



**Forest Service** 

**Tongass National Forest** 

R10-MB-482a

November 2003

# **Greens Creek Tailings Disposal**

# Final Environmental Impact Statement

Volume I



The United States Department of Agriculture (USDA) prohibits discrimination in its programs on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, and marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD).

To file a complaint, write the Secretary of Agriculture, U.S. Department of Agriculture, Washington, DC 20250, or call (202) 720-7372 (voice) or (202) 720-1127 (TTD). USDA

is an equal employment opportunity employer.

## **Table of Contents – Executive Summary**

| Execut  | tive Summary                                               | S-1                                |
|---------|------------------------------------------------------------|------------------------------------|
| S.1     | Purpose of and Need for Proposed Action                    | S-4                                |
| S.2     | Description of Alternatives, including the Proposed Action | S-7                                |
|         | Elements common to all alternatives                        | S-10<br>S-10<br>S-10<br>oundary as |
| S.3     | Comparison of Alternatives                                 | S-12                               |
|         | Water Quality                                              | S-19                               |
| S.4     | Appendices and Planning Record                             | S-20                               |
| Table   |                                                            |                                    |
| Table S | S-1 Comparison of Alternatives                             | S-13                               |

### ■ Executive Summary

This page intentionally left blank.

# Executive Summary Final Environmental Impact Statement Greens Creek Tailings Disposal

#### **Background**

The Greens Creek Mine is an underground metals mine near Hawk Inlet on northern Admiralty Island. It is located approximately 18 miles southwest of Juneau, Alaska. The mine is situated in the Greens Creek watershed within the Admiralty Island National Monument. In 1980, Congress provided for mining at the Greens Creek site in Section 503 of the Alaska Native Interest Land Conservation Act (ANILCA).

Before mining operations began, the United States Department of Agriculture, Forest Service, published the Greens Creek Final Environmental Impact Statement (USDA, FS 1983) and issued its Record of Decision (ROD) for overall development and operation of the mine project. In early 1984, the Forest Service approved a General Plan of Operations (GPO) for Noranda Mining, Inc., the owner and operator at that time.

That original GPO called for underground mining with ore crushed and concentrated in a mill near the mine portal. Under the plan, the ore concentrate was to be trucked approximately nine miles to the Hawk Inlet port at the Cannery; from there, it was to be shipped to smelters outside Alaska for processing and refining. The *tailings*—the material left after the minerals have been removed—was to be placed in a *slurry*, or watery mixture, and piped along the road corridor to a site at the Cannery Muskeg for disposal.

While planning was still going on, ownership of the mine changed hands, and in early 1986, Amselco assumed control of operations. The new owner decided to change some aspects of the GPO, particularly the method of tailings disposal. Instead of putting tailings in slurry, Amselco proposed to truck dry tailings to a smaller area at the same Cannery Muskeg for disposal. In July 1987, the Forest Service determined that this and other proposed changes to the GPO required a National Environmental Policy Act (NEPA) review. The following year, the Forest Service published the *Environmental Assessment for Proposed Changes to the General Plan of Operations for the Development and Operation of the Greens Creek Mine* (USDA, FS 1988).

Full-scale development of the mine began in 1987. Workers excavating for the mill site found a large, unanticipated volume of porous soil that had to be removed in order to provide a suitable foundation for the mill. Because this soil was placed in the mine's approved waste rock disposal site, higher volumes of waste rock than anticipated were disposed of at the tailings site,

Greens Creek Tailings

Background S-1

which decreased available capacity for tailings. Also, ongoing exploration had identified additional ore reserves.

In response to these changed circumstances, in 1990 the project's operator, now Kennecott Greens Creek Mining Company (KGCMC - the applicant), sought approval for additional waste rock disposal capacity. As a result, in 1991 the Forest Service began a third NEPA review and the following year published the *Environmental Assessment for Additional Waste Rock Disposal Capacity at Greens Creek Mine* (USDA, FS 1992).

In April of 1993, KGCMC temporarily suspended mining operations due to depressed prices for metals. In 1995, Congress passed the Greens Creek Land Exchange Act, which granted Greens Creek subsurface rights to 7,500 acres of land immediately adjacent to its patented claims in exchange for 139 acres of private inholdings in the Admiralty Island National Monument and 50 acres of private inholdings in Misty Fiords National Monument. Upon completion of mining, the exchanged 7,500 acres, as well as all lands currently owned or yet to be acquired by Kennecott on Admiralty Island, will, after reclamation, revert to the United States and be included in the Admiralty Island National Monument, Tongass National Forest.

KGCMC reopened the project in July of 1996, and in conjunction with the resumption of mining operations, the Forest Service approved an amendment to the GPO. Prior to closure in 1993, KGCMC experienced several violations of Alaska Water Quality Standards (AWQS). Upon reopening in 1997, KGCMC attempted to use an ozone treatment for its domestic wastewater discharge. The system didn't function properly and led to several exceedances of permit limits relating to domestic wastewater discharge, though no fines were imposed.

The Greens Creek Mine supports an annual payroll of approximately \$26 million and employs a workforce of approximately 265 individuals—120 in mining and underground support, 60 in the mill, 55 in surface support, and 30 in administration. KGCMC presently processes in excess of 2,000 tons of ore per day. On an annual basis, that production yields approximately 10 million ounces of silver, 65,000 ounces of gold, and a total of 200,000 tons of zinc, lead, and bulk concentrates.

Based on known ore reserves and the current rate of production, the Greens Creek Mine has a remaining life of approximately 12 years (from 2003). KGCMC expects to backfill approximately half the tailings underground and use surface disposal at rates averaging up to 270,000 tons per year. At that rate, surface disposal capacity for approximately 3 ½ million tons of tailings will be needed during the remaining 12-year life of the mine. Under the current permit, however, the existing tailings facility has space for only about 600,000 tons of tailings—roughly 2 years of tailings disposal at the current

S-2 Background Greens Creek Tailings

level of production. Consequently, an additional disposal capacity of 2 ½ million tons is needed to process the known ore reserves.

In addition to the known ore reserves, past success in exploring indicates the likelihood that geologists may discover new deposits in the area. KGCMC has indicated that such discoveries could mean that mine life would extend an additional 10 years and surface disposal space would be needed for at least another 3 million tons of tailings. Thus, based on known and anticipated ore reserves and the current rate of tailings placement, KGCMC expects a mine life of 22 years which would require site capacity for 5½ to 6 million tons of tailings on surface disposal.

Based on the need for additional surface disposal, in January 2001, KGCMC submitted an application to the Forest Service requesting a modification of the existing GPO for expansion of both the area and the disposal capacity of the existing tailings facility. The Greens Creek application described alternatives that would meet KGCMC's need while satisfying its regulatory obligations, and identified their formal proposal.

The Forest Service and cooperating agencies reviewed the KGCMC proposal and its possible effects. Based on this review, the Forest Service developed a Proposed Action to carry forward, and determined the appropriate level of analysis given the impacts the proposed action might have on the environment.

In March 2001, the Forest Service issued a Notice of Intent to prepare an Environmental Impact Statement (EIS) to analyze and display the effects of proposed changes to the tailings operations. The Forest Service determined that the proposed project warranted an EIS because an expansion of the tailings disposal facility could significantly impact such things as water quality, wetlands, fisheries, and the values inherent in the Admiralty Island National Monument.

In the process of preparing the analysis, the Forest Service encouraged public comment, and based on the input, the Forest Service identified significant *issues*—those issues that present such potential for impact to the environment that they must be given special consideration. Through the consideration of these significant issues, the Forest Service formulated alternatives to the proposed action, including a no action alternative.

This summary briefly describes the primary contents of the Final EIS as follows:

➤ Chapter 1, Purpose of and Need for Action—Describes the Proposed Action-based on project revisions submitted by the operator and the purpose and need for the Proposed Action; discusses the need for preparation of the EIS and issuance of other Federal, State, and local

**Greens Creek Tailings** Background S-3 permits; and identifies issues raised during the scoping process and addressed by this analysis.

- ➤ Chapter 2, Description of Alternatives, Including No Action, and the Proposed Action—Describes how the alternatives were developed, describes the Proposed Action and compares the alternatives.
- ➤ Chapter 3, Affected Environment—Provides information on the physical and biological environment and socioeconomic conditions that would be affected by the alternatives.
- ➤ Chapter 4, Environmental Consequences—Describes the potential environmental consequences of all alternatives.

This summary provides an overview of the Final EIS, including important information from Chapters 1 through 4 and the appendices. Beyond the information in this FEIS, additional documentation of the environmental analysis is contained in the planning record, which is available to the public at the Juneau Ranger District Office.

#### S.1 Purpose of and Need for Proposed Action

"The purpose and need for the proposed action is to consider changes to the 2000 approved Plan of Operations (as amended) for the Kennecott Greens Creek Mining Company regarding tailings disposal in order to allow for continued operations."

The Forest Supervisor of the Tongass National Forest is the Responsible Official for this decision. The Forest Supervisor will document the decision based on the analysis provided in the Final EIS. He may select one of the alternatives discussed herein, select an alternative that combines components of more than one alternative, or select an alternative that includes additional mitigation measures. As a cooperating agency, the Corps of Engineers will adopt this Final EIS and issue its own ROD in conjunction with its permits for the Greens Creek Mine Tailings Expansion. The Environmental Protection Agency (EPA) will utilize the information in this EIS in issuing its National Pollutant Discharge Elimination System (NPDES) permit for the Greens Creek Mine.

As required by regulations implementing the National Environmental Policy Act, the Forest Service conducted a thorough scoping process that encouraged public, agency, and tribal participation in regular meetings (40 CFR 1501.7). The process involved, among other things, examining the proposed action and its possible effects, identifying issues of concern related to the project, and determining which require detailed study.

Greens Creek Tailings EIS

On March 29, 2001, the Forest Service published its notice of intent to prepare an EIS for the proposed project in the *Federal Register* (USDA, FS 2001a), and distributed a scoping document describing the proposed action, the EIS process, and a schedule for the preparation of documents. (Scoping Document for Greens Creek Mine Tailings Stage II Expansion Project Environmental Impact Statement, USDA, FS 2001b). The project name has been shortened to "Greens Creek Tailings Disposal".

Distribution of the scoping document began a 30-day period for the public and interested agencies to review the document and to comment. Comments were solicited from the general public, state and federal agencies, tribes, municipal governments, and other interested parties. On April 19th, the Forest Service hosted a scoping open house in Juneau and on April 23rd in Angoon. The comment period ran until April 30, 2001.

During the scoping process, the Forest Service identified issues that are significant to the given project.

The Forest Service identified water quality as the first significant Issue 1. issue for the proposed Greens Creek project.

"Ensuring the isolation of contact water generated as a result of continued operations and enlargement of the facility from groundwater and surface waters. In the short term, this isolation will be achieved through diversion, integrity of sub layers, lining where appropriate, and treatment. In the long term, this isolation will be achieved through diversion, integrity of sub layers and liners where placed, and capping.

Water quality concerns raised during scoping included:

- The potential for metals loading and /or acid rock drainage (ARD) from the tailings pile.
- The need for reduction of contaminants in the pile.
- The long-term, post closure, maintenance of surface and groundwater standards.
- The effectiveness of proposed methods for controlling water that does not come in contact with the pile.
- The need to add a monitoring program to measure metals uptake by wetland communities.
- The potential to increase in-stream sediments and bioaccumulation of metals in plants and animals.

These water quality issues may require the formulation of major mitigation actions connected to the Proposed Action or consideration of an alternative."

#### Executive Summary

This issue is particularly important because when water comes in contact with tailings, the quality of that water can be impaired. The process of sulfide oxidation and the short- and long term geochemistry of tailings are discussed in detail in Chapter 3. Tailings associated with this project contain an abundance of pyrite (iron sulfide), a mineral that is not removed as ore concentrate during processing. If exposed to air and water, pyrite slowly weathers, creating heat and sulfuric acid. The acid created when pyrite weathers may be consumed by dolomite contained in the tailings, but the metals and sulfate contained in the pile become soluble, and are more likely to dissolve into any water they contact. If this happens, the quality of that water degrades, and, if the water is not contained, treated or diluted, the environment for plant, fish, and wildlife may also be impaired. Consequently, minimizing the contact of air with tailings and isolating them from water is critical. Tailings disposal and tailings storage, therefore, must minimize contact with water.

**Issue 2.** Consideration of the values inherent in the Admiralty Island National Monument was identified as the second significant issue connected to the proposed project.

"Location of the proposed action in and adjacent to the Admiralty Island National Monument must be considered. Impacts to the Monument are considered because part of the proposed action would occur within the National Monument. Consideration of this issue may require the formulation of an alternative in which the footprint of the proposed development is altered to minimize impacts within the Monument boundaries."

The Admiralty Island National Monument was established in 1978 by Presidential Proclamation 43. Although "Monument values" were defined in neither the Presidential Proclamation nor the Alaska National Interest Lands Conservation Act (ANILCA), they were addressed in the context of the Forest Service's 1983 and 1988 NEPA reviews of the Greens Creek Mine lease and operations.

Both the EIS (in 1983) and the EA (in 1988) evaluated proposal alternatives against the following two considerations:

- → Keeping intact, to the maximum extent feasible, the system of resource values by using non-Monument lands; and
- + The potential for reclamation of impacted areas to pre-project conditions.

Federal Register 57009 - December 1, 1978.

Section 503 of ANILCA provides that, "with respect to the mineral deposits at Greens Creek, the holders of valid mining claims ... shall be entitled to a lease (and necessary associated permits) on lands under the Secretary's Jurisdiction .... for use for mining or milling purposes ... from such claims situated within the Monuments," provided "that the use of the site to be leased will not cause irreparable harm to the ... Admiralty Island National Monument and ... the Secretary shall limit the size of the area covered by such lease ..."

Other issues were identified during the scoping process as important, but not significant enough to require the development of alternative actions. They are described as follows:

- → The tailing facility design must be adequate. The design of the proposed tailings facility, including the engineering standards to be incorporated should be discussed as well as the adequacy of those standards.
- + The cumulative impacts from extended mine operation and those from other projects in the area should be considered.
- **→** Impacts to wetlands should be considered.
- → Direct and cumulative impacts to fish and wildlife resources should be considered among the alternatives. Mitigation measures to reduce impacts should be described.
- + Socioeconomic impacts should be considered and analyzed for all alternatives.

While these issues are not considered "significant" for the purpose of this analysis they are discussed in Chapters 3 and 4.

#### **S.2 Description of Alternatives, including the Proposed Action**

Under the National Environmental Policy Act (NEPA), the consideration of the significant issues leads to the formulation of various alternatives to a proposed action, as well as to the design of mitigation measures when needed.

#### Elements common to all alternatives

There are a number of elements that are common to all alternatives including the No Action alternative. These items are described below.

- → All discharged water will meet Alaska Water Quality Standards (AWQS).
- → No new roads outside of the tailings lease area will be constructed (Roads will be constructed within the lease area

- atop the slurry walls, on the pile itself, and to pile facilities within the disturbed area of the pile lease area.
- + The characteristics of the tailings, prior to the addition of any additives, are the same.
- → A final 3H:1V (3 horizontal to 1 vertical) outer slope would be used for all tailings piles.
- **→** The water treatment plant will be relocated.
- → An engineered 4-layer soil cap would be placed over the pile after closure to minimize the infiltration of oxygen and water. The design (see Chapter 2, Figure 2-3) would be approved by the Forest Service and DEC.
- → During operation and for a period of years afterwards until discharges can meet AWQS without treatment, all water that comes into contact with the tailings along with other industrial waste water would be contained, collected and actively treated. Details of the water treatment process are described below.
- → If upward groundwater gradients are not sufficient to provide containment of contact water, the facility design in the expansion area would also utilize a liner system to prevent discharge of tailings water into groundwater beneath the tailings.
- → During mine closure and post-closure periods, water would continue to be treated until effluent quality is such that these treatment processes are not required in order to meet discharge requirements. At that time and depending on actual effluent quality, KGCMC would discharge water using one of these discharge/compliance scenarios, in decreasing order of preference. Diagrams of these scenarios are shown in Chapter 2, Figure 2-1:
  - (1) Discharge into nearby surface or groundwater (a) without dilution water from pile runoff and groundwater, or (b) with such dilution. This discharge would meet fresh water quality-based effluent limits;
  - (2) Discharge directly into Hawk Inlet. This discharge would meet marine water quality-based effluent limits with a potential dilution factor from a mixing zone; or
  - (3) Continue to discharge into Hawk Inlet through a submerged diffuser. The effluent would meet the more stringent of either marine AWQS with a mixing zone or technology based limits.

The decision as to which scenario would be utilized and when it would be implemented during the closure and post-closure period would be proposed by KGCMC to the regulatory agencies per the requirements set forth in the GPO (KGCMC, 2001c). Once the agencies have confirmed through monitoring that the treatment plant is no longer required, it would be removed and the site reclaimed to return the area to generally natural conditions (KGCMC, 2001c).

Any of these discharge/compliance scenarios would be conducted under a reissued NPDES permit with any pertinent mixing zone authorized by ADEC. Figure 2-9, Chapter 2 summarizes the discharge decision logic used to determine which discharge scenario to use during the closure and post-closure period.

#### For all action alternatives:

- The tailings placement footprint is designed to provide tailings storage for the anticipated remaining 22 year life of the mine (approximately 12 years at present rate of production for known reserves and 10 years for potentially developing undiscovered reserves).
- The finished height of the pile would be approximately 160 feet above ground level (330 feet above sea level). Its existing height is 80 feet above ground level.
- + Placement of tailings could necessitate the relocation of the water treatment plant and a portion of the mine access road. Other than the relocation of this portion of the road, no new road construction is associated with any alternative.
- → A Design Basis Earthquake (DBE) for operations (Crustal Earthquake –1/475 year, M6.5) and a Maximum Design Earthquake (MDE) for closure design (equal to 75% of Maximum Credible Earthquake, M7.0).
- Interception and diversion systems to control non-contact water around the treatment facility, as similar systems currently function.
- Approved containment structures (such as liners where appropriate, slurry walls, and low-permeability deposits, as are now in use) to protect both groundwater and adjacent surface water.
- Water would continue to be treated at a water treatment plant as described under Alternative A.
- The Pit 5 water treatment plant would be moved to a new location within the expanded lease area.

- ★ Construction of a new water management pond system designed for a 25-year, 24-hour runoff event. The ponds would utilize a low-permeability liner as used in the existing stormwater ponds. Installation of surface water and groundwater controls and diversions.
- → Drainage infrastructure sufficient to meet geotechnical requirements to minimize phreatic levels within the tailings pile.

#### Alternative A - No Action

The "No Action" alternative would not modify the existing GPO nor permit expansion of the tailings disposal facility beyond its currently permitted size. The tailings lease area is 56 acres. The tailings footprint would expand from its current size of 23 acres to the currently permitted 29 acres.

KGCMC would continue its present method of generating whole tailings. The tailings would be placed without chemical or biological additives other than those currently allowed by the State of Alaska solid waste permit. Under the current permit the existing tailings facility has space for about 600,000 additional tons of tailings. Without a permitted expansion of the tailings pile, the mine would run out of room for surface disposal of tailings in roughly 2 years of tailings disposal at the current level of production.

#### Alternative B - Proposed Action

Alternative B, the Proposed Action, would modify the GPO to permit an increase in the size of the tailings pile, primarily to the west and the south. The tailings lease area would be 140 acres and the tailings footprint would be 61 acres. KGCMC would continue its present method of generating whole tailings. The tailings would be placed without chemical or biological additives other than those currently allowed by the State of Alaska solid waste permit.

#### Alternative C – East Ridge Expansion

Alternative C differs from the Proposed Action in two substantive ways. Alternative C would modify the GPO to permit expansion of the existing tailings disposal facility to the east of the present location, but would eliminate a proposed quarry and associated access roads at the southern end of the lease area and move the southern half of the proposed reclamation materials storage area outside of the Monument to the northeast corner just outside the current lease area. The combination of these actions would decrease the lease area and disturbed area in Admiralty Island National Monument. This scenario would also increase the geotechnical stability of the pile by using natural topographic features as a buttress for the pile. The

tailings lease area would be 123 acres and the tailings footprint would be 62 acres.

The second difference is the approach to managing water quality. Sulfate reduction is currently occurring within the pile and has beneficial effects on improving effluent quality. Carbon is currently present in the tailings from mill floatation reagents and dewatering flocculants and biosolids from the Cannery wastewater treatment.

A sulfate reduction monitoring plan (SRMP) will identify the optimum placement method, quantity and type of carbon required to assure a sulfate reducing environment following closure of the mine which may eliminate the need for chemical/physical water treatment after mine closure. In other words, the SRMP would be implemented to 1) determine the effectiveness of the current level of carbon addition and its adequacy in maintaining a reducing environment in the pile during operations; 2) identify the quantity of carbon required to assure a reducing environment following closure of the mine and thus eliminate the need for chemical/physical water treatment after mine closure; 3) determine the need for supplemental carbon addition to ensure that sulfate reduction processes continue in order to meet water quality standards. The SRMP would be completed and its findings submitted to the regulatory agencies for approval within 30 months of the issuance of the ROD, and after approval, would be specified in the GPO.

#### Alternative D – Continuous Carbonate Addition and **Expanded Boundary as needed for Additional Volume**

The purpose of this alternative is to increase the neutralizing potential of the tailings pile beyond what is expected in the proposed action. Alternative D would require mixing carbonate (in the form of limestone) into the tailings on an on-going basis, either in the mill or in the process of putting the tailings on the pile. The addition of the carbonate would increase the buffering capacity of the pile, or its ability to neutralize acid. Avoidance of acidification through buffering would provide some deterrence to metals leaching, but not as effectively as Alternative C. About 2 million tons, or 1½ million cubic yards, of limestone would be needed to sufficiently neutralize the tailings.

The addition of limestone would increase the volume of the pile and require expanding the tailings facility lease area. The tailings lease area would be 172 acres and the tailings footprint would be 81 acres. The method of tailings placement and pile height would be the same as Alternatives B and C.

This alternative would also require a structure of about 18,000 square feet for dry storage of limestone, and equipment for mixing the limestone into the tailings. In addition to the increase of the size of the tailings pile, the dry

#### Executive Summary

storage area for limestone and mixing equipment would require an additional 1 to 2 acre increase in the footprint at the mill or tailings site.

#### S.3 Comparison of Alternatives

The EIS compares the alternatives based on their impacts on water quality, monument values, and other issues identified during scoping. To the extent possible, the environmental consequences are quantified and objectively described. This section compares the impacts in summary form.

The terms *significant, minor,* and *negligible,* are used in the comparisons and in Chapter 4. These terms are explained in the introduction of Chapter 4 and in the glossary. The thresholds for what represents a negligible, minor, or significant impact differ for each resource. For example, significance of water quality impacts is determined by comparison to AWQS; significance of impacts to wetlands is evaluated by the area of low, medium, or high value wetlands that would be filled. Two alternatives can have different levels of consequence, for example differing levels of wetlands filled, but still both be evaluated as having minor levels of impacts in the context of the project and study area.

able S-1 Comparison of Alternatives

|                                                            | A 0.5340000 AI A    | C crittern A                                        | O contract A                                        | C cycle con collection                              |
|------------------------------------------------------------|---------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
|                                                            | Allel IIalive A     | Aitemative D                                        | Aiternative                                         | Alternative D                                       |
|                                                            | Physical Components | mponents                                            |                                                     |                                                     |
| Tailings Facility Lease Area after expansion (acres)       | 99                  | 140                                                 | 123                                                 | 172                                                 |
| Tailings Facility Lease Area boundaries expansion (acres)  | 0                   | 84                                                  | 67                                                  | 116                                                 |
| Total Tailings Footprint Area (acres)                      | 67                  | 61                                                  | 62                                                  | 81                                                  |
| Total Disturbed Area (estimated acres)                     | 54                  | 125                                                 | 110                                                 | 162                                                 |
| Tailings Placed Underground                                |                     |                                                     |                                                     |                                                     |
| Tons                                                       | 0                   | 7,333,000* whole tailings (includes 733,000 cement) | 7,333,000* whole tailings (includes 733,000 cement) | 7,333,000* whole tailings (includes 733,000 cement) |
| Cubic Yards                                                | 0                   | 4,073,889* (includes<br>852,326 cement)             | 4,073,889* (includes<br>852,326 cement)             | 4,073,889* (includes<br>852,326 cement)             |
| Tailings Placed on Surface                                 |                     |                                                     |                                                     |                                                     |
| Tons                                                       | 0                   | 6,000,000* whole tailings                           | 6,000,000* whole tailings                           | 6,000,000* whole tailings                           |
| Cubic Yards                                                | 0                   | 3,333,333*<br>whole tailings                        | 3,333,333*<br>whole tailings                        | 3,333,333*<br>whole tailings                        |
| Amendment Quantity (tons)                                  | 0                   | *0                                                  | None to 60,000*<br>carbon                           | 2,034,000* limestone                                |
| Amendment Quantity (cu yd)                                 | 0                   | *0                                                  | None to 44,776<br>carbon                            | 1,517,910 limestone                                 |
| Height of Tailings Pile Above Existing Ground Level (feet) | 08                  | 160                                                 | 160                                                 | 160                                                 |
| Maximum Tailings Pile Elevation Above Sea Level (feet)     | 250                 | 330                                                 | 330                                                 | 330                                                 |
| Roads                                                      |                     |                                                     |                                                     |                                                     |
| Miles of New Road                                          | 0.16                | 1.93                                                | 1.19                                                | 4.30                                                |
| Miles of Road Obliterated                                  | 0.12                | 0.63                                                | 0.94                                                | 0.94                                                |
|                                                            |                     |                                                     |                                                     |                                                     |

# Executive Summary

able S-1 Comparison of Alternatives

| Element                                            |                | Alternative A        | Alternative B                     | Alternative C | Alternative D |
|----------------------------------------------------|----------------|----------------------|-----------------------------------|---------------|---------------|
| Total Miles (excluding construction roads on pile) | roads on pile) | 1.35                 | 2.83                              | 2.82          | 4.52          |
| Water Treatment Plant Location                     |                | Moved                | Moved                             | Moved         | Moved         |
| Truck Wash Station Location                        |                | Moved                | Moved                             | Moved         | Moved         |
|                                                    |                | Significant Issues   | <ul><li>– Water Quality</li></ul> |               |               |
| 10,101<br>10,101<br>10,101                         | w/o treatment  | S                    | S                                 | M             | S             |
| Glodia Watel                                       | w/ treatment   | Z                    | Z                                 | Z             | Z             |
| Surface Wester                                     | w/o treatment  | S                    | S                                 | M             | S             |
|                                                    | w/ treatment   | Z                    | Z                                 | Z             | Z             |
| Marino Material Alivina Zono                       | w/o treatment  | Z                    | Z                                 | Z             | Z             |
| Maine Waters W.O Mixing Lone                       | w/ treatment   | Z                    | Z                                 | Z             | Z             |
| Marine Waters w/ Mixing Zone                       | w/o treatment  | Z                    | Z                                 | Z             | Z             |
| Maine Waters W. Mixing Lond                        | w/ treatment   | z                    | Z                                 | z             | Z             |
|                                                    |                | Significant Issues - | - Monument Values                 |               |               |
| Total Lease Area After Expansion (acres)           | acres)         | 99                   | 140                               | 123           | 172           |
| Lease Boundaries Expansion Area Only (acres)       | Only (acres)   | 0                    | 84                                | 29            | 116           |
| In Monument                                        |                | 38                   | 06                                | 89            | 115           |
| Outside Of Monument                                |                | 18                   | 50                                | 55            | 57            |
| Total Tailings Footprint (approximate acres)       | nate acres)    |                      |                                   |               |               |
| Total Tailings Footprint Area (acres)              | )              | 29                   | 61                                | 62            | 81            |
| In Monument                                        |                | 25                   | 28                                | 36            | 56            |
| Outside of Monument                                |                | 4                    | 33                                | 26            | 25            |
|                                                    |                | Other Issues         | senes                             |               |               |
| Air Quality                                        |                | Z                    | Z                                 | N             | Z             |
| Visual Quality                                     |                | Μ                    | Σ                                 | Σ             | Δ             |
|                                                    |                |                      |                                   |               |               |

Comparison of Alternatives able S-1

| Element                                                                                                                                 | Alternative A                                | Alternative B                    | Alternative C                    | Alternative D                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------|----------------------------------|------------------------------------------------|
| Marine Water Quality                                                                                                                    | Z                                            | Z                                | Z                                | Z                                              |
| Wetlands Impacts – (Though acreage of filled wetlands differs, all are evaluated as minor in the context of the project and study area) | M<br>0 ac. beyond those<br>already permitted | M<br>22 ac. Low Value            | M<br>10 ac. Low Value            | M<br>42 ac Low Value /<br>0.7 ac. Medium Value |
| Vegetation                                                                                                                              | Σ                                            | M 71 ac.                         | M 56 ac.                         | M 108 ac.                                      |
| Wildlife                                                                                                                                |                                              |                                  |                                  |                                                |
| Terrestrial Mammals                                                                                                                     | z                                            | Z                                | Z                                | Z                                              |
| Birds                                                                                                                                   | z                                            | Z                                | Z                                | Z                                              |
| Marine Mammals                                                                                                                          | None                                         | None                             | None                             | None                                           |
| T&E Species                                                                                                                             | None                                         | None                             | None                             | None                                           |
| Marine Life                                                                                                                             | z                                            | Z                                | Z                                | Z                                              |
| Essential Fish Habitat                                                                                                                  | z                                            | Z                                | Z                                | Z                                              |
|                                                                                                                                         |                                              |                                  |                                  |                                                |
| Heritage Resources                                                                                                                      | None                                         | None                             | None                             | None                                           |
| Subsistence                                                                                                                             | z                                            | Z                                | Z                                | Z                                              |
| Recreation                                                                                                                              | Z                                            | Z                                | Z                                | Z                                              |
| Socioeconomic                                                                                                                           | M adverse                                    | M positive                       | M positive                       | M adverse                                      |
| Estimated Cost of Construction and Implementation                                                                                       | *** 0 \$                                     | \$ 10,000,000 –<br>\$ 20,000,000 | \$ 11,000,000 –<br>\$ 26,000,000 | \$ 75,000,000 –<br>\$ 280,000,000              |
| Environmental Justice                                                                                                                   | None                                         | None                             | None                             | None                                           |
| Cumulative Impacts                                                                                                                      | Z                                            | Z                                | Z                                | Z                                              |
| : 6                                                                                                                                     | 83                                           |                                  |                                  |                                                |

**Weight / Volume Conversions**: cement =  $.86 \text{ t/yd}^3$ , limestone/carbon =  $1.34 \text{ t/yd}^3$  Whole Tailings =  $1.8 \text{ t/yd}^3$ 

<sup>\*</sup> Weights and volumes indicate value above currently permitted amount (2.1M yd³, 3.78 M t.) \*\* Estimated placement volumes based on currently permitted volumes at tailings

<sup>\*\*\*</sup> Baseline for comparison of estimated increased costs

S = Significant, M = Minor, N = Negligible

#### **Water Quality**

Alaska Water Quality Standards (AWQS) were revised on June 26, 2003. Overall, the direction of the revisions made the standards relevant to Greens Creek more stringent. The analysis of water quality in this FEIS is based on the new standards and some impact analyses have changed. As discussed above under elements common to all alternatives, water in exceedance of NPDES limits and AWQS will not be discharged. During mine closure and post-closure periods, water will continue to be treated using approved treatment processes until effluent quality is such that treatment processes are not required in order to meet discharge requirements. At that time and depending on actual effluent quality, KGCMC would discharge water according to the hierarchy of discharge scenarios/compliance points described above in Elements common to all alternatives. The stochastic water quality model, described in Appendix A, predicts the quality of the water draining from the pile over time without the use of existing treatment processes, beginning at the onset of closure (completion of the cap). Water quality for each alternative is discussed below. Table S-1 above displays the effects related to water quality for each alternative under the various compliance point scenarios.

#### Alternative A

All discharged water will meet Alaska Water Quality Standards (AWQS). Results from the water quality model for Alternative A indicate that exceedances to fresh water AWQS for sulfate and antimony are initially predicted for underdrain water. Between 5 and 25 years, antimony levels should drop below AWQS, but selenium may increase and could exceed AWQS. After 200 years, sulfate should have declined below AWQS, but zinc is predicted to have risen above AWQS. After 500 years, cadmium is predicted to be above AWQS. None of these substances exceeds AWQS initially at the compliance point where underdrain flow mixes with surface water and groundwater, but selenium, zinc and cadmium may exceed AWQS at the compliance point after 100, 350 and 1000 years, respectively (without treatment). Selenium should have returned to concentrations below AWQS after 350 years. The predicted increase in downgradient concentrations of selenium, zinc and cadmium may impair existing protected water use classes.

Model results compared to AWQS for marine water are the same as compared to fresh water standards, with the exception of sulfate, as there is no marine standard for sulfate. The predicted load of metals was compared to the currently allowable loads under the NPDES marine discharge permit for the facility. Predicted loads were less than one percent of allowable loads for Alternative A for all metals in the permit.

Effects to water quality in the Hawk Inlet drainage would be considered significant if tailings effluent is discharged (without treatment) to surface water or groundwater without dilution, or diluted (without treatment) with surface water or groundwater prior to discharge to these receiving waters (discharge scenario 1). There would be *negligible* adverse effects if tailings effluent is discharged without treatment directly to Hawk Inlet (discharge scenario 2). There would be *negligible* adverse effects if tailings effluent is discharged without treatment through the diffuser into Hawk Inlet (discharge scenario 3). If water treatment were continued in perpetuity, there would be negligible adverse effects to receiving surface water, groundwater or marine water.

#### Alternative B

All discharged water will meet Alaska Water Quality Standards (AWQS). Results from the water quality model are similar to those for Alternative A, indicating that sulfate and antimony would initially exceed fresh water AWQS in the underdrain flow from beneath the tailings pile. After 25 to 100 years, selenium, zinc and cadmium may be above AWQS (without treatment). After 350 years, sulfate and antimony should have decreased below fresh water AWQS. At the compliance point, only sulfate would initially exceed fresh water AWQS, but selenium, zinc and cadmium are expected to exceed fresh water AWQS at the compliance point after 25, 200 and 500 years respectively without treatment. The predicted increase in downgradient concentrations of selenium, zinc and cadmium may impair existing protected water use classes.

Model results for Alternative B compared to AWQS for marine water are the same as compared to fresh water standards, with the exception of sulfate, as there is no marine standard for sulfate. The predicted load of metals was compared to the currently allowable loads under the NPDES marine discharge permit for the facility. Predicted loads were less than 2 percent of allowable loads for Alternative B for all metals in the permit.

Like Alternative A, effects to water quality in the Hawk Inlet drainage would be considered significant if tailings effluent is discharged (without treatment) to surface water or groundwater without dilution, or diluted (without treatment) with surface water or groundwater prior to discharge to these receiving waters (discharge scenario 1). There would be *negligible* adverse effects if tailings effluent is discharged without treatment directly to Hawk Inlet (discharge scenario 2). There would be negligible adverse effects if tailings effluent is discharged without treatment through the diffuser into Hawk Inlet (discharge scenario 3). If water treatment were continued in perpetuity, there would be negligible adverse effects to receiving surface water, groundwater or marine water.

#### Alternative C

All discharged water will meet Alaska Water Quality Standards (AWQS). Results from the water quality model for Alternative C reflect the fundamental difference in long-term chemistry that would result from the addition of carbon to the tailings pile. As with Alternatives A and B, initially water in the underdrains could exceed fresh water AWQS for sulfate and antimony. Sulfate concentrations are expected to have decreased to below fresh water AWQS after 350 years. Elevated zinc and selenium would not occur in the underdrain water because on-going sulfate reduction tends to remove these constituents. Antimony, on the other hand, is not affected by sulfate reduction, and may increase as a result of biological reduction. The elevated antimony that are predicted by the model are likely to be removed from solution when the water from the underdrain contacts air causing iron and manganese compounds to chemically precipitate, adsorb antimony, and settle from solution. All of these substances are expected to meet fresh water AWQS except for sulfate, which is marginally above fresh water AWQS at the compliance point for the first 50 to 100 years (without treatment).

Results of the water quality model for Alternative C compared to marine water AWQS are the same as compared to fresh water AWQS, with the exception of sulfate, as there is no marine standard for sulfate. The predicted load of metals was compared to the loads currently allowable under the NPDES marine discharge permit for the facility. Predicted loads were less than 0.1 percent of allowable loads for Alternative C for all metals in the permit.

Effects to water quality in the Hawk Inlet drainage are considered *minor* (compared to *significant* for Alternatives A and B) for the case where tailings effluent is discharged directly (without treatment) to surface water or groundwater without dilution, or diluted (without treatment) with surface water or groundwater prior to discharge to receiving waters (discharge scenario 1). If water treatment were continued in perpetuity, there would be negligible adverse effects to the receiving surface water or groundwater. There would be negligible adverse effects to marine water for the case where tailings effluent is discharged directly to Hawk Inlet (discharge scenario 2). There would be negligible adverse effects for the case where tailings effluent is discharged through a diffuser into Hawk Inlet (discharge scenario 3).

#### Alternative D

All discharged water will meet Alaska Water Quality Standards (AWQS). Water quality for Alternative D is similar to that of Alternative B, with concentrations of sulfate and metals slightly higher due to the greater area of the pile. In the underdrain (without dilution, discharge scenario 1(a)), sulfate and antimony may initially exceed AWQS followed by AWQS exceedances of selenium, zinc, and cadmium after 25, 50, and 100 years, respectively.

At the compliance point with dilution (discharge scenario 1(b)), sulfate and antimony initially exceed AWQS, but are predicted to be below AWQS after 200 and 25 years, respectively. Selenium, zinc, and cadmium are predicted to be above AWOS after 25, 200, and 500 years, respectively. These predicted exceedances of AWQS under discharge/compliance scenario 1 would impair existing protected water use classes if discharged without treatment. KGCMC will continue an appropriate method of water treatment until the tailings effluent can be discharged without treatment so that applicable AWQS are met.

Results of the water quality model for Alternative D compared to marine water AWQS (discharge scenario 2) show there are no exceedances. The predicted load of metals was compared to the loads currently allowable under the NPDES discharge permit using a diffuser in Hawk Inlet. Predicted loads were less than 2 percent of allowable loads for Alternative D for all metals in the permit.

As with Alternatives A and B, effects to water quality in the Hawk Inlet drainage are considered *significant* for the case where tailings effluent is discharged directly (without treatment) to surface water or groundwater without dilution, or with dilution (without treatment) with surface water or groundwater prior to discharge to receiving waters (discharge/compliance scenario 1). Effects to marine water would be *negligible*, the same as Alternative A, B, C for the case where effluent is discharged directly to Hawk Inlet (without treatment or diffuser) (discharge/compliance scenario 2). There would be *negligible* adverse effects for the case where tailings effluent is discharged through a diffuser into Hawk Inlet (discharge/compliance scenario 3) - the same as under Alternatives A, B, and C. If water treatment were continued in perpetuity, there would be *negligible* adverse effects to receiving surface water, groundwater, or marine water.

#### Monument Values

The main criterion for comparing effects to Monument values is the numbers of acres leased within the Monument and subject to potential disturbance. Alternative A would result in a lease of 38 acres in the Monument. The tailings footprint within the Monument currently occupies 20 acres and would ultimately increase to 25 acres as permitted in the GPO. Alternative B would result in a lease of 90 acres in the Monument with the tailings footprint occupying 28 of those acres. Alternative C would result in a lease of 68 acres in the Monument with the tailings footprint occupying 36 of those acres. Alternative D would result in a lease of 115 acres in the Monument with the tailings facility occupying 56 of those acres. Table S-1 presents a comparison of acreages.

#### Other Issues

While the effects of each alternative on other resources or issues varied, most fell within the same range. For example the difference between the action alternatives effect on wetlands ranged from fill in 10 acres of low value wetlands for Alternative C to fill in 42 acres of low value wetlands and less than 1 acre of medium value wetlands for Alternative D. In the context of the study area, however, the impacts of all alternatives on wetlands are minor.

None of the alternatives have any impact on marine mammals, Threatened and Endangered species, or heritage resources. The impacts of all alternatives on air quality, marine water quality, terrestrial mammals, birds, subsistence and recreation are negligible. The impacts of all alternatives are minor for visual quality, wetlands, vegetation, and Essential Fish Habitat. Alternatives A and D have a minor adverse impact on socioeconomics and Alternatives B and C have a minor positive impact on socioeconomics and environmental justice. All alternatives will have cumulative impacts. See Table S-1.

#### **S.4 Appendices and Planning Record**

The appendices provide additional information as part of the FEIS. They are listed below with brief descriptions or notes.

**Appendix A** – Michael Baker Jr., Inc. 2003. Hydrology and Geochemistry of the Greens Creek Tailings Facility. April.

**Appendix B** – Sulfate Reduction Monitoring Program Outline, 2002

The issues of geochemistry and hydrology in this FEIS are complex and a reading of Appendix A, Hydrology and Geochemistry of the Greens Creek Tailings Facility and Appendix B, Sulfate Reduction Monitoring Program Outline will contribute to an in-depth understanding of the issue.

**Appendix C** – Selected Appendices from KGCMC General Plan of Operation

- → KGCMC. 2000, August. General Plan of Operations, Appendix 3 – Tailings Impoundment.
- → KGCMC. 2000, October. General Plan of Operations, Appendix 14 - Reclamation Plan.

**Appendix D** – ADEC Waste Management Permit, 2003

Reading Appendices C, Selected Appendices from KGCM General Plan of Operation, and D, ADEC Waste Management Permit, will give readers a better understanding of the conditions and requirements that Greens Creek operates under.

**Appendix E** – Response to Draft EIS Comments, 2003

#### **Appendix F** – Draft EIS Comments, 2003

Appendices E and F will allow readers to see the questions and comments reviewers offered on the DEIS.

#### **Appendix G** – Alternative Screening Evaluation, 2002

Appendix G is the document that was developed when examining alternatives to be considered in this EIS. Included in this document are in-depth considerations of various pyrite circuit alternatives that some commenters had suggested during scoping.

Planning Record – Beyond the information in this FEIS, additional documentation of the environmental analysis, including the Jurisdiction Wetlands Survey and Sensitive Plant Survey, is contained in the planning record, which is available to the public at the Juneau Ranger District Office, 8465 Old Dairy Rd., Juneau, AK, 99803, 907-586-8800.

Forest Service Alaska Region Tongass National Forest 648 Mission Street Ketchikan, AK 99901 Phone: (907) 225-3101

Fax: (907) 228-6215

File Code: 1950-3/2810

Date: October 24, 2003

Dear Commenter:

Enclosed are the Greens Creek Tailings Disposal Final Environmental Impact Statement and Record of Decision (FEIS/ROD).

The complete FEIS/ROD is also available via the internet on the Greens Creek website and will be available on the website until December 31, 2003.

www.greenscreekeis.com

Thank you for your participation in this project. For additional information contact:

Jeff DeFreest 8465 Old Dairy Road Juneau, AK 99801 (907) 790-7457

Sincerely,

FORREST COLE Forest Supervisor

Enclosure: Greens Creek Tailings Disposal FEIS/ROD



# **Record of Decision**

## **Greens Creek Tailings Disposal**

USDA Forest Service Tongass National Forest Admiralty Island National Monument

#### Introduction

This Record of Decision documents my selection of Alternative C that will be used to amend the General Plan of Operations (GPO) for the Kennecott Greens Creek Mining Company (KGCMC). The purpose and need of this analysis was to consider changes to the approved Plan of Operations regarding tailings disposal in order to allow for continued operations.

#### **Background**

The Greens Creek Mine is an underground metals mine near Hawk Inlet on northern Admiralty Island. It is located approximately 18 miles southwest of Juneau, Alaska. The mine is situated in the Greens Creek watershed within the Admiralty Island National Monument, Tongass National Forest.

The purpose and need for the proposed action is to consider changes to the General Plan of Operations for the Kennecott Greens Creek Mining Company regarding tailings disposal in order to allow for continued operations.

Based on known ore reserves and the current rate of production, the Greens Creek Mine has a remaining life of approximately 12 years. In addition to known ore reserves, past success in exploring indicates that more deposits may be discovered in the area. KGCMC has indicated that such discoveries could extend the mine life an additional 10 years for a total remaining 22 years. Based on known and anticipated ore reserves and the current rate of surface tailings placement KGCMC requires above-ground tailings disposal capacity for approximately 6 million tons of additional tailings. Under the current permit and current rate of production the existing tailings facility has space for approximately two years of tailings disposal. Consequently, additional disposal capacity is needed to continue operations.

Based on that need, in January 2001, KGCMC submitted an application to the Forest Service requesting a modification of the existing General Plan of Operations for expansion of the existing tailings facility.

#### **Decision**

This decision is based upon the analysis and evaluations in the Final Environmental Impact Statement as well as information incorporated by reference from previous Environmental Analyses in 1983, 1987 and 1992.

After reviewing the alternatives, I have decided to select Alternative C which will modify the GPO to allow expansion of the existing tailings disposal facility to the east of the present location and require a continuous carbon addition to the tailings.

Expansion to the east will minimize both the lease area and the disturbed area within the Admiralty Island National Monument. A continuous addition of carbon to the tailings will be required to provide greater assurance of long-term chemical stability of the tailings in order to meet water quality requirements. A sulfate reduction monitoring plan (SRMP) will be implemented during the first thirty months following modification of the GPO. The study will determine how much carbon is necessary to ensure continued sulfate reduction, the form of carbon that will best meet the goal of sulfate reduction, and the manner in which carbon should be incorporated into the tailings. The SRMP will also consider potential application to the existing tailings placed prior to this decision.

Like all action alternatives, Alternative C includes:

- Installation of a layered cover, liners and vegetated layer over tailings piles following mine operations to be approved by the Alaska Department of Environmental Conservation and the Forest Service.
- Control of routing and separation of contact and non-contact water in drainage systems
- Treatment of stormwater and contact water to meet Alaska Water Quality Standards (AWQS)
- Construction of earthen berms to protect tailings piles and prevent infiltration of stormwater
- Water Treatment Effluent from outfall 001 and 002 will be treated to meet AWQS for metals and other constituents. All contact water discharged from the site must meet AWQS.
- Sedimentation controls

#### **Monitoring and Mitigation**

During the 30 months following the issuance of the ROD, KGCMC will evaluate sulfate reduction presently occurring within the tailings pile. This evaluation will determine 1) the amount and type of carbon needed to ensure that the sulfate reduction processes continues following mine closure and 2) if the reduction is occurring at a rate sufficient to meet NPDES limits and/or AWQS for water discharge directly (no mixing zone) into nearby surface or groundwater using freshwater quality-based effluent limits for metals.

In connection with requirements of the NPDES permit, monitoring of seafloor sediment and biota is also required by the EPA. As a result of consultation with NMFS, the EPA, and ADEC regarding Essential Fish Habitat (EFH), a monitoring plan for EFH is being developed and will become part of the KGCMC General Plan of Operations. The monitoring plan will incorporate the conservation recommendations by NMFS for sampling of marine biota and sediments, as well as addressing contaminated sediments from a 1989 concentrate spill at the ore ship loading dock.

The GPO and ADEC Waste Management Permit specify visual, groundwater, surface water, leachate, biological, and post closure monitoring requirements. For water quality monitoring under this plan, KGCMC analyzes water quality samples from several wells upgradient and downgradient from the tailings pile.

Modifications to the existing freshwater monitoring plan will be made to account for the change in the tailings lease boundary. The duration of monitoring is set by the ADEC in the Waste Management Permit. After closure, prior to cessation of monitoring, KGCMC must demonstrate ".... that all downgradient monitoring stations have been in compliance with Alaska Water Quality Standards (AWQS) for at least 3 years. Additionally, results of monitoring at internal sites must corroborate the finding that water quality downgradient of the facility will not change in the foreseeable future. DEC retains the right to extend monitoring requirements as long as it is needed".

If monitoring detects exceedences or violations, contingency plans in the ADEC Waste Management Permit are required to mitigate the specific violation. Concurrent reclamation and reclamation after closure including wetland creation and road removal are also mitigation measures built into the GPO and Waste Management Permit.

#### **Permits, Licenses and Certifications**

To proceed with expansion of the tailings area as addressed in this EIS, various permits, licenses and certifications must be obtained from federal, state and municipal agencies. The following permits will be obtained:

#### **U.S. Forest Service**

Approval of amended GPO and Reclamation Bond.

Approval of expansion of lease area and changes to existing Special Use Permits.

#### **U.S. Army Corps of Engineers**

Approval of discharge of dredged or fill material into waters of the United States (Section 404 of the Clean Water Act of 1977, as amended).

#### **U.S. Environmental Protection Agency**

National Pollutant Discharge Elimination System (Section 402 of the Clean Water Act).

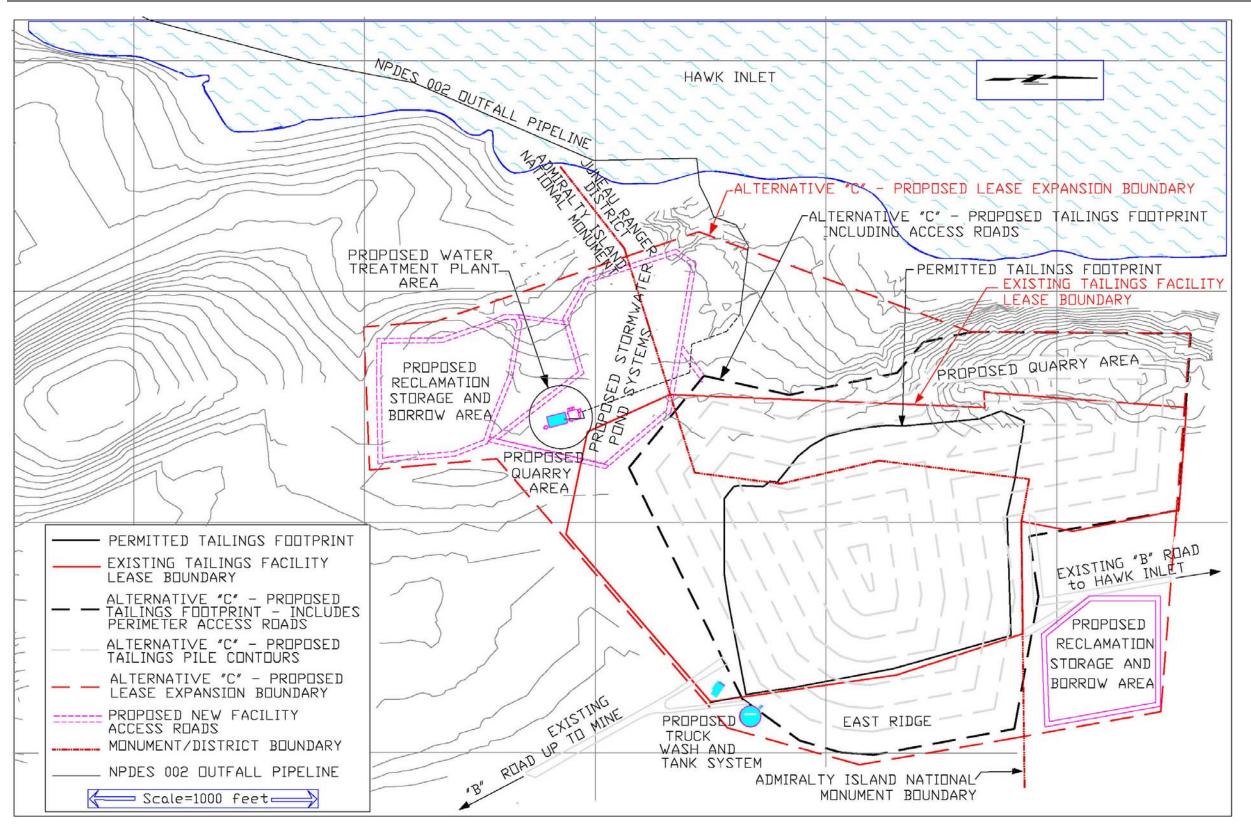
#### State of Alaska, Department of Environmental Conservation

Certification of the COE Section 404 permit

Certification of Section 401 of the EPA NPDES permit

Waste disposal permit for the construction, operation, and maintenance of the tailings disposal facility

#### State of Alaska, Department of Natural Resources


Approval of the reclamation plan.

Certificate of Approval to construct the dam needed for the storm water runoff pond.

#### City and Borough of Juneau

Summary approval process or a permit amendment for Large Mine Permit.

Figure 1 Selected Alternative - Existing Tailings Facility Lease Area, Present, and Projected Footprints of Tailings Placement



This page intentionally left blank.

#### **Reasons for the Decision**

In making my decision, I considered all issues and took into account the competing interests and values of the public. Alternative C (East Ridge Expansion) provides the best combination of tailings disposal sites, mitigation measures, and effects on water quality within the framework of existing laws, regulations, policies while meeting the stated purpose and need.

When compared with alternatives B (Proposed Action) and D (Continuous Carbonate Addition), Alternative C will reduce the area disturbed within the Admiralty Island National Monument and provide greater assurance of long-term chemical stability of the tailings while still meeting the direction provided in section 503 of the Alaska National Interest Lands Conservation Act and the Greens Creek Land Exchange Act of 1995.

Alternative C reduces the proposed disturbed area within the Monument by:

- 1. Eliminating a proposed quarry and associated access roads at the southern end of the lease area.
- 2. Moving the southern half of the proposed reclamation materials storage area outside of the Monument When compared with Alternatives B and D, this alternative will reduce both the lease area and the disturbed area within the Monument by approximately 22 acres and 47 acres respectively. The net change in lease area will be a decrease of 17.2 acres and 49 acres respectively. Compared with Alternative A, the lease area within the Monument will increase by 30 acres and actual tailings placement will occupy an additional 15.5 acres within the Monument.

Alternative C requires a 30-month study to determine the amount of carbon necessary to ensure continual sulfate reduction throughout the life of the mine and post-closure. Sulfate reduction occurs when organic materials are present. When sulfate is reduced by microorganisms, two byproducts, sulfide and bicarbonate are produced. The sulfide ions tend to form insoluble compounds with metals such as zinc and nickel, thereby reducing their concentration in water within the tailings. In addition, bicarbonate tends to increase pH (reducing acidity) which reduces solubility of other metals, especially zinc. Sulfate reduction is a beneficial process to be supported during the life of the mine and after closure. Compared with Alternatives A and B, which have no additional carbon or carbonate added to the tailings, the selected alternative provides greater assurance of long-term chemical stability of the tailings. Compared with Alternative D, which has a continuous addition of carbonate (limestone) to reduce the potential for acid rock drainage, the selected alternative has the additional ability to reduce zinc and selenium occurring in the underdrain water while minimizing the size of the tailings disposal area required.

My decision provides the tailings disposal area necessary for Kennecott Greens Creek Mine to continue operations for the life of the mine based on proven and reasonably foreseeable discoverable reserves of ore. The community of Juneau and other Southeast Alaska communities will benefit from continued mine operation by maintaining 265 direct jobs and 141 indirect jobs. Total annual payroll for the 407 direct and indirect jobs associated with the mine is approximately \$38 million. The region will also benefit as the population associated with those jobs (626 people) and school enrollment (125 students) will be maintained. By comparison,

Alternative A (No Action) would result in the loss of jobs, payroll, population, and school enrollment.

In making my decision, I recognize that Alternative A (No Action) would result in mine closure in two years. Alternative B (Proposed Action) and Alternative C (East Ridge Expansion) would allow mine operation an additional 20 years beyond that of Alternative A. Alternative D (Continuous Carbonate Addition) would also allow operations 20 years beyond that of Alternative A. Alternative D, however, increases costs to such an extent that mine operations would be more subject to market fluctuations, increasing the risk of temporary or longer-term shutdown if metal prices were to decline. Alternative C provides a greater degree of stability in employment than does Alternative D.

My decision also affects the City and Borough of Juneau in that annual taxes of \$672,000 are assessed on the Kennecott Greens Creek Mine properties. The bulk of that revenue would have been lost had I selected the No Action alternative.

#### **Public Involvement**

On March 29, 2001, the Forest Service published a Notice of Intent to prepare an EIS for the proposed project in the Federal Register (Vol. 66, No. 61, Page 17139). Cooperating agencies as defined in 40 CFR, section 1501.6 are the U.S. Army Corps of Engineers and the Environmental Protection Agency. A Memorandum of Understanding was executed that included the following State of Alaska agencies as participants in the development and review of the EIS: Alaska Department of Natural Resources (ADNR), Alaska Department of Environmental Conservation (ADEC), and Alaska Department of Fish and Game (ADF&G). On the date of the notice of intent, the *Kennecott Greens Creek Mine Tailings Disposal Site Environmental Impact Statement Scoping Document, March 2001* was distributed to mandatory mailing lists, environmental groups, and persons who had previously expressed interest in minerals projects on the Tongass. Outreach was conducted with public service announcements in the Juneau Empire and radio media.

On April 19, 2001 a scoping meeting/open house was held in Juneau, Alaska at the City and Borough Assembly chambers, and a second open house on April 23, 2001 in Angoon. The open houses were designed as a means for the project team to provide background information or technical assistance that the public or interested agencies might need before commenting. The scoping document was made available at these meetings. The formal comment period for the initial scoping document ended April 30, 2001.

Using comments from the public, other agencies, and non-governmental organizations several issues regarding the effects of the proposed action were identified (see FEIS pages 1-11 to 1-13). The main issues included:

- 1. Ensuring the isolation of contact water, generated as a result of continued operations and enlargement of the facility, from groundwater and surface water.
- 2. Location of the proposed action in and adjacent to the Admiralty Island National Monument.

To address these issues, the Forest Service developed alternatives to the Proposed Action described below.

A Notice of Availability of the Draft EIS was published April 25, 2003 in the Federal Register (Vol. 68, No. 80, Page 20387) and copies of the document distributed to interested and affected parties. A public meeting was held on May 21, 2003 at Centennial Hall in Juneau. The comment period for the Draft EIS closed June 30, 2003. A total of 2,447 comments were received, of which 2,416 were received via e-mail in two different form letter formats.

#### **Alternatives Considered**

Four alternatives, including the No Action Alternative, were fully developed and analyzed to address significant issues. Other alternatives were considered, but eliminated from detailed study for various reasons including safety, technical feasibility and the fact that an alternative analyzed in detail better addressed the issues. Pages 2-53 to 2-56 and Appendix G in the EIS describe these alternatives and why they were eliminated from detailed study. The three action alternatives differed from each other in the location of the proposed expansion and the type of treatment used. A more detailed comparison of these alternatives can be found in the EIS on pages 2-41 through 2-52. Alternative A was the environmentally preferred alternative since it would result in no additional disturbance beyond what is currently permitted. The alternatives are summarized as follows:

#### Alternative A – No Action

Under the "No Action" alternative the existing GPO would not be modified to allow expansion of the tailings disposal facility. KGCMC would continue its present method of generating tailings and would continue to dispose of tailings both as mine backfill and at the currently approved tailings disposal facility. Tailings would be placed at the surface disposal site without chemical or biological additives other than those currently allowed by the State of Alaska solid waste permit. The current tailings pile footprint is limited to 29 acres in size with a total lease area of 56 acres including quarries, roads and related facilities.

#### Alternative B – Proposed Action

Under the Proposed Action alternative the GPO would be modified to allow an increase in the size of the tailings disposal facility to meet the anticipated tailings disposal needs of an additional 22 years of mine operation. As in the No Action Alternative, KGCMC would continue its present method of generating tailings and would continue to dispose of tailings both as mine backfill and at the enlarged surface tailings disposal site without chemical or biological additives other than those currently allowed by the State of Alaska solid waste permit. The expanded tailings pile would occupy 61 acres and the total lease area would increase to 140 acres.

#### Alternative C – Continuous Carbon Addition

See the description of the Selected Alternative above under "Decision".

## <u>Alternative D - Continuous Carbonate Addition and Expanded Boundary as needed for Additional Volume</u>

Under Alternative D the GPO would also be modified to allow an increase in the size of the tailings disposal facility to meet the anticipated tailings disposal needs of an additional 22 years of mine operation. As in the No Action Alternative, KGCMC would continue its present method of generating tailings and would continue to dispose of tailings both as mine backfill and at the enlarged surface tailings disposal site. Alternative D would require the continuous addition of

carbonate (limestone) to new tailings placed on the pile as a method of increasing the acid neutralizing potential of the tailings. The volume of carbonate necessary to neutralize the tailings would increase the volume of the pile. The expanded tailings pile would occupy 81 acres and the lease area would increase to 172 acres. A dry storage area for limestone and mixing equipment would be require and would occupy an additional 1 or 2 acres at either the mill or the tailings site.

**Comparison of Alternatives** 

| Element                                                    | Alternative A | Alternative B                                       | Alternative C                                       | Alternative D                                       |
|------------------------------------------------------------|---------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
|                                                            | Physical Co   | mponents                                            |                                                     |                                                     |
| Tailings Facility Lease Area after expansion (acres)       | 56            | 140                                                 | 123                                                 | 172                                                 |
| Tailings Facility Lease Area boundaries expansion (acres)  | 0             | 84                                                  | 67                                                  | 116                                                 |
| Total Tailings Footprint Area (acres)                      | 29            | 61                                                  | 62                                                  | 81                                                  |
| Total Disturbed Area (estimated acres)                     | 54            | 125                                                 | 110                                                 | 162                                                 |
| Tailings Placed Underground                                |               |                                                     |                                                     |                                                     |
| Tons                                                       | 0             | 7,333,000* whole tailings (includes 733,000 cement) | 7,333,000* whole tailings (includes 733,000 cement) | 7,333,000* whole tailings (includes 733,000 cement) |
| Cubic Yards                                                | 0             | 4,073,889* (includes<br>852,326 cement)             | 4,073,889* (includes<br>852,326 cement)             | 4,073,889* (includes<br>852,326 cement)             |
| Tailings Placed on Surface                                 |               |                                                     |                                                     |                                                     |
| Tons                                                       | 0             | 6,000,000* whole tailings                           | 6,000,000* whole tailings                           | 6,000,000* whole tailings                           |
| Cubic Yards                                                | 0             | 3,333,333*<br>whole tailings                        | 3,333,333*<br>whole tailings                        | 3,333,333*<br>whole tailings                        |
| Amendment Quantity (tons)                                  | 0             | 0*                                                  | None to 60,000*<br>carbon                           | 2,034,000* limestone                                |
| Amendment Quantity (cu yd)                                 | 0             | 0*                                                  | None to 44,776 carbon                               | 1,517,910 limestone                                 |
| Height of Tailings Pile Above Existing Ground Level (feet) | 80            | 160                                                 | 160                                                 | 160                                                 |
| Maximum Tailings Pile Elevation Above Sea Level (feet)     | 250           | 330                                                 | 330                                                 | 330                                                 |
| Roads                                                      |               |                                                     |                                                     |                                                     |
| Miles of New Road                                          | 0.16          | 1.93                                                | 1.19                                                | 4.30                                                |
| Miles of Road Obliterated                                  | 0.12          | 0.63                                                | 0.94                                                | 0.94                                                |
|                                                            |               | ·                                                   | ·                                                   | ·                                                   |

**Comparison of Alternatives** 

| Element                                            |                                                         | Alternative A        | Alternative B   | Alternative C | Alternative D |
|----------------------------------------------------|---------------------------------------------------------|----------------------|-----------------|---------------|---------------|
| Total Miles (excluding construction roads on pile) |                                                         | 1.35                 | 2.83            | 2.82          | 4.52          |
| Water Treatment Plant Location                     |                                                         | Moved                | Moved           | Moved         | Moved         |
| Truck Wash Station Location                        |                                                         | Moved                | Moved           | Moved         | Moved         |
|                                                    |                                                         | Significant Issues   | - Water Quality |               |               |
| Ground Water                                       | w/o treatment                                           | S                    | S               | M             | S             |
| Ground water                                       | w/ treatment                                            | N                    | N               | N             | N             |
| Surface Water                                      | w/o treatment                                           | S                    | S               | M             | S             |
| Surface water                                      | w/ treatment                                            | N                    | N               | N             | N             |
| Marina Matara wa Miving Zana                       | w/o treatment                                           | N                    | N               | N             | N             |
| Marine Waters w/o Mixing Zone                      | w/ treatment                                            | N                    | N               | N             | N             |
| Marina Matara W/ Missing Zana                      | w/o treatment                                           | N                    | N               | N             | N             |
| Marine Waters w/ Mixing Zone                       | w/ treatment                                            | N                    | N               | N             | N             |
|                                                    |                                                         | Significant Issues – | Monument Values |               |               |
| Total Lease Area After Expansion                   | Total Lease Area After Expansion (acres) 56 140 123 172 |                      |                 |               |               |
| Lease Boundaries Expansion Area Only (acres)       |                                                         | 0                    | 84              | 67            | 116           |
| In Monument                                        |                                                         | 38                   | 90              | 68            | 115           |
| Outside Of Monument                                |                                                         | 18                   | 50              | 55            | 57            |
| Total Tailings Footprint (approxi                  | mate acres)                                             |                      |                 |               |               |
| Total Tailings Footprint Area (acres)              |                                                         | 29                   | 61              | 62            | 81            |
| In Monument                                        |                                                         | 25                   | 28              | 36            | 56            |
| Outside of Monument                                |                                                         | 4                    | 33              | 26            | 25            |
|                                                    |                                                         | Other Is             | ssues           |               |               |
| Air Quality                                        |                                                         | N                    | N               | N             | N             |
| Visual Quality                                     |                                                         | М                    | M               | M             | М             |

**Comparison of Alternatives** 

| Element                                                                                                                                 | Alternative A                                | Alternative B                    | Alternative C                    | Alternative D                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------|----------------------------------|------------------------------------------------|
| Marine Water Quality                                                                                                                    | N                                            | N                                | N                                | N                                              |
| Wetlands Impacts – (Though acreage of filled wetlands differs, all are evaluated as minor in the context of the project and study area) | M<br>0 ac. beyond those<br>already permitted | M<br>22 ac. Low Value            | M<br>10 ac. Low Value            | M<br>42 ac Low Value /<br>0.7 ac. Medium Value |
| Vegetation                                                                                                                              | M                                            | M 71 ac.                         | M 56 ac.                         | M 108 ac.                                      |
| Wildlife                                                                                                                                |                                              |                                  |                                  |                                                |
| Terrestrial Mammals                                                                                                                     | N                                            | N                                | N                                | N                                              |
| Birds                                                                                                                                   | N                                            | N                                | N                                | N                                              |
| Marine Mammals                                                                                                                          | None                                         | None                             | None                             | None                                           |
| T&E Species                                                                                                                             | None                                         | None                             | None                             | None                                           |
| Marine Life                                                                                                                             | N                                            | N                                | N                                | N                                              |
| Essential Fish Habitat                                                                                                                  | N                                            | N                                | N                                | N                                              |
|                                                                                                                                         |                                              |                                  |                                  |                                                |
| Heritage Resources                                                                                                                      | None                                         | None                             | None                             | None                                           |
| Subsistence                                                                                                                             | N                                            | N                                | N                                | N                                              |
| Recreation                                                                                                                              | N                                            | N                                | N                                | N                                              |
| Socioeconomic                                                                                                                           | M adverse                                    | M positive                       | M positive                       | M adverse                                      |
| Estimated Cost of Construction and Implementation                                                                                       | \$ 0 ***                                     | \$ 10,000,000 -<br>\$ 20,000,000 | \$ 11,000,000 -<br>\$ 26,000,000 | \$ 75,000,000 -<br>\$ 280,000,000              |
| Environmental Justice                                                                                                                   | None                                         | None                             | None                             | None                                           |
| Cumulative Impacts                                                                                                                      | N                                            | N                                | N                                | N                                              |

Weight / Volume Conversions: cement = .86 t/yd<sup>3</sup>, limestone/carbon = 1.34 t/yd<sup>3</sup>
Whole Tailings = 1.8 t/yd<sup>3</sup>

<sup>\*</sup> Weights and volumes indicate value above currently permitted amount (2.1M yd³, 3.78 M t.)

<sup>\*\*</sup> Estimated placement volumes based on currently permitted volumes at tailings
\*\*\* Baseline for comparison of estimated increased costs

S = Significant, M = Minor, N = Negligible

# **Planning Record**

The planning record for this project includes the Draft EIS, Final EIS, appendices, public comments, response to public comments, Forest Plan, all material incorporated by reference, and all materials utilized during the analysis of this project. The planning record is available at the Juneau Ranger District office.

# Findings Required by Law

### Tongass Land and Resource Management Plan, 1997

All project alternatives are consistent with the 1997 Tongass Forest Plan. The site is located within an area designated as Nonwilderness National Monument with a Minerals prescription. This decision to allow expansion of the existing tailings facility as described in Alternative C is consistent with the intent of the forest plan's long term goals and objectives listed on pages 2-2 to 2-6. The project was designed in conformance with forest plan standards and incorporates appropriate Forest Plan guidelines for Nonwilderness National Monument with a Minerals prescription (Forest Plan, pages 3-41 to 3-49 and 3-151 to 3-157).

#### Alaska National Interest Lands Conservation Act (ANILCA)

An ANILCA Section 810 subsistence evaluation was conducted. There will not be a significant possibility of a significant restriction on the abundance and distribution of, access to, or competition for subsistence resources in the project area.

## **Endangered Species Act**

Consultations with the U.S. Fish and Wildlife Service and the National Marine Fisheries Service have been conducted, and these agencies have concurred that the proposed project is not likely to affect any threatened or endangered species. A complete biological assessment is included in the planning record.

# **Essential Fish Habitat**

The potential effects of the Greens Creek Tailings Disposal project on essential fish habitat (EFH) have been evaluated. The risk of measurable impact on essential fish habitat has been minimized in the project area. I have determined that this project may adversely affect essential fish habitat. I plan to continue working with the National Marine Fisheries Service in evaluating monitoring results. For specific information regarding essential fish habitat and potential impacts refer to the EFH Assessment located in the Project Planning Record and pages 3-101 to 3-116 and 4-46 to 4-47.

#### **National Historic Preservation Act**

Cultural resource surveys of varying intensities have been conducted in the project area, following inventory protocols approved by the Alaska State Historic Preservation Officer. Tribal entities, village and regional corporations have been consulted and public comment encouraged. The Section 106 Review process has resulted in a determination of "No Historic Properties affected" as detailed in the 2<sup>nd</sup> Amended Regional Programmatic Agreement (#02 MU-111001-076).

# **Coastal Zone Management Act**

The Coastal Zone Management Act (CZMA) requires that the Forest Service, when conducting or authorizing activities or development be consistent with the approved Alaska Coastal Management Program (ACMP) to the maximum extent practicable. This activity is one authorized under a Forest Service permit, as defined in 15 CFR 930.51(a). The Forest Service/State of Alaska Memorandum of Understanding on Coastal Zone Management Act/Alaska Coastal Management Program Consistency Reviews (MOU) lists permitted activities normally requiring a consistency determination (MOU, Section 302.B.2.). This activity is listed in Section 302.B.2 as normally requiring a consistency determination. A Coastal Project Questionnaire has been completed by KGCMC, and submitted to the State of Alaska for their consistency determination. A consistency determination will be received before the permit is issued.

# **Executive Orders**

# **Executive Order 11988 (Floodplain Management)**

This area is not located within floodplains as defined by executive order 11988.

#### **Executive Order 11990 (Protection of Wetlands)**

Because wetlands are so extensive in the Greens Creek Tailings Disposal project area, it is not feasible to avoid all wetland areas. I have determined that (1) there is no practicable alternative to such construction and (2) the selected alternative includes all practicable measures to minimize harm to wetlands which may result from such use. A separate permit will be issued for wetland fill activities by the US Army Corps of Engineers.

## **Executive Order 12898 (Environmental Justice)**

Implementation of this decision will not result in disproportionate adverse human health or environmental effects to minority or low-income populations.

### **Executive Order 12962 (Recreational Fisheries)**

With the application of Forest Plan standards and guidelines, including those for riparian areas, no significant adverse effects to freshwater or marine resources will occur. Most recreational fishing throughout the Tongass occurs by boat in saltwater, and any adverse effects would be minimal.

# **Executive Order 13186 (Migratory Birds)**

Implementation of this decision will not have any significant adverse effects to migratory birds and their habitat.

# **Implementation of this Decision**

Implementation of this decision may occur no sooner than 50 days from the date of publication of the notice of this decision in the *Juneau Empire*, the official newspaper of record.

# Right to Appeal

This decision is subject to administrative review (appeal) pursuant to 36 CFR part 215. The appeal filing period closes 45 days after the publication of legal notice of this decision in the *Juneau Empire* newspaper, published in Juneau, Alaska. A written notice of appeal must be filed with the Appeal Deciding Officer:

Denny Bschor, Regional Forester USDA Forest Service, Region 10 P.O. Box 021628 Juneau, AK 99802-1628

In accordance with 36 CFR part 215.14, it is the responsibility of those who appeal a decision to provide the Appeal Decision Officer sufficient evidence and rationale to show why the Responsible Official's decision should be remanded or reversed. The written notice of appeal filed must meet the following requirements:

- 1. State the document is a Notice of Appeal filed pursuant to 36 CFR part 215;
- 2. List the name, address, and telephone number of appellant;
- 3. Identify the decision document by title and subject, date of the decision, and name and Identify the specific change(s) in the decision that the appellant seeks or portion of the decision to which the appellant objects;
- 4. State how the Responsible Official's decision fails to consider comments previously provided, either before or during the comment period specified in 36 CFR 215.6 and, if applicable, how the appellant believes the decision violates law, regulation, or policy.

#### **Contact Person**

For additional information concerning this decision or the Forest Service appeal process, contact

Pete Griffin Juneau District Ranger 8465 Old Dairy Road Juneau, Alaska 99801 (907) 586-8800

FORREST COLE

Forest Supervisor

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion. age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 14th and Independence Avenue, SW, Washington, DC 20250-9410 or call (202) 720-5964 (voice and TDD). USDA is an equal opportunity provider and employer.

# **Greens Creek Tailings Disposal**

# **Final Environmental Impact Statement**

# Tongass National Forest USDA Forest Service, Alaska

Lead Federal Agency USDA Forest Service

**Tongass National Forest** 

Responsible Official Forrest Cole, Forest Supervisor

**Tongass National Forest** 

Supervisors Office 648 Mission St.

Ketchikan, Alaska 99901-6591

Cooperating Agencies: U.S. Army Corps of Engineers

U.S. Environmental Protection Agency

With assistance from: Michael Baker Jr., Inc.

For Further

Information Contact: Jeffrey Wade DeFreest

Minerals Program Manager Tongass National Forest Juneau Ranger District 8465 Old Dairy Road Juneau AK 99801 Phone: 907-790-7457

E-mail: jdefreest@fs.fed.us

# **Abstract**

The USDA Forest Service is proposing to approve a modification to the KGCMC General Plan of Operation to authorize the expansion of the tailings disposal area at the Greens Creek Mine to accommodate continued processing of known and projected ore reserves. Water quality and monument values were identified as significant issues and these issues, as well as other important concerns, are addressed by the alternatives in this Environmental Impact Statement (EIS). This EIS describes the effects of the No-Action alternative, the Proposed Action, and two other action alternatives.



# **Table of Contents**

| 1   | Purpo                                     | ose and Need for Proposed Action                                                                                                                                               | 1-1                     |
|-----|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 1.1 | Propo                                     | sed Action                                                                                                                                                                     | 1-5                     |
| 1.2 | Decis                                     | ion to be Made                                                                                                                                                                 | 1-8                     |
| 1.3 | Scopi                                     | ng and Public Involvement                                                                                                                                                      | 1-8                     |
| 1.4 | Signif                                    | icant Issues                                                                                                                                                                   | 1-10                    |
| 1.5 | Other                                     | Issues                                                                                                                                                                         | 1-12                    |
| 1.6 | Agend                                     | cy Responsibilities (Permits and Approvals)                                                                                                                                    | 1-13                    |
|     | 1.6.1<br>1.6.2                            | Federal Government State and Local Government                                                                                                                                  |                         |
| 2   | Proje                                     | ct Alternatives, including the Proposed Action                                                                                                                                 | 2-1                     |
| 2.1 | Issues                                    | and Alternatives Development                                                                                                                                                   | 2-1                     |
| 2.2 | Eleme                                     | ents common to all alternatives                                                                                                                                                | 2-2                     |
|     | 2.2.1<br>2.2.2<br>2.2.3<br>2.2.4<br>2.2.5 | Water Management Water Management during Closure and Post-Closure (Reclamatio Monitoring and Mitigation Concurrent Reclamation Temporary Closure and Reclamation After Closure | n) 2-11<br>2-11<br>2-12 |
| 2.3 | Addit                                     | ional elements common to all action alternatives:                                                                                                                              | 2-19                    |
| 2.4 | Alterr                                    | natives                                                                                                                                                                        | 2-21                    |
|     | 2.4.1<br>2.4.2<br>2.4.3<br>2.4.4          | Alternative A – No Action                                                                                                                                                      | 2-25<br>2-29            |
| 2.5 | Comp                                      | arison of Alternatives                                                                                                                                                         | 2-41                    |
|     | 2.5.1<br>2.5.2<br>2.5.3                   | Water Quality Monument Values Other Issues                                                                                                                                     | 2-48                    |
| 2.6 | Alterr                                    | natives Considered and Eliminated from Detailed Study in the EIS                                                                                                               | 2-52                    |
|     | 2.6.1<br>2.6.2<br>2.6.3                   | Carbonate Veneer Alternative                                                                                                                                                   | 2-52                    |
| 3   | Affec                                     | ted Environment                                                                                                                                                                | 3-1                     |
| 3.1 | Locat                                     | ion                                                                                                                                                                            | 3-1                     |
|     | 3.1.1                                     | Description of the Proposed Project Study Area                                                                                                                                 | 3-1                     |

# Contents

| 3.2 | Land.                                                                         |                                                                                                                                                                                                                                         | 3-2                                                          |
|-----|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| 3.3 | Clima                                                                         | te                                                                                                                                                                                                                                      | 3-5                                                          |
|     | 3.3.1<br>3.3.2<br>3.3.3<br>3.3.4                                              | Regional Hydrology  Local Hydrology  Temperature  Wind                                                                                                                                                                                  | 3-5<br>3-5                                                   |
| 3.4 | Air Q                                                                         | uality                                                                                                                                                                                                                                  | 3-8                                                          |
| 3.5 | Visua                                                                         | l Quality                                                                                                                                                                                                                               | 3-8                                                          |
| 3.6 | Ocean                                                                         | nography                                                                                                                                                                                                                                | 3-12                                                         |
|     | 3.6.1<br>3.6.2<br>3.6.3<br>3.6.4<br>3.6.5<br>3.6.6                            | Physical Characteristics of Hawk Inlet Topography and Bathymetry Tides and Currents and Circulation Flushing Seasonal and Freshwater Effects on Seawater Mixing Marine Water Quality                                                    | 3-13<br>3-13<br>3-14<br>3-16                                 |
| 3.7 | Geolo                                                                         | gy and Geochemistry                                                                                                                                                                                                                     | 3-17                                                         |
|     | 3.7.1<br>3.7.2<br>3.7.3<br>3.7.4<br>3.7.5<br>3.7.6<br>3.7.7<br>3.7.8<br>3.7.9 | Regional Geology  Local Bedrock Geology and Geochemistry  Local Unconsolidated Sediments  Drainage Basin Physiography and Topography  Streamflow  Groundwater  Hydrologic Units  Aquifers and Confining Units  Groundwater Flow Systems | 3-18<br>3-19<br>3-19<br>3-22<br>3-23<br>3-23<br>3-24<br>3-25 |
| 3.8 | 3.8.1<br>3.8.2<br>3.8.3<br>3.8.4<br>3.8.5<br>3.8.6<br>3.8.7                   | Groundwater Quality                                                                                                                                                                                                                     | 3-26<br>3-42<br>3-48<br>3-48<br>3-56                         |
| 3.9 | Wetla                                                                         | nds                                                                                                                                                                                                                                     | 3-62                                                         |
|     | 3.9.1<br>3.9.2<br>3.9.3<br>3.9.4                                              | Introduction                                                                                                                                                                                                                            | 3-62<br>3-64                                                 |

| 3.10 | Vegeta                               | ation                                                                                      | 3-68                         |
|------|--------------------------------------|--------------------------------------------------------------------------------------------|------------------------------|
| 3.11 | Wildli                               | fe                                                                                         | 3-69                         |
|      | 3.11.2<br>3.11.3<br>3.11.4<br>3.11.5 | Brown Bear Sitka Black-Tailed Deer. Furbearers Birds Waterfowl / Shorebirds Marine Mammals | 3-74<br>3-76<br>3-76<br>3-80 |
| 3.12 | Threat                               | ened, Endangered, and Alaska Region Sensitive Species                                      | 3-83                         |
|      | 3.12.2<br>3.12.3                     | Birds and Terrestrial Mammals  Plants  Marine Mammals  Salmon                              | 3-84<br>3-84                 |
| 3.13 | Marin                                | e and Aquatic Ecosystem                                                                    | 3-88                         |
| 3.14 | Essent                               | ial Fish Habitat and Habitat Areas of Particular Concern                                   | 3-90                         |
| 3.15 | Status                               | of Marine and Aquatic Habitats in Hawk Inlet                                               | 3-93                         |
| 3.16 | Herita                               | ge Resources                                                                               | 3-100                        |
| 3.17 | Subsis                               | tence                                                                                      | 3-100                        |
| 3.18 | Recrea                               | ntion                                                                                      | 3-102                        |
| 3.19 | Socioe                               | economic                                                                                   | 3-104                        |
|      | 3.19.2<br>3.19.3<br>3.19.4           | Employment and Income Population School Enrollment Housing Local Government Revenue        | 3-106<br>3-107<br>3-107      |
| 4    | Envir                                | onmental Consequences                                                                      | 4-1                          |
| 4.1  | Introd                               | uction                                                                                     | 4-1                          |
|      | 4.1.1<br>4.1.2                       | Effects, Impacts, and Analyses                                                             |                              |
| 4.2  | Land.                                |                                                                                            | 4-5                          |
| 4.3  | Air Qu                               | ıality                                                                                     | 4-7                          |
| 4.4  | Visual                               | Quality                                                                                    | 4-7                          |
| 4.5  | Geoch                                | emistry and Hydrology                                                                      | 4-10                         |
|      | 4.5.1                                | Alternative A                                                                              |                              |
|      | 4.5.2                                | Alternative G - Proposed Action                                                            | 4-20                         |

# Contents

|      | 4.5.4                                          | Alternative D.                                                                           | 4-31         |
|------|------------------------------------------------|------------------------------------------------------------------------------------------|--------------|
| 4.6  | Wetla                                          | nds                                                                                      | 4-36         |
|      | 4.6.1<br>4.6.2<br>4.6.3<br>4.6.4               | Alternative A – No Action                                                                | 4-36<br>4-37 |
| 4.7  | Vegeta                                         | ation                                                                                    | 4-45         |
|      | 4.7.1<br>4.7.2<br>4.7.3<br>4.7.4               | Alternative A – No Action  Alternative B – Proposed Action  Alternative C  Alternative D | 4-45<br>4-45 |
| 4.8  | Wildli                                         | fe and Birds                                                                             | 4-46         |
| 4.9  | Marin                                          | e Mammals                                                                                | 4-48         |
| 4.10 | Threat                                         | tened and Endangered and Alaska Region Sensitive Species                                 | 4-48         |
| 4.11 | Marin                                          | e and Aquatic Habitats, Biota, and Essential Fish Habitat                                | 4-49         |
| 4.12 | Herita                                         | ge Resources                                                                             | 4-52         |
| 4.13 | Subsis                                         | stence                                                                                   | 4-53         |
| 4.14 | Recrea                                         | ation                                                                                    | 4-53         |
| 4.15 | Socioe                                         | economic                                                                                 | 4-54         |
| 4.16 | Enviro                                         | onmental Justice                                                                         | 4-57         |
| 4.17 | Cumu                                           | lative Impacts                                                                           | 4-58         |
|      | 4.17.2<br>4.17.3<br>4.17.4<br>4.17.5<br>4.17.6 | Cumulative Impact Definition and Impact Analysis                                         |              |

| 5   | Lists 5-1                  |      |
|-----|----------------------------|------|
| 5.1 | List of Preparers          | 5-1  |
| 5.2 | List of FEIS Recipients    | 5-5  |
| 5.3 | Abbreviations and Acronyms | 5-11 |
| 5.4 | Glossary                   | 5-13 |
| 5.5 | List of References         | 5-29 |
| 5.6 | Index                      | 5-41 |
|     |                            |      |

# **APPENDICIES** – in Volume II

## Appendix A

Hydrology and Geochemistry of the Greens Creek Tailings Facility, 2003

# Appendix B

Sulfate Reduction Monitoring Program Outline, 2002

# Appendix C

Selected Appendices from KGCM General Plan of Operation, 2000

- General Plan Of Operations, Appendix 3 Tailings Impoundment
- General Plan Of Operations, Appendix 14 Reclamation Plan

# Appendix D

ADEC Waste Management Permit, 2003

## **Appendix E**

Response to DEIS Comments, 2003

## Appendix F

Draft EIS Comments, 2003

# Appendix G

Alternative Screening Evaluation, 2002

This page intentionally left blank.

