	/ariances			
Distribution	Shapiro-\	Vilk W No	rmality	0.8888	0.8408	0.0533	Normal D	istribution			
Mean AF Bion	nass-mg Summ	ary									
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	0.639	2 0.5147	0.7638	0.141	0.963	0.1158	0.3274	51.22%	0.0%
100		8	0.681	6 0.6611	0.7021	0.562	0.741	0.01907	0.05395	7.92%	-6.63%

Report Date: Test Code:

03 Sep-14 14:54 (p 4 of 4) B315103ctc | 03-7511-2795

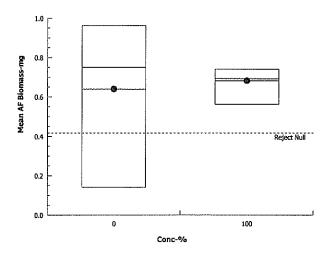
Chironomus 10-d Survival and Growth Sediment Test

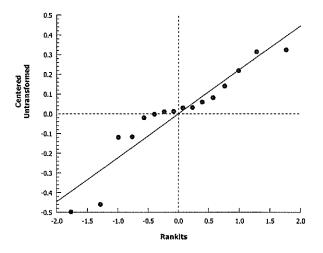
CH2M HILL - ASL

Analysis ID: Analyzed:

00-4010-6385 03 Sep-14 14:54

Analysis:


Endpoint: Mean AF Biomass-mg Parametric-Two Sample **CETIS Version:**


CETISv1.8.1

Official Results: Yes

Mean AF	Biomass-mg	Detail
---------	------------	--------

Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	
0	Dilution Water	0.179	0.522	0.963	0.141	0.857	0.953	0.72	0.779	
100		0.694	0.562	0.692	0.711	0.661	0.713	0.741	0.679	

CETIS	Summary	Report
--------------	---------	--------

Report Date: Test Code:

03 Sep-14 14:56 (p 1 of 1) B315104ctc | 09-6616-0545

Chironomus 1	0-d Survival an	d Growth	Sedimer	nt Test						CH2M	HILL - AS
Batch ID:	09-0601-4656	Te	st Type:	Survival-AF Gro	owth		Ana	ılyst:			
Start Date:	19 Aug-14	Pro	tocol:	EPA/600/R-99/	064 (2000)		Dile	ent: Lab	oratory Sea	water	
Ending Date:	28 Aug-14	Sp	ecies:	Chironomus ter	ntans		Bri	ne:			
Duration:	9d 0h	\$o	urce:	Aquatic Biosys	tems, CO		Age) :			
Sample ID:	17-1573-2640	Ср	de:	B3151-04)		Clie	ent:			
Sample Date:	28 Jul-14 14:00	Ma	terial:	Sediment	/		Pro	ject:			
Receive Date:	07 Aug-14 11:0	0 S o	urce:	Kensington Go	ld Mine (AK	0050571)					
Sample Age:	21d 10h	Sta	tion:								
Sample Note:	Lower Slate Cre	eek									
Comparison-S	iummary										
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Method			
07-8716-3017	Mean AF Bioma	ass-mg	100	>100	WA	34.4%	1	Equal Var	iance t Two	-Sample Te	st
08-5938-9764	Survival Rate	(100	>100	N/A	34.5%	1	Wilcoxon	Rank Sum	Fwo-Sample	e Test
Test Acceptable	ility										
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Lim	its	Overlap	Decision		
08-5938-9764				ol Resp	0.725	0.7 - NL		Yes	Passes A	cceptability	Criteria
Mean AF Biom	nass-mg Summa	ary									
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec
0 0	Dilution Water	8	0.6392	2 0.517	0.7615	0.141	0.963	0.1158	0.3274	51.22%	0.0%
100		8	0.8502	0.8009	0.8996	0.686	1.078	0.04674	0.1322	15.55%	-33.019
Survival Rate S	Summary			7000			•				
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec
											0.0%
0 1	Dilution Water	8	0.725	0.5787	0.8713	0.1	1	0.1386	0.3919	54.05%	0.076
-	Dilution Water	8	0.725 0.9	0.5787 0.8718	0.8713 0.9282	0.1 0.8	1 1	0.1386 0.02673	0.3919 0.07559	54.05% 8.4%	
100							•				
100 Mean AF Biom			0.9 Rep 2	0.8718			•				
Mean AF Biom Conc-%	nass-mg Detail	8	0.9	0.8718	0.9282	0.8	1	0.02673	0.07559		
Mean AF Biom Conc-%	nass-mg Detail Control Type	8 Rep 1	0.9 Rep 2	0.8718 Rep 3	0.9282 Rep 4	0.8 Rep 5	1 Rep 6	0.02673 Rep 7	0.07559 Rep 8		
Mean AF Biom Conc-% (0 [nass-mg Detail Control Type Dilution Water	Rep 1 0.179	0.9 Rep 2 0.522	0.8718 Rep 3 0.963	0.9282 Rep 4 0.141	0.8 Rep 5 0.857	Rep 6	0.02673 Rep 7 0.72	0.07559 Rep 8 0.779		
100 Mean AF Biom Conc-% 0 100 Survival Rate E	nass-mg Detail Control Type Dilution Water	Rep 1 0.179	0.9 Rep 2 0.522	0.8718 Rep 3 0.963 0.957	0.9282 Rep 4 0.141	0.8 Rep 5 0.857	Rep 6	0.02673 Rep 7 0.72	0.07559 Rep 8 0.779		
Mean AF Biom Conc-% (0 [100 Survival Rate E	nass-mg Detail Control Type Dilution Water	Rep 1 0.179 0.901	0.9 Rep 2 0.522 0.686	0.8718 Rep 3 0.963 0.957	0.9282 Rep 4 0.141 0.843	0.8 Rep 5 0.857 0.71	Rep 6 0.953 0.873	0.02673 Rep 7 0.72 1.078	0.07559 Rep 8 0.779 0.754		-24.14%

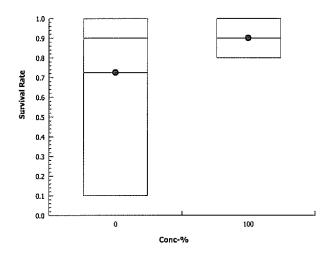
Report Date: Test Code: 03 Sep-14 14:56 (p 1 of 4) B315104ctc | 09-6616-0545

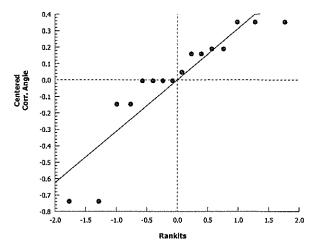
Chironomus 1	I0-d Survival an	d Growt	th Sedimen	t Test						CH2M	HILL - ASL
Analysis ID: Analyzed:	08-5938-9764 03 Sep-14 14:5		≣ndpoint: Analysis:	Survival Rate Nonparametric-	Two Sample	e		IS Version: cial Results		.8.1	
Batch ID:	09-0601-4656	7	rest Type:	Survival-AF Gro	owth		Ana	lyst:			
Start Date:	19 Aug-14		Protocol:	EPA/600/R-99/			Dilu	•	oratory Seav	water	
Ending Date:	28 Aug-14	5	Species:	Chironomus ter	ntans		Brin	e:	•		
Duration:	9d 0h	5	Source:	Aquatic Biosyst	tems, CO		Age	:			
Sample ID:	17-1573-2640	C	Code:	B3151-04			Clie	nt:			
Sample Date:	28 Jul-14 14:00) [Material:	Sediment			Proj	ect:			
Receive Date:	07 Aug-14 11:0	00 9	Source:	Kensington Gol	d Mine (AK	0050571)					
Sample Age:	21d 10h	5	Station:								
Sample Note:	Lower Slate Cr	eek									
Data Transfor		Zeta	Ait Hy	/p MC Trials		Test Res	ult			PMSD	
Angular (Corre	cted)	0	C > T	Not Run		Sample p	asses survi	oint	34.5%		
Wilcoxon Ran	k Sum Two-Sar	nple Tes	st								
Control	vs Conc-%		Test S	tat Critical	DF	Ties	P-Value	Decision((a:5%)		
Dilution Water	100		70		14	3	0.5608	Non-Signi	ficant Effect		
ANOVA Table											-11
Source	Sum Squ	ares	Mean	Square	DF	F Stat	P-Value	Decision((a:5%)		
Between	0.1501026	3	0.1501	026	1	1.29	0.2751	Non-Signi	ficant Effect		
Error	1.628633		0.1163	331	14						
Total	1.778736		0.2664	336	15	_					
Distributional	Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Variance	Ratio F		16.48	8.885	0.0015	Unequal \	/ariances			
Distribution	Shapiro-V	Vilk W N	ormality	0.8206	0.8408	0.0052	Non-norm	ial Distributio	on		
Survival Rate	Summary										
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	0.725	0.5759	0.8741	0.1	1	0.1386	0.3919	54.05%	0.0%
100		8	0.9	0.8712	0.9288	0.8	1	0.02673	0.07559	8.4%	-24.14%
Angular (Corre	ected) Transfor	med Su	mmary								
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	1.061	0.8824	1.239	0.3218	1.412	0.1656	0.4684	44.16%	0.0%
100		8	1.254	1.21	1.298	1.107	1.412	0.04079	0.1154	9.2%	-18.26%

Report Date: Test Code:

03 Sep-14 14:56 (p 2 of 4) B315104ctc | 09-6616-0545

Chironomus 10-d Survival and Growth Sediment Test


CH2M HILL - ASL


08-5938-9764 Analysis ID: Endpoint: Survival Rate CETIS Version: CETISv1.8.1

Analyzed: 03 Sep-14 14:55 Analysis: Nonparametric-Two Sample Official Results: Yes