# Figures – Volume I

| Figure 1-1  | Project Location1                                                                                                 | -4  |
|-------------|-------------------------------------------------------------------------------------------------------------------|-----|
| Figure 1-2  | Aerial View of Greens Creek Existing Tailings Facility (2002)                                                     | -5  |
| Figure 1-3  | Greens Creek Mine Project Area and Location of Existing Tailings                                                  |     |
|             | Facility                                                                                                          | -6  |
| Figure 1-4  | Existing Tailings Facility Lease and Alternative B Proposed Expanded                                              |     |
|             | Lease Areas                                                                                                       | -7  |
| Figure 2-1  | Water Discharge Scenarios                                                                                         | 4   |
| Figure 2-2  | Tailings Facility Hydrologic Controls                                                                             | 9   |
| Figure 2-3  | Typical Four Layer Engineered Reclamation Cover2-                                                                 | 17  |
| Figure 2-4  | Alternative A – No Action2-                                                                                       | 23  |
| Figure 2-5  | Alternative B - Proposed Expanded Lease Area2-                                                                    | 27  |
| Figure 2-6  | Alternative C - Existing Tailings Facility Lease Area, Present, and                                               |     |
|             | Projected Footprints of Tailings Placement2-                                                                      | 33  |
| Figure 2-7  | Alternative C - Monument Values Changes to Proposed Lease Area 2-                                                 | 35  |
| Figure 2-8  | Alternative D - Continuous Carbonate Addition                                                                     | 39  |
| Figure 2-9  | Flow Chart for discharge/compliance scenario selection                                                            | 44  |
| Figure 3-1  | Admiralty Island National Monument                                                                                | 3-2 |
| Figure 3-2  | Land Use Designation / Inventoried Roadless Areas                                                                 | -4  |
| Figure 3-3  | Wind Speed and Direction at Tailings Site January 1, 2000 through June 30, 2000                                   | 2   |
| Figure 3-4  | Aerial View of Greens Creek Facilities                                                                            |     |
| Figure 3-5  | View of Hawk Inlet with tailings pile in background                                                               |     |
| Figure 3-6  | Aerial View of Tailings Pile, looking to the Southeast 3-                                                         |     |
| Figure 3-7  | View of processing loading area from water                                                                        |     |
| Figure 3-8  | Greens Creek Mine Marine Sampling Stations and Outfall Locations . 3-                                             |     |
| Figure 3-9  | Surface Water Drainages                                                                                           |     |
| Figure 3-10 | Conceptual Model of Groundwater Occurrence and Flow in the Area of                                                |     |
|             | the Existing Tailings Facility                                                                                    | 29  |
| Figure 3-11 | Extent of the Silty Clay Layer at the Site, along with the Distribution of                                        |     |
|             | Peat and Till Deposits                                                                                            | 31  |
| Figure 3-12 | Generalized Ground Water Flow Pattern for Alternative C 3-                                                        | 33  |
| Figure 3-13 | Monitoring Wells (MW) and Sampling Sites Located Upgradient and                                                   |     |
|             | Downgradient from the Tailings Facility                                                                           | 35  |
| Figure 3-14 | Upgradient and Downgradient Surface Water Flow from the Existing                                                  |     |
| D' 0.45     | Tailings Facility                                                                                                 |     |
| Figure 3-15 | Kennecott Greens Creek Tailings Samples                                                                           |     |
| Figure 3-16 | Paste pH and net neutralization potential of various grab samples collected from the Greens Creek Mine facilities |     |

# Contents

| Figure 3-17 | Paste pH, humidity cell and net neutralization potential of various grab                                                                                                                                                     |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | samples collected from the Greens Creek Mine facilities in 1989, 1994, 1999 and 2002                                                                                                                                         |
| Figure 3-18 | Tailings Drain Chemistry                                                                                                                                                                                                     |
| Figure 3-19 | Tailings Wet Well Chemistry                                                                                                                                                                                                  |
| C           | •                                                                                                                                                                                                                            |
| Figure 3-20 | Records of Flow and Precipitation Recorded at Wet Well 2                                                                                                                                                                     |
| Figure 3-21 | Jurisdictional Wetlands 3-65                                                                                                                                                                                                 |
| Figure 3-22 | Surface Waters 3-67                                                                                                                                                                                                          |
| Figure 3-23 | Wetlands Values in the Greens Creek Project Area 3-68                                                                                                                                                                        |
| Figure 3-24 | Brown Bear Habitat Distribution                                                                                                                                                                                              |
| Figure 3-25 | Deer Habitat Distribution                                                                                                                                                                                                    |
| Figure 3-26 | Bald Eagle Nest Tree Sites                                                                                                                                                                                                   |
| Figure 3-27 | Aerial mosaic of Lower Hawk Inlet, Admiralty Island. Stations shown S-1, S-2, S-4 and S-5 are sediment and worm sampling sites. Station S-3 is in the head of Hawk Inlet. Stations 1, 2, 3 and ESL are mussel sampling sites |
| Figure 3-28 | Hawk Inlet Sediment and Biota Sample Site Map 3-95                                                                                                                                                                           |
| Figure 4-1  | Existing Tailings Pile from Hawk Inlet (Alternative A)Alternative B and C4-9                                                                                                                                                 |
| Figure 4-2  | Photo-Simulation of Hawk Inlet showing Alternative B and C Proposed Tailings Expansion at Maximum Height before Revegetation                                                                                                 |
| Figure 4-3  | Photo-Simulation of Hawk Inlet showing Alternative D Proposed Tailings Expansion at Maximum Height before Revegetation                                                                                                       |
| Figure 4-4  | Schematic of the predictive model developed by the EIS team to assess potential water quality impacts for each alternative                                                                                                   |
| Figure 4-5  | Alternative A – Range in Concentration at Compliance Point 4-19                                                                                                                                                              |
| Figure 4-6  | Alternative B – Range in Concentration at Compliance Point 4-25                                                                                                                                                              |
| Figure 4-7  | Alternative C – Range in Concentration at Compliance Point 4-30                                                                                                                                                              |
| Figure 4-8  | Alternative D – Range in Concentration at Compliance Point 4-35                                                                                                                                                              |
| Figure 4-9  | Alternative B – Wetland Impacts                                                                                                                                                                                              |
| Figure 4-10 | Alternative C – Wetland Impacts4-41                                                                                                                                                                                          |
| Figure 4-11 | Alternative D – Wetland Impacts 4-43                                                                                                                                                                                         |

viii Figures and Tables Greens Creek Tailings

# Tables - Volume I

| Table 2-1  | NPDES Outfall 002 Effluent Limits                                                                 | 2-7           |
|------------|---------------------------------------------------------------------------------------------------|---------------|
| Table 2-2  | Four Layer Reclamation Engineered Cover Characteristics Summa                                     |               |
| Table 2-3  | Comparison of Alternatives                                                                        | 2-49          |
| Table 3-1  | Monthly and Annual Precipitation at the Tailings Site, 1997 – 2000                                | 0 3- <i>ϵ</i> |
| Table 3-2  | Average receiving water monitoring data for control site                                          | 3-17          |
| Table 3-3  | Mean Monthly Flows for Tributary Creek                                                            | 3-23          |
| Table 3-4  | Groundwater Quality – FWMP Wells                                                                  | 3-27          |
| Table 3-5  | Groundwater Quality Summary – Upgradient Wells                                                    | 3-37          |
| Table 3-6  | Water Quality from Wells Showing Elevated Sulfate Concentratio                                    | ns 3-39       |
| Table 3-7  | Surface Water Quality – FWMP Sites                                                                | 3-43          |
| Table 3-8  | Surface Water Quality –GR Creek                                                                   | 3-45          |
| Table 3-9  | Surface Water Quality – Hawks Inlet Catchment                                                     | 3-46          |
| Table 3-10 | Estimated average flow, baseflow, and runoff from wet wells                                       | 3-57          |
| Table 3-11 | Concentration of Selected Ions in Representative Contact Waters verse the Tailings Facility       |               |
| Table 3-12 | Priority Species that are Known to Occur in Mature/Oldgrowth Sp<br>Hemlock Habitats               |               |
| Table 3-13 | Marine Mammals Occurring in the Vicinity of Hawk Inlet                                            | 3-83          |
| Table 3-14 | Features of major marine habitat types in Hawk Inlet, Admiralty Is (Source: Holland, et al. 1981) | sland         |
| Table 3-15 | FMP Managed Species with EFH in Hawk Inlet, Admiralty Island adjacent watersheds.                 | and           |
| Table 3-16 | Fish Species Found in Streams in or near the Greens Creek Mine F<br>Area                          | Project       |
| Table 3-17 | Metals in Sediment: Average and Range Stations S-1, S-2, S-3                                      | 3-96          |
| Table 3-18 | Metal Concentrations in Sediments at Stations S-4 and S-5                                         | 3-98          |
| Table 3-19 | Brown Bear Shot                                                                                   | 3-103         |
| Table 3-20 | Hawk Inlet Documented River Otter Harvest                                                         | 3-104         |
| Table 3-21 | Hawk Inlet Documented Marten Harvest                                                              | 3-104         |
| Table 3-22 | Non-Agriculture Wage and Salary Employment and Earnings, City<br>Borough of Juneau, 1999          |               |
| Table 3-23 | Non-Agriculture Wage and Salary Employment, City and Borough Juneau, 1990 to 1999                 |               |
| Table 3-24 | City and Borough of Juneau Population, 1990-2000                                                  |               |
| Table 3-25 | City and Borough of Juneau, Public School Enrollment, K-12                                        |               |
| Table 3-26 | City and Borough of Juneau, New Housing Units and Vacancy Ra 1990-2000                            | te,           |
| Table 3-27 | City and Borough of Juneau Operating Revenues, FY2000 Actual                                      |               |

# Contents

| Table 4-1 | Acreages by Alternative                                         | 4-7    |
|-----------|-----------------------------------------------------------------|--------|
| Table 4-2 | Alternative A Water Quality Model                               | . 4-17 |
| Table 4-3 | Alternative B Water Quality Model                               | . 4-23 |
| Table 4-4 | Alternative C Water Quality Model                               | 4-28   |
| Table 4-5 | Alternative D Water Quality Model                               | 4-33   |
| Table 4-6 | Acres of Spruce/Hemlock Habitat Affected Under Each Alternative | . 4-47 |
| Table 4-7 | Summary of Effects to Marine and Aquatic Ecosystems             | 4-52   |
| Table 4-8 | Socioeconomic Annual Summary                                    | . 4-54 |

# **Purpose and Need for Proposed Action**

# **Background**

The Greens Creek Mine is an underground metals mine near Hawk Inlet on northern Admiralty Island. It is located approximately 18 miles southwest of Juneau, Alaska. The mine is situated in the Greens Creek watershed within the Admiralty Island National Monument.

Before mining operations began, the United States Department of Agriculture, Forest Service, published the Greens Creek Final Environmental Impact Statement (USDA, FS 1983) and issued its Record of Decision (ROD) for overall development and operation of the mine project. In early 1984, the Forest Service approved a General Plan of Operations for Noranda Mining, Inc., the owner and operator at that time.

That original General Plan of Operations (GPO) called for underground mining with ore crushed and concentrated in a mill near the mine portal. Under the plan, the ore concentrate would be trucked approximately nine miles to the Hawk Inlet port at the Cannery; from there, it would be shipped to smelters outside Alaska for processing and refining. The *tailings*—the material left after the minerals have been removed—would be placed in a slurry, or watery mixture, and piped along the road corridor to a site at the Cannery Muskeg for disposal.

While planning was still going on, ownership of the mine changed hands, and in early 1986, Amselco assumed control of operations. The new owner decided to change some aspects of the GPO, particularly the method of tailings disposal. Instead of putting tailings in a slurry, Amselco proposed to truck dry tailings to a smaller area at the same Cannery Muskeg for disposal. In July 1987, the Forest Service determined that this and other proposed changes required a National Environmental Policy Act (NEPA) review. The following year, the Forest Service published the *Environmental Assessment* for Proposed Changes to the General Plan of Operations for the Development and Operation of the Greens Creek Mine (USDA, FS 1988).

Full-scale development of the mine began in 1987. Workers excavating for the mill site found a large, unanticipated volume of porous soil that had to be removed in order to provide a suitable foundation for the mill. Because this soil was placed in the mine's approved waste rock disposal site, more waste rock had to go to the tailings facility, thereby reducing capacity available for tails. Also, ongoing exploration had identified additional ore reserves.

In response to these changed circumstances, in 1990 the project's operator, now Kennecott Greens Creek Mining Company (KGCMC - the current operator), sought approval for additional waste rock disposal capacity. In 1991 the Forest Service began a third NEPA review and the following year

**Greens Creek Tailings** Background 1-1

# 1 Purpose and Need for Proposed Action

published the *Environmental Assessment for Additional Waste Rock Disposal Capacity at Greens Creek Mine* (USDA, FS 1992).

In April of 1993, KGCMC temporarily suspended mining operations due to depressed prices for metals. KGCMC reopened the project in July of 1996, and in conjunction with the resumption of mining operations, the Forest Service approved an amendment to the GPO.

The Greens Creek Mine supports an annual payroll of approximately \$26 million and employs a workforce of approximately 265 individuals—120 in mining and underground support, 60 in the mill, 55 in surface support, and 30 in administration. KGCMC presently processes approximately 2,000 tons of ore per day. On an annual basis, that production yields approximately 10 million ounces of silver, 65,000 ounces of gold, and a total of 200,000 tons of zinc and lead bulk concentrates.

Based on known ore reserves and the current rate of production, the Greens Creek Mine has a remaining life of approximately 12 years (from 2003). KGCMC expects to backfill approximately half the tailings and use surface disposal at an average rate of 270,000 tons per year. At that rate, surface disposal capacity for approximately 3.2 million tons of tailings will be needed during the remaining 12-year life of the mine. Under the current permit, however, the existing tailings facility has space for only about 600,000 tons of tailings—just over 2 years of tailings disposal at the current level of production. Consequently, to process the known ore reserves, additional disposal capacity of approximately  $2\frac{1}{2}$  million tons is needed.

In addition to the known ore reserves, past success in exploring indicates the probability that geologists may discover new deposits in the area. KGCMC has indicated that such discoveries could mean that mine life would extend an additional 10 years and surface disposal space would be needed for at least another 3 million tons of tailings. Thus, based on known and anticipated ore reserves and the current rate of tailings placement, KGCMC expects a mine life of 22 years and site capacity for roughly 6 million tons of additional tailings.

Based on that need, in January 2001, KGCMC submitted an application to the Forest Service requesting a modification of the existing GPO for expansion of both the area and the disposal capacity of the existing tailings facility. The Greens Creek application described alternatives that would meet KGCMC's need while satisfying its regulatory obligations, and identified their formal proposal.

The Forest Service and cooperating agencies reviewed the KGCMC proposal and its possible effects. Based on this review, the Forest Service developed a Proposed Action to carry forward. The team also determined the appropriate

Greens Creek Tailings EIS type of analysis given the impacts the proposed action might have on the environment.

In March 2001, the Forest Service issued a Notice of Intent to prepare an Environmental Impact Statement (EIS) to analyze and display the effects of proposed changes to the tailings operations. The Forest Service determined that the proposed project warranted an EIS because an expansion of the tailings disposal facility could significantly impact water quality, wetlands, fisheries, and the values inherent to Admiralty Island National Monument.

In the process of preparing the analysis, the Forest Service encouraged public comment, and based on the input, the Forest Service identified *significant* issues—those issues related to the proposed action that identify potential impacts to the environment. Through the consideration of these significant issues, the Forest Service formulated alternatives to the proposed action, including a no action alternative.

# **Purpose and Need**

"The purpose and need for the proposed action is to consider changes to the 2000 approved Plan of Operations (as amended) for the Kennecott Greens Creek Mining Company regarding tailings disposal in order to allow for continued operations."

**Greens Creek Tailings** 1.1 Proposed Action 1-3

Figure 1-1 **Project Location** ALASKA FAIRBANKS KEY PLAN NOT TO SCALE

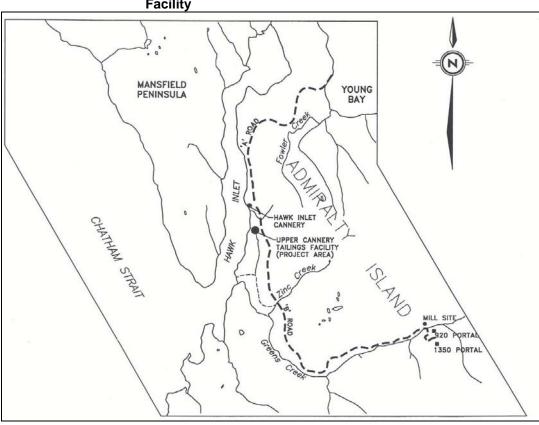
#### 1.1 **Proposed Action**

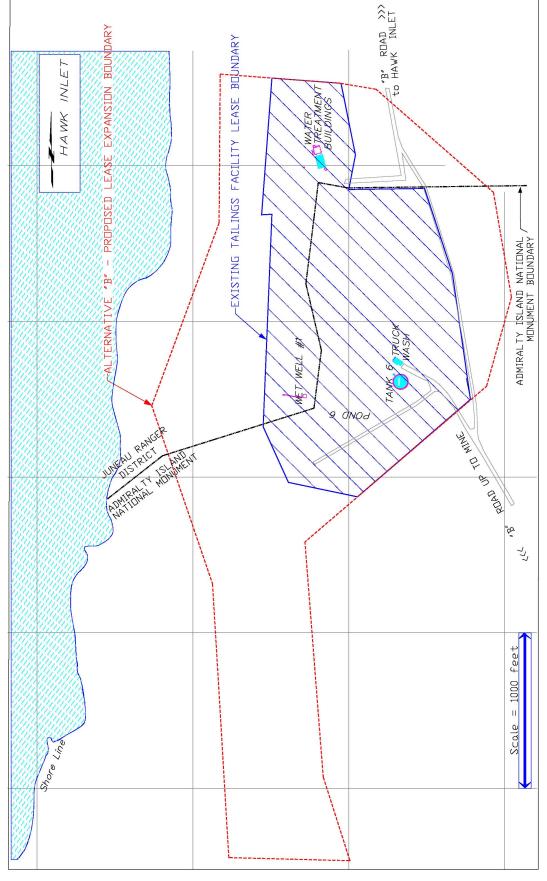
The Forest Service proposes to approve an amendment to the KGCMC GPO to authorize construction of additional dry tailings disposal storage. The additional disposal area would be designed to provide enough disposal capacity (approximately 6 million tons above the currently permitted capacity) for the remaining life of the mine (approximately 22 years at the present rate of production and backfilling, given known reserves and reasonably foreseeable discoveries). This expansion would require modifying the existing lease. Figure 1-2 shows the Greens Creek existing tailings facility and the mine project area; Figure 1-3 shows the location of the tailings facility. The tailings pile, including the tailings expansion area is in a semi-remote recreation LUD and is not in an inventoried roadless area (See Figure 3-2).



Figure 1-2 Aerial View of Greens Creek Existing Tailings Facility (2002)

**Greens Creek Tailings** 1.1 Proposed Action 11-5





Figure 1-3 Greens Creek Mine Project Area and Location of Existing Tailings Facility

The lease area for the existing tailings facility is 56 acres. The proposed action would expand the area by 84 acres, primarily to the west and south, for a new total of about 140 acres. Tailings disposal would occur on about 40 acres within the new area; the remaining 44 acres would be used for rock quarries, a stormwater pond system, and storage area for reclamation materials, as well as a possible new water treatment plant and other potential long-term tailings disposal needs. Figure 1-4 shows the existing 56-acre tailings facility lease area and associated facilities, as well as the proposed new 84-acre expansion area.

Before the proposed expansion could begin, the existing reclamation plan (GPO Appendix 14) would be updated to reflect new downgradient compliance locations for the re-configured tailings pile used for compliance monitoring for water quality. The Forest Service and other agencies with permitting jurisdiction would approve the updated plan. The GPO includes a requirement that AWQS will be achieved at the points of compliance.

Greens Creek Tailings EIS

Existing Tailings Facility Lease and Alternative B Proposed Expanded Lease Areas Figure 1-4



# Purpose and Need for Proposed Action

An engineered cover would be placed over the tailings pile to minimize air and water infiltration after closure, as required in the Alaska Department of Conservation (ADEC) Waste Management Permit (Appendix D). The final lift, or placement, of tailings would be covered with a series of organic materials including a layer of compacted barrier material and a layer of growth media. These materials that make up the cover would be layered in such a way as to include a sequence of *capillary breaks*. Capillary breaks are created by layers of rock through which water can drain from the layers above. The small gaps between the rocks also keep water within the tailings from wicking up through the cover by capillary action.

#### 1.2 **Decision to be Made**

Although several federal and state agencies have a role in the environmental analysis process, the Forest Service is the lead agency. The USDA Forest Service is proposing to approve a modification to the KGCMC General Plan of Operation to authorize the expansion of the tailings disposal area at the Greens Creek Mine to accommodate continued processing of known and projected ore reserves. The Forest Supervisor will document the decision in a Record of Decision based on the analysis presented in the Final EIS. The Forest Supervisor will make one of the following decisions:

- **→** Select the No Action alternative; or
- → Select an action alternative without modification; or
- → Select project components of more than one action alternative; or
- → Select an action alternative and require additional mitigation measures; or
- → Select project components of more than one action alternative and require additional mitigation measures.

#### 1.3 Scoping and Public Involvement

As required by regulations implementing the National Environmental Policy Act, the Forest Service conducted a thorough scoping process that encouraged public, agency, and tribal participation in regular meetings (40 CFR 1501.7). The process involved, among other things, examining the proposed action and its possible effects, identifying issues of concern related to the project, and determining which require detailed study.

On March 29, 2001, the Forest Service published its Notice of Intent to prepare an EIS for the proposed project in the Federal Register (USDA, FS 2001a) and distributed a scoping document describing the proposed action, the EIS process, and a schedule for the preparation of documents. (Scoping Document for Greens Creek Mine Tailings Stage II Expansion Project Environmental Impact Statement, USDA, FS 2001b). The name of this project was subsequently shortened to Creek Mine Tailings Disposal Final **Environmental Impact Statement** 

Distribution of the scoping document began a 30-day period for the public and interested agencies to review the document and to comment. Comments were solicited from the general public, state and federal agencies, tribes, and municipal governments. On April 19, 2001 the Forest Service hosted a scoping open house at the City and Borough of Juneau Assembly chambers. Thirty-six individuals signed-in, and an estimated ten more came but did not sign-in. Approximately a dozen people attended a second open house in Angoon on April 23. The comment period ended April 30.

These scoping open houses served two purposes. The first was for representatives of the Forest Service and other cooperating agencies to listen to and record public comments about the proposed project as described in the scoping document. The second purpose was for the project team to respond to requests for background information or technical assistance that the public or interested agencies might need before commenting. Both open houses were held early in the comment period so that people who had questions would still have time to prepare and submit their comments before the close of the comment period.

Agency representatives documented, as part of the official record, all comments made during the open houses, whether oral or written. The Forest Service collected 58 sets of oral or written comments containing a total of 135 individual comments. The commenting group can be categorized as follows.

| Total                            | 58 |
|----------------------------------|----|
| State and federal agencies       | 5  |
| Businesses                       | 2  |
| Non-government organizations     | 6  |
| Municipal government             | 1  |
| Individual members of the public | 44 |

The Greens Creek Tailings Disposal DEIS was distributed on April 25, 2003. A public meeting was held in Juneau at Centennial Hall on May 21, 2003, for both the Draft EIS and the Alaska Department of Environmental Conservation (ADEC) Waste Management Permit. The comment period ended on June 30,

2003. Comments were solicited from the general public, state and federal agencies, tribes, municipal governments, and non-profit/governmental organizations during the comment period. All comments received during the comment period, whether written in letters, electronic mail or comments taken at the Draft EIS public meeting were read and categorized into the issues discussed below.

A total of 2447 commenters submitted written comment statements in response to the Draft EIS, of those 2416 were received via email in two separate form letters. See Form Letter A (FLA) and Form Letter B (FLB) in Appendix F. 1305 copies of FLA were received (one hard copy was received by mail); 55 of the FLA letters contained additional comments, revisions, or commentary. 1112 copies of FLB were received and 26 of those contained additional comments, revisions, or commentary, one hard copy was also received by mail. Many commenters raised several issues, and each issue was considered individually. A breakdown by general commenting group is shown below.

| Total                                |       | 2447 |
|--------------------------------------|-------|------|
| Federal Agencies                     |       | 3    |
| Businesses                           |       | 3    |
| Non-government organizations         |       | 4    |
| (Other letters or written comments - | 20)   |      |
| (Form Letter B -                     | 1112) |      |
| (Form Letter A -                     | 1305) |      |
| Individual members of the public     |       | 2437 |

# 1.4 Significant Issues

During the scoping process, the Forest Service identified issues that are significant to the given project. It is the consideration of the significant issues that leads to the formulation of various alternatives to a proposed action, as well as to the design of mitigation measures when needed. The Forest Service identified water quality and monument values as significant issues connected to the proposed project. These issues were defined as:

# Issue 1. Water Quality

"Ensuring the isolation of contact water generated as a result of continued operations and enlargement of the facility from groundwater and surface waters. In the short term, this isolation will be achieved through diversion, integrity of sub layers, lining where appropriate, and treatment. In the long term, this isolation will be achieved through diversion, integrity of sub layers and liners where placed, and capping.

Water quality concerns raised during scoping included:

- + The potential for metals loading and /or acid rock drainage (ARD) from the tailings pile.
- + The need for reduction of contaminants in the pile.
- + The long-term, post closure, maintenance of surface and groundwater standards.
- + The effectiveness of proposed methods for controlling water that does not come in contact with the pile.
- + The need to add a monitoring program to measure metals uptake by wetland communities.
- **→** The potential to increase in-stream sediments and bioaccumulation of metals in plants and animals.

These water quality issues may require the formulation of major mitigation actions connected to the Proposed Action or consideration of an alternative."

When water comes in contact with tailings, the quality of that water can be impaired. The process of sulfide oxidation and the short- and long term geochemistry of tailings are discussed in detail in Chapter 3. Tailings associated with this project contain an abundance of pyrite (iron sulfide), a mineral that is not removed as ore concentrate during processing. If exposed to air and water, pyrite weathers, creating heat and sulfuric acid. The acid created when pyrite weathers may be consumed by dolomite contained in the tailings, but the metals and sulfate contained in the pile become soluble, and are more likely to dissolve into any water they contact. If this happens, the quality of the contact water degrades, and, if the water is not contained, treated or diluted, the environment for plant, fish, and wildlife may also be impaired. Consequently, minimizing the contact of air with tailings and isolating them from water is critical. Tailings disposal and tailings storage, therefore, must minimize contact with air and water.

#### Issue 2. Admiralty Island National Monument Values

"Location of the proposed action in and adjacent to the Admiralty Island National Monument must be considered. Impacts to the Monument are considered because part of the proposed action would occur within the National Monument. Consideration of this issue may require the formulation of an alternative in which the footprint of the proposed development is altered to minimize impacts within the Monument boundaries."

**Greens Creek Tailings** 

# Purpose and Need for Proposed Action

The Admiralty Island National Monument was established in 1978 by Presidential Proclamation 43. Although "Monument values" were defined in neither the Presidential Proclamation nor the Alaska National Interest Lands Conservation Act (ANILCA), they were addressed in the context of the Forest Service's 1983 and 1988 NEPA reviews of the Greens Creek Mine lease and operations.

Both the EIS (in 1983) and the EA (in 1988) evaluated proposal alternatives against the following two considerations:

- ★ Keeping intact, to the maximum extent feasible, the system of resource values by using non-Monument lands; and
- → The potential for reclamation of impacted areas to pre-project conditions.

Federal regulations address mining operations within the Monument and identify those "resource values" that should be protected as "resources of ecological, heritage, geological, historical, prehistorical, and scientific interest likely to be affected by the proposed operations, including access."<sup>2</sup>

A proposed action must include all feasible measures which are necessary to prevent or minimize potential adverse impacts on the resource values. Determining the *feasibility* of mitigating measures involves balancing the effectiveness and practicality of those measures for preventing or minimizing potential adverse impacts against the short- and long-term costs to the operator and the effect of those costs on the short- and long-term economic viability of the operations.<sup>3</sup>

# 1.5 Other Issues

"Other issues" were identified during the scoping process as important, but not significant enough to require the development of alternative actions. While these issues are not considered "significant" for the purpose of this analysis they are discussed in Chapters 3 and 4. They are described as follows:

★ The tailing facility design must be adequate. The design of the proposed tailings facility, including the engineering standards

٠

<sup>1</sup> Federal Register 57009 - December 1, 1978.

<sup>2 &</sup>quot;Operations within Misty Fjords and Admiralty Island National Monuments, Alaska," 36 CFR § 228.80(b)(1).

<sup>3 36</sup> CFR § 228.80(c).

to be incorporated should be discussed as well as the adequacy of those standards.

- + The cumulative impacts from extended mine operation and those from other projects in the area should be considered.
- **→** Impacts to wetlands should be considered.
- **→** Direct and cumulative impacts to fish and wildlife resources should be considered among the alternatives. Mitigation measures to reduce impacts should be described.
- + Socioeconomic impacts should be considered and analyzed for all alternatives.

#### **Agency Responsibilities (Permits and** 1.6 Approvals)

The Forest Service, as the lead agency, cooperates and consults with other agencies in regard to the proposed action and the alternative actions that have been developed in response to the significant issues. Each agency evaluates the alternatives for their potential impacts in relation to that agency's own particular area of expertise and jurisdiction.

Listed below are the applicable Laws, Statutes and Ordinances as well as Permits and Decisions as they apply to the proposed Greens Creek tailings expansion.

### Laws, Statutes and Ordinances

- → Migratory Bird Conservation Act 1929
- → Fish and Wildlife Coordination Act 1934 (FWCA)
- → Bald and Golden Eagle Protection Act 1940
- → Clean Water Act 1948 (CWA)
- → Clean Air Act 1955 (CAA)
- → National Historic Preservation Act 1966 (NHPA)
- → National Environmental Policy Act 1969 (NEPA)
- ★ Marine Mammal Protection Act 1972 (MMPA)
- → General Mining Law of 1872
- + Coastal Zone Management Act 1972, (as amended) (CZMA)
- → Magnuson-Stevens Fishery Conservation and Management Act 1972

- + Endangered Species Act 1973, (as reauthorized in 1988) (ESA)
- → Alaska National Interest Lands Conservation Act 1980 (ANILCA)
- → The Greens Creek Land Exchange Act 1995
- → City and Borough of Juneau Large Mine Review Ordinance 2003
- **→** Executive Orders (EO):
  - EO 12962 Recreational Fisheries
  - EO 11988 Flood Plain Management
  - EO 11990 Protection of Wetlands
  - EO 12898 Environmental Justice
  - EO 12088 Water Quality Standards
  - EO 13186 Migratory Birds

### **Permits and Decisions for Continued Operation of the Greens** Creek Mine

- → Greens Creek Tailings Disposal EIS ROD USDA Forest Service and cooperating agencies
- → Approval of expansion of the lease USDA Forest Service
- → Approval of changes to the GPO USDA Forest Service
- → Readjustment of the Reclamation Bond USDA Forest Service, DEC, DNR, and CBJ
- → NPDES Permit EPA (expires in 11/03)
- → Section 404 permit for fill of wetlands, U.S. Army, Corps of Engineers
- **→** Waste Management Permit DEC
- → Coastal Zone Consistency Determination CZM/DNR
- **→** Large Mine Permit City and Borough of Juneau

#### 1.6.1 **Federal Government**

## Forest Service (USDA FS)

The Forest Service is the lead agency in the preparation of the EIS for the proposed project. If another agency cannot meet its regulatory responsibilities, the Forest Service is ultimately responsible for ensuring that federal and state regulations are implemented on National Forest System lands.

In addition to evaluating the proposed action for NEPA compliance, deciding among the various alternative actions, and approving or modifying the GPO, the Forest Service is responsible for ensuring the following:

- + Compliance with Section 503 of the Alaska National Interest Lands Conservation Act (ANILCA), which provides for development of the Greens Creek Mine project
- **→** Compliance with the Greens Creek Land Exchange Act of 1995
- → Consistency with 1997 Tongass Land and Resource Management Plan, as amended (Forest Plan)
- → Compliance with Section 106 of the National Historic Preservation Act
- → Compliance with Sections 313 and 319 of the Clean Water Act
- **→** Compliance with pertinent Executive Orders

The Forest Plan provides the land management direction for the Tongass National Forest. Forest Plan Land Use Designation (LUD) for the Greens Creek Mine is Non-Wilderness National Monument with an Overlay of Minerals. After the conclusion of mine operations, the area will be managed as a Non-Wilderness National Monument LUD. This LUD and the corresponding management prescriptions direct what, where, and how much proposed activity the Forest Service can authorize.

The Forest Plan contains many forest-wide standards and guidelines that apply to all LUDs on National Forest System (NFS) land. Chapter 4 of the Forest Plan addresses these specific standards and guidelines for minerals and geology as they apply to protection and management of different forest resources. These forest-wide standards and guidelines are used in conjunction with the additional standards and guidelines included within each management prescription for individual LUDs. All authorized changes to the Greens Creek Mine plan of operations must be consistent with the Forest Plan.

The following segments from the Forest Plan summarize the goals, objectives, standards and guidelines as they apply to the proposed Greens Creek Mine proposed tailings expansion.

Management Prescription for: Nonwilderness National Monuments (Land Use Designation NW)

#### Goals

To manage Admiralty Island and Misty Fiords National Monuments for public access and uses consistent with the Wilderness Act of 1964, the Alaska National Interest Lands Conservation Act of 1980 (ANILCA) and their respective Presidential Proclamations of 1978 which designated these units as National Monuments because of their superlative combination of significant scientific and historical features.

Admiralty Island, exclusive of the Mansfield Peninsula, was designated as a National Monument for the scientific purpose of preserving intact a unique coastal island ecosystem. The goal of preservation was to assure continued opportunities for study of Admiralty Island's ecology and its notable cultural, historical, and wildlife resources, within its relatively unspoiled natural ecosystem. Protection and study of Tlingit cultural resources, other historical resources, brown bear and bald eagle populations are specifically directed.

To facilitate the development of significant mineral resources located within portions of Admiralty Island and Misty Fiords National Monuments, as specified by the Alaska National Interest Lands Conservation Act (ANILCA).

To protect objects of ecological, heritage, geological, historical, prehistorical, and scientific interest, as specified by ANILCA, and in Plans of Operation, and to minimize effects on non-mineral resources to the extent feasible. In the long-term, when mining is completed, to reclaim areas disturbed by mining to a near-natural condition.

To limit mining activities to claims with valid existing rights, and to the land area actually needed to carry out mining operations.

#### **Objectives**

Ensure that Plans of Operations for each mineral development specify the activities to be conducted, the location and timing of those activities, and how the environment and resources in each area will be protected through compliance with Federal and state requirements.

In areas affected by mining, manage activities to maintain the productivity of anadromous fish and other foodfish habitat to the maximum extent feasible. Stress protection of fish habitat to prevent the need for mitigation.

# Standards & Guidelines for: MINERALS and GEOLOGY

Minerals and Geology Administration: MG12

- II. Forest Lands Open To Mineral entry
- A. Encourage the exploration, development, and extraction of locatable and leasable minerals and energy resources.
- B. Assure prospectors and claimants their right of ingress and egress granted under the General Mining Law of 1872, ANILCA, and the National Forest Mining Regulations (36 CFR 228).
- C. Permit reasonable access to mining claims in accordance with the provisions of an approved plan of operations.
- III. Plan of operations
- A. A Notice of Intent and/or a plan of operations is required for locatable, leasable, and salable minerals. (Consult FSM 2810, 2820, 2850, and 36 CFR 228.)
- 1. A plan of operations will receive prompt evaluation and action within the time frames established in 36 CFR 228.
- 2. Conduct an environmental analysis with appropriate documentation for all operating plans.
- B. Work with claimants to develop a plan of operations that adequately mitigates adverse impacts to Land Use Designation objectives. Include mitigation measures for locatable and salable minerals and standard and special stipulations in leasing actions that are compatible with the scale of proposed development and commensurate with potential resource impacts.
- 1. Maintain the habitats, to the maximum extent feasible, of anadromous fish and other foodfish, and maintain the present and continued productivity of such habitats when such habitats are affected by mining activities. Assess the effects on populations of such fish in consultation with appropriate state agencies. (Consult ANILCA, Section 505(a).)
- 2. Apply appropriate Transportation Forest-wide Standards & Guidelines to the location and construction of mining roads and facilities.
- 3. Reclaim disturbed areas in accordance with an approved plan of operations.
- 4. Apply Best Management Practices (BMP's) to maintain water quality for the beneficial uses of water. (Consult Appendix B of the Forest Plan and Forest Service Handbook 2509.22.)

5. Periodically inspect minerals activities to determine if the operator is complying with the regulations of 36 CFR 228 and the approved plan of operations.

### IV. Bonds

A. A bond may be required for locatable, leasable, and salable mineral operations to ensure operator performance and site reclamation are completed. (Consult 36 CFR 228.)

### V. Mineral Materials

- A. Permit mineral material sites only after an environmental analysis assures other resources are adequately protected, the site location and operating plan are consistent with the Land Use Designation emphasis and such resources are not reasonably available on private land. Require bonds and reclamation as appropriate. (Consult FSM 2850 and 36 CFR 228.)
- B. Where the opportunity exists, design, excavate, and reclaim material sites to facilitate their use for dispersed recreation or other desirable uses such as conversion to salmonid rearing ponds and spawning channels.

All alternatives are consistent with the Forest Plan. The Land Use Designation (LUD) for Greens Creek Mine is Non-Wilderness Monument with an Overlay of Minerals. After the conclusion of mine operations, the area will return to a Non-Wilderness National Monument LUD.

Prior to approving a revision to the existing GPO, the Forest Service must comply with Section 106 of the National Historic Preservation Act (NHPA). Compliance with the NHPA generally involves the following:

- + Identification of historic properties that might be affected,
- + Assessment of effects to those properties,
- **★** Consultation with the State Historic Preservation Office and interested parties, and
- → Consideration of comments by the Advisory Council on Historic Preservation if historic properties could be affected.

### National Historic Preservation Act

Prior to approving a revision to the existing GPO, the Forest Service must comply with Section 106 of the National Historic Preservation Act (NHPA). Compliance with NHPA generally involves the following:

- + Identification of historic properties that might be affected,
- + Assessment of effects to those properties,

- **→** Consultation with the State Historic Preservation Officer (SHPO) and interested parties, and
- **→** Consideration of comments by the Advisory Council on Historic Preservation if historic properties could be affected.

### Clean Water Act

Under agreement between the Forest Service and the Alaska Department of Environmental Conservation (ADEC), the Forest Service is committed to ensuring that activities on National Forest System lands are consistent with the requirements of the Clean Water Act (CWA) Sections 319(b)(2)(f); 319(k); 313; and Executive Order 12088. Section 319 addresses nonpoint source pollution, and Section 313 and Executive Order 12088 require the Forest Service to adhere to the goals set forth in state water quality standards.

### **U.S. Environmental Protection Agency (EPA)**

EPA is a cooperating agency with the Forest Service on the proposed project. EPA is responsible for the following:

- **→** Compliance with NEPA for Permits Under Its Jurisdiction
- → Oversight of NEPA compliance by other federal agencies
- → Compliance with Clean Water Act (CWA)
- → Compliance with Clean Air Act

EPA has primary responsibility for implementation of Sections 301, 306, 311, and 402 of the CWA. The agency shares responsibility for Section 404 with the U.S. Army Corps of Engineers.

Section 402 of the CWA establishes the National Pollutant Discharge Elimination System (NPDES) program. This program authorizes EPA to permit point source discharges of effluent, including process wastewater and storm water. Discharges must meet all effluent limitations, including water quality-based and technology-based limitations established under other CWA sections. The Applicant's NPDES permit expires in November of 2003, and issues concerning its modification will be addressed as part of this EIS process.

Section 404 of the CWA authorizes the U.S. Army Corps of Engineers to issue permits for the discharge of dredged or fill materials into waters of the United States. EPA also has authority under Section 404 for reviewing project compliance with Section 404(b)(1) guidelines, Section 404(b) elevation authority, and Section 404(c). Under Section 404(c), EPA may prohibit or withdraw the specification (permitting) of a site upon determination that the

use of the site would have an unacceptable adverse effect on municipal water supplies, shellfish beds, fishery areas, or recreational areas.

Section 309 of the Clean Air Act requires EPA to review and comment on EIS's prepared pursuant to NEPA.

### U.S. Army Corps of Engineers (COE)

COE is a cooperating agency with the Forest Service on the proposed project. COE is responsible for the following:

- → Compliance with NEPA for Permits Under Its Jurisdiction
- → Compliance with Section 404 of the Clean Water Act (permits for dredge and fill)

Section 404 of the CWA authorizes COE to issue permits for discharge of dredged or fill material into waters of the United States. The act prohibits such a discharge except pursuant to a Section 404 permit. Activities involving the initial fill of tailings storage, treatment, and disposal are among those requiring a Section 404 permit. COE is responsible for determining whether a proposed action complies with Section 404(b)(1) guidelines. A Section 404 permit cannot be issued without such compliance.

All federal agencies, including COE, must comply with Executive Orders 11990 and 11988 with respect to impacts to the nation's wetlands and/or floodplains. The Corps' regulatory program provides flexibility when considering the national goal of "no net loss" for wetlands. Because this goal cannot always be achieved for each project individually, the Alaska District of COE may consider site-specific conditions and impacts when determining the extent of compensatory mitigation required for wetland losses.

Wetlands in the area to be affected by the proposed project were identified using the Federal Manual for Identifying and Delineating Jurisdictional Wetlands (Federal Interagency Committee for Wetland Delineation, 1987). COE would regulate the placement of tailings at the disposal site as fill activity under Section 404. The EPA would regulate effluent discharge from the tailings facility under a Section 402 permit.

### U.S. Fish and Wildlife Service (USFWS)

USFWS is responsible in this process for the following:

- → Consultation on the Threatened and Endangered Species Act
- **→** Compliance with the Bald Eagle Protection Act
- **→** Coordination under the Fish and Wildlife Coordination Act

USFWS administers the Endangered Species Act, as reauthorized in 1982, the Bald Eagle Protection Act of 1940, as amended, and the Fish and Wildlife Coordination Act (FWCA). The Forest Service must consult with USFWS regarding any threatened or endangered species that might be impacted by the proposed project. If any impacts are projected, specific design measures must be developed to protect the affected species. The FWCA provides a procedural opportunity for the USFWS to coordinate with the Forest Service and offers means and measures to benefit fish and wildlife resources through mitigation of impacts to water resources and associated fish and wildlife.

### **National Marine Fisheries Service (NMFS)**

NMFS is responsible in this process for the following:

- **→** Consultation on Threatened and Endangered Species
- **→** Consultation on Essential Fish Habitat
- **→** Consultation on the Marine Mammal Protection Act
- **→** Consultation on the Research and Sanctuaries Act

The Forest Service must consult with NMFS. If any impacts are projected to any threatened or endangered marine species or Essential Fish Habitat (EFH), specific design measures must be developed to protect the affected species.

### 1.6.2 State and Local Government

### Alaska Department of Environmental Conservation (ADEC)

ADEC is responsible in this process for the following major permits that are required for the proposed project:

- + Section 401 Certification of the COE Section 404 permit
- → Section 401 Certification of the EPA NPDES permit
- + Waste management permit for the construction, operation, and maintenance of the tailings disposal facility

ADEC is responsible for water and solid waste permits. Under Section 401 of the CWA, ADEC responsibilities include certification of the EPA NPDES permit and the COE Section 404 permit. ADEC must certify that the requirements of these permits would comply with state water quality standards. These standards include designation of the beneficial uses of the water, as well as numerical and narrative water quality criteria established to protect the beneficial uses.

### Alaska Department of Natural Resources (DNR)

DNR is responsible in this process for approval of the reclamation plan. The plan must include a mandatory bonding provision, prohibit undue and unnecessary degradation, and contain performance standards requiring that lands be returned to a stable condition. The Dam Safety Officer of DNR is responsible for issuing a Certificate of Approval to construct the dam needed for the stormwater runoff pond.

The former Alaska Division of Governmental Coordination (DGC) transferred to DNR in the spring of 2003 and became the Office of Project Management and Permitting (OPMP). OPMP is responsible in this process for certification for compliance with the Alaska Coastal Management Program (ACMP). OPMP administers the ACMP and coordinates state reviews of activities in the coastal zone involving state and federal permits. In addition to coordinating projects that require state permits, OPMP is responsible for coordinating consistency reviews for direct federal actions and projects that require federal permits, such as those requiring NPDES permits.

Also in the spring of 2003, responsibility for issuing fish passage and habitat permits for activities that divert, obstruct, or change the natural flows of anadromous fish streams transferred to the DNR's Office of Habitat Management and Permitting (OHMP).

### City and Borough of Juneau (CBJ)

CBJ is responsible for revision of the current Greens Creek Large Mine Permit. Under the recent revision to CBJ's ordinance, Greens Creek is classified as a rural mine and this revision can be accomplished through a summary approval process or a permit amendment. CBJ also participates in the review for consistency with the Juneau Coastal Management Program.

Developing alternatives to the proposed action is an important step in the National Environmental Policy Act (NEPA) process. Through scoping, issues associated with the proposed action are identified that have the potential to significantly impact the environment (the *significant issues*). Alternatives to the proposed action are then formulated that could eliminate or lessen those specific impacts, while still meeting the underlying purpose and need. Alternative actions may also be combined with measures that *mitigate* the impacts. *Mitigation* can take a number of forms, but it often involves steps that rectify or repair the particular situation or that compensate in some way for the impact—such as by providing substitute resources or enhancing the value of a nearby environment.

Section 2.1 provides an overview of how identification of significant issues leads to the development of alternative actions and an overview of each of the alternative actions approved by the Forest Service. Section 2.2 discusses elements, including monitoring and mitigation that are common to all alternatives, including Alternative A, No Action. Section 2.3 discusses elements that are common to all action alternatives (Alternatives B, C, and D). Section 2.4 describes the four alternatives. Section 2.5 compares the four alternatives and Section 2.6 describes alternatives that were given initial consideration, but were eliminated from further comparison.

### 2.1 Issues and Alternatives Development

As discussed in Chapter 1, water quality and monument values were identified as the significant issues for this project. In response to these issues, the Forest Service developed and approved alternative actions to be addressed in this EIS.

Water Quality. For the proposed tailings expansion project, water quality is a significant issue. Each alternative that has been selected for full analysis in this document represents a potential means of improving the quality of water that comes in contact with the tailings (contact water) and isolating that contact water from ground and surface waters until its intended discharge.

This issue arises because of chemical processes that naturally occur within the tailings pile. The process of greatest concern is sulfide oxidation. As noted in the discussion of significant issues (Section 1.4), acidity is created through the process of sulfide oxidation. This process can lead to the release of sulfate and heavy metals into water. Carbonate minerals such as dolomite that are abundant in Greens Creek tailings neutralize the acidity, but the sulfate and metals may remain soluble in water at elevated concentrations.

Within the tailings pile, sulfate reduction occurs when organic materials are present. Sulfate reduction helps to reduce the concentrations of critical metals.

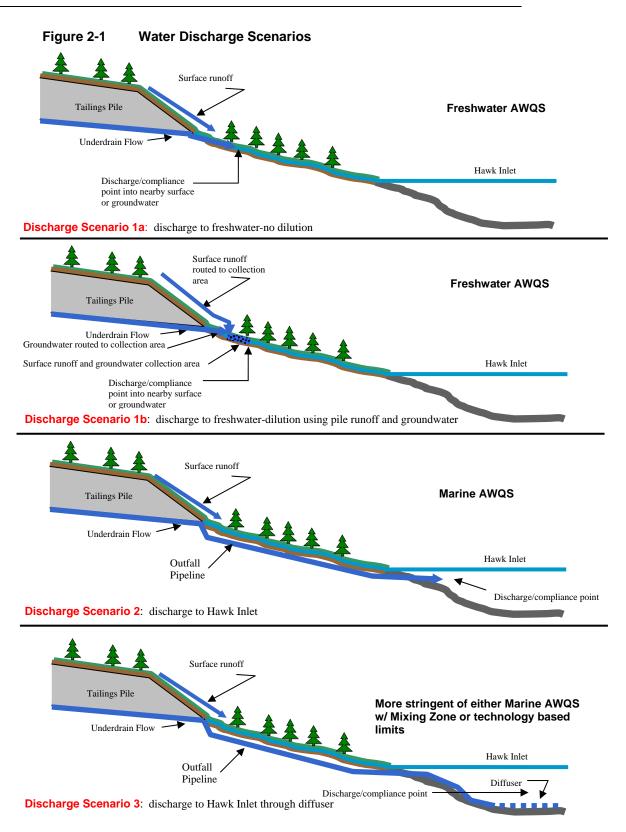
When sulfate is reduced by microorganisms, two by-products, sulfide and bicarbonate are produced. The sulfide ions tend to form insoluble compounds with certain metals such as zinc and nickel, thereby reducing their concentration.

Additionally, the bicarbonate tends to increase pH (reducing acidity), which can reduce solubility of other metals, especially zinc. As such, sulfate reduction is a beneficial process to be supported during the life of the mine and after closure.

Supporting the naturally occurring process of sulfate reduction, possibly by the addition of some form of carbon to the pile, and minimizing the contact between tailings, air, and water are the primary means for dealing with the process of sulfide oxidation and for ensuring that water quality in the project area does not degrade during the life of the mine or after closure. The geochemistry of tailings is discussed in more detail in Chapter 3.

Monument Values. Each alternative analyzed would require differing amounts of leased or disturbed area within the boundaries of the Admiralty Island National Monument. As part of the evaluation of each alternative, this document considers the impacts of the differing footprints and the potential for reclamation of impacted areas to pre-project conditions.

In each case, the actions considered are weighed against practical realities such as the potential environmental impacts to fish and wildlife as well as to the Monument, the degree of technical difficulty involved in implementation, safety, and the costs to KGCMC. It is the balance of these considerations that determine the overall feasibility of each action. Section 2.6 describes a number of alternatives that were eliminated from further consideration.


### 2.2 Elements common to all alternatives

There are a number of elements that are common to all alternatives including the No Action alternative. These items are described below.

- → All discharged water will meet Alaska Water Quality Standards (AWQS).
- ★ No new roads outside of the tailings lease area will be constructed (Roads will be constructed within the lease area atop the slurry walls, on the pile itself, and to pile facilities within the disturbed area of the pile lease area.
- → The characteristics of the tailings, prior to the addition of any additives, are the same.
- → A final 3H:1V (3 horizontal to 1 vertical) outer slope would be used for all tailings piles.

- **→** The water treatment plant will be relocated.
- → An engineered 4-layer soil cap would be placed over the pile after closure to minimize the infiltration of oxygen and water. The design (see Figure 2-3) would be approved by the Forest Service and DEC.
- → During operation and for a period of years afterwards until discharges can meet AWQS without treatment, all water that comes into contact with the tailings along with other industrial waste water would be contained, collected and actively treated. Details of the water treatment process are described below.
- + If upward groundwater gradients are not sufficient to provide containment of contact water, the facility design in the expansion area would also utilize a liner system to prevent discharge of tailings water into groundwater beneath the tailings.
- → During mine closure and post-closure periods, water would continue to be treated until effluent quality is such that these treatment processes are not required in order to meet discharge requirements. At that time and depending on actual effluent quality, KGCMC would discharge water using one of these discharge/compliance scenarios, in decreasing order of preference. Diagrams of these scenarios are shown in Figure 2-1:
  - (1) Discharge into nearby surface or groundwater (a) without dilution water from pile runoff and groundwater, or (b) with such dilution. This discharge would meet fresh water quality-based effluent limits;
  - (2) Discharge directly into Hawk Inlet. This discharge would meet marine water quality-based effluent limits with a potential dilution factor from a mixing zone; or
  - (3) Continue to discharge into Hawk Inlet through a submerged diffuser. The effluent would meet the more stringent of either marine AWQS with a mixing zone or technology based limits.

**Greens Creek Tailings** 



### 2.2.1 **Water Management**

As described earlier, water that comes in contact with the tailings must be managed to ensure that it does not degrade the quality of surface and ground water. A combination of measures is used to manage water in and around the tailings pile. These measures include a system of diversions, collection ditches, French drains, finger drains, blanket drains, sumps, and temporary capping of the pile. For all action alternatives, some combination of these measures would be used to manage water.

### Surface Water

Under the current GPO, KGCMC uses a ditch around the perimeter of the tailings pile to capture surface water that comes in contact with the tailings. A stormwater surge pond captures extra runoff water resulting from higher than usual levels of precipitation. The captured runoff water is routed to treatment facilities at Pit 5.

Because an expansion of the pile footprint under Alternatives B, C, and D would result in more surface water runoff, the construction of a second stormwater surge pond would be required. This second pond would be constructed on the southwest edge of the expanded area west of the existing Pond 6. The new pond would be sized to contain the 25-year, 24-hour runoff event. Captured runoff water would continue to be routed to the existing water treatment plant at Pit 5 or to a relocated treatment plant on the southwest corner of the expansion area. Figure 2-2 shows the proposed structures associated with the completed expansion project.

### Groundwater

An existing, low permeable clay/silt layer naturally underlies some of the area under the proposed expansion of the tailings footprint of Alternatives B, C, or D. In those areas where bedrock or some other more permeable layer exists, a low permeability liner would be required. The low permeability layers, together with a series of slurry walls and French drains would collect the contact water and prevent it from seeping into the groundwater. (EDE, 2002a)

The system would also prevent rising groundwater from coming in contact with the tailings. As with the surface runoff water, captured drainage water would be routed to the Pit 5 water treatment plant or to a relocated facility for treatment and discharge to Hawk Inlet under the mine's NPDES permit.

### **Water Treatment**

KGCMC would continue to operate its water management system in its present state. The cycle of water management begins with the collection of

fresh water for mine and mill process use. Water used in the mill process accounts for a majority of the water that must be treated prior to discharge into Hawk Inlet. Other wastewater routed to the tailings pile water containment/treatment facilities originates from:

- → Domestic wastewater and stormwater from the Hawk Inlet operations area,
- → Tailings pile contact water and stormwater runoff,
- → Mine area stormwater and domestic wastewater, and
- → Waste rock area stormwater.

The central wastewater collection and redistribution facilities are Tank 6 and Pond 6 at the tailings pile. Water is collected in the wet wells and pumped to these containment facilities. From these surge/storage facilities, wastewater is routed to the Pit 5 treatment plant located on the north side of the tailings pile (Figure 2-2). After treatment, wastewater is discharged by pipeline through a submerged diffuser in Hawk Inlet under a National Pollutant Discharge Elimination System (NPDES) permit.

The Pit 5 treatment plant consists of two treatment process systems. The primary plant is a chemical precipitation plant having an operating capacity of 1250 gpm. The secondary plant is a filtration plant with a capacity of 1200 gpm. The combined capacity is approximately 1800 gpm.

The primary treatment process consists of a mixing tank where ferric chloride and lime are added to the water to precipitate solids. The water then moves into a reactor vessel where a polymer is added to assist in the separation of thickened sludge from the water. The treated effluent is discharged to the NPDES site (see Outfall 002, Figure 3-8), while the sludge is collected and filtered to a low moisture cake, transported to the tailings pile and buried.

The secondary plant consists of chemical addition for pH adjustment, then coagulant addition as needed. The water is then routed to three multi-media sand filters. The treated effluent is discharged to the NPDES site, while the filtered solids are back-washed into the Pond 6/Tank 6 water collection system and fed to the primary plant.

Treated wastewater from the treatment plants discharge through NPDES Outfall 002 (See Figure 3-8) a 160-foot long, 14-inch diameter diffuser to Hawk Inlet. NPDES water quality standards for the discharge are summarized in Table 2-1. The effluent guidelines for metals that apply to this permit are best available technology economically achievable (BAT), 40 CFR 440.103, whereas the limitations for pH and total suspended sediment (TSS) are based on best practicable control technology (BPT) 40 CFR 440.102. These

technology-based limitations for metals and the BPT limits for pH and TSS are also shown in Table 2-1.

Table 2-1 **NPDES Outfall 002 Effluent Limits** 

| Parameter                  | Effluen         | t Limits      |
|----------------------------|-----------------|---------------|
| Parameter                  | Monthly Average | Daily Maximum |
| Cadmium, µg/l 1            | 50              | 100           |
| Copper, µg/l <sup>1</sup>  | 150             | 300           |
| Lead, µg/l 1               | 300             | 600           |
| Mercury, µg/l <sup>2</sup> | 1.0             | 2.0           |
| Zinc, μg/l <sup>1</sup>    | 500             | 1000          |
| TSS, mg/l                  | 20              | 30            |
|                            |                 |               |

Notes:

Range, average.

Under all alternatives water will continue to be treated during operations using existing treatment processes. During mine closure and post-closure periods, water will continue to be treated using existing treatment processes until such time that effluent quality is such that these treatment processes are not required in order to meet discharge requirements. At that time and depending on actual effluent quality, KGCMC would discharge water one of the following scenarios, in decreasing order of preference:

- (1) Discharge into nearby surface or groundwater (a) without dilution water from pile runoff and groundwater, or (b) with such dilution. This discharge would meet fresh water quality-based effluent limits;
- (2) Discharge directly into Hawk Inlet. This discharge would meet marine water quality-based effluent limits with a potential dilution factor from a mixing zone; or
- (3) Continue to discharge into Hawk Inlet through a submerged diffuser. The effluent would meet the more stringent of either marine AWQS with a mixing zone or technology based limits.

Any of these discharge scenarios would be conducted under a re-issued NPDES permit with any pertinent mixing zone authorized by ADEC.


The decision as to which discharge scenario will be utilized and when it will be implemented during the closure and post-closure period will be proposed by the Company to the regulatory agencies per the requirements set forth in

<sup>&</sup>lt;sup>1</sup>Parameters analyzed as total recoverable.

<sup>&</sup>lt;sup>2</sup>Parameters analyzed as total.

the GPO (KGCMC, 2001b). The logic used to support this decision is presented in Section 2.5.1. Once the agencies have confirmed through monitoring that the treatment plant is no longer required, it will be removed and the site reclaimed to return the area to generally natural conditions (KGCMC, 2001b).

Figure 2-2



Greens Creek Tailings EIS

### 2.2.2 **Water Management during Closure and Post-Closure** (Reclamation)

When the mine has reached the limit of its remaining life and there are no more tailings for disposal, the pile and the surrounding areas would be closed. In conjunction with the closure, final reclamation efforts would be implemented to return the area to a near-natural condition.

### Surface Water

As part of the closure and reclamation process, KGCMC would cap the tailings pile (for details of the capping process, see Section 2.2.5, Reclamation and Appendix C). Seeding would be done with standard techniques and monitoring to prevent the development of gullies. Once the cap is in place, runoff water would not come in contact with tailings. Nevertheless, the runoff would continue to be collected and treated until the topsoil and vegetation over and around the capped pile are stable. In less than a decade after closure, the cap would be stable and most of the area would have returned to a vegetated state. Water that falls on the pile after revegetation would be similar to what is normal in the unaltered surrounding area and it would be allowed to follow its natural courses. Due to the high amount of precipitation and the relatively cool temperatures, evaporation and transpiration amounts are relatively low at the tailings site. The balance of rainfall and evaporation off the reclaimed tailings surface are important factors that have been considered in the design of the engineered cover proposed for the tailings (USEL, 1998).

### Groundwater

The cap on the tailings pile would be designed to reduce the amount of water that seeps into the pile and then needs to be managed. Drainage water would continue to be captured through the drain system, flow into the wet-wells, and subsequently be transferred to the water treatment plant. If conditions are such that the drainage water meets the state's water quality standards, it would be allowed to flow along its natural courses into Hawk Inlet.

### 2.2.3 **Monitoring and Mitigation**

The GPO and DEC Waste Management Permit specify visual, groundwater, surface water, leachate, biological, and post closure monitoring requirements. For water quality monitoring under this plan, KGCMC analyzes water quality samples from several wells upgradient and downgradient from the tailings pile. No new monitoring plan has been developed at this time because the existing plan is functioning appropriately within the existing tailings lease boundaries. If Alternative B, C, or D is selected and approved in the ROD,

modifications to the existing plan would be required to account for the change in the tailings lease boundary. The duration of monitoring is set by DEC. After closure, prior to cessation of monitoring, KGCMC must demonstrate ".... that all downgradient monitoring stations have been in compliance with Alaska Water Quality Standards (AWQS) for at least 3 years. Additionally, results of monitoring at internal sites must corroborate the finding that water quality downgradient of the facility will not change in the foreseeable future. DEC retains the right to extend monitoring requirements as long as it is needed.

In connection with requirements of the NPDES permit, monitoring of seafloor sediment and biota is also required by the EPA. The Forest Service has consulted with the National Marine Fisheries Service (NMFS) on Essential Fish Habitat. Regardless of alternative adopted, the NMFS will make recommendations to the Forest Service and EPA for additional marine monitoring requirements to be adopted as requirements of KGCMC's renewal of its NPDES permit, which will occur in early winter of 2003.

### Mitigation

If monitoring detects exceedances or violations, contingency plans would be required to be developed to mitigate the specific violation. Concurrent reclamation and reclamation after closure (discussed in the following section), including wetland creation and road removal, are also mitigation measures built into the GPO and Waste Management Permit. Additional mitigation measures are set forth in Section 4.17.3, Guiding Principles from Existing Standards, Criteria, and Policies that Control the Management of Natural Resources of Concern, and Section 4.11, Marine and Aquatic Habitats, Biota, and Essential Fish Habitat – Mitigation.

### 2.2.4 Concurrent Reclamation

Because the tailings pile presently is an active site, it has limited opportunities for concurrent reclamation projects. Interim reclamation activities are, however, in use at the site and include erosion controls, hydroseeding, and water drainage systems. The western and southern slopes of the existing pile have been covered with a protective layer of topsoil and were hydroseeded in 2001. Concurrent reclamation projects would become available within 2 to 5 years on the northeast sides of the tailings as the pile expands upward. As areas become available, KGCMC would initiate reclamation planning.

### 2.2.5 **Temporary Closure and Reclamation After** Closure

The Greens Creek mine is a poly-metallic mine. Lead and gold account for approximately 20% of the value of the mine's production, with zinc and silver accounting for the remaining 80%. Depending on the respective prices of zinc and silver, the mill process is optimized for whichever metal produces the better return. Though zinc prices are currently low, improvements to the milling process since the mine reopened have lowered the production costs per ounce for these metals.

Section 2.3 Alaska Department of Environmental Conservation Waste Management Permit (Appendix D) provides terms for the temporary closure of the mine, including submission of a conceptual temporary closure plan to the Department followed by submission of a detailed temporary closure plan to the Department within 60 days after shutdown of all mill processes. Both plans require approval by the Department and must include:

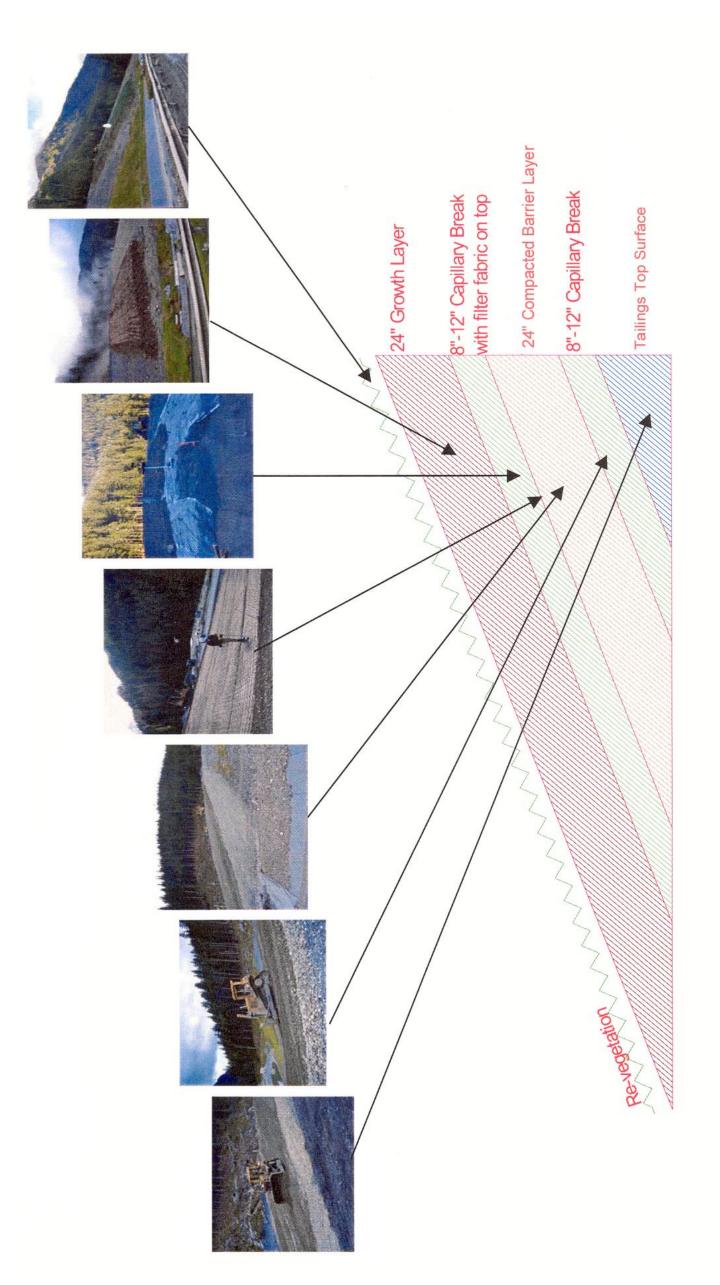
- + Procedures, methods, and schedule for the collection, treatment, disposal or storage of leachate;
- ★ Management practices designed to control surface and ground water drainage to and from the facility and the surrounding area;
- → Secure storage of chemicals during the period of closure;
- → Management practices designed to minimize oxygen and moisture entry into the waste;
- + Continued monitoring and reporting activities as if the facility were actively accepting waste; and
- **→** Complete concurrent reclamation on all areas that have achieved final elevation, except to the extent that completion of concurrent reclamation would impair the ability to perform work on adjacent areas upon recommencement of operations, and satisfy corrective action requirements as appropriate under this permit and the Reclamation Plan.

The goal of the reclamation plan is to return the disturbed areas to a near natural condition. The standards for tailings reclamation include compacting the pile, sloping the surfaces, and diverting water to minimize erosion and to keep both water and air from getting into the tailings. The outer surfaces of the pile would have been constructed at the standard slope 3H:1V (3 horizontal to 1vertical) to minimize additional grading for final closure.

Tailings reclamation would begin with construction of a cap for the pile. This cap would consist of four layers of engineered soil cover designed to minimize the amount of air and water entering the tailings pile (USEL, 1998; Klohn-Crippen, 2001). Covers similar to the engineered cover proposed at Greens Creek have been designed and constructed by Dr. Ward Wilson at numerous mine sites in British Columbia, Saskatchewan, and in subtropical regions of Australia. Figure 2-3 presents a schematic diagram of placement of a typical four-layer engineered reclamation cover, and Table 2-2 summarizes the characteristics of each layer.

- ★ Lower Capillary Break. The first layer would consist of 8 to 12 inches of drain rock placed immediately on top of the tailings. This would function as a lower capillary break to drain seepage from the layers above and to remove water that wicks up through the tailings. This rock would be non-mineralized and would come from mining operations or local borrow sources.
- ★ Compacted (Barrier) Layer. The second layer would be 24 inches thick and would be composed of a clay/gravel soil screened from on-site sources. This would be a compacted, low permeability barrier layer that would minimize water and oxygen infiltration to the tailing pile.
- ◆ Upper Capillary Break. The third layer would consist of another 8 to 12 inches of drain rock with filter fabric on top. It would function as an upper capillary break in the same manner as the first layer.
- ★ Growth Layer. The fourth layer would be composed of 24 inches of growth material from overburden removed from the tailings site and stored on the lease area. This material would support revegetation as well as provide recharge water to the underlying compacted layer. The cap is designed to function with the growth and eventual fall of large conifers on the cap.

To breach the integrity of the cap, the roots of a fallen tree would have to:


- ★ Extend through the top layer of 24 inches of growth material (plus any additional thickness that would occur from rotted vegetation in the 100 to 150 years it would take for any hemlock or spruces to grow to full size),
- → Extend through the 8 to 12 inch layer of drain rock, and
- → Extend far enough into the 24 inch compacted clay/gravel layer to disrupt the integrity of this layer when the tree fell.

In dry areas where trees have deep tap roots to reach water, such as the Richmond Hill Mine in South Dakota, tree growth on the mine covers has been prohibited because of the potential of blow downs to disrupt the cap (Schafer, 2001). In Southeast Alaska the root structures of hemlock and spruce trees are typically very shallow. Greens Creek has informally measured the thickness of the root wads of a number of fallen old growth trees in the vicinity of the mine and tailings facility and have not found any that extend to 24 inches in depth, less than the depth of the top layer of the cap. When blow down does occur, the dirt from the root falls back into the hole over the next several years and over time the hole evens with the rest of the forest floor. Under all alternatives considered in this analysis, KGCMC would be required to conduct a study that addresses long-term issues related to tree blow down, as per conditions set by the ADEC Draft Waste Management Permit (Appendix D).

Appendix A, Hydrology and Geochemistry of the Greens Creek Tailings Facility 2002, discusses cap performance and the inputs regarding evapotranspiration and cap runoff that were used in the stochastic model used to predict water quality under the different alternatives.

Table 2-2 Four Layer Reclamation Engineered Cover Characteristics Summary – (Source: KGCMC, 2001a)

|                              |                                                                      | •                                                                                                   |                                                                                                                                                           |                                                                                                                                     |                                                       |
|------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Layer                        | Purpose                                                              | Design Compaction                                                                                   | Design Consideration                                                                                                                                      | Materials                                                                                                                           | Thickness                                             |
| Growth Layer                 | Vegetation support, erosion control and moisture retention           | Loose placement, tracked in with heavy equipment. Estimated permeability rate 10E-2 to 10E-3 cm/sec | Appropriate thickness for water retention, freeze and vegetative protection                                                                               | Topsoils, native<br>sands/gravel mix.                                                                                               | 24"<br>minimum                                        |
| Upper Capillary<br>Break     | Suction break and water drain between major cover layers             | Loose placement, tracked in with heavy equipment.                                                   | Drains excess water from top of compacted layer and acts as a suction break to prevent upward water migration in dry periods                              | Clean drain rock less than 3 inches and greater than 1 inch in diameter Install filter fabric on top of layer, before growth layer. | 8" - 12"                                              |
| Compacted<br>(barrier) Layer | Minimizes air and water<br>infiltration to layers<br>below           | Highly compacted to 95+% of Proctor. Estimated permeability rate 10E-6 cm/sec minimum               | Low infiltration. This layer is designed to stay 85% saturated to minimize air and water infiltration                                                     | Rock less than 2 inches in diameter, with high fines percentages (+20%) to maximize compaction and minimize permeability            | 24"                                                   |
| Lower Capillary<br>Break     | Suction break and water drain beneath cap layer                      | Loose placement, tracked in with heavy equipment.                                                   | Drains excess water from top of tailings surface and infiltration from above and acts as a suction break to prevent upward water migration in dry periods | -3" to +1" clean drain rock                                                                                                         | 8" - 12"                                              |
| Tailings                     | Storage of materials from the mine and mill for continued production | Compacted to GPO specifications during operations placement                                         | Placed and compacted to minimize oxidation of tailings materials, and to promote stability of the pile structure                                          | Tailings and mine production Thickness rock placed in 3H:1V fina outside slope                                                      | Thickness varies, placed in 3H:1V final outside slope |



# Typical Four Layer Engineered Reclamation Cover

Greens Creek Tailings EIS

### Non Wetlands

Once the cap is in place, the growth layer would be hydroseeded using a Forest Service approved seed mix. Hydroseeding would provide for a quick, one- to two-year vegetative cover to stabilize the area and prevent erosion. It would also act as a seedbed for the eventual regeneration of natural forest cover.

Regeneration of the forest with species that are native to the Admiralty Island National Monument is the Forest Service standard. Although the entire process would take many decades, data from areas already revegetated within the mine project area show initial tree reestablishment in three to ten years. The time varies depending on site conditions and distance from a mature forest seed source.

### Wetlands

In 1993-1995, the U.S. Corps of Engineers found that wetlands creation is feasible in the Greens Creek environment. Although the sites are as yet undetermined, KGCMC has committed to COE to reclaiming an additional two acres as wetlands.

For this undertaking, KGCMC would identify sites that exhibit an existing ability to maintain enough water year-round for effective re-establishment of a wetlands environment. These sites would be located within the lease boundary southwest of the pile (See Figure 4-9). Site selection would be subject to approval by COE.

If necessary, the sites would be contoured to ensure the presence of enough water to support the desired environment. Soils typical of, and suited to, wetlands areas would be recovered or borrowed and used as appropriate. Designs would incorporate open water and vegetated wetlands as the specific site conditions allow. Wetlands vegetation would be established through seeding of appropriate plant species, or transplanting from borrow areas.

### 2.3 Additional elements common to all action alternatives:

- + The tailings placement footprint is designed to provide tailings storage for the anticipated remaining 22 year life of the mine (approximately 12 years at present rate of production for known reserves and 10 years for potentially developing undiscovered reserves).
- + The finished height of the pile would be approximately 160 feet above ground level (330 feet above sea level). Its existing height is 80 feet above ground level.

- → Placement of tailings could necessitate the relocation of the water treatment plant and a portion of the mine access road. Other than the relocation of this portion of the road, no new road construction is associated with any alternative.
- → A Design Basis Earthquake (DBE) for operations (Crustal Earthquake –1/475 year, M6.5) and a Maximum Design Earthquake (MDE) for closure design (equal to 75% of Maximum Credible Earthquake, M7.0).
- ★ Interception and diversion systems to control non-contact water around the treatment facility, as similar systems currently function.
- ★ Approved containment structures (such as liners where appropriate, slurry walls, and low-permeability deposits, as are now in use) to protect both groundwater and adjacent surface water.
- → Water would continue to be treated at a water treatment plant as described under Alternative A.
- → The Pit 5 water treatment plant would be moved to a new location within the expanded lease area.
- ★ Construction of a new water management pond system designed for a 25-year, 24-hour runoff event. The ponds would utilize a low-permeability liner as used in the existing stormwater ponds. Installation of surface water and groundwater controls and diversions.
- → Drainage infrastructure sufficient to meet geotechnical requirements to minimize phreatic levels within the tailings pile.