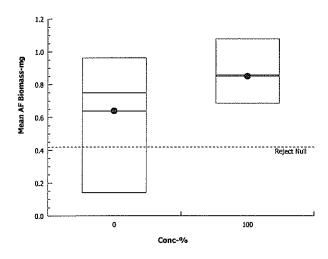
Survival Rate Detail

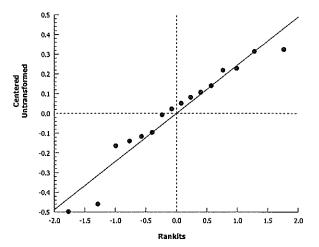
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8
0	Dilution Water	0.1	1	1	0.1	1	0.9	0.9	0.8
100		0.9	8.0	0.9	8.0	0.9	0.9	1	1

Report Date: Test Code: 03 Sep-14 14:56 (p 3 of 4) B315104ctc | 09-6616-0545

						710101010	7 00 10 00 10							
Chironomus 1	0-d Survival ar	d Growth	Sedime	nt Te	st						CH2M	HILL - ASL		
Analysis ID:	07-8716-3017		dpoint:		n AF Bioma	_			IS Version:	CETISv1	.8.1			
Analyzed:	03 Sep-14 14:	55 A n	alysis:	Para	ametric-Two	Sample		Offic	cial Results:	: Yes				
Batch ID:	09-0601-4656	Te	st Type:	Surv	ival-AF Gro	owth		Anal	lyst:					
Start Date:	19 Aug-14	Pro	otocol:	EPA	/600/R-99/	064 (2000)		Dilu	Diluent: Laboratory Seawater					
Ending Date:	28 Aug-14	Sp	ecies:	Chir	onomus ter	ntans		Brin	e:					
Duration:	9d 0h	So	urce:	Aqu	atic Biosyst	ems, CO		Age	;					
Sample ID:	17-1573-2640	Co	de:	B31	51-04			Clie	nt:					
Sample Date:	28 Jul-14 14:00) Mia	iterial:	Sedi	iment			Proj	ect:					
	07 Aug-14 11:0	00 So	urce:	Ken	sington Gol	d Mine (AKC	050571)							
Sample Age:	21d 10h	Sta	ation:											
Sample Note:	Lower Slate Cr	eek												
Data Transfor	m	Zeta	Alt H	ур	MC Trials		Test Resu	ult		•	PMSD			
Untransformed		0	C > T		Not Run		Sample pa	asses mear	n af biomass	-mg endpoir	nt 34.4%			
Equal Varianc	e t Two-Sample	Test												
Control	vs Conc-%		Test 9	Stat	Critical	DF	MSD	P-Value	Decision(α:5%)				
Dilution Water	100		-1.69		1.761	14	0.2199	0.9434	Non-Signi	ficant Effect				
ANOVA Table														
Source	Sum Squ	ares	Mean	Squa	are	DF	F Stat	P-Value	Decision(α:5%)				
Between	0.1780839	9	0.178	0839		1	2.856	0.1132	Non-Signi	ficant Effect				
Error	0.872872	2	0.062		1	14	_							
Total	1.050956	·	0.240	4319		15								
Distributional	Tests													
Attribute	Test				Test Stat	Critical	P-Value	Decision	(α:1%)					
Variances	Variance	Ratio F			6.136	8.885	0.0288	Equal Var	riances					
Distribution	Shapiro-\	Vilk W Nor	mality		0.9321	0.8408	0.2632	Normal D	istribution					
Mean AF Biom	nass-mg Summ	ary												
Conc-%	Control Type	Count	Mean		95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect		
0	Dilution Water	8	0.639	2	0.5147	0.7638	0.141	0.963	0.1158	0.3274	51.22%	0.0%		
100		8	0.850	2	0.8	0.9005	0.686	1.078	0.04674	0.1322	15.55%	-33.01%		

Report Date: Test Code: 03 Sep-14 14:56 (p 4 of 4) B315104ctc | 09-6616-0545


Chironomus 10-d Survival and Growth Sediment Test


CH2M HILL - ASL

Analysis ID:	07-8716-3017	Endpoint:	Mean AF Biomass-mg	CETIS Version:	CETISv1.8.1
Analyzed:	03 Sep-14 14:55	Analysis:	Parametric-Two Sample	Official Results:	Yes

Mean AF Biomass-mg Detail

Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	
0	Dilution Water	0.179	0.522	0.963	0.141	0.857	0.953	0.72	0.779	•
100		0.901	0.686	0.957	0.843	0.71	0.873	1.078	0.754	

CETIS Summary Report

Report Date: Test Code:

03 Sep-14 14:57 (p 1 of 1) B315105ctc | 08-5577-1233

				•						<u> </u>	
Chironomus 1	10-d Survival an	d Growtl	h Sedimei	nt Test						CH2M	HILL - AS
Batch ID: Start Date: Ending Date: Duration:	09-0601-4656 19 Aug-14 28 Aug-14 9d 0h	P S	est Type: rotocol: pecies: ource:	: Survival-AF Growth EPA/600/R-99/064 (2000) Chironomus tentans Aquatic Biosystems, CO				alyst: uent: Lab ne: o:	oratory Sea	water	
Sample ID:	19-8240-7616 30 Jul-14 17:00		ode:	B3151-05 Sediment)			ent: eject:			
•					ld Mina / Al//	20505741	110	Ject.			
Sample Age:	07 Aug-14 11:0 19d 7h		ource: tation:	Kensington Go	ia iviinė (AKi	JUSUS71)					
Sample Note:	Upper Slate Cr	eek									
Comparison-S	Summary										
Analysis ID	Endpoint		NOEL		TOEL	PMSD	TU	Method			
07-1444-4104		ass-mg	100	>100	\N/A	34.6%	1	•	√ariance t T	•	
18-0785-6139	Survival Rate	(100	>100	/N/A	34.4%	1	Wilcoxon	Rank Sum	Two-Sample	e Test
Test Acceptab	ility										
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Lim	its	Overlap	Decision		
18-0785-6139	Survival Rate		Contro	ol Resp	0.725	0.7 - NL		Yes	Passes A	cceptability	Criteria
Mean AF Biom	nass-mg Summ	ary									
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec
0	Dilution Water	8	0.639	2 0.517	0.7615	0.141	0.963	0.1158	0.3274	51.22%	0.0%
100		8	0.784	0.7683	0.7997	0.712	0.839	0.01487	0.04205	5.36%	-22.64%
Survival Rate	Summary										
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec
0	Dilution Water	8	0.725	0.5787	0.8713	0.1	1	0.1386	0.3919	54.05%	0.0%
100		8	0.925	0.8986	0.9514	0.8	1	0.025	0.07071	7.64%	-27.59%
Mean AF Biom	nass-mg Detail										
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	0.179	0.522	0.963	0.141	0.857	0.953	0.72	0.779		
100		0.831	0.712	0.788	0.776	0.839	0.798	0.785	0.743		
Survival Rate	Detail										
Survival Rate Conc-%	Detail Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
Conc-%		Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		

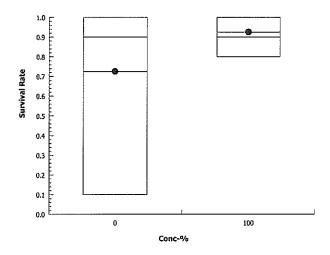
Analyst: 4~ QA:

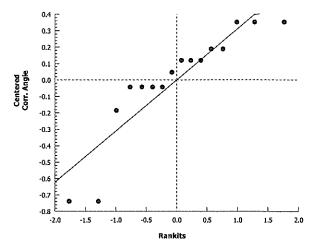
Report Date: Test Code: 03 Sep-14 14:57 (p 1 of 4) B315105ctc | 08-5577-1233

Chironomus	10-d Survival an	d Growtl	h Sedimei	nt Tes	t						CH2M	HILL - ASL
Analysis ID:	18-0785-6139	E	ndpoint:	Survi	val Rate			CET	IS Version:	CETISv1	.8.1	
Analyzed:	03 Sep-14 14:5	i7 A	nalysis:	Nonp	arametric-	Two Sample	е	Offic	cial Results:	: Yes		
Batch ID:	09-0601-4656	T	est Type:	Survi	val-AF Gro	wth		Ana	lyst:			
Start Date:	19 Aug-14		rotocol:			064 (2000)		Dilu	-	oratory Seav	vater	
Ending Date:	28 Aug-14	s	pecies:	Chiro	nomus ter	ntans		Brin	e:			
Duration:	9d 0h	S	ource:	Aqua	tic Biosyst	ems, CO		Age	:			
Sample ID:	19-8240-7616	С	ode:	B315	1-05			Clie	nt:			**
Sample Date:	30 Jul-14 17:00	M.	laterial:	Sedir	ment			Proj	ect:			
Receive Date	: 07 Aug-14 11:0	0 S	ource:	Kens	ington Gol	d Mine (AK(0050571)					
Sample Age:	19d 7h	S	tation:									
Sample Note:	Upper Slate Cre	eek						•		•	7 11 11 11 11 11	
Data Transfor	rm	Zeta	Alt H	lур	MC Trials		Test Res	ult			PMSD	
Angular (Corre	ected)	0	C>T		Not Run		Sample p	asses survi	val rate endp	oint	34.4%	
Wilcoxon Rai	nk Sum Two-Sar	nple Tes	t									
Control	vs Conc-%		Test :	Stat	Critical	DF	Ties	P-Value	Decision(a:5%)		
Dilution Water	100		74			14	3	0.7131	Non-Signi	ficant Effect		
Auxiliary Test	's											
Attribute	Test				Test Stat	Critical	P-Value	Decision	(α:5%)			
Extreme Value	e 0			:	2.248	2.586	0.2258	No Outlie	rs Detected	•		
ANOVA Table	•											
Source	Sum Squa	ares	Mean	Squa	re	DF	F Stat	P-Value	Decision(α:5%)		
Between	0.2149691		0.214	9691		1	1.857	0.1944	Non-Signii	ficant Effect		
Error	1.620228		0.115	7305		14	_					
Total	1.835197		0.330	6997		15						
Distributional	l Tests											
Attribute	Test				Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Variance	Ratio F			18.12	8.885	0.0011	Unequal \	Variances			
Distribution	Shapiro-V	Vilk W No	ormality		0.8183	0.8408	0.0048	Non-norm	nal Distributio	on		
Survival Rate	Summary											
					95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
Conc-%	Control Type	Count	Mean	1								
Conc-%	Control Type Dilution Water	Count 8	Mean 0.725		0.5759	0.8741	0.1	1	0.1386	0.3919	54.05%	0.0%
				(0.8741 0.9519	0.1 0.8	1 1	0.1386 0.025	0.3919 0.07071	54.05% 7.64%	0.0% -27.59%
0 100		8 8	0.725 0.925	(0.5759							
0 100	Dilution Water	8 8	0.725 0.925		0.5759							
0 100 Angular (Corr	Dilution Water	8 8 med Sur	0.725 0.925 nmary		0.5759 0.8981	0.9519	8.0	1	0.025	0.07071	7.64%	-27.59%