### 2.4 **Alternatives**

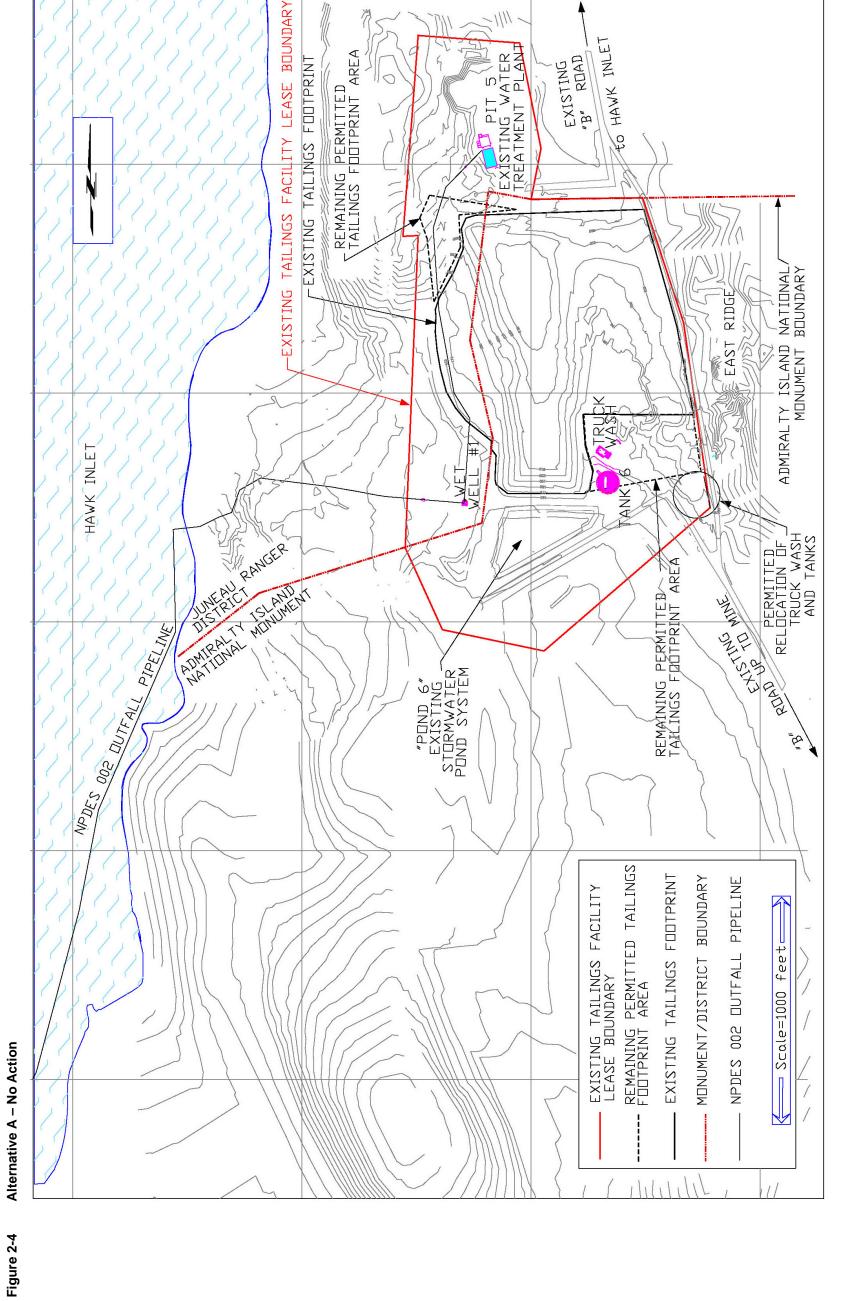
### 2.4.1 Alternative A – No Action

The "No Action" alternative would not modify the existing general plan of operations to permit any expansion of the tailings disposal facility. Kennecott Greens Creek Mining Company would continue its present method of generating whole tailings. The tailings would be placed without chemical or biological additives other than those currently allowed by the State of Alaska solid waste permit. The tailings pile would be limited to 29 acres in size. Under the current permit the existing tailings facility has space for about 600,000 additional tons of tailings. At current rate of production, KGCMC would run out of room for tailings surface disposal in roughly 2 years without a permitted expansion of the pile.

Alternative A assumes that mining operations continue as they are now (Figure 2-4). The *no action* alternative is required by NEPA and serves as the base line for describing the potential effects of the other alternatives.

The general plan of operations (GPO) for the Greens Creek mine would stay as it is, KGCMC would continue to use its present method for disposing of tailings and the tailings facility lease area would not increase from the current permitted 56 acres. The tailings footprint for the tailings pile is currently 23 acres and would increase to the currently permitted size of 29 acres. The remaining 27 acres would be used for related infrastructure such as water treatment facilities, storm water storage ponds, and access roads to the tailings pile.

KGCMC would continue to place tailings in a dewatered state onto the tailing pile to a height above original ground surface of about 80 feet for a maximum elevation above sea level of 250 feet; capping requirements would remain as they are.


A \$ 0 cost of construction and implementation of Alternative A is used to as a basis for comparison to the other Alternatives. The actual cost of implementing this alternative is discussed more in Chapter 2, Section 2.5, Comparison of Alternatives, and in Chapter 4, Section 4.15 Socioeconomic consequences.

Water Quality. Contact water would continue to be collected, isolated and treated as described above in Section 2.2.1 Water Management and Section 2.2.2 Water Management during Closure and Post-Closure.

**Greens Creek Tailings** 2.4 Alternatives 2-21

Monument Values. The representation in Figure 2-4 shows the areas of disturbance that would be inside and outside the monument. The existing lease boundaries would remain unchanged with 38 acres inside the monument and 18 acres outside the monument. Within this leased area tailings would be placed on 20 acres within the monument and 3 acres outside the monument.

Greens Creek Tailings EIS



This page intentionally left blank.

### 2.4.2 Alternative B – Proposed Action

The Proposed Action alternative would modify the general plan of operations to permit an increase in the size of the tailings disposal facility. Kennecott Greens Creek Mining Company would continue its present method of generating whole tailings. The tailings would be placed without chemical or biological additives other than those currently allowed by the State of Alaska solid waste permit. The expanded tailings pile would occupy 61 acres.

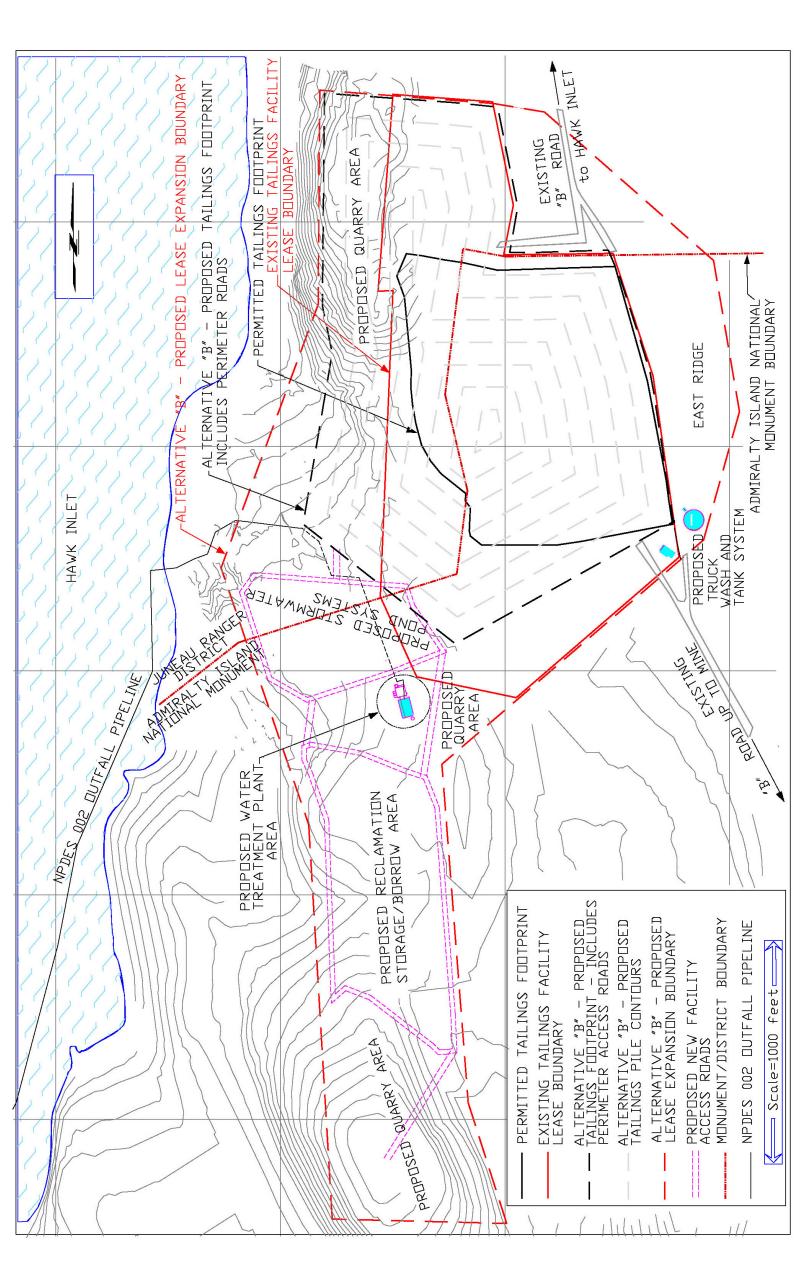
Alternative B involves expanding the tailings facility lease area by 84 acres, primarily to the west and the south, increasing the total lease area to 140 acres. The footprint for the tailings pile would increase from the currently permitted size of 29 acres, to about 61 acres. Tailings would continue to be placed in a dewatered state onto the tailings pile, however the height would be increased by 80 feet above original ground surface to about 160 feet for a maximum elevation above sea level of 330 feet; capping requirements would remain as they are under the GPO. Table 2-3 provides an overview for comparing physical components of the alternatives. Figure 2-5 shows the boundary of the existing tailings facility lease area and the maximum footprint of the tailings pile within it (29 acres). The figure also shows the proposed expansion area, the expanded footprint of the tailings pile (about 40 additional acres), and the permitted tailings area.

Water Quality. Contact water would collected, isolated and treated as described above in Sections 2.2.1 Water Management and Section 2.2.2 Water Management during Closure and Post-Closure.

Monument Values. 90 acres of the lease area would be inside the monument and 50 acres outside the monument. Within this leased area tailings would be placed on 28 acres within the monument and 33 acres outside the monument.

The expanded footprint is designed to be large enough to dispose of all the tailings produced during the remaining life of the mine—roughly 12 years at the present rate of production and known ore reserves. The footprint would also be large enough to dispose of tailings produced from the development of anticipated ore reserves.

Alternative B includes the following specific details:


+ Expansion of the existing Pit 5 quarry to provide materials for infrastructure development and construction within the tailings disposal area (see Figure 2-5).

**Greens Creek Tailings** 2.4 Alternatives 2-25

- → Development of two new quarries within bedrock ridges in the southern portion of the expanded lease area. These quarries would provide materials for infrastructure development and for road construction as needed (see Figure 2-5).
- ★ Construction of a new water management pond system for storm water storage and treatment (see Figure 2-5).
- → Installation of surface water and groundwater controls and diversions, for expansion of the tailings pile (see Figure 2-2).
- ◆ Use of the existing containment Pond 6 for storage of sludge materials produced during tailings placement, and eventually for placement of tailings. Development of a storage area for excavated reclamation materials (topsoil and organics) (see Figure 2-5).
- → Development of sand and gravel *borrow areas* (areas with needed materials) for development of infrastructure and storage of reclamation materials.
- → The estimated cost of construction and implementation of Alternative B is in the range of \$ 11,000,000 \$ 20,000,000.

Greens Creek Tailings EIS

Figure 2-5 Alternative B - Proposed Expanded Lease Area



Greens Creek Tailings EIS

### 2.4.3 Alternative C - East Ridge Expansion

Alternative C would modify the general plan of operations to permit expansion of the existing tailings disposal facility to the east of the present location and use of a continuous addition of carbon to the tailings during placement. Expansion to the east would minimize both the lease area and the disturbed area within the Admiralty Island National Monument and increase the geotechnical stability of the pile by using natural topographic features as a buttress for the pile. Like all alternatives, Alternative C would utilize the post-closure construction of an engineered soil cover on the pile to minimize infiltration of oxygen and water into the pile.

Another objective of this alternative is to provide greater assurance of long-term chemical stability of the tailings than with the proposed action through a continuous addition of carbon to the tailings during placement. Carbon is currently present in the tailings from mill floatation reagents and dewatering flocculants and biosolids from the Cannery wastewater treatment. Biosolids addition would be reviewed for placement methods and approved by the permitting agencies within one month of the ROD.

A sulfate reduction monitoring plan (SRMP) would implemented to determine the effectiveness of the current level of carbon addition and its adequacy in maintaining a reducing environment in the pile during operations. The SRMP would identify the quantity of carbon required to assure a reducing environment following closure of the mine and thus eliminate the need for chemical/physical water treatment after mine closure. The SRMP would determine the need for supplemental carbon addition to ensure that sulfate reduction processes continue in order to meet water quality standards. The SRMP would be completed and its findings submitted to the regulatory agencies for approval within 30 months of the issuance of the ROD, and after approval, would be specified in the GPO.

Water Quality. Alternative C addresses the water quality issue by requiring the addition of sufficient carbon to the tailings pile to assure sulfate reduction throughout the life of the mine and post-closure. Sulfate reduction reduces sulfate to sulfide and produces bicarbonate. The sulfide ion combines with metal ions to form insoluble metal sulfides. This improves the water quality

**Greens Creek Tailings** 2.4 Alternatives 2-29

by removing metals from the water. Sulfate reduction occurs due to the presence of certain microorganisms that consume organic (i.e., carbon) compounds under anaerobic conditions.

Sulfate reduction is known to occur within the existing pile, as measurable levels of dissolved sulfide are evident in water samples collected from two piezometers in saturated zone waters in the tailings. The likely persistence of sulfate reduction after facility closure and the uniformity of sulfate reduction within the tailings will influence the water chemistry of the effluent long after closure occurs. Sufficient carbon may need to be available post-closure to ensure that sulfate reduction continues to reduce metal ions to insoluble forms. This will result in effluent having lower metal levels over the long term. In this alternative, KGCMC would continue its present method of generating and storing whole tailings during the 30 months following the issuance of the ROD for this EIS. During that time, KGCMC would continue to evaluate sulfate reduction within the GPO Appendix 3 Tailings Internal Environment Monitoring Program (TIEMP) (KGCMC, 2001a) as a means to prevent zinc mobilization.

Carbon is presently added to the pile from the mill flotation reagents, dewatering flocculants and wastewater biosolids from the Cannery housing facility. Additional carbon from an external source may be required to assure long-term sulfate reduction and chemical stability of the tailings disposal facility. During the 30 months following the issuance of the ROD, KGCMC would continue to evaluate sulfate reduction within the tailings pile to determine the type and amount of Carbon needed to ensure sulfate reduction.

The 30 month period for development of the SRMP was arrived at during discussion at the Seattle meeting with the EPA, Forest Service, and DEC. Thirty months was deemed necessary to develop the program to allow adequate time for two field seasons and associated data collection, laboratory testing, field testing, analysis, and write-up.

KGCMC would also undertake an additional sulfate reduction monitoring program (SRMP), as outlined in Appendix B, including the monitoring of sulfate reduction processes within the pile. Monitoring results would determine the amount of carbon needed to assure that post-closure water quality meets applicable water quality or technology-based effluent limits without supplemental water treatment and whether supplemental carbon would need to be added. Additional carbon would be added to the pile unless the SRMP shows that the carbon added to the pile from sources such as the mill flotation reagents, dewatering flocculants and wastewater biosolids is sufficient to fuel sulphate reduction for a sufficient period of time post closure to ensure acceptable water quality in perpetuity.

Greens Creek Tailings EIS If the need for supplemental carbon addition is identified from the monitoring results, the SRMP would also determine the best form of supplemental carbon addition, the required amount, and the best method of application. The SRMP discusses previous uses of supplemental carbon to fuel sulfate reduction and improve water quality.

The maximum quantity of carbon necessary to sustain sulfate reduction can be estimated on the basis of the rate of sulfide oxidation in the pile. Approximately 1,700 pounds of supplemental organic carbon per year may be required for an indefinite time (Appendix B). A lesser quantity of carbon may suffice for supporting sulfate reduction since only a portion of the sulfate need be reduced to sulfide to effect water quality improvements. Procedures for such an addition would be developed by KGCMC, submitted to the regulatory agencies for approval, and after approval, specified in the GPO.

Specific goals of the SRMP (Appendix B) include:

- → Continued monitoring of sulfate reduction processes within the pile. This goal is one identified in the GPO Appendix 3, and would continue during operations through post-closure of the tailings pile.
- + Determine the amount of carbon within the existing pile. Also determine how much carbon would be added to the completed Stage II pile from existing carbon sources, i.e., that carbon found in tailings, in the remnants of mill reagents, and the biosolids from the Cannery.
- + Determine the need for supplemental carbon addition to ensure that sulfate reduction processes continue to occur at a rate sufficient to produce water quality that is comparable to that water in the existing saturated zone. This amount is the difference between what is required and what would be available when the Stage II pile is completed. Types of carbon that may be available in the pile after completion of stage II include carbon added as process reagents in the mill, residual amounts of added biosolids, carbon contained in the original ore material, and soluble carbon formed through decomposition of vegetation established on the pile.
- + If supplemental carbon is needed, determine the most suitable form of carbon to be used. Types of carbon that could be considered include a liquid form that would be dispensed periodically over time as the volume of pore water gets displaced, such as that deployed through injection wells or a type of irrigation system; or a solid form that could be added as

2.4 Alternatives 2-31 **Greens Creek Tailings** 

the pile is developed or just prior to cap placement, such as bio-solids, a wood product, or coal. Geotechnical stability considerations would influence the form of carbon used.

Monument Values. Alternative C addresses this significant issue by reducing the disturbed area within the Monument through:

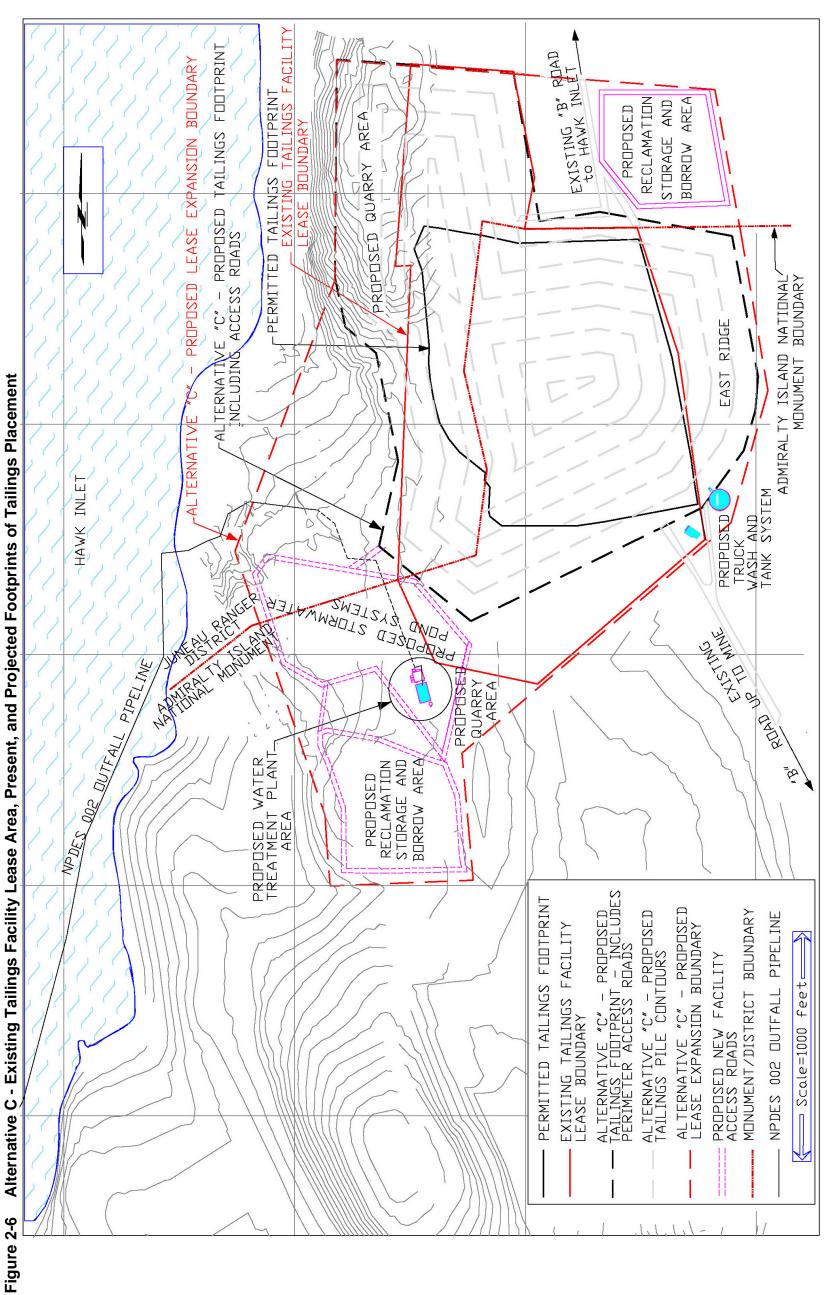

- → Elimination of a proposed quarry and associated access roads at the southern end of the lease area.
- → Movement of the southern half of the proposed reclamation materials storage area outside of the Monument to the northeast corner just outside the current lease area.

Figure 2-6 and Figure 2-7 show the area within the Monument proposed to be eliminated from the Proposed Action and the area outside the Monument intended for a new reclamation storage area. The southern boundary of the lease area would move north approximately 1,480 feet.

The additional tailings placement footprint would occupy approximately 40 of the proposed 67 acre expanded lease area. The remaining 27 acres would be used for a quarry, borrow source, materials storage, and stormwater pond infrastructure needs, as well as for potential future long-term tailings disposal needs if additional ore reserves are located.

The East Ridge Expansion of the tailings pile would include:

- ★ Expansion of the existing Pit 5 quarry to provide construction materials for infrastructure development and construction within the tailings disposal area and eventually, the placement of tailings.
- → Development of a new quarry at the south end of the new lease boundary.
- ★ Construction of a new water management pond system. Installation of surface water and groundwater controls and diversions.
- ★ Use of existing Containment Pond No. 6 for containment and storage of sludge materials and eventually, the placement of tailings.
- → Development of a storage area for excavated reclamation materials (topsoil and organics).
- → Development of borrow areas for infrastructure development and reclamation materials storage.



This page intentionally left blank.

**Changes to Proposed Lease Area** 

Alternative C - Monument Values

Figure 2-7

2.4 Alternatives 🔤 2-35

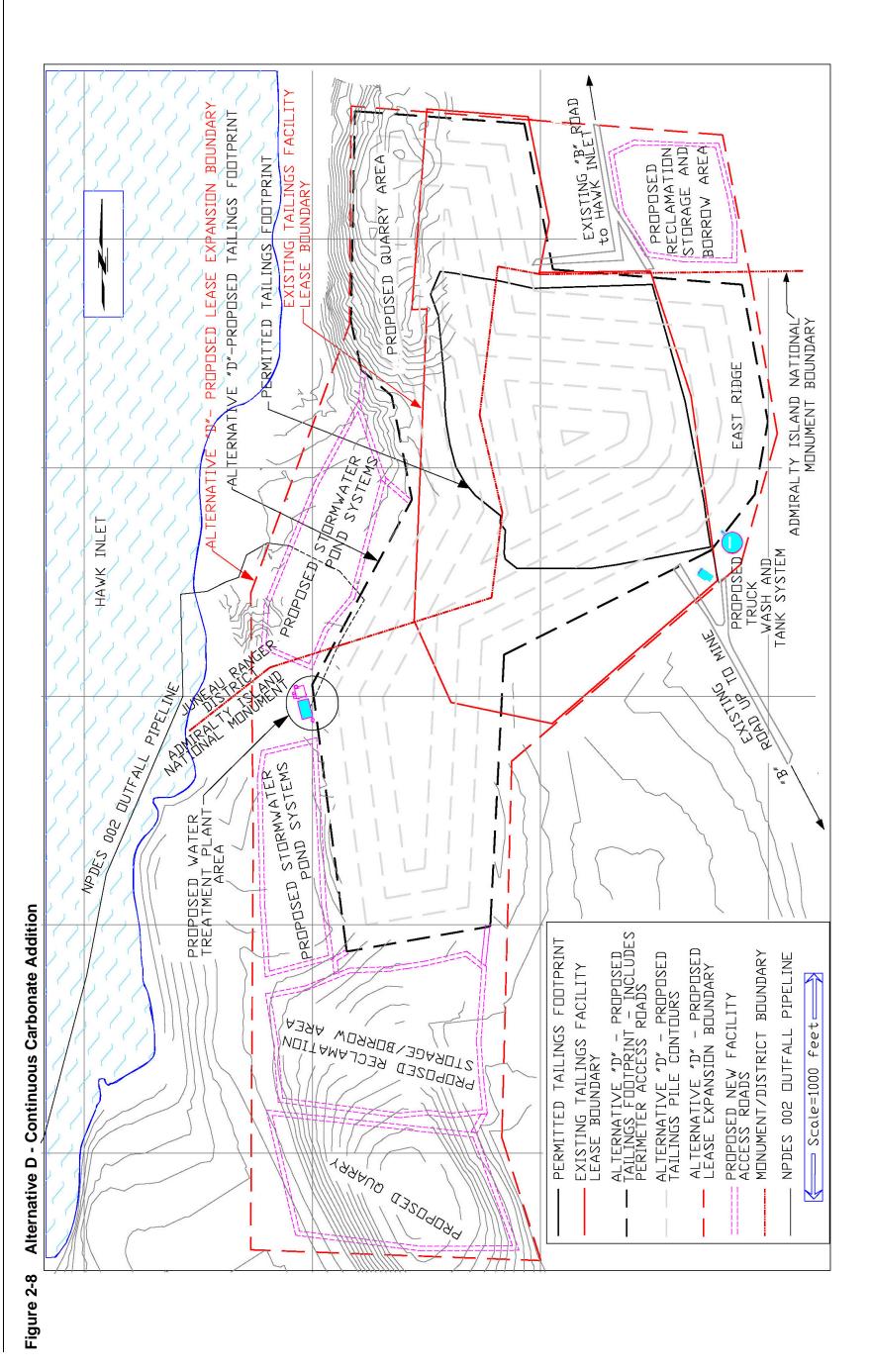
This page intentionally left blank.

#### 2.4.4 Alternative D - Continuous Carbonate Addition and **Expanded Boundary as needed for Additional** Volume

Alternative D would modify the general plan of operations to require the addition of carbonate (limestone) into the entire volume of new tailings placed on the pile. The volume of carbonate necessary to neutralize the tailings would expand the footprint of the tailings pile to 81 acres. The purpose of this alternative is to consider an alternate method of increasing the neutralizing potential of the tailings pile beyond what is expected in the proposed action.

Water Quality. Alternative D would require mixing limestone into the tailings on an on-going basis, either in the mill or in the process of putting the tailings on the pile. The addition of the carbonate would increase the buffering capacity of the pile, or its ability to neutralize acid. About 2 million tons, or 1½ million cubic yards, of limestone would be needed to sufficiently neutralize the tailings. The addition of carbonate to buffer acidity has been used for a long time and the amounts of limestone needed to provide a given amount of buffering capacity is well known.

The addition of limestone would increase the volume of the pile and require expanding the tailings facility lease area 116 acres, increasing the total lease area to 172 acres. Capping requirements would remain as they are under the GPO. Table 2-3 provides an overview for comparing alternatives physical aspects.


This alternative would also require a structure of about 18,000 square feet for dry storage of limestone and equipment for mixing the limestone into the tailings. In addition to the increase of the size of the tailings pile, the dry storage area and mixing equipment would require an additional 1 or 2 acre increase in the footprint at the mill or tailings site.

Monument Values. The representation in Figure 2-8 provides the best fit for this alternative while still addressing the issues. There are a limited number of areas that the tailings pile can expand into while still addressing other resource and topographical concerns.

**Greens Creek Tailings** 2.4 Alternatives 2-37

# 2 Project Alternatives, including the Proposed Action

This page intentionally left blank.



Greens Creek Tailings EIS

#### 2.5 **Comparison of Alternatives**

In Chapter 4, the environmental consequences of each alternative on water quality, monument values, and other issues identified during scoping are described in detail. To the extent possible, those consequences are quantified and objectively described. This section compares those impacts in summary form. Readers are urged to view the full analyses of impacts in Chapter 4. The terms significant, minor, and negligible, are used in the following comparisons and in Chapter 4. These terms are explained below, in the introduction of Chapter 4, and in the glossary. The thresholds for what represents a negligible, minor, or significant impact differ for each resource. For example, significance of water quality impacts is determined by comparison to AWOS; significance of impacts to wetlands is evaluated by the area of low, medium, or high value wetlands that would be filled. Two alternatives can have different levels of consequence, for example differing levels of wetlands filled, but still both be evaluated as having minor levels of impacts in the context of the project and study area.

Impacts are defined as "those changes to the existing environment that have either a beneficial or adverse consequence as a result of project construction, operation, and maintenance." (40 CFR 1508.8) Impacts are described in terms of frequency, duration, general scope and/or size, and intensity.

The combinations of frequency, duration, scope/size, and intensity of identified adverse impacts are described as follows:

**None** – (no change) No impacts are anticipated when subject resources are not present or activities are not expected to affect those resources that are present.

**Negligible** – Impacts on subject resources may occur as a result of project activities, but are not measurable.

Minor - Impacts that are less than significant and do not require avoidance or minimization to mitigate that effect.

**Significant** – as used in NEPA, is determined by considering the context in which the action will occur and the intensity of the action (40 CFR 1508.27).

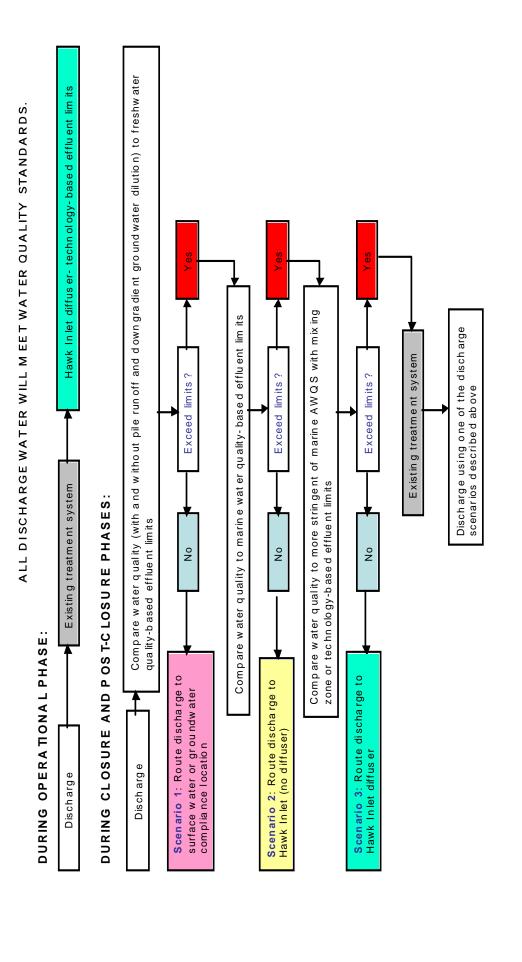
#### 2.5.1 Water Quality

The potential impacts to water quality are discussed in Section 4.5 and Appendix A. See Figure 3-9 for a description of watersheds and drainage areas. Summarized below are the effects of each alternative.

## 2 Project Alternatives, including the Proposed Action

Under all alternatives including Alternative A, No Action, water would continue to be treated during operations using existing treatment processes. During mine closure and post-closure periods, water would continue to be treated using existing treatment processes until such time that effluent quality is such that these treatment processes are not required in order to meet discharge requirements. At that time and depending on actual effluent quality, KGCMC would discharge water one of the following ways, in decreasing order of preference:

- (1) Discharge into nearby surface or groundwater (a) without dilution water from pile runoff and groundwater, or (b) with such dilution. This discharge would meet fresh water quality-based effluent limits;
- (2) Discharge directly into Hawk Inlet. This discharge would meet marine water quality—based effluent limits with a potential dilution factor from a mixing zone; or
- (3) Continue to discharge into Hawk Inlet through a submerged diffuser using technology-based limits.


Any of these discharge/compliance scenarios would be conducted under a reissued NPDES permit with any pertinent mixing zone authorized by ADEC. Figure 2-9 summarizes the discharge decision logic used to determine which discharge scenario to use during the closure and post-closure period.

The water quality model developed for each alternative predicts effluent water quality without the use of the existing treatment processes, beginning at the onset of closure (completion of the pile cover) and continuing into the post-closure period. The model results are compared to AWQS for the discharge scenarios described above and shown in Figure 2-1 and Figure 2-9. Under discharge scenario 1a, the predicted water quality from the underdrain is compared to freshwater AWQS. Discharge scenario 1b compares the predicted water quality from the underdrain diluted with surface runoff from the pile and the downgradient groundwater system prior to freshwater AWQS. The model results are also compared to AWQS for marine water using a mixing zone having a dilution ratio of 50:1 and no diffuser, managed under discharge scenario 2 above. The 50:1 dilution ratio was assumed based on the 170:1 dilution ratio authorized by ADEC in the existing discharge permit.

The water quality predicted by the model is also compared to allowable technology-based loads under the existing NPDES permit for the instance of a future discharge through a diffuser to Hawk Inlet. This is managed under discharge scenario 3 as described above. Note: even though the State has authorized a mixing zone having a dilution ratio of 170:1 for the existing discharge permit, the technology-based limits contained in the existing permit do not reflect this dilution. These comparisons are made so that water quality

impacts can be assessed, and a determination made as to when the existing treatment system would no longer be required. The potential impacts to water quality are discussed in Section 4.5 and Appendix A. See Figure 3-9 for a description of watersheds and drainage areas. Summarized below, following Figure 2-9, are the effects of each alternative.

Figure 2-9 Flow Chart for discharge/compliance scenario selection



## Alternative A

Results from the water quality model for Alternative A are shown in Figure 4-5 and Table 4-2. Results indicate that exceedances to fresh water AWOS (discharge scenario 1(a) without dilution) for sulfate and antimony are initially predicted for underdrain water. After 25 years, antimony levels should have dropped below AWQS, but selenium may increase and could exceed AWQS. After 200 years, sulfate should decline below AWQS; however, zinc concentrations are predicted to have risen above AWQS. After 500 years, cadmium levels may be above AWQS. Without treatment, none of these substances exceeds AWQS initially at the compliance point where underdrain flow mixes with surface water and groundwater (discharge scenario 1(b) with dilution), but selenium, zinc and cadmium levels are predicted to have exceeded AWQS after 100, 350, and 1000 years, respectively. Selenium levels are predicted to have fallen back below AWQS after 350 years. These predicted exceedances of AWQS under discharge scenario 1 may impair existing protected water use classes if discharged without treatment. KGCMC will continue an appropriate method of water treatment until the tailings effluent can be discharged without treatment so that applicable AWQS are met.

Model results compared to AWOS for marine water (discharge scenario 2) show there are no exceedances. The predicted load of metals was compared to the currently allowable loads under the existing discharge permit using a diffuser in Hawk Inlet. Predicted loads were less than one percent of allowable loads for Alternative A for all metals in the permit.

Effects to water quality in the Hawk Inlet drainage would be considered significant if tailings effluent is discharged (without treatment) to surface water or groundwater without dilution, or diluted (without treatment) with surface water or groundwater prior to discharge to these receiving waters (discharge scenario 1). There would be negligible adverse effects if tailings effluent is discharged without treatment directly to Hawk Inlet (discharge scenario 2). There would be negligible adverse effects if tailings effluent is discharged without treatment through the diffuser into Hawk Inlet (discharge scenario 3). If water treatment were continued in perpetuity, there would be negligible adverse effects to receiving surface water, groundwater or marine water.

### Alternative B

Results from the water quality model for Alternative B are shown in Figure 4-6 and Table 4-3. Results are similar to those for Alternative A, indicating that sulfate and antimony would initially exceed fresh water AWOS in the underdrain flow without dilution, (discharge scenario 1(a)). After 25 years, increased selenium levels are predicted to have exceeded AWQS in the

underdrain. After 100 years, cadmium and zinc levels are predicted to have exceeded AWQS. Antimony and sulfate concentrations are expected to have dropped below AWQS after 200 years, followed by selenium after 500 years. Without treatment, only sulfate would initially exceed fresh water AWQS with dilution under discharge scenario 1(b), but selenium, zinc and cadmium are expected to be in exceedence of fresh water AWQS at 25, 200 and 500 years, respectively. KGCMC will continue an appropriate method of water treatment until the tailings effluent can be discharged without treatment so that applicable AWQS are met.

Model results for Alternative B compared to AWQS for marine water (discharge scenario 2) show there are no exceedances. The predicted load of metals was compared to the currently allowable loads under the NPDES discharge permit using a diffuser in Hawk Inlet. Predicted loads were less than 1 percent of allowable loads for Alternative B for all metals in the permit.

As with Alternative A, effects to water quality in the Hawk Inlet drainage would be considered significant if tailings effluent is discharged (without treatment) to surface water or groundwater without dilution, or diluted (without treatment) with surface water or groundwater prior to discharge to these receiving waters (discharge scenario 1). There would be negligible adverse effects if tailings effluent is discharged without treatment directly to Hawk Inlet (discharge scenario 2). There would be negligible adverse effects if tailings effluent is discharged without treatment through the diffuser into Hawk Inlet (discharge scenario 3). If water treatment were continued in perpetuity, there would be negligible adverse effects to receiving surface water, groundwater or marine water.

#### Alternative C

Summary results from the water quality model for Alternative C are shown in Figure 4-7 and Table 4-4. Results for Alternative C reflect the fundamental difference in long-term chemistry that would result from the addition of carbon to the tailings pile. As with Alternatives A and B, initially water in the underdrains without dilution (discharge scenario 1(a)) could exceed fresh water AWQS for sulfate and antimony. Sulfate concentration would decrease after 200 years to below fresh water AWQS. Elevated zinc and selenium would not occur in the underdrain water because on-going sulfate reduction tends to remove these constituents. Antimony, on the other hand, is not affected by sulfate reduction, and may increase as a result of biological reduction. The elevated antimony concentration predicted by the model is likely to be removed from solution when the water from the underdrain contacts the air causing iron and manganese compounds to chemically precipitate, adsorb antimony, and settle from solution. All of these substances are expected to meet fresh water AWQS with dilution (discharge scenario

1(b)) at the compliance point except for sulfate. Sulfate, at the compliance point using dilution, is marginally above fresh water AWQS for the first 50 to 100 years (without treatment). KGCMC will continue an appropriate method of water treatment until the tailings effluent can be discharged without treatment so that applicable AWQS are met.

Results of the water quality model for Alternative C compared to marine water AWQS (discharge scenario 2) show there are no exceedances. The predicted load of metals was compared to the loads currently allowable under the NPDES discharge permit using a diffuser in Hawk Inlet. Predicted loads were less than 0.1 percent of allowable loads for Alternative C for all metals in the permit.

Effects to water quality in the Hawk Inlet drainage are considered *minor* (compared to *significant* for Alternatives A and B) for the case where tailings effluent is discharged directly (without treatment) to surface water or groundwater without dilution, or diluted (without treatment) with surface water or groundwater prior to discharge to receiving waters (discharge scenario 1). If water treatment were continued in perpetuity, there would be negligible adverse effects to the receiving surface water or groundwater. There would be negligible adverse effects to marine water for the case where tailings effluent is discharged directly to Hawk Inlet (discharge scenario 2). There would be negligible adverse effects for the case where tailings effluent is discharged through a diffuser into Hawk Inlet (discharge scenario 3).

#### Alternative D

Results from the water quality model for Alternative D are shown in Figure 4-8 and Table 4-5. Water quality for Alternative D is similar to that of Alternative B, with concentrations of sulfate and metals slightly higher due to the greater area of the pile. In the underdrain (without dilution, discharge scenario 1(a)), sulfate and antimony may initially exceed AWQS followed by AWQS exceedances of selenium, zinc, and cadmium after 25, 50, and 100 years, respectively. At the compliance point with dilution (discharge scenario 1(b)), sulfate and antimony initially exceed AWQS, but are predicted to be below AWQS after 200 and 25 years, respectively. Selenium, zinc, and cadmium are predicted to be above AWQS after 25, 200, and 500 years, respectively. KGCMC will continue an appropriate method of water treatment until the tailings effluent can be discharged without treatment so that applicable AWQS are met.

Results of the water quality model for Alternative D compared to marine water AWQS (discharge scenario 2) show there are no exceedances. The predicted load of metals was compared to the loads currently allowable under the NPDES discharge permit using a diffuser in Hawk Inlet. Predicted loads were less than 2 percent of allowable loads for Alternative D for all metals in the permit.

## 2 Project Alternatives, including the Proposed Action

As with Alternatives A and B, effects to water quality in the Hawk Inlet drainage are considered significant for the case where tailings effluent is discharged directly (without treatment) to surface water or groundwater without dilution (discharge scenario 1(a)), or with dilution (discharge scenario 1(b)) (without treatment) with surface water or groundwater prior to discharge to receiving waters (discharge scenario 1). Effects to marine water would be negligible, the same as Alternative A or B, for the case where effluent is discharged directly to Hawk Inlet (without treatment or diffuser). There would be negligible adverse effects for the case where tailings effluent is discharged through a diffuser into Hawk Inlet - the same as under Alternatives A, B, and C. If water treatment were continued in perpetuity, there would be negligible adverse effects to receiving surface water, groundwater, or marine water.

### 2.5.2 Monument Values

The main criterion for comparing effects to monument values is the numbers of acres leased within the Monument and subject to potential disturbance. Alternative A currently leases 38 acres in the Monument and has a tailings footprint in the Monument of 20 acres and would increase to 25 acres. Alternative B would lease 90 acres in the Monument with the tailings footprint occupying 28 of those acres. Alternative C would lease 68 acres in the Monument with the tailings footprint occupying 36 of those acres. Alternative D would lease 115 acres in the Monument with the tailings facility occupying 56 of those acres.

Table 2-3 below presents a comparison of acreages.

## 2.5.3 Other Issues

During scoping a number of other issues were identified. The effects of each alternative are summarized in Table 2-3 below.

|                                                            |                     | •                                                   |                                                     |                                                     |
|------------------------------------------------------------|---------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| Element                                                    | Alternative A       | Alternative B                                       | Alternative C                                       | Alternative D                                       |
|                                                            | Physical Components | mponents                                            |                                                     |                                                     |
| Tailings Facility Lease Area after expansion (acres)       | 56                  | 140                                                 | 123                                                 | 172                                                 |
| Tailings Facility Lease Area boundaries expansion (acres)  | 0                   | 84                                                  | 29                                                  | 116                                                 |
| Total Tailings Footprint Area (acres)                      | 29                  | 61                                                  | 62                                                  | 81                                                  |
| Total Disturbed Area (estimated acres)                     | 54                  | 125                                                 | 110                                                 | 162                                                 |
| Tailings Placed Underground                                |                     |                                                     |                                                     |                                                     |
| Tons                                                       | 0                   | 7,333,000* whole tailings (includes 733,000 cement) | 7,333,000* whole tailings (includes 733,000 cement) | 7,333,000* whole tailings (includes 733,000 cement) |
| Cubic Yards                                                | 0                   | 4,073,889* (includes<br>852,326 cement)             | 4,073,889* (includes<br>852,326 cement)             | 4,073,889* (includes<br>852,326 cement)             |
| Tailings Placed on Surface                                 |                     |                                                     |                                                     |                                                     |
| Tons                                                       | 0                   | 6,000,000* whole tailings                           | 6,000,000* whole tailings                           | 6,000,000* whole tailings                           |
| Cubic Yards                                                | 0                   | 3,333,333*<br>whole tailings                        | 3,333,333*<br>whole tailings                        | 3,333,333*<br>whole tailings                        |
| Amendment Quantity (tons)                                  | 0                   | *0                                                  | None to 60,000*<br>carbon                           | 2,034,000* limestone                                |
| Amendment Quantity (cu yd)                                 | 0                   | *0                                                  | None to 44,776<br>carbon                            | 1,517,910 limestone                                 |
| Height of Tailings Pile Above Existing Ground Level (feet) | 80                  | 160                                                 | 160                                                 | 160                                                 |
| Maximum Tailings Pile Elevation Above Sea Level (feet)     | 250                 | 330                                                 | 330                                                 | 330                                                 |
| Roads                                                      |                     |                                                     |                                                     |                                                     |
| Miles of New Road                                          | 0.16                | 1.93                                                | 1.19                                                | 4.30                                                |
| Miles of Road Obliterated                                  | 0.12                | 0.63                                                | 0.94                                                | 0.94                                                |
|                                                            |                     |                                                     |                                                     |                                                     |

Table 2-3 Comparison of Alternatives

| Element                                            |                | Alternative A          | Alternative B   | Alternative C | Alternative D |
|----------------------------------------------------|----------------|------------------------|-----------------|---------------|---------------|
| Total Miles (excluding construction roads on pile) | roads on pile) | 1.35                   | 2.83            | 2.82          | 4.52          |
| Water Treatment Plant Location                     |                | Remains in place       | Moved           | Moved         | Moved         |
| Truck Wash Station Location                        |                | Moved                  | Moved           | Moved         | Moved         |
|                                                    |                | Significant Issues     | - Water Quality |               |               |
|                                                    | w/o treatment  | တ                      | တ               | Σ             | တ             |
| Ground Water                                       | w/ treatment   | z                      | z               | z             | Z             |
|                                                    | w/o treatment  | S                      | S               | Σ             | S             |
|                                                    | w/ treatment   | z                      | z               | z             | Z             |
| Marino Wotoro /w 2700                              | w/o treatment  | z                      | Z               | Z             | Z             |
| Maine Waters W/O Mixing Zone                       | w/ treatment   | z                      | Z               | Z             | Z             |
| Occision Interception                              | w/o treatment  | z                      | z               | z             | Z             |
| INALLIE WATERS W/ MIXING ZONE                      | w/ treatment   | z                      | Z               | z             | Z             |
|                                                    |                | Significant Issues - I | Monument Values |               |               |
| Total Lease Area After Expansion (acres)           | acres)         | 56                     | 140             | 123           | 172           |
| Lease Boundaries Expansion Area Only (acres)       | Only (acres)   | 0                      | 84              | 29            | 116           |
| In Monument                                        |                | 38                     | 90              | 68            | 115           |
| Outside Of Monument                                |                | 18                     | 20              | 55            | 25            |
| Total Tailings Footprint (approximate acres)       | nate acres)    |                        |                 |               |               |
| Total Tailings Footprint Area (acres)              |                | 29                     | 61              | 62            | 81            |
| In Monument                                        |                | 25                     | 28              | 36            | 99            |
| Outside of Monument                                |                | 4                      | 33              | 26            | 25            |
|                                                    |                | Other Issues           | sens            |               |               |
| Air Quality                                        |                | z                      | z               | z             | Z             |
|                                                    |                |                        |                 |               |               |

| Element                                                                                                                                 | Alternative A           | Alternative B                    | Alternative C                    | Alternative D                     |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------|----------------------------------|-----------------------------------|
| Visual Quality                                                                                                                          | Σ                       | Σ                                | Σ                                | Σ                                 |
| Marine Water Quality                                                                                                                    | Z                       | Z                                | N                                | Z                                 |
| Wetlands Impacts – (Though acreage of filled wetlands differs, all are evaluated as minor in the context of the project and study area) | M<br>0 ac. beyond those | M<br>22 ac. Low Value            | M<br>10 ac. Low Value            | M<br>42 ac Low Value /            |
| Venetation                                                                                                                              | N N                     | M 71 ac.                         | M 56 ac.                         | M 108 ac.                         |
| Wildlife                                                                                                                                |                         |                                  |                                  |                                   |
| Terrestrial Mammals                                                                                                                     | Z                       | Z                                | Z                                | Z                                 |
| Birds                                                                                                                                   | Z                       | Z                                | Z                                | Z                                 |
| Marine Mammals                                                                                                                          | None                    | None                             | None                             | None                              |
| T&E Species                                                                                                                             | None                    | None                             | None                             | None                              |
| Marine Life                                                                                                                             | Z                       | Z                                | Ν                                | Z                                 |
| Essential Fish Habitat                                                                                                                  | Z                       | Z                                | Ν                                | Z                                 |
| Heritage Resources                                                                                                                      | None                    | None                             | None                             | None                              |
| Subsistence                                                                                                                             | Z                       | Z                                | N                                | Z                                 |
| Recreation                                                                                                                              | Z                       | Z                                | Ν                                | Z                                 |
| Socioeconomic                                                                                                                           | M adverse               | M positive                       | M positive                       | M adverse                         |
| Estimated Cost of Construction and Implementation                                                                                       | *** 0 \$                | \$ 10,000,000 –<br>\$ 20,000,000 | \$ 11,000,000 –<br>\$ 26,000,000 | \$ 75,000,000 –<br>\$ 280,000,000 |
| Environmental Justice                                                                                                                   | None                    | None                             | None                             | None                              |
| Cumulative Impacts                                                                                                                      | Z                       | Z                                | Z                                | Z                                 |
| 100001 50000 - 96 +00001                                                                                                                | $\frac{1}{2}$           |                                  |                                  |                                   |

**Weight / Volume Conversions**: cement = .86  $t/yd^3$ , limestone/carbon = 1.34  $t/yd^3$  Whole Tailings = 1.8  $t/yd^3$ 

<sup>\*</sup> Weights and volumes indicate value above currently permitted amount (2.1M yd³, 3.78 M t.) \*\* Estimated placement volumes based on currently permitted volumes at tailings

<sup>\*\*\*</sup> Baseline for comparison of estimated increased costs

S = Significant, M = Minor, N = Negligible

#### 2.6 Alternatives Considered and Eliminated from Detailed Study in the EIS

During the course of scoping and subsequent development of this EIS, a number of alternative actions were considered and screened against the following criteria:

- → Does the alternative action meet the purposes and need (Section 1);
- + Is the action better addressed through another alternative; and
- → Would the action be likely to cause greater adverse impacts than other alternatives?

Alternatives that were screened-out include the addition of a carbonate veneer to the pile, the location of a second pile at a different site, and several alternatives involving the use of pyrite circuits. This section describes these alternatives in summary fashion and the reasons for their elimination from detailed study in the EIS. It is excerpted from the Alternative Screening Document (MBJ, 2002) that is in the planning record.

#### 2.6.1 **Carbonate Veneer Alternative**

This alternative would have been similar to the use of a carbon veneer except that the veneer would have been formed by a carbonate additive such as limestone, rather than carbon. Enough carbonate would have been mixed into the final stages of the pile so the top layer of tailing (the area most exposed to oxygen and water) would no longer generate acid.

While the addition of a carbonate veneer addresses the problem of acid generation, it does not do so as effectively as a full carbonate addition and does not address the potential for metals leaching as effectively as carbon addition. The addition of carbon, on the other hand, addresses both these concerns. Also, the desired results require a much smaller volume of carbon than limestone. In other words, a carbon addition, as proposed in Alternative C, would be both more efficient and would require less space.

#### 2.6.2 Alternate Tailings Disposal Site

The possibility of separate tailings disposal areas outside the Monument was also considered. Much of the terrain around the mine, however, is steeply sloping or is wetlands—both less suitable for tailings disposal. Although a possible site was identified at mile 2.2 on the A-road, it was determined that construction would substantially increase the impacts to wetlands, wildlife, and the potential for impacts to water quality.

#### 2.6.3 **Pyrite Circuit Scenarios / Pyrite Reduction Alternatives**

Also considered at length was a collection of alternatives based on the use of a pyrite circuit to remove a portion of the pyrites from the tailings. The main difference among the various pyrite circuit alternatives is the method for storing and disposing of the highly reactive pyrite concentrate. While removing the pyrite concentrate from the tailings would lower the potential for acid generation, it would not address the possibility of metals leaching from the tailings pile—which has been identified as of greater concern than acid rock drainage (ARD). Each of these alternatives was eliminated from further consideration because of the technical difficulties of containing and disposing of the highly reactive and potentially combustible pyrite concentrate (Nineteman, 1978; Reimers and Pomproy, 1988; Reimers and Franke, 1991; Pearse, 1980) combined with their various potentials for acid generation and/or metals leaching and difficulties with reclamation.

A brief discussion of the pyrite circuit alternatives is presented in this section. A complete discussion is presented in Appendix G.

Pyrite Alternative 1: A pyrite circuit with all pyrite concentrate stored in containers on the pile lease area. The pyrite plant would be located beside the Concentrator at the 920 mine site adjoining the existing facilities. For a nominal rate of 1600 tpd the pyrite plant would include:

- **→** Pyrite rougher conditioner tanks
- **→** Pyrite rougher flotation circuit
- → Pyrite cleaner flotation circuit
- → Pyrite final tails stock tank
- → Pyrite thickener
- → Pyrite concentrate stock tank

The pyrite circuit is substantial and would have to be located in a highly congested area at the mill site. A sulfuric acid storage area would also be needed at the mill site, which is not shown in the drawings. The conceptual pyrite storage facility would need a large flat area to allow a footprint of 87 acres.

> This option was eliminated from further consideration because of the difficulty of reclamation of the containment cells, technical feasibility (integrity of long term repository), and high costs associated with its development.

Pyrite Alternative 2: This alternative is the same as Pyrite Alternative 1, except the total volume of pyrite concentrate produced by the pyrite circuit (PRC) would be placed back into the mine. This alternative would also require a pyrite concentration storage facility to use in the event that the underground mine was not able to accept the concentrate at the same rate it was produced. The size of this facility would be approximately one acre.

> This option was eliminated from further consideration due to safety concerns and damage to Monument values from the high risk for mine drainage violating Alaska Water Quality Standards for zinc, copper, cadmium, lead, and silver and pH.

Pyrite Alternative 3: This alternative is the same as Pyrite Alternative 1, except a portion of the pyrite concentrate would be stored in mine with cement and carbonate needed for full buffering, and the remainder stored in containers on the pile. In addition to the pyrite concentration plant required for Pyrite Alternative 1, this alternative would also require a carbonate dry storage area, carbonate/concentrate mixing equipment, and an amended concentrate short-term storage area. This could result in a 1-2 acre increased footprint at the mill site.

> This option was eliminated from further consideration because of the high potential for mine drainage containing metal leachate, reclamation difficulties, the technical difficulty of developing suitable containment facilities and a suitable method of blending the concentrate and the carbonate material, and the high costs.

Pyrite Alternative 4: This alternative is the same as Pyrite Alternative 1, except the pyrite concentrate would be shipped off-island. The material would either be shipped to a hazardous waste landfill, or sold to a buyer that would process the concentrate for the remaining metal value.

> Because there is no available site to ship the pyrite concentrate to, this option was eliminated from further consideration.

Pyrite Alternative 5: This alternative differs from Pyrite Alternative 1 in that only a portion of the tailings would be processed in the pyrite reduction circuit. Approximately 53.4 percent of whole tailings would be processed through the pyrite circuit, amended to net neutralization potential (NNP) of 0, and placed underground. The remaining whole tailings would be blended in some fashion with the depyritized tailings, be amended with limestone and placed in the tailings expansion. The resultant mixture of whole tailings, depyritized tailings, and limestone would also have an NNP of 0. The tailings facility would have to be expanded to 96.5 acres to accommodate the additional volume of limestone in this alternative.

> This option was eliminated from further consideration due to the increased visual impact, reclamation difficulties, and the

technical difficulty of developing a suitable method of blending the concentrate and the carbonate material, and the high costs.

Pyrite Alternative 6: Only a portion of the tailings would be processed in the pyrite reduction circuit in this alternative. Unlike Pyrite Alternative 5, the pyrite concentrate would not be fully amended with limestone to achieve a NNP of 0. Instead, the target NNP for the backfilled concentrate would be the same level as currently found in the whole tailings that are currently being backfilled in the mine. The remaining whole tailings would be blended with the depyritized tailings and would be placed at the surface in the tailings expansion. The resultant mixture of whole tailings and depyritized tailings would have an NNP of -16. The tailings facility would be expanded to 90.3 acres to accommodate the additional volume of limestone.

> This alternative was not carried forward due to potential mine drainage containing ARD and metals and the large increase to the size of the pile, the high risk for reclamation due to the difficulties in creating suitable containment facilities for the concentrate on the pile, the visual impacts of doubling the size of the pile, the high risk of technical feasibility due to developing a suitable method of adequately blending the concentrate with the carbonate material, and the high risk for economic feasibility due to the costs of developing a pyrite circuit and carbonate addition.

## 3 Affected Environment

## 3.1 Location

## 3.1.1 Description of the Proposed Project Study Area



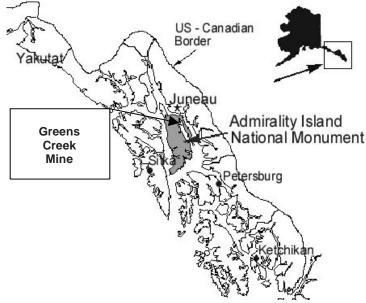
The Greens Creek Mine is an underground zinc/silver mine, lying partially within the Admiralty National Monument on northern Admiralty Island, Alaska. This property is located approximately 18 miles southwest of the city of Juneau.

The proposed project involves an expansion of the existing tailings pile. This EIS deals with the aspects of the environment affected and potentially affected by the proposed project. Those aspects include the following:

- → Land on which tailings and related facilities are or may be placed, including portions of Admiralty Island National Monument, and the geology and geochemistry of the project area;
- → Climate of the project area:
- ★ Air quality of the project area
- ★ Wetlands that might be affected by the project;
- Vegetation that might be affected by the project;
- ★ Freshwater systems that might be affected by water from the pile;

**Greens Creek Tailings EIS** 

## 3 Affected Environment


- ★ Fish, invertebrates, and marine mammals that live in potentially affected waters;
- → Wildlife found in the vicinity of the project; and
- ✦ Heritage resources, subsistence, recreation, and socioeconomic issues, i.e., the human environment.

As reflected by the identification of the significant issues, which include monument values, the greatest potential impacts from the project have to do with water and water quality. Because of that, there is a heavy emphasis on the complex interplay among geochemistry, hydrology, and the uses of water throughout this document. (EDE, 2002a; 2002b)

## 3.2 Land

The Greens Creek Mine facilities are located within the Greens Creek, Zinc Creek, Cannery Creek, Tributary and Fowler Creek watersheds. In addition to the leased land, approximately 15 acres of private land at the cannery at the Hawk Inlet Marine terminal have been used for the development of mine facilities.

Figure 3-1 Admiralty Island National Monument



Source: www.fs.fed.us/r10/tongass/districts/admiralty

Mine facilities are located in and adjacent to the Admiralty Island National Monument. The existing lease area for the tailings facility is 56 areas. Of this total lease area, 38 acres are in the Monument and 18 acres are not. The tailings footprint is currently permitted for 29 acres. Of this

total permitted footprint area, 25 acres are in the Monument and 4acres are not.

Current mining activity produces an average of 555,000 tons of dry tailings per year. A little over half of that amount is disposed of as underground backfill. The remainder, an average of about 270,000 tons per year, is disposed of in the Cannery Muskeg tailings pile. The current leased area for the tailings facility is 56 acres, and the current permit allows for tailings disposal on 29 of those acres. As described in Chapter 2, the proposed action would involve an 84-acre expansion of the tailings facility lease boundary. Alternatives C and D would involve expansions of 67 and 116 acres, respectively.

Figure 3-2 below shows the Land Use Designations (LUDs) and Inventoried Roadless Areas surrounding the Greens Creek Project. Though the area surrounding the mine is an inventoried roadless area, the mine itself and associated roads, facilities, and the tailings pile, including the tailings expansion area are not.

The Young Bay landing dock, the road from the dock to the cannery site (offices, cafeteria, floatplane dock and ore loading facility), the road from the cannery site to the tailings pile, the tailings pile itself, and part of the road to the mine is in the semi-remote recreation LUD. South of the tailings pile, the road to the mine crosses into Non-wilderness monument LUD and then crosses into Non-national forest.

No new roads connected to this project would be constructed outside of the immediate tailings pile area.

Greens Creek Tailings 3.2 Land 3.2 Land

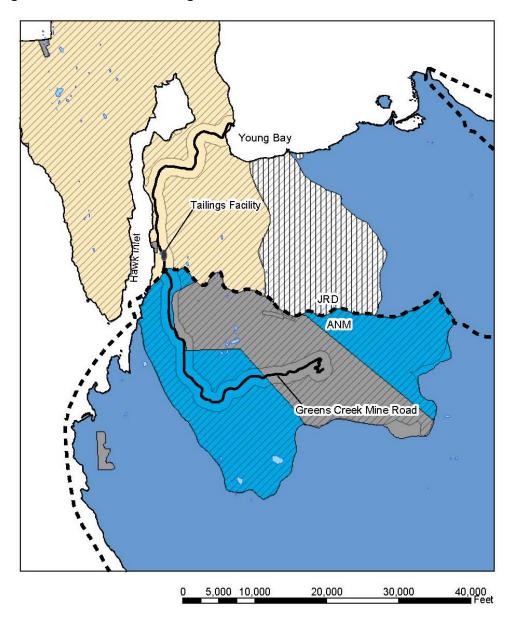
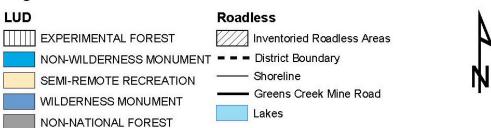




Figure 3-2 Land Use Designation / Inventoried Roadless Areas





USDA, FS, 2003, TNF GIS database

## 3.3 Climate

## 3.3.1 Regional Hydrology

The most significant regional hydrologic feature of the area, which is characterized as a temperate rain forest, is the amount of precipitation, both in the form of rain and snow. Although precipitation levels in Southeast Alaska are generally high, some areas get more precipitation than others, and the amounts vary widely depending on the particular features of the terrain. The regional annual precipitation at sites near sea level is between 40 inches (Angoon) and 225 inches (Port Walter). (EDE, 2002A)

## 3.3.2 Local Hydrology

The dominating influence on the local hydrology at the tailings site, as with the regional hydrology, is the large amount of precipitation. Since 1997, an automated monitoring system has collected data on the amount of precipitation at the tailings site. Between 1997 and 2000, the average annual precipitation at the site was 53.0 inches. Before the automated monitoring system, the company measured and manually recorded maximum and minimum daily and monthly totals. Table 3-1 shows monthly and annual totals for the four-year period of 1997 through 2000.

The precipitation levels recorded at the tailings site are consistent with other meteorological measurements in the general area. For example, the National Weather Service Climate Database reports that Angoon, on the western side of Admiralty Island, has a 40-year average annual precipitation of 42.2 inches. At the Juneau airport, annual precipitation has averaged 56.5 inches over a 51-year period of record. Auke Bay, north of Juneau, reports an annual average of 62.4 inches for a 37-year period of record. Given the surrounding records, it appears that, although the data from the tailings site are limited, they fit well with other sites within a 20 to 40 mile radius and at similar elevation (EDE, 2002a).

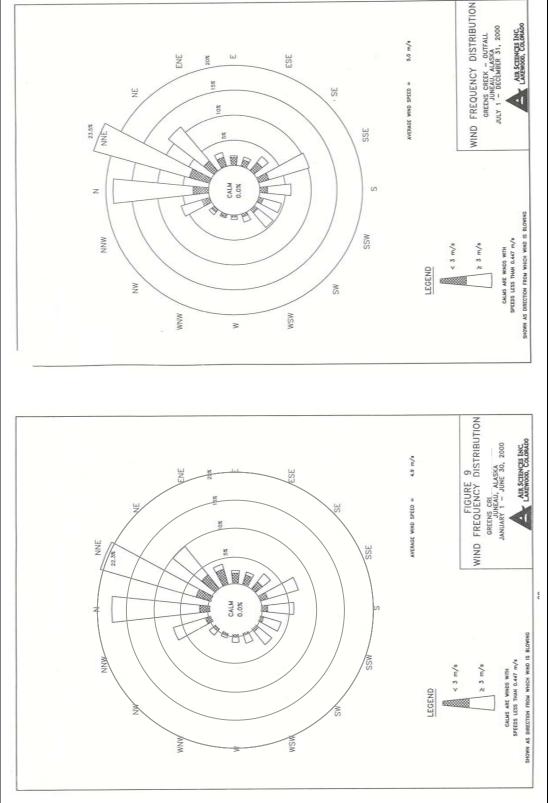
## 3.3.3 Temperature

The air temperature at the project site is heavily influenced by the coastal marine environment, which has a moderating effect on temperature extremes. The annual average temperature at the project site ranged was between  $42^{\circ}$  and  $43^{\circ}$  F between 1997 and 2000. The maximum and minimum one-hour average temperatures at the project site in 2000 were about  $70^{\circ}$  and  $9^{\circ}$ F, respectively.

Greens Creek Tailings 3.3 Climate 3.3 Climate 3.5

Table 3-1 Monthly and Annual Precipitation at the Tailings Site, 1997 – 2000

| Monthly and Annu             |                                                 | cipit               | atior               | ı at t              | he Ta               |                     |                     |                     |                     |                     |                     |                     |                 |
|------------------------------|-------------------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|-----------------|
| Station: NPDES Outfall       | 002                                             |                     |                     |                     |                     | Parar               | neter:              | Total               | Preci               | pitatio             | n (Inch             | nes)                |                 |
| Year: 1997                   |                                                 |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     | _               |
| D                            | 1000                                            |                     |                     |                     |                     | 1.000               | 1001                |                     | •                   | -                   | <b>K</b> EUDD       | _                   | Annual          |
| Day                          | Jan                                             | Feb                 | Mar                 | Apr                 | May                 | Jun                 | Jul                 | Aug                 | Sep                 | Oct                 | Nov                 | Dec                 | Total           |
| Maximum Daily Total          | 0.30                                            | 1.77                | 0.64                | 1.12                | 1.00                | 0.67                | 1.10                | 1.02                | 1.49                | 0.69                | 1.17                | 1.53                |                 |
| Average Daily Total          | 0.05<br><b>1.55</b>                             | 0.19<br><b>5.34</b> | 0.10<br><b>3.16</b> | 0.12<br><b>3.74</b> | 0.06<br><b>1.87</b> | 0.07<br><b>2.24</b> | 0.20<br><b>6.40</b> | 0.13<br><b>4.06</b> | 0.18<br><b>5.62</b> | 0.14<br><b>4.56</b> | 0.10<br><b>3.01</b> | 0.03<br><b>8.81</b> | 50.36           |
| Monthly Total                | 1.55                                            | 5.34                | 3.16                | 3.74                | 1.07                | 2.24                | 6.40                | 4.06                | 5.62                | 4.56                | 3.01                | 0.01                | 50.36           |
| <br>  Station: NPDES Outfall | 1.000                                           |                     |                     |                     |                     | Doror               | motor:              | Total               | Droois              | oitatio             | o /Inol             | 2001                |                 |
| Year: 1998                   | 1002                                            |                     |                     |                     |                     | raiai               | neter.              | Tulai               | rieui               | pitatio             | T (THO              | ies)                |                 |
| Teal. 1990                   |                                                 |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     | Annual          |
| Day                          | Jan                                             | Feb                 | Mar                 | Apr                 | May                 | Jun                 | Jul                 | Aug                 | Sep                 | Oct                 | Nov                 | Dec                 | Total           |
| Maximum Daily Total          | 0.54                                            | 0.33                | 0.82                | 0.30                | 0.61                | 0.64                | 0.85                | 1.23                | 1.03                | 2.89                | 0.49                | 0.85                |                 |
| Average Daily Total          | 0.04                                            | 0.04                | 0.08                | 0.07                | 0.06                | 0.07                | 0.14                | 0.18                | 0.19                | 0.30                | 0.06                | 0.14                |                 |
| Monthly Total                | 1.48                                            | 1.29                | 2.60                | 2.23                | 2.16                | 2.34                | 4.38                | 5.78                | 5.75                | 9.33                | 1.98                | 4.40                | 43.72           |
|                              |                                                 |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                 |
| Station: NPDES Outfall       | 002                                             |                     |                     |                     |                     | Parar               | neter:              | Total               | Preci               | pitatio             | n (Inch             | nes)                |                 |
| Year: 1999                   |                                                 |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                 |
| Day                          | Jan                                             | Ech                 | Mor                 | Ann                 | Move                | lum                 | Jul                 | A                   | Con                 | Oat                 | Nave                | Dec                 | Annual<br>Total |
| Maximum Daily Total          | 0.80                                            | <b>Feb</b> 4.09     | <b>Mar</b><br>0.32  | <b>Apr</b><br>1.21  | <b>May</b><br>0.59  | <b>Jun</b><br>0.69  | 0.91                | <b>Aug</b> 2.09     | <b>Sep</b> 1.13     | Oct<br>0.98         | <b>Nov</b> 1.62     | 3.02                | Total           |
| Average Daily Total          | 0.00                                            | 0.27                | 0.05                | 0.18                | 0.59                | 0.08                | 0.91                | 0.21                | 0.26                | 0.98                | 0.18                | 0.28                |                 |
| Monthly Total                | 5.10                                            | 7.77                | 1.66                | 5.56                | 4.78                | 2.41                | 4.33                | 6.56                | 7.86                |                     |                     | 8.76                | 68.95           |
| montally rotal               | 0.10                                            |                     | 1.00                | 0.00                | 4.70                | 2.71                | 4.00                | 0.00                | 7.00                | 0.74                | 0.72                | 0.70                |                 |
| <br>  Station: NPDES Outfall | 1002                                            |                     |                     |                     |                     | Darar               | motor:              | Total               | Drocii              | nitatio             | a (Inch             | 200)                |                 |
| Year: 2000                   | III 002 Parameter: Total Precipitation (Inches) |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                 |
| 1 Car. 2000                  |                                                 |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     | Annual          |
| Day                          | Jan                                             | Feb                 | Mar                 | Apr                 | May                 | Jun                 | Jul                 | Aug                 | Sep                 | Oct                 | Nov                 | Dec                 | Total           |
| Maximum Daily Total          | 1.17                                            | 0.20                | 0.60                | 0.81                | 0.64                | 0.70                | 0.94                | 0.82                | 1.25                | 1.00                | 0.81                | 1.51                |                 |
| Average Daily Total          | 0.09                                            | 0.03                | 0.11                | 0.14                | 0.07                | 0.12                | 0.12                | 0.14                | 0.27                | 0.19                | 0.14                | 0.11                |                 |
| Monthly Total                | 3.02                                            | 0.94                | 3.67                | 4.32                | 2.47                | 3.80                | 4.02                | 4.47                | 8.32                | 5.98                | 4.34                | 3.49                | 48.84           |
|                              |                                                 |                     |                     |                     | Sourc               | e: Ken              | necott              | Green               | s Cree              | k Minii             | ng Cor              | npany               | 2001            |
|                              |                                                 |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     | a 50                |                 |


## 3.3.4 Wind

As with the level of precipitation, topography has a large influence on wind patterns. The terrain at the project site channels the wind, producing a flow predominately from the north-northeast, although strong winds from the south-Southeast are not uncommon. In 2000, the wind at the project site was from the north through northeast about 54 percent of the time and from the south-Southeast about 9 percent of the time. The highest wind speed recorded at the project site in 2000 was 17.2 meters per second (m/sec), or about 38 miles per hour (mph). The average wind speed was 5.0 m/sec, or about 11 mph. Figure 3-3 graphically represents wind conditions at the tailings site from January through June of 2000 and from July through December of 2000, respectively. (Air Sciences Inc, 2001).

3-6 3.3 Climate Greens Creek Tailings

Wind Speed and Direction at Tailings Site January 1, 2000 through June 30, 2000 Figure 3-3

Wind Speed and Direction at Tailings Site July 1, 2000 through December 31, 2000



ESE

ENE

5.0 m/s

## 3.4 Air Quality

Air quality in the vicinity is good. The nearest sources of atmospheric contaminants to the Greens Creek mine are in Juneau, 18 miles (29 km) northeast of the site. Sites are generally classified as to whether they attain or fail to attain air quality standards. The project site area has been designated as having attained such standards, based on available ambient data for all criteria pollutants.

The most recent ambient air quality monitoring in the area occurred from April 1, 1995 through March 31, 1996. Ambient concentrations of particulate matter with an aerodynamic diameter less than or equal to a nominal 10 micrometers ( $PM_{10}$ ) were measured. All measured results attained the applicable National and Alaska Ambient Air Quality Standards (AAQS).

The nearest location that has failed to attain (designated as *nonattainment*) air quality standards is the Mendenhall Valley area of Juneau, approximately 22 miles (34.5 km) north of the project site. The Mendenhall Valley area has been designated non attainment for PM<sub>10</sub>. The nearest area designated as Prevention of Significant Deterioration (PSD) Class I is Denali National Park, approximately 621 miles (1,000 km) northwest of the project site. Air pollutant emissions from the existing Greens Creek facility do not have a significant impact at either location.

## 3.5 Visual Quality

The Tongass Land and Resource Management Plan (Forest Plan) uses a combination of distance zone and Land Use Designation (LUD) to determine the adopted Visual Quality Objectives (VQO). Forest Plan identifies the project area as having a LUD of Non-Wilderness National Monument.

The project area is visible from the following Visual Priority Travel Routes & Use Areas listed in Appendix F of the Forest Plan. There are two small boat anchorages in Hawk Inlet, a small boat route in Hawk Inlet and the Alaska Marine Highway (AMH) route in Chatham Strait between Hoonah and Angoon passes approximately five miles from the mouth of Hawk Inlet.

VQOs are measurable standards that reflect four different degrees of acceptable change of the natural landscape based upon the importance of aesthetics. These allow a range of disturbance from Retention that does not allow any manipulation to Maximum Modification, which allows management activities to be evident.

Figure 3-4 is an infrared photo that shows the photo locations of Figure 3-5 and Figure 3-7.

Greens Creek Tailings EIS

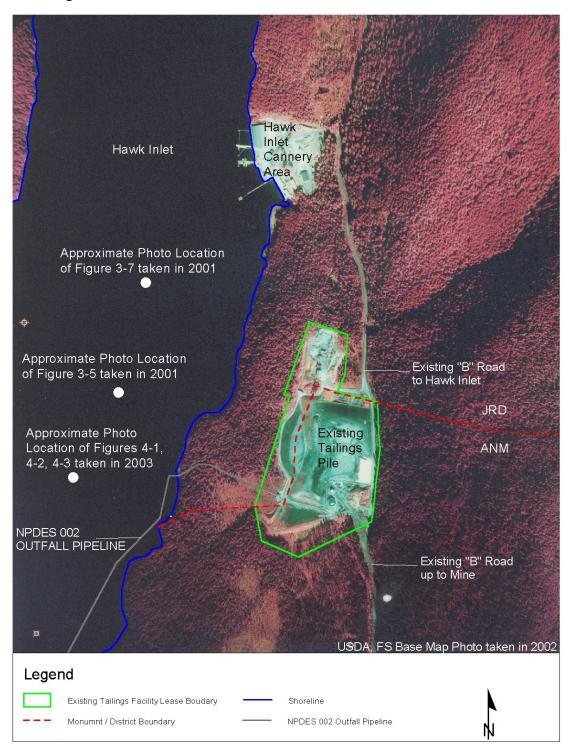



Figure 3-4 **Aerial View of Greens Creek Facilities** 

**Greens Creek Tailings** 3.5 Visual Quality 3-9

## 3 Affected Environment

The project area is seen in the middleground from the small boat route and in the background from the boat anchorages and the AMH Ferry. During operations the adopted VQO is Maximum Modification. After closure, and for reclamation, the VQO is Retention (See Figure 3-5).



Figure 3-5 View of Hawk Inlet with tailings pile in background (2001)

Admiralty Island offers natural rugged scenery composed of high ridges with alpine tundra, steep cliffs with slides and avalanche tracks, mountain slopes densely covered with conifers, and lowlands of conifers, with pocket clearings of meadows, muskegs, and lakes. The study area includes the densely forested Greens Creek valley and the level plains and foothills along Hawk Inlet. High, forested ridges and numerous bodies of water, which form a repetitive pattern in the landscape, surround the mine.

The view of the tailings facility from the water at Hawk Inlet shows a marked horizontal line void of any vegetation (See Figure 3-5). The tailings pile itself is fairly low compared to the surrounding hills, a narrow band in the steep forested topography of Hawk Inlet. Its pale gray color, however, makes the top of the pile visible from the water against the deep green background of the coniferous forest

3-10 3.5 Visual Quality

Greens Creek Tailings



Figure 3-6 Aerial View of Tailings Pile, looking to the Southeast (2002)

Visual Absorption Capability. Visual absorption capability is the relative ability of a landscape to accept human alteration without loss of landscape character or scenic condition. It is a relative indicator of the potential difficulty, and thus the potential cost, of producing or maintaining acceptable degrees of scenic quality (pC-1, USDA, FS 1974). This section discusses visual absorption capability related to slope, vegetative cover, soils and geology.

The ability of this landscape to accept human alteration without a loss in landscape character is low to moderate, considering its dense, hemlock-spruce vegetation, varied slopes, and light-colored soils. The mine operation facilities at Hawk Inlet have already had a considerable impact on the landscape character of the study area (See Figure 3-7).

Existing Visual Condition (EVC) is an inventoried condition that represents the degree of change that has already occurred on the ground. It is measured in terms of condition Types I – VI, with Type I representing areas in which only ecological changes have taken place, to Type VI, representing areas of drastic landscape disturbance. EVC serves as a tool in issue identification, analysis of the management situation, estimation of effects of alternatives, monitoring, and as a historical record of the degree and amount of physical

**Greens Creek Tailings** 3.5 Visual Quality 3-11 alteration of the landscape. The project area is inventoried as a Type III EVC because the natural appearance of the landscape still remains dominant and the disturbance appears minor to the average forest visitor.



Figure 3-7 View of processing loading area from water (2001)

## 3.6 Oceanography

Hawk Inlet is a marine waterway chiseled into mineral-rich rock formations on northern Admiralty Island. The physical shape of this saltwater arm (described in Section 3.6.2, Topography and Bathymetry, below) off of Chatham Strait, in conjunction with large tides in the region produce strong currents which refresh nutrients within the inlet. The extent of seawater exchange together with freshwater nutrient inputs from rivers, streams and runoff support an ecosystem rich in marine life ranging from plankton to marine mammals.

This section describes the physical oceanographic characteristics of Hawk Inlet. Factors including tides, currents, and marine water quality are described using the best available information. Because the proposed project would increase the volume of mineral-laden water entering Hawk Inlet, a discussion of historical information on the amounts of some metals found in seafloor sediments at the outfall site and vicinity is included.

3-12 3.6 Oceanography Greens Creek Tailings

### 3.6.1 Physical Characteristics of Hawk Inlet

In order to understand the mixing and dilution of mine effluent as it enters a body of water, it is important to understand the physical characteristics of that water environment. Information on tides, depths, and other basic features are reported from National Oceanic and Atmospheric Administration nautical charts and tide records. Site-specific data are reported from scientific reports.

Several studies have been undertaken to define marine characteristics for Hawk Inlet. Studies completed prior to the start of mill operations are incorporated below based on the report by G. Andrews Environmental Associates (1996).

More recently, Greens Creek environmental staff and consultants have monitored water, sediment and vegetation within Hawk Inlet. Data from these studies are also presented in this description of baseline conditions (RTI, 1998). Data were collected throughout Hawk Inlet at sites referred in the text below.

### 3.6.2 **Topography and Bathymetry**

Hawk Inlet extends seven miles north from Chatham Strait and ends in a tidal mudflat estuary about 0.6 miles in diameter. Hawk Inlet consists of a narrow basin, partially separated from Chatham Strait by a relatively shallow sill that includes a delta at the mouth of Greens Creek. The narrow channel connecting the Inlet to Chatham Strait, located between the tip of the Greens Creek delta and the western shore of Hawk Inlet, has a minimum low tide depth of 35 feet.

The midchannel depth ranges from 35 feet at the sill, to 250 feet in the midportion of the Inlet. Near the mouth of the Inlet there is a large delta formed by glacial activity and by river borne sediments from Greens Creek.

### 3.6.3 Tides and Currents and Circulation

Hawk Inlet has regular, twice-daily tides. The large tidal variation (a maximum range from high to low) of about 25 feet, the shallow Greens Creek delta, and irregularities in the rocky shoreline strongly influence circulation patterns in the Inlet. Wind may have a strong effect on surface water movement, and freshwater flowing into the inlet further influences water flow speed and vertical mixing of water between depths.

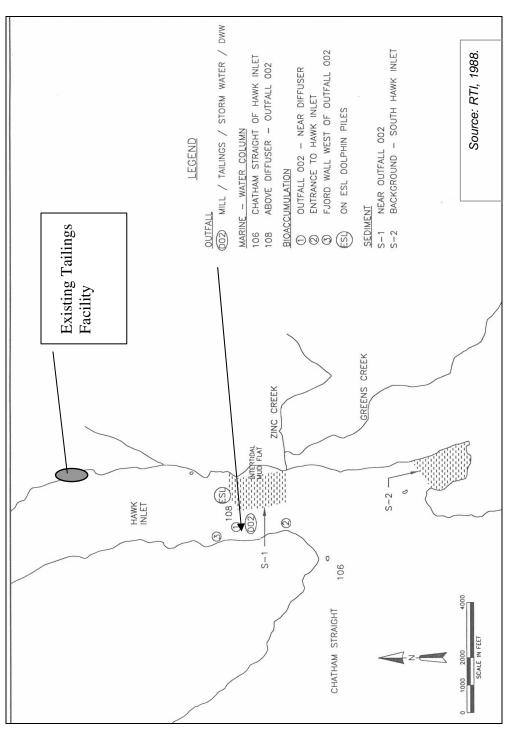
On the flood tide, the surface 35-foot layer contains the bulk of the water transport entering the Inlet at the sill and is then flushed out on the ebb tide. Current velocities in Hawk Inlet are greatest at the 1,000-foot wide Greens Creek sill, reaching a maximum of about 70 cm/sec on the flood tide. The maximum flows at ebb tide are in the 40-cm/sec ranges in the vicinity of

**Greens Creek Tailings** 3.6 Oceanography 3-13

NPDES Outfall 002 (Figure 3-8). Throughout the Inlet, current velocity decreases with depth. At 100 feet, currents are negligible—usually less than 10 percent of those at the surface.

Differences in flood and ebb tide circulation patterns have been observed. Flooding occurs predominantly along the eastern side of the Inlet, with perceptible velocities down to a depth of 65-100 feet, while ebbing is mostly confined to the surface layer along the western shore.

A large eddy (or circular, whirlpool-like current) occurs in the broad central region of the Inlet, near the cannery. From the cannery, currents on the western shore generally move in a southward direction, and currents on the eastern shore tend to be directed northward during all phases of the tide.


## 3.6.4 Flushing

Flushing describes the rate and extent to which a body of water is replenished by tidal or other currents. Flushing rates are also indicative of the length of time that mining effluent may remain in a water body and become incorporated into the physical and biological ecosystem.

In 1981, SEA Associates, Inc., conducted flushing studies in Hawk Inlet by observing dispersion of colored dyes in seawater. Based on these studies, it was estimated that over each tidal cycle, an average of 50 million cubic meters (or 13 billion gallons) was flushed from the Inlet. At that rate, it is estimated that the Inlet will completely flush at least once every five tidal cycles. The input of effluent from the existing mining operations over this flushing period represents approximately 0.009 percent of the total flushing volume (Andrews, 1996).

Another study, conducted in 1984, used dyes to examine the length of residence and the rates of flushing of conservative substances (chemicals that do not readily dissolve in seawater) released into Hawk Inlet. The results of that study also indicated that, overall, Hawk Inlet has a relatively good exchange of tidal water (RTI, 1998).

Greens Creek Mine Marine Sampling Stations and Outfall Locations Figure 3-8



### 3.6.5 Seasonal and Freshwater Effects on Seawater Mixing

While the rate of exchange between the waters of Hawk Inlet and Chatham Strait fluctuates with the amount of precipitation and with the lunar cycle, which markedly affects tidal currents, mixing within the Inlet is influenced by local features.

The topography and freshwater input into Hawk Inlet create a water mixing environment much like those found in estuaries. Where tidal waters meet fresh waters in estuaries, the more buoyant, fresher waters tend to move seaward along the surface, while the heavier, salty (or saline) tidal waters move inland below the fresher water. This slow mass exchange pattern is superimposed on the much more vigorous and rapid circulation that occurs with each change of the tide.

Although wind and geography influence mixing, the net circulation rate is affected substantially only by tidal variations and by fluctuations in the amount of fresh water coming into the Inlet.<sup>4</sup> Six minor tributaries enter on the western shore of Hawk Inlet. The largest tributary is Greens Creek, which, in combination with Cannery Creek, other smaller streams, runoff and direct precipitation falling on the waters of Hawk Inlet, contribute to the gross freshwater entering the system. The amount of fresh water flowing into the Inlet from these tributaries peaks in September and October (because of precipitation) and again in May and June (because of melting snow).

### 3.6.6 **Marine Water Quality**

Marine water quality parameters are monitored on a regular basis in Hawk Inlet. Salinity and temperature measurements have been made routinely since 1981. Salinity increases with depth throughout the estuary and stratification is dependent on the location, volume and frequency of fresh water inflows.

Salinity in the vicinity of the outfall pipe exhibited a wide range of levels: 22 to 32 parts per thousand (ppt). In the latter half of 2002, water temperatures averaged 44.6 degrees Fahrenheit at five feet below the surface. Salinity and temperature vary slightly over a tidal cycles, but vary widely in intertidal habitats.

<sup>4.</sup> Just over half of the fresh water entering the Inlet comes from Greens Creek, Cannery Creek, and other drainages; most of the rest comes from run-off from the surrounding land; only about five percent comes from direct precipitation over the Inlet surface. International Environmental Consultants, Inc., 1978, 1979, and 1980.

Total suspended solids (TSS) averaged 56.8 mg/kg. With an average pH of 7.99, the water was slightly alkaline. Turbidity averaged 0.556 Nephelometric Turbidity Units; trace elements were also measured (RTI, 1998).

Marine receiving waters (into which outfalls flow) have also been monitored for heavy metals quarterly since 1982. Analytes, method detection limits, sampling stations and frequency of sampling have been determined under the NPDES permit process and results are routinely compared to water quality for aquatic life and human health standards. This limited ongoing marine water quality monitoring shows that lead concentrations in Hawk Inlet and outside the sill vary, with location, from below detection limits to near acute levels (OIO,1984-2002 & RTI, 1998). Select metal data from prior to mine operations and just after mine operations began are found in the table below. Additional data on marine water quality, effluent constituents, and results of toxicity testing can be found in NPDES permit documentation and the (OIO, 1984-2002 & RTI, 1998) Risk Assessment report for NPDES permit #AK-004320-6.

Table 3-2 Average receiving water monitoring data for control site (106 -Chatham Strait) and outfall 002 diffuser site (108) (See Figure 3-8)

| Period          | Parameter | Station 106<br>ug/L | Station 108<br>ug/L |
|-----------------|-----------|---------------------|---------------------|
| Pre-Operational | Lead      | 0.148               | 0.059               |
| ·               | Copper    | 0.783               | 0.694               |
| (1982-1986)     | Zinc      | 1.669               | 2.231               |
| Operational     | Lead      | 0.06                | 1.2                 |
| (1989)          | Copper    | 0.82                | 1.05                |
| (1909)          | Zinc      | 0.44                | 0.44                |

(OIO1984-2002 & RTI 1998)

## 3.7 **Geology and Geochemistry**

### 3.7.1 Regional Geology

The rocks and sediments found in the project area were formed over an extended period of geologic time through volcanic action. The bedrock consists of structurally complex Paleozoic age rocks that have been metamorphosed, folded and faulted. The primary rock types include quartz schist, carbon rich argillite, and phyllite, each of which contains traces of pyrite.

The topography, landforms, and shallow sediments in the project area were formed in the more recent geologic past through glacial and marine processes. During the last period of glaciation, an extensive ice sheet flowed outward from higher elevations east of Admiralty Island and buried all but the highest

peaks on the Island. Based on radiocarbon dating of peat deposits elsewhere in Southeast Alaska, the glaciers are estimated to have retreated about 13,000 years ago.

The vast glacial ice layer that covered Southeast Alaska depressed the land surface by hundreds of feet. After the ice melted, the land gradually recovered in a process known as *isostatic rebound*. Rebound of more than 600 feet has been recorded in Southeastern Alaska. As the ice and water retreated, it carved marine beach terraces around the edges of Admiralty Island. The proposed tailings expansion area is situated on the remnant of one such beach terrace.

After landforms emerged above sea level, native vegetation became established and because of the cool, wet climate found on Admiralty Island, peat deposits formed, especially on the flatter slopes of the marine terrace features.

## 3.7.2 Local Bedrock Geology and Geochemistry

The action of glacial ice and water on and around Admiralty Island created the sequence of sediments that are found beneath the proposed tailings expansion area. The foundation for recent sediments is a convoluted bedrock system comprised of argillites and phyllites that have been shaped by glacial ice and erosion. Although the rock units around the tailings facility have not been extensively tested, many samples of argillite and phyllite have been collected from the mine area and production rock piles. The rock units near the ore zones may be more strongly mineralized than those in the tailings area.

Samples of argillite from the mine and production rock piles contain small amounts of minerals such as pyrite that form sulfuric acid when exposed to oxygen (the process of sulfide oxidation). Argillite also contains a high volume of carbonate minerals such as dolomite and lesser amounts of calcite—minerals that partially dissolve and, through the process of sulfate reduction, neutralize acidity from sulfide oxidation. As a result of these processes, water in contact with argillite rocks will typically have a neutral pH and will contain soluble calcium, magnesium, bicarbonate, and sulfate ions. Because argillite has proportionately more carbonate minerals than pyrite, the rock unit should remain neutral in pH. Argillite rocks are also known to be somewhat enriched in zinc (though at lesser concentrations than in ore) so that water contacting these rock may contain elevated zinc levels.

Like argillite, phyllite contains both pyrite and dolomite. Unlike argillite, however, phyllite has proportionately more pyrite than dolomite. As a result, carbonate minerals, such as dolomite, may be depleted before the process of sulfide oxidation is complete. Geochemical tests on samples of phyllite from the mine indicate that these rocks (unlike the argillite) may become acidic

after several years of weathering. The rate of acid generation of both rock units is described in more detail in Shepherd Miller (2000).

#### 3.7.3 **Local Unconsolidated Sediments**

Eroded bedrock protrudes from the mantle of glacial and marine sediments in places, leading to a complex series of sediments that vary in thickness. Compacted till (sediments left by glacial activity) fill the deeper bedrock basins (Ager, 2001). Around the site of the proposed tailings area, the compacted till is overlain in places by deposits of deeper marine sediments that are comprised of organically enriched silts and clays. As water retreated, shallower marine sediments were deposited over the deeper marine sediments. Locally, the deeper sediments were removed as the more erosive intertidal and shallow marine system evolved. The uppermost shallow marine sediments are often coarser-grained than the deeper marine sediments and contain abundant shell fragments. Thin lenses of glacial till or colluvial sediments (soils) are sometimes found overlying the shallow marine layer. Finally, on flatter slopes, a layer of peat has developed that varies from a few feet to tens of feet in thickness.

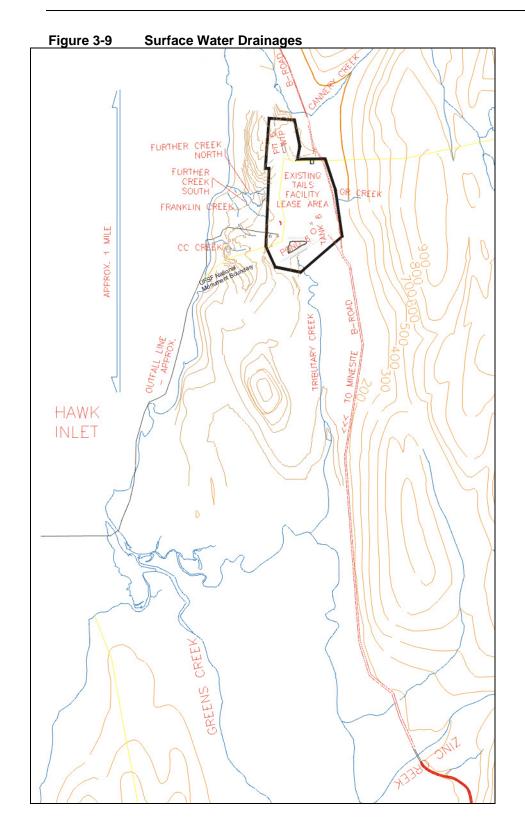
### 3.7.4 **Drainage Basin Physiography and Topography**

The existing tailings facility is located at the headwaters of the Tributary Creek drainage basin and the Hawk Inlet drainage area. (See Figure 3-9). The northern-most portion of the existing tailings facility is adjacent to the Cannery Creek drainage basin. A small upland area located to the east of the tailings facility drains toward the tailings. Surface runoff from the existing pile is collected and diverted to the water treatment plant. Treated effluent flows from the treatment plant through a pipeline located on the west side of the tailings facility and discharges directly into Hawk Inlet through a submerged diffuser. This discharge is regulated by a National Pollutant Discharge Elimination System (NPDES) Permit.

The Tributary Creek basin is approximately 482 acres, 29 acres of which are covered by the existing tailings pile. The pile is buffered from both surface and ground water infusion: a series of diversion ditches transport surface water away from the tailings facility, while slurry walls and French Drains divert groundwater flow.

The Tributary Creek basin gently slopes to the south towards Zinc Creek, and primarily consists of muskeg vegetation interspersed with stands of timber. Prior to construction of the tailings facility, the headwaters of Tributary Creek were the slopes east of the tailings facility and the muskeg area within the footprint of the tailings facility. Since construction of the tailings facility, the headwaters of Tributary Creek are small seeps and numerous small channels

**Greens Creek Tailings** 


flowing through muskeg to the south of the tailings. Additionally, surface flow and run-off from the east of the tailings facility are captured in a lined perimeter interceptor ditch and routed south to the Tributary Creek muskeg area and north to Cannery Creek. The seeps and channels lying to the south of the tailings facility are fed from the shallow groundwater regime in the peat and sand substrate. These perennial flows eventually combine approximately 2,000 feet downstream of the existing tailings facility to form a distinct stream channel. Tributary Creek then flows into Zinc Creek, which flows into Hawk Inlet near the mouth of Greens Creek.

The Hawk Inlet drainage area lies immediately to the west of the existing tailings facility and Tributary Creek. This catchment has an area of approximately 76 acres, of which approximately 5 acres are covered by hydraulically contained areas of the existing tailings facility. This drainage has a northern aspect, and consists of terraces intermixed by steep slopes. The vegetation is primarily muskeg and timber. The muskeg-covered terraces contain numerous seeps that are surface expressions of precipitation-induced recharge to the peat and sand substrate.

One particular seep of interest is called Further Seep, an intermittent seep with a flow approximating 1 gpm. Several small streams form within the drainage area as a result of the seeps and surface water runoff. These streams are known locally as CC Creek, Proffett/Franklins Creek, and Further Creek (South Fork, North Fork). CC Creek and Further Creek discharge directly to Hawk Inlet. Proffett Creek can be traced a few hundred feet on the surface before it sinks into the underlying strata.

Another surface stream appears about 100 feet down gradient, and appears (based on similar water chemistry) to be the same flow. This lower stream is known locally as Franklins Creek, which discharges directly to Hawk Inlet. Another surface water feature is a man-induced spring called Duck Blind Drain. This surface water feature has resulted from construction of the pipeline that discharges treated water into Hawk Inlet. Water that naturally collects within the pipeline trench alignment is allowed to discharge to the surface through a pipe at the location of a pipeline valve vault. This vault contains a flow meter that monitors flow through the pipeline, and the discharge pipe is used to keep the vault from becoming flooded. The flow from this source is less than 0.5 gpm.

The Cannery Creek basin lies to the north and east of the tailings facility. It is a perennial stream that drains to the north in its upper reaches, then curves south and west, crosses under the B road and flows adjacent to the northern edge (Pit 5) of the tailings facility. From the B road bridge, it flows to the northwest of the tailings facility and empties in Hawk Inlet near the Cannery buildings.



The Cannery Creek drainage basin is approximately 625 acres, of which approximately six acres are covered by the hydraulically contained area of the tailings facility. The drainage basin is for the most part steeply sloping and primarily covered with timber. A muskeg bog is located between the northeast corner of the tailings facility and Cannery Creek. Shallow groundwater emerging from this area makes its way to Cannery Creek.

Another source of flow to Cannery Creek is diverted surface and shallow groundwater flow emanating from a small drainage area located above the east side of the tailings facility. Before development of the facility, this was a part of the Tributary Creek drainage. This area is comprised of 107 acres of steep, densely wooded terrain with a western exposure. A single watercourse, known locally as GR Creek, and sheet flow from surface runoff move down gradient where they are intercepted by a diversion ditch on the east side of the tailings facility. These flows are captured in a lined perimeter interceptor ditch and a French drain system above the slurry wall located on the east boundary of the facility. Of the 107 acres that drains to the diversion ditch, surface flow from 65 acres is diverted to Cannery Creek, and 42 acres is diverted to Tributary Creek.

## 3.7.5 Streamflow

Limited data exists regarding streamflows. Surface water flows fluctuate seasonally in the four drainage areas in response to rainfall and snowmelt events. High flows generally occur in spring as a result of snowmelt, and again in fall as a result of high rainfall periods. Low flows occur in mid-winter and late summer. Stream flow data for the creeks surrounding the tailings facility are either non-existent; or have not been collected in sufficient amounts to generate statistical indices based on actual flow measurements. However, flow estimates for Tributary Creek were developed using regression techniques as part of the 1981 baseline studies for the Greens Creek Project (Ott, 1981). Estimated mean monthly flows for Tributary Creek are shown in Table 3-3. Even though these estimates were developed prior to construction of the existing tailings facility, they still provide a general indication of the magnitude of flows that are generated in this stream.

| •           | •          |
|-------------|------------|
| Month       | Flow (cfs) |
| Jan         | 1.2        |
| Feb         | 1.6        |
| Mar         | 1.9        |
| Apr         | 3.5        |
| May         | 4.2        |
| Jun         | 2.4        |
| Jul         | 1.0        |
| Aug         | 1.5        |
| Sep         | 3.8        |
| Oct         | 4.5        |
| Nov         | 3.0        |
| Dec         | 1.4        |
| Mean Annual | 2.5        |

Table 3-3 Mean Monthly Flows for Tributary Creek<sup>1</sup>

### 3.7.6 Groundwater

There is no known regional aquifer system in the area, but groundwater resources occur under a wide range of conditions. The many small drainages and irregular topography and geology make for numerous small-scale aquifers and groundwater flow systems. Groundwater can be found in manmade fill, peat, sand and gravel, till, and fractured bedrock aguifers. Confining materials include compressed peat beneath the existing tailings and the underlying silt and clay. Where bedrock is exposed or near the land surface, the sedimentary aquifers and confining materials are absent.

The remaining sections within this chapter describe groundwater resources at the site of the proposed expansion. Various sections discuss the general hydrogeologic setting, provide an overview of the geologic materials (sometimes referred to as *units*) present in the area, discuss those materials in terms of their potential as aquifers or confining units, and describe groundwater flow systems and variations in those flow systems caused by seasonal and manmade features.

### 3.7.7 **Hydrologic Units**

Hydrologic units present at the site include the following.

Man-Made Fill. Manmade fill is present in the area and is comprised mainly of tailings from mine workings. Fill also includes road and drainage structures and reworked materials in excavated areas. Tailing material, predominantly silt-sized crushed ore residues that are stacked and compacted, have typical residual volumetric moisture content of +/- 28 percent.

From Ott. 1981

Peat. Peat is dense organic matter, often containing root masses and stumps. It was found widely throughout the site prior to development, except on some of the steeper sloping areas. Peat has been excavated in some areas prior to deposition of the tailings. The peat varies in thickness, with a maximum thickness of approximately 20 feet.

Sand. Sand occurs as a relatively thin layer across much of the site directly beneath the peat. The sand is generally coarse and gravelly, with a moderate amount of silt and traces of marine shell fragments. The sand is interpreted to have resulted from beach or alluvial deposits during periods of higher relative sea level. The sand in places is over 20 feet thick, but in most areas of the site, it is about 2 to 10 feet thick.

Silt with Clay and Sand. Directly beneath the sand layer that covers most of the site is a relatively continuous layer of silt with clay and sand. This layer reaches 50 feet in thickness in places, and it is sometimes inter-tongued with the underlying till deposits. Analyses of this layer indicate that it is made up of approximately 40 percent silt, 30 percent clay, and 30 percent sand. The layer is referred to as the "silt layer" in this document, with the understanding that clay and sand are significant components.

Till. Till at the site is an irregular mixture of sand, silt and clay, gravel, and cobbles, in decreasing order of abundance. Isolated pockets of stratified sand and gravel from glacial activity are also found. Till is present throughout much of the area except where shallow bedrock is present. The thickness of till averages about 15 feet, but it is up to 60 feet in places. The till lies beneath the silt layer and directly above the bedrock. The till also contains layers of silt or clay that suggest quiet marine water deposition or wetland deposition intermittent with till deposition.

Bedrock. Bedrock in the area consists of hard, banded schist, phyllite, and argillite. These rocks are metamorphosed from volcanic and marine sedimentary rocks. The bedrock surface is highly irregular—in some places it stands out with minimal soil cover, in others, basins are filled with layers of till, silt, sand, peat, and manmade fill. The bedrock in the project area is not highly fractured, although there may be increased fracturing near the surface in areas where blasting occurs.

## 3.7.8 Aquifers and Confining Units

Groundwater is found in several aquifers and, to a lesser degree, in confining units beneath the existing tailings pile. This section describes the aquifers and the materials that act as confining units in the area of the proposed project. Figure 3-10 shows a conceptual model of where groundwater occurs and how it moves in the area.

Peat/Sand Aguifer. The peat and sand units are physically adjacent and function as a single aquifer except where buried by fill. Beneath portions of the tailings pile where the peat has not been removed, the peat is compressed and functions like a confining unit.

Silt Confining Unit. The peat/sand aquifer is underlain by a silt layer that functions in places as a confining unit between the peat/sand aquifer and the underlying till aguifer. Figure 3-11 shows the extent of the silty clay layer at the site, along with the distribution of peat and till deposits. In places these units are all absent; however, in other areas they are all present and provide multiple layers of low permeability material underlying the site.

Till Aquifer. Groundwater in till is found mainly in isolated small sand and gravel lenses within the till. The majority of the till is of relatively low permeability and is intermediate in permeability between sandy units and silt/clay units at the site. On a local scale, the siltier portions of the till serve as a confining unit for sand and gravel units within the till.

Bedrock Aquifer. The entire area is underlain by bedrock that contains groundwater in fractures. In areas where bedrock is near the surface, groundwater is considered to be unconfined; in areas where the bedrock is covered by other materials, groundwater is considered to be confined.

### 3.7.9 **Groundwater Flow Systems**

Groundwater flow systems at the project area are complex. Flow systems are driven by local precipitation and snowmelt and the local terrain. With average annual precipitation at the site of approximately 53 inches, a surplus of water is frequently available for groundwater recharge. Much of the annual precipitation runs off from saturated or low-permeability surfaces in the area; however, a recharge rate of approximately 6.5 inches/yr has been estimated for groundwater recharge into the tailings (EDE, 2002A).

Detailed flowpaths are strongly influenced by local geological features, hydraulic control structures associated with the existing tailings facility, and surface water drainages. The site generally straddles a three-way divide, with groundwater flow components draining towards Cannery Creek to the north, Tributary Creek to the south, and Hawk Inlet to the west.

Groundwater Flow Patterns. Figure 3-12 shows generalized groundwater flow patterns in the area.

Flow within the till and bedrock travels under the tailings pile in a predominantly westward direction towards Hawk Inlet. Groundwater in the shallow peat/sand aquifer that is uphill from the tailings pile flows around the pile because of the system of diversionary barriers and drains. Flow within the

pile and in the sand aquifer beneath it is predominantly southward towards the system of slurry wall barriers, drains and sumps around the perimeter of the facility. Water that is collected is withdrawn, treated, and discharged to Hawk Inlet.

Groundwater also discharges to Cannery Creek and Tributary Creek, as well as to small intermittent drainages on the west side of the tailings pile. Cannery and Tributary Creeks are perennial streams that are observed to flow even during dry spells. A number of rivulets appear near the tailings pile and feed into these streams.

Groundwater in the bedrock knob on the northwest corner of the facility flows away from the high point of the knob in all directions. Groundwater flows in an easterly direction from the bedrock knob towards Pit 5 and Cannery Creek and can be seen in Figure 3-12.

## 3.8 Hydrology

## 3.8.1 Groundwater Quality

Groundwater quality is described based upon water quality samples from monitoring wells and surface sampling sites located both uphill (upgradient) and downhill (downgradient) from the tailings facility (Figure 3-13). Extensive analyses of data from these samples have occurred as part of the baseline studies produced for this EIS (EDE, 2002a; 2002b), the annual Fresh Water Monitoring Program (FWMP) reports submitted to the Forest Service by KGCMC, and a third-party technical review of the FWMP (Shepherd Miller, Inc., 2000). This section presents an overview of that information.

Several monitoring wells are used as part of the FWMP conducted by KGCMC as described in the GPO (KGCMC, 2001a). Water quality data from these wells date back to 1988, prior to construction of the tailings pile. These wells are completed in the shallow peat and the deeper bedrock zones, and located to the south and west (down-gradient) of the tailings facility. These wells are monitored to evaluate the impacts of the tailings facility, if any, on local groundwater quality. A summary of groundwater quality data from FWMP monitoring wells located downgradient of the existing tailings pile is shown in Table 3-4. These data represent water quality sampling reported annually to the Forest Service as required by the FWMP.

In general, groundwater quality in the downgradient FWMP wells is characterized as having near-neutral pH in the deeper bedrock till/sand wells and lower pH in the wells completed in the shallow peat (typical of muskeg waters). Water quality data from these wells are relatively consistent between monitoring well pairs (shallow and deep) with the exception of pH, and do not

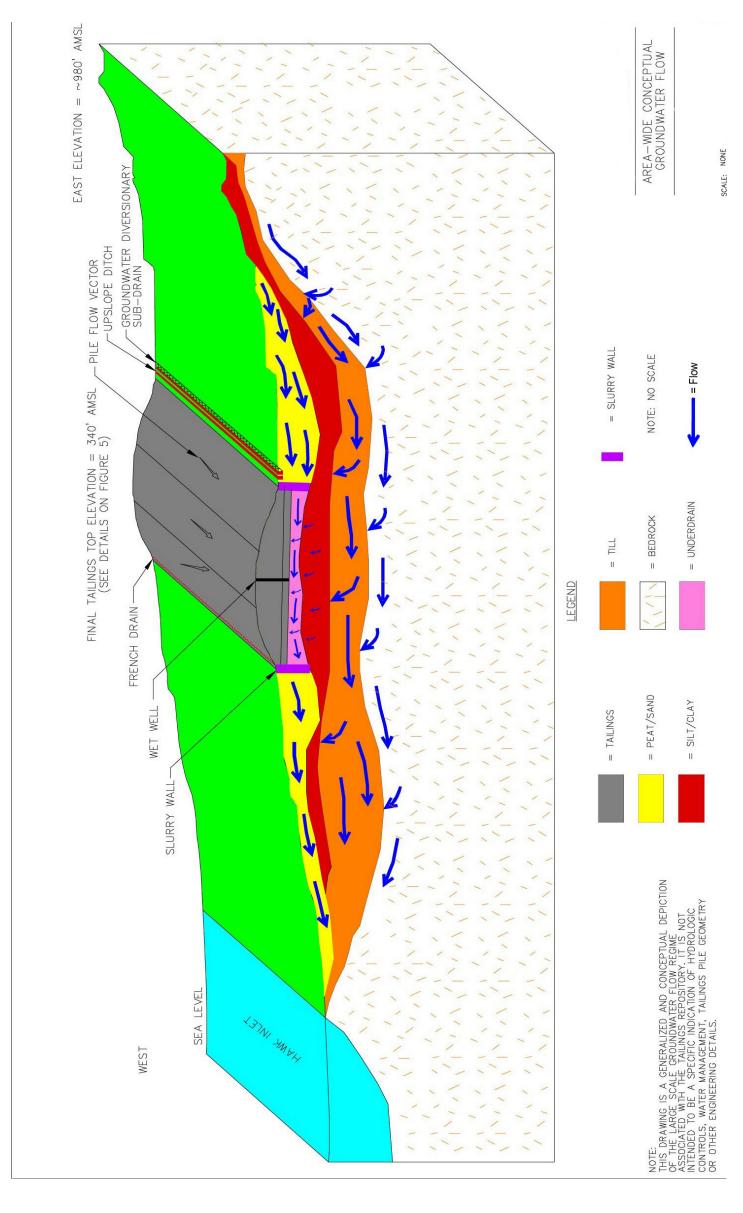
3-26 3.8 Hydrology Greens Creek Tailings

show groundwater quality impairment as a result of mining activities near the tailings facility.

Several regulatory agencies and KGCMC participated in a third-party review of water quality data and waste rock/tailings management in 1999 – 2000. One aspect of this review was to evaluate the FWMP, including monitoring practices, laboratory protocols, sampling locations, and data interpretation. The review resulted in a report that contained several recommendations and conclusions, including a statement to the effect that no trends in increasing metal and sulfate levels or acidity were evident (Shepherd Miller Inc., 2000).

Table 3-4 **Groundwater Quality - FWMP Wells** 

| Analyte                   | MW-2S FWMP #27<br>Peat<br>(range, average) | MW-2D FWMP<br>#28 Deep Till<br>(range, average) | MW-3S FWMP<br>#29 Peat<br>(range, average) | MW-3D FWMP<br>#30 Bedrock<br>(range, average) |
|---------------------------|--------------------------------------------|-------------------------------------------------|--------------------------------------------|-----------------------------------------------|
| Total Alkalinity, mg/l    | 22-206, 85                                 | 89-410, 117                                     | 0.1-120, 72                                | 187-394, 282                                  |
| Hardness, mg/l            | 11-150, 69                                 | 54.8-78.8, 69                                   | 25.7-132, 65                               | 13-72, 31                                     |
| Conductivity, umhos/cm    | 10-400, 201                                | 150-560, 220                                    | 19-250, 165                                | 330-688, 494                                  |
| pH, lab, s.u.             | 5.4-8.5, 6.3                               | 6.4-9.9, 8.2                                    | 4.8-7.8, 6.0                               | 7.78-9.35, 8.3                                |
| Arsenic, dissolved, μg/l  | ND-13, 0.48                                | ND-141, 73.00                                   | ND-36, 16.22                               | ND-49, 29.48                                  |
| Barium, dissolved, µg/l   | ND-1000, 37.0                              | ND-90, 3.5                                      | ND-600, 33.2                               | ND-720, 26.1                                  |
| Cadmium, dissolved, µg/l  | ND-58, 0.68                                | ND-3.0, 0.06                                    | ND-3.0, 0.03                               | ND-3.0, 0.03                                  |
| Chromium, dissolved, µg/l | ND-5.28, 0.054                             | ND-0.52, 0.025                                  | ND-3.4, 0.192                              | ND-4.14, 0.073                                |
| Copper, dissolved, µg/l   | ND-30, 2.65                                | ND-10, 0.51                                     | ND-23, 1.69                                | ND-20, 1.69                                   |
| Lead, dissolved, μg/l     | ND-2.34, 0.102                             | ND-0.0609,<br>0.00006                           | ND-21.0, 0.42                              | ND-30, 0.67                                   |
| Mercury, dissolved, µg/l  | ND-0.00448,<br>0.00021                     | ND-0.00137,<br>0.00005                          | ND-0.00248,<br>0.00014                     | ND-0.00153,<br>0.00004                        |
| Nickel, dissolved, μg/l   | ND-50, 3.21                                | ND-40, 1.56                                     | ND-70, 3.45                                | ND-20, 1.44                                   |
| Selenium, dissolved, µg/l | ND-0.219, 0.0047                           | ND-0.287,<br>0.0027                             | ND-0.2380,<br>0.0066                       | ND-0.28, 0.0028                               |
| Silver, dissolved, µg/l   | ND-0.172, 0.0024                           | ND-0.0536,<br>0.0012                            | ND-0.162,<br>0.0019                        | ND-2.0, 0.020                                 |
| Sulfate, mg/l             | ND-12, 1.84                                | 9-150, 13.17                                    | ND-10.7, 1.55                              | ND-13.4, 1.42                                 |
| Zinc, dissolved, µg/l     | ND-220, 24.85                              | ND-54, 3.29                                     | ND-230, 24.14                              | ND-210, 7.99                                  |


ND = non-detect. Detection limits have varied over the years. Current and past detection limits are listed in (KGCMC, 2001a). Data collected 1988-2002; Data compiled from KGCMC water quality database (KGCMC, 2003).

**Greens Creek Tailings** 3.8 Hydrology 3-27

This page intentionally left blank.

3-28 3.8 Hydrology Greens Creek Tailings EIS

Conceptual Model of Groundwater Occurrence and Flow in the Area of the Existing Tailings Facility (EDE, 2002a). Figure 3-10



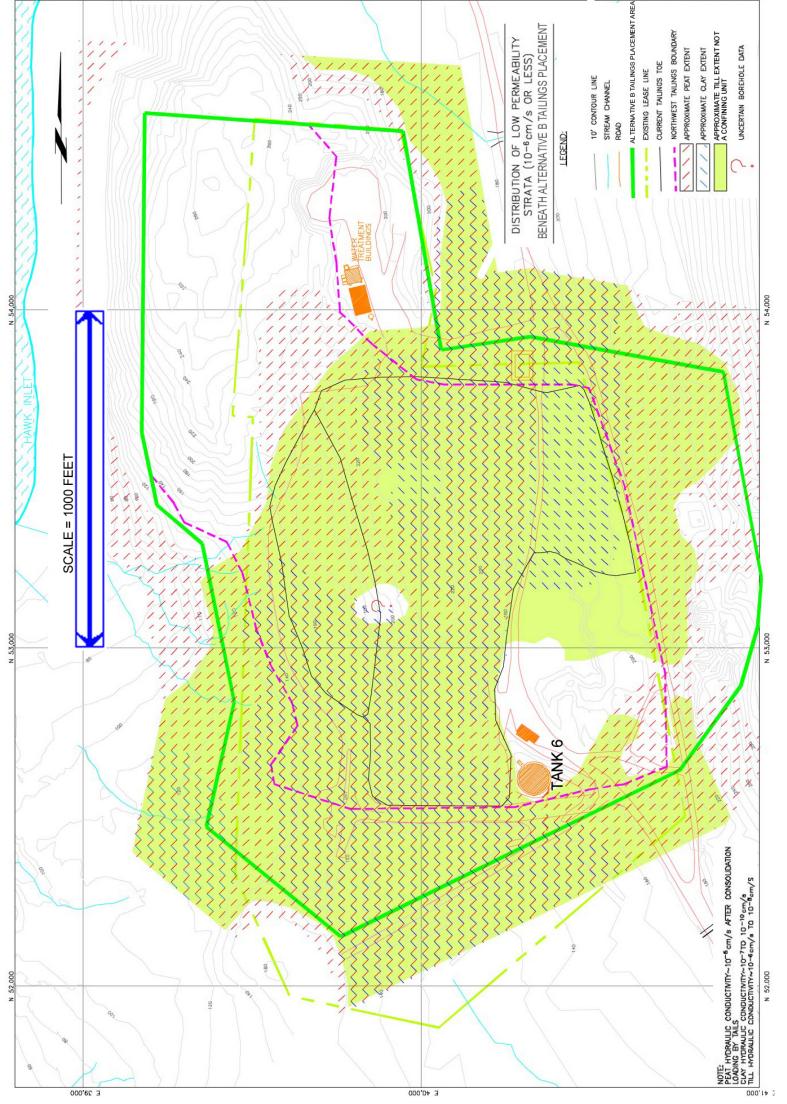



Figure 3-11 Extent of the Silty Clay Layer at the Site, along with the Distribution of Peat and Till Deposits

Figure 3-12 Generalized Ground Water Flow Pattern for Alternative C (EDE 2002b)

 SURFACE SAMPLE SITES as per EDE Geochem report • WELL/PIEZO INSTALLTIONS as of July 2002 NORTH RETENTION POND EAST TALS AREA MW-5 OUTFALL SHACK SETTLING POND 6 feet 1000 SOUTHWEST BEDROCK KNOB II Scale

Monitoring Wells (MW) and Sampling Sites Located Upgradient and Downgradient from the Tailings Facility (EDE, 2002a) Figure 3-13

Two new FWMP monitoring wells were installed by KGCMC in 2000 to replace an older well (MW-4, FWMP #31) that became obsolete when this expansion project began in 2000. These new wells were completed uphill from the tailings pile. Several other monitoring wells are also located uphill from the tailings pile, but are not included in the FWMP (Figure 3-13) These additional wells were constructed between 1998-2001, and are completed in the peat, sand, and till zones. All of these wells are located upgradient from any mining-related activity. Water quality data from these wells are summarized in Table 3-5. Due to the limited number of times these wells have been sampled, these data are combined according to water quality parameters. The data show near neutral pH for those wells in the sand and till, and a lower pH for those wells completed in the peat due to organic acids from decomposing vegetation.

Table 3-5 **Groundwater Quality Summary – Upgradient Wells** 

MW-98-2, MW-98-3, MW-98-5, MW-00-3A, MW-00-3B, MW-00-2A, MW-00-1B, MW-00-1A (FWMP #59), MW-00-1C (FWMP #58)

| Analyte                   | Peat, sand, till (range, average) |
|---------------------------|-----------------------------------|
| Total Alkalinity, mg/l    | 30-120, 78                        |
| Hardness, mg/l            | 27.5-106, 62.1                    |
| Conductivity, umhos/cm    | 45-241, 167                       |
| pH, s.u.                  | 5.2-7.6, 6.3                      |
| Arsenic, dissolved, µg/l  | 0.5-12.6, 3.2                     |
| Barium, dissolved, µg/l   | 7.1-253, 50.1                     |
| Cadmium, dissolved, µg/l  | ND                                |
| Chromium, dissolved, µg/l | 0.46-9.7, 1.6                     |
| Copper, dissolved, µg/l   | 0.5-10.2, 1.7                     |
| Lead, dissolved, μg/l     | 0.2-6.6, 1.6                      |
| Mercury, dissolved, μg/l  | ND                                |
| Nickel, dissolved, μg/l   | 0.5-8.4, 2.2                      |
| Selenium, dissolved, µg/l | ND-7.1, 1.2                       |
| Silver, dissolved, µg/l   | ND-1.0, 0.3                       |
| Sulfate, mg/l             | 2.7-78.6, 11.5                    |
| Zinc, dissolved, µg/l     | ND-123.0, 13.2                    |

ND = non detect. From (EDE, 2002b)

The data also show low sulfate concentrations, and low values of dissolved metals.

**Greens Creek Tailings** 3.8 Hydrology 3-37

Analyses of water quality samples from other non-FWMP wells located downgradient (north, south, and west) of the tailings pile indicate some anomalous (i.e., high relative to background) sulfate concentrations. Higher concentrations of metals and lower pH values were not observed in these wells. The wells include MW-01-07, MW-01-08, MW-01-09, MW-01-03A and MW-96-4 on the north side; MW-00-04A, MW-01-06A, MW-01-06B, and MW-01-05 on the south side; and MW-01-15C, MW-01-03B, and MW-01-03A on the west side (Figure 3-13). Water quality data from these wells are shown Table 3-6. An extensive evaluation was conducted to determine the source(s) of the higher sulfate values (EDE, 2002a).

3-38 3.8 Hydrology Greens Creek Tailings

Water Quality from Wells Showing Elevated Sulfate Concentrations Table 3-6

|                  |             | MW-01-15C<br>6/7/01 | MW-01-15C<br>9/6/01 | MW-01-3B<br>6/14/01 | MW-01-3B<br>9/4/01 | MW-01-05<br>4/4/01 | MW-96-4<br>5/24/01 |
|------------------|-------------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|
| Aluminum         | ug/l, diss  | 193                 | 106                 | 135                 | <100               | 247                | 298                |
| Boron            | ug/l, diss  | <100                | <100                | 208                 | 183                | <100               | 122                |
| Barium           | ug/l, diss  | 48                  | 41                  | 225                 | 191                | 138                | 49                 |
| Calcium          | mg/l, diss  | 55                  | 59.1                | 55.7                | 58.8               | 35.6               | 104                |
| Iron             | ug/l, diss  | 140                 | 105                 | <100                | 227                | 291                | 1660               |
| Magnesium        | mg/l, diss  | 11.5                | 10.9                | 31.1                | 33.3               | 71.2               | 28.8               |
| Sodium           | mg/l, diss  | 48.8                | 51.1                | 99.9                | 83.4               | 5.27               | 26.8               |
| Arsenic          | ug/l, diss  | 30.6                | 2.62                | 2.78                | 1.56               | 3.31               | 51.8               |
| Antimony         | ug/l, diss  | 3.46                | <1.0                | 4.19                | 2.76               | 4.53               | <1.0               |
| Cadmium          | ug/l, diss  | <0.1                | <0.1                | <1.0                | <1.0               | <0.1               | <0.1.0             |
| Chromium         | ug/l, diss  | 1.15                | 1.16                | <1.0                | <1.0               | 0.78               | 1.29               |
| Copper           | ug/l, diss  | 3.38                | <2.0                | 2.24                | <2.0               | 1.26               | 7.62               |
| Lead             | ug/l, diss  | 0.3                 | <1.0                | <1.0                | <1.0               | 0.26               | <0.2               |
| Manganese        | ug/l, diss  | 725                 | 455                 | 551                 | 1100               | 162                | 871                |
| Molybdenum       | ug/l, diss  | 15.4                | 13.0                | 17.4                | 14.6               | 7.0                | 40.8               |
| Mercury          | ug/l, diss  | <0.01               | <0.01               | <0.01               | <0.01              | <0.01              | <0.01              |
| Nickel           | ug/l, diss  | 7.35                | 6.96                | <2.0                | <2.0               | 0.69               | 1.76               |
| Selenium         | ug/l, diss  | 2.39                | <1.0                | 5.88                | 3.05               | <1.0               | 1.6                |
| Silver           | ug/l, diss  | 0.2                 | <1.0                | <1.0                | <1.0               | 0.4                | <1.0               |
| Zinc             | ug/l, diss  | 4.0                 | <5.0                | 8.35                | 5.85               | <1.0               | <5.0               |
| Potassium        | mg/l, diss  | 9.66                | 8.35                | 12.9                | 10.7               | 1.67               | 5.37               |
| Lab pH           | s.u.        | 7.72                | 7.24                | 7.44                | 7.89               | 7.82               | 7.66               |
| Field pH         | s.u.        | 7.12                | 7.05                | 7.8                 | 7.68               | 7.9                | 7.68               |
| Acidity          | mg/l, CaCO3 | <10.0               | <10.0               | <10.0               | <10.0              | <10.0              | <10.0              |
| Phosphorus       | mg/l        | 0.514               | 2.3                 | 0.0422              | 0.0377             | 0.0263             | 0.0645             |
| Orthophosphat    | mg/l        | 1.49                | 13                  | 0.0149              | 0.0107             | 0.0149             | 0.0224             |
| DOC              | mg/l        | 10.2                | 6.96                | 4.18                | <4.0               | 2.3                | 3.51               |
| Bicab Alkalinity | mg/l CaCO3  | 211                 | 219                 | 122                 | 148                | 80.4               | 164                |
| Total Alkalinity | mg/l CaCO3  | 211                 | 219                 | 122                 | 148                | 80.4               | 164                |
| Silica           | mg/l        | 21.1                | 21.9                | 9.4                 | 8.33               | 11                 | 56.5               |
| Chloride         | mg/l        | 4.91                | 5.16                | 173                 | 143                | 2.95               | 5.47               |
| Fluoride         | mg/l        | 0.237               | 0.292               | 0.409               | 0.352              | <0.1               | 0.257              |
| Nitrate-N        | mg/l as N   | <0.1                | <0.1                | 0.193               | 0.35               | <0.1               | <0.1               |
| Nitrite-N        | mg/l        | <0.1                | <0.1                | <0.1                | <0.1               | <0.1               | <0.1               |
| Sulfate          | mg/l        | 84.2                | 96.2                | 170                 | 201                | 29.3               | 247                |
| Sulfide          | mg/l        | 0.0805              |                     |                     |                    |                    | <0.05              |
| Lab Sp. Cond.    | uS/cm       | 565                 | 648                 | 1090                | 1020               | 226                | 790                |
| Field Sp. Cond.  | uS/cm       | 593                 | 880                 | 880                 | 1044               | 234                | 784                |
| TDS              | mg/l        | 440                 | 480                 | 680                 | 630                | 130                | 550                |
| TSS              | mg/l        | 5                   | <4.0                | <4.0                | <4.0               | 5                  | 7                  |
| Hardness         | mg/l        | 47.4                | 192                 | 267                 | 284                | 118                | 378                |
| Field Temp       | С           | 7.9                 | 9.9                 | 8.4                 | 11.1               | 4.8                | 9.7                |

Greens Creek Tailings EIS 3.8 Hydrology 3-39

Table 3-6 (continued) Water Quality from Wells Showing Elevated Sulfate Concentrations

|                  |                         | MW-01-06A | MW-01-06B | MW-01-07 | MW-01-08 | MW-01-09 | MW-01-03A |
|------------------|-------------------------|-----------|-----------|----------|----------|----------|-----------|
|                  |                         | 4/4/01    | 4/4/01    | 5/31/01  | 4/4/01   | 5/31/01  | 4/9/01    |
| Aluminum         | ug/l, diss              | 111       | 148       | 422      | 233      | 271      | 125       |
| Boron            | ug/I, diss              | <100      | <100      | 146      | <100     | <100     | <100      |
| Barium           | ug/l, diss              | 102       | 111       | 47.5     | 140      | 83.2     | 128       |
| Calcium          | mg/l, diss              | 51.8      | 52.1      | 326      | 120      | 123      | 48.1      |
| Iron             | ug/l, diss              | 812       | <100      | 123      | <100     | 2390     | 1460      |
| Magnesium        | mg/l, diss              | 13.2      | 12.2      | 38.2     | 18.0     | 20.1     | 16.7      |
| Sodium           | mg/l, diss              | 9.7       | 23.5      | 36.6     | 12.6     | 7.2      | 29        |
| Arsenic          | ug/l, diss              | 5.97      | 3.88      | 1.02     | 1.83     | 1.43     | 7.22      |
| Antimony         | ug/l, diss              | 0.73      | 4.3       | <1.0     | 4.24     | <1.0     | 0.92      |
| Cadmium          | ug/l, diss              | <0.1      | 0.79      | 0.21     | 0.13     | 0.15     | <0.1      |
| Chromium         | ug/l, diss              | 0.56      | 0.65      | 2.67     | 0.51     | 2.53     | 0.58      |
| Copper           | ug/l, diss              | 0.68      | 2.07      | 1.14     | 123.0    | 0.51     | 1.35      |
| Lead             | ug/l, diss              | <0.2      | 0.74      | <0.2     | 0.78     | <0.2     | 0.32      |
| Manganese        | ug/l, diss              | 871       | 607       | 2700     | 141      | 1890     | 266       |
| Molybdenum       | ug/l, diss              | <5.0      | 5.46      | 15.1     | 44       | 6.07     | 5.34      |
| Mercury          | ug/l, diss              | <0.01     | <0.01     | <0.01    | <0.01    | <0.01    | <0.01     |
| Nickel           | ug/l, diss              | 1.17      | 3.12      | 17.1     | 7.83     | 10.8     | 2.61      |
| Selenium         | ug/l, diss              | <1.0      | 2.29      | 2.14     | 2.52     | 1.34     | 2.21      |
| Silver           | ug/l, diss              | 0.41      | 0.31      | <0.1     | 0.28     | <0.1     | 1.1       |
| Zinc             | ug/l, diss              | 10.2      | 1.76      | 9.09     | 40.5     | <5.0     | 9.57      |
| Potassium        | mg/l, diss              | 5.47      | 11.5      | 8.07     | 9.75     | 6.8      | 4.18      |
| Lab pH           | s.u.                    | 7.39      | 7.44      | 7.24     | 7.52     | 7.21     | 7.47      |
| Field pH         | s.u.                    | 7.53      | 7.6       | 7.3      | 7.71     | 7.14     | 7.25      |
| Acidity          | mg/l, CaCO <sub>3</sub> | <10.0     | <10.0     | <10.0    | <10.0    | <10.0    | <10.0     |
| Phosphorus       | mg/l                    | 0.0148    | < 0.005   | 0.0198   | < 0.005  | 0.0164   | 0.0249    |
| Orthophosphat    | mg/l                    | 0.00242   | 0.00242   | 0.00215  | 0.00296  | 0.00614  | 0.00216   |
| DOC              | mg/l                    | 4.3       | 3.58      | 4.14     | 4.12     | 4.86     | 7.06      |
| Bicab Alkalinity | mg/l CaCO₃              | 147       | 159       | 182      | 189      | 161      | 140       |
| Total Alkalinity | mg/l CaCO₃              | 147       | 159       | 182      | 189      | 161      | 140       |
| Silica           | mg/l                    | 13        | 12.6      | 9.74     | 10.2     | 6.46     | 9.95      |
| Chloride         | mg/l                    | 4.79      | 64        | 33.8     | 7.35     | 5.6      | 2.78      |
| Fluoride         | mg/l                    | <0.1      | 0.175     | 0.264    | 0.233    | 0.28     | 0.208     |
| Nitrate-N        | mg/l as N               | <0.1      | <0.1      | <0.1     | <0.1     | <0.1     | <0.1      |
| Nitrite-N        | mg/l                    | <0.1      | <0.1      | <0.1     | <0.1     | <0.1     | <0.1      |
| Sulfate          | mg/l                    | 40        | 93.2      | 888      | 174      | 210      | 11.9      |
| Sulfide          | mg/l                    |           |           | < 0.05   |          | < 0.05   |           |
| Lab Sp. Cond.    | uS/cm                   | 382       | 704       | 1750     | 740      | 709      | 289       |
| Field Sp. Cond.  | uS/cm                   | 403       | 484       | 1641     | 798      | 694      | 452       |
| TDS              | mg/l                    | 210       | 330       | 1400     | 490      | 470      | 160       |
| TSS              | mg/l                    | 4         | 5         | 10       | <4.0     | 9        | 12        |
| Hardness         | mg/l                    | 184       | 180       | 971      | 374      | 390      | 189       |
| Field Temp       | С                       | 5.1       | 4.3       | 7.5      | 5.4      | 7.9      | 7         |

3-40 3.8 Hydrology Greens Creek Tailings

Table 3-6 (continued) Water Quality from Wells Showing Elevated Sulfate Concentrations

|                  |             | MW-01-3A    | MW-00-4A     |
|------------------|-------------|-------------|--------------|
|                  |             | 9/4/01      | 5/24/01      |
| Aluminum         | ug/l, diss  | 169         | 100          |
| Boron            | ug/l, diss  | <100        | <100         |
| Barium           | ug/l, diss  | 166         | 54.6         |
| Calcium          | mg/l, diss  | 35.2        | 70.4         |
| Iron             | ug/l, diss  | 3460        | 5790         |
| Magnesium        | mg/l, diss  | 15          | 9.83         |
| Sodium           | mg/l, diss  | 61.3        | 20.7         |
| Arsenic          | ug/l, diss  | 21.2        | 4.59         |
| Antimony         | ug/l, diss  | <1.0        | <1.0         |
| Cadmium          | ug/l, diss  | <1.0        | <0.1         |
| Chromium         | ug/l, diss  | 1.26        | 1.33         |
| Copper           | ug/l, diss  | <2.0        | <0.5         |
|                  | •           |             |              |
| Lead             | ug/l, diss  | <1.0<br>481 | <0.2<br>43.2 |
| Manganese        | ug/l, diss  |             |              |
| Molybdenum       | ug/l, diss  | <5.0        | <5.0         |
| Mercury          | ug/l, diss  | <0.01       | <0.01        |
| Nickel           | ug/l, diss  | <2.0        | 1.2          |
| Selenium         | ug/l, diss  | <1.0        | <0.5         |
| Silver           | ug/l, diss  | <1.0        | <0.1         |
| Zinc             | ug/l, diss  | <5.0        | 5.93         |
| Potassium        | mg/l, diss  | 5.24        | 1.89         |
| Lab pH           | s.u.        | 7.81        | 6.79         |
| Field pH         | s.u.        | 7.48        | 6.91         |
| Acidity          | mg/l, CaCO₃ | <10.0       | <10.0        |
| Phosphorus       | mg/l        | 0.0674      | 0.0317       |
| Orthophosphat    | mg/l        | 0.0282      | 0.0176       |
| DOC              | mg/l        | 29          | 8.86         |
| Bicab Alkalinity | mg/l CaCO₃  | 239         | 179          |
| Total Alkalinity | mg/l CaCO₃  | 239         | 179          |
| Silica           | mg/l        | 5.84        | 81.8         |
| Chloride         | mg/l        | 6.08        | 5.82         |
| Fluoride         | mg/l        | 0.181       | 0.252        |
| Nitrate-N        | mg/l as N   | <0.1        | <0.1         |
| Nitrite-N        | mg/l        | <0.1        | <0.1         |
| Sulfate          | mg/l        | 149         | 78.6         |
| Sulfide          | mg/l        |             | < 0.05       |
| Lab Sp. Cond.    | uS/cm       | 725         | 511          |
| Field Sp. Cond.  | uS/cm       | 623         | 518          |
| TDS              | mg/l        | 540         | 320          |
| TSS              | mg/l        | <4.0        | 12           |
| Hardness         | mg/l        | 150         | 216          |
| Field Temp       | Č           | 9.8         | 8.5          |

The findings of this evaluation indicate that the higher sulfate concentrations in the groundwater on the north side is likely due to the disturbed pyritic rock in the Pit 5 quarry area. The bedrock knob in the northwest corner of the

3.8 Hydrology 3-41 **Greens Creek Tailings** 

tailings facility may also contribute. Confirmation of the source of the sulfate in the Pit 5 area will be made by continuing the water quality monitoring program described in KGCMC, 2003.

On the south side, KGCMC's evaluation concluded that rock exposed at the Wide Corner area northeast of Tank 6 (Figure 3-14) contains pyritic zones that could account for the minor sulfate loading observed in the wells. This area has been covered with an engineered liner prior to tailings placement as part of the Southeast Expansion.

An evaluation of the west-side wells concluded that water in the shallow sands may have come into contact with water from Further Seep (see next section), pyritic rock and/or tailings prior to the 1996 slurry wall construction. Two possible sources for the elevated sulfate in the west-side bedrock wells are the bedrock knob near the northwest corner of the tailings pile and the northern terminus of the West Buttress slurry wall where it keys into bedrock. The influence of the higher sulfate concentrations appear to be localized, and there is an absence of a tailings contact water signature such as elevated metal levels, associated with these sulfate concentrations. Therefore, it is believed that the bentonite slurry walls and clay/silt sedimentary units are performing well with respect to capturing and preventing migration of tailings contact water. Confirmation will be made by obtaining additional water elevation data on either side of the slurry wall beneath the West Buttress as well as continuing water quality analyses for these sites.

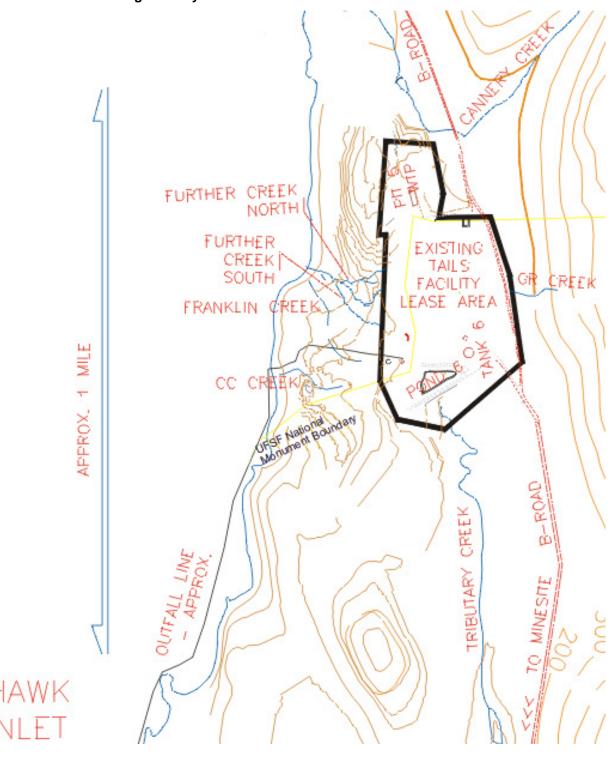
## 3.8.2 Surface Water Quality

Surface water quality has been evaluated from FWMP samples taken from Tributary Creek downgradient from the tailings facility and Cannery Creek upgradient and downgradient from the existing tailings facility (Table 3-8)

A summary of surface water quality data from FWMP monitoring sites located on Cannery and Tributary Creeks is shown in Table 3-7.

3-42 3.8 Hydrology Greens Creek Tailings

Table 3-7 **Surface Water Quality – FWMP Sites** 


| Analyte                   | FWMP #9<br>Tributary Creek<br>(range, average) | FWMP #11<br>Cannery Creek<br>(range, average) | FWMP #37 Upper<br>Cannery Creek<br>(range, average) |
|---------------------------|------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|
| Total Alkalinity, mg/l    | 8-21, 13                                       | 7-31, 15                                      | 8.2-27, 14                                          |
| Hardness, mg/l            | 23-159, 43                                     | 14-49, 33                                     | 14-39, 28                                           |
| Conductivity, umhos/cm    | 33-150, 83                                     | 39-208, 72                                    | 36-133, 58                                          |
| pH, s.u.                  | 4.2-8, 6.6                                     | 6.6-7.4, 7.0                                  | 6.5-7.5, 7.1                                        |
| Arsenic, dissolved, µg/l  | ND-2, 0.025                                    | All non detect                                | All non detect                                      |
| Barium, dissolved, µg/l   | ND-80, 3.0                                     | All non detect                                | All non detect                                      |
| Cadmium, dissolved, µg/l  | ND-195, 5.87                                   | ND-79, 1.36                                   | ND-8, 0.44                                          |
| Chromium, dissolved, µg/l | ND-10, 0.167                                   | All non detect                                | All non detect                                      |
| Copper, dissolved, µg/l   | ND-55, 5.10                                    | ND-40, 0.66                                   | All non detect                                      |
| Lead, dissolved, µg/l     | ND-64, 2.08                                    | ND-9, 0.37                                    | ND-4.9, 0.16                                        |
| Mercury, dissolved, μg/l  | ND-0.7, 0.027                                  | All non detect                                | All non detect                                      |
| Nickel, dissolved, μg/l   | ND-30, 6.55                                    | ND-20, 0.50                                   | All non detect                                      |
| Selenium, dissolved, µg/l | ND-1.3, 0.0163                                 | All non detect                                | ND-5.8, 0.1160                                      |
| Silver, dissolved, µg/l   | ND-31, 0.3864                                  | All non detect                                | ND-10, 0.2000                                       |
| Sulfate, mg/l             | ND-52, 18.6                                    | ND-13, 5.6                                    | ND-7.1, 1.7                                         |
| Zinc, dissolved, μg/l     | ND-550, 38.48                                  | ND-47, 5.82                                   | ND-440, 15.38                                       |

ND = non detect. Detection limits have varied over the years. Current and past detection limits are listed in (KGCMC, 2001a). Data available for FWMP #9:1981-1993; FWMP # 11: 1981, 1990-1995; FWMP # 37: 1991-1993.

Data compiled from KGCMC water quality database, (KGCMC, 2003).

**Greens Creek Tailings** 3.8 Hydrology 3-43

Figure 3-14 Upgradient and Downgradient Surface Water Flow from the Existing Tailings Facility



3-44 3.8 Hydrology Greens Creek Tailings

In general, surface water quality is characterized as having near-neutral pH, with low levels of dissolved metals and sulfate. Water quality data does not generally vary in Cannery Creek between the monitoring sites up- and downhill from the tailings facility. Surface water quality data indicate that AWQS have not been exceeded in Cannery Creek. The data from Tributary Creek reveal dissolved levels of cadmium, copper, mercury and zinc having values above the AWQS (reported as total recoverable) for these parameters. This is due to unusually high levels of these metals recorded on a few sampling dates in the late 1980s and 1990. Since 1990, these parameters have been analyzed at levels below AWQS. A low pH reading of 4.2 in November 1989 appears to be an anomalous value that is not associated with sulfate or metals having higher than normal values on that sampling date. The data set also indicates that upward trends in metal levels and sulfate, or downward trends in pH are not evident (SMI, 2000).

Water samples were collected from GR Creek in 2001 and analyzed for various parameters as part of the baseline studies conducted for this EIS. GR Creek is located to the east and uphill of the tailings pile. Table 3-8 shows a summary of the sampling results. Surface water quality is generally characterized as having near-neutral pH, with very low levels of dissolved metals and sulfate. Water quality in GR Creek is similar to that of Tributary Creek, which received flow directly from GR Creek prior to construction of the tailings pile.

Surface Water Quality -GR Creek Table 3-8

| Analyte                   | GR Creek 5/9/2001 |
|---------------------------|-------------------|
| Total Alkalinity, mg/l    | 8.0               |
| Hardness, mg/l            | 13.7              |
| Conductivity, umhos/cm    | 33                |
| pH, s.u.                  | 6.51              |
| Arsenic, dissolved, µg/l  | 0.5               |
| Barium, dissolved, µg/l   | 9.2               |
| Cadmium, dissolved, mg/l  | 0.1               |
| Chromium, dissolved, µg/l | 15.5              |
| Copper, dissolved, µg/l   | 4.7               |
| Lead, dissolved, µg/l     | 0.2               |
| Mercury, dissolved, µg/l  | 0.010             |
| Nickel, dissolved, µg/l   | 2.15              |
| Selenium, dissolved, µg/l | 0.5               |
| Silver, dissolved, µg/l   | 0.19              |
| Sulfate, mg/l             | 2.6               |
| Zinc, dissolved, µg/l     | 4.77              |
| ND = non detect.          | (EDE, 2002b)      |

**Greens Creek Tailings** 3.8 Hydrology 3-45 The Hawk Inlet catchment contains several small streams and seeps (Figure 3-14), which were also sampled during baseline data collection efforts in 2001. Samples were collected in Proffett/Franklin Creeks, Cannery Creek (2 sites), Further Creek (4 sites), Further Seep and the Duck Blind Drain. Table 3-9 presents a summary of water quality data for these surface water features around the tailings placement area.

Table 3-9 Surface Water Quality – Hawks Inlet Catchment

| Analyte                   | Cannery<br>Creek<br>(2 sites) | Proffett/<br>Franklin<br>Creek<br>(2 sites) | Further<br>Creek<br>(4 sites) | Further<br>Seep | Duck Blind<br>Drain |
|---------------------------|-------------------------------|---------------------------------------------|-------------------------------|-----------------|---------------------|
| Total Alkalinity, mg/l    | ND                            | 29-71                                       | ND-13                         | ND              | 234                 |
| Hardness, mg/l            | 13-16                         | 101-206                                     | 72-164                        | 78-79           | 673                 |
| Conductivity, umhos/cm    | 21-29                         | 198-382                                     | 131-303                       | 342-377         | 1205                |
| pH, s.u.                  | 5.7-6.2                       | 7.0-7.4                                     | 5.2-6.9                       | 3.3             | 6.6                 |
| Arsenic, dissolved, µg/l  | ND-0.6                        | ND                                          | ND-2.1                        | ND-1.1          | 1.0                 |
| Barium, dissolved, μg/l   | 7.1-12.4                      | 15.5-25.9                                   | 30.5-81.4                     | 34.6-42.4       | 59                  |
| Cadmium, dissolved, µg/l  | ND                            | ND                                          | ND-0.6                        | 0.2-0.3         | ND                  |
| Chromium, dissolved, µg/l | 1.6-19.5                      | ND-1.1                                      | ND-19.8                       | 1.1-1.9         | ND                  |
| Copper, dissolved, µg/l   | 1.4-7.2                       | ND                                          | 1.5-7.1                       | 4.3-4.9         | ND                  |
| Lead, dissolved, µg/l     | 0.28-0.87                     | ND                                          | 0.7-4.3                       | 1.9-3.6         | ND                  |
| Mercury, dissolved, μg/l  | ND                            | ND                                          | ND                            | ND              | ND                  |
| Nickel, dissolved, µg/l   | 1.2-2.3                       | ND                                          | 2.3-7.4                       | 6.8-7.8         | 65.9                |
| Selenium, dissolved, µg/l | ND-1.8                        | ND                                          | ND-1.4                        | ND              | 1.3                 |
| Silver, dissolved, μg/l   | 0.2-0.7                       | ND                                          | 0.2-0.5                       | ND-0.16         | ND                  |
| Sulfate, mg/l             | 0.8-1.5                       | 63-140                                      | 43-149                        | 98-118          | 496                 |
| Zinc, dissolved, μg/l     | 3.9-5.0                       | ND                                          | 29.3-209                      | 65.4-71.8       | 97.3                |

ND = non detect. (EDE, 2002b)

Water quality in Further Creek, Further Seep, and Duck Blind Drain differ from surface water quality seen in Tributary, GR Creek, and Cannery Creeks. Lower pH and higher sulfate and zinc concentrations are evident; however, dissolved metal concentrations excepting zinc are within the range of other nearby streams. KGCMC notified the regulatory agencies of these water quality data, and proposed further characterization of the area in an action plan to the agencies dated September 6, 2001. This action plan provided data for a rigorous evaluation of the groundwater, surface water and seeps around

3-46 3.8 Hydrology Greens Creek Tailings

the tailings pile (EDE, 2002a), and sampling of both surface and groundwater sites continues.

Conclusions drawn from this evaluation indicate that the lower pH and higher sulfate waters do not show a tailings contact (i.e., interstitial) water component. Rather, the source(s) are believed to be pyritic material (quarry rock, production rock, or tailings) that lie outside the capture area for the slurry walls and clay/silt units underlying the tailings pile.

More specifically, the source of these anomalous waters in Further Seep area is believed to be residual effects of an old access road constructed in 1988 that contained pyritic rock. The road was located along a portion of the perimeter of the West Buttress. This road was removed during West Buttress and slurry wall construction. The acidity of the seep is not significantly higher than the acidity of typical muskeg water. The maximum concentrations of some metals such as copper, lead and zinc are below maximum background concentrations observed in the peat, sand, silt, and bedrock near the site (KGCMC, 2003). Observations of reduced impacts to vegetation in the seep area suggest that the source of acidity has been removed and that the quality of the seep is improving (EDE, 2002a, KGCMC, 2003). The North Fork South Spur of Further Creek has higher dissolved constituent loading than other locations within the Further Creek area. This is believed to be due to a thin veneer of tailings residue at the toe of the West Buttress. It is believed this residue accumulated during removal of the temporary PVC tailings cover in 1999. Another small exposure of tailings was identified in the bank of the Northwest Diversion Ditch located at the northwest corner of the West Buttress. This is also believed to be contributing to the Further Creek load. Routing the Northwest Diversion Ditch into the West Buttress Ditch (thus routing the water to the tailings water treatment system), and removing accessible tailings residue from the toe of the West Buttress Ditch, along with additional monitoring of these waters was completed by KGCMC in 2002.

The source of dissolved constituents in Proffett/Franklins Creek and Duck Blind Drain appears to be an access road and trench construction materials used for the NPDES discharge pipeline and associated utilities. This pipeline trench provides a preferential flow path for water along a portion of the western perimeter of the tailings pile. It is believed that the pyritic quarry rock used for pipe bedding and backfill contains carbonate mineralization but lacks zinc mineralization, which controls the water composition of Duck Blind Drain and ultimately Proffett/Franklins Creek. KGCMC has proposed routing the Duck Blind Drain directly to the NPDES discharge line, as well as continued monitoring of these waters.

**Greens Creek Tailings** 3.8 Hydrology 3-47

### 3.8.3 Tailings Facility Operation

The mining process involves crushing ore and removing metal concentrates through a chemical flotation process. After the economically valuable metals are gone, the tailings are dewatered in a filter press. About half of the dry volume is then placed in the underground mine as backfill; the remaining half goes on the tailings pile.

# 3.8.4 Tailings and Rock Placement and Physical Characteristics

Materials are initially placed on the pile in discrete areas. During dry weather, tailings are distributed in thin layers and compacted to at least 90 percent of their Proctor density. The interior of the facility is accessed via temporary causeways that are constructed from crushed rock. The facility is designed and operated to keep the tailings moist to allow adequate compaction without excessive saturation. Excessive saturation prevents compaction and reduces material strength. Tailings placement techniques minimize the development of seepage and also insure that the pile is geotechnically stable.

The tailings, consisting of predominantly silt-sized particles, are delivered to the tailings facility by covered truck. Tailings are 76 to 96 percent finer than a 200 mesh (0.075 mm) sieve, and contain 5 to 13 percent clay. Tailings have 12 to 14 percent water by weight when they leave the mill. After placement, tailings have a dry bulk density of 2.15 g/cm³ (134 lbs/cu. ft.) and a specific gravity of 3.6 g/cm³ (EDE, 2002b). The porosity is approximately 40 percent, of which 64 to 75 percent is water-filled when initially placed in the pile. Consequently, the volumetric water content of the tailings, when placed, is 25.6 to 30 percent by volume.

Rock from Pit 5 is used for the construction of access roads, dams, and water containment/diversion facilities. Rock from the new quarry site in the SW expansion would also be used for these purposes under all action alternatives. Quarry rock with higher pyrite content is only used for internal tailings area road construction and other construction within the containment area of the tailings facility. Construction outside of the containment will only be done with rock with a low acidic potential (Zimmer, 2003).

## 3.8.5 Tailings Geochemical Properties

Tailings at the Greens Creek Mine were derived from zinc, silver, lead and gold-bearing rocks mined from deep underground. The ore is a massive sulfide deposit meaning that the tailings contain a large amount of pyrite, which, when exposed to oxygen, generates sulfuric acid, which causes an acidic pH. If acidic pH conditions develop in mining wastes (especially pH

3-48 3.8 Hydrology Greens Creek Tailings

less than 4.0), metals and sulfate contained in the material become more soluble than they are when the pH remains alkaline (above a pH of 7.0). Consequently, potentially acid-generating rock wastes are more likely to degrade water quality if waters that contact this rock are released and mix with receiving water.

Calcium carbonate and dolomite are also abundant in the host rocks for the Greens Creek deposit. Consequently, when the tailings weather, the acid formed by sulfide oxidation is neutralized by carbonate minerals. The relative abundance of pyrite and carbonates determines whether acidic conditions will form or the material will retain an alkaline pH because of the carbonates. The balance of acid-forming and acid-neutralizing minerals in mine waste is determined using the static test.

The static test (Sobek et al., 1978) quantifies the acid-generating and acidneutralizing capacity of a sample. The acid-generating potential (AGP) is determined from the measured abundance of sulfide minerals in a sample while the acid-neutralizing potential (ANP) is based on the abundance of carbonate. The ANP minus the AGP is the net neutralization potential or NNP for a sample. Samples with NNP values less than -20 (measured in tons of CaCO<sub>3</sub> per 1,000 tons of material), have a risk of becoming acidic if they are exposed to oxygen (Miller et al., 1997). If the NNP is greater than +20 (or if the ratio of ANP to AGP is greater than 3.0 in some guidelines such as BC Research 1989), then materials are considered to be safe from ARD risk. The long-term behavior of materials with intermediate NNP values cannot be reliably determined with static tests alone.

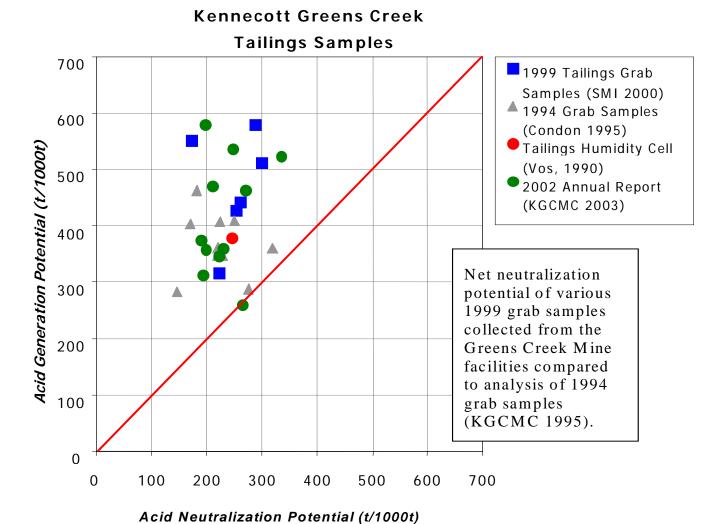
Static testing of tailings from the Greens Creek deposit (Figure 3-15) indicates that they have the potential to become acidic. However, owing to the abundance of calcium carbonate and dolomite in the samples (generally ranging from 10 to 60 percent), a long period of weathering, estimated at more than 10 to 33 years in lab tests conducted on siliceous waste rock samples, would have to occur prior to development of acidic conditions. Before mining, the lag period for siliceous waste rock was estimated to be 22 to 33 years (Vos 1993). This estimate was based on the assumption that oxidation rates observed during 2 years of humidity cell and column tests would continue at the same rate indefinitely, and that acidic conditions would occur when all but 26 to 38 percent of the original carbonate had been removed. In a subsequent test, Vos (1994) removed carbonates by leaching with acid to determine the pore water chemistry that would form after dissolution of all carbonates within the siliceous waste rock. He estimated on the basis of this evaluation that acidification would not occur for more than 10.9 years, which would provide ample time for application of site closure technologies (e.g., the cover) to mitigate the ARD risk.

**Greens Creek Tailings** 3.8 Hydrology 3-49 Vos (1991) also conducted geochemical evaluations of a tailings sample, which provided variable estimates of ARD risk. Static tests indicated that the tailings were potentially acid generating because of the abundance of pyritic sulfur. When the BC confirmation test was conducted in two ways, results indicated ARD risk to be "none" to "marginal." Humidity cell test results through 26 weeks were presented by Vos (1991). The tailings humidity cell and column tests were extended for 573 days as reported by Smith (1991). Based on the extended humidity cell testing, Smith concluded that the tailings were relatively unreactive, that the tailings were unlikely to generate acid, and even if any acid were generated it would be consumed within the tailings mass without being released.

An estimate of lag period in tailings was based on comparison to waste rock lag periods, and on modeling of the results of measured rates of pyrite oxidation in tailings kinetic tests. The evaluation of tailings conducted by Vos (1991) and evaluated by Smith (1991) indicated that the tailings may not become acidic, though the results were not internally consistent and some tests suggested a risk of ARD development. Recent grab samples of tailings (Figure 3-15) show that many samples have a lower NNP than the Vos tailings sample. Consequently, the overall tailings are more safely considered to have a risk of generating locally acidic conditions, especially near the surface where oxidation is more prevalent. Also, during operations the oxidation rate in tailings would likely be less than occurs in waste rock especially as long as new tailings, which inhibit the oxygen supply, are continually added to the pile. Consequently, the lag period in tailings is likely to be longer than in siliceous waste rock because the average tailings ANP (225 t/1,000 t) is greater than the ANP of siliceous waste rock (162 t/1,000 t), because of the slower intrinsic rate of oxidation observed in tailings kinetic tests, and because the oxygen supply is expected to be slower in tailings than in waste rock. It may be that the average lag period (before generation of acidic pH levels) for the operating tailings facility is in the range of 20 to 50 years. Appendix A contains a more detailed discussion of acid generation risk and shows that tailings seepage would not acidify during operations or for an indefinite period after closure because of the following:

- ★ Surficial samples of tailings exposed for many years contain appreciable ANP;
- **→** All paste pH values of tailings are near neutral;
- → No low pH water has been collected in the wet wells;
- ★ Even if tailings acidification occurred in a thin veneer on the tailings surface, the tailings' water would migrate through tens of feet of unoxidized and neutralizing material prior to release from the facility;

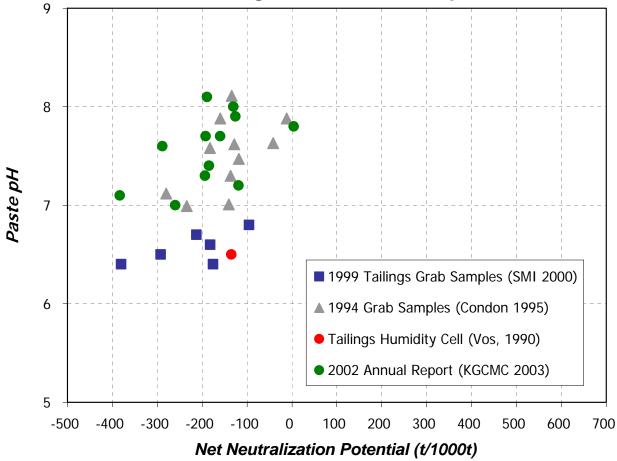
3-50 3.8 Hydrology Greens Creek Tailings


- ★ The cover placed over the tailings pile at closure will nearly arrest oxygen diffusion into the pile; and
- ★ Sulfate reduction processes, which create alkalinity, should occur in the pile for tens of years (or longer if carbon is added). The alkalinity from sulfate reduction will combine with the buffering effect of the unoxidized tailings to counteract acidity.

Reclamation and closure methods developed for the tailings facility are designed to slow or stop the weathering process so that acidification does not occur in the facility after closure. The overall tailings acidification risk is considered minimal. However, the data upon which this analysis is based are variable, and the underlying assumptions have a high degree of uncertainty, making this estimate subject to error. Although the conceptual model of tailings geochemistry assumes that acidification will not occur, a monitoring program is in place (KGCMC 2000) to identify incipient acidic conditions in the tailings facility and develop appropriate mitigation measures. Since acidification, if it occurs, is expected to occur near the surface of the tailings, surface application and incorporation of lime, limestone, or lime-stabilized sewage sludge should provide an effective acid control strategy.

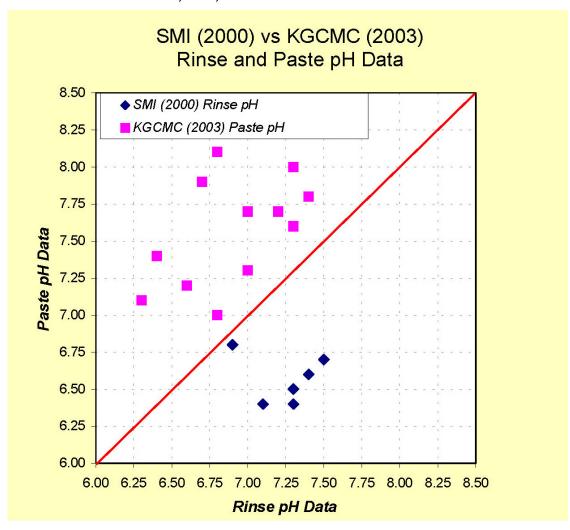
Monitoring of the pH of water that has contacted tailings at Greens Creek (Figure 3-16, Figure 3-17) indicates that the carbonate minerals have maintained a near-neutral pH throughout the operation of the facility. The pH of water collected in the wet wells is discussed in Appendix A. Available data from the drains includes direct measurement of drain chemistry in 1995 (Figure 3-18) when the drains were exposed, and wet well chemistry (including contributions of tailings seepage, groundwater and runoff) measured subsequent to 1995 (Figure 3-19).

Greens Creek Tailings 3.8 Hydrology 3.51


Figure 3-15 Kennecott Greens Creek Tailings Samples



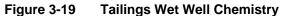
3-52 3.8 Hydrology Greens Creek Tailings

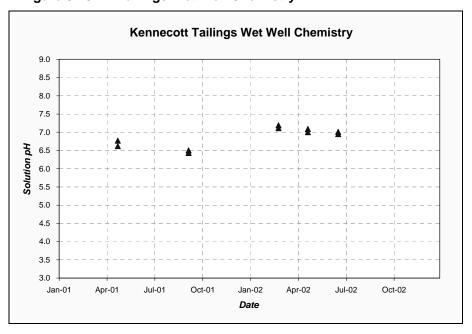

Paste pH and net neutralization potential of various grab samples Figure 3-16 collected from the Greens Creek Mine facilities.