Report Date: Test Code: 03 Sep-14 14:57 (p 2 of 4) B315105ctc | 08-5577-1233

Chironomus 10-d Survival and Growth Sediment Test


CH2M HILL - ASL


Analysis ID: 18-0785-6139 Endpoint: Survival Rate CETIS Version: CETISv1.8.1

Analyzed: 03 Sep-14 14:57 Analysis: Nonparametric-Two Sample Official Results: Yes

Survival Rate Detail

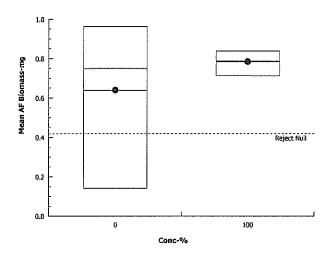
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8
0	Dilution Water	0.1	1	1	0.1	1	0.9	0.9	0.8
100		0.9	0.9	1	0.9	1	0.9	1	0.8

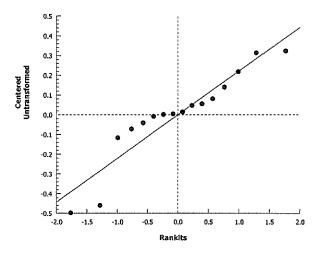
Report Date: Test Code: 03 Sep-14 14:57 (p 3 of 4) B315105ctc | 08-5577-1233

Chironomus 1	10-d Survival ar	d Grow	th Sedime	nt Test							CH2M	HILL - ASL
Analysis ID:	07-1444-4104		Endpoint:	Mean Al	F Bioma	ass-mg		CETI	S Version:	CETISv1	.8.1	
Analyzed:	03 Sep-14 14:	57	Analysis:	Parame	tric-Two	Sample		Offic	ial Results:	Yes		
Batch ID:	09-0601-4656		Test Type:	Survival	-AF Gro	wth		Anal	yst:			
Start Date:	19 Aug-14		Protocol:			064 (2000)		Dilue	ent: Labo	oratory Sea	water	
Ending Date:	28 Aug-14	5	Species:	Chirono	mus ter	itans		Brine	e:			
Duration:	9d 0h	\$	Source:	Aquatic	Biosyst	ems, CO		Age:				
Sample ID:	19-8240-7616	(Code:	B3151-0)5			Clier	ıt:			
Sample Date:	30 Jul-14 17:00	ז כ	Viaterial:	Sedimer	nt			Proje	ect:			
Receive Date:	: 07 Aug-14 11:0	00 \$	Source:	Kensing	ton Gol	d Mine (AK0	050571)					
Sample Age:	19d 7h	\$	Station:									
Sample Note:	Upper Slate Cr	eek			·							
Data Transfor	m	Zeta	Alt H	ур МС	Trials		Test Resu	ılt			PMSD	
Untransformed		0	C > T	No	t Run		Sample pa	asses mean	af biomass	-mg endpoi	nt 34.6%	
Unequal Varia	ince t Two-Sam	ple Test	:									
Control	vs Conc-%		Test :	Stat Cri	itical	DF	MSD	P-Value	Decision(α:5%)		
Dilution Water	100		-1.24	1.8	95	7	0.2211	0.8726	Non-Signi	ficant Effect	Ì	
Auxiliary Test	s											
Attribute	Test			Tes	st Stat	Critical	P-Value	Decision(α:5%)			
Extreme Value	0			2.2	209	2.586	0.2613	No Outlier	s Detected			
ANOVA Table												
Source	Sum Squ	ares	Mean	Square		DF	F Stat	P-Value	Decision(α:5%)		
Between	0.0838102	26	0.083	81026		1	1.538	0.2353	Non-Signi	ficant Effect	1	
Error	0.7629247	7	0.054	49462		14	_					
Total	0.8467349	9	0.138	3049		15						
Distributional	Tests											
Attribute	Test			Tes	st Stat	Critical	P-Value	Decision(α:1%)			
Variances	Variance	Ratio F		60.	.65	8.885	<0.0001	Unequal V	/ariances			
Distribution	Shapiro-\	Wilk W N	lormality	8.0	873	0.8408	0.0506	Normal Di	stribution			
Mean AF Bion	nass-mg Summ	ai y										
Mean AF Bion Conc-%	Control Type	Count	Mean	959	% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
Conc-%	_	_	Mean 0.639		% LCL 147	95% UCL 0.7638	Min 0.141	Max 0.963	Std Err 0.1158	Std Dev 0.3274	CV% 51.22%	%Effect 0.0%

Report Date: Test Code: 03 Sep-14 14:57 (p 4 of 4) B315105ctc | 08-5577-1233

Chironomus 10-d Survival and Growth Sediment Test

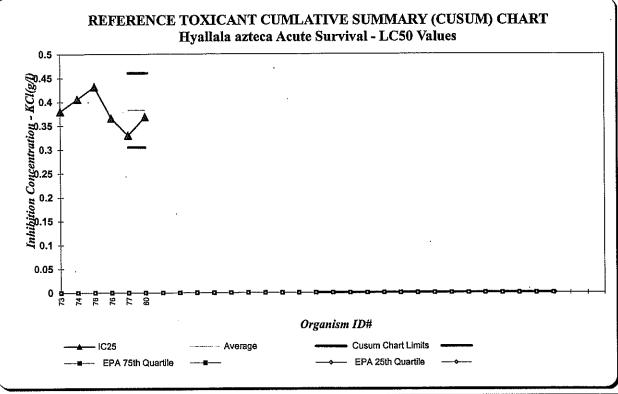

CH2M HILL - ASL


Analysis ID: 07-1444-4104 Endpoint: Mean AF Biomass-mg
Analyzed: 03 Sep-14 14:57 Analysis: Parametric-Two Sample

CETIS Version: CETISv1.8.1
Official Results: Yes

Mean AF Biomass-mg Detail

Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8
0	Dilution Water	0.179	0.522	0.963	0.141	0.857	0.953	0.72	0.779
100		0.831	0.712	0.788	0.776	0.839	0.798	0.785	0.743



APPENDIX B REFERENCE TOXICANT DATA SHEETS

REFERENCE TOXICANT DATA SHEET

	Cond.	96			17/7	┿	A 179					
20 20 20 30 30 14 NONE		9		257 0,		100	3 3	š 2		$\frac{1}{1}$	\neg	
150 150 150 150 150 150 150 150 150 150		1	7.0 2% V	73.7 24.0	1		1	<u> </u>			ې ا	133
	Temperature °C		۷ <u>a</u>	24.7.	_						Temperature ±1 °C	d correct.
	Temp	24	K 25 5	9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	227		23.7	23.9			Temper	on and and
Date $\frac{\mathcal{G}_{1}}{\mathcal{G}_{1}}$ Date $\frac{\mathcal{G}_{2}}{\mathcal{G}_{1}}$ ty as CaCO ₃ Temperature $\frac{72 \text{ hr}}{72 \text{ hr}} \frac{\sqrt{3}}{\sqrt{3}}$ $\frac{72 \text{ hr}}{72 \text{ hr}} \frac{\sqrt{3}}{\sqrt{3}}$		0	22.5	7/7/	22.6	47.0	۲,۲۲	23.7				is data is
Test Begin: Date		_		6,7	<u> </u>			}	_	_	0	We verify this data is thue and correct. Task Manager Project Manager QA Officer The Manager
	hН	48 72	<u>'</u>				\				6.0 and < 9.0	We Tas
	ď	24 4		, ,		8.0 8	57	1.7			pH: > 6.(/ /s
KCI 50 g. ID# ID# AM / JPW AN S 5 2 13 NONE		0	0 03	00 5		J		50.				1,369 to 0,451
H H S H H H H H H H H H H H H H H H H H	(1)	96	_	717		(1	١			9.8> pu	0,369 0 to 0
Stock Solutic Stock Solutic O G - 0 Recon MH BB BB Salinity (ppt) V V 24 hr O Q (24 hr O Q (24 hr	Oxygen (mg/l)	72	1	/	,	[])			:): >4.0 a	0.310 bre
water 2 B 0 3 CO ₃ aCO ₃ r 3 2 7 r 2 7 r 10		48	(, ,	-	1 7.7	7	/			a (at 23°C	.50
Reference Toxicant Solvent: Milli-Q water Stock Solu Reagent Log ID # 2 B O G B - O C *Dilution Water Total Hardness as CaCO ₃ 88 Conductivity (µmhos/cm) / Salinity (ppt) Technician 0 lu 3/~/ JPL 24 Time 0 lu 1/430 24 Time 0 lu 2/7 24 Food I.D. # 0 lu 2/7 24	Dissolved	0 24	1	1	_	5.7	22 7,2	82 7.	-		For Hyallela (at 23°C): >4.0 and <8.6	96 hr LC50 Cusum Chart Limits Statistical Method
Reference Toxicar Solvent: Milli-C Reagent Log ID # *Dilution Water Total Hardness as Conductivity (µml Technician 0 Time 0 Therm. ID # 0 Food I.D. # 0	รูเ	96		-	ග් ව	02	02	22				96 hr LC Cusum Chart Limi Statistical Method
	rganisn	72	9	-	0	(1	1			> or == 9(8/12/16
nrs.	Number of Live Organisms	48	0	0	9]	0	١)			Survival in Controls: > or = 90%	700
azteca ures	umber o	24		9	2	M	0	0			nrvival in	er Vater , i 5 24
OA/QC Ifyallela azteca ake Cultures CO Day 0 & CT on Day 0 & 30 ml ate 20 ml ate 20 ml	₹ 	0	10	10	10	10	10	10				tter Code sconstituted water soft noderately hard nard - Artificial Sea Water 0.500 (and: 15)
asepe	t Test	Number	A	A	A	Α	Ą	Ą			Test Acceptability Limits:	*Dilution Water Code Recon reconstituted water S - soft MH - moderately hard H - hard Art. Sea - Artificial Sea Water St. * At h. 0.502 \ \mathbb{E}_{0.1}\displaysis \mathbb{I}_{0.1}\displaysis \mathbb{I}_{0.1
Client Test Organism Source Cheasep ID# h_C Age Feeding: 0.1 ml Y Test Chamber Size Volume per Replic	Loxicant	Concen. g/L	Cont	0.125	0.250	0.500	1.00	2.00			st Accepta	*Dilution W Recon S - MH - H Art. Sea
Client Test Ori Source D Ag Feeding Test Ch	To	<u>ັ</u>		0	٦						E E	*Dill Reco

REFTOX - Hyallela acute (KCI) 96 hrs.xls
Doc Control ID: ASL689-0510

Hyallela azteca - acute		A77, 8, 70, 25, 104, 50, 25, 3
POTASIUM CHLORIDE (g/L)	From EPA 833-R-00-0	03:
	10th Quartile CV (control limit) =	na
Endpoint: 96 hour Survival	25th Quartile CV (warning limit) =	na
Stats Method: Probit, Spearman-Karber, Linear Interpolation	75th Quartile CV (warning limit) =	na
Test Conditions: Recon MH, 23 oC	90th Quartile CV (control limit) =	na.

As per EPA 833-R-00-003, section B.2.1, the quartiles listed above are from just a few labs (5) and therefore not to be considered typical or representative. Cusum limits are based on ASL data only.

Event	AMP	Test Start		Running	Running	Cusum Cl	nart Limits	Intralab
#	ID#	Date	LC50	Average	SD	AVG-2SD	AVG+2SD	CV
1	73	9/17/2008	0.380	0.380				
2	74	4/24/2009	0.406	0.393				
3	76	1/28/2011	0.432	0.406	0.026			
4	76	1/28/2011	0.366	0.396	0.029			
5	77	3/27/2014	0.330	0.383	0.039	0.305	0.461	0.07
6	80	8/14/2014	0.37	0.381	0.035	0.310	0.451	0.10
7	.,,,,,							
. 8								
9								
10						_		
11								
12						*****		
13								
14								
15								
16		***************************************						
17								
18								

REFERENCE TOXICANT DATA SHEET

Client	OA/OC	Ü,				Refere	Reference Toxicant	cicant			KCI				Test Begin:		Date £	8/19 11	되	Time -	1330	1	
Test Organism		Chironomus tentans	ntans			Solvent:	ıt: di	distilled water	/ater	Stock §	Stock Solution		10 g/L		Test End:		Date £	8 23	E H	. Time	1905	M	
Source	S				ı	Reage	ıß	, #A	2BOL	BO48 -01	10												
	CHT # 19	ত				*Dilut	*Dilution Water			Reco	Recon MH		017 #II	0	1				•				
Age	7nd ruster ~10 Jans	\ \{\chi_{\chi\tingbr\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tingbr\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\tinmbr\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tinmbr}\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tinmbr\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tinmbr\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi}\tinmbr\chi\ti}\chi_{\chi\tinmbr\chi\tinmbr}\chi\tinmbr}\chi\tinmbr}\chi\tinmbr\chi\tinmbr}\chi\tinmbr	1			Total 1	Tardnes	Total Hardness as CaCO3	503		91	Q,			Total Alkalinity as CaCO3	kalinity	as CaC	. 60	٩	09			
Feeding: (Feeding: 0.1 ml of 4 g/L Tetramin @ 0 & 48 hrs.	[, Tetra	min @ (0 & 48]	ırs.	Condu	ctivity ((umhos	Conductivity (µmhos/cm) / Salinity (ppt)		ppt)		303	γ			Temperature	iture	2	23° C ± 2° C	2° C		
Test Chamber Size	er Size	400	400 ml			Technician	ician	0 hr	0 hr MC /8-	, ~&	24 hr	1	,	48 hr	<u>ک</u> ا		72 hr	S	8	96 hr	Ñ		
Volume pe	Volume per Replicate	250 ml	E			Time		0 hr	,330	0	- 24 hr	Ī		48 hr	oh 71		72 hr	1130		96 hr 1	1205		
	4					Therm	Therm. ID#	0 hr	にい	Ĺ	- 24 br	다 나		48 hr	777		72 hr	184		96 hr	301		
*1 rep 3.64	*1 rep. w/10 organism per test chamber *Booka *	ı per tex	st cham	per		Food	Food I.D. #	0 hr	1031)	24 hr	NO	NONE	48 hr	1631		72 hr	NONE		96 hr	NONE		Ī
Toxicant	Test	Nu	nber o	Number of Live Organisms	Organi	sms	D	Dissolved	30 Dxvs	Oxvgen (mg/l)	(1/2		***************************************	Hď				Tempe	Temperature °C	ပွ		Cond.	-j
Concen.	Chamber		S	Surviving	g)					·				,						ŀ		-	
g/L	Number	0	24	48	72	96	0	24	8/4814	72	96	0	24	48	72	96	0	24	84	72	98	0	96
Cont	Ą	10	6	۵	Ь	6	M.C. Salrajira	6.9	No.	ų.	7.4	8,2	7.8	,	ſ	8.0	₽ <u>₹</u> 2	23.3 2.	23.6 2	23.12	23.63	3013	333
1.25	A	10	٥	2	Ø	2	7.3	4-5	4	ļ	8.0	8,0	4.£		١	8.0	23.5	23.3	23.82	23.4 23.4	- 1	22607	2450
2.50	A	10	6	/	1	- [7.5	s 9	6.3	1	7.5	8.0	4.5	7.6	ì	7.9	23.7	23.3 28.6 23.3 23.6 4370 4710	3.6	333	3.6	370 6	रा।
5.00	Ą	10	٩	8	p	8	7.7	6.9		\ 	76	7.9	ţ.	7,6	1	7.8	۲3,4	23.3	73.6 23.1		23.5/8100		9810
7.50	Ą	10	0	١	١	١	7.7	8.0	(((7.7	7.3			ľ	23.6	23.3	l,	١	=	11990	11980
10.0	¥	10	ච	ı	١	J	<u>1</u> 8	4:4	1	ļ	{	5.5	65				23.4	28.3	١	١	1	15670 4	15720
_																							
Test Accept	Test Acceptability Limits:	Surv	rival in (Survival in Controls: $ > $ or $ = 90\% $	10 <	%06	For F	Iyallela	For Hyallela (at 23°C): >4.0 and <8.6	: >4.0 a	9.8> pu		bH: >	pH: > 6.0 and < 9.0	< 9.0			Tempera	Temperature ±1 °C	၁. ۱			
*Dilution Water Code	ater Code														We veri	fy this o	lata is tr	We verify this data is true and correct.	orrect.		_		

Task Manager

Λ

7,27

Cusum Chart Limits

Statistical Method

- Artificial Sea Water

Art. Sea

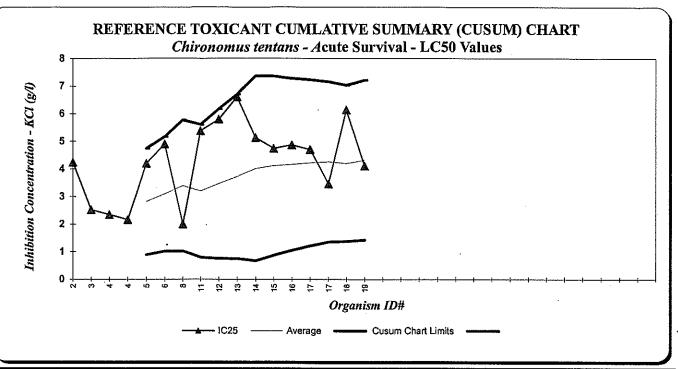
96 h LC50

- reconstituted water

Recon.

- moderately hard

MH H


- soft

- hard

Project Manager QA Officer _

* 20, pt taker in drombers where the organism died. 24-72 hrs an

REFTOX - Chironomids.xls
Doc Control ID: ASL 687-0510

Chironomus tentans - acut POTASSIUM CHLORIDE (g/I				From EPA 833-R-00-003:
			10th Quartile C	CV (control limit) = na
Endpoint: 96 hour Survival				V (warning limit) = na
Stats Method: Probit, Spearman-K		oolation		V (warning limit) = na
Test Conditions: Recon MH, 25 o	C		90th Quartile C	V (control limit) = na

As per EPA 833-R-00-003, section B.2.1, the quartiles listed above are from just a few labs (4) and therefore not to be considered typical or representative. Cusum limits are based on ASL data only.