**Greens Creek Tailings** 3.8 Hydrology 3-53


Figure 3-17 Paste pH, humidity cell and net neutralization potential of various grab samples collected from the Greens Creek Mine facilities in 1989, 1994, 1999 and 2002.




3-54 3.8 Hydrology **Greens Creek Tailings** 



Figure 3-18 **Tailings Drain Chemistry** 





3.8 Hydrology 3-55 **Greens Creek Tailings** 

At the neutral pH conditions that are expected to prevail for tens of years in the Greens Creek tailings, oxidation may cause some metals to become soluble. Zinc, for example, is partially soluble even when the pH is alkaline, as in the Greens Creek tailings pile. Consequently, water leaching through or running off of the tailings pile may contain elevated zinc. The *contact water* (water in which the water quality is affected by chemical reaction with the tailings) also has a neutral pH, and elevated concentrations of sulfate, calcium, and magnesium ions.

#### 3.8.6 Surface Water Diversion and Collection

Interception ditches were constructed around the uphill perimeter of the tailings facility to divert natural runoff around the facility. The ditches minimize the amount of contact water that must be collected and treated within the facility. Contact water, which includes surface and groundwater within the tailings facility, is collected, treated, and discharged into Hawk Inlet under an NPDES permit.

The quantity of surface water that is collected within the tailings facility varies through time. For example, records of water collected at wet well 2 (Figure 3-20), shows flow ranging from around 10 gpm during extended periods of dry weather, to over 200 gpm for short periods during a rain or snowmelt event.

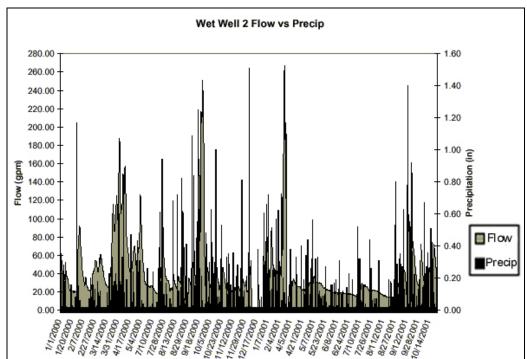



Figure 3-20 Records of Flow and Precipitation Recorded at Wet Well 2

3-56 3.8 Hydrology Greens Creek Tailings

Using similar flow records for the two other wet wells, the average contribution of surface water, groundwater interception, and infiltration was found to be 48.3, 30.5, and 7.5 gpm, respectively (Table 3-10). The surface runoff is collected from approximately 32.7 acres, most of which is composed of tailings, with the remaining area comprised of ponds and land that is inside the diversion ditches but not covered by tailings. The quantity of surface runoff represents 54 percent of the average precipitation received at the site.

**Table 3-10** Estimated average flow, baseflow, and runoff from wet wells #2 and #3.

| Facility   | Underdrain<br>area<br>(Acres) | Runoff<br>area<br>(acres) | Period of<br>Record | Average<br>Flow | Baseflow<br>(gpm) | Runoff |
|------------|-------------------------------|---------------------------|---------------------|-----------------|-------------------|--------|
|            |                               |                           | 11/9/97 to          |                 |                   |        |
| Wet Well 2 | 14.6                          | 12.2                      | 10/23/01            | 77.9            | 55.6              | 22.3   |
|            |                               |                           | 10/28/00 to         |                 |                   |        |
| Wet Well 3 | 3.7                           | 3.7                       | 10/23/01            | 10.1            | 6.9               | 3.3    |
|            |                               |                           | 1/20/01 to          |                 |                   |        |
| Wet Well 4 | 4.3                           | 4.3                       | 3/31/01             | 13.3            | nc                | nc     |
|            |                               |                           |                     | Average         |                   |        |
|            |                               |                           |                     | Flow            | Baseflow          | Runoff |
|            |                               |                           |                     |                 | (in/yr)           |        |
| Wet Well 2 |                               |                           |                     | 103.3           | 73.7              | 29.6   |
| Wet Well 3 |                               |                           |                     | 52.9            | 35.9              | 17.0   |
| Wet Well 4 |                               |                           |                     | nc              | nc                | nc     |

NOTE: The estimated contributions of runoff and baseflow based on historical wet well flows may not accurately reflect the effects of the recently-completed slurry cutoff wall constructed east of the tailings facility in 2000 and early 2001. Consequently, a baseflow separation was determined for combined flows in wet well #2 and #3 for the period from February 1, 2001 (after completion of the slurry wall) until November 2001, the end of the period of record.

Tailings Hydrologic Properties. The tailings present at the site are finegrained, low permeability materials. Approximately 76-96 percent of the tailings are silt or clay-sized particles (less than 0.075 mm diameter). Despite their fine grain size, the tailings represent a separate water-bearing unit capable of yielding water to monitoring wells. A water table mound is present within the tailings, and has been shown to be responsive to changes in infiltration caused by surface management activities. Groundwater in the tailings discharges to a series of under-drains below the tailings that eventually route water to the water treatment plant. Two small seeps are noted in the tailings pile. A small drainage ditch on the north side of the repository seeps water that is collected and routed to the treatment plant. An intermittent small seep is also present on the southeast side of the pile. This water is also collected. Both seeps are thought to result from heterogeneity in pile materials

**Greens Creek Tailings** 3.8 Hydrology 3-57 resulting from the presence of access road construction materials in the seep areas.

Groundwater Controls. Low permeability vertical barrier structures (bentonite slurry walls) were tied into underlying silt/clay deposits around the perimeter of the pile during construction, minimizing the potential for flow of upgradient groundwater into the tailings pile and the flow of tailings contact water out of containment to the west. Drains were constructed beneath the tailings facility to reduce hydraulic heads within the pile. These drains serve to maintain the geotechnical stability of the pile; additionally, they collect contact water that drains from the tailings. Groundwater within the tailings material and directly beneath the pile in the sand aquifer has a higher head (greater pressure) than water in the drains. This causes water to flow from the tailings into the drains under the pile and discharge to the sumps and wet wells and eventually to the water treatment plant.

Groundwater Flow in Tailings. Figure 3-12 shows a detailed representation of the complex groundwater flow systems at the site. Water levels in each layer are projected onto the cross section. Groundwater flows from areas of higher water levels to areas of lower water levels, so the figure shows that groundwater generally flows through the bedrock and till aquifers from east to west. Groundwater is mounded up in the tailings pile as a result of recharge from the surface of the pile and drains through the drain layer at the bottom of the pile. This drain layer (located approximately at the "peat top" location) also serves to receive water from upward flow from the bedrock and till layers beneath the pile.

Water levels monitored over time at the tailings facility have shown relatively small fluctuations throughout the year, except for wells installed in the tailings. These wells showed approximately a 10 to 12 foot drop in water level during the periods of time that a plastic cover was temporarily placed over the tailings from 1995 until 1997. Water levels have subsequently risen back to pre-cover levels. The groundwater mound in the tailings results from surface infiltration. It is not from lateral flow or the interception of upgradient (or underlying) groundwater. Nor is it from draindown of process water. Appendix A includes a conceptual model showing displacement of process waste.

## 3.8.7 Tailings Water Quality

The quality of water that contacts tailings, either surface runoff or water that infiltrates through the pile, is affected by the geochemical reactions that occur within the pile. These processes are important because they cause differences in water quality for contact water in various parts of the tailings facility and because they are likely to occur in the future, but at relative rates that may

3-58 3.8 Hydrology Greens Creek Tailings

change depending on how the tailings facility is reclaimed. Geochemical and hydrologic processes, as modified through facility reclamation, determine the post-closure quality of contact water.

Any water that flows on or through tailings is collectively called *contact* water. The geochemical interaction of contact water with tailings has been thoroughly investigated through monitoring programs conducted by KGCMC since it took over the mine and in various geochemical baseline studies. The chemistry of *process water* (water used to process the ore and to separate ore from tailings in the mill) is most readily understood in the context of the chemical evolution of water that flows on or through the tailings.

Process Water. Fresh tailings consist of the crushed solids from the ore zone that remain after removal of the ore concentrate. Additionally, the fresh tailings contain about 30 percent water by volume. The interstitial water in fresh tailings is comprised of process water. The chemistry of process water (Table 3-11) is the starting point from which contact water chemistry evolves. Process water has a neutral pH, and contains an abundance of calcium and sulfate ions and as discussed under Alternative C; process water contains carbon from the reagents used to process the ore. Process water also contains complex sulfur ions or "thiosalts" such as thiosulfate  $(S_2O_3^{-2})$  and trithionate  $(S_3O_6^{-2})$  that oxidize over a period of hours to days after exposure to oxygen. Oxidation of thiosalts produces acidity and forms sulfate ( $SO_4^{-2}$ ).

Contact Water. Contact water includes interstitial water that flows out of the tailings as well as surface runoff from the pile. Seepage of contact water occurs either at the base of the tailings or in sidehill seeps. The majority of tailings seepage occurs at the base of the tailings where it is collected in underdrains and is directed to containment systems via pumping stations in wet wells. Sidehill seeps are also routed to the wet wells. Runoff is also collected at various locations and is pumped to containment ponds. The composition of various contact waters has been measured through monitoring programs and is described in more detail below.

Tailings Runoff. Soon after tailings are deposited, the chemistry of interstitial water changes in response to oxidation of thiosalts and sulfide minerals, each of which releases acid. Thiosalts oxidize relatively rapidly near the surface (in days to weeks) and more slowly at depth. Sulfides oxidize very slowly. When acid is released, it is neutralized by reaction with the naturally occurring dolomite and lesser amounts of limestone in the tailings. The reaction products of these processes include magnesium, calcium, and sulfate, with lesser amounts of zinc, and minor amounts of other metals. Ions may accumulate near the tailings surface as a result of evaporation during prolonged dry spells. Consequently, during the early stages of a runoff event, ion concentrations may be higher than after an extended wet period when

**Greens Creek Tailings** 3.8 Hydrology 3-59

# 3 Affected Environment

runoff becomes more diluted. The chemistry of runoff (Table 3-11) is similar to that found in the unsaturated zone (see below), except that runoff is somewhat lower in sulfate and magnesium and contains somewhat higher zinc. The higher average zinc concentration in runoff is thought to result from the higher concentration of zinc that is released from construction rocks used in the tailings area, rocks which themselves contain abundant zinc.

Table 3-11 Concentration of Selected Ions in Representative Contact Waters within the Tailings Facility

| Parameter                | Units                  | Process<br>Water<br>Filter press<br>sampled<br>6/14/2001 | Surface<br>Runoff<br>South Toe<br>Ditch<br>sampled<br>9/7/2001 | Unsaturated<br>Zone<br>Lysimeter<br>TSS99-01<br>sampled<br>12/7/1999 | Saturated<br>Zone<br>Piezometer<br>MW-TB2<br>sampled<br>4/25/2001 | Wet Well 2 in<br>Main Pile<br>Underdrain<br>sampled<br>9/7/2001 |  |
|--------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|--|
| Common Ions              |                        | Concentration                                            |                                                                |                                                                      |                                                                   |                                                                 |  |
| Total Alkalinity         | mg/l CaCO <sub>3</sub> | <5.0                                                     | 110                                                            | 38                                                                   | 357                                                               | 252                                                             |  |
| Hardness                 | mg/l                   | 999                                                      | 1,830                                                          | NA                                                                   | 1,760                                                             | 1,350                                                           |  |
| Lab Spec. Cond.          | uS/cm                  | 1,860                                                    | 2,490                                                          | 7,560                                                                | 3,240                                                             | 2,050                                                           |  |
| Lab pH                   | s.u.                   | 7.86                                                     | 7.55                                                           | 6.56                                                                 | 7.79                                                              | 6.5                                                             |  |
| Calcium (dissolved)      | mg/l                   | 386                                                      | 427                                                            | 1,720                                                                | 182                                                               | 343                                                             |  |
| Magnesium (dissolved     | l) mg/l                | 8.52                                                     | 185                                                            | 453                                                                  | 316                                                               | 121                                                             |  |
| Sulfate                  | mg/l                   | 660                                                      | 1,800                                                          | 2,290                                                                | 1,820                                                             | 1,130                                                           |  |
| Sulfide                  | mg/l                   | < 0.05                                                   | NA                                                             | NA                                                                   | 7.0                                                               | NA                                                              |  |
| Trace Metals (dissolved) |                        | Concentration (dissolved)                                |                                                                |                                                                      |                                                                   |                                                                 |  |
| Arsenic                  | μg/l                   | 47.7                                                     | 2.75                                                           | <10                                                                  | 16.8                                                              | 21.2                                                            |  |
| Barium                   | μg/l                   | 45.3                                                     | 18.                                                            | NA                                                                   | 11.7                                                              | 31.9                                                            |  |
| Cadmium                  | μg/l                   | <1                                                       | 36.5                                                           | 3.76                                                                 | <0.1                                                              | <1                                                              |  |
| Chromium                 | μg/l                   | <1                                                       | 1.58                                                           | NA                                                                   | 0.97                                                              | 1.37                                                            |  |
| Copper                   | μg/l                   | <2                                                       | 12.2                                                           | 1,320                                                                | 3.09                                                              | 2.16                                                            |  |
| Lead                     | μg/l                   | 123.                                                     | 77.2                                                           | 2.16 <sup>1</sup>                                                    | <0.2                                                              | 1.43                                                            |  |
| Mercury                  | μg/l                   | < 0.02                                                   | <0.01                                                          | NA                                                                   | < 0.01                                                            | <0.01                                                           |  |
| Nickel                   | μg/l                   | 3.09                                                     | 204                                                            | 48.0                                                                 | 1.51                                                              | 122                                                             |  |
| Selenium                 | μg/l                   | 274.                                                     | 4.27                                                           | 244                                                                  | 1.34                                                              | 2.44                                                            |  |
| Silver                   | μg/l                   | 4.64                                                     | <1                                                             | NA                                                                   | <0.1                                                              | <1                                                              |  |
| Zinc                     | μg/l                   | 72.7                                                     | 11,900                                                         | 3,570                                                                | 10.9                                                              | 2,110                                                           |  |

<sup>&</sup>lt;sup>1</sup> The lead concentration for adjacent lysimeter SW-01-01 was used instead of the value of 16,900 μg/l lead measured in lysimeter TSS99-01 because the latter measurement probably results from contamination.

Tailings Interstitial Water. The chemical composition of dissolved ions in the interstitial tailings water gradually evolves in two ways. First, oxidation of thiosalts and sulfides creates an acidic environment that causes dolomite to be dissolved and soluble magnesium and sulfate to accumulate. Increased concentrations of soluble zinc and other metals may also accompany these increases in sulfate and magnesium ion concentrations. Additionally, the interstitial water is pushed downward into the tailings as meteoric water infiltrates into the pile. Assuming that the net infiltration rate into the pile is 3.5 to 7.0 gpm for a drainable porosity of 5 percent and 10 percent, respectively (EDE, 2002b), the rate of displacement of process water can be calculated to be 8 to 20 inches per year. It would require at least 45 years to

3-60 3.8 Hydrology Greens Creek Tailings

displace all process water from the thickest part of the pile (80 feet) if the flow is uniform, and the residual saturation is roughly 30 to 35 percent. The process water will be displaced faster in thinner parts of the tailings or if the tailings residual water content is lower. Tailings interstitial water is comprised of two distinct zones: the surface zone (which is unsaturated), and the deeper zone (which is saturated).

Unsaturated Zone Water. Through time, water in the unsaturated zone (Table 3-11) increases in sulfate (as a result of sulfide and thiosalt oxidation), and magnesium (as a result of dissolution of dolomite contained in the tailings). Additionally, soluble zinc also increases as a result of the sulfide oxidation, but the pH remains neutral.

Tailings Saturated Zone. Like the unsaturated zone, saturated zone water contains higher magnesium and sulfate than process water, indicating that thiosalt and sulfide oxidation has occurred (Table 3-11). Zinc and other metal concentrations in the saturated zone, however, are lower than in process water, and are much lower than in either the unsaturated zone or in runoff. The lower zinc levels are attributed to the process known as *sulfate reduction*. Organic compounds are added to the tailings from various sources, including flotation reagents and wastewater biosolids from the cannery housing facility. Certain microorganisms that degrade these organic compounds under anaerobic conditions reduce sulfate to sulfide and produce bicarbonate. The presence of sulfate reduction processes within the tailings is evident from the measurable levels of dissolved sulfide ion in all but one sample collected from the piezometers. Overall, 6 of 7 lab samples and 5 field samples from 3 piezometers and 1 monitoring well showed detectable sulfide levels (Appendix A) and all water samples contained low levels of zinc and nickel, which is consistent with sulfate reduction. The geochemical effects of sulfate reduction on metal concentrations, the likely persistence of sulfate reduction after facility closure, and the uniformity of sulfate reduction within the tailings, is discussed in the Appendix A.

Wet Well Contact Water. The chemistry of contact water collected in the wet wells within the tailings facility (Table 3-11) is affected by the proportions of various waters collected by the water management system. The largest proportion of water is comprised of surface runoff, with lesser amounts of tailings seepage (chemically similar to the saturated zone) and upwelling background groundwater collected in the drain system. All contact waters are currently collected and treated prior to discharge at a marine discharge point under jurisdiction of an NPDES discharge permit.

**Greens Creek Tailings** 3.8 Hydrology 3-61

#### 3.9 Wetlands

#### 3.9.1 Introduction

An area of approximately 13,716 acres in the vicinity of the Greens Creek mine was examined for the presence of *jurisdictional wetlands*, and functional analysis of those wetlands. This larger area of the study was relevant because alternate disposal sites were among the alternatives initially considered (See Section 2.6.2). Of the total examined, an area of approximately 530 acres was found to exhibit jurisdictional wetland characteristics. (Jurisdictional Wetlands Survey and Functions and Values Analysis, 1994).

Functional analysis of the jurisdictional wetlands was conducted using a matrix of functions grouped into aquatic, terrestrial, and human use support categories. Each wetland function received a quantitative point total based on its overall score, effectiveness rating, and the number of contributing acres. The analysis identified a total of 148 acres of higher value wetlands within the study area, 186 acres of moderate value wetlands, and 197 acres of lower value wetlands.

### 3.9.2 Methodology

Jurisdictional wetland surveys and field verification were completed during 1990, 1991, and 1993 using criteria found in the 1987 *Corps of Engineers Wetlands: Delineation Manual* (COE, 1987). Several sources of existing data were identified and evaluated to aid in the wetland jurisdictional determination. These sources included the National Wetlands Inventory (NWI); the Chatham Area Integrated Resource Inventory (IRI) Mapping, Drill Logs and Geotechnical Surveys; Aerial Photography, Topographical Features, and As-Built Survey Data.

Field verification of jurisdictional wetland surveys was completed by analyzing 1/10th acre plots to verify or document significant changes from the preliminary mapping. Generally, information collected at each 1/10th acre plot included the following:

- Percent coverage of dominant plant species by strata (tree, shrub, herbaceous, bryophyte) and their wetland indicator status;
- ★ Soil type and characteristics;
- → Visible or readily apparent hydrologic characteristics;
- → Physical characteristics such as slope, aspect, elevation, and landform;

Greens Creek Tailings EIS

- + Global positioning system latitude and longitude coordinates;
- **→** Wildlife and fisheries habitat utilization notes.

Existing data were then correlated with field verification to arrive at final wetland jurisdictional determination mapping.

The wetland functions and values assessment used a point ranking system to evaluate most wetlands in the field verification area as well as other large wetland systems inside the aerial photograph coverage boundary. The method used assigns values ranging from 10 to 30 for each major wetland function identified (TTP, 1994b). These ratings, referred to as the "score," are based on documented regional wetland characteristics. The following were the wetland functions evaluated in the project area:

- Aquatic Use Support
  - → Hydrologic Connection
  - → Water Regime and Flood Control
  - **→** Extent of Open Water
  - ★ Water Quality: Sediment Retention
  - → Water Quality: Erosion and Stability
  - **♦** Fish Habitat
- Terrestrial Use Support
  - **→** Vegetation
  - → Wildlife Habitat
  - **→** Edge
- Human Use Support
  - **♦** Recreation
  - **→** Aesthetics

An effectiveness rating, ranging from 0 to 1, is then applied to specifically address the wetland under evaluation. This rating is meant to reflect the area's current functional status or an assessment of its potential functional value after reclamation and restoration. In order to address size, scarcity, and potential impacts to wetlands within a specific watershed, the number of acres is also included in the assessment.

To complete the assessment, the functional score for each function of a wetland is established by multiplying the score by the effectiveness number, multiplied by the acres. Each functional score is then added to arrive at a final

**Greens Creek Tailings** 3.9 Wetlands 3-63

# 3 Affected Environment

combined score for the wetland. Those wetlands with scores greater than 225 receive *high value* ratings, those with scores from 176 to 225 receive *moderate value* ratings, and those with scores of 175 or below received *low value* ratings.

#### 3.9.3 Jurisdictional Wetlands

Aerial photos were taken of a larger area, surrounding the project area (Figure 3-21). Approximately 530 acres of land that exhibit jurisdictional wetland characteristics were identified within this larger area. These wetlands were found to meet the criteria of the COE 1987 Manual and are presumed to meet the regulatory definition of waters of the U.S. and to be subject to Section 404 of the Clean Water Act.

Typically, wetlands within the survey area were located along small stream and ravines, and on benches, lowlands, and floodplains. Wetlands in the study area could be broadly classified into four types: riparian (NWI class Palustrine forested seasonally flooded), tall-sedge muskeg and short-sedge muskeg (NWI class Palustrine persistent emergent saturated to seasonally flooded), and forested wetlands (NWI class Palustrine forested saturated). The most abundant wetlands within the study area were forested wetlands, which are approximately 34% of all wetland types. Short-sedge wetlands are least abundant in the study area with approximately 8.5%. Riparian wetlands are considered those wetlands adjacent streams that are within the stream floodplain. Estuarine and previously disturbed wetlands in the study area were not evaluated. Riparian areas in SE AK are primarily non-wetland, soils are not hydric, and the plants there are not considered hydrophytic.

The existing mine roads and facilities are shown as mine disturbance on Figure 3-21. Some of these impact jurisdictional wetlands. The acreage of those existing wetland disturbances is not shown on permits for the facilities, and is unknown at this time. It is anticipated that the new 404(b)(1) application will be attached to the FEIS as an appendix and will reflect these figures.

As with wetlands, surface waters (Figure 3-22) are usually considered "waters of the United States" and are, therefore, within the COE regulatory jurisdiction. Buffer strips shown on Figure 3-22 indicate the probable width of riparian wetlands along each stream. The riparian wetland acreages are included in the total wetland acreage.

3-64 3.9 Wetlands Greens Creek Tailings

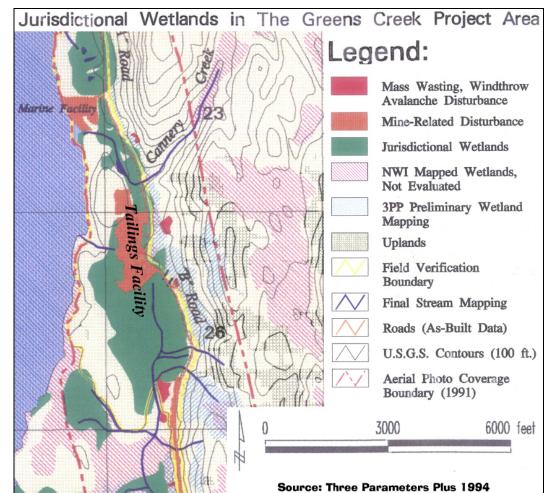



Figure 3-21 Jurisdictional Wetlands

#### **Functions and Values of Wetlands** 3.9.4

The functions and values of most wetlands in the study area were evaluated using methods described above (For readers interested in wetlands, we urge you to read Jurisdictional Wetlands Survey and Functions and Values Analysis, 1994 (TPP, 1994a), contained in the planning record and on the web, with particular attention to the sections on riparian wetlands). For the analysis and evaluation, wetlands were broadly classified into several types. These broad types were also identified using the classification of Wetlands and Deepwater Habitats of the United States (Cowardin et. al, 1979), and Forest Service Integrated Resource Inventory (IRI) Plant Association classification system (TPP, 1994a). The wetland types evaluated include the following categories:

**Greens Creek Tailings** 3.9 Wetlands 3-65

- ★ Riparian Wetlands (National Wetlands Inventory [NWI] Palustrine forested seasonally flooded; Western hemlock, vaccinium spp. Skunk cabbage);
- → Tall-Sedge Muskegs (NWI Palustrine Emergent Wetland, Fresh Water, Mixosaline; IRI Tufted Club Rush/bog Kalmia);
- **→ Tall-Sedge/Short-Sedge complex Mosaics** (NWI Palustrine Emergent Wetland);
- ★ Forested Wetlands (NWI Forested Wetland Needle-leaf Evergreen. all Non-tidal Regimes Except Permanently Flooded, Fresh Water; IRI Mixed conifer/Blueberry/Skunk Cabbage, Western Hemlock/Blueberry/Skunk Cabbage, and others; and
- **→ Forested Wetland/Upland Complex Mosaics** (No NWI or IRI Equivalent).

Wetlands with combined average scores of 226 points or higher were classified as higher value wetlands. Wetlands with combined average scores of 176 to 225 points received a moderate value wetland rating. Those with a combined average score less than 176 points received a lower value wetland rating. Higher value wetlands are generally found in riparian zones (along streams), while lower value wetlands are found in forested areas. Figure 3-23 identifies wetland values in the Greens Creek Project Area.

In summary, the following are acreages and values for each wetland type:

- + Forested, 185 acres, low value;
- **→ Riparian,** 71 acres, high value;
- **→ Forested Wetland/Upland Complex Mosaic,** 71 acres, low value:
- + Short Sedge, 45 acres, moderate value; and
- **+ Tall Sedge,** 16 acres, moderate value.

Greens Creek Tailings EIS

Source: Three Parameters Plus 1994

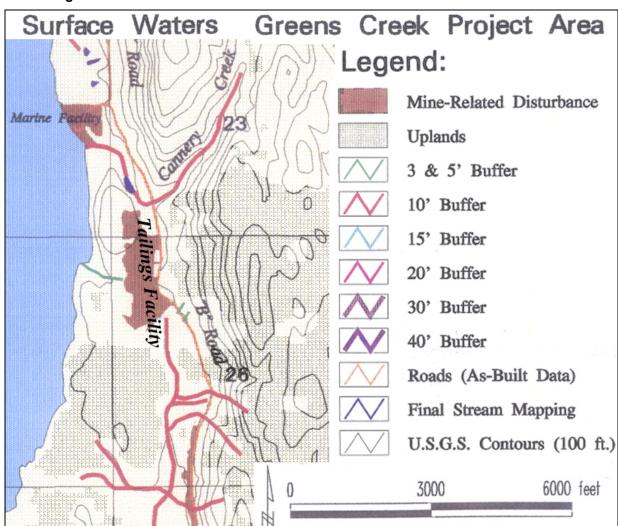



Figure 3-22 Surface Waters

**Greens Creek Tailings EIS** 

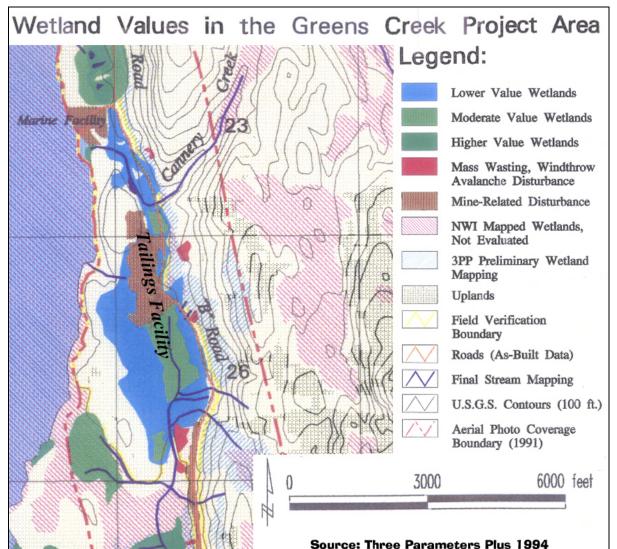



Figure 3-23 Wetlands Values in the Greens Creek Project Area

## 3.10 Vegetation

As with most of Admiralty Island, the vegetation surrounding the proposed tailings area consists of hemlock – spruce forest interspersed with a mosaic of non-forested plant communities, including peat wetlands, shrub wetlands, and sedge meadows.

The proposed mining project does not include plans for commercial timber sales, other than for timber that will be removed to clear the area for tailings expansion or other mine facilities.

3-68 3.10 Vegetation Greens Creek Tailings

No threatened or endangered plant species known to occur in the project area. An Alaska Region Sensitive Plant study concluded that no sensitive plant species were identified for the project area (See Section 3.12 and Dunn, 2003).

Forest Service plant association types found in the project area (See Section 3.9 and Jurisdictional Wetlands Survey and Functions and Values Analysis, 1994) include:

- **→** Western Hemlock/Blueberry,
- → Western Hemlock/Blueberry/Spinulose Shield Fern,
- → Western Hemlock/Blueberry-Devil's Club, Deep Soils,
- → Western Hemlock/Blueberry-Devil's Club, Shallow Soils,
- → Western Hemlock/Devil's Club,
- → Western Hemlock/Devil's Club/Skunk Cabbage,
- → Western Hemlock/Blueberry/Skunk Cabbage,
- → Mixed Conifer/Blueberry,
- → Mixed Conifer/Blueberry/Skunk Cabbage,
- → Mixed Conifer/Skunk Cabbage-Lady Fern, and
- → Mixed Conifer/Vaccinium/Deer Cabbage.

In addition, five types of wetlands were identified in the project area, including:

- **→** Riparian Wetlands,
- → Tall-sedge Muskegs,
- → Tall-sedge/Short-sedge Muskegs,
- **→** Forested Wetlands, and
- **→** Forested Wetland/Upland Complex Mosaics.

### 3.11 Wildlife

The Forest Plan identified management indicator species (MIS). These are vertebrate or invertebrate species whose response to land management activities can be used to predict the likely response of other species with similar habitat requirements. For the Forest Plan, 13 management indicator species were identified, with more attention given to those MIS species having special management concerns (brown bear, marten, Sitka black-tailed deer, and gray wolf). The gray (or Alexander Archipelago) wolf does not inhabit

Greens Creek Tailings 3.11 Wildlife 3.69

Admiralty Island. Marten are discussed below under furbearers. MIS birds are discussed in their respective sections.

#### 3.11.1 Brown Bear

Brown bear probably achieve higher populations on Admiralty Island than anywhere else in Southeast Alaska. Based on mark-resight estimates, brown bear densities in a 344 square kilometer area centered on Hawk Inlet and the Greens Creek watershed averaged 40 bears during 1986-87 (Schoen and Beier, 1990) and 46 bears in 1993 (Titus and Beier, 1993). While virtually all of the project area is bear habitat, three specific habitats are of primary importance (Figure 3-1). These are the coastal beach fringes, grass meadows, and adjacent forest used during the spring and early summer; the creek bottoms and adjacent banks and forests from tidewater upstream to the limit of salmon spawning used during mid to late summer; and the denning areas used during winter. Beginning in early May and extending until approximately mid-June, the coastal beach fringe and grass meadows provide food and cover for bears. The important items during this period include grasses, sedges, forbs, carrion, and available marine organisms.

The late-summer season has been identified as the most critical or limiting period for brown bear. During this season, many brown bears concentrate along low-elevation valley bottoms and salmon streams. These are often the same areas of highest human use and most intense resource development activities. During this season, brown bears use a variety of habitats, with estuaries and riparian areas having the highest habitat value. Streams and rivers that produce anadromous fish have a higher value for brown bears than resident fish streams. Brown bears have not been identified as a species requiring minimum patch sizes of a particular habitat type. They are not known to have specific vegetation corridor requirements, as they travel and disperse through a variety of terrain and vegetative conditions. (Forest Plan, 1997)

The creek bottoms and adjacent banks and forest, especially old growth that is adjacent to salmon spawning streams, are of great importance to brown bear from approximately mid-July until mid-September. In the project area, Greens Creek, Zinc Creek, and the lower stretch of Tributary Creek are especially important.

Spawning salmon provide a major part of many bears' summer food. Remains of bear-eaten salmon carcasses can be found from tidewater to as far upstream as salmon spawn. When not actively feeding on salmon, bears still remain relatively close to the streams.

3-70 3.11 Wildlife Greens Creek Tailings

Brown bear tagging and monitoring studies were undertaken in 1981 by the Alaska Department of Fish and Game (ADF&G) to establish a baseline for documenting the effects of logging and mining in Southeast Alaska, and to develop ways for minimizing brown bear conflicts with humans during project construction and operation. These studies provided baseline population estimates for the project area and were continued through 1993 when the mine closed for three years due to low metals prices. No follow up population study has been conducted since the mine restarted in 1996.

The results of the 1981-89 ADF&G studies, which included mine construction and initial operations, concluded in general that it did not appear that the home ranges and seasonal distribution of adult brown bears were substantially influenced in the short term by development activities, with the exception of denning distribution (Schoen and Beier, 1990). The authors thought that while bears remained in their traditional home ranges, they shifted away from the immediate vicinity of construction activity and then moved closer to the road when activity was reduced. Their observations suggested that bears on the Greens Creek Delta, particularly young bears, were becoming habituated to aircraft and vehicle traffic noise associated with mine development. In the short term, then, they believed direct impacts to bears had been minimized. They noted, however, these results reflected short-term effects of development activities on bears, and that it would be premature to conclude that development of the Greens Creek Mine would have minimal impacts on the local brown bear population.

None of the habitat that will be lost due to this project is in beach fringe or otherwise critical to bears. The ADF&G has advised that it is the activities associated with human activity associated with mining activities, rather than the minimal loss of habitat connected with the mine, that poses a potential to impact bears (Titus, 2002).

The map in Figure 3-24 displays habitat capability indexes generated by the management indicator species (MIS) model for brown bear (USDA, FS 1993). These indexes represent relative measures of brown bear habitat in and around the project area. The index numbers range from 1.0 to 0.0, with 1.0 representing optimum habitat value and 0.0 representing no habitat value. By dividing the index number into thirds, a subjective high, medium, low value rating can be assigned to the habitats. As shown on the map, the tailings facility is located in medium value brown bear habitat (indexes of 0.34 – 0.44).

Greens Creek Tailings 3.11 Wildlife 37-71

Young Bay Tailings Facility Greens Creek Mine Road 40,000 Feet 5,000 10,000 20,000 30,000 Legend - - District Boundary -Greens Creek Mine Road - Shoreline Lakes **Brown Bear Habitat Values** 0.2 0.34 0.4 0.57 0.79 0.11 0.24 0.37 0.44 0.6

Figure 3-24 Brown Bear Habitat Distribution

USDA, FS, 2003, TNF GIS database

During the first year of observation, Schoen and Beier (1990) found that the mean distance radio-collared bears denned from the mine site was 3.4 km. The next year they denned significantly farther from the mine site (11.7 km). They assumed these bears were most influenced by mine site activities, including intensive helicopter traffic. Schoen and Beier (1990) were not aware of any bears killed by construction workers or mine operators and attributed that to rigidly enforced policies to avoid bear problems. All food garbage is kept indoors until incinerated daily and littering or feeding of wildlife is prohibited. Mine personnel brought to the island on company furnished transportation (boat or plane) are not permitted to carry firearms, or to hunt or hike on site. They must return to the area on their own time by private or commercial means for such activities just like anyone else. With the exception of the camp caretaker, who is the only permanent resident at the Hawk Inlet Cannery camp facility, fishing by company personnel also is prohibited (Oelklaus, 2001).

Four bear deaths in the project area may be attributed to project-related activities. A bear was shot by an early exploration camp crew in the 1978 – 1980 timeframe when it became progressively more aggressive, invading the camp area and chasing workers (Oelklaus, 2001). In May of 1992, a radio-collared two-year old male that was habituated to humans was killed by a mine vehicle on the B Road near the Zinc Creek Bridge (Titus and Beier, 1993; Oelklaus, 2001). In the summer of 1993, a female became very aggressive around the Hawk Inlet Cannery camp, chasing people into buildings and breaking into the kitchen and other buildings for food. When continued use of rubber shotgun slugs and "crackers" became progressively less effective, the bear was shot (Oelklaus, 2001). In the summer of 1999, a small bear was killed by a concentrate haul truck near 4.9 mile of the B Road after it bolted from the surrounding forest. (Oelklaus, 2001).

Bears are regularly seen on or near the mine road system. Because workers are not allowed to leave the road system or project facilities (mine entrance, mill, tailings disposal area, cannery/office complex), other sightings in the project area are less frequent. Bears are regularly seen by geologists, however, during summer surface exploration activities throughout the Greens Creek drainage basin, as well as further north on the peninsula between Hawk Inlet and Young Bay. Bear are usually observed beginning in May, and they are seen several times a week through June. Observations drop off by mid-July along the road system, except near streams where salmon spawning areas occur within sight of the road, primarily along lower Tributary Creek. In September and October bears appear to travel more, but observations fall to 1-3 per week unless a bear travels along a road corridor where it can be seen all day (Oelklaus, 2001).

Greens Creek Tailings 3.11 Wildlife 3.73

#### 3.11.2 Sitka Black-Tailed Deer

Sitka black-tailed deer are found throughout Admiralty Island and are common in the project area. Most make distinct seasonal movements between winter and summer ranges, while the remainder show substantial overlap between winter and summer ranges. While many deer may make the classically described seasonal movements from winter range in the lower elevation coastal old-growth forests, to summer range in the subalpine and alpine areas, and return to lower elevations again the following winter, the elevational distribution of deer between and within years is highly variable (Habitat Relationships of Sitka Black-Tailed Deer, USDA Forest Service, 1986).

The high volume old-growth forest areas below 1,000 feet are important habitat for deer, particularly during the critical winter period. Of particular importance are south or west facing slopes that have ground dogwood, berry bushes, and goldthreads understory association. Figure 3-25 shows the relatively important deer winter habitat within the project area. Deer winter habitat with relatively H (high) importance indicates high population densities of deer, M (moderate) indicating moderate population densities and L (low) indicating low population densities accordingly.

The habitat that would be lost due to expansion of the pile is primarily muskeg meadows with some timbered areas along the parameter which is low to relative unimportant deer winter habitat.

The ADF&G has studied deer populations, habitat preferences, and home range on northern Admiralty Island for several years, but no studies to assess the effects of the mine on deer populations have been initiated because deer populations do not appear to be affected (USDA, FS 1992). Deer are frequently observed near mine facilities, and deer congregate along the Greens Creek road system, feeding on the reclamation grasses during spring, summer, and fall. Little deer use of the Greens Creek road system is noticed in the winter when snow covers the grasses because the animals seem to retreat beneath the mature forest canopy (Oelklaus, 2001).

Deer/vehicle collisions along the road system occur approximately 3 to 5 times a year despite an observed speed limit and radio communication between drivers alerting them to animal sightings as traffic moves along the road system. The year 2000, however, was unusual in that approximately 10 to 12 deer accidents occurred (Oelklaus, 2001).

3-74 3.11 Wildlife Greens Creek Tailings

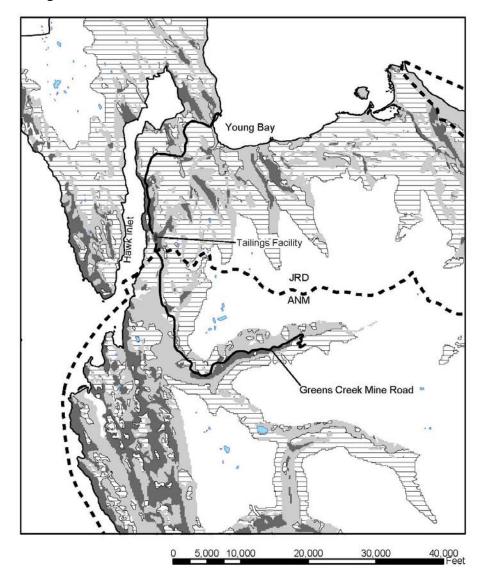



Figure 3-25 Deer Habitat Distribution

### Legend



USDA, FS, 2003, TNF GIS database

#### 3.11.3 Furbearers

Furbearers found in the project area include marten, mink, river otter, and beaver. Marten occupy coniferous forests; the other three species are more water-oriented. All are year-round residents of the Hawk Inlet, Greens Creek, and Young Bay areas (USDA, FS 1983).

The densities of the various furbearers in the project area are not known, nor is the extent of trapping activity. ADF&G does not have furbearer populations or trapping results specific to the study area. The drainages of Greens and Zinc Creeks and the shoreline of Hawk Inlet and Young Bay are prime habitat for mink and river otter, and they are frequently observed in those areas as well as in the vicinity of the cannery (USDA, FS 1983). Beavers are regularly found on most streams and in some ponds in the vicinity of the Greens Creek facilities, including Greens Creek and along the A road. The hemlock-spruce forest that dominates the project area is typical marten habitat (USDA, FS 1983).

The river otter is found along the coastal and inland waters throughout Southeast Alaska. They have been recorded on mainland localities and, in the Alexander Archipelago from Admiralty Island to Wrangell Island (MacDonald & Cook, 1999).

River otters are closely associated with coastal and freshwater aquatic environments and the immediately adjacent upland habitats within 100-500 feet of the coast. Beach characteristics affect the availability of food and cover. The highest value habitats are found in old-growth forest habitat with high canopy cover, large diameter trees and snags. These areas provide denning and rearing sites. Early forest successional stages are of lower value (Forest Plan, 1997).

The affected forest area that will be used for the tailings expansion does not provide high quality habitat for river otter due to the lack of old-growth characteristics. Snags and down woody debris are lacking in the site (MacDonald, et al, 1999).

### 3.11.4 Birds

Five MIS upland bird species live in the Tongass and may be found in the project area. They are the bald eagle, the red-breasted sapsucker, the hairy woodpecker, brown creeper, and the Vancouver Canada goose (Forest Plan, 1997). There is suitable habitat for all of these species in the lease area.

Vancouver Canada geese are found throughout Southeast Alaska with an estimated resident population of 10,000 birds in the northern portion of Southeast Alaska. This population is relatively non-migratory, moving locally

Greens Creek Tailings EIS

between nesting, brood rearing, molting and wintering ground. Vancouver Canada geese use wetlands (forested and non-forested) in the estuary, riparian, and upland areas of the forest (Forest Plan 1997). Habitat is specifically provided for under the Waterfowl Standards & Guidelines in the Forest Plan. Expansion of the tailings will not affect Vancouver Canada goose habitat.

The Queen Charlotte subspecies of the northern goshawk and ospreys though not MIS species are listed as Alaska Region Sensitive Species and are likely to occur in the vicinity of the proposed expansion project. The Queen Charlotte subspecies of the northern goshawk nests high in old growth forest trees and uses the same areas for nesting year after year, although not necessarily the same nest. No high volume old growth is immediately adjacent to the project site. No nests have been identified in the immediate vicinity of the proposed project by any resource agency or mine staff.

Osprey eat fish almost exclusively and nest close to water. No osprey nests have been identified on the east side of Hawk Inlet in the vicinity of the proposed project by any resource agency or mine staff.

The American bald eagle is given special protection under the Bald and Golden Eagle Protection Act. Admiralty Island supports the highest documented density of breeding bald eagles in North America (USDA, FS 1983). In Southeast Alaska, bald eagles typically nest in large Sitka spruce trees in stands of old-growth timber within about 650 feet of salt water (Hodges and Robards, 1982). Figure 3-26 shows the location of documented eagle nests along the shore in Hawk Inlet, and along the coast, approximately one mile, on either side of the inlet. The closest known eagle nest to the tailings pile is more than one-half mile away.

Greens Creek Tailings 3.11 Wildlife 3-77

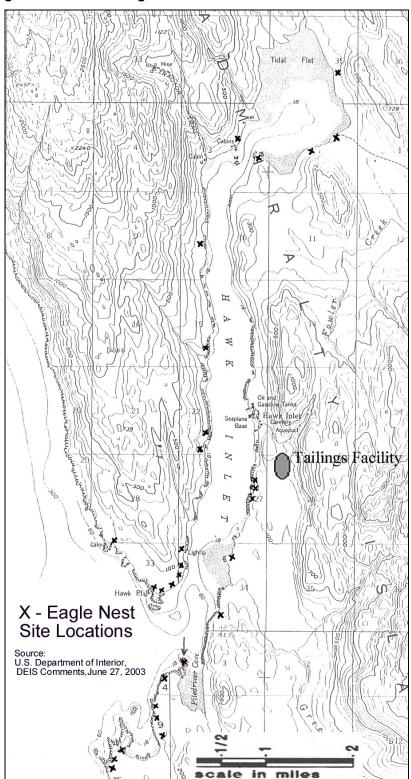



Figure 3-26 Bald Eagle Nest Tree Sites

3-78 3.11 Wildlife Greens Creek Tailings

**Table 3-12** Priority Species that are Known to Occur in Mature/Oldgrowth Spruce-Hemlock Habitats

| Common Name                  | Scientific Name           | Occurrence <sup>a</sup> | Abundance <sup>b</sup> | Habitat<br>Preference |
|------------------------------|---------------------------|-------------------------|------------------------|-----------------------|
| Blue Grouse                  | Dendragapus obscurus      | B, W                    | common                 | XX*                   |
| Western Screech-Owl          | Otus kennicottii          | B, W                    | uncommon               | xx#                   |
| Vaux's Swift                 | Chaetura vauxi            | M, B*                   | uncommon               | х#                    |
| Rufous Hummingbird           | Selasphorus rufus         | M, B                    | common                 | XX*                   |
| Red-breasted Sapsucker       | Sphyrapicus rubber        | В                       | abundant               | XX*                   |
| Pacific-slope Flycatcher     | Empidonax difficilis      | В                       | common                 | XX*                   |
| Steller's Jay                | Cyanocitta stelleri       | B, W                    | abundant               | XX*                   |
| Northwestern Crow            | Corvus caurinus           | B, W                    | abundant               | XX*                   |
| Chestnut-backed<br>Chickadee | Poecile rufescens         | B, W                    | abundant               | XX*                   |
| Golden-crowned Kinglet       | Regulus satrapa           | B, W                    | common                 | xx#                   |
| Varied Thrush                | Ixoreus naevius           | M, B, W                 | abundant               | XX*                   |
| Townsend's Warbler           | Dendroica townsendi       | В                       | common                 | XX*                   |
| Blackpoll Warbler            | Dendroica striata         | M                       | rare <sup>1</sup>      | XX+                   |
| Northern Goshawk             | Accipiter gentilis laingi | B, W                    | uncommon               | XX*                   |
| Marbled Murrelet             | Brachyramphus marmoratus  | B, W                    | common                 | XX*                   |
| Olive-sided Flycatcher       | Contopus cooperi          | В                       | uncommon               | Х                     |
| Western Wood-pewee           | Contopus sordidulus       | В                       | uncommon               | Х                     |
| Hammond's Flycatcher         | Empidonax hammondii       | В                       | uncommon               | Х                     |
| MacGillivray's Warbler       | Oporornis tolmiei         | В                       | uncommon               | Х                     |
| Golden-crowned Sparrow       | Zonotrichia atricapilla   | M, B                    | common                 | Х                     |
| Northern Shrike              | Lanius exubitor           | W                       | uncommon               | Х                     |
| Gray-cheeked Thrush          | Catharus minimus          | В                       | rare                   | Х                     |

<sup>&</sup>lt;sup>a</sup>Occurence - B=Breeding W=Winter M=Migration \*=no record, but thought to breed

## **Birds of Conservation Concern and Priority Species**

The Migratory Bird Treaty Act of 1918 (amended in 1936 and 1972) prohibits the taking of migratory birds, unless authorized by the Secretary of Interior. Because migratory birds do not recognize political boundaries, treaties were

3.11 Wildlife 3-79 **Greens Creek Tailings** 

<sup>&</sup>lt;sup>b</sup>Abundance - 1=migration only

<sup>&</sup>lt;sup>c</sup>Habitat Preference - Primary pref. = xx; secondary pref. = x; minor habitat pref's not indicated;\*=breeding, #=probable breeding, +=possible breeding\*

## 3 Affected Environment

developed between the United States, Great Britain and Japan in order to manage the resource. The law provides the primary mechanism to regulate waterfowl hunting seasons and bag limits, but the scope of the authority is not limited to hunting.

Over 100 species of birds migrate from the lower forty-eight states, Central, and South America to nesting, breeding, and rearing grounds in Alaska. Most of the birds fly to the interior or northern Alaska and only pass through Southeast Alaska on their way to the breeding grounds. Some species do breed and nest in Southeast Alaska and are likely to use habitats in the Green's Creek area.

The term "Birds of Conservation Concern" is a U.S. Fish and Wildlife Service designation (USFWS, 2002). They are called "Priority Species" in the Landbird Conservation Plan for Alaska Biogeographic Regions (BPIF, 1999). Executive Order 13186 directs federal agencies to take conservation actions for birds and consider effects in the NEPA process.

#### 3.11.5 Waterfowl / Shorebirds

The portion of the project area of primary significance to waterfowl is the estuary at the head of Hawk Inlet. It is used throughout the summer by many duck species of divers and dabblers, and is an important resting area for dabblers during fall and spring migrations. Shorebirds, gulls, and eagles also use the estuary and associated mud flats extensively. Waterfowl and other birds also frequently use the triangle-shaped area at the mouth of Hawk Inlet that includes Piledriver Cove, Hawk Point, and the Greens Creek/Zinc Creek Delta. A third area of importance is the southern portion of Young Bay, which would not be affected by the proposed project. All of these areas are three to four miles distant from the proposed project area.

The grass meadow areas near the mouths of Greens and Zinc Creeks and other creeks in the project area provide habitat for many species of shorebirds and waterfowl during summer and fall. Harlequin ducks may use the Greens Creek meadow for breeding. Dabbling ducks, primarily Pintails, are common in the still water areas in the Greens Creek and Fowler Creek meadows in late summer and fall. Migrating waterfowl use ponds and beaver impoundments in the project area for feeding, resting, and probably for breeding.

The marbled murrelet is a waterfowl species designated as a species of concern in the Forest Plan, 1997. Marbled murrelets are widely distributed across marine waters in Southeast Alaska. They spend nearly all their time at sea, coming to land only for nesting activities. Only six nests have been found in Southeast Alaska. Four of the nests were located in old-growth trees on wide, moss covered branches. The others were found on the ground, also in

3-80 3.11 Wildlife Greens Creek Tailings

old-growth forest. The available data from dawn watch surveys suggests that marbled murrelet activity is greater in old-growth forests, particularly in higher wood volume forests than in other habitats in Southeast Alaska. Ground-nesting may be important in some areas, particularly in previously glaciated terrain (USDA, FS 1996).

#### 3.11.6 Marine Mammals

Nine marine mammal species occur in or near Hawk Inlet: Steller sea lion, northern sea otter, harbor seal, killer whale, gray whale, humpback whale, minke whale, harbor porpoise, and Dall's porpoise. Of these the Steller sea lion, humpback whale and northern sea otter are listed or may soon be listed under the US Endangered Species Act. These three species are discussed in Section 3.12, Threatened and Endangered Species.

#### **Harbor Seal**

Harbor seal are the most common marine mammal in Southeast Alaska inside waters and are the most frequently observed marine mammal in the Hawk Inlet area. The Southeast Alaska harbor seal population has been stable or increasing in the past 15 years, at about 37,450 animals (1998 estimate). Harbor seal females in Southeast Alaska typically give birth to one pup per year from about mid-May to mid-June. Harbor seals molt during late summer and early fall. During this time, they eat less and spend more time hauled out (Matthews, 1996).

Although capable of long range movements, harbor seals are not considered migratory. Adult harbor seals exhibit strong site fidelity for breeding and haulout sites. Tagging studies indicate that they spend 57% of each day hauled out (Matthews, 1996).

Harbor seals in Southeast Alaska are opportunistic feeders, eating a wide variety of fish and invertebrates. Their diet varies seasonally, regionally, and probably annually (Jemison, 2002). Studies indicate that pollock, arrowtooth flounder, shrimp, herring, eulachon, salmon, octopus, rockfish, blennies and skates are most commonly consumed by harbor seals in Southeast Alaskan waters (Mathews, 1996). All of these prey species occur in Hawk Inlet (ADF&G 2002; Holland et al. 1981; OIO & RTEC 1998).

Harbor seal are common at Hawk Point where small groups frequently haul out. At least two haul-out sites are located within one mile of the Greens Creek delta. When the salmon are running in Greens Creek and Zinc Creek, seals feed inside the Inlet. In addition to the preferred prey species listed above, they may also forage on herring, codfish, and crab when salmon are not running. Foraging opportunities in lower Hawk Inlet are limited due to strong tidal currents at the sill. It is estimated that seals are unlikely to be near

Greens Creek Tailings 3.11 Wildlife 3 3-81

# 3 Affected Environment

the outfall discharge except for two hours of a 24-hour period, during slack tide.

#### Other Marine Mammals - Habitat Uses within Hawk Inlet

Killer whales (*Orcinus orca*) have been observed within Hawk Inlet waters. They frequent Hawk Point where seals are abundant throughout the summer months, likely preying on seals or their pups. During migrations, both the "resident", fish-eating killer whale and the "non-resident", mammal-eating killer whale likely forage in the mouth of Hawk Inlet and Chatham Strait. OIO (1996) reported a sighting frequency of 5 percent for killer whales in the vicinity of Hawk Inlet.

Gray whales (*Eschirichtius robustus*) have been recorded in Chatham Strait, but no records of sightings have been found of gray whales inside the entrance to Hawk Inlet. Minke whales (*Balaenopterus acutorostrata*) are rare in Chatham Strait, and OIO (1996) reported a sighting frequency of 4 percent in the vicinity of Hawk Inlet. Mining staff have no records of minke whale within Hawk Inlet.

Both harbor porpoise (*Phocoena phocoena*) and Dall's porpoise (*Phocoenoides dalli*) are found in the vicinity. Although they are most often sighted in Chatham Strait, they also are seen inside the Inlet. OIO (1996) reported a sighting frequency of 7 percent for harbor porpoise and 3 percent for Dall's porpoise inside of Hawk Inlet.

Hawk Inlet supports fish and invertebrates sought by these marine mammals (See Section 3.13). Because of the high current velocities found in shallow sill areas at the entrance to Hawk Inlet, whales and porpoises are most likely to pass through the mouth of the Inlet and are not likely to feed in the area during most of the tidal cycle. There is no documentation of critical life history phases of any marine mammal occurring within Hawk Inlet. Hawk Inlet may intermittently support marine mammal feeding or resting needs, but none are considered residents of Hawk Inlet.

3-82 3.11 Wildlife Greens Creek Tailings

Presence in Habitat uses in **Status Species Hawk Inlet Hawk Inlet** Steller sea lion Transit, foraging Threatened under ESA Common Harbor seal Common Transit, foraging, N/a Harbor porpoise Uncommon Transit -? N/a Unknown Dall's porpoise Rare N/a N/a Killer whale Uncommon Transit, foraging Humpback whale Common Transit/foraging Endangered under ESA Unknown N/a Grav whale Rare Minke whale Rare Unknown N/a Northern stock under None confirmed Northern sea otter Unknown ESA review

**Table 3-13** Marine Mammals Occurring in the Vicinity of Hawk Inlet

Number of animals observed in one year in Hawk Inlet: Rare < 5 Uncommon 5-20 Common > 20 Abundant >100

## 3.12 Threatened, Endangered, and Alaska Region **Sensitive Species**

#### 3.12.1 **Birds and Terrestrial Mammals**

According to the U.S. Fish and Wildlife Service (USF&WS) there are no threatened, endangered, or Alaska Region sensitive listed birds or terrestrial mammals in the project area to be affected by the proposed action (Grossman, 2001).

The USF&WS has received a petition to list the Kittlitz's murrelet as an Endangered Species. The petition also requests that critical habitat be designated for the species. This small diving seabird breeds only in certain sections of coastal Alaska and to a limited extent in the Russian Far East. The largest known populations occur in Southeast and Southcoastal Alaska. Sometimes referred to as the "glacier murrelet", the Kittlitz's murrelet forages almost exclusively at the face of tidewater glaciers or near the outflow of glacier streams, and nests in alpine areas in bare patches among the ice and snow. The Sawyer and South Sawyer Glaciers are the tidewater glaciers closest to the project area. These glaciers are approximately 60 miles southeast of the project area on the mainland. The Brady Glacier is the next closest tidewater glacier approximately 65 miles northwest of the project area on the mainland. There are no tidewater glaciers in the Greens Creek project area.

#### 3.12.2 Plants

The only plant federally listed or proposed by the USFWS in Alaska is Polystichum aleuticum, which is endangered. It is only known from Adak and is not expected to occur in the Tongass National Forest (Forest Plan, 1997). During 2001, field surveys were conducted throughout the project area to document the occurrence of any Alaska Region sensitive plant species within the vicinity of the Kennecott Greens Creek proposed expansion (Hasenjager, 2001). Consultation with the Regional Forest Botanist concluded that 8 sensitive plant species had potential to occur within the project study area. Those species and habitats are: Norberg arnica (Arnica lessingii ssp. norbergii), Goose-grass sedge (Carex lenticularis var. dolia), Davy mannagrass (Glyceria leptostachya), Wright filmy fern (Hymenophyllum wrightii), Truncate quillwort (Isoetes truncata), Loose-flowered bluegrass (Poa laxiflora), Unalaska mist-maid (Romanzoffia unalaschensis), and Queen Charlotte butterweed (Senecio moresbiensis). The field surveys concluded that no sensitive plant species were identified for the project area (Hasenjager, 2001).

### 3.12.3 Marine Mammals

Marine mammals currently listed in Alaska as threatened and endangered include one candidate species, the northern sea otter, seven species of endangered whales (northern, right, bowhead, sei, blue, fin, and humpback), and the Steller sea lion (endangered west of 144° and threatened east of 144° W longitude).

Of the threatened or endangered species in Alaska, the following three occur in the Hawk Inlet area:

- → Steller sea lion (threatened east of 144° W longitude);
- → Northern sea otter (Aleutian population candidate species);
  and
- → Humpback whale (all Humpbacks listed as endangered).

Steller Sea Lion (*Eumetopias jubatus*). Like harbor seals, Steller sea lions are common at Hawk Point where small groups frequently haul out. At least two haul-out sites occur within one mile of the Greens Creek delta. Fishermen, miners and research contractors have observed Steller sea lions hauled out on these rock piles just north of the entrance of Hawk Inlet, in Chatham Strait. These rocks are used by up to two dozen Steller sea lions at a time, on an intermittent basis. The Alaska Department of Fish and Game does not consider these sites as significant haulouts for Steller sea lions, and no critical habitat has been designated in the area (Ken Pitcher, 2002).

Adult Steller sea lion pursue a broad range of prey species, including Pacific cod, Pacific salmon, arrowtooth flounder, Pacific herring, Pacific sandlance, snailfish, rock greenling, cephalapods (squid and octopus), kelp greenling, and rocksole (NMFS 2001). All of these species are found in Hawk Inlet.

When the salmon are running in Greens Creek and Zinc Creek during summer months, Steller sea lions feed inside the Inlet. Though there is no formal documentation of herring in Hawk Inlet, it is highly probable that herring and eulachon occur in Hawk Inlet in the winter and the spring. To the extent that they do, it is also highly probable that Steller sea lions from the adjacent waters of Chatham Strait follow them into Hawk Inlet to feed (R.Carlson, NMFS Auke Bay Lab, pers. comm., 1998).

Humpback Whale (*Megaptera novaeangliae*). The humpback whale is most frequently sighted in Chatham Strait, where it is found feeding especially from mid-May until late September. Previous studies reported resident humpback populations for the June to September period ranged from approximately three to eight animals, increasing to as many as 20 during the October November migrations (Carlson, pers. comm., 1999).

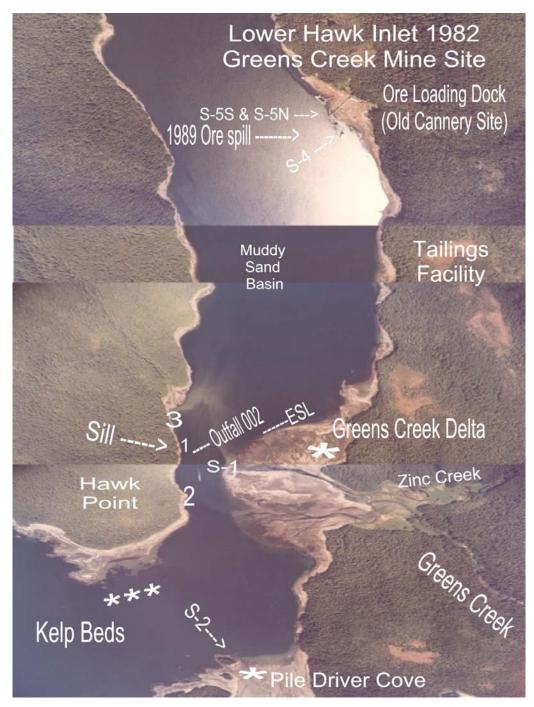
Only occasionally have researchers sighted humpback whales inside the sill at the mouth of Hawk Inlet. Relative to other marine mammals, however, OIO (1996) reported that humpbacks are the most commonly observed cetaceans inside of Hawk Inlet, with a sighting frequency of approximately 80 percent. The sighting frequency compared to 7 percent for harbor porpoise, 5 percent for killer whale, 4 percent for minke whale, and 3 percent for Dall's porpoises (RTI, 1998).

Humpback whales feed extensively in Alaska during spring and summer months, storing reserves for fasting during breeding seasons at lower latitudes. In Southeast Alaska, humpback prey items include euphasiids and small schooling fish (herring, capelin, juvenile walleye pollock, and Pacific sandlance) (Mathews1996). Existing data indicates that all of these species, except capelin, occur in Hawk Inlet. Researchers observing humpback whales in Hawk Inlet postulated that whales may be pursuing patches of surface plankton or fish larvae that flow into the estuary.

Northern Sea Otter. Sea otters generally occupy "outside" waters of the Southeast Alaska panhandle, and are rarely seen inside, or east of Icy Strait. Two sightings have been confirmed within Chatham Strait in the past ten years. As the northern southeast population continues to grow, sea otters are seen further east in inside waters each year. Sea otters feed on sea urchins, young crab, and bivalves – all of these occur in Hawk Inlet. There are no confirmed reports of sea otters within Hawk Inlet, and it is unlikely they frequent or depend upon habitats within Hawk Inlet.

# 3 Affected Environment

Professional staff operating the Greens Creek Mine have observed a few humpback whales in Hawk Inlet each year, and Steller sea lions transiting near the mouth and within Hawk Inlet every year. No northern sea otters have been confirmed inside Hawk Inlet (Oelklaus, 2002).


According to the Regional Administrator of the Alaska Region of the National Marine Fisheries Service (NMFS), although some of these species enter Hawk Inlet occasionally, none of them, nor any of their critical habitats, occurs at the location of the proposed action (J. Balsiger, 2001).

#### 3.12.4 Salmon

Washington and Oregon Endangered Salmon. According to the 1997 Forest Plan, Pacific salmon from endangered species units (ESUs) originating in Washington and Oregon migrate through the Gulf of Alaska, and outside waters of Southeast Alaska. ESU's involve spawning habitat. Salmon from these ESUs are not known to occur within the project area (Forest Plan Vol. 1 pgs. J 1-13). Because these endangered salmon and the ESU's these endangered salmon stocks are found in are outside of the project area, they are not discussed further within this evaluation.

Island King Salmon. The only Alaska Region sensitive fish species in the project area is the island king salmon. The Forest Plan identifies Wheeler Creek, approximately three miles southwest of the Greens Creek Delta, as supporting a population of this species. Rearing juvenile king salmon also have been found in the middle and lower reaches of Greens Creek (Buell, 1992). During initial fish studies for the Greens Creek project, no king salmon juveniles were found in Greens, Zinc or Tributary creeks, and no ADF&G records indicated the presence of king salmon in creeks anywhere in or near Hawk Inlet, except for Wheeler Creek. Buell (2001) hypothesizes that the Greens Creek juveniles may have been the result of adults spawning there after straying from Wheeler Creek, or (less likely) from the small, Douglas Island Pink and Chum Hatchery (DIPAC), enhancement releases of kings. Although Greens Creek does not provide particularly good habitat for king salmon, Buell believes they have benefited from the Greens Creek Mine mitigation measure that opened spawning habitat above the falls.

Figure 3-27 Aerial mosaic of Lower Hawk Inlet, Admiralty Island. Stations shown S-1, S-2, S-4 and S-5 are sediment and worm sampling sites. Station S-3 is in the head of Hawk Inlet. Stations 1, 2, 3 and ESL are mussel sampling sites. Photo by R&M Engineering 1982



## 3.13 Marine and Aquatic Ecosystem

The affected marine and aquatic ecosystems in the project study area for this EIS include the marine waters of Hawk Inlet and the watersheds draining into the east side of Hawk Inlet (Figure 3-27.

Relevant findings from marine studies and long term monitoring efforts have been incorporated into this section. Detailed methods, results, and trends from these studies have been compiled in, "Technical Review of the Status of Essential Fish Habitat in Hawk Inlet Subsequent to Mining Operations" (Ridgway, 2003). This document is in the planning record and has been furnished to NMFS.

#### **Marine Biota and Habitats**

The Hawk Inlet marine ecosystem is comprised of pelagic, demersal, benthic and intertidal communities. The major subtidal benthic (bottom) substrata that occur in Hawk Inlet are sands, muddy sands, muds, and rocks. Submerged sands primarily occur near the Greens Creek delta. This substratum contains large amounts of cobble and gravel; in areas where current velocities are high, sediments are frequently scoured to bedrock. Muddy-sand habitats occur primarily at the extreme northern end of Hawk Inlet. Submerged muddy-sand habitats also frequently contain relatively large amounts of cobble and gravel. Submerged muds occupy the central region of Hawk Inlet and contain large amounts of organic material. Submerged rocky habitats occur along the margins of the basin.

In general, in hard-bottom subtidal areas, anemones, snails, greensea urchins, starfish, sea cucumbers, sponges, bryzoans, and a wide variety of algae are dominant. King, Tanner, and Dungeness crabs, as well as a variety of edible shrimp, are also found in the hard bottom subtidal habitats. Those habitats in Hawk Inlet and Chatham Strait are typical in species composition and relative abundance to hard-bottom habitats of the region (Holland et al 1981).

Annelids (worms), mussels, clams, and small crustaceans dominate soft-bottom subtidal benthic habitats; annelids are generally the most abundant. The composition of subtidal soft-bottom habitats in Hawk Inlet depends upon physical properties of the sediments. These communities in Hawk Inlet contain more species than intertidal benthic communities and are similar to subtidal benthic communities reported to occur along Northeast Pacific coasts.

A summary of habitats and associated biota in Hawk Inlet and the adjoining portions of Chatham Strait is provided in Table 3-14.

**Table 3-14** Features of major marine habitat types in Hawk Inlet, Admiralty Island (Source: Holland, et al. 1981)

| Habitat Type                                  | Area<br>(ha) | No. of<br>Species | Density<br>Orgs/m <sup>2</sup> | Dominant species                                        | Location in Hawk Inlet       |
|-----------------------------------------------|--------------|-------------------|--------------------------------|---------------------------------------------------------|------------------------------|
| Protected (estuarine) intertidal muddy sands  | 226.4        | 36                | 49,480                         | Gastropods,<br>bivalves,<br>polychaetes                 | Head of Inlet                |
| Protected subtidal muddy sands                | 147.3        | 41                | 7,596                          | Bivalves, polychaetes                                   | Head of Inlet                |
| Protected intertidal and subtidal muddy sands | 48.8         | 52                | 13,776                         | Polychaetes,<br>foramanifera,<br>bivalves,<br>copepods. | Pile Driver<br>Cove          |
| Unprotected intertidal sand                   | 41.3         | 36                | 99,900                         | Foramanifera ns (sponges)                               | Greens Creek<br>Delta        |
| Intertidal and subtidal rocky                 | 66.3         |                   |                                | (samples from Chatham)                                  | Shoreline and mouth of Inlet |
| Deep subtidal muds                            | 321.8        | 52                | 14,061                         | Polychaetes, bivalves                                   | Basin –<br>Cannery           |
| Submerged sill of sand-gravel-cobble          | 187.2        | 80                | 30,526                         | Polychaetes,<br>gastropods,<br>amphipods                | Greens Creek<br>Delta/002    |
| Nereocystis kelp beds (sand)                  | 125.4        | 69                | 67,352                         | Polychaetes,<br>amphipods,<br>bivalves                  | Interspersed                 |
| Transition areas                              | 168.5        | _                 | _                              | _                                                       | Interspersed                 |

### Marine Fish and Shellfish

Several commercial and non-commercial fish and shellfish species occur in this area — salmon, flathead sole, yellowfin and rock sole, arrowtooth and starry flounder, Pacific cod, white-, spotted and masked greenling, and shortfin eel pout. Halibut were also observed. Non-commercial species present included snake prickleback, sturgeon poacher, staghorn, great and spiny head sculpin, Pacific sandlance, daubed shanny, and copper rockfish. Schools of herring in spawning condition occur in the Inlet during spring (Carlson, pers. comm. 1999).

Shellfish species in Hawk Inlet include extensive clam beds, with little necks, cockles, soft-shell clam, horse clam and mussels. Tanner, Dungeness, king and hermit crabs are also abundant in shallow and deep Hawk Inlet habitats.

# 3 Affected Environment

Federally managed fish and shellfish and their prey, as well as salmon in Hawk Inlet, are described under the Essential Fish Habitat below. The health of marine habitats and biota prior to operations and during the mine's production years to date is also discussed later in this section.

#### **Hawk Inlet Area Fisheries**

Sport fishing is discussed in the recreation section, and subsistence harvests of clams, crab and fish are described under the subsistence section. Pacific cod, sablefish, lingcod, and over a dozen species of rockfish are harvested annually in Hawk Inlet and in adjacent waters of Chatham Strait. All species of Pacific salmon, as well as Dungeness crab, brown crab, red king crab and bairdi Tanner crab are harvested inside Hawk Inlet and in Chatham Strait. The total volume of fish (except halibut), shellfish and salmon harvested in this vicinity was 9.3 million pounds in 2001.

Halibut harvests for Hawk Inlet are reported as part of a much larger region, and do not reflect the amount of fish taken from the project area. Historical information indicates that occasional commercial halibut fishing in the area yielded some large catches during 1914 to 1974, when the cannery was open. Since that time, smaller vessels fish individual fishing quotas near and occasionally inside of Hawk Inlet. Commercial fishing and tender vessels occasionally use Hawk Inlet as a mooring site.

# 3.14 Essential Fish Habitat and Habitat Areas of Particular Concern

Essential Fish Habitat (EFH) includes those waters and substrata necessary for fish spawning, breeding, rearing, and growth to maturity. In the context of EFH, "fish" refers to federally managed fish or shellfish species and their prey. EFH includes all segments of streams where salmon reside during any period of the year as well as the marine waters, substrates and biological communities of Hawk Inlet.

The National Marine Fisheries Service has identified Hawk Inlet as EFH for several marine and anadromous species. The NMFS queriable EFH database (<a href="www.fakr.noaa.gov\efh">www.fakr.noaa.gov\efh</a>) and all other sources of data, including dive surveys, commercial and sport fishing data, and research data were used to develop the following list of species having EFH in Hawk Inlet. In addition to federally managed groundfish and shellfish, species listed in Hawk Inlet include major prey species, such as forage fish and shrimp (Miller, 2003).

**Table 3-15** FMP Managed Species with EFH in Hawk Inlet, Admiralty Island and adjacent watersheds.

| Federally Managed Species |                           |                       |  |  |  |  |  |
|---------------------------|---------------------------|-----------------------|--|--|--|--|--|
| Common Name               | Scientific Name           | Life History Stage    |  |  |  |  |  |
| Walleye pollock           | Theragra chalcogramma     | eggs,juveniles,mature |  |  |  |  |  |
| Flathead sole             | Hippoglossoides elassodon | Not specified         |  |  |  |  |  |
| Yellowfin sole            | Limanda aspera            | Not specified         |  |  |  |  |  |
| Arrowtooth flounder       | Atheresthes stomias       | Not specified         |  |  |  |  |  |
| Sablefish                 | Anoploploma fimbria       | Not specified         |  |  |  |  |  |
| Pacific ocean perch       | Sebastes alutus           | Not specified         |  |  |  |  |  |
| Rock sole                 | Lepidopsetta bilineatus   | Not specified         |  |  |  |  |  |
| Pacific cod               | Gadus macrocephalus       | Not specified         |  |  |  |  |  |
| Sculpins (9 species)      | Family Cottidae           | Not specified         |  |  |  |  |  |
| Pacific salmon            | Onchorynchus sp.          | Egg, juvenile, adult  |  |  |  |  |  |
| Pink salmon               | O. gorbuscha              | Egg, juvenile, adult  |  |  |  |  |  |
| Chum salmon               | O. keta                   | Egg, juvenile, adult  |  |  |  |  |  |
| Coho salmon               | O. kisutch                | Egg, juvenile, adult  |  |  |  |  |  |
| Forage Fish Complex       |                           |                       |  |  |  |  |  |
| Eulachon                  | Thaleichthys pacificus    | Not specified         |  |  |  |  |  |
| Rainbow smelt             | Osmerus mordax            | Not specified         |  |  |  |  |  |
| Pacific herring           | Clupea harengus           | Not specified         |  |  |  |  |  |
| Shrimp                    | Pandalidae, Crangonidae   | Not specified         |  |  |  |  |  |
| Squid                     | Loligo                    | Not specified         |  |  |  |  |  |
| Octopus                   | O.dofleini/rubescens      | Not specified         |  |  |  |  |  |
| Red king crab             | Paralithodes camtchatica  | Not specified         |  |  |  |  |  |
| Snow crab                 | Chionocetes opilio        | Not specified         |  |  |  |  |  |
| Tanner crab               | Chionocetes tanneri       | Not specified         |  |  |  |  |  |

### **Anadromous Waters**

Although all five species of Pacific salmon are found in Hawk Inlet, it is considered EFH for pink, chum and coho. General descriptions of the aquatic environments of these systems were given in the Greens Creek FEIS (USDA FS, 1983), along with descriptions of Cannery Creek, Piledriver Creek, and several unnamed creeks that enter the head of Hawk Inlet. These streams are part of EFH in the area. Recent studies (ADF&G 2003) indicate that Greens Creek and Tributary Creek have complex, diverse aquatic communities and

# 3 Affected Environment

high population levels of freshwater algae (periphyton), insects and other aquatic invertebrates.

Detailed descriptions of these systems, along with a summary of changes since the 1983 EIS are contained in the above referenced Ridgway, 2003 (See Figure 3-9).

Salmon spawning in any of these streams and juveniles emerging from streams will migrate through Hawk Inlet which has the potential to be affected. Adult salmon stage in the lower portion of the inlet before migrating upstream in Greens and Zinc Creeks to spawn. Juvenile fish moving from the creeks to the sea can accumulate in shallow waters in most parts of the Inlet where brackish surface waters predominate prior to migrating out to sea.

**Table 3-16** Fish Species Found in Streams in or near the Greens Creek Mine Project Area

| Creek                |      | Juveniles / Resident Adults |                 |         |         |             |      | adron | ous Ad          | ults |
|----------------------|------|-----------------------------|-----------------|---------|---------|-------------|------|-------|-----------------|------|
|                      | Coho | Cutthroat<br>Trout          | Dolly<br>Varden | Sockeye | Sculpin | Stickleback | Pink | Chum  | Dolly<br>Varden | Coho |
| Greens Creek         | ++   | +                           | ++              | 0       | ++      | +           | ++   | ++    | +               | +    |
| Zinc Creek           | ++   | +                           | ++              | 0       | ++      | +           | ++   | ++    | +               | +    |
| Tributary Creek      | +    | +                           | +               | 0       | ++      | 0           | ++   | 0     | +               | +    |
| Young Bay Trib.      | ++   | ++                          | +               | +       | ++      | ++          | 0    | 0     | ?               | +    |
| Fowler Creek         | ++   | +                           | ++              | 0       | ++      | +           | ++   | +     | ++              | +    |
| Lower Fowler Trib.   | ++   | +                           | ++              | 0       | ?       | 0           | 0    | 0     | ?               | +    |
| Upper Fowler Trib.   | 0    | 0                           | 0               | 0       | 0       | 0           | 0    | 0     | 0               | +    |
| Lower G.C. Trib.     | 0    | 0                           | 0               | 0       | 0       | 0           | 0    | 0     | 0               | 0    |
| Piledriver Creek     | ++   | 0                           | +               | 0       | ++      | +           | +    | +     | +               | 0    |
| Piledriver Cr. Trib. | ++   | 0                           | +               | 0       | ?       | 0           | 0    | ?     | ?               | +    |
| Upper Hawk Tribs.    | +    | ?                           | +               | 0       | ++      | ++          | +    | ?     | ?               | ?    |
| Pristine Pond        | 0    | 0                           | 0               | 0       | 0       | 0           | 0    | 0     | 0               | 0    |
| Cannery Creek        | 0    | ?                           | ?               | 0       | 0       | 0           | 0    | 0     | 0               | 0    |

Abundance indicators: ++ = abundant; + = moderate occurrence or few; 0 = not found; ? = presence strongly suspected but not confirmed. Observations were made in the early 1980's

### **Habitat Areas of Particular Concern (HAPC)**

Habitat areas of particular concern (HAPC) are subsets of EFH that may be rare, sensitive, or particularly vulnerable to human impacts. HAPCs in Alaska include eelgrass, kelp and mussel beds (NMFS, 2002). Approximately 125 hectares of bull kelp habitat lie between Hawk Point and the head of Hawk Inlet (Holland et al. 1981). Limited surveys revealed that Hawk Inlet kelp beds support about 70 species of invertebrates in very high densities. Adult and juvenile salmon use these kelp beds as protection during migration and juvenile feeding.

## 3.15 Status of Marine and Aquatic Habitats in Hawk Inlet

### **Physical Conditions in Hawk Inlet**

A fish cannery at the current site of the Greens Creek ore loading facility burned in 1974, dropping most of the building contents onto the underlying ocean floor. When preparing the site for the future ship loading facilities, much of this material was recovered from the area, but considerable debris, including large quantities of metal, remain on the seafloor.

Physical changes to the marine environment resulting from the mining operation include minor alterations of the seafloor for installation of outfall pipes and diffusers at 001 and 002, piling driven for modifications to the dock and loading facility, and impacts of the ore concentrate spill on the seafloor near the dock. Vessels traveling to and from the facility may have led to disturbances to fish and wildlife, but these are considered temporary and have no effect on populations. No major fuel spills on land or water have been reported which would suggest petroleum hydrocarbon impacts to Hawk Inlet.

#### Metals in Hawk Inlet

In anticipation of the Greens Creek Mine development, government agency scientists and biological consultants carried out surveys of marine life and baseline studies of heavy metals in the environment starting in 1981. In order to better understand the results of these data and all subsequent heavy metal concentration data in this section, national environmental standards guidelines for metals concentrations were used for comparison with Hawk Inlet data.

**Pre-Mining Operations Sediment Metals** average levels show some consistency across stations, but the standard deviations for these data indicate high variability, typical of natural conditions. These data are useful as baseline values against which to compare metal values after mining began. Only a subset of these data (Stations S-1, S-2, & S-3) were used to calculate

# 3 Affected Environment

baseline values because not all stations or samples represent natural conditions for comparison.

Stations S-4 and S-5 have been influenced by both the old cannery operation and mine exploration work prior to opening of the mine, and therefore are not considered suitable as a pre-mining background stations.

In comparing all Hawk Inlet metals to National Status and Trends (NST) levels, it appears that several metals are greater than the NST (Effects Range Low (ERLs). The average chromium and nickel values exceed ERL levels at every site in Hawk Inlet. Arsenic and copper are slightly above ERL levels at Station S-3 and Arsenic, Chromium, Lead and Nickel are all above ERL at Station S-4, near the old cannery site. None of the pre-mining metals levels exceeded (Effects Range Median) ERM or (Apparent Effects Threshold) AET levels.

**Polychaete worms** – Pre-mining polychaete worm (*Nephthys*) tissue concentrations indicate that only copper appears to be slightly elevated at station ESL, over the other sites S-1, S-2, and S-3.