Event	Chi	Test Start	LC50	Running	Running	Cusum C	hart Limits	Intralab
#. [ID#	Date	LC30	Average	SD	AVG-2SD	AVG+2SD	CV
1	2	9/10/1999	4.24			***		
2	3	10/5/1999	2.52					
3	4	10/12/1999	2.34					
4	4	10/12/1999	2.16					
5	5	10/20/1999	4.20	2.82	0.96	0.89	4.74	0.34
6	6	11/2/1999	4.90	3.09	1.04	1.02	5.17	0.34
7	8	7/29/2002	2.00	3.39	1.19	1.02	5.77	0.35
8	11	10/1/2004	5,38	3.19	1.20	0.79	5.60	0.38
9	12	4/26/2005	5.80	3.47	1.36	0.76	6.18	0.39
10	13	4/29/2005	6.61	3.73	1.49	0.75	6.70	0.40
11	14	5/6/2005	5.13	4.02	1.67	0.67	7.36	0.42
12	15	7/14/2006	4.74	4.12	1.62	0.87	7.36	0.39
13	16	7/20/2006	4.87	4.17	1.56	1.05	7.28	0.37
14	17	1/28/2011	4.70	4.22	1.50	1.22	7.23	0.36
15	17	1/28/2011	3.46	4.26	1.45	1.36	7.16	0.34
16	18	7/1/2014	6.14	4.20	1.41	1.38	7.03	0.34
17	19	8/19/2014	4.11	4.32	1.45	1.43	7.22	0.33
18								.,,,
19								
20								

Chirono (KCI), 8/26/2014

APPENDIX C CHAIN OF CUSTODY

Bioassay Sample Receipt Record

		1 .		
Batch Number: <u>133151 - 01</u>	Date received:	7/3/	14	
Client/Project: Alaske. Pept. offish + game	Checked by: _	MC		
VERIFICATION OF SAMPLE CONDITIONS (verify all items) * HD = Clien	t Hand delivered Sa	mples		
Observation		NA	YES	NO
Were custody seals intact and on the outside of the cooler?			×	
Type of packing material: Ice Blue Ice Bubble wrap			~	
Was a Chain of Custody provided?			<u> </u>	
Was the Chain of Custody properly filled out? If not document in SRER belo	ow.		 	
Were the sample containers in good condition (broken or leaking)?				<u> </u>
Are all samples within 36 hours of collection? If not, contact LPM			<u> </u>	
Was there ice in the cooler? Enter temp. If >6°C contact client/SRER	(၄ ℃		 X 	
<u> </u>	ample Rece	pint Fx	ception	Report
	ents (write number of exc			
THE lonowing exceptions were nated:	STITE (Multe upumpe) or exc	ephon descriptio	. and the mpane	
No custody seal as required by project				
No chain-of-custody provided Analysis, description, date of collection not provided				
4. Samples broken or leaking on receipt. 5. Temperature of samples inappropriate for analysis requested. (EPA recommends 0-6 °C for WET testing)				
Container inappropriate for analysis requested				
7. Inadequate sample volume.		*		
Preservation inappropriate for analysis requested				<u></u>
Samples received out of holding time for analysis requested				
10. Discrepancies between COC form and container labels.				
11. Other.				
ACTION TAKEN (date/time):				
Client notified on (date/time):				
Originator:				
Client Contact:				it verification.xlsx

CHAIN OF CUSTODY RECORD FOR NPDES COMPLIANCE BIOMONITORING CHZAMHILL

165/4	Dept of Fish and Grame		NPDES#	#S								Shija E.E.	p Sg	ld III	Ship Samples to:	Laboratory
Junton, Alk 99	99801		Initiated:	Co	ımple Inf	ormat Ti	ation: Time					Atte 110	o tio	E E	Attention: Bioassay Lab 1100 NE Circle Blvd. Suite 300	•
P.	Grows t		Ended:	Ended: Date Chilled During Collection 7		Yes Ti	me .	92				<u>ස</u>	컐	s, Of one:	Corvallis, OR 97330 Lab Phone: (541) 768-3160	
E-mail: Kate. Kanong 2 alaske	alaska. gov		Dechlori	Dechlorinated prior to shipping?		_ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		2	1 1	•		Cus	ton	er S	Customer Service: (541) 768-3120	120
CH2M HILL Project # / Purchase Order #	lase Order #			1				₹.	naly	sis	Red	uire	/ p;	Com	Analysis Required / Comments	
					-		_	****	711	L						
		Sample Type	ple e	Containers	d Acute d Chronic cute		cnte	shead Acute	shead Chror Acute	a Chronic		Chronic		worl) what	Concentration and/or Comments	ration or
Sample ID	Date Time	Comp.	Grab) ‡ 0 #		Oerio C Green	A iuoıT				√ bisyM		W zeH	(MICON	1	
Lange Chain (nach	(6/20/1M 15/05)	X	3	7										Z Z		
┧	1													,		
														_		
Sampled By & Title	(Please sign and print name)		Date/Time		Relinquished By	hed B	 -	(Please sign and print name)	se si	gnai	pt Dt	nt na	g (Date/Time	,
	Halto Kail Break		単分下	6.700	Boxin	(mar)		Siews Fr	ئر	ردا	Ber	13	125	Greent	4/2/14	0,48
Received By	(Please sign and print name		Date/Time		Relinquished By	hed B	>	(Plea	se si	gn a	(Please sign and pfint name)	int in	ame)		Date/Time	
	Michalle Partune	ΝŁ	기2 내	14 1630			ĺ		ĺ].		ľ			
Received By	(Please sign and print name		Date/Time	ne.	Relinquished By	hed B		(Please sign and print name)	Se S	ਲ 5	id bu	int na	ame)		Date/IIme	
Received By	(Please sign and print name)		Date/Time	ne	Shipped Via	Via									Shipping #	
					UPS	Bus	Fec	Fed-Ex_		Hand		Other				
Work Authorized By	(Please sign and print name)		Remarks	S			\		_		٠	\	1			
			10/1/2	show Continue was take a follows	M/ 1111	010	de	4	100	00	110	100				

12/2/2

CHAIN OF CUSTODY RECORD FOR NPDES COMPLIANCE BIOMONITORING CHEMHILL

10.5 Kg.	Dept of Figh and Grane	NPDES# Composite 8	Ship Samples to: Composite Sample Information: Bioasss	Ship Samples to: CH2M HILL - Applied Sciences Laboratory Attention: Bioassav I ah
15012 toward	4180	Initiated: Date		Artennon. Bioasssay Lab 1100 NE Circle Bivd. Suite 300
Person: K	ate Lanons	Ended: Date	Time	JR 97330
E-mail: Kote Von	165-4290	Chilled During Collection ? Dechlorinated prior to shipping	7 Yes No —	Lab Phone: (541) 768-3160 Customer Service: (541) 768-3120
III Drojec	Durchase Order #			
מו יבונו ו וויבר ו מלפרי ווי	ב מממומים		Analysis Required / Comments	nments
·		Sample iners Cype Containers Containers	Chronic sute lgae lgae nead Acute read Chronic Acute Chronic Chronic	Concentration and/or
Sample ID	Date Time Comp.	Grab # of C	Cerio Ac Cerio Ch Green A Trout Ac Sheepsh Menidia Menidia Mysid Ac Mysid Ac	Comments
By Tox Sit Cles	eek (b/3/14 1/25/> 7	8		
			and the state of t	
			Software Section 1	
			Zabeliciale	
		es communication de la com		
			a sagrados se	
Sampled By & Title	(Please sign and print name)		Relinquished By (Please sign and print name)	Date/Time
Brin- Blente	Hab. Rie Ther ianis Breust	1 7/12/14 5700	Barres Bluck Benjamin Spench	17/14 G700
d By	1	Date/Tíme	By (Ple	Date/Time
II A S S S S S S S S S S S S S S S S S S	- Kuchelle (arthurant	7/3/14 1030		
Received By	(Please sign and print name)	Date/Time	Relinquished By (Please sign and print name)	Date/Time
Received By	(Please sign and print name)	Date/Time	Shipped Via	Shipping #
			UPS Bus Fed-Ex Hand Other	
Work Authorized By	(Please sign and print name)	Remarks	,	
		Plate Contain	Obotto Continue ma had born the	

83151-02

Bioassay Sample Receipt Record

Batch Number: <u>B315</u> -63	Date received:	8/7/	[4	
Client/Project: Kensington	Checked by: _	MC		
,				
VERIFICATION OF SAMPLE CONDITIONS (verify all items) * HD = C	lient Hand delivered Sar	nples		
Observation		NA	YES	NO
Were custody seals intact and on the outside of the cooler?			×	
Type of packing material: Ice Blue Ice Bubble wrap			×	
Was a Chain of Custody provided?			7	
Was the Chain of Custody properly filled out? If not document in SRER t	pelow.		\ <u> </u>	
Were the sample containers in good condition (broken or leaking)?			**	
Are all samples within 36 hours of collection? If not, contact LPM			7	
Was there ice in the cooler? Enter temp. If >6°C contact client/SRER	4.1 °C		4	
	<u> </u>			—
	Sample Rece			<u> </u>
	ments (write number of excer	tion description	and the impacted	sample numbers)
No custody seal as required by project				
No chain-of-custody provided Analysis, description, date of collection not provided	, A			
4. Samples broken or leaking on receipt. 5. Temperature of samples inappropriate for analysis requested. (EPA recommends 0-6 °C for WET testing)				
Container inappropriate for analysis requested				
7. Inadequate sample volume.				
Preservation inappropriate for analysis requested	W-0			
Samples received out of holding time for analysis requested				
Discrepancies between COC form and container labels.	A			·····
11. Other.	***************************************			
ACTION TAKEN (date/time):	<u>.</u>			
· 導				
Client notified on (date/time):				
Originator:				

Client Contact: CH2MHILL Applied Sciences Laboratory (ASL)

Bioassay receipt verification.xlsx Doc Control ID: ASL993-0212

(Ship Samples to: CH2M HILL - Applied Sciences Laboratory	Attention: Bioasssay Lab 1100 NE Circle Blvd. Suite 300	Corvallis, OR <i>9</i> 7330 Lab Phone: (541) 768-3160 Customer Service: (541) 768-3120	ments	Concentration	Comments						Date/Time	8/5/14090	Date/Time		Date/Time.	Shipping #		
NITORING	Ship Samples to: CH2M HILL - Appl	Attention: B	Corvallis, OR 97330 Lab Phone: (541) 768 Customer Service: (5	Analysis Required / Comments	rute ite of Chimith	Mysid Ad Mysid Ch Haz Was Haz Was (Noons: 4	2					(Please sign and print name)	Sail Band	(Please sign and print name)		(Please sign and print name)		dOther	
CHAIN OF CUSTODY RECORD FOR NPDES COMPLIANCE BIOMONITORING		formation: Time	Yes No	Analys	gae ead Acute ead Chronic ead Chronic	Sheepsh Aenidis							N	, ,				Bus Fed-Ex Hand	
OR NPDES COMI		Composite Sample Information: Date Time	Chilled During Collection ? Dechlorinated prior to shipping?		Chronic	i beadte beadte oA oha						Relinquished By	100 Bergans	Relingdished By	()07	Relinquished By	pec	- San	
OY RECORD FC	NPDES#	Initiated:	Chilled Durir Dechlorinated p		Sample Type ontsiners	Grab	3					Date/Time	(17/2/14 0)	Date/Time	20/1/10		Date/Time	Remarks	
IN OF CUSTOE	T Street	12	, Da	#-	o,	Time Comp.	14 0900 X		and the second s			(Please sign and print name)	Hab. Bis Rain Brownth	n ang print name)	Michille Contract	n and print name)	(Please sign and print name)	(Please sign and print name)	
-	Alacka 1000	K (ADPG)	465/4290 Karous/@laska.gov	# / Purchase Order		Date	1 (reak 7/20/14					(Please sig	`	(Please sig	- Michell	(Please sig	(Please sig	(Please sig	
CHESTAHII	Client Coes Address 2:11 20	Copure 3081 (1 1	CH2M HILL Project # / Purchase Order #		Sample ID	Lower Tolman (re-ole	And the state of t				Sampled By & Title	Beriania Ribusto	Recelved By	11 - CA	Received By	Received By	Work Authorized By	

R3151-03

Bioassay Sample Receipt Record

Batch Number: 83151 - 64 Client/Project: 1605179, ten	Date receive	d: <u>8</u> /-	1/14	
Client/Project: Kensinaten	Checked by	la la	(
	•			
VEDICATION OF CAMPI E CONDITIONS () + I O			
VERIFICATION OF SAMPLE CONDITIONS (verify all iter	ms) * HD = Client Hand delivered 8	Samples		
Observation		NA	YES	NO
Were custody seals intact and on the outside of the cooler?			X	*******
Type of packing material (Ice Blue Ice Bubble wrap	melsed		X	
Was a Chain of Custody provided?			<u> </u>	
Was the Chain of Custody properly filled out? If not documen			X	
Were the sample containers in good condition (broken or lea			× -	
Are all samples within 36 hours of collection? If not, contact	A 7		<u> </u>	
Was there ice in the cooler? Enter temp. If >6°C contact clie	nt/SRER 6-5°C			
	Sample Red	eint Exc	cention	Report
The following exceptions were noted:	Comments (write number of ex			
No custody seal as required by project	Commentes (write number of ex	cception description	and the impacted	sample numbers)
No chain-of-custody provided	μ, μ,	· · · · · · · · · · · · · · · · · · ·		
Analysis, description, date of collection	,			
not provided	14414.11			
Samples broken or leaking on receipt. Temperature of samples inappropriate			······································	
for analysis requested. (EPA recommends				
0-6 °C for WET testing)				
Container inappropriate for analysis requested				
7. Inadequate sample volume.		**************************************	. <u>.</u>	
Preservation inappropriate for analysis requested				
Samples received out of holding time for analysis requested				
Discrepancies between COC form and container labels.				
11. Other.				
ACTION TAKEN (date/time):				
Client notified on (date/time):				
Originator:				
Client Contact:			Sioassay receipt ve	

Client (Address

CHAIN OF CUSTODY RECORD FOR NPDES COMPLIANCE BIOMONITORING

NPDES#_

Address 362 (1)	10 10 V		₽ 	NPDES#						1				Shi	p Sal	Ship Samples to:	to:	
1 9	200 916 100	,		٥	Soficonmo	1	1						г	중 :	ΣΜ:	/ /	CH2M HILL - Applied Sciences Laboratory	
1	86.1		<u>-</u>	Initiated:	Composite sample information:	ашы	into	E F	Tion					Atte	intion		Attention: Bioassay Lab	
Person: Kak	Kanouse			Ended:	Date .			- - 				ı		2 5		<u> </u>	TTUU NE CIrcle Blvd. Suite 300 Convelle OD 07330	
467-465-	4290		ර 	illed Duri	Chilled During Collection ?	6.	Yes	- ၂ ဖွ	2	8		1		2 4	Pho	ָרָ קָרָ קָרָ	Colvallis, OK 9/330 ab Phone: (541) 768-3460	
E-mail: Kate. Kanovac (Balaska	galasta. 40V		Dech	lorinated	Dechlorinated prior to shipping ?	oing?	∖sey	ျှ		ˈºၙˈ				Ö	tome	r Sen	Customer Service: (541) 768-3120	
CH2M HILL Project # / Purchase Order #	nase Order#										nal	Sis	Req	uire	d/C	Analysis Required / Comments	ents	
						_				***************************************	DIL	L			F			
			Sample	tainers										oin	H_ with	3/14/17	Concentration	
			Type	uo] [าเ				and/or	
Sample ID	Date	Time Co	Comp. Grab			athead sthead	oho oine: Gerio Ch	IA nəərê	oA fuor	ysdəəy	heepsh Lenidia	enidia (oA biayl	lysid Ch	az Was Am. tot	Him ha	Comments	
Lower Slate Gook	7/28/14 Mas	X		2									N		~ [
•							 	-		T	╁┈	_		1	-	+		
						-	+	+		+	+	4	1	┪	-	1		
												ļ		 -				
							<u> </u>	ļ		\vdash	-	<u> </u>		╁╴	_			
								_		1	-	1_			-			
							<u> </u>	<u> </u>		+	-	ļ		1	-			
							-				-				-			
Sampled By & Title	(Please sign and print name)	name)	Daţe/T	te/Time		Relinquished By	uishe	d By		Plea	se sig	n an	(Please sign and print name)	t nan	<u>.</u>		Date/Time	
Sowster	L.B.B.B. Bani Be	Beek	6		MOR	Per min	ms.	٠,	7	TS,	1	<u>خم</u>	ent Bis Bear	2	17	~~	R15/1900	
	(Please sign arkd print	name)	Date/Time	ime		Relin¢uished By	nishe	d By		Plea	e sig	n an	prin	t nan	e e		Date/Time	
	Michalle Corawin	A FO AN	41/1/8		1100													
Received By	(Please šign and print i	name)″	Date/T	ime	<u> </u>	Relinquished By	ishe	d By		Plea	se sig	n and	(Please sign and print name)	t nam	(e)		Date/Time	
Received By	(Please sign and print name)	name)	Date/Time	ime	0)	Shipped Via	d Via									ऊ	Shipping #	
						UPS	Bus		Fed-Ex	Ĭ.	ř	Hand		Other		<u></u>		
Work Authorized By	(Please sign and print name)	name)	Remarks	k s	6.2.	ĺ,												
			-	i	> })												

B3151-64

Bioassay Sample Receipt Record

ado me offily				
Batch Number: B38151-65	Date receive	d: <u>8/7</u>	/14	
Client/Project: Kensington	Checked by:	<u>Me</u>		
, , , , , , , , , , , , , , , , , , , ,	_			
VERIFICATION OF SAMPLE CONDITIONS (verify all ite.	ms) * HD = Client Hand delivered S	Samples		
Observation		NA	YES	NO
Were custody seals intact and on the outside of the cooler?		1471	\ <u>\</u>	
Type of packing material: Ice Blue Joe Bubble wrap			4	
Was a Chain of Custody provided?			1/2	
Was the Chain of Custody properly filled out? If not documer	nt in SRER below.		V	
Were the sample containers in good condition (broken or lea	king)?		7.	
Are all samples within 36 hours of collection? If not, contact	LPM		×	
Was there ice in the cooler? Enter temp. If >6°C contact clie	nt/SRER 5. 6°C		8	
	Sample Rec	eipt Ex	ception	Report
The following exceptions were noted:	Comments (write number of ex	ception description	and the impacted	sample numbers)
No custody seal as required by project				
2. No chain-of-custody provided				
 Analysis, description, date of collection not provided 				
4. Samples broken or leaking on receipt.				
 Temperature of samples inappropriate for analysis requested. (EPA recommends 				
0-6 °C for WET testing)				
Container inappropriate for analysis requested				
7. Inadequate sample volume.				
Preservation inappropriate for analysis requested				-
Samples received out of holding time for analysis requested				
Discrepancies between COC form and container labels.				
11. Other.				
p				
ACTION TAKEN (date/time):				
Client notified on (date/time):				"
Originator:	•			
Client Contact:			Bioassay receipt v	erification.xlsx