**Mussels** – Mussel tissue data indicated that cadmium and zinc at most stations are elevated above Alaskan mussel watch average levels, and mercury is slightly higher than Mussel Watch levels at station S-1.

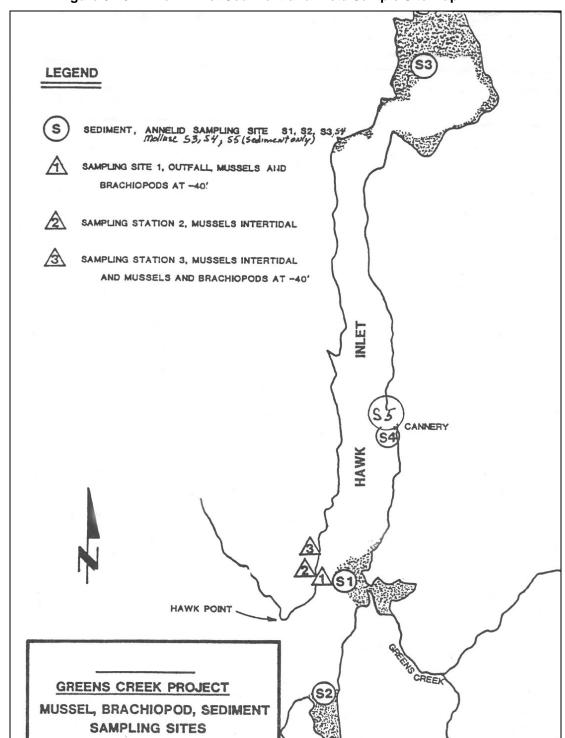



Figure 3-28 Hawk Inlet Sediment and Biota Sample Site Map

# **Comparison of Pre-Mining and Production Period Metals in Sediments**

A summary comparing pre-mining baseline metal levels with mining production period levels for stations S-1, S-2 and S-3 are shown in Table 3-17. The average mining period values for station S-1, the outfall monitoring intertidal station, are shown in the last column.

Table 3-17 Metals in Sediment: Average and Range Stations S-1, S-2, S-3

| Pr            | Pre-Mining Baseline: |         |                |              |         | Mining Period: |               |  |  |
|---------------|----------------------|---------|----------------|--------------|---------|----------------|---------------|--|--|
| Metal         | Average              | Minimum | Maximum        | Average      | Minimum | Maximum        | S-1 Avg       |  |  |
| Arsenic (As)  | <u>10.57</u>         | 3.30    | 33.50          | <u>11.40</u> | 1.26    | <u>33.50</u>   | <u>8.77</u>   |  |  |
| Cadmium (Cd)  | 0.43                 | 0.03    | 1.09           | 0.41         | 0.03    | <u>1.53</u>    | 0.29          |  |  |
| Chromium (Cr) | 125.22               | 56.00   | <u> 188.00</u> | <u>85.46</u> | 12.50   | <u>450.00</u>  | <u>114.05</u> |  |  |
| Copper (Cu)   | 26.73                | 11.90   | <u>55.20</u>   | 23.99        | 7.80    | <u>55.20</u>   | 19.98         |  |  |
| Lead (Pb)     | 7.95                 | 2.30    | 15.10          | 9.49         | 1.48    | 26.00          | 9.78          |  |  |
| Mercury (Hg)  | 0.05                 | 0.01    | 0.12           | 0.06         | 0.00    | <u>0.16</u>    | 0.06          |  |  |
| Nickel (Ni)   | <u>46.91</u>         | 27.40   | <u>75.80</u>   | <u>40.49</u> | 13.00   | <u>86.90</u>   | <u>52.45</u>  |  |  |
| Selenium (Se) | 1.19                 | 0.17    | 3.50           | 2.08         | 0.17    | 14.00          | 2.36          |  |  |
| Silver (Ag)   | 0.13                 | 0.01    | 0.49           | 0.15         | 0.01    | 0.59           | 0.14          |  |  |
| Zinc (Zn)     | 111.75               | 52.80   | 200.00         | 104.22       | 30.50   | <u>200.00</u>  | 113.45        |  |  |

**BOLD** Mining production period values that are higher than the average baseline level. UNDERLINED Any value that exceeds NST ERL levels, note there is no ERL for Se.

This comparison shows that across all stations, the average metal levels for As, Pb, Hg, and Ag have only slightly increased during the mining period. Se roughly doubled in concentration at all stations between pre-mining and mining periods. Cd, Cr, Cu, Ni, and Zn have decreased at these stations since mining began.

Based on the data (Ridgway, 2003), it appears that heavy metals in sediment near the outfall 002 site have not increased substantially above the area-wide baseline levels during mining years (baseline is S1, S2 and S3 average). Although some metals remained above NST ERL levels, these metals appear to be of naturally high concentrations in the study area.

When comparing pre-mining sediment levels at station S-1 to production period mining at S-1, marked increases in some metals (As, Cd, Pb, Hg, Se and Ag) are apparent. Measurements at S-1 during the mining period have exceeded ERL levels numerous times, however, only Ni and Cr have reached ERM levels. Based on National Status and Trends interpretations some

elevated metal levels in sediments at the outfall site subsequent to mining operations, are at levels warranting concern, and may be toxic to marine life (for example amphipods, marine worms, and bivalves).

Relative to NST levels, As, Cr, and Ni average levels are consistently higher than ERL – both prior to and subsequent to mining activity. Maximum levels detected during the mining period exceeded ERL for As, Cd, Cr, Cu, Hg, Ni, and Zn. All metal levels are well-below NST ERM levels.

The USFWS independently sampled sediment throughout Hawk Inlet in 1997 (USDOI, 1993; Rudis 2001). In general, the area wide averages they reported from 10 sites were comparable for mining period metals, except Cd levels reported by USFWS were substantially higher than mining period averages.

#### Stations S-4 and S-5

In 1989, the first attempt to load a barge with ore concentrate resulted in a spill of concentrate into Hawk Inlet. A suction dredge company was brought on site during the summer of 1995. This effort was confounded somewhat by the residual debris from the 1974 cannery facility fire. About twice as much material was dredged from the site as was predicted by earlier dive assessments of the spill quantity. The KGCMC contractor added another monitoring site to the shiploader area (Site 5 South, 5 North is a continuation of the original Site 5). The two Site 5 areas now bracket the concentrate spill area. S-4 is an intertidal site. Following the 1989 ore concentrate spill, metals concentrations in sediments near the ore loading dock increased abruptly and have varied widely since then.

Compared to the National Status and Trends data and AET levels, some heavy metals in marine sediments at stations S-4, S-5S and S-4N are present at levels that are likely toxic to bivalves, amphipods, and the infaunal community (organisms burrowed in the seafloor). Cd, Cu, Pb, Hg, Se, Ag, and Zn occur at the ore loading dock sites at levels of concern for biological communities.

| Metal    | Baseline<br>Average | Mining<br>Average | Mining<br>S-4      | Mining<br>S-5S       | Mining<br>S-5N        |
|----------|---------------------|-------------------|--------------------|----------------------|-----------------------|
| Arsenic  | <u>10.57</u>        | <u>11.40</u>      | <u>10.83</u>       | <u>10.43</u>         | <u>19.60</u>          |
| Cadmium  | 0.43                | 0.41              | <u>1.22</u>        | <u>3.77</u>          | 18.75* <sup>1</sup>   |
| Chromium | <u>125.22</u>       | <u>85.46</u>      | 77.24 <sup>1</sup> | 32.48                | 80.77 <sup>1</sup>    |
| Copper   | 26.73               | 23.99             | <u>71.58</u>       | <u>79.91</u>         | <u>290.40*</u>        |
| Lead     | 7.95                | 9.49              | <u>171.19</u>      | <u>282.24*</u>       | 1525.55* <sup>2</sup> |
| Mercury  | 0.05                | 0.06              | 0.28               | 0.51                 | 3.04*                 |
| Nickel   | 46.91               | 40.49             | 30.81              | 36.60                | 37.73                 |
| Selenium | 1.19 <sup>3</sup>   | 2.08 <sup>3</sup> | 1.48 <sup>3</sup>  | 1.81 <sup>3</sup>    | 2.23 <sup>3</sup>     |
| Silver   | 0.13                | 0.15              | 1.12               | 1.80                 | 3.07* <sup>3</sup>    |
| Zinc     | 111.75              | 104.22            | <u>246.80</u>      | 694.94* <sup>4</sup> | 2867.48* <sup>4</sup> |

**BOLD** figures are higher than the baseline average. **BOLD ITALICIZED** values are higher than the Mining period average. <u>UNDERLINED</u> values exceed NST ERLs, \*values exceed NST ERMs, and noted values exceed Apparent Effects Threshold (AET) for identified species groups: 1. *Neanthes* bioassays 2. Bivalves 3. Amphipods 4. Infaunal community impacts

### **Polychaete Worms**

Metal concentrations in the marine worms, *Nephthys*, increased for Cr, Pb and Ni. All maximum values for stations S1, S2, and S3 exceeded the baseline levels. This suggests that the elevated concentrations in this worm species are related to mining activities.

Some metals at station S-4 were higher than baseline average values, As, Cr, Cu, Pb, Ni, and Ag. Of these, As, Cr, and Ni are slightly higher than the baseline or production period levels. Remaining metals at S-4 are higher than postmining baseline average values by varying degrees: Pb(24X) and Ag (5X). It is not known whether these levels are toxic to worms, nor whether the metals in worm tissue are biologically available to species that prey on these worms.

#### Mussels

Both the USFWS and the Oceanographic Institute of Oregon (OIO) have monitored levels of metals in mussels. The USFWS study showed that average levels for Cu, Pb, and Zn were higher in 1997 than in 1987 at 10 stations in Hawk Inlet, (Rudis 2001). OIO results show that average levels for four metals also increased: Cr (2x), Pb (2.3X), Ni (1.7X), and Se (1.1X). Whereas maximum measurements (spikes) for all metals except As, Hg, and

Ag exceeded Alaskan Mussel Watch average levels, the average mining production period metal levels are generally below Mussel Watch averages for Alaska.

The exception to this is Cd, which was above Mussel Watch Alaska averages prior to and subsequent to mining operations. Because the USFWS Hawk Inlet-wide levels of Pb increased similarly to the outfall monitoring site levels of Pb, these increases over time may be due to natural increases in Pb in the environment. Overall, these data suggest that mussels show elevated levels of Cd, Pb, Se, and Zn during the mining activity time period.

### **Current Status of Hawk Inlet Marine Ecosystem**

The status of the health of marine and aquatic can be viewed based on the number of types of creatures present in an area (species diversity, or "biodiversity"), the number of individual creatures in an area (species abundance), and quality of the environment (habitat integrity relative to pristine conditions).

For the marine environment, there are no data available to numerically compare diversity or abundance of organisms between pre-mining and postmining years. Observations by fishermen and researchers suggests that the physical features and biotic communities of Hawk Inlet remain intact following nearly 12 years of operation of the mine and is similar to adjacent inlets.

Marine species which consume sedentary seafloor organisms such as worms and bivalves would be most susceptible to trophic transfer of some metals. Based on the suite of species listed as having Essential Fish Habitat in Hawk Inlet, the species most likely to encounter these elevated metal levels through their diet and habitat uses would include the flatfishes (e.g. yellowfin sole, arrowtooth flounder, flathead sole, and rock sole), pacific cod, sculpin and crab species. Pacific halibut also have similar consumption patterns to these species. All of these species consume worms, bivalves, and crab.

Other migratory and resident fish, mammals, and birds which consume seafloor-dwelling organisms near the ore loading dock would also likely encounter elevated metal levels in their diet. There are no data available to evaluate whether metals are increasing through trophic transfer, or biomagnification at higher trophic levels in Hawk Inlet marine species such as fish, crab and mammals.

## 3.16 Heritage Resources

The evaluation of the heritage resources of the affected environment and potential impacts was made based on an archaeological impact assessment (Carlson, 1991) carried out prior to development of an Environmental Assessment (USDAFS, 1992) of the mining operation, supplemented by information developed previously by Harritt (referenced as NPS, 1998).

Available data indicate that humans have been present in the Southeast Alaska archipelago and mainland areas for at least 10,000 years. The Wooshkeetaan clan of the Auk among others historically used the Hawk Inlet area. Given the length of time humans have lived in Southeast Alaska, the geomorphology of the area, and the presence of anadromous streams and other faunal resources, there is potential in the area for the discovery of pre-Holocene era heritage resources that would contribute to knowledge of the arrival of early man in the New World.

Two midden sites and four sites dating to the historic era are located within the general project area. The midden sites were initially recorded by Carlson (1981) and subsequent investigation was conducted by Davis (1990). Remains at the Greens Creek site have been radiocarbon dated from around the beginning of the first millennium AD (AD 5) to approximately AD 735. Although the site on Young Bay has been radiocarbon dated from approximately 890 BC to AD 1810, the latter date is regarded as too recent, and not a reflection of the true age of the occupation (op cit).

Four of these documented sites have been evaluated for significance, while two of the historic sites are located well outside the area of potential effect. Greens Creek Midden site (JUN-090) and the Jacobsen Cabin (JUN-236) have been determined to be ineligible for inclusion on the National Register of Historic Places while the Hawk Inlet Cannery site (JUN-092) and Young Bay Midden site have been determined to be eligible for inclusion on the National Register of Historic Places.

In compliance with Section 106 of the National Historic Preservation Act (NHPA), the Forest Service has identified historic properties that might be affected, assessed effects to those properties, and offered to consult with the Tribes, Native Corporations and other interested parties in the area.

#### 3.17 Subsistence

Section 810 of the Alaska National Interest Lands Conservation Act (ANILCA) requires that all activities proposed on Federal lands be evaluated to determine if they would significantly restrict subsistence uses or

Greens Creek Tailings

opportunities. This determination is made in Section 4.13 of this document for each of the alternatives.

Section 803 of ANILCA defines subsistence as follows:

"The customary and traditional uses by rural Alaska residents of wild, renewable resources for direct personal or family consumptions as food, shelter, fuel, clothing, tools, or transportation; for the making and selling of handicraft articles out of the nonedible byproducts of fish and wildlife resources taken for personal or family consumption; for barter, or sharing for personal or family consumption; and for customary trade."

Rural subsistence communities near the Hawk Inlet project area are Angoon, 44 miles to the south, Tenakee Springs, 28 miles to the southwest, Hoonah, 28 miles to the west, and Funter Bay, 10 miles to the north. Juneau is a non-rural community located 18 miles to the east.

Wild foods are important nutritionally and culturally to residents in these communities (Krause 1970, DeLaguna 1960, Goldschmidt and Haas 1946, Leghorn and Kookesh 1987, George and Bosworth 1988, and Schroeder and Kookesh 1990, Emmons 1991). Deer, salmon, halibut, shellfish, seal, waterfowl, plants, and berries are important subsistence foods.

Hawk Inlet is not in a Customary and Traditional Use Area for any rural community (50 CFR Part 100 and 36 CFR Part 242). However, the Hawk Inlet area has long been used for subsistence hunting, fishing, and gathering. Hawk Inlet is also a safe harbor for subsistence users boating along the remote and exposed northwest shore of Admiralty Island. Zink, Greens, Tributary, and Wheeler Creek support anadromous salmon runs and the coastal beach fringes, grass meadows, and adjacent forest support deer, waterfowl, and plant/berry resources.

Goldschmidt and Haas (1946, 1998) documented the use and occupancy of the Tlingit and Haida Indians in 12 native communities in Southeast Alaska. They reported that in 1946 that Hawk Inlet was in the "aboriginal use and ownership" area of Auk Tlingits from the Juneau-Douglas Territory. They reported that the Angoon people used the western shore of Admiralty Island south of Point Marsden, a point at the south entrance to Hawk Inlet, and that the Hoonah territory ended at the east end of Icy Strait some 8 miles west of Hawk Inlet. The boundaries on their territorial maps were based on their efforts to interview knowledgeable people in each community but they caution that not all of the best informants were likely interviewed and that these territories changed over time.

Subsistence use patterns for residents of Angoon, Hoonah, Tenakee Springs, and other communities in Southeast Alaska have been studied by ADF&G.

**Greens Creek Tailings** 3.17 Subsistence 3-101

# 3 Affected Environment

George and Bosworth (1988) reported on the subsistence activities of Angoon residents based on household surveys conducted in 1985. They reported that Hawk Inlet was a deer hunting and shellfish harvesting area for Angoon residents.

Schroeder and Kookesh (1990) reported on the subsistence activities of Hoonah residents based on household surveys and interviews with Hoonah elders conducted in 1986 and 1987. They report that the Hawk Inlet area is in the area used by Hoonah residents for subsistence harvest of deer, salmon, and marine fish, invertebrates, and mammals.

Leghorn and Kookesh (1987) did not report any subsistence use of the Hawk Inlet area by residents of Tenakee Springs. Subsistence surveys have not been completed for the Juneau area by the State of Alaska, because Juneau is not designated as a "rural" area.

### 3.18 Recreation

Recreational use occurs in Hawk Inlet and the surrounding area, but is not allowed in the project area itself on land owned or leased by Greens Creek due to potential conflicts with heavy equipment and mining operations. Alaska Public Survey (APS) results indicate that Juneau residents are predominant users of the Hawk Inlet area for recreation. The other population centers nearest to the project area are Hoonah, and Angoon and it is probable, but not documented, that there is also some recreational use of the area by residents of those communities. Dominant recreation activities in the Greens Creek project vicinity are hunting, trapping, and saltwater fishing. Juneau fly-fishing guides take clients to the delta of Greens Creek where it empties into Hawk Inlet approximately one mile south of the tailings pile. Trapping occurs primarily along the shores of Hawk Inlet. Tourism is not a factor in the study area.

Hawk Inlet receives its largest recreational use during the deer-hunting season. In the summer months the inlet provides a protected moorage for sailboats, cabin cruisers, and commercial fishing boats. Hawk Inlet and Young Bay beaches also provide suitable landing space for wheeled aircraft. Such landings are permitted by the State, which owns the land below mean high tide. Young Bay recreational use is generally related to day trip activities, while Hawk Inlet is used for overnight trips. Recreational users access Hawk Inlet by boat and float plane. There is no regular public transportation service to the area.

Some of the recreational activity in Hawk Inlet is related to cabins in the inlet and at Wheeler Creek. These users/owners use the area for various activities, averaging 110 to 150 user days per year. Comments from owners/users

Greens Creek Tailings

indicate there may be as many people using Hawk Inlet without cabin access, as there are users who stay in cabins.

In the 2001 – 2002 hunting season (August – January), 239 deer hunters hunted 593 days in Hawk Inlet and Young Bay drainages. One hundred and thirty-three hunters were successful, taking a total of 145 bucks and 114 does (ADF&G 2001 Deer Hunter Survey Summary Statistics). ADF&G statistics do not differentiate between Young Bay and Hawk Inlet drainages, but it is probable that the majority of the hunting occurred on the Young Bay side because of its much easier access by Juneau residents.

**Table 3-19 Brown Bear Shot** 

| Year         Sex         * Type         Nonres           1963         M         8         R           1965         3 M         8         R           1967         2 M         8         R           1969         M         8         R           1970         2 F         8         R           1972         M         8         R           1972         3 F / 5 M         8         R           1972         3 F / 5 M         8         R           1973         3 M         8         R           1973         3 M         8         R           1974         F         8         R           1975         1 F / 1 M         8         N           1976         2 M         8         1 R / 1 N           1978         M         8         R           1981         M         8         N           1983         1 F / 1 M         8         1 R / N           1984         1 F / 1 M         1 8 / 15         R           1988         1 F / 1 M         1 1 / 18         R           1989         M         8         R                                                                 |      |           |        | _ ,       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|--------|-----------|
| 1963         M         8         R           1965         3 M         8         R           1967         2 M         8         R           1969         M         8         R           1970         2 F         8         R           1972         M         8         R           1972         3 F / 5 M         8         R           1972         3 F / 5 M         8         R           1973         3 M         8         R           1973         3 M         8         R           1974         F         8         R           1975         1 F / 1 M         8         N           1976         2 M         8         1 R / 1 N           1978         M         8         R           1981         M         8         N           1983         1 F / 1 M         1 8 / 15         R           1984         1 F / 1 M         1 8 / 15         R           1988         1 F / 1 M         1 1 / 18         R           1990         2 F / 2 M         8         R           1991         3 F / 3 M         8                                                                      |      |           |        | Res/      |
| 1963         M         8         R           1965         3 M         8         R           1967         2 M         8         R           1969         M         8         R           1970         2 F         8         R           1972         M         8         R           1972         3 F / 5 M         8         R           1973         3 M         8         R           1973         3 M         8         R           1974         F         8         R           1975         1 F / 1 M         8         N           1976         2 M         8         1 R / 1 N           1978         M         8         R           1981         M         8         N           1983         1 F / 1 M         1 8 / 1 5         R           1984         1 F / 1 M         1 8 / 1 5         R           1986         3 M         8         2 R / 1 N           1988         1 F / 1 M         1 1 / 1 8         R           1990         2 F / 2 M         8         R           1991         3 F / 3 M         8                                                                 | Year | Sex       | * Type | Nonres    |
| 1967         2 M         8         R           1969         M         8         R           1970         2 F         8         R           1972         M         8         R           1972         3 F / 5 M         8         R           1972         3 F / 5 M         8         R           1973         3 M         8         R           1973         3 M         8         R           1974         F         8         R           1975         1 F / 1 M         8         N           1976         2 M         8         1 R / 1 N           1978         M         8         R           1981         M         8         N           1983         1 F / 1 M         1 8 / 15         R           1984         1 F / 1 M         1 8 / 15         R           1986         3 M         8         2 R / 1 N           1988         1 F / 1 M         1 1 / 18         R           1990         2 F / 2 M         8         R           1991         3 F / 3 M         8         R           1992         2 F / 1 M <td< td=""><td>1963</td><td>М</td><td></td><td>R</td></td<>    | 1963 | М         |        | R         |
| 1969         M         8         R           1970         2 F         8         R           1972         M         8         R           1972         3 F / 5 M         8         R           1973         3 M         8         R           1973         3 M         8         R           1974         F         8         R           1975         1 F / 1 M         8         N           1976         2 M         8         1 R / 1 N           1978         M         8         R           1981         M         8         N           1983         1 F / 1 M         1 8 / 15         R           1984         1 F / 1 M         1 8 / 15         R           1986         3 M         8         2 R / 1 N           1988         1 F / 1 M         1 1 / 18         R           1990         2 F / 2 M         8         R           1991         3 F / 3 M         8         R           1992         2 F / 1 M         1 2 / 2 8         R           1993         M         1         1           1994         1 F / 2 M                                                          | 1965 | 3 M       | 8      | R         |
| 1970         2 F         8         R           1972         M         8         R           1973         3 F / 5 M         8         R           1973         3 M         8         R           1974         F         8         R           1975         1 F / 1 M         8         N           1976         2 M         8         1 R / 1 N           1978         M         8         R           1981         M         8         R           1983         1 F / 1 M         8         1 R / N           1984         1 F / 1 M         1 8 / 15         R           1986         3 M         8         2 R / 1 N           1988         1 F / 1 M         1 1 / 1 8         R           1989         M         8         N           1990         2 F / 2 M         8         R           1991         3 F / 3 M         8         R           1992         2 F / 1 M         1 2 / 2 8         R           1993         M         1         1           1994         1 F / 2 M         8         2 R / 1 N           1995         2 M <td>1967</td> <td>2 M</td> <td>8</td> <td>R</td> | 1967 | 2 M       | 8      | R         |
| 1972         M         8         R           1972         3 F / 5 M         8         R           1973         3 M         8         R           1974         F         8         R           1975         1 F / 1 M         8         N           1976         2 M         8         1 R / 1 N           1978         M         8         R           1981         M         8         R           1983         1 F / 1 M         8         1 R / N           1984         1 F / 1 M         1 8 / 1 5         R           1986         3 M         8         2 R / 1 N           1988         1 F / 1 M         1 1 / 1 8         R           1989         M         8         N           1990         2 F / 2 M         8         R           1991         3 F / 3 M         8         R           1992         2 F / 1 M         1 2 / 2 8         R           1993         M         1         1           1994         1 F / 2 M         8         2 R / 1 N           1995         2 M         8         R           1997         2 F /                                               | 1969 | М         | 8      | R         |
| 1972         3 F / 5 M         8         R           1973         3 M         8         R           1974         F         8         R           1975         1 F / 1 M         8         N           1976         2 M         8         1 R / 1 N           1978         M         8         R           1981         M         8         N           1983         1 F / 1 M         8         1 R / N           1984         1 F / 1 M         1 8 / 1 5         R           1986         3 M         8         2 R / 1 N           1988         1 F / 1 M         1 1 / 1 8         R           1989         M         8         N           1990         2 F / 2 M         8         R           1991         3 F / 3 M         8         R           1992         2 F / 1 M         1 2 / 2 8         R           1993         M         1         1           1994         1 F / 2 M         8         2 R / 1 N           1995         2 M         8         R           1997         2 F / 1 M         8         1 R / 2 N           1998                                             | 1970 | 2 F       | 8      | R         |
| 1973         3 M         8         R           1974         F         8         R           1975         1 F / 1 M         8         N           1976         2 M         8         1 R / 1 N           1978         M         8         R           1981         M         8         N           1983         1 F / 1 M         8         1 R / N           1984         1 F / 1 M         1 8 / 1 5         R           1986         3 M         8         2 R / 1 N           1988         1 F / 1 M         1 1 / 1 8         R           1989         M         8         N           1990         2 F / 2 M         8         R           1991         3 F / 3 M         8         R           1992         2 F / 1 M         1 2 / 2 8         R           1993         M         1         1           1994         1 F / 2 M         8         2 R / 1 N           1995         2 M         8         R           1997         2 F / 1 M         8         1 R / 2 N           1998         3 M         8         1 R / 2 N                                                          | 1972 | М         | 8      | R         |
| 1974         F         8         R           1975         1 F / 1 M         8         N           1976         2 M         8         1 R / 1 N           1978         M         8         R           1981         M         8         N           1983         1 F / 1 M         8         1 R / N           1984         1 F / 1 M         1 8 / 1 5         R           1986         3 M         8         2 R / 1 N           1988         1 F / 1 M         1 1 / 1 8         R           1989         M         8         N           1990         2 F / 2 M         8         R           1991         3 F / 3 M         8         R           1992         2 F / 1 M         1 2 / 2 8         R           1993         M         1         1           1994         1 F / 2 M         8         2 R / 1 N           1995         2 M         8         R           1997         2 F / 1 M         8         1 R / 2 N           1998         3 M         8         1 R / 2 N                                                                                                         | 1972 | 3 F / 5 M | 8      | R         |
| 1975         1 F/1 M         8         N           1976         2 M         8         1 R/1 N           1978         M         8         R           1981         M         8         N           1983         1 F/1 M         8         1 R/N           1984         1 F/1 M         1 8/1 5         R           1986         3 M         8         2 R/1 N           1988         1 F/1 M         1 1/1 8         R           1989         M         8         N           1990         2 F/2 M         8         R           1991         3 F/3 M         8         R           1992         2 F/1 M         1 2/2 8         R           1993         M         1         1           1994         1 F/2 M         8         2 R/1 N           1995         2 M         8         R           1997         2 F/1 M         8         1 R/2 N           1998         3 M         8         1 R/2 N                                                                                                                                                                                          | 1973 | 3 M       | 8      | R         |
| 1976         2 M         8         1 R / 1 N           1978         M         8         R           1981         M         8         N           1983         1 F / 1 M         8         1 R / N           1984         1 F / 1 M         1 8 / 1 5         R           1986         3 M         8         2 R / 1 N           1988         1 F / 1 M         1 1 / 1 8         R           1989         M         8         N           1990         2 F / 2 M         8         R           1991         3 F / 3 M         8         R           1992         2 F / 1 M         1 2 / 2 8         R           1993         M         1         1           1994         1 F / 2 M         8         2 R / 1 N           1995         2 M         8         R           1997         2 F / 1 M         8         1 R / 2 N           1998         3 M         8         1 R / 2 N                                                                                                                                                                                                           | 1974 | F         | 8      | R         |
| 1978         M         8         R           1981         M         8         N           1983         1 F / 1 M         8         1 R / N           1984         1 F / 1 M         1 8 / 1 5         R           1986         3 M         8         2 R / 1 N           1988         1 F / 1 M         1 1 / 1 8         R           1989         M         8         N           1990         2 F / 2 M         8         R           1991         3 F / 3 M         8         R           1992         2 F / 1 M         1 2 / 2 8         R           1993         M         1           1994         1 F / 2 M         8         2 R / 1 N           1995         2 M         8         R           1997         2 F / 1 M         8         1 R / 2 N           1998         3 M         8         1 R / 2 N                                                                                                                                                                                                                                                                            | 1975 | 1 F / 1 M | 8      | N         |
| 1981         M         8         N           1983         1 F / 1 M         8         1 R / N           1984         1 F / 1 M         1 8 / 1 5         R           1986         3 M         8         2 R / 1 N           1988         1 F / 1 M         1 1 / 1 8         R           1989         M         8         N           1990         2 F / 2 M         8         R           1991         3 F / 3 M         8         R           1992         2 F / 1 M         1 2 / 2 8         R           1993         M         1           1994         1 F / 2 M         8         2 R / 1 N           1995         2 M         8         R           1997         2 F / 1 M         8         1 R / 2 N           1998         3 M         8         1 R / 2 N                                                                                                                                                                                                                                                                                                                         | 1976 | 2 M       | 8      | 1 R / 1N  |
| 1983       1 F/1 M       8       1 R/N         1984       1 F/1 M       1 8/1 5       R         1986       3 M       8       2 R/1 N         1988       1 F/1 M       1 1/1 8       R         1989       M       8       N         1990       2 F/2 M       8       R         1991       3 F/3 M       8       R         1992       2 F/1 M       1 2/2 8       R         1993       M       1         1994       1 F/2 M       8       2 R/1 N         1995       2 M       8       R         1997       2 F/1 M       8       1 R/2 N         1998       3 M       8       1 R/2 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1978 | M         | 8      | R         |
| 1984         1 F / 1 M         1 8 / 1 5         R           1986         3 M         8         2 R / 1 N           1988         1 F / 1 M         1 1 / 1 8         R           1989         M         8         N           1990         2 F / 2 M         8         R           1991         3 F / 3 M         8         R           1992         2 F / 1 M         1 2 / 2 8         R           1993         M         1           1994         1 F / 2 M         8         2 R / 1 N           1995         2 M         8         R           1997         2 F / 1 M         8         1 R / 2 N           1998         3 M         8         1 R / 2 N                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1981 | M         | 8      | N         |
| 1986         3 M         8         2 R / 1 N           1988         1 F / 1 M         1 1 / 1 8         R           1989         M         8         N           1990         2 F / 2 M         8         R           1991         3 F / 3 M         8         R           1992         2 F / 1 M         1 2 / 2 8         R           1993         M         1           1994         1 F / 2 M         8         2 R / 1 N           1995         2 M         8         R           1997         2 F / 1 M         8         1 R / 2 N           1998         3 M         8         1 R / 2 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1983 | 1 F / 1 M | 8      | 1 R / N   |
| 1988         1 F/1 M         1 1/1 8         R           1989         M         8         N           1990         2 F/2 M         8         R           1991         3 F/3 M         8         R           1992         2 F/1 M         1 2/2 8         R           1993         M         1           1994         1 F/2 M         8         2 R/1 N           1995         2 M         8         R           1997         2 F/1 M         8         1 R/2 N           1998         3 M         8         1 R/2 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1984 | 1 F / 1 M | 18/15  | R         |
| 1989         M         8         N           1990         2 F / 2 M         8         R           1991         3 F / 3 M         8         R           1992         2 F / 1 M         1 2 / 2 8         R           1993         M         1           1994         1 F / 2 M         8         2 R / 1 N           1995         2 M         8         R           1997         2 F / 1 M         8         1 R / 2 N           1998         3 M         8         1 R / 2 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1986 | 3 M       | 8      | 2 R / 1 N |
| 1990     2 F / 2 M     8     R       1991     3 F / 3 M     8     R       1992     2 F / 1 M     1 2 / 2 8     R       1993     M     1       1994     1 F / 2 M     8     2 R / 1 N       1995     2 M     8     R       1997     2 F / 1 M     8     1 R / 2 N       1998     3 M     8     1 R / 2 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1988 | 1 F / 1 M | 11/18  | R         |
| 1991     3 F/3 M     8     R       1992     2 F/1 M     1 2/2 8     R       1993     M     1       1994     1 F/2 M     8     2 R/1 N       1995     2 M     8     R       1997     2 F/1 M     8     1 R/2 N       1998     3 M     8     1 R/2 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1989 | M         |        | Ν         |
| 1992     2 F / 1 M     1 2 / 2 8     R       1993     M     1       1994     1 F / 2 M     8     2 R / 1 N       1995     2 M     8     R       1997     2 F / 1 M     8     1 R / 2 N       1998     3 M     8     1 R / 2 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1990 |           |        | R         |
| 1993         M         1           1994         1 F / 2 M         8         2 R / 1 N           1995         2 M         8         R           1997         2 F / 1 M         8         1 R / 2 N           1998         3 M         8         1 R / 2 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1991 | 3 F / 3 M | 8      | R         |
| 1994     1 F/2 M     8     2 R/1 N       1995     2 M     8     R       1997     2 F/1 M     8     1 R/2 N       1998     3 M     8     1 R/2 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1992 | 2 F / 1 M | 12/28  | R         |
| 1995         2 M         8         R           1997         2 F / 1 M         8         1 R / 2 N           1998         3 M         8         1 R / 2 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1993 | M         | 1      |           |
| 1997 2 F / 1 M 8 1 R / 2 N<br>1998 3 M 8 1 R / 2 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1994 | 1 F / 2 M | 8      | 2 R / 1 N |
| 1998 3 M 8 1 R / 2 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1995 | 2 M       | 8      | R         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1997 | 2 F / 1 M | 8      |           |
| 4000 2 M 0 4 D / 0 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1998 | 3 M       | 8      | 1 R / 2 N |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1999 | 3 M       | 8      | 1 R / 2 N |
| 2000 1 F / 5 M 8 1 R / 4 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2000 | 1 F / 5 M | 8      | 1 R / 4 N |

\*TYPE: 8-sport harvest, 5-illegal harvest, 1-defense of life or property, 2-found dead

\*RES: R=Resident, N=Non Resident

(ADF&G 2002)

ADF&G data on the numbers of brown bears shot by sport hunters in the Hawk Inlet area show an average of 1.8 bears per year taken in the Hawk Inlet area from 1963 through 2000.

The ADF&G believes a few people hunt ducks in Hawk Inlet during mid-October. These people use cabin cruiser type vessels to reach Hawk Inlet and generally stay for several days.

The furbearers trapped in the area are mink, marten, and river otter. There are no records available that indicate levels of trapping activity or harvests of mink. Annual ADF&G records show that marten and otter harvest occurs sporadically in Hawk Inlet with large harvests of marten in 1984 and 1997 (Table 3-20 and Table 3-21).

**Greens Creek Tailings** 3.18 Recreation 3-103

Table 3-20 Hawk Inlet Documented I
Otter Harvest

| Year | Number |
|------|--------|
| 1981 | 6      |
| 1984 | 7      |
| 1985 | 1      |
| 1991 | 8      |
| 1994 | 4      |
| 1997 | 7      |

ADF&G 2002

### Table 3-21 Hawk Inlet Documented Marten Harvest

| Year | Number |
|------|--------|
| 1984 | 14     |
| 1988 | 1      |
| 1991 | 5      |
| 1992 | 2      |
| 1996 | 7      |
| 1997 | 22     |
| 2000 | 2      |
| 2001 | 1      |

### 3.19 Socioeconomic

To the extent that tailings disposal alternatives either extend or reduce the life of the Greens Creek Mine, Juneau could experience socioeconomic impacts. Local employment and income, population, school enrollment, housing, and local government revenues would be affected. Baseline data are presented below.

## 3.19.1 Employment and Income

The Juneau City and Borough employment base included 16,660 non-agricultural wage and salary (NAWS) jobs in 1999. Not included in this total are self-employed people (including commercial fishermen) and uniformed military personnel. The NAWS payroll totaled \$538 million in Juneau in 1999.

Compared to 1998, NAWS employment in Juneau increased by 200 jobs in 1999, a 1.2 percent growth rate. Since 1990, Juneau area employment has been growing at an average annual rate of about 1.7 percent.

The government sector continues to dominate the Juneau economy, accounting for 41 percent of all jobs and 52 percent of all payroll in 1999. This includes state, federal and local government jobs. State government alone directly accounts for one-quarter of the NAWS jobs in Juneau and 30 percent of payroll.

State government is by far Juneau's most important basic industry. In terms of employment, tourism ranks second among Juneau's basic industries (with an annual average of approximately 1,600 jobs), followed by the federal government.

According to Bureau of Economic Analysis data, total personal income for Juneau residents reached \$1.01 billion in 1998. Per capita personal income averaged \$33,516 in 1998.

Table 3-22 Non-Agriculture Wage and Salary Employment and Earnings, City and Borough of Juneau, 1999

| Industrial Classification       | Annual<br>Average | Annual         | Average Monthly |  |
|---------------------------------|-------------------|----------------|-----------------|--|
| industrial Classification       | Employment        | Earnings (\$)  | Earnings (\$)   |  |
| Total Industries                | 16,660            | \$537,587,335  | \$ 2,689        |  |
| Private Ownership               | 9,755             | 260,079,405    | 2,222           |  |
| Total Government                | 6,905             | 277,507,930    | 3,349           |  |
| Agriculture, Forestry & Fishing | 100               | 2,532,241      | 2,121           |  |
| Mining                          | 295               | Nondisclosable | Nondisclosable  |  |
| Metal mining                    | 277               | Nondisclosable | Nondisclosable  |  |
| Nonmetallic minerals ex fuels   | 18                | 702,603        | 3,283           |  |
| Construction                    | 720               | 29,226,859     | 3,384           |  |
| Manufacturing                   | 357               | 12,629,414     | 2,945           |  |
| Durable Goods                   | 115               | 6,271,224      | 4,544           |  |
| Non-Durable Goods               | 242               | 6,358,190      | 2,186           |  |
| Trans., Comm. & Utilities       | 1,171             | 39,433,519     | 2,807           |  |
| Total Trade                     | 2,863             | 57,808,123     | 1,682           |  |
| Wholesale Trade                 | 342               | 10,200,920     | 2,487           |  |
| Retail Trade                    | 2,522             | 47,607,203     | 1,573           |  |
| Finance, Ins. & Real Estate     | 519               | 18,757,685     | 3,014           |  |
| Services                        | 3,722             | 78,286,262     | 1,753           |  |
| Non-Classified                  | 8                 | 217,621        | 2,244           |  |
| Federal Government              | 865               | 46,614,442     | 4,491           |  |
| State Government                | 4,271             | 165,529,935    | 3,230           |  |
| Local Government                | 1,769             | 65,363,553     | 3,079           |  |

Source: Alaska Department of Labor & Workforce Development, Research and Analysis Section.

Table 3-23 Non-Agriculture Wage and Salary Employment, City and Borough of Juneau, 1990 to 1999

|                    | 1990** | 1991   | 1992   | 1993   | 1994*** | 1995   | 1996   | 1997   | 1998   | 1999   |
|--------------------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|
| Total Industries   | 14,122 | 14,081 | 14,518 | 14,612 | 15,336  | 15,812 | 16,165 | 16,518 | 16,461 | 16,660 |
| Mining             | 75     | 84     | 75     | 75     | 160     | 187    | 257    | 302    | 313    | 295    |
| Construction       | 414    | 518    | 548    | 717    | 636     | 629    | 702    | 734    | 685    | 720    |
| Manufacturing      | 148    | 199    | 268    | 270    | 287     | 327    | 364    | 383    | 375    | 357    |
| Transportation     | 911    | 880    | 957    | 909    | 989     | 1,072  | 1,070  | 1,199  | 1,245  | 1,171  |
| Trade              | 2,239  | 2,416  | 2,464  | 2,552  | 2,775   | 2,920  | 2,941  | 2,912  | 2,824  | 2,863  |
| Wholesale Trade    | 197    | 217    | 197    | 198    | 197     | 184    | 226    | 275    | 306    | 342    |
| Retail Trade       | 2,042  | 2,199  | 2,267  | 2,353  | 2,578   | 2,736  | 2,715  | 2,637  | 2,518  | 2,522  |
| Finance            | 496    | 558    | 585    | 618    | 703     | 681    | 695    | 740    | 676    | 519    |
| Services & Misc.   | 2,333  | 2,279  | 2,357  | 2,449  | 2,824   | 3,017  | 3,134  | 3,335  | 3,439  | 3,722  |
| Ag, Forest, & Fish | *      | *      | 70     | 70     | 74      | 78     | 80     | 98     | 92     | 100    |
| Nonclassifiable    | *      | *      | 2      | 13     | 11      | 7      | 8      | 5      | 18     | 8      |
| Government         | 7,449  | 7,078  | 7,191  | 6,940  | 6,877   | 6,893  | 6,915  | 6,810  | 6,793  | 6,905  |
| Federal            | 1,406  | 1,039  | 1,094  | 961    | 937     | 908    | 894    | 868    | 847    | 865    |
| State              | 4,535  | 4,518  | 4,530  | 4,373  | 4,301   | 4,315  | 4,318  | 4,232  | 4,237  | 4,271  |
| Local              | 1,508  | 1,521  | 1,567  | 1,606  | 1,640   | 1,671  | 1,703  | 1,710  | 1,709  | 1,769  |

<sup>\*</sup> Nondisclosable

Source: Alaska Department of Labor & Workforce Development, Research and Analysis Section.

<sup>\*\* 1990</sup> Federal government employment overreported. All 1990 Census workers statewide reported in Juneau. Actual federal employment is 350-400 less than indicated.

<sup>\*\*\*</sup> Juneau annexed Green's Creek Mine effective 1-1-94. Mining industry employment for 1994 includes Green's Creek but prior years do not.

Over the past decade, the composition of Juneau's employment has changed. Nearly all of Juneau's growth during the last decade has been in trade, service, and transportation—sectors most affected by the visitor industry. During that period, Juneau gained nearly 3,100 private-sector jobs, while the government-sector lost 500 jobs. In 1990, government directly accounted for 53 percent of all local jobs (including federal, state, and local government positions). Today government accounts for 42 percent of all jobs in Juneau. Government decline includes 500 federal jobs and 250 state jobs. Local government increased by 260 jobs.

Juneau has also seen a steady decline in real wages (inflation adjusted). Average real annual salaries have declined by 10 percent since 1990, from \$36,000 to \$32,000 a year. Government real wages have slipped from \$46,000 in 1990 to \$40,000 today, a 13 percent decline. During the same period, state wages fell 20 percent, from \$47,000 to \$39,000 today. Private-sector average wages increased 2 percent, from \$26,000 to \$26,600.

### 3.19.2 Population

According to the 2000 Census, Juneau's population in the year 2000 was 30,711. Between 1990 and 1999, the population of the City and Borough of Juneau (CBJ) has increased at an average annual rate of 1.3 percent. Population growth has generally paralleled statewide increases over the same time period.

| Table 3-24 | Citv a | nd Borough | of Juneau Po | pulation. | 1990-2000 |
|------------|--------|------------|--------------|-----------|-----------|
|            |        |            |              |           |           |

| Year | Population | Rate of Change |
|------|------------|----------------|
| 1990 | 26,751     |                |
| 1991 | 27,579     | 3 percent      |
| 1992 | 28,253     | 2              |
| 1993 | 28,448     | <1             |
| 1994 | 28,454     | <1             |
| 1995 | 28,700     | <1             |
| 1996 | 29,230     | 2              |
| 1997 | 29,713     | 2              |
| 1998 | 30,021     | 1              |
| 1999 | 30,189     | <1             |
| 2000 | 30,711     | na*            |

\*Because of different counting methodologies, the increase in population between 1999 and 2000 reported here may not reflect actual population growth.

Source: Alaska Department of Labor & Workforce Development, Research and Analysis Section (1991 through 1999), and US Bureau of the Census (1990 and 2000).

The Juneau population is projected to continue to increase gradually over the next 20 years, according to the Alaska Department of Labor and Workforce

Development. Based upon that agency's projected long-term growth rates of 0.5 percent to 1.3 percent, Juneau's population could grow to between 33,900 and 39,800 over the next 20 years.

### 3.19.3 School Enrollment

As of April 27, 2001, Juneau's public school enrollment (grades K-12) totaled 5,430 students. School enrollment has declined in each of the last two school years after peaking at 5,588 students in 1998-99. Since then, the Juneau school district has lost a total of 158 students, a 2.8 percent decline.

Table 3-25 City and Borough of Juneau, Public School Enrollment, K-12

| Year    | Population | Rate of Change |
|---------|------------|----------------|
| 1994-95 | 5,315      | _              |
| 1995-96 | 5,447      | 2.5 percent    |
| 1996-97 | 5,529      | 1.5 percent    |
| 1997-98 | 5,530      | 0.0 percent    |
| 1998-99 | 5,588      | 1.0 percent    |
| 1999-00 | 5,496      | -1.6 percent   |
| 2000-01 | 5,430      | -1.2 percent   |

Enrollment is as of the end of each school year, except 2000-01, which is as of April 27.

Source: City and Borough of Juneau School District.

## 3.19.4 **Housing**

Housing construction has slowed in recent years. In 2000, 108 new housing construction permits were issued, marking the fifth consecutive annual decline in housing construction, and the lowest level since 1993. Juneau's housing inventory now totals approximately 11,000 units, with a vacancy rate of about 4 percent, according to the most recent CBJ data.

Greens Creek Tailings 3.19 Socioeconomic 3-107

Table 3-26 City and Borough of Juneau, New Housing Units and Vacancy Rate, 1990-2000

| Year | Number of New<br>Dwelling Units | Vacancy<br>Rate |
|------|---------------------------------|-----------------|
| 1990 | 72                              | 1.5             |
| 1991 | 97                              | 1.2             |
| 1992 | 120                             | 1.2             |
| 1993 | 102                             | 0.9             |
| 1994 | 252                             | 0.8             |
| 1995 | 370                             | 1.0             |
| 1996 | 349                             | 2.0             |
| 1997 | 232                             | 2.7             |
| 1998 | 147                             | 3.6             |
| 1999 | 138                             | Na              |
| 2000 | 108                             | Na              |

Source: City and Borough of Juneau, Department of Community Development

### 3.19.5 Local Government Revenue

Over three-quarters of CBJ's revenues (78 percent) come from local sources, such as user fees and permits, property tax, and sales tax. The state provides 19 percent of total revenue, while federal sources account for 3 percent of revenue.

Table 3-27 City and Borough of Juneau Operating Revenues, FY2000 Actual

| _                   | _             | Percent       |
|---------------------|---------------|---------------|
| Source              | Revenue       | Total Revenue |
| State Support       | \$29,839,200  | 19.3 percent  |
| Federal Support     | 4,198,800     | 2.7           |
| Local Support       | 120,557,400   | 78.0          |
| Property Tax        | 25,570,500    | 16.5          |
| Sales Tax           | 27,799,200    | 17.9          |
| Alcohol Tax         | 566,600       | <1.0          |
| Tobacco Excise Tax  | 269,400       | <1.0          |
| Hotel Tax           | 1,009,400     | <1.0          |
| User Fees & Permits | 55,709,900    | 36.0          |
| Penalties & Fines   | 1,310,000     | <1.0          |
| Other               | 8,322,400     | 5.4           |
| Total Revenues      | \$154,595,400 | 100           |

Source: City and Borough of Juneau

### 4 **Environmental Consequences**

#### 4.1 Introduction

This chapter presents the results of the analyses of potential impacts to the affected environment from the four alternatives. This chapter consolidates the discussions of environmental consequences and sets forth:

- **→** The results of the analyses of potential impacts from the four alternatives on the resources discussed in Chapter 3,
- + Any adverse environmental effects which cannot be avoided should an alternative be implemented,
- **→** The relationship between short-term uses of the human environment and the maintenance and enhancement of longterm productivity, and
- **→** Any irreversible or irretrievable commitments of resources which would be involved in an alternative proposal should it be implemented.

The scope and level of detail devoted to the impact analysis for each resource is a function of the concerns that were identified during scoping Sand those carried forward as significant issues.

Each of the alternatives has been described in detail in Chapter 2, but they can be summarized as follows.

- + Alternative A The "No Action" alternative would not modify the existing general plan of operations to permit any expansion of the tailings disposal facility. Under the current permit the existing tailings facility has space for about 1 million tons of tailings, or roughly 2 years of tailings disposal at the current level of production. KGCMC would continue its present method of generating whole tailings. The tailings would be placed without chemical or biological additives other than those currently allowed by the State of Alaska solid waste permit. The footprint of the tailings pile would be limited to 29 acres in size, and would utilize the post-closure construction of an engineered soil cover on the pile to minimize the transmission of oxygen and water into the pile.
- **→ Alternative B** The Proposed Action alternative would modify the general plan of operations to permit an increase in the size of the tailings disposal facility. KGCMC would continue its present method of generating whole tailings. The tailings would be placed without chemical or biological additives other

**Greens Creek Tailings** 4.1 Introduction 4-1

# 4 Environmental Consequences

- than those currently allowed by the State of Alaska solid waste permit. The expanded footprint of the tailings pile would occupy 61 acres.
- **→ Alternative** C Alternative C would modify the GPO and realign of the boundaries of the tailing pile footprint displayed in Alternative B to minimize the lease area and the disturbed area within the Admiralty Island National Monument and move the expansion area of the pile away from steeper slopes. Like all alternatives, Alternative C would utilize the post-closure construction of an engineered soil cover on the pile to minimize the transmission of oxygen and water into the pile. Alternative C evaluates the use of a continuous carbon addition to the pile, which helps the sulfate reduction process positively influence water chemistry of the effluent. This alternative would also institute a sulfate reduction monitoring program (SRMP) to determine the additional amount of carbon required to influence post-closure water quality to meet applicable effluent limits in KGCMC's NPDES permit. The purpose of this alternative is to provide more assurance of long-term chemical stability of the tailings than with the proposed action. The expanded footprint of the tailings pile would occupy 62 acres.
- ★ Alternative D Alternative D would modify the general plan of operations to require the addition of carbonate (limestone) into the entire volume of new tailings placed on the pile. The volume of carbonate necessary to neutralize the tailings would expand the footprint of the tailings pile to 81 acres. This option would entail a lease area in the Monument of 115 acres. The purpose of this alternative is to consider an alternate method of increasing the neutralizing potential of the tailings pile beyond what is expected in the proposed action.

This chapter presents the environmental consequences for each alternative and sets forth the following:

- + The potential environmental impacts of the alternatives,
- → Any adverse environmental impacts that cannot be avoided,
- ★ The relationship between short-term human uses of the environment and the maintenance and enhancement of longterm productivity, and
- **→** Any irreversible or irretrievable commitments of resources.

Greens Creek Tailings EIS

#### 4.1.1 **Effects, Impacts, and Analyses**

The Council on Environmental Quality (CEQ) has established regulations for implementing the National Environmental Policy Act of 1972 (NEPA) (40 CFR 1500 - 1508). For this analysis, the study team relied on those definitions as follows:

The terms "effects" and "impacts" are used interchangeably in this chapter, as they are in the CEQ regulations for implementing the procedural provisions of NEPA (40 CFR §1508.8). The effects (or impacts) examined include ecological (such as the effects on natural resources and on the components, structures, and functioning of affected ecosystems), aesthetic, historic, heritage, and economic, as well as social effects, or health impacts, whether direct, indirect, or cumulative. These impacts are measurable individually or cumulatively, and if an impact is adverse, it requires avoidance or minimization to mitigate the effect.

The terms "positive" or "beneficial" and "negative" or "adverse" are likewise used interchangeably in this analysis to indicate direction of intensity in significance determination.

In this document, impacts are defined as "those changes to the existing environment that have either a beneficial or adverse consequence as a result of project construction, operation, and maintenance." (40 CFR 1508.8) Impacts are described in terms of frequency, duration, general scope and/or size, and intensity.

The combinations of frequency, duration, scope/size, and intensity of identified adverse impacts are described as follows:

**None** – (no change) No impacts are anticipated when subject resources are not present or activities are not expected to affect those resources that are present.

Negligible - Impacts on subject resources may occur as a result of project activities, but are not measurable.

**Minor** – Impacts that are less than significant and do not require avoidance or minimization to mitigate that effect.

**Significant** – as used in NEPA, is determined by considering the context in which the action will occur and the intensity of the action (40 CFR 1508.27).

**Greens Creek Tailings** 4.1 Introduction 4-3

# 4 Environmental Consequences

**Context** – The context in which the action will occur includes the specific resources, ecosystem, and the human environment affected. Context is considered on a site-specific project area, and regional basis. Both shortand long-term effects are relevant.

**Intensity** – This refers to the severity of impact. The intensity of the action includes the type of impact (beneficial versus adverse), duration of impact (short versus long term), magnitude of impact (minor versus major), and degree of risk (high versus low level of probability of an impact occurring). Further tests of intensity for this project include: (1) substantial damage to habitats; (2) impacts on endangered or threatened species, marine mammals, or critical habitat of these species; (3) cumulative adverse effects; (4) impacts on biodiversity and ecosystem function; (5) significant social or economic impacts; and (6) impacts on subsistence.

These impacts have a measurable effect individually or cumulatively, and, if the impact is negative, may require avoidance or minimization to mitigate the effect. Significant adverse impacts are addressed in the following manner:

- → Demonstrating that the impact can be reduced to a minor level by changing the project design,
- → Demonstrating that the alternative is acceptable because the risk of the impact is small, or
- → Demonstrating that the impact cannot be reduced by changes in design.

**Direct effects** "...are caused by the action and occur at the same time and place." (40 CFR 1508.8)

**Indirect effects** "...are caused by the action and are later in time or farther removed in distance, but are still reasonably foreseeable. Indirect effects may include growth inducing effects and other effects related to induced changes in the pattern of land use, population density or growth rate, and related effects on air and water and other natural systems, including ecosystems." (40 CFR 1508.8)

Cumulative impact "...is the impact on the environment which results from the incremental impact of the action when added to other past, present, and reasonably foreseeable future actions regardless of what agency (Federal or non-Federal) or person undertakes such other actions. Cumulative impacts can result from individually minor but collectively significant actions taking place over a period of time" (40 CFR 1508.7).

4-4 1 4.1 Introduction Greens Creek Tailings

Each alternative considered in this document would permit operations to continue for approximately two more years. All action alternatives would allow operations to continue for an additional 10 years, based upon known reserves and potentially another 10 years based on reasonable predicted discoveries of new ore. Therefore analyses use a time frame of 22 years, which is the expected life of the mine. Consequently all analyses of impacts throughout this chapter consider the impact of the mine operation in the past, combined with the anticipated impacts of reasonably foreseeable future operations under that alternative.

Past, present, and reasonably foreseeable future impacts included in these analyses are not limited to tailings disposal impacts. Rather, these analyses include consideration of available data and information (such as fresh water monitoring data, management and reclamation plans, and other mitigation measures) in regard to impacts of all mine activities affecting the same environmental resources as the alternatives considered in this document. Such activities include facility construction as well as use and disposition of production rock.

All analyses also consider mitigation resulting from implementation of management plans. These include the Reclamation Plan (KGCMC General Plan of Operations, Appendix 14), contained in Appendix C of this document, and the management tailings section of the KGCMC General Plan of Operations, Appendix 3.

#### 4.1.2 **Chapter Organization**

This chapter compares potential impacts to environmental resources from the four alternatives. There are parts of the environment that are described in Chapter 3 (location, climate, oceanography, and geology) that will not be impacted by the project. Those parts of the environment are not further described or analyzed in Chapter 4. The remaining parts of the affected environment that have the potential to be affected are analyzed in this chapter in the same order as Chapter 3. In a section for each part of the affected environment, the potential environmental consequences of each alternative are discussed. Where the impacts are the same as previously discussed for an earlier alternative, the consequences are simply described as "Same as...." For a number of resources, none of the alternatives would have a measurable impact. In those cases the lack of impact to all four alternatives is described at once.

#### 4.2 Land

The location of the proposed action in and adjacent to the Admiralty Island National Monument was identified as a significant issue.

**Greens Creek Tailings** 4.2 Land 4-5

# 4 Environmental Consequences

Consideration of the values inherent in the Admiralty Island National Monument as shown in Table 4-1, under Alternative A (no action), 38 acres within the Monument are affected. Alternative B (the proposed action) would result in 90 acres in the Monument being affected.

In response to the recognition of Monument values as a significant issue, Alternative C was designed to reduce, from the proposal, leased area in the Monument. Reducing the acres is a way of limiting the intensity of activities in the Monument, and by being a smaller area the time required to return the area to a conditions similar to what existed prior to the activity would be less. This was done by eliminating the proposed quarry area at the southern end of the proposed lease area and by moving the southern half of the proposed reclamation materials storage area outside of the Monument to the northeast corner just outside the current proposed lease area. (See Chapter 2, Figure 2-7).

Under Alternative C, the southern boundary of the proposed lease area would move north, out of the Monument approximately 1,480 feet. This alternative would reduce, from the proposal, both the lease area and the disturbed area within the Monument by approximately 22 acres (to 68 acres), although it would increase the lease area and disturbed area outside the Monument by 5 acres. The net change in lease area inside and outside the Monument would be a decrease of 17 acres.

Alternative D would require the addition of limestone to the tailings. This would result in an expansion in the tailings area to 81 acres. Under this alternative, the tailings facility lease area would expand to 172 and the leased area within the Monument would expand to 115 acres.

This alternative would also require a structure of about 18,000 square feet for dry storage of limestone and equipment for mixing the limestone into the tailings. In addition to the increase of the size of the tailings pile, the dry storage area and mixing equipment would require an expansion of the previously disturbed area for an additional 1 or 2 acre increase in the footprint at the mill or tailings site. As discussed under Alternative C, there are a limited number of areas that the tailings pile can expand into while still addressing other resource concerns.

The area of the tailing pile is not in an inventoried roadless area. No roads connected with this project would be constructed outside of the leased tailing site area.

4-6 1 4.2 Land Greens Creek Tailings

Total Total Area of Total Total Total Lease Lease **Tailings** Disturbe Lease Lease **Area After Expansio Footprint** d Area Area in Area Outside of Expansio n Only Area (est.) Monument Monument n Alternative A – 29 56 0 54 38 18 No Action Alternative B -140 84 61 125 90 50 Proposed action Alternative C – East 123 67 62 110 68 55 Ridge+ the monument values boundary changes + continuous carbon addition 172 Alternative D – East 116 81 162 115 57 Ridge+ expanded boundary for room for continuous carbonate addition (all figures in acres - rounded to the nearest acre)

Table 4-1 **Acreages by Alternative** 

#### 4.3 Air Quality

None of the alternatives is expected to have any discernable impact on air quality. Greens Creek Mine facilities are located in a temperate rainforest and thus experiences high precipitation and relative humidity levels that inhibit dust.

#### **Visual Quality** 4.4

Travel on the water surface offers direct views of the shoreside loading area and a more indirect view of the tailings facility. The amount of vegetation cleared for the tailings pile would significantly increase with each of the action alternatives, so that a larger gap in the canopy cover would be visible, particularly from the air. The expanded tailings pile would expose a larger area of light-colored soils to those who view the mine facilities from Hawk Inlet.

The discussion of visual effects below applies to all of the alternatives, with exceptions noted at the end of this section. The ability of the proposed expansion of the tailings pile to meet VQO requirements has been determined through the use of existing photographs and photosimulation.

**Greens Creek Tailings** 4.4 Visual Quality M 4-7

# 4 Environmental Consequences

Existing photographs show the obvious color and texture differences between the bare earth and forested areas. During the first 5 years following closure the landscape will begin to "green-up" but will be obviously different from undisturbed areas. For the next ten years, herbaceous materials will be less dominate and there will be some woody plant growth of pioneer species such as Alder (*Alnus*) and blueberries (*Vaccinium*). Years 15 through 30 will see more woody plants become established and the growth of Spruce (*Picea*) and Hemlock (*Tsuga*) will be visible as a different age and canopy height from the surrounding vegetation. After approximately thirty years the landscape will become more typical of the vegetation common to the undisturbed project area.

The presently approved tailings pile will reach a maximum height of 80 feet above ground level. Under all action alternatives, the pile would be an additional 80 feet higher for a maximum height of 160 feet (approximately 330 feet above sea level). Exposed soil and a break in the canopy will be visible from the water travel routes. (and 4-2). Because of the topography at the water's edge, the tailing pile will be more visible in the middle ground view than it would be from a foreground view (Figure 4-2).

Shoreline views from Hawk Inlet toward the area of the existing tailings pile reveal limited views of the top of the tailings pile and tree boles behind (See). The project area is inventoried as a Type III EVC because the natural appearance of the landscape still remains dominant and the disturbance appears minor to the average forest visitor. Because the disturbance from Alternatives B, C, and D will be visually similar to the existing disturbance from Alternative A, it is predicted that under all alternatives the area will continue to be inventoried as a Type III EVC.

4-8 4.4 Visual Quality Greens Creek Tailings

Figure 4-1 Existing Tailings Pile from Hawk Inlet (Alternative A)Alternative B and C (October, 2003)



Figure 4-2 Photo-Simulation of Hawk Inlet showing Alternative B and C **Proposed Tailings Expansion at Maximum Height before Revegetation (October 2003)** 



Figure 4-3 Photo-Simulation of Hawk Inlet showing Alternative D Proposed **Tailings Expansion at Maximum Height before Revegetation** (October, 2003)



**Greens Creek Tailings** 4.4 Visual Quality 4-9

# 4 Environmental Consequences

Alternatives B, C, and D would each have greater capacity than the existing lease (Alternative A – no action) and would thus increase the extent and prolong the period of visual impact.

Under all action alternatives, the final height of the pile would be approximately 80 additional feet higher for a pile height level of 160 feet above the ground level and an elevation of 330 feet above sea level. The visual impacts of Alternatives B and C would be essentially similar. Both would have larger footprints than the current permitted pile, (61.3 and 62.2 acres respectively).

The tailings footprint associated with Alternative D would be the same height as Alternatives B and C, but would be another 20 acres larger (81.5 acres) to accommodate the carbonate. Because of the larger size, the visual impact of Alternative D would be the greatest.

The reclamation plan for all alternatives would comply with Appendix 14 of the October 2000 GPO and with the DEC Waste Management Permit. Under all alternatives, the capped pile would have slopes of approximately 3H to 1V. This is steeper than the muskegs and forested slopes between the pile and Hawk Inlet, but is not as steep as some of the forested slopes directly above the location of the finished pile. Overall, the topography of the pile will blend into the hummocks and slopes of the surrounding area. All alternatives are consistent with the Forest Plan for the Non-Wilderness National Monument LUD VQO of Maximum Modification. Approximately 40 years after mining operations have ceased the site would meet the VQO of Retention.

## 4.5 Geochemistry and Hydrology

Water Quality was identified as a significant issue for this project and it is by far the most complex of the issues addressed in this EIS.

Water quality concerns raised during scoping included the potential for metals loading and/or Acid Rock Drainage (ARD) from the tailings pile, long-term maintenance of surface and groundwater standards, the effectiveness of proposed methods for control of non-contact water, the need to add a monitoring program to measure metals uptake by wetland communities and stream sediments, and bioaccumulation. (USDA, FS, 2001)

The following sections discuss surface and ground water hydrology and geochemistry. Appendix A provides greater detail regarding the stochastic modeling and technical basis of the conclusions presented here.

This section discusses the potential impacts of the four project alternatives on the *hydrology* (water quantity and quality) of the tailings pile area. Surface water and groundwater in the Tributary Creek, Cannery Creek, and Hawk Inlet drainages could be affected by each of the project alternatives.

Activities that could affect groundwater quantity include increased acreage of the tailings pile footprint, surface water diversion channels around the perimeter of the pile, slurry walls constructed to divert upgradient groundwater around the pile, and the engineered liner underneath the pile. Groundwater flow regimes in the Tributary Creek, Cannery Creek and Hawk Inlet drainages could be affected by these activities.

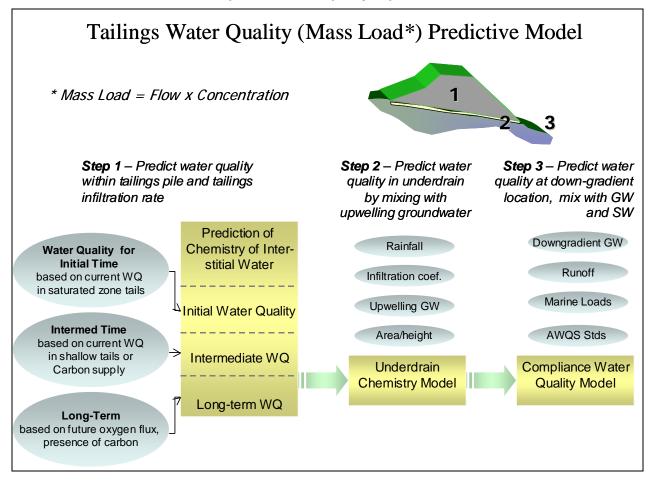
Activities that could affect surface water and groundwater quality include tailings placement and surface reclamation. These activities will result in geochemical and biological processes occurring within the tailings pore water, and geochemical and physical processes that occur on the surface of the pile. These processes affect surface water and/or groundwater quality.

Due to the complex nature of the geochemical and biological processes within the tailings, and the hydrologic connections between groundwater and surface water downgradient of the tailings, a water quality assessment model was independently developed specifically for this EIS to predict the potential impacts of the various project alternatives to receiving waters. For quality assurance, this model was also compared against the model developed by Environmental Design Engineering (EDE, 2002b), which predicts water quality emanating from the Alternative C tailings pile without soil amendments at post-closure, once the geochemistry of the tailings reaches a hydrologic and geochemical steady state condition.

The model developed for this EIS (Appendix A) uses input data collected at the site and is also based on geochemical, oxygen flux, and unsaturated flow principals. However, it differs from the EDE model in two important ways. The model is a probability model and provides water quality predictions with different degrees of likelihood. The model also predicts the quality of water draining from the pile over time, beginning at the onset of closure (completion of the pile cover) and continuing into the post-closure period. Similar to the EDE model, this model also predicts water quantity and quality flowing out of the tailings pile. Those predictions are then combined with the quantity and quality of potential receiving waters to predict a resulting water quality. The quality of this water was then compared to the AWQS for fresh and marine waters.

The stochastic model predicts changes in water chemistry through time based on the conceptual understanding of chemical and physical processes described by KGCMC in the geochemistry baseline report. The model (Figure 4-4) assumes that as rainfall infiltrates through the engineered cover, it displaces the water that is already in the pile downward. Therefore, the rate of water flowing out of the tailings is determined by the rate of infiltration of water into the tailings. The model predicts that the water that is initially held in the tailings piles will be pushed out of the pile after about 50 to 100 years.

The water quality for the first 50 to 100 years is determined by the chemistry of water already held within the pile. In the time frame of 50 to 500 years, the quality of water emanating from the pile will be determined by the geochemical conditions that prevail after closure. The primary changes in geochemical and hydrologic conditions that are anticipated to occur after closure include a reduction in the supply of oxygen, a reduction in the infiltration of water (compared to infiltration during operation of the mine), and a reduction in the supply of carbon.


The model accounts for potential acidification by calculating the time period required for tailings to acidify. These calculations indicate that acidification will not occur within the model evaluation period. The model also accounts for metal leaching potential. Metal leaching is associated with oxidation of the tailings. While water currently exiting the pile is thought to be *reduced* (and to have low metal content), the model accounted for future oxidation of the pile. In the long-term, metal leaching will be limited by the low rate of oxygen entry into the pile. The engineered cover will limit the oxygen supply after closure to a few grams per square meter per year.

The model also accounts for leaching metals that may accumulate due to oxidation of the tailings that occurs prior to placement of the cover. For Alternative C, the model accounts for a sufficient source of available carbon to promote sulfate reduction (as discussed in Sections 3.7 and 3.8) within the pile. Reactions over a variety of durations are analyzed in the model.

The model determines water quality through time, based on the amount of leaching that occurs. The model accounts for shorter time required to displace the water initially held in the pile from the thinner pile edges. This is accomplished by incorporating the pile area and thickness into the model.

The model also accounts for the variation in groundwater flow at the site. The underdrains collect a combination of tailings water and groundwater that flows upward into the drain. The rate of groundwater flow into the drain was predicted on the basis of observed flow rates in the wet wells. Since the groundwater flow rate was observed to vary seasonally, the rate of groundwater movement was variable. The resulting prediction of water quality in the underdrains, therefore, represents instantaneous concentration (the concentration that might be observed during any sampling event) as opposed to a long-term average concentration.

Figure 4-4 Schematic of the predictive model developed by the EIS team to assess potential water quality impacts for each alternative



The model also considers the potential for dilution of underdrain water with the groundwater system downgradient of the pile and with surface runoff from the pile. The amount of dilution water available is based on the understanding of the surface water and groundwater systems in the Hawk Inlet drainage basin presented in Chapter 3 of this document. The most probable amount of combined flow from the underdrain flow and from surface and groundwater dilution varies from 88 to 172 gpm for the

**Greens Creek Tailings** 

various alternatives. It is unknown if the downgradient groundwater system would be able to accommodate flows of this magnitude.

Treated water from the tailings is currently discharged through a diffuser into Hawk Inlet under a NPDES discharge permit. The model compares the load (in kg per day) of key metals in the underdrain water to the loading allowed in the facility discharge permit.

The model was used to evaluate Alternatives A through D. The stochastic nature of this model allows water quality to be predicted for a most probable case (50 percent probability, plus or minus one standard deviation), as well as a lowest probable case (5 percent probability), and a highest probable case (95 percent) for model runs simulating 5 to 2500 years after closure.

A summary of the model results is described below for each alternative. Results are shown for common ions and certain metals, including those that are currently monitored as part of the mine's water quality monitoring program or are monitored as a requirement of the mine's NPDES permit. Probability results are given for several distinct time periods, beginning shortly after closure is completed, and continuing over hundreds of years.

Water quality predictions are shown for:

- → Discharge/compliance scenario 1(a), as described in Section
   2.2 (flow from the underdrain (combination of upwelling groundwater and tailings seepage discharged to freshwater)
- → Discharge/compliance scenario 1(b) as described in Section 2.2 (flow from the underdrain combined with surface runoff water and groundwater and discharged to freshwater); and
- → Discharge/compliance scenarios 2 and 3 as described in Section 2.2 (discharge to marine water, without or with a diffuser).

For the case where tailings effluent combines with surface water and groundwater, the working assumption is that dilution water blends with the underdrain water upgradient from a compliance location prescribed by the regulatory agencies. This could be accomplished using a treatment works that would utilize various chemical and physical processes such as oxidation, adsorption, dilution and dispersion that may occur in surface water or groundwater downgradient of the tailings facility.

The results of the water quality modeling do not reflect a change in water chemistry resulting from active (i.e., chemical precipitation) water treatment. As described in Chapter 2, KGCMC will continue an

appropriate method of water treatment until the tailings effluent can be discharged without treatment so that applicable AWQS are met.

A complete technical description of the model and model output is contained in Appendix A.

#### 4.5.1 Alternative A

Under the No Action Alternative, surface water flows in Tributary Creek, Cannery Creek, and Greens Creek will be unchanged from their present amount.

Impacts to surface water quantity in the three receiving drainages will be minor during the operations and closure phases. Upgradient surface water will continue to be diverted around the tailings pile into the three adjacent drainages. Surface water runoff from the pile will continue to be collected, treated, and discharged into Hawk Inlet under the NPDES permit. During the post-closure period, the surface water diversion and collection system would be managed so that surface water could either be (1) allowed to flow naturally as topographic contours dictate into the three receiving drainages, in which case there would be no effect on surface water quantity in the three adjacent drainages; or (2) routed towards the southwest corner of the pile to combine with the underdrain flow, in which case there would be a minor decrease in surface water quantity available to the Tributary Creek and Cannery Creek drainages due to the slight decrease in tributary area. From here, the combined water will be managed using discharge scenario 1b as described in Section 2.2.

Under the No Action Alternative, during operations, precipitation will continue to infiltrate and percolate through the pile to the water table inside the pile, and ultimately to the wet wells where it will be collected and routed to the treatment plant. Upwelling groundwater will continue to mix with infiltrated water in the underdrains, be collected by the wet wells, and be treated prior to discharge to Hawk Inlet. Reclamation of the pile will result in a continuation of the groundwater and surface water flow patterns and water quality patterns that have developed during operations.

Water quality data from the Pit 5 area show the presence of elevated sulfate levels in the bedrock groundwater aquifer. There are no known current impacts to Cannery Creek or the adjacent high quality wetlands, and low permeability sediments are present to exclude most or all of the contact water and flow in this direction. Under this alternative, groundwater in this area would continue to have the potential to flow, as it currently does, towards Cannery Creek.

**Greens Creek Tailings** 

There would be no effect on the water quality in the Tributary Creek drainage.

Results from the water quality model for Alternative A are shown in Figure 4-5 and Table 4-2. Results indicate that exceedances to fresh water AWQS (discharge scenario 1(a) without dilution) for sulfate and antimony are initially predicted for underdrain water. After 25 years, antimony levels should have dropped below AWQS, but selenium may increase and could exceed AWQS. After 200 years, sulfate should decline below AWQS; however, zinc concentrations are predicted to have risen above AWQS. After 500 years, cadmium levels may be above AWQS. Without treatment, none of these substances exceeds AWQS initially at the compliance point where underdrain flow mixes with surface water and groundwater (discharge scenario 1(b) with dilution), but selenium, zinc and cadmium levels are predicted to have exceeded AWQS after 100, 350, and 1000 years, respectively. Selenium levels are predicted to have fallen back below AWQS after 350 years. These predicted exceedances of AWQS under discharge scenario 1 may impair existing protected water use classes if discharged without treatment. KGCMC will continue an appropriate method of water treatment until the tailings effluent can be discharged without treatment so that applicable AWQS are met.

Model results compared to AWQS for marine water (discharge scenario 2) using a 50:1 dilution show there are no exceedances. The current KGCMC mixing zone provides a 170:1 dilution; this represents a 70 percent reduction in the mixing zone size.

The predicted load of metals was compared to the currently allowable loads under the existing discharge permit using a diffuser in Hawk Inlet. Predicted loads were less than one percent of allowable loads for Alternative A for all metals in the permit.

Effects to water quality in the Hawk Inlet drainage would be considered significant if tailings effluent is discharged (without treatment) to surface water or groundwater without dilution, or diluted (without treatment) with surface water or groundwater prior to discharge to these receiving waters (discharge scenario 1). There would be negligible adverse effects if tailings effluent is discharged without treatment directly to Hawk Inlet (discharge scenario 2). There would be negligible adverse effects if tailings effluent is discharged without treatment through the diffuser into Hawk Inlet (discharge scenario 3). If water treatment were continued in perpetuity, there would be negligible adverse effects to receiving surface water, groundwater or marine water.

Table 4-2 **Alternative A Water Quality Model** 

Alternative A -Discharge/Compliance Scenario 1(a) Predicted Concentration in Underdrain Water Most probable concentration in underdrain flow (mg/L). Constituents that exceed chronic fresh water dissolved Alaska Water Quality Standards (AWQS) are shown in red.

| Time (Years) | Sulfate | Calcium | рН  | Bicarbonate | Arsenic | Cadmium          | Zinc           |
|--------------|---------|---------|-----|-------------|---------|------------------|----------------|
| AWQS         | 250     |         |     | 6 to 9      | 0.050   | 0.0003 to 0.0006 | 0.164 to 0.382 |
| 5            | 286     | 61      | 7.0 | 110         | 0.007   | 0.0001           | 0.020          |
| 25           | 285     | 90      | 6.9 | 103         | 0.007   | 0.0001           | 0.093          |
| 50           | 282     | 119     | 6.8 | 92          | 0.007   | 0.0002           | 0.171          |
| 100          | 266     | 172     | 6.8 | 76          | 0.006   | 0.0004           | 0.317          |
| 200          | 205     | 177     | 6.8 | 65          | 0.006   | 0.0005           | 0.428          |
| 350          | 118     | 122     | 6.9 | 64          | 0.005   | 0.0005           | 0.443          |
| 500          | 70      | 91      | 6.9 | 66          | 0.005   | 0.0005           | 0.439          |
| 1000         | 25      | 61      | 7.0 | 70          | 0.005   | 0.0005           | 0.428          |
| 2500         | 16      | 53      | 7.0 | 80          | 0.005   | 0.0005           | 0.419          |

Tailings Seepage (gpm) 5.3 Upwelling GW (gpm) 28.7 Total Flow (gpm) 34.0

Alternative A - Discharge/Compliance Scenario 1(b) - Predicted Concentration at Fresh water Compliance Location Most probable concentration in diluted underdrain water (mg/L). Constituents that exceed Chronic Fresh water dissolved Alaska Water Quality Standards (AWQS) are shown in red.

| Time       | Sulfate | Calcium | рН  | Bicarbonate | Arsenic | Cadmium          | Zinc           |
|------------|---------|---------|-----|-------------|---------|------------------|----------------|
| Background | 6       | 22      | 7.0 | 66          | 0.005   | 0.00004          | 0.0025         |
| AWQS       | 250     |         |     | 6 to 9      | 0.050   | 0.0002 to 0.0004 | 0.106 to 0.241 |
| 5          | 129     | 36      | 7.0 | 76          | 0.006   | 0.0001           | 0.011          |
| 25         | 129     | 50      | 6.9 | 72          | 0.006   | 0.0001           | 0.044          |
| 50         | 126     | 64      | 6.9 | 68          | 0.005   | 0.0001           | 0.080          |
| 100        | 121     | 87      | 6.8 | 60          | 0.005   | 0.0002           | 0.144          |
| 200        | 94      | 90      | 6.8 | 55          | 0.005   | 0.0002           | 0.189          |
| 350        | 54      | 65      | 6.9 | 55          | 0.005   | 0.0002           | 0.196          |
| 500        | 34      | 50      | 6.9 | 55          | 0.005   | 0.0002           | 0.194          |
| 1000       | 13      | 36      | 7.0 | 57          | 0.005   | 0.0002           | 0.186          |
| 2500       | 9       | 33      | 7.0 | 62          | 0.005   | 0.0002           | 0.184          |

Downgradient GW (gpm) 27.5 Downgradient SW (gpm) 26.6 Total Flow (gpm) 88.1

Alternative A - Discharge/Compliance Scenario 2 - Predicted Concentration at Marine Discharge Most probable concentration in underdrain flow (mg/L). Constituents that exceed chronic marine Alaska Water Quality Standards (AWQS) with a 50:1 mixing zone dilution ratio are shown in red.

| Time (Years) | Sulfate | Calcium | рН     | Bicarbonate | Arsenic | Cadmium | Zinc  |
|--------------|---------|---------|--------|-------------|---------|---------|-------|
| AWQS         | NA      | NA      | 6 to 9 | NA          | 1.8     | 0.4     | 4.1   |
| 5            | 286     | 61      | 7.0    | 110         | 0.007   | 0.0001  | 0.020 |
| 25           | 285     | 90      | 6.9    | 103         | 0.007   | 0.0001  | 0.093 |
| 50           | 282     | 119     | 6.8    | 92          | 0.007   | 0.0002  | 0.171 |
| 100          | 266     | 172     | 6.8    | 76          | 0.006   | 0.0004  | 0.317 |
| 200          | 205     | 177     | 6.8    | 65          | 0.006   | 0.0005  | 0.428 |
| 350          | 118     | 122     | 6.9    | 64          | 0.005   | 0.0005  | 0.443 |
| 500          | 70      | 91      | 6.9    | 66          | 0.005   | 0.0005  | 0.439 |
| 1000         | 25      | 61      | 7.0    | 70          | 0.005   | 0.0005  | 0.428 |
| 2500         | 16      | 53      | 7.0    | 80          | 0.005   | 0.0005  | 0.419 |

Tailings Seepage (gpm) 5.3 Upwelling GW (gpm) 28.7 Total Flow (gpm) 34.0

NOTE: For all alternatives and tables - the hardness downgradient of the tailings facility was calculated in the mass load model. Consequently, the predicted hardness used to calculate allowable metal concentrations was the predicted hardness in the combined drain water and receiving water.