CHAIN OF CUSTODY RECORD FOR NPDES COMPLIANCE BIOMONITORING ニエマルエひ

CH2M HILL - Applied Sciences Laboratory Concentration Comments Customer Service: (541) 768-3120 and/or 1100 NE Circle Blvd. Suite 300 Lab Phone: (541) 768-3160 Attention: Bioasssay Lab Shipping # Date/Time Date/Time Date/Time Corvallis, OR 97330 Analysis Required / Comments Ship Samples to: Leighin Rauch Run Brant (Please sign and print name) (Please sign and print name) **Ass Waste** Other Mysid Chronic Mysid Acute Menidia Chronic Hand Sheepshead Chronic **ٰ**ء Fed-Ex_ heepshead Acute Composite Sample Information: Time Yes Relinquished By Relinquished By Relinduished By Green Algae Yes Bus Cerio Chronic Shipped Via Serio Acute Dechlorinated prior to shipping? -athead Chronic San Chilled During Collection ? sthead Acute Date Date tap tap 00 | Ended: 7/2/114 F NPDES# Initiated: # of Containers Date/Time 9/1/n Date/Time Date/Time Remarks Comp. | Grab Sample Type Michaelle and print name) Tab. R.c. R. T. Bolum M. (Please sign and print name) Time 1480 7130/14 CH2M HILL Project # / Purchase Order # Karoush Kate Kanana Opelas Gaga Date 100er Slate Cleak Deprior Differench Sample ID Work Authorized By Sampled By & Title Contact Person: Jungar. ecelved By Received By Received By Client (Address Phone: E-mail:

R3151-65

Bioassay Sample Receipt Record

			3-pix 92-19	
Batch Number: 3/5/- B	Date recei	/ed: <u>-7/1/</u>		
Batch Number: 3/5/- B Client/Project: Alaska Dept of Zish Jan	Checked	oy: <u>AA</u>		
VERIFICATION OF SAMPLE CONDITIONS (verify all it	ems) * HD = Client Hand delivere	d Samples		-
Observation		NA	YES	NO
Were custody seals intact and on the outside of the cooler?				
Type of packing material: Ice Blue Ice Bubble wrap			<i>\\\\\\</i>	
Was a Chain of Custody provided?			2	
Was the Chain of Custody properly filled out? If not docume	ent in SRER below.			2
Were the sample containers in good condition (broken or le	aking)?			V
Are all samples within 36 hours of collection? If not, contac	t LPM	ļ		1
Was there ice in the cooler? Enter temp. If >6°C contact cli	ent/SRER 23.0	Clawer Da upper Blate	msan	
	Sample Re	eceipt Exc	ception	Report
The following exceptions were noted:	Comments (write number of	f exception description	and the impacted	sample numbers)
No custody seal as required by project				
No chain-of-custody provided				
Analysis, description, date of collection not provided				
 4. Samples broken or leaking on receipt. 5. Temperature of samples inappropriate for analysis requested. (EPA recommends 0-6 °C for WET testing) 	# INSUFFICIALT UUL	IME AVAIL	- Restmpl	.60.
Container inappropriate for analysis requested				
7. Inadequate sample volume.				
Preservation inappropriate for analysis requested				
Samples received out of holding time for analysis requested				
Discrepancies between COC form and container labels.				
11. Other.			W-7-1-10	
ACTION TAKEN (date/time):				
Client notified on (date/time):				
Originator:				
Client Contact:			Bioassay receipt v	erification,xisx

Applied Sciences Laboratory (ASL)

Bioassay receipt verification.xlsx Doc Control ID: ASL993-0212

CH2M HILL - Applied Sciences Laboratory Concentration Comments Customer Service: (541) 768-3120 and/or 1100 NE Circle Blvd. Suite 300 Lab Phone: (541) 768-3160 7/2/14 Attention: Bioasssay Lab Shipping # Date/Time Date/Time Date/Time Corvallis, OR 97330 Analysis Required / Comments Ship Samples to: Beniamin Biguster, Beggin Brown CHAIN OF CUSTODY RECORD FOR NPDES COMPLIANCE BIOMONITORING (Please sign and print name) (Please sign and print name) (Please sign and print name) Haz Waste Other Mysid Chronic Mysid Acute Menidia Chronic Hand Menidia Acute Sheepshead Chronic ່ ⊱ Fed-Ex Sheepshead Acute Time Composite Sample Information: Time Relinquished By Relinquished By Relinduished By Green Algae Yes Yes Bus Derio Chronic Shipped Via Serio Acute Dechlorinated prior to shipping? -athead Chronic San Chilled During Collection ? athead Acute SSISTE STOTE Date Date 骨骨 5450 100 22.4°C NPDES# Initiated: Ended: H/0/4 417/14 # of Containers Date/Time Date/Time Date/Time Date/Time Remarks Comp. Grab Sample Type (man-e C Break lab. Bio <u>たのれを 作のでたるの</u> (Please sign and print name) F Sheet Time 300 Kate. Kawanga a alaska go CH2M HILL Project # / Purchase Order # [0/36/14 Date 407-465-4790 Upper Slite Cleek ニエミバエい Reviewsh Browshy Juneur, AK Sample ID Work Authorized By Sampled By & Title Client Hash Contact Person: Recéjved By Received By Received By Phone: E-mail:

CH2M HILL - Applied Sciences Laboratory Concentration Comments Customer Service: (541) 768-3120 and/or 1100 NE Circle Blvd. Suite 300 Lab Phone: (541) 768-3160 Attention: Bioasssay Lab H2/14 Shipping # Date/Time Date/Time Date/Time Corvallis, OR 97330 Analysis Required / Comments Ship Samples to: 23.0,0 Azhia Cheen BONIONS BREUST BASIS BREWE CHAIN OF CUSTODY RECORD FOR NPDES COMPLIANCE BIOMONITORING (Please sign and print name) (Please sign and print name) (Please sign and print name) etseW sete Other Mysid Chronic Mysid Acute Menidia Chronic Fed-Ex Hand sheepshead Chroni Sheepshead Acute Composite Sample Information: Time Time Relinquished By Relingulished By Relinquished By Green Algae Bus Yes Cerio Chronic Shipped Via Cerio Acute Dechlorinated prior to shipping? -sthead Chronic UPS Chilled During Collection ? -athead Acute Date Date 世 世 Dry 2 NPDES# Ended: nitiated: # of Containers 7/7/14 Date/Time Date/Time 州也 Date/Timé Date/Time Remarks Grab Sample Type Comp. Fish and lowing A. R. O. Best Sign and print name) Please sign and print name) Annie Horton (Please sign and print name) (Please sign and print name) (Please sign and print name) Time (CDC) Kate King use of alasila. Gal 7/1/14 CH2M HILL Project # / Purchase Order # Person: Kate Kawass Date Address Bill Ray Courte Lower slate creek Alaska Dool Sample ID Sampled By & Title Work Authorized By Contact Person: JAMERIC BON SAIN Received By Received By Received By E-mail: Phone:

CH2M HILL - Applied Sciences Laboratory 379 Concentration Comments Customer Service: (541) 768-3120 and/or しゅり 1100 NE Circle Blvd. Suite 300 Lab Phone: (541) 768-3160 71/14 Attention: Bioasssay Lab Date/Time Date/Time Shipping # Corvallis, OR 97330 Analysis Required / Comments Ship Samples to: Spill Ha Reviews Breust Rank Banks CHAIN OF CUSTODY RECORD FOR NPDES COMPLIANCE BIOMONITORING (Please sign and print name) (Please sign and print name) (Please sign and print name) Haz Waste Other Mysid Chronic Mysid Acute Venidia Chronic Hand Menidia Acute Sheepshead Chroni Fed-Ex Sheepshead Acute Composite Sample Information: Time Time Yes Relinquished By Relinquished By Relindelished By **Green Algae** Bus Cerio Chronic Shipped Via Cerio Acute Dechlorinated prior to shipping? -athead Chronic Chilled During Collection ? -athead Acute KSISFB Date Date 曹世 7/2/14 7/7/14/ |Date/Time Ended: NPDES# Initiated: # of Containers Date/Time Date/Time Date/Time Remarks Comp. | Grab Sample Type Please sign and point name) × I stract (Please sign and print name) Time <u>8</u> Phone: Kate Carong (alagka, gal) E-mail: 907 -46 \ - 479/6 (0/20/M) CH2M HILL Project # / Purchase Order # Kat Kavansa Client Alaska Dept of Figh and Date Lower Johnson (real ロエスメエロ drontane Mach Sample ID Work Authorized By Sampled By & Title Contact Person: Binjamin Received By Received By Received By

Winn, Doug/CVO

From: Sent:

To: Cc: Subject: Attachments:

Muckey, Brett/CVO
Wednesday, June 25, 2014 3:17 PM
Winn, Doug/CVO
Stanaway, Mike/CVO
Ben P Brewster - Alaska Department of Fish and Game, division of habitat Brewster Ben P (DFG).vcf

45-1290 Ket

Brewster, Ben P (DFG)

Alaska Department of Fish and Game, divi...

ben.brewster@alaska.gov (907) 455-5160 Work

802 3rd Street, Rm 133

Douglas, AK 99824

Guys, this is the contact for the Hyallela and Chrinomid testing coming out of Alaska. They plan on sampling July 1,2,3.

Brett

Winn, Doug/CVO

Brewster, Ben P (DFG)
ben.brewster@alaska.gov>Wednesday, July 02, 2014 11:09 AM From: Sent:

<u>..</u>

Winn, Doug/CVO RE: Kensington Gold Mine sediment toxicity sampling supplies Subject:

Doug,

I forgot Friday is the 4th, so you should receive the samples tomorrow afternoon. I shipped five samples. Just a head-up, we misplaced a lid for the sample site before running that sample. I will be out of the office from July 4th until mid-August, so you can contact my supervisor Kate Kanouse at 907-465-4290. Thanks Lower Slate Creek. You have enough sample to run both toxicity tests, but no "extra" sample. I thought I would let you know so you can keep that in mind

From: Doug.Winn@CH2M.com [mailto:Doug.Winn@CH2M.com]

Sent: Tuesday, July 01, 2014 11:03 AM To: Brewster, Ben P (DFG)

Subject: RE: Kensington Gold Mine sediment toxicity sampling supplies

Hi Ben, I just wanted to be sure you received the coolers that you should have got late last week or early this week.

From: Brewster, Ben P (DFG) [mailto:ben.brewster@alaska.gov]

Sent: Friday, June 27, 2014 9:01 AM

To: Winn, Doug/CVO

Subject: Kensington Gold Mine sediment toxicity sampling supplies

I've been in contact with Brett in regards to the Kensington Mine sediment toxicity analysis. I wanted to check in on the status of the coolers. I was told there has been a backorder on supplies and that they would be shipped to us this week and would be here today. Have the coolers shipped yet? If they have do you by chance have tracking information? Thanks for your time.

Benjamin Brewser Habitat Biologist

Brett

Brett Muckey

CH2M HILL - Applied Sciences Laboratory Bioassay Laboratory Manager 1100 NE Circle Blvd, Suite 300 Corvallis, OR 97330 (541) 768-3160 (lab) (541) 768-3112 (desk) www.ch2mlab.com

How is our Service? CH2MHILL's Applied Sciences Laboratory (ASL) would like your feedback. Please Click Here to leave your comments and suggestions.

CONFIDENTIALITY NOTICE: This e-mail message, including attachments, is for the sole use of the intended recipient and may contain confidential, proprietary, and/or privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not an intended recipient or you have received this e-mail in error, please contact the sender by reply e-mail and destroy all copies of the original message.

From: Brewster, Ben P (DFG) [mailto:ben.brewster@alaska.gov]

Sent: Tuesday, May 06, 2014 11:39 AM

To: Muckey, Brett/CVO

Subject: Kensington Gold Mine acute toxcity testing requirements

Hello Brett,

Attached are the pages from the APDES permit that outline our reporting requirements. Section 1.5.2.3 pertains specifically to the biological testing of sediments. We will be collecting five samples. Thanks again for your time.

-Ben

Benjamin Brewster, Habitat Biologist

Alaska Department of Fish and Game

Division of Habitat

802 3rd Street, Rm 133

Douglas, AK 99824

(907)-465-6160

Ŋ

Muckey, Brett/CVO

From: Sent:

Brewster, Ben P (DFG)

- Lesday, May 27, 2014 1:29 PM

Muckey, Brett/CVO

RE: Kensington Gold Mine acute toxcity testing requirements Subject: <u>..</u>

We are in the process of moving, so if you could send the sample kits to the address below that would be perfect. Thanks.

-Ben

From: Brett.Muckey@CH2M.com [mailto:Brett.Muckey@CH2M.com]

Sent: Tuesday, May 27, 2014 12:08 PM

To: Brewster, Ben P (DFG)
Subject: RE: Kensington Gold Mine acute toxcity testing requirements

Ben,

That's great news! Thanks.

Will you need sample kits sent to your Douglas Alaska address?

Brett

≣≶

From: Brewster, Ben P (DFG) [mailto:ben.brewster@alaska.gov]
Sent: Tuesday, May 27, 2014 12:53 PM

To: Muckey, Brett/CVO

Subject: FW: Kensington Gold Mine acute toxcity testing requirements

Hey Brett,

Kensington Gold Mine. We will be collecting the samples the first week of July so you can expect the samples to arrive the following week. The following is Kevin We heard back from Couer Alaska's environmental superintendent Kevin Eppers and he has approved the quote. All billing will go through Couer Alaska's Eppers billing information and our mailing address for sample containers. Thanks.

Kevin Eppers

Environmental Superintendent 3031 Clinton Dr. Suite 202 Juneau, Alaska 99801 Couer Alaska

Alaska Department of Fish and Game Division of Habitat Juneau, AK 99801 1008 F Street

Sent: Tuesday, May 27, 2014 8:58 AM To: Brewster, Ben P (DFG) From: Kanouse, Kate M (DFG)

Subject: FW: Kensington Gold Mine acute toxcity testing requirements

8

From: Eppers, Kevin [mailto:KEppers@coeur.com]

Sent: Tuesday, May 27, 2014 7:09 AM

Subject: RE: Kensington Gold Mine acute toxcity testing requirements To: Kanouse, Kate M (DFG)

Looks good to me Kate.

Thanks,

Kevin

From: Kanouse, Kate M (DFG) [mailto:kate.kanouse@alaska.gov]

Sent: Friday, May 23, 2014 3:14 PM

To: Eppers, Kevin

Subject: FW: Kensington Gold Mine acute toxcity testing requirements

Hi Kevin:

Attached is a quote from CH2M Hill for the laboratory sediment toxicity tests. Please let me know if you approve of the new laboratory, as soon as possible (sorry for the rush – I thought I sent this to you a couple weeks ago but failed to do so).

Thank you.

From: Brewster, Ben P (DFG) Sent: Thursday, May 15, 2014 2:57 PM

To: Kanouse, Kate M (DFG)

Subject: FW: Kensington Gold Mine acute toxcity testing requirements

Hey Kate,

Attached is the acute toxicity analysis quote from CH2M Hill.

From: Brett.Muckey@CH2M.com [mailto:Brett.Muckey@CH2M.com]

Sent: Thursday, May 15, 2014 2:53 PM

To: Brewster, Ben P (DFG) **Subject:** RE: Kensington Gold Mine acute toxcity testing requirements

Hi Ben.

That is excellent. I've prepared a quote for you with the anticipated permit change.

We can reserve lab space for you any time in July, just let us know.

Thanks for the opportunity to earn your business!

Brett

From: Brewster, Ben P (DFG) [mailto:ben.brewster@alaska.gov]

Sent: Thursday, May 15, 2014 10:01 AM

To: Muckey, Brett/CVO

Subject: RE: Kensington Gold Mine acute toxcity testing requirements

Hello Brett,

The ADEC is in the process of making the edit to the APDES permit. We would like to move forward with this project, so if you could get me a quote for this work that would be great. Let me know the information you need from me. Thanks for your time.

From: Brett.Muckey@CH2M.com [mailto:Brett.Muckey@CH2M.com]

Sent: Thursday, May 08, 2014 10:20 AM

To: Brewster, Ben P (DFG)

Subject: RE: Kensington Gold Mine acute toxcity testing requirements

Thanks for checking back up the line, Ben. I'd like to do the work ... just want to be sure it's the best product we can make.

Brett

From: Brewster, Ben P (DFG) [mailto:ben.brewster@alaska.gov]

Sent: Thursday, May 08, 2014 9:32 AM

To: Muckey, Brett/CVO

Subject: RE: Kensington Gold Mine acute toxcity testing requirements

Hello Brett,

Thanks for getting back to me. I don't think any of us were aware we were using an outdated protocol. We have contacted the folks at ADEC and requested that we update the methods in the APDES permit. It may be able to change without having to go out for public comment an all that. They will hopefully get back to me in the next week, so I will let you know. Thanks for your time.

-Ben

From: Brett.Muckey@CH2M.com [mailto:Brett.Muckey@CH2M.com]

Sent: Tuesday, May 06, 2014 3:44 PM

To: Brewster, Ben P (DFG)

Subject: RE: Kensington Gold Mine acute toxcity testing requirements

Ben,

Thanks for the permit.

I do have one question for you. The permit specifically states Chironomus dilutus using EPA/600/R-94/024 (written in 1994). The thing is that EPA protocol was revised in 2000 to EPA/600-R/94/064 and the species changed to Chironomus tentans. (see page 3 of the attachment)

As the older EPA manual is no longer available and has been replaced, I'm thinking that the revision should be used along with the Chironomus tentans. We often see these types of references to old protocols in NPDES permits, and often with the language "or most recent update" ... but this should definitely be comfirmed with the Alaska DEC/client before testing.

What do you think?

2 Your Internal Billing Reference Recipient's Name 200 the HOLO location address or for continuation of your shipping address いるかい 20 2 3695 HOLD Weekday
Fedex location address
REQUIRED NOT exaliable for
Fedex Frast Overnight. HOLD Saturday
Refer to cason address
REQUIRED. Available UNIT for
Reside Princip Control and
Facility 20 ay to select locations. **177**4 SATURDAY Delivi FedEx First Overi

Earliest next business in locations. Friday shipme Manday unless SATURE No Signature Req Package may be left with obtaining a signature for o No Shaperst FedEx Standard I Next business afternoon Saturday Delivery NOT a 6 Special Hand Rev. Date 1/12*Part #167002 * ©2012 FedEx * PRINTED .'N U.S.A. | SEF ☐ Fed£x Envelope* angerous goods (including dry io placed in a fedEx Express Drop Does this shipment Payment Bill to FedEx Priority Ov
Next business morning.*
Their business morning.
Their busine Express Paci NOTE: Service order **Packaging** lere a higher value. See the current FedEx Service Guide for details %05£76 %U-₹0 XQq CVOA Credit Card Audi. ### 3695 7174 1050 0050 7174 44

FEGEX100 NE CIRCLE BLVD 300

Corvallis,

THU - 03 JUL AA STANDARD OVERNIGHT 4 of 5

Horton, Annie/CVO

From:

Horton, Annie/CVO

Sent:

Monday, July 07, 2014 3:33 PM 'kate.kanouse@alaska.gov'

To: Subject:

Resampling

Hello Kate Kanouse,

I spoke with you earlier today about resampling some of the sites due to temperatures and sample delivery being out of range. I sent off three coolers this afternoon to be overnighted to Douglas, AK. The three sites that need to be resampled are: Lower Johnson Creek, Lower Slate Creek, and Upper Slate Creek.

If you have any questions or concerns please feel free to contact me. Thank you for your willingness to resample.

Thank You,
Annie Horton
Biologist 1
CH2M Hill
Annie.horton@ch2m.com
541-768-3160