#### Table 4-2 (continued) Alternative A Water Quality Model

Alternative A - Discharge/Compliance Scenario 1(a) Predicted Concentration in Underdrain Water

Most probable concentration in underdrain flow (mg/L). Constituents that exceed chronic fresh water dissolved Alaska
Water Quality Standards (AWQS) are shown in red.

| Time (Years) | Antimony | Chromium       | Copper              | Lead                | Mercury   | Nickel               | Selenium | Silver (acute) |
|--------------|----------|----------------|---------------------|---------------------|-----------|----------------------|----------|----------------|
| AWQS         | 0.006    | 0.102 to 0.231 | 0.0125 to<br>0.0293 | 0.0038 to<br>0.0109 | 0.00077   | 0.072<br>to<br>0.168 | 0.005    | 0.007 to 0.037 |
| 5            | 0.006    | 0.0003         | 0.0007              | 0.0003              | <0.000008 | 0.003                | 0.002    | < 0.00005      |
| 25           | 0.006    | 0.0003         | 0.0007              | 0.0003              | <0.000008 | 0.003                | 0.006    | < 0.00005      |
| 50           | 0.005    | 0.0003         | 0.0007              | 0.0004              | <0.000008 | 0.004                | 0.009    | < 0.00005      |
| 100          | 0.004    | 0.0004         | 0.0007              | 0.0004              | <0.000008 | 0.006                | 0.016    | < 0.00005      |
| 200          | 0.003    | 0.0004         | 0.0007              | 0.0004              | <0.000008 | 0.006                | 0.016    | < 0.00005      |
| 350          | 0.003    | 0.0004         | 0.0007              | 0.0004              | <0.000008 | 0.005                | 0.010    | < 0.00005      |
| 500          | 0.003    | 0.0004         | 0.0007              | 0.0004              | <0.000008 | 0.005                | 0.006    | < 0.00005      |
| 1000         | 0.003    | 0.0004         | 0.0007              | 0.0004              | <0.000008 | 0.004                | 0.002    | < 0.00005      |
| 2500         | 0.003    | 0.0004         | 0.0007              | 0.0004              | <0.000008 | 0.003                | 0.001    | < 0.00005      |

Data for mercury and silver are below detection in representative contact waters

Tailings Seepage (gpm)5.3Upwelling GW (gpm)28.7Total Flow (gpm)34

Alternative A - Discharge/Compliance Scenario 1(b) Predicted Concentration at Fresh Water Compliance Location Most probable concentration in diluted underdrain water (mg/L). Constituents that exceed chronic fresh water dissolved Alaska Water Quality Standards (AWQS) are shown in red.

| Time       | Antimony | Chromium       | Copper              | Lead                | Mercury   | Nickel               | Selenium | Silver (acute)      |
|------------|----------|----------------|---------------------|---------------------|-----------|----------------------|----------|---------------------|
| Background | 0.0004   | 0.0002         | 0.0002              | 0.0001              | 0.000004  | 0.002                | 0.001    | 0.00004             |
| AWQS       | 0.006    | 0.067 to 0.148 | 0.0080 to<br>0.0184 | 0.0020 to<br>0.0055 | 0.00077   | 0.047<br>to<br>0.106 | 0.005    | 0.0028 to<br>0.0147 |
| 5          | 0.003    | 0.0003         | 0.0004              | 0.0002              | <0.000008 | 0.002                | 0.001    | < 0.00005           |
| 25         | 0.003    | 0.0003         | 0.0004              | 0.0002              | <0.000008 | 0.002                | 0.003    | < 0.00005           |
| 50         | 0.002    | 0.0003         | 0.0004              | 0.0002              | <0.000008 | 0.002                | 0.005    | < 0.00005           |
| 100        | 0.002    | 0.0003         | 0.0004              | 0.0002              | <0.000008 | 0.003                | 0.007    | < 0.00005           |
| 200        | 0.002    | 0.0003         | 0.0004              | 0.0002              | <0.000008 | 0.003                | 0.007    | < 0.00005           |
| 350        | 0.001    | 0.0003         | 0.0004              | 0.0002              | <0.000008 | 0.003                | 0.004    | < 0.00005           |
| 500        | 0.001    | 0.0003         | 0.0004              | 0.0002              | <0.000008 | 0.003                | 0.003    | < 0.00005           |
| 1000       | 0.001    | 0.0003         | 0.0004              | 0.0002              | <0.000008 | 0.002                | 0.001    | < 0.00005           |
| 2500       | 0.001    | 0.0003         | 0.0004              | 0.0002              | <0.000008 | 0.002                | 0.001    | < 0.00005           |

Data for mercury and silver are below detection in representative contact waters

Downgradient GW (gpm)27.5Downgradient SW (gpm)26.6Total Flow (gpm)88.1

Alternative A - Discharge/Compliance Scenario 2 Predicted Concentration at Marine Discharge

Most probable concentration in underdrain flow (mg/L). Constituents that exceed chronic marine Alaska Water Quality Standards (AWQS) with a 50:1 mixing zone dilution ratio are shown in red.

| Time (Years) | Antimony | Chromium | Copper | Lead   | Mercury   | Nickel | Selenium | Silver (acute) |
|--------------|----------|----------|--------|--------|-----------|--------|----------|----------------|
| AWQS         | NA       | NA       | 0.155  | 0.405  | 0.0470    | 0.410  | 3.550    | 0.095          |
| 5            | 0.0061   | 0.0003   | 0.0007 | 0.0003 | <0.000008 | 0.003  | 0.002    | < 0.00005      |
| 25           | 0.0057   | 0.0003   | 0.0007 | 0.0003 | <0.000008 | 0.003  | 0.006    | < 0.00005      |
| 50           | 0.0051   | 0.0003   | 0.0007 | 0.0004 | <0.000008 | 0.004  | 0.009    | < 0.00005      |
| 100          | 0.0041   | 0.0004   | 0.0007 | 0.0004 | <0.000008 | 0.006  | 0.016    | < 0.00005      |
| 200          | 0.0032   | 0.0004   | 0.0007 | 0.0004 | <0.000008 | 0.006  | 0.016    | < 0.00005      |
| 350          | 0.0030   | 0.0004   | 0.0007 | 0.0004 | <0.000008 | 0.005  | 0.010    | < 0.00005      |
| 500          | 0.0030   | 0.0004   | 0.0007 | 0.0004 | <0.000008 | 0.005  | 0.006    | < 0.00005      |
| 1000         | 0.0030   | 0.0004   | 0.0007 | 0.0004 | <0.000008 | 0.004  | 0.002    | < 0.00005      |
| 2500         | 0.0030   | 0.0004   | 0.0007 | 0.0004 | <0.000008 | 0.003  | 0.001    | < 0.00005      |

Data for mercury and silver are below detection in representative contact waters

Tailings Seepage (gpm)5.3Upwelling GW (gpm)28.7Total Flow (gpm)34

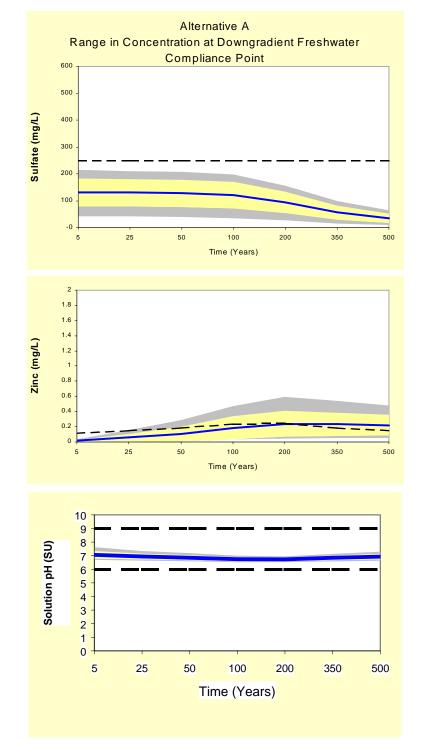



Figure 4-5 Alternative A – Range in Concentration at Compliance Point

#### 4.5.2 Alternative B - Proposed Action

The expanded area of this alternative would decrease the tributary area to the three adjacent drainages by an additional 3 percent as compared to Alternative A. During operations and closure, slightly less surface water will flow into the three adjacent drainages than occurs under Alternative A. Overall, effects to surface water quantity in the three receiving drainages during the operations and closure phases would be the same as those under Alternative A

During the post-closure period, the surface water diversion and collection system would be managed so that surface water could either be (1) routed towards the southwest corner of the pile to combine with the underdrain flow, in which case there would be a minor effect on surface water quantity in Tributary Creek and Cannery Creek drainages due to the slight decrease in tributary area (less than 1 percent compared to Alternative A); or (2) allowed to flow naturally as topographic contours dictate into the three receiving drainages (the same as in Alternative A), in which case there would be no effect on surface water quantity in the three adjacent drainages.

Expansion of the tailings pile to the west as described under the proposed action would result in the placement of tailings in an area currently occupied by peat deposits and relatively shallow groundwater. The proposed action would result in an incremental increase in groundwater capture and discharge through the wet wells and treatment system. During operation and closure this would have a negligible effect on groundwater quantity as compared to Alternative A. During the post-closure period, underdrain water from the tailings pile might be released to the groundwater system in the Hawk Inlet drainage, resulting in a minor increase in groundwater in this area. This would have a minor effect on the groundwater quantity in the Hawk Inlet drainage.

Under Alternative B, the bedrock knoll in the northwest corner would be covered with a low permeability liner and tailings, which would effectively eliminate groundwater recharge in that area. The water level in the bedrock under the knoll would decline, and the driving forces for groundwater flow towards Cannery Creek would be reduced. Due to the relatively small area involved, this would have a negligible effect on the groundwater quantity in the Cannery Creek drainage. This alternative would have a beneficial effect of reducing the potential discharge of groundwater with elevated sulfate levels into Cannery Creek or the associated high quality wetlands.

The effects on the groundwater quality in the Tributary Creek drainage surface water in the Hawk Inlet drainage and marine water in Hawk Inlet would be the same as those identified under Alternative A, that is:

> Effects to water quality in the Hawk Inlet drainage would be considered significant if tailings effluent is discharged (without treatment) to surface water or groundwater without dilution, or diluted (without treatment) with surface water or groundwater prior to discharge to these receiving waters (discharge scenario 1). There would be negligible adverse effects if tailings effluent is discharged without treatment directly to Hawk Inlet (discharge scenario 2). There would be negligible adverse effects if tailings effluent is discharged without treatment through the diffuser into Hawk Inlet (discharge scenario 3). If water treatment were continued in perpetuity, there would be negligible adverse effects to receiving surface water, groundwater or marine water.

Results from the water quality model for Alternative B are shown in Figure 4-6 and Table 4-3. Results are similar to those for Alternative A, indicating that sulfate and antimony would initially exceed fresh water AWQS in the underdrain flow without dilution, (discharge scenario 1(a)). After 25 years, increased selenium levels are predicted to have exceeded AWQS in the underdrain. After 100 years, cadmium and zinc levels are predicted to have exceeded AWQS. Antimony and sulfate concentrations are expected to have dropped below AWQS after 200 years, followed by selenium after 500 years. Without treatment, only sulfate would initially exceed fresh water AWQS with dilution under discharge scenario 1(b), but selenium, zinc and cadmium are expected to be in exceedence of fresh water AWQS at 25, 200 and 500 years, respectively. These predicted exceedances of AWQS under discharge/compliance scenario 1 would impair existing protected water use classes if discharged without treatment. KGCMC will continue an appropriate method of water treatment until the tailings effluent can be discharged without treatment so that applicable AWQS are met.

Model results for Alternative B compared to AWQS for marine water using a 50:1 dilution (Discharge/Compliance Scenario 2) are the same as for Alternative A, indicating no exceedances.

The predicted load of metals was compared to the currently allowable loads under the NPDES discharge permit using a diffuser in Hawk Inlet. Predicted loads were less than 1 percent of allowable loads for Alternative B for all metals in the permit.

Like Alternative A, effects to water quality in the Hawk Inlet drainage would be considered significant if tailings effluent is discharged (without

**Greens Creek Tailings** 

treatment) to surface water or groundwater without dilution, or diluted (without treatment) with surface water or groundwater prior to discharge to these receiving waters (discharge scenario 1). There would be negligible adverse effects if tailings effluent is discharged without treatment directly to Hawk Inlet (discharge scenario 2). There would be negligible adverse effects if tailings effluent is discharged without treatment through the diffuser into Hawk Inlet (discharge scenario 3). If water treatment were continued in perpetuity, there would be negligible adverse effects to receiving surface water, groundwater or marine water.

Table 4-3 **Alternative B Water Quality Model** 

Alternative B - - Discharge/Compliance Scenario 1(a) Predicted Concentration in Underdrain Water Most probable concentration in underdrain flow (mg/L). Constituents that exceed chronic Freshwater dissolved Alaska Water Quality Standards (AWQS) are shown in red.

| Time (Years) | Sulfate | Calcium | pН  | Bicarbonate | Arsenic | Cadmium          | Zinc           |
|--------------|---------|---------|-----|-------------|---------|------------------|----------------|
| AWQS         | 250     |         |     | 6 to 9      | 0.050   | 0.0005 to 0.0006 | 0.258 to 0.382 |
| 5            | 616     | 102     | 7.1 | 160         | 0.011   | 0.0001           | 0.040          |
| 25           | 619     | 165     | 6.9 | 142         | 0.010   | 0.0003           | 0.200          |
| 50           | 606     | 229     | 6.8 | 121         | 0.009   | 0.0005           | 0.376          |
| 100          | 568     | 347     | 6.6 | 86          | 0.008   | 0.0008           | 0.699          |
| 200          | 429     | 355     | 6.6 | 63          | 0.006   | 0.0011           | 0.940          |
| 350          | 243     | 239     | 6.8 | 63          | 0.006   | 0.0011           | 0.959          |
| 500          | 144     | 170     | 6.9 | 65          | 0.006   | 0.0011           | 0.954          |
| 1000         | 46      | 105     | 7.1 | 73          | 0.006   | 0.0011           | 0.918          |
| 2500         | 28      | 89      | 7.1 | 92          | 0.006   | 0.0011           | 0.907          |

Tailings Seepage (gpm) 15.3 Upwelling GW (gpm) 28.7 Total Flow (gpm) 44.0

Alternative B - Discharge/Compliance Scenario 1(b) Predicted Concentration at Freshwater Compliance Location Most probable concentration in diluted underdrain water (mg/L). Constituents that exceed chronic freshwater dissolved Alaska Water Quality Standards (AWQS) are shown in red.

| Time       | Sulfate | Calcium | pН     | Bicarbonate | Arsenic | Cadmium          | Zinc           |
|------------|---------|---------|--------|-------------|---------|------------------|----------------|
| Background | 6       | 22      | 7.1    | 66          | 0.005   | 0.00004          | 0.0027         |
| AWQS       | 250     |         | 6 to 9 |             | 0.050   | 0.0003 to 0.0006 | 0.158 to 0.382 |
| 5          | 285     | 56      | 7.0    | 97          | 0.007   | 0.0001           | 0.018          |
| 25         | 288     | 88      | 6.9    | 88          | 0.006   | 0.0001           | 0.085          |
| 50         | 283     | 116     | 6.8    | 77          | 0.006   | 0.0002           | 0.160          |
| 100        | 262     | 167     | 6.7    | 59          | 0.006   | 0.0004           | 0.293          |
| 200        | 197     | 170     | 6.7    | 49          | 0.005   | 0.0005           | 0.388          |
| 350        | 109     | 117     | 6.8    | 49          | 0.005   | 0.0005           | 0.406          |
| 500        | 63      | 86      | 6.9    | 50          | 0.005   | 0.0005           | 0.401          |
| 1000       | 22      | 57      | 7.0    | 54          | 0.005   | 0.0005           | 0.394          |
| 2500       | 15      | 51      | 7.0    | 65          | 0.005   | 0.0005           | 0.386          |

Downgradient GW (gpm) Downgradient SW (gpm) 27.5 74.6 Total Flow (gpm) 146.1

Alternative B - Discharge/Compliance Scenario 2 Predicted Concentration at Marine Discharge Most probable concentration in underdrain flow (mg/L). Constituents that exceed chronic marine Alaska Water Quality Standards (AWQS) with a 50:1 mixing zone dilution ratio are shown in red.

| Time (Years)         | Sulfate | Calcium | рΗ     | Bicarbonate | Arsenic | Cadmium | Zinc  |
|----------------------|---------|---------|--------|-------------|---------|---------|-------|
| AWQS (yr 50)         | NA      | NA      | 6 to 9 | NA          | 1.8     | 0.4     | 4.1   |
| 5                    | 616     | 102     | 7.1    | 160         | 0.011   | 0.0001  | 0.040 |
| 25                   | 619     | 165     | 6.9    | 142         | 0.010   | 0.0003  | 0.200 |
| 50                   | 606     | 229     | 6.8    | 121         | 0.009   | 0.0005  | 0.376 |
| 100                  | 568     | 347     | 6.6    | 86          | 0.008   | 0.0008  | 0.699 |
| 200                  | 429     | 355     | 6.6    | 63          | 0.006   | 0.0011  | 0.940 |
| 350                  | 243     | 239     | 6.8    | 63          | 0.006   | 0.0011  | 0.959 |
| 500                  | 144     | 170     | 6.9    | 65          | 0.006   | 0.0011  | 0.954 |
| 1000                 | 46      | 105     | 7.1    | 73          | 0.006   | 0.0011  | 0.918 |
| 2500                 | 28      | 89      | 7.1    | 92          | 0.006   | 0.0011  | 0.907 |
| ailings Seepage (gpm | 1)      | 15.3    |        |             |         |         |       |
| Inwelling GW (anm)   | ,       | 28.7    |        |             |         |         |       |

Upwelling GW (gpm) 28.7 Total Flow (gpm)

#### Table 4-3 (continued) Alternative B Water Quality Model

Alternative B - Discharge/Compliance Scenario 1(a) Predicted Concentration in Underdrain Water
Most probable concentration in underdrain flow (mg/L). Constituents that exceed chronic fresh water dissolved Alaska
Water Quality Standards (AWQS) are shown in red.

| Time (Years) | Antimony | Chromium       | Copper    | Lead      | Mercury   | Nickel   | Selenium | Silver (acute) |
|--------------|----------|----------------|-----------|-----------|-----------|----------|----------|----------------|
| AWQS         | 0.006    | 0.158 to 0.231 | 0.0197 to | 0.0067 to | 0.00077   | 0.113 to | 0.005    | 0.017 to 0.037 |
|              |          |                | 0.0293    | 0.0109    |           | 0.168    |          |                |
| 5            | 0.0124   | 0.0004         | 0.0013    | 0.0005    | < 0.00002 | 0.003    | 0.003    | < 0.00005      |
| 25           | 0.0116   | 0.0004         | 0.0014    | 0.0006    | < 0.00002 | 0.005    | 0.011    | < 0.00005      |
| 50           | 0.0107   | 0.0005         | 0.0013    | 0.0007    | < 0.00002 | 0.007    | 0.019    | < 0.00005      |
| 100          | 0.0084   | 0.0005         | 0.0013    | 0.0007    | < 0.00002 | 0.010    | 0.033    | < 0.00005      |
| 200          | 0.0061   | 0.0005         | 0.0012    | 0.0007    | < 0.00002 | 0.011    | 0.034    | < 0.00005      |
| 350          | 0.0058   | 0.0005         | 0.0012    | 0.0007    | < 0.00002 | 0.009    | 0.020    | < 0.00005      |
| 500          | 0.0058   | 0.0005         | 0.0012    | 0.0007    | < 0.00002 | 0.008    | 0.011    | < 0.00005      |
| 1000         | 0.0058   | 0.0005         | 0.0012    | 0.0007    | < 0.00002 | 0.006    | 0.003    | < 0.00005      |
| 2500         | 0.0058   | 0.0005         | 0.0012    | 0.0007    | < 0.00002 | 0.006    | 0.002    | < 0.00005      |

Data for mercury and silver are below detection in representative contact waters

Tailings Seepage (gpm)15.3Upwelling GW (gpm)28.7Total Flow (gpm)44

Alternative B - Discharge/Compliance Scenario 1(b) Predicted Concentration at Fresh Water Compliance Location Most probable concentration in diluted underdrain water (mg/L). Constituents that exceed chronic fresh water dissolved Alaska Water Quality Standards (AWQS) are shown in red.

| Time       | Antimony | Chromium       | Copper    | Lead      | Mercury   | Nickel   | Selenium | Silver (acute)   |
|------------|----------|----------------|-----------|-----------|-----------|----------|----------|------------------|
| Background | 0.0004   | 0.0002         | 0.0002    | 0.0001    | 0.000004  | 0.001    | 0.001    | 0.00004          |
| AWQS       | 0.006    | 0.098 to 0.231 | 0.0120 to | 0.0032 to | 0.00077   | 0.069 to | 0.005    | 0.0062 to 0.0374 |
|            |          |                | 0.0293    | 0.0109    |           | 0.168    |          |                  |
| 5          | 0.005    | 0.0003         | 0.0007    | 0.0003    | < 0.00001 | 0.002    | 0.002    | < 0.00005        |
| 25         | 0.005    | 0.0003         | 0.0007    | 0.0003    | < 0.00001 | 0.003    | 0.005    | < 0.00005        |
| 50         | 0.005    | 0.0003         | 0.0007    | 0.0003    | < 0.00001 | 0.004    | 0.009    | < 0.00005        |
| 100        | 0.004    | 0.0003         | 0.0007    | 0.0004    | < 0.00001 | 0.005    | 0.014    | < 0.00005        |
| 200        | 0.003    | 0.0004         | 0.0006    | 0.0004    | < 0.00001 | 0.006    | 0.015    | < 0.00005        |
| 350        | 0.003    | 0.0004         | 0.0006    | 0.0004    | < 0.00001 | 0.005    | 0.009    | < 0.00005        |
| 500        | 0.003    | 0.0004         | 0.0006    | 0.0004    | < 0.00001 | 0.004    | 0.005    | < 0.00005        |
| 1000       | 0.003    | 0.0004         | 0.0006    | 0.0004    | < 0.00001 | 0.003    | 0.002    | < 0.00005        |
| 2500       | 0.003    | 0.0004         | 0.0006    | 0.0004    | < 0.00001 | 0.003    | 0.001    | < 0.00005        |

Data for mercury and silver are below detection in representative contact waters

Downgradient GW (gpm) 27.5 Downgradient SW (gpm) 74.6 Total Flow (gpm) 146.1

Alternative B - Discharge/Compliance Scenario 2 Predicted Concentration at Marine Discharge

Most probable concentration in underdrain flow (mg/L). Constituents that exceed chronic marine Alaska Water Quality Standards (AWQS) with a 50:1 mixing zone dilution ratio are shown in red.

| Time (Years) | Antimony | Chromium | Copper | Lead   | Mercury   | Nickel | Selenium | Silver    |
|--------------|----------|----------|--------|--------|-----------|--------|----------|-----------|
| AWQS         | NA       | NA       | 0.155  | 0.405  | 0.0470    | 0.410  | 3.550    | 0.095     |
| 5            | 0.0124   | 0.0004   | 0.0013 | 0.0005 | < 0.00002 | 0.003  | 0.003    | < 0.00005 |
| 25           | 0.0116   | 0.0004   | 0.0014 | 0.0006 | < 0.00002 | 0.005  | 0.011    | < 0.00005 |
| 50           | 0.0107   | 0.0005   | 0.0013 | 0.0007 | < 0.00002 | 0.007  | 0.019    | < 0.00005 |
| 100          | 0.0084   | 0.0005   | 0.0013 | 0.0007 | < 0.00002 | 0.010  | 0.033    | < 0.00005 |
| 200          | 0.0061   | 0.0005   | 0.0012 | 0.0007 | < 0.00002 | 0.011  | 0.034    | < 0.00005 |
| 350          | 0.0058   | 0.0005   | 0.0012 | 0.0007 | < 0.00002 | 0.009  | 0.020    | < 0.00005 |
| 500          | 0.0058   | 0.0005   | 0.0012 | 0.0007 | < 0.00002 | 0.008  | 0.011    | < 0.00005 |
| 1000         | 0.0058   | 0.0005   | 0.0012 | 0.0007 | < 0.00002 | 0.006  | 0.003    | < 0.00005 |
| 2500         | 0.0058   | 0.0005   | 0.0012 | 0.0007 | < 0.00002 | 0.006  | 0.002    | <0.00005  |

Data for mercury and silver are below detection in representative contact waters

Tailings Seepage (gpm)15.3Upwelling GW (gpm)28.7Total Flow (gpm)44

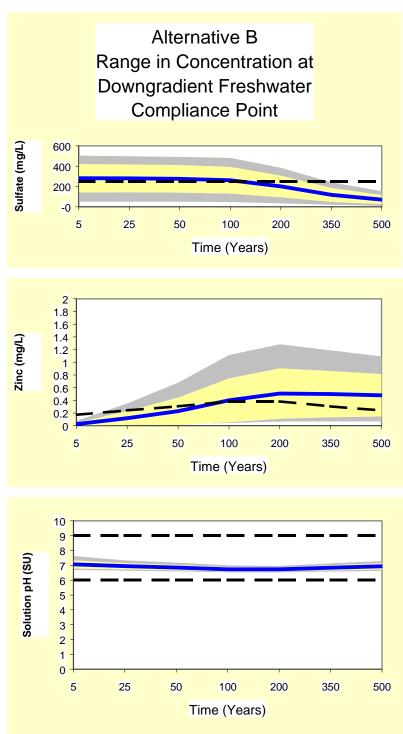



Figure 4-6 Alternative B – Range in Concentration at Compliance Point

#### 4.5.3 Alternative C

The effects on surface water quantity for Alternative C are the same as those identified for Alternative B.

The effects on groundwater quantity under Alternative C are the same as those identified for Alternative B.

As with Alternative B, this alternative reduces the potential discharge of groundwater with elevated sulfate levels from the bedrock knob in the northwest corner into Cannery Creek or the associated high quality wetlands.

The effect on groundwater quality in the Tributary Creek drainage would be the same as those identified for Alternative A.

Summary results from the water quality model for Alternative C are shown in Figure 4-7 and Table 4-4. Results for Alternative C reflect the fundamental difference in long-term chemistry that would result from the addition of carbon to the tailings pile. As with Alternatives A and B, initially water in the underdrains without dilution (discharge scenario 1(a)) could exceed fresh water AWQS for sulfate and antimony. Sulfate concentration would decrease after 200 years to below fresh water AWQS. Elevated zinc and selenium would not occur in the underdrain water because on-going sulfate reduction tends to remove these constituents. Antimony, on the other hand, is not affected by sulfate reduction, and may increase as a result of biological reduction. The elevated antimony concentration predicted by the model is likely to be removed from solution when the water from the underdrain contacts the air, causing iron and manganese compounds to chemically precipitate, adsorb antimony, and settle from solution. All of these substances are expected to meet fresh water AWQS with dilution (discharge scenario 1(b)) at the compliance point except for sulfate. Sulfate, at the compliance point using dilution, is marginally above fresh water AWQS for the first 50 to 100 years (without treatment). These predicted exceedances of AWQS under discharge/compliance scenario 1 would impair existing protected water use classes if discharged without treatment. KGCMC will continue an appropriate method of water treatment until the tailings effluent can be discharged without treatment so that applicable AWQS are met.

Results of the water quality model for Alternative C compared to marine water AWQS (discharge scenario 2) show there are no exceedances.

The predicted load of metals was compared to the loads currently allowable under the NPDES discharge permit using a diffuser in Hawk Inlet. Predicted loads were less than 0.1 percent of allowable loads for Alternative C for all metals in the permit.

Effects to water quality in the Hawk Inlet drainage are considered *minor* (compared to *significant* for Alternatives A and B) for the case where tailings effluent is discharged directly (without treatment) to surface water or groundwater without dilution, or diluted (without treatment) with surface water or groundwater prior to discharge to receiving waters (discharge scenario 1). If water treatment were continued in perpetuity, there would be negligible adverse effects to the receiving surface water or groundwater. There would be negligible adverse effects to marine water for the case where tailings effluent is discharged directly to Hawk Inlet (discharge scenario 2). There would be negligible adverse effects for the case where tailings effluent is discharged through a diffuser into Hawk Inlet (discharge scenario 3).

Table 4-4 Alternative C Water Quality Model

Alternative C - Discharge/Compliance Scenario 1(a) Predicted Concentration in Underdrain Water
Most probable concentration in underdrain flow (mg/L). Constituents that exceed chronic freshwater dissolved Alaska
Water Quality Standards (AWQS) are shown in red.

| Time (Years) | Sulfate | Calcium | рН  | Bicarbonate | Arsenic | Cadmium          | Zinc           |
|--------------|---------|---------|-----|-------------|---------|------------------|----------------|
| AWQS         | 250     |         |     | 6 to 9      | 0.050   | 0.0005 to 0.0005 | 0.254 to 0.261 |
| 5            | 616     | 90      | 7.1 | 162         | 0.010   | 0.0001           | 0.006          |
| 25           | 587     | 90      | 7.1 | 162         | 0.010   | 0.0001           | 0.006          |
| 50           | 550     | 90      | 7.1 | 163         | 0.010   | 0.0001           | 0.006          |
| 100          | 483     | 90      | 7.1 | 163         | 0.010   | 0.0001           | 0.006          |
| 200          | 339     | 89      | 7.1 | 162         | 0.010   | 0.0001           | 0.006          |
| 350          | 196     | 88      | 7.1 | 161         | 0.010   | 0.0001           | 0.006          |
| 500          | 117     | 87      | 7.1 | 161         | 0.010   | 0.0001           | 0.006          |
| 1000         | 41      | 87      | 7.1 | 162         | 0.010   | 0.0001           | 0.006          |
| 2500         | 27      | 87      | 7.1 | 162         | 0.010   | 0.0001           | 0.006          |

Tailings Seepage (gpm)15.6Upwelling GW (gpm)28.7Total Flow (gpm)44.3

Alternative C - Discharge/Compliance Scenario 1(b) Predicted Concentration at Freshwater Compliance Location Most probable concentration in diluted underdrain water (mg/L). Constituents that exceed chronic freshwater dissolved Alaska Water Quality Standards (AWQS) are shown in red.

| Time       | Sulfate | Calcium | рН  | Bicarbonate | Arsenic | Cadmium          | Zinc           |
|------------|---------|---------|-----|-------------|---------|------------------|----------------|
| Background | 6       | 22      | 7.1 | 66          | 0.005   | 0.00004          | 0.0026         |
| AWQS       | 250     |         |     | 6 to 9      | 0.050   | 0.0003 to 0.0003 | 0.151 to 0.153 |
| 5          | 290     | 48      | 7.0 | 99          | 0.007   | 0.0001           | 0.003          |
| 25         | 277     | 48      | 7.0 | 100         | 0.007   | 0.0001           | 0.003          |
| 50         | 260     | 48      | 7.0 | 100         | 0.007   | 0.0001           | 0.003          |
| 100        | 227     | 48      | 7.0 | 100         | 0.007   | 0.0001           | 0.003          |
| 200        | 162     | 49      | 7.0 | 100         | 0.007   | 0.0001           | 0.003          |
| 350        | 87      | 48      | 7.0 | 101         | 0.007   | 0.0001           | 0.003          |
| 500        | 52      | 49      | 7.0 | 101         | 0.007   | 0.0001           | 0.003          |
| 1000       | 20      | 49      | 7.0 | 100         | 0.007   | 0.0001           | 0.003          |
| 2500       | 15      | 49      | 7.0 | 100         | 0.007   | 0.0001           | 0.003          |

Downgradient GW (gpm) 27.5 Downgradient SW (gpm) 80.0 Total Flow (gpm) 151.8

Alternative C - Discharge/Compliance Scenario 2 Predicted Concentration at Marine Discharge

Most probable concentration in underdrain flow (mg/L). Constituents that exceed chronic marine Alaska Water Quality

Standards (AWQS) with a 50:1 mixing zone dilution ratio are shown in red.

| Time (Years) | Sulfate | Calcium | рН     | Bicarbonate | Arsenic | Cadmium | Zinc  |
|--------------|---------|---------|--------|-------------|---------|---------|-------|
| AWQS (yr 50) | NA      | NA      | 6 to 9 | NA          | 1.8     | 0.4     | 4.1   |
| 5            | 616     | 90      | 7.1    | 162         | 0.010   | 0.0001  | 0.006 |
| 25           | 587     | 90      | 7.1    | 162         | 0.010   | 0.0001  | 0.006 |
| 50           | 550     | 90      | 7.1    | 163         | 0.010   | 0.0001  | 0.006 |
| 100          | 483     | 90      | 7.1    | 163         | 0.010   | 0.0001  | 0.006 |
| 200          | 339     | 89      | 7.1    | 162         | 0.010   | 0.0001  | 0.006 |
| 350          | 196     | 88      | 7.1    | 161         | 0.010   | 0.0001  | 0.006 |
| 500          | 117     | 87      | 7.1    | 161         | 0.010   | 0.0001  | 0.006 |
| 1000         | 41      | 87      | 7.1    | 162         | 0.010   | 0.0001  | 0.006 |
| 2500         | 27      | 87      | 7.1    | 162         | 0.010   | 0.0001  | 0.006 |

Tailings Seepage (gpm)15.6Upwelling GW (gpm)28.7Total Flow (gpm)44.3

Table 4-4 (continued) Alternative C Water Quality Model

Alternative C - Discharge/Compliance Scenario 1(a) Predicted Concentration in Underdrain Water
Most probable concentration in underdrain flow (mg/L). Constituents that exceed chronic fresh water dissolved Alaska
Water Quality Standards (AWQS) are shown in red.

| Time (Years) | Antimony | Chromium       | Copper              | Lead                | Mercury   | Nickel            | Selenium | Silver (acute) |
|--------------|----------|----------------|---------------------|---------------------|-----------|-------------------|----------|----------------|
| AWQS         | 0.006    | 0.155 to 0.160 | 0.0194 to<br>0.0199 | 0.0066 to<br>0.0069 | 0.00077   | 0.112 to<br>0.115 | 0.005    | 0.016 to 0.017 |
| 5            | 0.013    | 0.0004         | 0.0013              | 0.0005              | <0.00002  | 0.003             | 0.001    | <0.00005       |
| 25           | 0.013    | 0.0004         | 0.0013              | 0.0005              | < 0.00002 | 0.003             | 0.001    | < 0.00005      |
| 50           | 0.013    | 0.0004         | 0.0013              | 0.0005              | < 0.00002 | 0.003             | 0.001    | < 0.00005      |
| 100          | 0.013    | 0.0004         | 0.0013              | 0.0005              | < 0.00002 | 0.003             | 0.001    | < 0.00005      |
| 200          | 0.012    | 0.0004         | 0.0013              | 0.0005              | < 0.00002 | 0.003             | 0.001    | < 0.00005      |
| 350          | 0.012    | 0.0004         | 0.0013              | 0.0005              | < 0.00002 | 0.003             | 0.001    | < 0.00005      |
| 500          | 0.012    | 0.0004         | 0.0013              | 0.0005              | < 0.00002 | 0.003             | 0.001    | < 0.00005      |
| 1000         | 0.012    | 0.0004         | 0.0013              | 0.0005              | < 0.00002 | 0.003             | 0.001    | < 0.00005      |
| 2500         | 0.012    | 0.0004         | 0.0013              | 0.0005              | < 0.00002 | 0.003             | 0.001    | < 0.00005      |

Data for mercury and silver are below detection in representative contact waters

Tailings Seepage (gpm)15.6Upwelling GW (gpm)28.7Total Flow (gpm)44.3

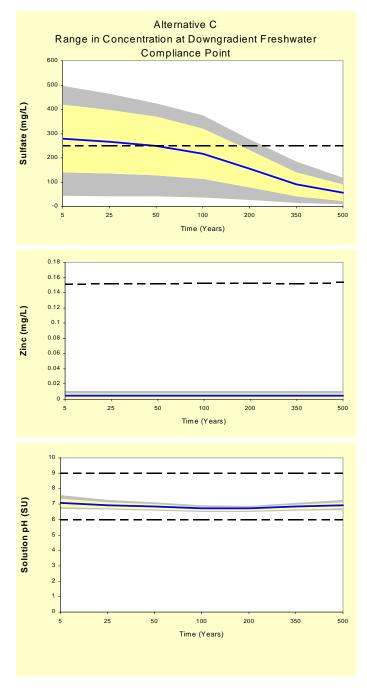
Alternative C - Discharge/Compliance Scenario 1(b) Predicted Concentration at Fresh Water Compliance Location Most probable concentration in diluted underdrain water (mg/L). Constituents that exceed chronic fresh water dissolved Alaska Water Quality Standards (AWQS) are shown in red.

| Time       | Antimony | Chromium       | Copper              | Lead                | Mercury   | Nickel            | Selenium | Silver (acute)   |
|------------|----------|----------------|---------------------|---------------------|-----------|-------------------|----------|------------------|
| Background | 0.0004   | 0.0002         | 0.0002              | 0.0001              | 0.000004  | 0.001             | 0.001    | 0.00004          |
| AWQS       | 0.006    | 0.094 to 0.095 | 0.0115 to<br>0.0117 | 0.0030 to<br>0.0031 | 0.00077   | 0.067 to<br>0.067 | 0.005    | 0.0057 to 0.0059 |
| 5          | 0.005    | 0.0003         | 0.0007              | 0.0002              | <0.00001  | 0.002             | 0.001    | < 0.00005        |
| 25         | 0.005    | 0.0003         | 0.0007              | 0.0002              | < 0.00001 | 0.002             | 0.001    | < 0.00005        |
| 50         | 0.005    | 0.0003         | 0.0007              | 0.0002              | < 0.00001 | 0.002             | 0.001    | < 0.00005        |
| 100        | 0.005    | 0.0003         | 0.0007              | 0.0002              | < 0.00001 | 0.002             | 0.001    | < 0.00005        |
| 200        | 0.005    | 0.0003         | 0.0007              | 0.0002              | < 0.00001 | 0.002             | 0.001    | < 0.00005        |
| 350        | 0.005    | 0.0003         | 0.0007              | 0.0002              | < 0.00001 | 0.002             | 0.001    | < 0.00005        |
| 500        | 0.005    | 0.0003         | 0.0007              | 0.0002              | < 0.00001 | 0.002             | 0.001    | < 0.00005        |
| 1000       | 0.005    | 0.0003         | 0.0007              | 0.0002              | < 0.00001 | 0.002             | 0.001    | < 0.00005        |
| 2500       | 0.005    | 0.0003         | 0.0007              | 0.0002              | < 0.00001 | 0.002             | 0.001    | < 0.00005        |

Data for mercury and silver are below detection in representative contact waters

Downgradient GW (gpm) 27.5 Downgradient SW (gpm) 80.0 Total Flow (gpm) 151.8

Alternative C - Discharge/Compliance Scenario 2 Predicted Concentration at Marine Discharge


Most probable concentration in underdrain flow (mg/L). Constituents that exceed chronic marine Alaska Water Quality Standards (AWQS) with a 50:1 mixing zone dilution ratio are shown in red.

| Time (Years) | Antimony | Chromium | Copper | Lead   | Mercury   | Nickel | Selenium | Silver    |
|--------------|----------|----------|--------|--------|-----------|--------|----------|-----------|
| AWQS         | NA       | NA       | 0.155  | 0.405  | 0.0470    | 0.410  | 3.550    | 0.095     |
| 5            | 0.0125   | 0.0004   | 0.0013 | 0.0005 | < 0.00002 | 0.003  | 0.001    | < 0.00005 |
| 25           | 0.0125   | 0.0004   | 0.0013 | 0.0005 | < 0.00002 | 0.003  | 0.001    | < 0.00005 |
| 50           | 0.0125   | 0.0004   | 0.0013 | 0.0005 | < 0.00002 | 0.003  | 0.001    | < 0.00005 |
| 100          | 0.0125   | 0.0004   | 0.0013 | 0.0005 | < 0.00002 | 0.003  | 0.001    | < 0.00005 |
| 200          | 0.0125   | 0.0004   | 0.0013 | 0.0005 | < 0.00002 | 0.003  | 0.001    | < 0.00005 |
| 350          | 0.0124   | 0.0004   | 0.0013 | 0.0005 | < 0.00002 | 0.003  | 0.001    | < 0.00005 |
| 500          | 0.0123   | 0.0004   | 0.0013 | 0.0005 | < 0.00002 | 0.003  | 0.001    | < 0.00005 |
| 1000         | 0.0122   | 0.0004   | 0.0013 | 0.0005 | < 0.00002 | 0.003  | 0.001    | < 0.00005 |
| 2500         | 0.0120   | 0.0004   | 0.0013 | .0005  | < 0.00002 | 0.003  | 0.001    | < 0.00005 |

Data for mercury and silver are below detection in representative contact waters

Tailings Seepage (gpm)15.6Upwelling GW (gpm)28.7Total Flow (gpm)44.3

Figure 4-7 Alternative C – Range in Concentration at Compliance Point



#### 4.5.4 Alternative D

The expanded area of the tailings pile in this alternative would decrease the tributary area to the three adjacent drainages by approximately an additional 5 percent as compared to Alternative A or approximately an additional 2 percent as compared to Alternatives B or C.

The effects on surface water quality for Alternative D are similar to those of Alternatives B and C, with a greater reduction in surface water flowing into the three adjacent drainages during operations and closure, due to the increased size of the pile.

As with Alternative B and C, this alternative reduces the potential discharge of groundwater with elevated sulfate levels from the bedrock knob in the northwest corner into Cannery Creek or the associated high quality wetlands.

The effects on ground water Alternative D are similar to those of Alternatives B and C. However, due to the increased size of the tailing pile, Alternative D would result in increased groundwater capture by the wet well and treatment system as compared to all other alternatives.

Results from the water quality model for Alternative D are shown in Figure 4-8 and Table 4-5. Water quality for Alternative D is similar to that of Alternative B, with concentrations of sulfate and metals slightly higher due to the greater area of the pile. In the underdrain (without dilution, discharge scenario 1(a)), sulfate and antimony may initially exceed AWQS followed by AWQS exceedances of selenium, zinc, and cadmium after 25, 50, and 100 years, respectively.

At the compliance point with dilution (discharge scenario 1(b)), sulfate and antimony initially exceed AWQS, but are predicted to be below AWQS after 200 and 25 years, respectively. Selenium, zinc, and cadmium are predicted to be above AWQS after 25, 200, and 500 years, respectively. These predicted exceedances of AWQS under discharge/compliance scenario 1 would impair existing protected water use classes if discharged without treatment. KGCMC will continue an appropriate method of water treatment until the tailings effluent can be discharged without treatment so that applicable AWOS are met.

Results of the water quality model for Alternative D compared to marine water AWQS (discharge scenario 2) show there are no exceedances.

The predicted load of metals was compared to the loads currently allowable under the NPDES discharge permit using a diffuser in Hawk Inlet. Predicted loads were less than 2 percent of allowable loads for Alternative D for all metals in the permit.

**Greens Creek Tailings** 

As with Alternatives A and B, effects to water quality in the Hawk Inlet drainage are considered significant for the case where tailings effluent is discharged directly (without treatment) to surface water or groundwater without dilution, or with dilution (without treatment) with surface water or groundwater prior to discharge to receiving waters (discharge/compliance scenario 1). Effects to marine water would be negligible, the same as Alternative A, B, or C for the case where effluent is discharged directly to Hawk Inlet (without treatment or diffuser) (discharge/compliance scenario 2). There would be negligible adverse effects for the case where tailings effluent is discharged through a diffuser into Hawk Inlet (discharge/compliance scenario 3) - the same as under Alternatives A, B, and C. If water treatment were continued in perpetuity, there would be negligible adverse effects to receiving surface water, groundwater, or marine water.

Table 4-5 **Alternative D Water Quality Model** 

Alternative D - Discharge/Compliance Scenario 1(a) Predicted Concentration in Underdrain Water Most probable concentration in underdrain flow (mg/L). Constituents that exceed chronic freshwater dissolved Alaska Water Quality Standards (AWQS) are shown in red.

| Time (Years) | Sulfate | Calcium | рН  | Bicarbonate | Arsenic | Cadmium          | Zinc           |
|--------------|---------|---------|-----|-------------|---------|------------------|----------------|
| AWQS         | 250     |         |     | 6 to 9      | 0.050   | 0.0005 to 0.0006 | 0.291 to 0.382 |
| 5            | 740     | 120     | 7.1 | 175         | 0.012   | 0.0001           | 0.046          |
| 25           | 744     | 198     | 6.9 | 153         | 0.011   | 0.0003           | 0.240          |
| 50           | 733     | 274     | 6.7 | 128         | 0.010   | 0.0006           | 0.458          |
| 100          | 687     | 410     | 6.6 | 89          | 0.008   | 0.0010           | 0.848          |
| 200          | 518     | 419     | 6.6 | 62          | 0.006   | 0.0013           | 1.118          |
| 350          | 295     | 280     | 6.7 | 62          | 0.006   | 0.0013           | 1.143          |
| 500          | 172     | 196     | 6.9 | 64          | 0.006   | 0.0013           | 1.129          |
| 1000         | 54      | 121     | 7.1 | 73          | 0.006   | 0.0013           | 1.103          |
| 2500         | 32      | 102     | 7.2 | 96          | 0.006   | 0.0013           | 1.092          |

Tailings Seepage (gpm) 20.8 Upwelling GW (gpm) 28.7 Total Flow (gpm) 49.5

Alternative D - Discharge/Compliance Scenario 1(b) Predicted Concentration at Freshwater Compliance Location Most probable concentration in diluted underdrain water (mg/L). Constituents that exceed chronic freshwater dissolved Alaska Water Quality Standards (AWQS) are shown in red.

| Time       | Sulfate | Calcium | рН  | Bicarbonate | Arsenic | Cadmium          | Zinc           |
|------------|---------|---------|-----|-------------|---------|------------------|----------------|
| Background | 6       | 22      | 7.1 | 66          | 0.005   | 0.00004          | 0.0025         |
| AWQS       | 250     |         |     | 6 to 9      | 0.050   | 0.0003 to 0.0006 | 0.177 to 0.382 |
| 5          | 348     | 63      | 7.0 | 107         | 0.007   | 0.0001           | 0.022          |
| 25         | 349     | 98      | 6.9 | 96          | 0.007   | 0.0001           | 0.103          |
| 50         | 345     | 133     | 6.8 | 83          | 0.006   | 0.0002           | 0.198          |
| 100        | 318     | 193     | 6.7 | 61          | 0.006   | 0.0004           | 0.351          |
| 200        | 243     | 202     | 6.7 | 48          | 0.005   | 0.0006           | 0.480          |
| 350        | 132     | 139     | 6.8 | 48          | 0.005   | 0.0006           | 0.491          |
| 500        | 76      | 103     | 6.9 | 49          | 0.005   | 0.0006           | 0.485          |
| 1000       | 26      | 66      | 7.0 | 54          | 0.005   | 0.0006           | 0.462          |
| 2500       | 17      | 57      | 7.1 | 66          | 0.005   | 0.0006           | 0.455          |

Downgradient GW (gpm) Downgradient SW (gpm) 27.5 95.5 Total Flow (gpm) 172.5

Alternative D - Discharge/Compliance Scenario 2 Predicted Concentration at Marine Discharge Most probable concentration in underdrain flow (mg/L). Constituents that exceed chronic marine Alaska Water Quality Standards (AWQS) with a 50:1 mixing zone dilution ratio are shown in red.

| Time (Years)        | Sulfate | Calcium | рН     | Bicarbonate | Arsenic | Cadmium | Zinc  |
|---------------------|---------|---------|--------|-------------|---------|---------|-------|
| <i>AW</i> QS        | NA      | NA      | 6 to 9 | NA          | 1.8     | 0.4     | 4.1   |
| 5                   | 740     | 120     | 7.1    | 175         | 0.012   | 0.0001  | 0.046 |
| 25                  | 744     | 198     | 6.9    | 153         | 0.011   | 0.0003  | 0.240 |
| 50                  | 733     | 274     | 6.7    | 128         | 0.010   | 0.0006  | 0.458 |
| 100                 | 687     | 410     | 6.6    | 89          | 0.008   | 0.0010  | 0.848 |
| 200                 | 518     | 419     | 6.6    | 62          | 0.006   | 0.0013  | 1.118 |
| 350                 | 295     | 280     | 6.7    | 62          | 0.006   | 0.0013  | 1.143 |
| 500                 | 172     | 196     | 6.9    | 64          | 0.006   | 0.0013  | 1.129 |
| 1000                | 54      | 121     | 7.1    | 73          | 0.006   | 0.0013  | 1.103 |
| 2500                | 32      | 102     | 7.2    | 96          | 0.006   | 0.0013  | 1.092 |
| Tailings Seenage (d | nnm)    | 20.8    | •      |             |         |         | •     |

āilings Seepage (gpm) Upwelling GW (gpm) 28.7 Total Flow (gpm) 49.5

#### Table 4-5 (continued) Alternative D Water Quality Model

Alternative D - Discharge/Compliance Scenario 1(a) Predicted Concentration in Underdrain Water
Most probable concentration in underdrain flow (mg/L). Constituents that exceed chronic fresh water dissolved Alaska
Water Quality Standards (AWQS) are shown in red.

| Time (Years) | Antimony | Chromium       | Copper              | Lead                | Mercury   | Nickel            | Selenium | Silver (acute) |
|--------------|----------|----------------|---------------------|---------------------|-----------|-------------------|----------|----------------|
| AWQS         | 0.006    | 0.177 to 0.231 | 0.0222 to<br>0.0293 | 0.0078 to<br>0.0109 | 0.00077   | 0.128 to<br>0.168 | 0.005    | 0.022 to 0.037 |
| 5            | 0.015    | 0.0004         | 0.0016              | 0.0006              | < 0.00003 | 0.004             | 0.004    | <0.00005       |
| 25           | 0.014    | 0.0005         | 0.0016              | 0.0007              | < 0.00003 | 0.006             | 0.013    | < 0.00005      |
| 50           | 0.013    | 0.0005         | 0.0015              | 0.0008              | < 0.00003 | 0.008             | 0.024    | < 0.00005      |
| 100          | 0.010    | 0.0005         | 0.0015              | 0.0008              | < 0.00003 | 0.011             | 0.041    | < 0.00005      |
| 200          | 0.007    | 0.0006         | 0.0014              | 0.0009              | < 0.00003 | 0.013             | 0.041    | < 0.00005      |
| 350          | 0.007    | 0.0006         | 0.0014              | 0.0009              | < 0.00003 | 0.011             | 0.024    | < 0.00005      |
| 500          | 0.007    | 0.0006         | 0.0014              | 0.0009              | < 0.00003 | 0.009             | 0.013    | < 0.00005      |
| 1000         | 0.007    | 0.0006         | 0.0014              | 0.0009              | < 0.00003 | 0.007             | 0.003    | < 0.00005      |
| 2500         | 0.007    | 0.0006         | 0.0014              | 0.0009              | < 0.00003 | 0.007             | 0.002    | < 0.00005      |

Data for mercury and silver are below detection in representative contact waters

Tailings Seepage (gpm)20.8Upwelling GW (gpm)28.7Total Flow (gpm)49.5

Alternative D - Discharge/Compliance Scenario 1(b) Predicted Concentration at Fresh Water Compliance Location Most probable concentration in diluted underdrain water (mg/L). Constituents that exceed chronic fresh water dissolved Alaska Water Quality Standards (AWQS) are shown in red.

| Time       | Antimony | Chromium       | Copper              | Lead                | Mercury   | Nickel            | Selenium | Silver (acute)      |
|------------|----------|----------------|---------------------|---------------------|-----------|-------------------|----------|---------------------|
| Background | 0.0004   | 0.0002         | 0.0002              | 0.0001              | 0.000004  | 0.001             | 0.001    | 0.00004             |
| AWQS       | 0.006    | 0.109 to 0.231 | 0.0134 to<br>0.0293 | 0.0037 to<br>0.0109 | 0.00077   | 0.078 to<br>0.168 | 0.005    | 0.0078 to<br>0.0374 |
| 5          | 0.0061   | 0.0003         | 0.0008              | 0.0003              | < 0.00001 | 0.002             | 0.002    | < 0.00005           |
| 25         | 0.0058   | 0.0003         | 0.0008              | 0.0003              | < 0.00001 | 0.003             | 0.006    | < 0.00005           |
| 50         | 0.0056   | 0.0003         | 0.0008              | 0.0004              | < 0.00001 | 0.004             | 0.010    | < 0.00005           |
| 100        | 0.0046   | 0.0004         | 0.0008              | 0.0004              | < 0.00001 | 0.006             | 0.017    | < 0.00005           |
| 200        | 0.0033   | 0.0004         | 0.0007              | 0.0004              | < 0.00001 | 0.006             | 0.018    | < 0.00005           |
| 350        | 0.0031   | 0.0004         | 0.0007              | 0.0004              | < 0.00001 | 0.006             | 0.010    | < 0.00005           |
| 500        | 0.0031   | 0.0004         | 0.0007              | 0.0004              | < 0.00001 | 0.005             | 0.006    | < 0.00005           |
| 1000       | 0.0031   | 0.0004         | 0.0007              | 0.0004              | < 0.00001 | 0.004             | 0.002    | < 0.00005           |
| 2500       | 0.0031   | 0.0004         | 0.0007              | 0.0004              | < 0.00001 | 0.004             | 0.001    | < 0.00005           |

Data for mercury and silver are below detection in representative contact waters

Downgradient GW (gpm) 27.5 Downgradient SW (gpm) 95.5 Total Flow (gpm) 72.5

Alternative D - Discharge/Compliance Scenario 2 Predicted Concentration at Marine Discharge

Most probable concentration in underdrain flow (mg/L). Constituents that exceed chronic marine Alaska Water Quality Standards (AWQS) with a 50:1 mixing zone dilution ratio are shown in red.

| Time (Years) | Antimony | Chromium | Copper | Lead   | Mercury   | Nickel | Selenium | Silver    |
|--------------|----------|----------|--------|--------|-----------|--------|----------|-----------|
| AWQS         | NA       | NA       | 0.155  | 0.405  | 0.0470    | 0.410  | 3.550    | 0.095     |
| 5            | 0.0150   | 0.0004   | 0.0016 | 0.0006 | < 0.00003 | 0.004  | 0.004    | < 0.00005 |
| 25           | 0.0139   | 0.0005   | 0.0016 | 0.0007 | < 0.00003 | 0.006  | 0.013    | < 0.00005 |
| 50           | 0.0128   | 0.0005   | 0.0015 | 0.0008 | < 0.00003 | 0.008  | 0.024    | < 0.00005 |
| 100          | 0.0101   | 0.0005   | 0.0015 | 0.0008 | < 0.00003 | 0.011  | 0.041    | < 0.00005 |
| 200          | 0.0073   | 0.0006   | 0.0014 | 0.0009 | < 0.00003 | 0.013  | 0.041    | < 0.00005 |
| 350          | 0.0069   | 0.0006   | 0.0014 | 0.0009 | < 0.00003 | 0.011  | 0.024    | < 0.00005 |
| 500          | 0.0069   | 0.0006   | 0.0014 | 0.0009 | < 0.00003 | 0.009  | 0.013    | < 0.00005 |
| 1000         | 0.0069   | 0.0006   | 0.0014 | 0.0009 | < 0.00003 | 0.007  | 0.003    | < 0.00005 |
| 2500         | 0.0069   | 0.0006   | 0.0014 | 0.0009 | < 0.00003 | 0.007  | 0.002    | < 0.00005 |

Data for mercury and silver are below detection in representative contact waters

Tailings Seepage (gpm)20.8Upwelling GW (gpm)28.7Total Flow (gpm)49.5

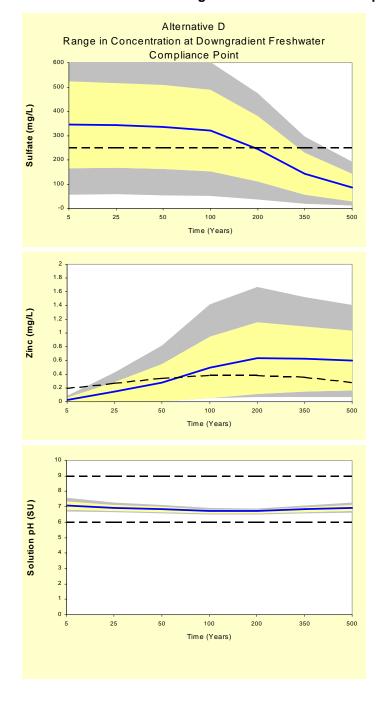



Figure 4-8 Alternative D – Range in Concentration at Compliance Point

**Greens Creek Tailings** 4.6 Wetlands 4-35

### 4.6 Wetlands

This section examines the relative impacts of the alternatives on wetlands and other waters of the United States that fall under the regulatory authority of the Corps of Engineers (COE) and the Environmental Protection Agency (EPA) as defined in Section 404 of the Clean Water Act (CWA).

Permits for the discharge of fill into waters of the United States are approved only through application of the Section 404(b)(1) Guidelines (Guidelines) [see 40 CFR Part 230], which are the substantive criteria for dredged and fill material discharges under the CWA. These areas include jurisdictional wetlands and such other sites as pool and riffle complexes in streams. As discussed under Wetlands in Chapter 3, the Greens Creek project area contains approximately 530 acres of jurisdictional wetlands and a number of streams assumed to fall within the definition of waters of the United States. ... Several individual CWA Section 404 permits have been issued for mining operations in the area, including Tailings Impoundment Area (Permit No. 4-880269). Additional fill in wetlands in connection with this project would be done under this permit or a new permit. In 1994, Three Parameters Plus, completed the analysis on jurisdictional wetland determinations and functions and values. As discussed in Section 3.9, low value wetlands are abundant in the area. especially forested low value wetlands.

#### 4.6.1 Alternative A – No Action

This alternative would have no further impact in wetlands or other special aquatic sites beyond those occurring under currently permitted actions.

### 4.6.2 Alternative B – Proposed Action

This alternative would result in fill of approximately 22.1 acres of low value wetlands (Figure 4-9). The majority of these wetlands are located immediately downslope (west) of the existing tailings disposal area, with a small inclusion east of the existing mine access road in the "East Ridge" area. Wetlands west of the existing fill consist of forested and short sedge muskeg vegetation associations. The wetland on the East Ridge is forested. These wetlands received a "low" value rating in the functions and values analysis partly because of their proximity to existing disturbance.

In addition, the expanded tailings pile would fill approximately 300 linear feet of high value riparian wetland assumed to be adjacent to a small

Greens Creek Tailings EIS stream flowing west from the short sedge wetland, in addition to eliminating the pool and riffle complex of the stream itself. It is assumed by the functions and values analysis that this stream would have adjacent wetlands of three to five feet wide on each bank. Low value wetlands are common in the area.

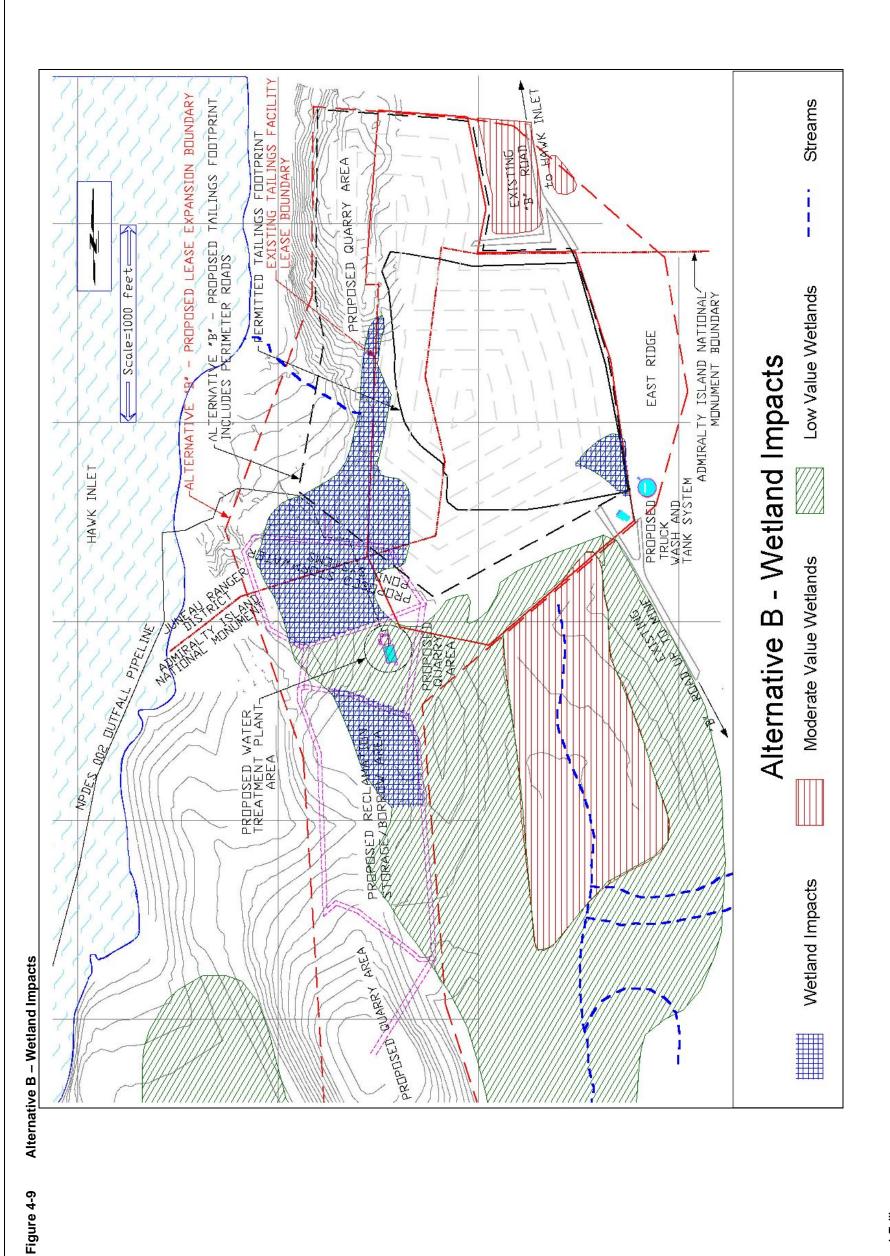
#### 4.6.3 Alternative C

Alternative C would result in fill or alteration of approximately 10.2 acres of low value wetlands (Figure 4-10). The tailing footprint would of Alternative C and D is shifted to the east compared to the Proposed Action. The expanded tailings pile would fill approximately 100 linear feet of high value riparian wetland assumed to be adjacent to a small stream flowing west from the short sedge wetland, in addition to eliminating the pool and riffle complex of the stream itself. The majority of the wetlands filled would consist of forested vegetation, with a small amount of fill in the short sedge wetland to the west and south of the existing tailings disposal area. This wetland is a part of the same wetland polygon described above for Alternative B.

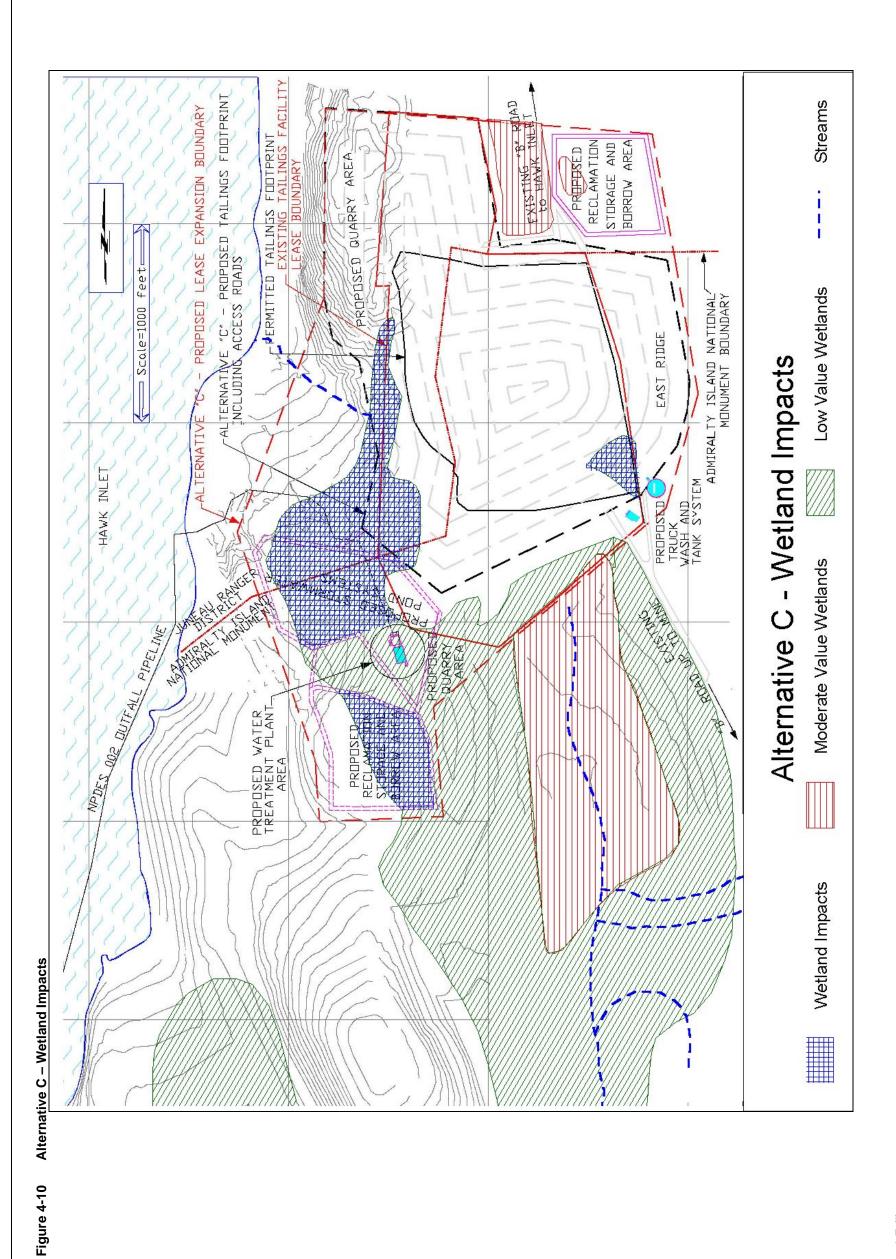
#### 4.6.4 Alternative D

Alternative D would impact both low and moderate value wetlands. This alternative would result in the fill or alteration of approximately 42.5 acres of low value wetlands, and 0.7 acres of moderate value wetlands (Figure 4-11).

Low value wetlands impacted by this alternative consist of forested and short sedge classifications. The moderate value wetland that would be impacted is a small tall sedge wetland adjacent to the mine access road north of the existing tailings disposal area.

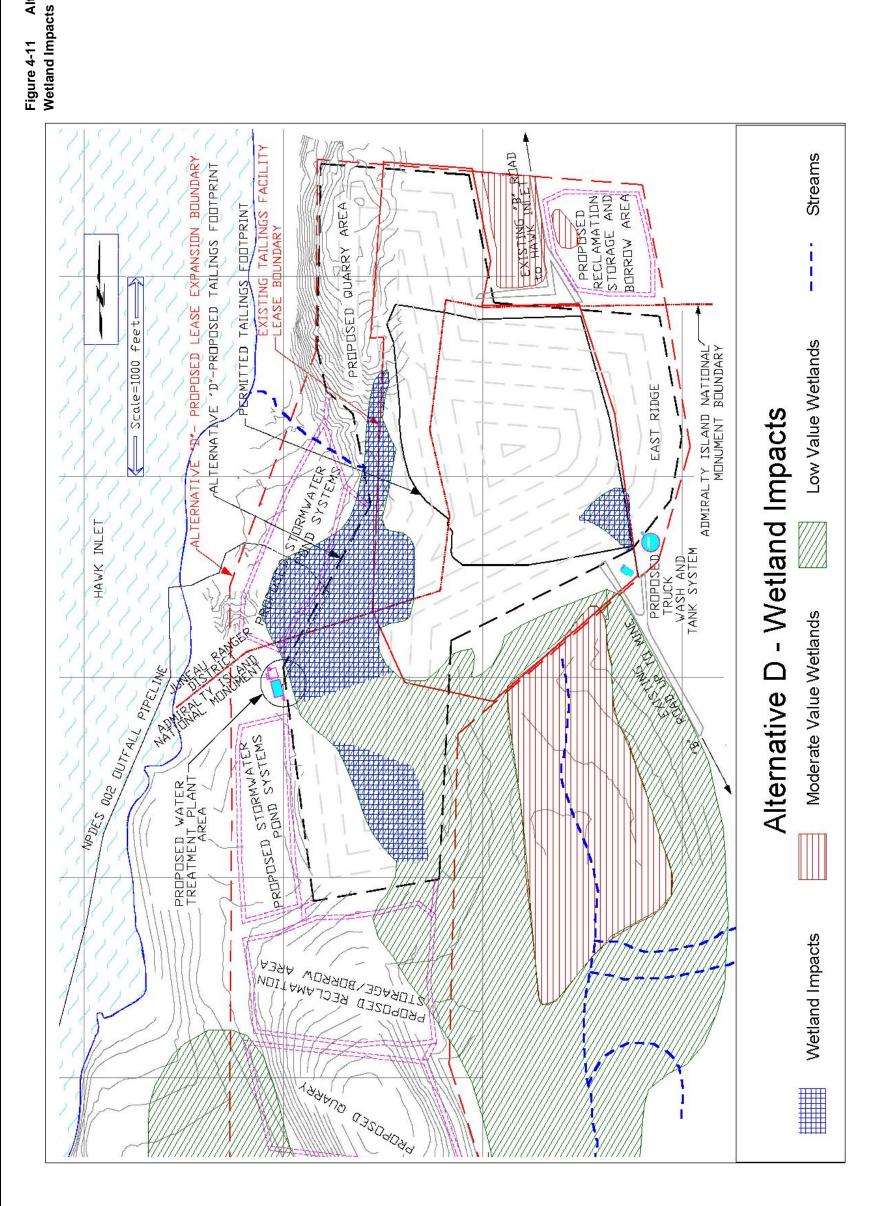

Additionally, as with Alternatives C, the expanded tailings pile would fill approximately 100 linear feet of high value riparian wetland assumed to be adjacent to a small stream flowing west from the short sedge wetland, in addition to eliminating the pool and riffle complex of the stream itself. It is assumed by the functions and values analysis that this stream would have adjacent wetlands of three to five feet wide on each bank.

**Greens Creek Tailings** 4.6 Wetlands 4-37


This page intentionally left blank.

4-38 4.6 Wetlands

Greens Creek Tailings
EIS




This page intentionally left blank.



This page intentionally left blank.

Alternative D



4.6 Wetlands M 4-43

This page intentionally left blank.

### 4.7 Vegetation

This section describes the impacts to vegetation resulting from the various alternatives discussed in Chapter 2. None of the vegetation loss anticipated under any alternative is considered significant on a project area or regional basis. There are no other projects proposed in the immediate area of the proposed action that would have any effect on vegetation, therefore no cumulative effect on vegetation is anticipated. None of the alternatives would have an indirect effect on vegetation. The vegetation loss anticipated from any of the alternatives is not considered significant either within the project study area or within the region.

### 4.7.1 Alternative A – No Action

This alternative would have no further impact on natural vegetation beyond that already anticipated under existing permits. The current pile is 23.2 acres and is permitted to increase to 29 acres with related disturbance to total 56 acres.

### 4.7.2 Alternative B – Proposed Action

This alternative would result in the loss of approximately 71 additional acres of natural vegetation. This vegetation consists primarily of Hemlock and Sitka spruce forest, with a relatively small short sedge muskeg. Most of the vegetated area is rated as upland, with approximately 22.1 acres of the total being low value wetlands (see Figure 4-9).

### 4.7.3 Alternative C

This alternative would result in the loss of approximately 56 additional acres of primarily Hemlock and Sitka spruce forest. Several small short sedge muskegs would also be impacted. Approximately 10.2 acres is rated as low value wetland (see Figure 4-10). This alternative would disturb the least vegetation of any action alternative.

### 4.7.4 Alternative D

This alternative would result in the loss of approximately 108 additional acres of Western hemlock and Sitka spruce forest including approximately 42.5 acres of low value forested wetlands (see Figure 4-11). This alternative would disturb the most vegetation.

Greens Creek Tailings 4.7 Vegetation 4.7 Vegetation

### 4.8 Wildlife and Birds

The project will result in an irreversible loss of habitat due to mine tailings piled on the habitat. Under any of the action alternatives (see acreages in Section 4.7, Vegetation above), however, most of the area of the expanded pile footprint has already been cleared as part of the current permitted activities. Over time, some habitat may "come back" when vegetation become re-established on the tailings pile.

Direct habitat losses for mammals will primarily be for small mammals using the habitats. To the extent that larger mammals (brown bears and deer) use the forest fringe adjacent to the pile, they are likely to shift their use. Due to the small amount of acreage affected and the large amounts of unaffected brown bear habitat in the surrounding area, no significant direct, indirect, or cumulative impacts to brown bears are expected. The forested patch that is proposed for the tailings expansion is isolated from other suitable habitats above the existing tailings facility.

Deer have to cross through areas of high activity to access the area, thereby reducing its value to deer. High value deer winter habitats are those areas where crown closure is greater than 95 percent (Hanley, 1998). The current crown closure of the affected forest land is estimated at 70-75 percent. The stand is not connected to any other forested habitat, therefore its value to wintering deer is low in heavy snow years when movements are restricted.

Employees of Greens Creek are not allowed to hunt or fish in the vicinity of Greens Creek so continuation of mine life would not cause pressure from harvesting. Thus, under all four alternatives, the effects on wildlife would continue as they are today, other than the length of time during which the mine would continue to operate. Once the mine shuts down, this habitat will gradually be restored, but harvesting pressure may increase with people hunting where they are not currently allowed.

Under Alternative A, the mine would close in 2 years. Under Alternatives B and C, the mine would probably have a remaining life of 22 years. Under Alternative D, there would be tailings storage capacity for 22 years, but it is probable the increased costs would result in closure before all tailings capacity was used.

The Standards and Guidelines for Wildlife (Chapter 4, Page 4-110 <a href="http://www.fs.fed.us/r10/TLMP/F\_PLAN/FPTOC.PDF">http://www.fs.fed.us/r10/TLMP/F\_PLAN/FPTOC.PDF</a>) established in the 1997 Forest Plan is included in the Planning Record. The Standards and Guidelines for Sitka black-tailed deer, bald eagles, brown bear, American marten, and marbled murrelet would be complied with under any of the alternatives.

Greens Creek Tailings

Research has documented that responses of birds to timber harvest are mixed and highly species specific. All of the alternatives that propose to expand the existing tailings facility into the mature forest habitats. Nest sites will be lost in the areas that are cleared. Changes in forest structure will positively affect some bird species and negatively affect other species. In most instances, over time, forests that have been harvested, or disturbed by factors such as blowdown or fire, will grow back and complex stand structure will develop again on the site.

Four alternatives have been developed in the Final Environmental Impact Statement. All alternatives, except the No Action alternative, propose to enlarge the existing tailings pile and remove some mature spruce/hemlock forest. Other habitats (ex. alpine, muskeg, riparian) in the area will not be affected.

Table 3-12 lists all of the priority species that are known to occur in mature/old-growth Spruce-Hemlock habitats on the Tongass National Forest. These species were selected because the proposed expansion of the existing tailings pile will affect a stand of spruce/hemlock forest habitat adjacent to the existing tailings storage facility. Other habitats (ex. shoreline, beach and estuary fringe etc.) will not be affected. Table 4-6 displays the number of acres of spruce/hemlock habitat that will be affected under each alternative.

Table 4-6 Acres of Spruce/Hemlock Habitat Affected Under Each Alternative

| Alternative                                                                               | Α   | В  | С  | D   |
|-------------------------------------------------------------------------------------------|-----|----|----|-----|
| Acres                                                                                     | 29* | 71 | 56 | 108 |
| * The existing tailings pile is 23.2 ac. It is currently permitted to expand to 29 acres. |     |    |    |     |

The primary effect to birds would be nest destruction or abandonment if the activities occur during the breeding/nesting period. Nesting in Southeast Alaska generally begins in May. By September, the young birds have fledged and they would not be directly affected (pers. comm. Gwen Baluss, Tongass National Forest, Juneau Ranger District). A stipulation that all tree removal activities related to the expansion should include direction that tree harvest occur only between September through April. This measure would eliminate adverse effects to nesting neotropical migrants and resident bird species.

The forested habitat that would be lost as a result of the tailings expansion storage area does not have the structural attributes that are preferred for murrelet nesting sites. It is unlikely that marbled murrelets use the area. Dawn watch surveys should be conducted prior to the commencement of any disturbance activities. Kittlitz's murrelets forage almost exclusively at the face of tidewater glaciers or near the outflow of glacial streams, and

**Greens Creek Tailings** 4.8 Wildlife and Birds 4-47

nest in alpine areas in bare patches among the ice and snow. Neither foraging nor nesting habitat for the Kittlitz's murrelet are in the area of the Greens Creek Mine.

### 4.9 Marine Mammals

Six, non-T&E, marine mammal species occur in or near Hawk Inlet: harbor seal, killer whale, harbor porpoise, and Dall's porpoise.

As discussed in Chapter 3, Section 3.11.6 harbor seals, killer whales, harbor porpoise, and Dall's porpoise are seen in Hawk Inlet at irregular intervals. Gray whales and minke whales occur in Chatham Strait, but have not been observed in Hawk Inlet. There are no activities associated with any of the proposed actions, including associated traffic from ore barges or ships that would be expected to adversely affect any of these species. No activity associated with any of the alternatives would constitute harassment or a taking under Marine Mammal Protection Act.

# 4.10 Threatened and Endangered and Alaska Region Sensitive Species

A Biological Evaluation (BE) for Sensitive Species of Plants was conducted. No sensitive plants were found. The proposed action is not expected to have any indirect or cumulative effects on sensitive plants (Dillman, 2003).

A BE has been completed (Rickards, 2003) to assess the affects of the proposed activities on federally listed Threatened and Endangered fish and wildlife species. The BE determined that there will be no adverse impact to these species. The Threatened and Endangered fish species that are listed for the Tongass National forest are found in the marine waters on the outside coast, to the west of the Tongass National Forest. Federally listed mammals include the humpback whale and Steller sea lion. Critical habitat has not been designated for the humpback whale. Critical habitat for the Steller sea lion will not be affected. No provision of any of the alternatives would constitute harassment or a taking under the Endangered Species Act.

Northern sea otters (a candidate species for T&E status) generally occupy "outside" waters of the Southeast Alaska panhandle and are rarely seen inside, or east of Icy Strait. There have been only two confirmed sightings of sea otters within Chatham Strait in the past ten years. If sea otters were to extend their range into Hawk Inlet, there are no activities proposed in any alternative that would adversely impact them.

Both Steller sea lion and humpback whales occasionally visit Hawk Inlet. Risks to these higher trophic level mammals could occur primarily through transfer of metals from prey items. Risks to humpback whale and sea lion, are not likely, due to the transient nature of these species in Hawk Inlet, (OIO and RTI, 1998).

Similarly to northern sea otters, if either species were to spend more time in the Inlet, neither would be adversely affected by activities associated with any of the proposed actions, including associated traffic from ore barges or ships. No activity associated with any of the alternatives would constitute harassment or a taking under the Endangered Species Act or the Marine Mammal Protection Act.

## 4.11 Marine and Aquatic Habitats, Biota, and **Essential Fish Habitat**

The potential effects of all alternatives relative to the tailings facility and contact water discharge into Hawk Inlet are discussed here. Other impacts of mining activities on marine and freshwater habitats (e.g. ship loading, fuel spill risks, etc.) are discussed under the cumulative impacts (Section 4.17.5).

Under Alternative A, the mine would close in 2 years. Under Alternatives B and C, the mine would probably have a remaining life of 22 years and, under Alternative D would probably be somewhat less than 22 years.

Under all alternatives, all contact water is contained, collected and treated prior to marine discharge; therefore there is no drainage to freshwater EFH nor impact from metals, pH, or other contaminants. Watershed impacts of the different alternatives differ by acreage of wetlands filled. Alternative A would not result in wetland fill that has not already been permitted. Alternative B would result in filling 22.1 additional acres of low value wetlands, Alternate C, 10.2 acres of low value wetlands, and Alternative D in the fill of 42.5 acres of low value wetlands and 0.7 of medium value wetlands (See Section 4.6). Despite these differences, the watershed impacts to EFH of all alternatives are considered negligible.

No direct or indirect structural impacts to marine EFH are anticipated under any of the alternatives. Under all alternatives, all contact water will meet NPDES limits and/ or AWQS, whether discharged to a marine mixing zone, a marine outfall without mixing zone, or a surface or groundwater discharge (See Section 2.2 Elements Common to All Alternatives). All alternatives involve continued flow of effluent at outfall 002 into Hawk Inlet unless a surface or groundwater discharge

point, which meets the NPDES and AWQS standards, is used post-closure.

The only direct effect on marine habitats anticipated resulting from the action alternatives would continue to be input of submarine freshwater plumes from outfall 002. Mobile fish and shellfish will likely avoid the freshwater, resulting in negligible disturbance. Passive pelagic forms such as larval crustaceans, plankton and dinoflagellates will not likely be able to avoid the freshwater plume, and may experience mild osmotic stress. However, because of the typically strong salinity-defined boundary between saltwater and such a freshwater input, it is not likely that marine plankton will be affected by effluent plumes to a significant degree. No other direct impacts to marine habitat, fish or shellfish in Hawk Inlet are anticipated under any of the action alternatives.

There has been increases in some metals in marine sediments which have increased at Station S-1 since the installation of outfall 002. These include Arsenic (As), Cadmium (Cd), Lead (Pb), Mercury (Hg), Selenium (Se) and Silver (Ag). In marine worms, Chromium (Cr), Pb and Nickel (Ni) average levels increased at Stations S-1, S-2, S-3 and As, Cr, Copper (Cu), Pb, and Ni increased at S-1. Under all alternatives, metal levels in sediments near the outfall is predicted to increase, with levels for As, Cr, Cu, and Zn in exceedance of National Status and Trends, Effects Range – Low, and Ni in exceedance of Effects Range – Median.

Under all alternatives, it is anticipated that Cr, Pb and Ni would continue to increase in marine worm tissues throughout Hawk Inlet. Additionally, As and Cu are predicted to increase in marine worms near the outfall.

Based on mussel data presented in Chapter 3, it is likely that Cr, Cu, Pb and Ni may continue to increase in concentration in mussel tissue under the proposed alternatives. As and Hg may also increase in mussel tissue. All metals in mussels are within the range for Alaska Mussel Watch data, except Cd, which was elevated prior to mining activity.

Determining risk to higher trophic level organisms, based solely on sediment and invertebrate tissue concentrations, is highly uncertain. Determining food chain effects should include: 1) knowledge of the local habitat use; 2) dietary composition of prey items for a range of secondary and tertiary trophic species; 3) known or estimated trace metal accumulation levels within these prey, and 4) confirmation of trophic transfer through measuring metal body burdens in fish, mammals or avian species.

Risks to higher trophic level beings such as fish, shellfish, mammals and birds could occur primarily through transfer of metals from prey items.

Species with EFH likely to be most susceptible to metal intake through feeding include bottom feeders such as skates, rays, flatfish, pacific cod, and crab and their prey. Risk to higher trophic organism such as whale, seal and sea lion, is not likely, due to the transient nature of these mammals in Hawk Inlet.

### Habitat areas of particular concern

HAPCs in Hawk Inlet include canopy kelp beds, eelgrass beds and mussel beds. None of the alternatives are expected to adversely affect the physical structure of these habitats. Kelps typically concentrate heavy metals from ambient seawater. It is not known whether, or to what degree, heavy metals bound in kelp tissues would be biologically available to herbivores grazing on the kelps such as sea urchins and snails. Eelgrass beds in Hawk inlet are not expected to be affected by any of the action alternatives. Mussel beds will likely continue to concentrate heavy metals, as described above.

### **Mitigation Measures**

The Magnuson-Stevens Act calls for inclusion of measures to minimize or avoid adverse impacts to Essential Fish Habitat to the extent practicable in all activities which may adversely affect waters required by fish for breeding, rearing, spawning or growth to maturity. The Forest Service has determined that the Greens Creek mining activities may adversely affect the Essential Fish Habitat. A broad suite of measures crafted to protect elements of the Hawk Inlet environment and adjacent watersheds from mining activities have been integrated into the design and construction plans under each of the action alternatives. These design elements are discussed in Section 2.2, Elements Common to all alternatives.

In addition to these measures, NMFS has made the following conservation recommendations to characterize, minimize, and avoid adverse effects on EFH in Hawk Inlet.

- 1) Collect multiple samples for each site for both tissue and sediment to reduce sampling bias and capture contaminants that are distributed in patches.
- 2) Collect grain size information for sediment samples at all sampling sites.
- 3) Conduct surveys for seafloor community structure abundance and diversity

- 4) Sample resident fish tissues for heavy metals to determine whether metals are bioaccumulating or biomagnifying in Hawk Inlet food webs.
- 5) Develop a remediation plan for addressing contaminated sediments at ore ship loading dock.

The Forest Service has consulted with NMFS, the EPA, as well as the ADEC regarding EFH and NMFS' conservation recommendations. Recommendations # 1 - 4 above fall under the jurisdictional authority of the EPA and will be integrated into the NPDES permit which will be reissued in November of 2003. The 5<sup>th</sup> NMFS recommendation to develop a remediation plan for addressing contaminated sediments at the ore ship loading facility will be addressed in the Greens Creek Mine GPO. Currently, KCGMC is working in cooperation with NMFS, the EPA, and the ADEC to develop a comprehensive monitoring plan that will integrate all 5 of the NMFS recommendations above, including recommendation #5, the remediation plan. This comprehensive monitoring plan will become part of the Greens Creek Mine GPO.

### **Summary of Impacts to Marine and Aquatic Environment**

Based upon data provided in this document and supporting documents, all alternatives for the Greens Creek Mine Tailings expansion are predicted to have minor impacts on marine EFH due to metals accumulation. Negligible impacts to anadromous EFH are predicted for all alternatives. None of the alternatives are expected to adversely affect managed species' populations. The anticipated degree of impact by alternative on features of the Hawk Inlet ecosystem are summarized in Table 4-7below.

| Alternative | Marine<br>Habitats | Marine<br>Biota | Aquatic<br>Habitats | Aquatic<br>Biota | EFH   |
|-------------|--------------------|-----------------|---------------------|------------------|-------|
| ALT A       | Minor              | Minor           | Negligible          | Negligible       | Minor |
| ALT B       | Minor              | Minor           | Negligible          | Negligible       | Minor |
| ALT C       | Minor              | Minor           | Negligible          | Negligible       | Minor |
| ALT D       | Minor              | Minor           | Negligible          | Negligible       | Minor |

Table 4-7 Summary of Effects to Marine and Aquatic Ecosystems

## 4.12 Heritage Resources

The heritage resource review of this project has resulted in a determination of "No Historic Properties Affected" from direct, indirect, or cumulative sources. Alternative A presents the least potential for impacting a yet unknown heritage resource. This is because under the no

action alternative, the least amount of acreage would be disturbed, and activities that could potential disturb an unknown site would be limited to the probable life of the mine of approximately two years. This is compared to the other alternatives, under which activities with the potential to disturb an unknown site would continue for approximately 22 years.

Alternative C presents the next smallest potential risk to heritage resources. The additional lease area for Alternative C (67.3 acres) is the smallest among the action alternatives, and as such, it would be expected to have the least potential for adverse effects.

The 84.5 acre expansion considered under Alternative B would present a greater risk than that presented by Alternative C. Alternative D, with the largest expansion (116 acres), would present the greatest potential risk to heritage resources.

The risk to a potential heritage resource site or artifact that might be on the project site is twofold. A site or artifact could be dug up during excavation and damaged in the process, or it could be covered with tailings. These risks increase proportionately with the amount of disturbed acreage for each alternative. On the other hand, the chance of such an artifact being found, properly preserved, and repatriated also increase with the amount of disturbed acreage.

#### 4.13 Subsistence

The analysis of effects on subsistence is similar to the analysis under Wildlife in Section 4.8. As described in Chapter 3, the reliance on subsistence resources in this area is minor. As described in the Wildlife section, each of the alternatives would have negligible effects on fish and wildlife resources. Therefore, none of the alternatives would decrease the quality, abundance or availability of subsistence resources. None of the alternatives would impact subsistence users' access to fish or wildlife resources. Metals contamination could impact the edibility of shellfish from Hawk Inlet, but use of this resource appears to be minimal. For all these reasons, the impacts of the project are deemed negligible to subsistence use of wildlife, fish, or other foods.

#### 4.14 Recreation

Each alternative would have negligible impact on recreation. Existing tourism to Angoon, which centers on fishing, big game guiding, camping, bear watching, and canoeing, would be expected to continue with

4.14 Recreation 4-53 **Greens Creek Tailings** 

minimal, if any, impacts from any of the alternatives. The same is true for sightseeing and fishing tours centered on Admiralty Creek and Oliver Inlet, on the western side of Admiralty Island.

#### 4.15 Socioeconomic

Socioeconomic effects of the four alternatives depend on the life of the mine anticipated under each alternative. Socioeconomic effects are measured in terms of prolonged or additional economic benefits.

While Greens Creek currently has enough tailings disposal capacity for approximately two years of operation, the mine has proven reserves that indicate a remaining life of 12 years and reasonably foreseeable discoverable reserves for another 10 years (20 years past closure under the No Action alternative). Alternative A, the no action alternative, would result in closure of the mine after about two years. Alternatives B, C, and D would each provide enough tailings disposal area to meet the mine's needs for its remaining 12-years of proven reserves and 10 additional years of reasonably foreseeable expected discoveries. The socioeconomic effects, measured as prolonged benefits, could include (for example) annual direct payroll of \$26 million (ADOL, 1999). If a particular alternative increases the mine's life by twenty years (twenty years beyond that currently anticipated), the economic effect would include \$520 million in total additional payroll to the mine's employees.

The socioeconomic impacts of mine closure are, in absolute terms, the same for each alternative. When the mine closes, Juneau's economy will lose the benefit of the direct employment and payroll, in addition to the indirect and induced employment and payroll generated through the consumption of local goods and services by mine employees and their dependents. These impacts are summarized in Table 4-8.

Table 4-8 Socioeconomic Annual Summary

|                   | Direct       | Indirect     | Total        |
|-------------------|--------------|--------------|--------------|
| Employment        | 265          | 141          | 407          |
| Payroll           | \$26,000,000 | \$11,960,000 | \$37,960,000 |
| Population        | 409          | 217          | 626          |
| School Enrollment | 82           | 43           | 125          |
| Housing           | 152          | 80           | 232          |

Employment and payroll multipliers were developed from the Impact Analysis for Planning (IMPLAN) model, which produces an employment multiplier of 1.53 and a payroll multiplier of 1.46. It is important to note that these multipliers are not based on rigorous assessment of the mine's role in Juneau's economy. Population estimates are based on a participation rate of 0.65. The number of school age children in the minerelated population is based on an estimated ratio of one school age child for every five residents. This estimate is based on an analysis of school enrollment data and population data (CBJ, 2003) (ADOL, 1991-2000). Housing estimates are based on an average household size of 2.7, as measured in the 2000 census.

The impact of mine closure also includes loss of property tax revenues to the City and Borough of Juneau. In 2001, Greens Creek paid \$672,000 in property taxes (CBJ, 2002). If the mine is forced to close because of loss of tailings disposal capacity, the value of the mine is reduced to its salvage value—a fraction of its value with adequate tailings disposal capacity.

In addition to the timing of the mine closure, the impacts of alternatives also differ in the relative impact on the economy. Juneau's economy is expected to grow slowly through 2018, at an annual rate of about 0.6 percent, according to Alaska Department of Labor and Workforce Development projections. Therefore, mine closure in the near-future would have a slightly greater relative impact in Juneau than mine closure in the more distant future. Two years from now, Juneau's population would be about 2 percent above the current level. In 12 years, Juneau population would be about 9 percent above today's level. Though the difference is relatively small, this suggests that Juneau's economy could better absorb the economic impacts of mine closure in the more distant future.

#### Alternative A - No Action

Alternative A provides tailings disposal capacity for only two years of operations. In two years, closure of the Greens Creek Mine would represent a loss of 2 percent of Juneau's population base, assuming an annual growth rate of 0.6 percent through 2005 and all mine employees left Juneau.

On an economic basis, this alternative represents worst case of all alternatives for KGCMC as it eliminates the revenue stream, which removes any value associated with continued production at the mine. Implementation of Alternative A would result in early mine closure, lose

<sup>5.</sup> Alaska Department of Labor and Workforce Development, Research and Analysis Section, Demographics Unit.

of jobs and support services, thus resulting in the worst economic scenario for KGCMC and the families it employs.

### Alternative B - Proposed Action

This alternative provides tailings disposal capacity for 12 more years of operations—ten years more than under the no action alternative. This alternative would result in \$520 million in additional direct payroll and \$239.2 million in additional indirect payroll. In total, by prolonging the life of the mine by twenty years, an additional \$759.2 million in payroll would be created. In addition, the City and Borough of Juneau would receive several million dollars in additional property taxes under Alternative B.

Closure of the Greens Creek Mine in 12 years would represent a loss of 1.9 percent of Juneau's population base, assuming an annual growth rate of 0.6 percent through 2015 and all mine employees left Juneau.

Alternative B and Alternative C are similar in capital cost, as they represent the same relative footprint expansion for the tailings pile. Full build out for development, construction and reclamation costs will be similar for both these options and could range between \$10,000,000 - \$20,000,000. Operating costs for Alternative C will have additional costs associated with the SRMP Program and research to develop a carbon amendment if necessary, adding cost in the potential range of \$1 - 6,000,000 over Alternative B.

#### Alternative C

The socioeconomic effects under Alternative C are the same as those described under Alternative B and all mine employees left Juneau.

Alternative B and Alternative C are similar in capital cost, as they represent the same relative footprint expansion for the tailings pile. Full build out for development, construction and reclamation costs will be similar for both these options and could range between \$10,000,000 - \$20,000,000. Operating costs for Alternative C will have additional costs associated with the SRMP Program and research to develop a carbon amendment if necessary, adding cost in the potential range of \$1 - 6,000,000 over Alternative B.

#### Alternative D

Alternative D represents a high economic burden for KGCMC, because of the requirement for an addition of 2.5 million tons of carbonate material to the tailings pile. The increase in acreage needed to place this material raises all capital cost totals by approximately 150% (\$15 - 30,000,000) simply to develop, construct and reclaim the full build out as described in the environmental analysis over the Alternatives B or C. Also, operating costs are extremely high, because the material needed would consist of an imported (off-island source) product. KGCMC currently imports pebbled lime products that would be suitable to add to the pile to satisfy the Alternative D requirement at approximately \$100/ton. This represents a \$250,000,000 increase in operating costs, and most likely an uneconomic future for the mine resulting in mine closure. If a suitable material option could be found at even 25% of the current lime costs (roughly our costs for rock road), increased operating costs would still increase by over \$60,000,000. This amount also challenges the economic viability of the operation and would probably result in early mine closure.

To the extent that this alternative adds twenty years to the mine's life, the socioeconomic effects are the same as Alternative B. However. Alternative D involves substantially higher costs than the other action alternatives (\$133 million to implement Alternative D, as opposed to \$30 million to implement either Alternative B or C). As such, implementation of Alternative D would have a much greater affect on mine cash flow and profitability than would implementation of the other action alternatives. The increased operating costs associated with Alternative D would make the mine more susceptible to price fluctuations and place it at greater risk for temporary or longer-term shutdown if metals prices were to decline. Furthermore, higher operating costs generally result in higher cut-off grades. With higher cut-off grades, less of the available ore can be mined at a profit. The combination of these factors could be anticipated to result in reduced profitability that would shorten the life of the mine.

#### 4.16 Environmental Justice

Executive Order (EO) 12898 (Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations), requires that Federal agencies identify and address disproportionately high and adverse human health and environmental effects of its actions on minority and low-income populations.

Topics specified in Executive Order 12898 are addressed under Affected Environment (Chapter 3) and Environmental Effects (Chapter 4) in this EIS. Chapter 3 describes the socioeconomic characteristics of the nearest community, including ethnic composition of the population, employment, income levels and subsistence activities.

Chapter 4 describes the environmental consequences of the project alternatives on: fish and wildlife used by local residents for subsistence,

subsistence activities and harvest levels, heritage and archaeological resources, employment opportunities and improved transportation.

The Greens Creek project is not close to any community. There are recreational cabins at Wheeler Creek – approximately 5 miles away and Funter Bay - approximately 10 miles away. Greens Creek is in the City and Borough of Juneau, but is approximately 15 miles from its populated portions. The nearest minority communities are Hoonah (28 miles) and Angoon (44 miles).

Because none of the alternatives would have disproportionately high and adverse human health and environmental effects in general, or specifically on minority and low-income populations., and because Greens Creek specifically directs training programs and employment opportunities to residents of Angoon, alternatives which offer an extended mine life (Alternatives B, C, and D) offer minor positive environmental justice impacts.

## 4.17 Cumulative Impacts

# 4.17.1 Cumulative Impact Definition and Impact Analysis

"Cumulative impact" is the impact on the environment that results from the incremental impact of the actions when added to other past, present, and reasonably foreseeable future actions regardless of what agency (Federal or non-Federal) or person undertakes such other actions. Cumulative impacts can result from individually minor but collectively significant actions taking place over a period of time (40 CFR 1508.7).

The Greens Creek mine and its tailings pile already exist. The No Action alternative considered in this document represents a continuation of the existing mining operation for approximately 2 more years. All action alternatives represent an extension of mining operations of approximately 20 more years, 10 years based on known reserves and a probable additional 10 years beyond based on reasonably foreseeable discoverable reserves. Consequently all analyses of impacts throughout this chapter consider the impact of the mine operation in the past, combined with the anticipated impacts of future operations.

Past, present, and reasonably foreseeable future impacts included in these analyses are not limited to tailings disposal impacts. Rather, these analyses include consideration of available data and information (such as fresh water monitoring data, management and reclamation plans, and other mitigation measures) on impacts of all mine activities affecting the

same environmental resources as the alternatives considered in this document. Such activities include facility construction as well as use and disposition of production rock.

All analyses also consider impacts or mitigation of impacts under the Reclamation Plan (Appendix 14 to the KGCM General Plan of Operations contained in Appendix C – Selected Appendices from the KGCM General Plan of Operations) as well as under the section pertaining to management of production rock piles (Appendix 11 to the KGCM General Plan of Operations).

Overall, there would be very small differences between any of the action alternatives in terms of cumulative effects. These small differences are greatly overshadowed by the inherent uncertainty in making estimates of past, present, and reasonably foreseeable cumulative effects. Therefore, we present just one analysis for all three action alternatives. No significant cumulative impacts are expected to result from any of the planned activities associated with any of the alternatives.

#### 4.17.2 **Scope of Analysis**

To keep the cumulative-effects analysis useful, manageable, and concentrated on the effects that are meaningful, greater weight has been given to activities that are more certain and geographically close to the project with a focus on issues of greatest concern. The scope for the analysis of cumulative impacts used in this EIS is:

- + Identify potential effects of the expansion of the tailings pile and attendant extended life of the Greens Creek mine that may occur on the natural resources and human environment. (See Chapter 4.)
- → Analyze other past, present, and reasonably foreseeable future projects that reasonably could affect the natural resources in the vicinity of the Greens Creek mine.
- + Attempt to quantify effects by estimating the extent of changes to existing environment (Chapter 3).
- **→** Consider the guiding principles from existing standards, criteria, and policies that control the management of the natural resources of concern.

### Spatial and Temporal Boundaries of Analysis

The analysis of impacts to different resources has involved the use of different spatial boundaries. For example in analyzing the impacts on

visual quality, it makes sense to analyze impacts within visual range of the project or other portions of the mine. In analyzing socio-economic impacts, the boundaries of the analysis are expanded to the effect of the continued life of the mine on the economy of the City and Borough of Juneau.

Likewise, the analysis of impacts to different resources has involved the use of different temporal boundaries. Impacts to wildlife from the human activity associated with the operation of the mine or reclamation activities can be measured in a shorter time frame (probably less than 30 years. Analysis of the potential effects on the pile on water quality and secondary impacts on fish, wildlife, and vegetation demand a much longer time frame. In the stochastic model used to predict water quality we have used a time frame of 500 years (as a point of reference Columbus landed in the Americas 505 years ago).

## 4.17.3 Guiding Principles from Existing Standards, Criteria, and Policies that Control the Management of Natural Resources of Concern

The Greens Creek mine is in the Tongass National Forest. The use of the land for the mine is consistent with the Tongass Land Management Plan. The State owns the tidelands in Hawk Inlet. It does not have specific plans that apply to the mine. The mine is in compliance with the state's general policies that apply to use of tidelands and to mines. Because there are no T & E species within the project area it is not affected by the Endangered Species Act.

The Greens Creek mine is within the City and Borough of Juneau. The use of the land for the mine is consistent with Juneau's Comprehensive Land Use plan. The City and Borough of Juneau Coastal Management Program contains enforceable policies that govern general land use in coastal areas (CBJ, 1992). All land and water use activities are to be conducted with appropriate planning, implementation and monitoring/enforcement to mitigate potentially adverse effects and/or cumulative impacts on: fish and wildlife population and their habitats, commercial fishing uses and activities, subsistence and personal use resources and activities, air and water quality, heritage resources and recreational resources.

The ACMP set forth mitigation as follows:

- **→** Avoid.
- → If not avoidable minimize loss by limiting the degree of magnitude or the action and its implementation.

♦ When loss of resources and/or associated activities of local. state or national importance cannot be minimized, restore or rehabilitate the resource to its pre-disturbance condition to the extent feasible and prudent.

When loss of important habitat or activities of local, state, or national importance is substantial and irreversible and cannot be avoided, minimized or rectified, compensate for the loss by replacing, enhancing, or providing substitute resources or environments. Compensation may be in-kind or out-of-kind, and off-site or on site. The preferred options are in-kind and on-site, to the extent feasible and prudent.

The Marine Mammal Protection Act of 1972 established a moratorium, with certain exceptions, on the taking of marine mammals in U.S. waters. Nothing under any of the alternatives considered in this EIS would result in the "take" or "harassment" of any marine mammal.

#### **Reasonably Foreseeable Future Cumulative** 4.17.4 **Impacts**

The continued operation of Greens Creek mine would continue to have positive cumulative socioeconomic impacts on the City and Borough of Juneau. AEL&P has been interested for some years in running an electric line from Douglas Island, under Stephens Passage, to the Greens Creek Mine. An extension of the projected mine life would increase the possibility of such an extension. If AEL&P participated in a Southeast Intertie, it is also possible that such a line might be done as part of that effort.

The Forest Service Tongass home page (http://www.fs.fed.us/r10/tongass) and the Tongass Land Management Plan, as well as the web sites of the Alaska Department of Transportation and Public Facilities (http://www.dot.state.ak.us), the Alaska Department of Community and Economic Development (DECD) (www.state.ak.us/dced/commdb./CF-RAPIDS.cfm), and the City and Borough of Juneau (http://www.juneau.lib.ak.us/) were reviewed for potential projects in the area of the Greens Creek mine. No existing partially funded, or potential projects were found for the area of the Greens Creek Mine.

The main source of cumulative impacts for the tailings pile expansion is the continued operation of the mine, and its associated facilities such as the mill, roads, offices, Young Bay dock, and Hawk Inlet seaplane and barge loading docks. The effects of this continuation are discussed resource by resource.

### 4.17.5 Cumulative Effects by Resource

As discussed at the beginning of this section, because all alternatives are based on the continuation of an existing project, all analyses of impacts throughout this chapter evaluates the cumulative effect on the existing environment from past, present, and reasonably foreseeable future actions on each relevant resource in the Greens Creek mine area. The analysis of impacts on monument values, air quality, visual quality, hydrology, wetlands, vegetation, wildlife, threatened, endangered species, essential fish habitat, heritage resources, subsistence, recreation, and socioeconomics include the cumulative effects of past mining operations. There are no reasonably foreseeable future actions other than the proposed project itself that will impact any of these resources.

#### Land

Section 503 of ANILCA provides that, "with respect to the mineral deposits at Greens Creek. the holders of valid mining claims ... shall be entitled to a lease (and necessary associated permits) on lands under the Secretary's Jurisdiction .... for use for mining or milling purposes ... from such claims situated within the Monuments," provided "that the use of the site to be leased will not cause irreparable harm to the ... Admiralty Island National Monument and ... the Secretary shall limit the size of the area covered by such lease ..."

Alternative C would lease the least additional acres with the Monument of any of the action alternatives (Additional lease acres in the Monument Alternative B 52 acres, Alternative C 30 acres, and Alternative D 67 acres).

No additional acres for the mine site, mill site, or roads are expected to be disturbed and add to cumulative impacts to Monument Values. No irreparable harm is predicted to occur to the Monument because of the combined effect of the tailing and other mine components over the extended life of the mine.

### Air Quality

The direct, indirect, and cumulative are expected to be negligible for the life of the mine and none after closure.

#### **Visual Resources**

There are no visual impacts expected in the vicinity of the Greens Creek mine, other than mine related activities. The tailing pile is the most visible feature of the Greens Creek mine. The other components of the mine are only visible when within their immediate vicinity. The reclamation plan for all alternatives would comply with Appendix 14 of the October 2000 GPO and with the DEC Waste Management Permit. Under all alternatives, the capped pile would have slopes of approximately 3 to 1. This is steeper than the muskegs and forested slopes between the pile and Hawk Inlet, but is not as steep as some of the forested slopes directly above the location of the finished pile. Overall, the topography of the pile will blend into the hummocks and slopes of the surrounding area. All alternatives are consistent with The Forest Plan for the Non-Wilderness National Monument LUD VOO of Maximum Modification. Considering mitigation measures and timing, impacts to the scenic quality would be consistent with the Visual Quality Objectives for the assigned LUD Prescriptions. Approximately 40 years after mining operations have ceased, the site would meet the VOO of Retention.

### **Surface Water Hydrology**

Impacts to surface water quality in the three receiving drainages will be minor during the operations and closure phases for all alternatives. Upgradient surface water will continue to be diverted around the tailings pile into the three adjacent drainages.

During operation, all contact water, including surface water runoff from the pile will continue to be collected, treated, and discharged into Hawk Inlet under the NPDES permit.

All other parts of the mine operation have been approved through other NEPA actions. Runoff from other mine related facilities, such as active production rock disposal facilities sites 23 and D are monitored under the FWMP and regulated through DEC's Waste Management Permit. All point source discharges are regulated under the NPDES permit.

Because there has been no demonstrable impact from runoff from these other sources, and because all tailings contact water will be contained, treated, and discharged throughout operation and for a number of years after closure, the total cumulative impact to surface water quality during that period is predicted to be negligible.

At the point during the post-closure period when revegetation is sufficient to minimize erosion, the surface water runoff diversion and collection system will be removed. The runoff from the pile will be directed to the southwest corner of the pile where it will combine with water from the underdrains or revert to natural courses. From here, the combined water will be managed using one of the three discharge scenarios described in Section 2.5.1. This water would only be discharged to surface waters if it

met all applicable AWQS. At this time, most road and facilities would have been removed. Discharge of water which meets all applicable AWQS, is not considered to have a negative cumulative impact to surface water quality.

### **Ground Water Hydrology and Quality**

Under the No Action Alternative, during operations, precipitation will continue to infiltrate and percolate through the pile to the water table inside the pile, and ultimately to the wet wells. Upwelling groundwater will continue to mix with infiltrated water in the underdrains, be collected by the wet wells, and be treated prior to discharge to Hawk Inlet. Reclamation of the pile will result in a post closure continuation of the groundwater and surface water flow patterns. Water quality patterns that have developed during operations will convert to a capped pile scenario.

Water quality data from the Pit 5 area show the presence of elevated sulfate levels in the bedrock groundwater aquifer. There are no known current impacts to Cannery Creek or the adjacent high quality wetlands, and low permeability sediments are present to exclude most or all of the contact water and flow in this direction. Under this alternative, groundwater in this area would continue to have the potential to flow, as it currently does, towards Cannery Creek. There would be no effect on the water quality in the Tributary Creek drainage.

There will be no discharge of water that exceeds AWQS at the specified compliance point during operation or post closure. As discussed under surface water quality cumulative impacts above, the other aspects of the mining operation have been approved through separate NEPA actions and are regulated under the FWMP and DEC's Waste Management Permit. All point source discharges are regulated under the NPDES permit.

Given that no water that exceeds AWQS will be discharged from the tailings pile and other parts of the mine are not expected to impact groundwater, and there are no other projects to affect groundwater quality, it is not predicted that there will be cumulative impacts to groundwater quality.

#### Wetlands

As discussed under Wetlands in Chapter 3, the area around the Greens Creek mine contains approximately 530 acres of jurisdictional wetlands and a number of streams assumed to fall within the definition of waters of the United States. Several individual CWA Section 404 permits have been issued for mining operations in the area, including Tailings Impoundment Area (Permit No. 4-880269). Additional fill in wetlands in connection

with this project would be done under this permit or a new permit. In 1994, Three Parameters Plus, completed the analysis on jurisdictional wetland determinations and functions and values contained in the planning record. As discussed in Section 3.9, low value wetlands are abundant in the area, especially forested low value wetlands. There are no other projects in the area except other parts of the mine operation to affect wetlands. Under all alternatives, including the No Action alternative, there would be minor degrees of wetland loss. These impacts will be direct. The cumulative impacts to wetlands from this project and other aspects of the mine operation are predicted to be minor.

#### Vegetation

None of the vegetation loss anticipated under any alternative is considered significant on a project area or regional basis. There are no other projects proposed in the area of the proposed action that would have any effect on vegetation, therefore no cumulative effect beyond the direct impacts on vegetation previously described is anticipated.

#### Wildlife and Birds

There would be some loss of forested habitat under any of the action alternatives (see acreages in Section 4.7 Vegetation above), however, most of the area of the expanded pile footprint has already been cleared as part of the current permitted activities. Direct habitat losses for mammals will primarily be for small mammals using the habitats. To the extent that larger mammals (brown bears and deer) use the forest fringe adjacent to the pile, they are likely to shift their use. Given the amount of similar surrounding forested lands the impact of habitat loss would be minimal. Overall, the loss of habitat associated with the project would be relatively minor during operation of the mine and insignificant upon final reclamation.

Employees of Greens Creek are not allowed to hunt or fish in the vicinity of Greens Creek, so continuation of mine life would not cause pressure from harvesting. Thus, under all four alternatives, the effects on wildlife would continue as they are today, other than the length of time during which the mine would continue to operate. Once the mine shuts down, this habitat will gradually be restored, but harvesting pressure may increase with people hunting where they are not currently allowed.

Under any of the alternatives, the cumulative effect of the expansion of the tailings pile and the continuation of the other aspects of the mine operation would be to extend the operational life of the mine. The Forest Service Standards and Guidelines for Sitka black-tailed deer, bald eagles,

brown bear and American marten would be complied with under any of the alternatives. As previously described, direct impacts to wildlife would be minor and cumulative impacts to wildlife from continuation of all aspects of the mine operation are predicted to be minor.

Present above ground activities include hauling material from the mine to the mill site, processing, and operations related to the tailings facility. Workers arrive and leave the area on a ferry from Juneau that runs back and forth to the site. A road has been constructed to transport the workers to the mine. These activities do not affect individual migratory birds, habitats, or populations.

Other activities (approved under previous NEPA actions) include exploratory surface drilling throughout the lease area. In the past, they have occurred in forest habitats, alpine, and subalpine habitats. The activities include clearing an area to accommodate construction area for a small drilling platform. Less than one quarter acre of forested vegetation is disturbed. The platform is removed once the drilling operation ends. There is potential that some nesting birds may be disturbed if the drilling occurs during the nesting season and the drilling occurs in forested habitats. The overall suitability of habitat for migratory birds has remained intact, because the clearings are small.

There are no reasonably foreseeable future activities planned in the immediate future that would affect additional habitats. The Admiralty National Monument contains Congressionally-designated Wilderness and Non-wilderness National Forest System lands. The goal of the wilderness designation is to manage portions of the monument to protect and perpetuate natural biophysical and ecological conditions and processes. Minerals exploration and production is allowed with specific direction from the Alaska National Interest Lands Conservation Act (Forest Plan, 1997). There are no proposals to develop any large scale mines in the reasonably foreseeable future (pers. comm. Jeff DeFreest).

The forest lands are classified as unsuitable for timber production and have been withdrawn from timber production. Traditional personal wood harvesting is allowed. This use is restricted to recovering beach logs that are found along the coastline; vehicles may be used, but road construction is prohibited. Cutting of green trees is by permit only for other specific permitted projects or for emergency cutting of trolling poles (Forest Plan, 1997). These activities will not cumulatively affect migratory bird habitats.

There is little available data to assess murrelet population trends North America; however trends are considered to be downward for all

populations that rely on large commercially valuable conifers. Conservation strategies include old-growth forest reserves. These measures have been implemented with direction in the Forest Plan through a system of designated large, medium, and small old-growth reserves throughout the Tongass. Additional protection is provided with non-development land use designations. Admiralty Island National Monument is a designated Wilderness Area and timber harvest is not permitted. There are no reasonably foreseeable future actions proposed on Admiralty Island that would cumulatively affect marbled murrelets or habitat.

#### **Marine Mammals**

There are no past, planned, or reasonably foreseeable future activities which would have a cumulative impact upon marine mammals in the area. Risks to these higher trophic level mammals could occur primarily through transfer of metals from prey item, however, such impacts are not likely, due to the transient nature of these species in Hawk Inlet, (OIO and RTI, 1998). There are no activities associated with any of the proposed actions for this project, including associated traffic from ore barges or ships that would be expected to adversely affect any of these species. No activity associated with any of the alternatives would constitute harassment or a taking under Marine Mammal Protection Act.

#### Threatened and Endangered Species

None of the alternatives would have any impact on threatened and endangered or Alaska Region sensitive species of plants, birds, or land mammals, or fish because none are in the area, nor are any critical habitat designations for such species. Therefore there will be no cumulative impacts on any threatened and endangered or Alaska Region sensitive species of plants, birds, land mammals, or fish.

Federally listed marine mammals include the humpback whale and Steller sea lion. Northern sea otters are a candidate species for T&E status. Both Steller sea lion and humpback whales occasionally visit Hawk Inlet. Risks to these higher trophic level mammals could occur primarily through transfer of metals from prey item, however, such impacts are not likely, due to the transient nature of these species in Hawk Inlet, (OIO and RTI, 1998). Northern sea otters are rarely seen east of Icy Strait.

No critical habitat for any listed or candidate marine mammal species exists in the study area. No activity associated with any of the alternatives would constitute harassment or a taking under the Endangered Species Act or the Marine Mammal Protection Act.

## Marine and Aquatic Habitats, Biota, and Essential Fish Habitat

During operation and for a period after closure, there will be no changes in the existing outfall that discharges water collected from the pile into Hawk Inlet. With suspension of milling activities at closure, the volume of water treated and discharged will appreciable decrease. Any water discharged, either directly through the existing pipeline/diffuser system, or via surface water or groundwater routing, will continue to be required to meet the Alaska water quality standards (AWQS) for (a) water supply; (b) water recreation; (c) growth and propagation of aquatic life and wildlife; and (d) harvesting for consumption of raw aquatic life. This will be achieved naturally or by using water treatment if required to meet AWQS. No discernable structural effects are expected on marine habitats, subtidal substrata and biota, benthic (sea bottom) habitats in the project area, intertidal sands, submerged sill habitats, kelp habitats, rocky habitats, or fresh water fish habitats, thus no direct effects to EFH is expected. Heavy metal accumulation in marine sediments at the ship loading dock and possibly near outfall 002 are anticipated under all alternatives. Metals may accumulate in marine biota. Additionally, there is a slight potential for impacts to marine resources from a spill of fuel or hazardous materials release. The longer the mine operates, the longer this slight risk exists. Other aspects of the continued operation are unlikely to have any impact on EFH. Overall, the risks of cumulative impacts to EFH are predicted to be negligible to minor.

### **Heritage Resources**

There are no known heritage or historical sites that would be affected by from direct, indirect, or cumulative sources.

#### **Subsistence**

The analysis of effects on subsistence is similar to the analysis under Wildlife above. As described in Chapter 3, the reliance on subsistence resources in this area is minor. As described in the Wildlife section, each of the alternatives would have negligible effects on fish and wildlife resources. Therefore, none of the alternatives, in combination with other aspects of the mine would decrease the abundance or availability of subsistence resources. None of the alternatives would impact subsistence users' access to or quality of fish or wildlife resources. For these reasons, the project would not have any significant cumulative impact to subsistence use of wildlife, fish, or other foods.

#### Recreation

Each alternative would have negligible impact on recreation. Existing tourism to Angoon, which centers on fishing, big game guiding, camping, bear watching, and canoeing, would be expected to continue with minimal, if any, impacts from any of the alternatives. The same is true for sightseeing and fishing tours centered on Admiralty Creek and Oliver Inlet, on the western side of Admiralty Island. The effect of the expansion of the tailings pile, together with other aspects of the mine operation, is to allow the continuation of the operational life of the mine. No cumulative impacts are expected to recreational opportunities.

#### Socioeconomics

The cumulative impacts of the four alternatives depend on the life of the mine anticipated under each alternative. Socioeconomic effects are measured in terms of prolonged or additional economic benefits. As discussed under temporal and spatial boundaries earlier in this section, the temporal boundaries for the socioeconomic cumulative impacts appropriately include the entire City and Borough of Juneau.

While Greens Creek currently has enough tailings disposal capacity for approximately two years of operation, the mine has proven reserves that indicate a remaining life of 12 years and an expected 10 additional years based on reasonably foreseeable discoverable reserves. Alternative A, the no action alternative, would result in closure of the mine after about two years. Alternatives B, C, and D would provide enough tailings disposal area to meet the mine's needs for its remaining 12-years of proven reserves and 10 additional years of reasonably foreseeable expected discoveries. The socioeconomic effects, measured as prolonged benefits, could include (for example) annual direct payroll of \$26 million. If a particular alternative increases the mine's life by twenty years, the economic effect would include \$520 million in total additional payroll to the mine's employees.

When the mine closes, Juneau's economy will lose the benefit of the direct employment and payroll, in addition to the indirect and induced employment and payroll generated through the consumption of local goods and services by mine employees and their dependents.

The impact of mine closure also includes loss of property tax revenues to the City and Borough of Juneau. In 2001, Greens Creek paid \$672,000 in property taxes. If the mine is forced to close because of loss of tailings disposal capacity, the value of the mine is reduced to its salvage value—a fraction of its value with adequate tailings disposal capacity.

In addition to the timing of the mine closure, the impacts of alternatives also differ in the relative impact on the economy. Juneau's economy is expected to grow slowly through 2018, at an annual rate of about 0.6 percent, according to Alaska Department of Labor and Workforce Development projections. Therefore, mine closure in the near-future would have a slightly greater relative impact in Juneau than mine closure in the more distant future. Two years from now, Juneau's population would be about 2 percent above the current level. In 12 years, Juneau population would be about 9 percent above today's level. Though the difference is relatively small, this suggests that Juneau's economy could better absorb the economic impacts of mine closure in the more distant future.

The cumulative impact of the expansion of tailings pile in conjunction with the continued operation of the other aspects of the mine operation is considered minor to significantly positive. The Greens Creek mine is Juneau's largest private employer, but the economy of Juneau continues to be driven by government. With the State's current fiscal situation, and its attendant impacts to Juneau employment, there is little danger of overheating Juneau's economy even if all potential projects, including the Kensington Mine and the Juneau Access project came to fruition.

# 4.17.6 Effects of Short-Term Uses on Long-Term Productivity

Section 102 of NEPA requires that EIS's include "the environmental impacts of alternatives including...the relationship between short-term uses of man's environment and the maintenance and enhancement of long-term productivity." Under all alternatives, the Greens Creek mine site would be restored to pre-mining conditions and productivity. Surface water hydrology and aquatic habitat, as well as wildlife habitat, would generally be reestablished after closure. Revegetation would occur throughout the site and should eventually approximate pre-mining conditions. Under all alternatives, there would be some permanent wetland loss. Reclaimed wetlands should provide similar functions and values to those lost. Overall, the reclamation of the site would create a wider diversity of habitat types (wetland and upland) than currently present.

-

<sup>6.</sup> Alaska Department of Labor and Workforce Development, Research and Analysis Section, Demographics Unit.

#### Irreversible and Irretrievable Commitment of 4.17.7 Resources

An irreversible commitment of resources applies to the loss of nonrenewable resources (e.g., minerals or heritage resources) and to resources that are only renewable over a long period of time (e.g., soil productivity). Irretrievable commitments apply to losses of renewable resources and to situations in which a resource can be irretrievably (temporarily) lost, but the action is not irreversible.

Permitting an expansion of the tailings pile will allow the continuation of the operational life of the mine. Continued operation of the mine will continue an irreversible commitment of non-renewable resources through the extraction, milling, and exportation of ore concentrate and the mining of associated waste rock and borrow material.

Alternative B would result in the irreversible commitment of 22.1 acres of low value wetlands. Alternative C would result in the irreversible commitment of 10.2 acres of low value wetlands. Alternative D would result in the irreversible commitment of 42.5 acres of low value wetlands and 0.7 acres of moderate value wetlands.

Visually, all alternatives will cause irretrievable and irreversible commitments of form, line, color, and texture contrast between the tailings pile and surrounding vegetation. Reclamation and natural succession of vegetation would be expected to eventually mitigate most long-term visual impacts.

No other irreversible commitment of resources or irretrievable commitments of renewable resources are expected.

This page intentionally left blank.

## 5 Lists

### 5.1 List of Preparers

The United States Forest Service, Juneau Ranger District is the lead agency for preparation of the Greens Creek Mine Tailings Disposal Final Environmental Impact Statement (FEIS). Cooperating agencies are the Environmental Protection Agency and the U.S. Army Corps of Engineers. Michael Baker Jr., under a third-party agreement between the Forest Service and Kennecott Greens Creek Mining Company, prepared this EIS; an interdisciplinary team of subcontractors completed various sections. Individuals are listed by contributing company or agency and their degrees, years of experience, and project role are shown.

| Preparer          | Degrees/Years of Experience                                                                                                | Project Role                                                                                     |
|-------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
|                   | Michael Baker Jr.                                                                                                          |                                                                                                  |
| McKie Campbell    | B.A., Political Science<br>Years of Experience: 22                                                                         | EIS Project Manager, Public Involvement, Threatened and Endangered Species                       |
| Brad Campbell     | B.A., Political Science                                                                                                    | EIS Assistant Project                                                                            |
|                   | Years of Experience: 5                                                                                                     | Manager                                                                                          |
| Carol Gibson      | B.A., Urban Planning<br>Years of Experience: 19                                                                            | Publication Specialist                                                                           |
|                   | Terra Nord                                                                                                                 |                                                                                                  |
| Mike Smith        | Ph.D., Natural Resource<br>Management<br>M.S., Wildlife Management<br>B.S., Wildlife Management<br>Years of Experience: 34 | EIS Assistant Project<br>Manager, Writing, and<br>Wildlife, Threatened and<br>Endangered Species |
|                   | Tileston & Associates                                                                                                      |                                                                                                  |
| Jules Tileston    | M.S., Ecology/Wildlife Management<br>B.A. Biology and Geology<br>Years of Experience: 38                                   | NEPA Compliance                                                                                  |
|                   | Water Engineering Technologie                                                                                              | es ·                                                                                             |
| Scott I. Benowitz | B.S., Civil Engineering / Engineering Mechanics Years of Experience: 16                                                    | Hydrology, and Water<br>Quality                                                                  |

Greens Creek Tailings 5.1 List of Preparers 5.1

# 5 List of Preparers

| Preparer         | Degrees/Years of Experience                                                                                          | Project Role                                                            |
|------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
|                  | Schafer Limited                                                                                                      |                                                                         |
| William Schafer  | Ph.D., Soil Science M.S., Soil Science B.S., Watershed Science Years of Experience: 28                               | Hydrology and Water<br>Quality                                          |
|                  | J. M. Munter Consulting                                                                                              |                                                                         |
| James Munter     | M.S., Geology<br>B.S., Geology and Math<br>Years of Experience: 25                                                   | Groundwater Hydrology                                                   |
|                  | Buell & Associates, Inc.                                                                                             |                                                                         |
| James W. Buell   | Ph.D., Biology<br>B.A., Biology<br>Years of Experience: 33                                                           | Fisheries Biology                                                       |
|                  | Oceanus Alaska                                                                                                       |                                                                         |
| Michelle Ridgway | B.S., Marine Biology<br>M.S. 2002 (pending), Marine<br>Ecology<br>Years of Experience: 11                            | Oceanography<br>Marine Mammals<br>Essential Fish Habitat<br>Marine Life |
|                  | M. C. Metz & Associates                                                                                              |                                                                         |
| Michael Metz     | M.S., Hard Rock Geology / Minerals Exploration B.S., Soft Rock Geology / Engineering Geology Years of Experience: 32 | Geology, Soils,<br>Geotechnical, and<br>Seismicity                      |
|                  | Bridge Net                                                                                                           |                                                                         |
| Paul Dunholter   | B.S., Civil Engineering Years of Experience: 21                                                                      | Noise                                                                   |
|                  | McDowell Group                                                                                                       |                                                                         |
| Jim Calvin       | M.S., Mineral Economics<br>B.S., Geology<br>Years of Experience: 15                                                  | Socioeconomics                                                          |
|                  | Stephen R. Braund & Associat                                                                                         | es                                                                      |
| Roger Harritt    | Ph.D., Anthropology<br>M.S., Art History<br>B.A., Fine Arts                                                          | Cultural Resources                                                      |

5-2 5.1 List of Preparers

Greens Creek Tailings
EIS

| Preparer           | Degrees/Years of Experience                                                              | Project Role                                                           |
|--------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
|                    | Years of Experience: 23                                                                  |                                                                        |
|                    | Dunn Environmental                                                                       |                                                                        |
| Art Dunn           | B.S., Earth Sciences<br>Years of Experience: 18                                          | Wetlands Analysis,<br>Vegetation, Threatened and<br>Endangered Species |
|                    | <b>Hoefler Consulting Group</b>                                                          |                                                                        |
| Alan Tribovich     | M.S., Meteorology B.S., Meteorology B.S.Ed., Secondary Education Years of Experience: 22 | Air Quality                                                            |
|                    | Land Design North                                                                        |                                                                        |
| Dwayne Adams       | B.S., Landscape Architecture<br>Years of Experience: 24                                  | Visual and Land Use                                                    |
|                    | U.S. Forest Service                                                                      |                                                                        |
| Dave Cox           | B.S. Geology<br>Years of Experience: 2                                                   | Hydrologist                                                            |
| Eric Ouderkirk     | M.L.A., Landscape Architecture<br>M.U.P., Urban Planning<br>Years of Experience: 14      | EIS Project Coordinator                                                |
| Laurie Thorpe      | B.S. Recreation & Natural Resources Management Years of Experience: 18                   | EIS Project Coordinator                                                |
|                    | U.S. Environmental Protection Ag                                                         | ency                                                                   |
| Bill Riley         | B.A., Human Biology<br>Years of Experience: 28                                           | Project Lead for EPA                                                   |
| Cindi Godsey       | B.S., Mining Engineering<br>MBA<br>Years of Experience: 11                               | Water Quality Lead for EPA (NPDES Permit Writer)                       |
| David Frank        | Ph.D., Geological Sciences<br>Years of Experience: 30                                    | Geology/geochemistry lead for EPA                                      |
|                    | U.S. Army Corps of Enginee                                                               | rs                                                                     |
| John C. Leeds, III | B.S., Biological Science<br>Years of Experience: 18                                      | Juneau Field Office<br>Manager                                         |

Greens Creek Tailings 5.1 List of Preparers 5.3 5.3 EIS

# 5 List of Preparers

This page intentionally left blank.

5-4 3 5.1 List of Preparers

#### 5.2 **List of FEIS Recipients**

The following agencies, organizations, and persons were either notified of the availability of the Greens Creek Mine Tailings Disposal FEIS or were sent a copy.

## Agencies State of Alaska Advisory Council on Historic Preservation, Planning and Review, Director Department of Environmental Conservation, Division of Environmental Health (Ed Emswiler) -, Division of Air and Water Quality (Pete McGee, Kenwyn George) Department of Law (Cameron Leonard) Department of Natural Resources (Charles Cobb, Joe Donohue, Ed Fogels, Ed Fogels, Stan Foo, Steve McGroarty, Jim Vohden) Office of Housing & Urban Development, Field Environmental Contact Office of Management & Budget, Division of Governmental Coordination (Randy Bates) **United States (U.S.)** Army Corps of Engineers, Alaska District (Michael E. Holley, John Leads) Coast Guard, Marine Safety, Security, and Environmental Protection Department of Agriculture, Agricultural Research Service, National Agricultural Library ——, Animal & Plant Health Inspection Service (APHIS) PPD/EAD, Deputy Director —, Forest Service, Admiralty Island National Monument —, Alaska Region, Ecosystem Planning Director, Print Specialist, Regional Forester, Ecosystem Management Coordination, Director -, Craig, Hoonah, Juneau, Ketchikan-Misty, Petersburg, Sitka, Thorn Bay, Yakutat, and Wrangell Ranger District -----, Chugach National Forest, Supervisors Office —, Tongass National Forest, Ketchikan, Petersburg, and Sitka Supervisors Office —, Office of Civil Rights , Natural Resources Conservation Service, National Environmental Coordinator

Department of Energy, Office of Environmental Compliance, Director

Division (James Balsiger, Katharine Miller)

Department of Commerce, National Marine Fisheries, Office of Protected Resources

# 5 List of FEIS Recipients

| Department of Interior, Bureau of Land Management, Alaska State Office                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ——, Fish and Wildlife Service (Richard Enriquez, Deb Rudis)                                                                                                        |
| ——, National Park Service, Alaska Area Region                                                                                                                      |
| , Office of Environmental Policy & Compliance, Director                                                                                                            |
| ——, Office of the Secretary                                                                                                                                        |
| Department of Transportation, Environmental Division, Assistant Secretary for Policy                                                                               |
| ——, Federal Aviation Administration, Alaskan Region Headquarters                                                                                                   |
| ——, Federal Highway Administration, Western Region                                                                                                                 |
| ———, Federal Railroad Administration, Transportation and Regulatory, Affairs, Research<br>and Special Program Administration (RSPA)                                |
| Environmental Protection Agency (Cindi Godsey, Bill Riley, EIS Review Coordinator, Office of Federal Activities)                                                   |
| Navy Observatory, Environmental Protection Division, Naval Oceanography Division                                                                                   |
| Libraries                                                                                                                                                          |
| Community Libraries: Kake, Kasaan, Thorne Bay                                                                                                                      |
| Kettleson Memorial Library                                                                                                                                         |
| Public Libraries: Craig, Douglas, Elfin Cove, Haines, Hollis, Hyder, Ketchikan, Juneau, Mendenhall Valley, Pelican, Petersburg, Skagway, Tenakee Springs, Wrangell |
| Sitka Conservation Society                                                                                                                                         |
| Native Organizations                                                                                                                                               |
| Angoon Community Association (Ed Gambell, Marlene Zuboff)                                                                                                          |
| Central Council of Tlingit and Haida Indian Tribes (Ed Thomas)                                                                                                     |
| Douglas Indian Association                                                                                                                                         |
| Media                                                                                                                                                              |
| KTOO (Anne Sutton)                                                                                                                                                 |
| Organizations and Businesses                                                                                                                                       |
| Alaskans for Juneau (Skip Gray, Aaron Brakel, Irene Alexakos)                                                                                                      |
| Audubon Society, Juneau (Sue Schrader, Chris Kent)                                                                                                                 |

Greens Creek Tailings

Audubon Alaska, Anchorage

Bear Creek Outfitters, Inc.

Campaign to Safeguard America's Waters (Gershon Cohen)

Cascadia Wildlands Project (Gabriel Scott)

Center for Science in Public Participation (Amy Crook, Dave Chambers)

City and Borough of Juneau (Peter Freer)

Defenders and Friends of Admiralty Island (K.J. Metcalf)

Earth Justice Legal Defense Fund (Eric Jorgensen, Tom Waldo)

Friends of Berners Bay (Dana Owen)

Goldbelt Incorporated (Gary Droubay)

Kennecott Greens Creek Mining Company (William F. Oelklaus, Tom Zimmer)

Kootznoowoo Incorporated (Bob Hamilton)

Lynn Canal Conservation Inc. (Bruce Baker, Tim June)

Mineral Policy Center (Bonnie Gestring)

Point Adolphus Seafoods (James Mackovjak)

Sealaska Corporation (Pete Huberth, Chris E. McNeil, Michele Metz)

Sierra Club, Juneau Group (Mark Rorick, Richard Hellard)

Southeast Alaska Conservation Council (Kate Hall, Buck Lindekugel)

Taku Conservation Society (Mary Lou King, Nancy Waterman)

Territorial Sportsman

Trout Unlimited (Mitch Lorenz)

WMAP (Roger Flynn)

## 5 List of FEIS Recipients

#### Individuals

Samual McBean

Bill and Beatrice Booth

William Brent

**Betsy Burdett** 

William M. Cox, MD

Laurie Ferguson Craig

Andrea Doll

Dr. I. Cannon Geary

Karla Hart

Molly Hodges

John Hudson

Carol Jenson

jkddfailoni@gci.net

Steve Gilbertson

Mark Kistler

Mrs. Peter D. Koch

William Leighty, Nancy Waterman

Deborah L. Levine

Joyce Levine

**Debbie Manion** 

Douglas Mertz

Lance Miller

Ben Mitchell

Lisa Murkowski, U.S. Senator

**Daniel Nelson** 

Maryellen Oman

Jerry Reinwand, LCC

Lynn J. Schimmels

Ted Stevens, U.S. Senator

John Swanson

**Curtis Terrall** 

Victor Voit

Cynthia Wayburn

Don Young, U.S. Representative

# $\mathbf{5}$ List of FEIS Recipients

This page intentionally left blank.

#### 5.3 **Abbreviations and Acronyms**

AAQS Alaska Ambient Air Quality Standards **ACMP** Alaska Coastal Management Program

ADEC Alaska Department of Environmental Conservation

**ADFG** Alaska Department of Fish and Game ADNR Alaska Department of Natural Resources

ADOL Alaska Department of Labor AGP **Acid-Generating Potential** 

**ANILCA** Alaska National Interest Lands Conservation Act

ANP Acid-Neutralizing Potential

APS Alaska Public Survey ARD Acid Rock Drainage

**AWQS** Alaska Water Quality Standards

BAT Best Available Technology BPJ **Best Professional Judgment** CBJ City and Borough of Juneau

CEQ Council on Environmental Quality CFR Code of Federal Regulations

cfs Cubic feet per second

Centimeter cm

COE U.S. Army Corps of Engineers

cu ft Cubic feet cu yd Cubic yards CWA Clean Water Act

DEIS **Draft Environmental Impact Statement** DGC Division of Governmental Coordination **DIPAC** Douglas Island Pink and Chum Hatchery

DST Dry short tons

**EFH Essential Fish Habitat** 

EIS **Environmental Impact Statement** 

**EPA** U.S. Environmental Protection Agency

ESU **Endangered Species Units** 

**FEIS** Final Environmental Impact Statement

**FWMP** Fresh Water Monitoring Program

Gallons per minute gpm

**GPO** General Plan of Operations

### 5 Abbreviations and Acronyms

HAPC Habitat areas of particular concern

HDPE High density polyethylene
IMPLAN Impact analysis for Planning
IRI Integrated Resource Inventory

KGCMC Kennecott Greens Creek Mining Company

km Kilometers

LUD Land Use Designation MBJ Michael Baker Jr., Inc.

MIBC A frothing reagent used in the mill flotation process

MOU Memorandum of understanding
NAWS Non-Agricultural Wage and Salary
NEPA National Environmental Policy Act
NHPA National Historic Preservation Act
NMFS National Marine Fisheries Service

NNP Net Neutralization Potential

NOI Notice of Intent

NPDES National Pollutant Discharge Elimination System

NTU Nephelometric Turbidity Units
NWI National Wetlands Inventory

PM<sub>10</sub> 10 micrometers

ppt Precipitate

PRC Pyrite Reduction Circuit

PSD Prevention of Significant Deterioration

RM Road mile

ROD Record of Decision

SIPX Xanthate

TLMP Tongass Land Management Plan

TSS Total Suspended Solids

USACE U.S. Army Corps of Engineers

USDA FS United States Department of Agriculture Forest Service

USFWS United States Fish and Wildlife Service

VQO Visual Quality Objective

### 5.4 Glossary

Acidity Earth materials that contain sulfide minerals or other

materials that, if exposed to air, water, or weathering processes, form acids that may create acid drainage. A

solution of pH less than 7.0 at 25 degrees C.

Acid Rock Drainage

(ARD)

A leachate having characteristic water chemistry resulting from geochemical conditions occurring within the tailings or pyrite concentrate. Typical ARD chemistry includes high levels of acidity, dissolved solids (including sulfate), low pH, and in some situations can include elevated metal

concentrations. ARD may be harmful to aquatic organisms

and to drinking water supplies.

Alkaline Having the qualities of a base; basic (pH greater than 7.0).

Alternatives For NEPA purposes, alternatives to the Proposed Action

examined in an EIS. The discussion of alternatives must "sharply [define] the issues and [provide] a clear basis for choice...by the decision maker and the public" (40 CFR

1502.14).

Amphipods Small, shrimp-like crustaceans.

Amorphous A term applied to rocks or minerals that possess no definite

crystal structure or form, such as amorphous carbon.

Anadromous Type of fish that migrate upstream from saltwater to

freshwater to spawn (breed), such as salmon, some trout and char species, and shad. Also describes the fishery or

habitat used for spawning by these species.

Aquatic Growing, living in, frequenting, or taking place in water.

Aquifer A zone, stratum, or group of strata acting as a hydraulic unit

that stores or transmits water in sufficient quantities for

beneficial use.

Argillite A compact argillaceous rock cemented by silica and having

no slaty cleavage

Arsenic A trivalent and pentavalent solid poisonous element that is

commonly metallic steel-gray, crystalline, and brittle.

Base drain A drain for water at the bottom of an impoundment or a

storm runoff catchment.

Base flow A sustained or fair-weather flow of a stream.

Baseline data Data gathered prior to the proposed action to characterize

pre-development site conditions.

Greens Creek Tailings 5.4 Glossary 5.13

Bathymetry The measurement of depths of water in an ocean, lake, or

sea.

Bedrock Solid rock either exposed at the surface or situated below

surface soil, unconsolidated sediments, and weathered rock.

Benthic All underwater bottom terrain from the shoreline to the

greatest deeps.

Bentonite A clay which has great ability to absorb water and which

swells accordingly.

Berm An earthen embankment, dike.

Bioaccumulation Pertaining to concentration of a compound, usually

potentially toxic, in the tissues of an organism.

Bicarbonate An acid carbonate.

Biota All of the living material in a given area; often refers to

vegetation.

Borough An area incorporated for the purpose of self-government; a

municipal corporation.

Borrow area Earthen construction material source area such as sand and

gravel, till, or top soil taken from a specific area for use in

construction and/or reclamation.

Brachiopods Phylum of shelled sessile or sedentary marine animals.

commonly known as lamp shells, and characterized by a peculiar feeding organ, the lophophore. The shell consists of two parts, called valves that completely enclose the body; the external appearance of the animal is much like that of a

bivalve mollusk, or pelecypod, such as a clam.

Cadmium A tin-white, malleable, ductile, toxic, bivalent metallic

element used in the electroplating of iron and steel and in

the manufacture of bearing metals.

Calcite A mineral, calcium carbonate (CaCO<sub>3</sub>). One of the most

common minerals; the principal constituent of limestone.

Calcium A silver-white bivalent metallic element of the alkaline-earth

group occurring only in combination

Carbonate A compound containing the acid radical CO<sub>3</sub> of carbonic

acid. Bases react with carbonic acid to form carbonates.

Catchment A drainage area or basin for water.

Chromium A gray metallic element found in the mineral chromite.

Clean Water Act (CWA)

The Act established the basic structure for regulating discharges of pollutants into the waters of the United States. It gave EPA the authority to implement pollution control programs such as setting wastewater standards for industry. The Clean Water Act also continued requirements to set water quality standards for all contaminants in surface waters. The Act made it unlawful for any person to discharge any pollutant from a point source into navigable waters, unless a permit was obtained under its provisions.

Climatological

The prevailing weather conditions of a region averaged over

a series of years.

Closure

The final stage of mining that involves closure of all mine

openings, regrading, and reclamation.

Collection ditches

Channels constructed to collect and divert surface water

runoff.

Colluvial

Deposit of soil and fragmentary matter at the base of a

slope.

Community

The stabilized plant community on a particular site. The relative composition of species does not change so long as

the environment remains the same.

Compliance Point

That point as defined by the ADEC, and or EPA that water quality is measured for compliance with water quality standards or permit conditions. This point can be at the edge of a permitted mixing zone or at the end of a discharge

pipe.

Concentrate

The ore that contains the mineral sought following the concentration process (e.g., flotation, gravity).

Conifer

A broad classification of trees, mostly evergreens that bear cones and have needle-shaped or scale-like leaves; timber

commercially identified as softwood.

**Contact Water** 

Water which has come in physical contact with tailings

Context

The context in which the action will occur includes the specific resources, ecosystem, and the human environment affected. Context is considered on a site-specific project area, and regional basis. Both short- and long-term effects

are relevant.

Council on Environmental Quality (CEQ) A body established by the National Environmental

Protection Act (NEPA) to draft regulations for implementing and monitoring NEPA. CEQ regulations are presented in 40

CFR 1500-1508.

Greens Creek Tailings 5.4 Glossary 5.15

Cumulative impacts Combined impacts of the past, present and reasonably

foreseeable future actions. For example, the impacts of a proposed timber sale and the development of a mine

together result in cumulative impacts.

Demographics Characteristics of human populations with reference to size,

density, growth, distribution, migration, and effect on social

and economic conditions.

Development Rock Non-mineralized rock, removed from the mine, and used for

construction in connection with mine development.

Dewater The mechanical separation of solid matter from water in

which it is dispersed, by such equipment as thickeners, classifiers, hydrocyclones, filters, and centrifuges.

Direct impacts Impacts that are caused by the action and occur at the same

time and place (40 CFR 1508.7). Synonymous with direct

effects.

Discharge The volume of water flowing past a point per unit time,

commonly expressed as cubic feet per second, million gallons per day, and gallons per minute, or cubic meters per

second.

Diversion Removing water from its natural course of location, or

controlling water in its natural course of location, by means of a ditch, canal, flume, reservoir, bypass, pipeline, conduit,

well, pump, or other structure or device.

Dolomite The mineral group ankerite, dolomite, kutnohorite,

minrecordite, and norsethite.

**Dry Short Tons** 

(DST)

A unit of weight, equivalent to 2,000 pounds or 907.20

Kilograms.

Dry tailings Dewatered gangue and other refuse material resulting from

the washing, concentration, or treatment of ground ore.

Dry tailings facility A geotechnically-engineered embankment used for the

disposal of dewatered mine tailings.

Earthquake Sudden movement of the earth resulting from faulting,

volcanism, or other mechanisms within the earth.

Effluent A liquid, solid, or gaseous product, frequently waste,

discharged or emerging from a process.

Embankment A linear structure, usually of earth or gravel, constructed so

as to extend above the natural ground surface and designed to hold backwater from overflowing a level tract of land.

5-16 5.4 Glossary Greens Creek Tailings

Environmental Impact Statement (EIS)

A formal public document prepared to analyze the impacts on the environment of a proposed project or action and released for comment and review. An EIS is prepared, instead of an Environmental Assessment (EA), when significant environmental impacts are anticipated.

Comments are requested within 45 days after the release of a Draft Environmental Impact Statement (DEIS). Comments are considered prior to making the final decision and are responded to in the Final Environmental Impact Statement (FEIS).

Engineered cover

Synthetic or organic material designed to mitigate water and

air infiltration through the tailings pile.

Epibenthic Living (under water) on the surface of the bottom.

Erosion The wearing away of the land surface by running water,

wind, ice or other agents.

Finger drains Lateral drains that flow into a central drain.

Flotation An ore concentration process that separates ground ore

from waste in a mixture of ore, water and chemicals. When air is forced through the ore/water mixture, the chemicals cause certain minerals to adhere to the air bubbles and float

to the top in a froth, thus effecting a separation.

Flotation circuit The portion of the milling process where the flotation

process occurs. See flotation.

French drains A covered ditch containing a layer of fitted or loose stone or

other pervious material.

Geotechnical A branch of engineering that is concerned with the

engineering design aspects of slope stability, settlement, earth pressures, bearing capacity, seepage control, and

erosion.

Geocomposite A manufactured material using geotextiles, geogrids,

geonets, and/or geomembranes in laminated or composite

form.

Geomembrane An essentially impermeable membrane used as a liquid or

vapor barrier with foundation, soil, rock, earth, or any other geotechnical engineering-related material as an integral part

of a human-made project, structure, or system.

Greens Creek Tailings 5.4 Glossary 5.4 Gloss

Geochemistry The study of the relative and absolute abundances of the

elements and their nuclides (isotopes) in the Earth; the distribution and migration of the individual elements or suites

of elements in the various parts of the Earth (the

atmosphere, hydrosphere, lithosphere, etc.), and in minerals and rocks, and also the study of principles governing this

distribution and migration.

Geotextile A synthetic fabric used in the construction of earthen

structures, such as embankments, landfills, roads, etc.

Gradient The inclination of the rate of regular or graded ascent or

descent (as of a slope, roadway, or pipeline).

Habitat The natural environment of a plant or animal, including all

biotic, climatic, and soil conditions, or other environmental

influences affecting living conditions.

Heavy metals A group of elements, usually acquired by organisms in trace

amounts, that are often toxic in higher concentrations; includes copper, lead, mercury, molybdenum, nickel, cobalt,

chromium, iron, silver, etc.

High density

polyethylene (HDPE)

Manufactured from microbiological resistant polyethylene

resins, it offers optimum chemical resistance, with

weathering capabilities and stress absorption properties.

Hydrologic Of, or pertaining to, water.

Hydroseed A slurry of water, organic matter, and seeds (typically

grasses) sprayed onto areas of bare ground to promote

growth and minimize erosion.

Impermeable Having a texture that does not permit the passage of fluids

through its mass.

Impoundment The accumulation of any form of water in a reservoir or other

storage area.

Indigenous Originating, developing, or produced naturally in a particular

land, region, or environment; native.

Impacts Impacts by the action and are later in time

or farther removed in distance, but are still reasonably foreseeable. (40 CFR 1508.8) Synonymous with indirect

effects.

Infiltration The movement of water or some other fluid into the soil

through pores or other openings.

Ingress A place for entering; a way of entrance. In underground

mining there are three methods of ingress-by drift, shaft, or

slope

Intensity This refers to the severity of impact. The intensity of the

> action includes the type of impact (beneficial versus adverse), duration of impact (short versus long term), magnitude of impact (minor versus major), and degree of risk (high versus low level of probability of an impact

occurring).

Interstitial The pore spaces among sedimentary grains in a soft

sediment.

Jurisdictional wetland A wetland area delineated or identified by specific technical

> criteria, field indicators, and other information for purposes of public agency jurisdiction. The public agencies which administer jurisdictional wetlands are the Fish and Wildlife Service, Army Corps of Engineers, Environmental Protection Agency and the USDA Natural Resources Conservation

Service.

Lacustrine Wetland system associated with open water bodies such as

lakes, reservoirs, and impounded rivers.

Land Use

Designation (LUD) direction is applied.

Leaching A chemical process for the extraction of valuable minerals

> from ore; also, a natural process by which ground waters dissolve minerals, thus leaving the rock with a smaller proportion of some of the minerals than it contained

A defined area of land specific to which management

originally.

Lime Calcium oxide. Sometimes used as an abbreviated name for

any rock consisting predominantly of calcium carbonate

minerals.

Limestone A bedded, sedimentary deposit consisting chiefly of calcium

carbonate.

A malleable and ductile silvery white metal that is used in Magnesium

alloys.

Marine Mammal

Enacted in 1972 to protect and manage marine mammals Protection Act and their products (e.g., the use of hides and meat). The

primary authority for implementing the act belongs to the U.S. Fish and Wildlife Service and the National Marine

Fisheries Service.

Micro-site A small specific section of a study area.

Middleground A visual reference used to indicate the middle area in

viewing a landscape, i.e. foreground, middleground, and

background.

**Greens Creek Tailings** 5.4 Glossary 3 5-19

Mine drainage Gravity flow of water from a mine to a point remote from

mining operations.

Minor Impacts that are less than significant and do not require

avoidance or minimization to mitigate that effect.

Mitigation measure Avoid the impact by not taking action; Minimize the impact

by limiting the degree of magnitude of the action and its

implementation; Rectify the impact by repairing,

rehabilitating, or restoring the affected environment; Reduce

or eliminate the impact over time by preservation and maintenance operations during the life of the action; Compensate for the impact by replacing or providing substitute resources, or by enhancing the value of an

adjacent existing environment.

Mixing zone An area between an effluent discharge point and the

associated water quality compliance monitoring station.

Monitoring A continuing testing of specific environmental parameters

and of project waste streams for purposes of comparing with permit stipulations, pollution control regulations, mitigation

plan goals, etc.

Monument Values The Admiralty Island National Monument was created "...to

> protect objects of ecological, cultural, geological, historical, prehistorical, and scientific interest." (ANILCA, Public Law 96-487, Title V, ss 503 (c))The term "Monument Values" is not used in ANILCA and does not have a separate legal definition. The term has been used by Commenters to collectively describe the purposes and those aspects of the monument they believe are important and should be

protected. Environmental standards and laws are consistent

in or outside of the monument.

National

**Environmental Policy** 

Act (NEPA)

National charter for protection of the environment. It establishes policy, sets goals, and provides means for carrying out the policy. 40 CFR 1500-1508 are the

regulations for implementing the Act.

National Historic Preservation Act

(NHPA)

An Act to Establish a Program for the Preservation of Additional Historic Properties throughout the Nation, and for

Other Purposes. (16 USC Sec. 470)

**National Pollutant** 

Discharge

Elimination System

(NPDES)

A program authorized by sections 318, 402 and 405 of the Clean Water Act, and implemented by regulations 40 CFR 122. The NPDES program requires permits for the

discharge of pollutants from any point source into waters of

the United States.

Negligible

Impacts on subject resources may occur as a result of

project activities, but are not measurable.

NEPA process All measures necessary to comply with the requirements of

Section 2 and Title I of NEPA.

Non-point source

pollution

Pollution caused by sources that are non-stationary. In mining, non-point air pollution results from such activities as blasting and hauling minerals over roads, as well as dust from mineral stockpiles, tailings, and waste dumps prior to

mulching and/or revegetation.

Nephelometric

Depending on the method used, the turbidity units as NTU Turbidity Units (NTU) can be defined as the intensity of light at a specified

wavelength scattered or attenuated by suspended particles or absorbed at a method-specified angle, usually 90 degrees, from the path of the incident light compared to a

synthetic chemically prepared standard.

None No impacts are anticipated when subject resources are not

present or activities are not expected to affect those

resources that are present.

Operating plan Submitted by the mining operator, the operating plan

> outlines the steps the mining company will take to mine and reclaim the site. The operating plan is submitted prior to starting mining operations. Synonymous with the term

mining plan (36 CFR, part 228).

Ore Any deposit of rock from which a valuable mineral can be

economically extracted.

Ore body Generally, a solid and fairly continuous mass of ore, which

> may include low-grade ore and waste as well as pay ore, but is individualized by form or character from adjoining rock.

Ore reserve Ore of which the grade and tonnage have been established

with reasonable assurance by drilling and other means.

Organic matter Material composed of once-living organisms (carbon

compounds).

Orographic The rain shadow effect; as air is forced upward over

> mountains, as it cools water vapor condenses and rains out. Dry air flows down the leeward side of mountains promoting

evaporation.

Outfall A structure (e.g., pipeline) extending into a body of water for

the purpose of discharging a waste stream, storm runoff, or

water.

**Greens Creek Tailings** 5.4 Glossary 3 5-21

Oxidation A chemical reaction caused by exposure to oxygen that

results in a change in the chemical composition of a mineral.

Palustrine Of, or relating to, shallow ponds, marshes, or swamps.

Paste backfill The disposal of thickened mine tailings, after mixing with

cement, in underground mines to provide wall or ground

support.

Peak flow Highest flow; can be quantified as daily or instantaneous.

Permeability The capacity of a material for transmitting a fluid. Degree of

permeability depends upon the size and shape of the pores,

their interconnections, and the extent of the latter.

Phreatic Of, or relating to, groundwater.

pH A measure of the acidity or alkalinity of a material, liquid, or

solid. pH is represented on a scale of 0 to 14; 7 represents a neutral state; 0 represents the most acid; and 14 the most

alkaline.

Phyllite A foliated metamorphic rock that is intermediate in

composition and fabric between slate and schist.

Phytoplankton The photosynthesizing organisms residing in plankton.

Plan of Operations See Operating plan.

Point source Stationary sources of potential pollutants.

Pollution Human-caused or natural alteration of the physical,

biological, and radiological integrity of water, air, or other aspects of the environment producing undesired effects.

Polychaete Any of a class of mostly marine, annelid worms, having on

most segments a pair of fleshy, leg-like appendages bearing

numerous bristles.

Portal The entrance to a tunnel or underground mine.

Potentiometric Surface to which water in an aquifer would rise by

surface hydrostatic pressure.

Precipitate The material that settles from a liquid solution when a

particular substance is added to the solute.

Project area The area within which all surface disturbance and

development activity would occur.

Public scoping Scoping is an early and open process for determining the

scope of issues to be addressed and for identifying the significant issues related to a proposed action (40 CFR

1501.7).

**Pyrite** A common mineral consisting of iron disulfide (FeS<sub>2</sub>) with a

> pale brass-yellow color and brilliant metallic luster, sometimes known as "fool's gold." It is burned to make

sulfur dioxide and sulfuric acid.

**Pyritic** Relating to or resembling pyrite, a common mineral; iron

disulfide.

Quarry An open or surface mineral working site, usually for the

> extraction of building stone, as slate, limestone, etc. It is distinguished from a mine because a quarry usually is open at the top and front, and, in ordinary use of the term, by the

character of the material extracted.

Quicklime The term is used loosely for calcium hydroxide (as in

hydrated lime)

Reclamation Returning an area to resemble pre-mining conditions by

regrading and reseeding areas disturbed during mining

activity.

Reclamation Material Topsoil and organics.

Record of Decision

(ROD)

A document that discloses the decision on an Environmental

Impact Statement and the reasons why the decision was

made; it is signed by the official responsible for implementing the identified action. The environmental consequences disclosed in an EIS are considered by the responsible official in reaching a decision (40 CFR, 1505.2).

Revegetation The process of restoring or replacing the botanical species

> upon an area disturbed by mineral operations. Revegetation is a customary requirement for reclamation of a mineral

operation.

Riffle A ripple on the shallow surface of a stream.

Riparian A type of ecological community that occurs adjacent to

> streams and rivers. It is characterized by certain types of vegetation, soils, hydrology, and fauna and suited to conditions more moist than that normally found in the area.

Riprap A layer of large rock placed together to prevent erosion of

embankments, causeways, or other surfaces.

Riverine Of, or relating to, rivers, creeks, and streams.

Runoff Precipitation that is not retained on the site where it falls.

and not absorbed by the soil; natural drainage away from an

area.

A measure of the dissolved salts in seawater. Salinity

**Greens Creek Tailings** 5.4 Glossary 3 5-23

Salmonids Fish species (salmon, trout, and char) that belong to the

same family; salmonidae.

Saturation The extent or degree to which the voids in a material contain

oil, gas, or water. Usually expressed in percent related to

total void or pore space.

Scoping Requires examining a proposed action and its possible

effects; establishing the depth of environmental analysis needed; determining analysis procedures, data needed, and

task assignments.

Scoping Open

Houses

Provides a forum to listen to and record the public's comments about the proposed project as described in the

scoping document.

Scoping Process An integral part of environmental analysis. Scoping requires

examining a proposed action and its possible effects; establishing the depth of environmental analysis needed; determining analysis procedures, data needed, and task assignments. The public is encouraged to participate and submit comments on proposed projects during the scoping period. Usually there is a date associated with the end or closure of the scoping period. It is that date which responses to the formal scoping statement are due; this is usually 30 days after release of the scoping statement. Concerns regarding potential environmental impacts of proposed actions are especially valuable at this early stage.

Section 404 Permit Section 404 of the Clean Water Act specifies that anyone

wishing to place dredged or fill materials into the waters of the United States and adjacent jurisdictional wetlands shall apply to the U.S. Army Corps of Engineers for approval. A permit issued by the Corps of Engineers for these activities

is known as a 404 permit.

Sediment Material suspended in liquid or air; also, the same material

once it has been deposited.

Sediment pond Structures constructed by excavation and/or by building an

embankment whose purpose is to retain water and allow for

settlement of fines (TSS) and reduction in turbidity.

Seepage The slow movement of gravitational water through the soil.

Selenium A nonmetallic element that resembles sulfur and tellurium

chemically, is obtained chiefly as a by-product in copper refining, and is a photoconductive semiconductor in its

crystalline form.

Sensitive species A plant or animal listed by a State or Federal agency as

being of environmental concern; includes but is not limited to

threatened and endangered species.

Significant issues Of the issues raised during the scoping process for an

environmental impact statement, certain of those issues are determined to be "significant" by the lead public agency. Determining which issues are significant, and thus meriting detailed study in the EIS, is the final step of the scoping process and varies with each project and each location. Significant issues are used to develop alternatives.

Sludge A semi-fluid, slushy, murky mass of sediment resulting from

treatment of water, sewage, or industrial and mining wastes.

Slurry A watery mixture or suspension of insoluble matter, such as

mud or lime.

Spawn To breed; especially, to breed by releasing eggs and sperm

into the water.

Stockpiling Storage of soils and/or rock material.

Storm water Overland flow generated as a result of a storm event.

Strata A tabular mass or thin sheet of earth of one kind formed by

natural causes usually in a series of layers of varying make-

up; sedimentary units.

Subgrade A layer, stratum, or material immediately beneath some

principal surface; specifically a layer of earth or rock that is graded to receive the foundation of an engineering structure. Often it is the soil or natural ground that is prepared and compacted to support, and that lies directly below, a road,

pavement, building, airfield, or railway.

Subsistence use Section 803 of the Alaska National Interest Lands

Conservation Act defines subsistence use as "...The customary and traditional uses by rural Alaska residents of wild, renewable resources for direct personal or family consumption as food, shelter, fuel, clothing, tools, or transportation; for the making and selling of handicraft articles out of the non-edible by-products of fish and wildlife resources taken for personal or family consumption; for barter, or sharing for personal or family consumption; and

for customary trade."

Substrate An under layer of earth or rock.

Greens Creek Tailings 5.4 Glossary 5.25

Succession Changes in the plant communities composing an ecosystem

as it evolves from one type to another (e.g., wetlands

becoming grassy meadows; alder thickets becoming mature

spruce and hemlock forests).

Sulfide A compound of sulfur with more than one element. Except

> for the sulfides of the alkali metals, the metallic sulfides are usually insoluble in water and occur in many cases as

minerals.

Sump An excavation made underground to collect water, from

which water is pumped to the surface or to another sump

nearer the surface.

**Tailings** The non-economic constituents of the ground ore material

that remains after the valuable minerals have been removed

from raw materials.

Third-party contractor Neutral party, paid by the applicant, responsible for

preparing NEPA documents under the direction of the lead

agency.

Thiosalts Produced in the milling of sulphide ores. Although thiosalts

> have a relatively low toxicity, they are oxidized by bacteria found in effluent treatment ponds and in receiving waters resulting in the production of sulphuric acid which causes

impairment to fish and other aquatic communities.

Threatened species A plant or wildlife species officially designated by the U.S.

> Fish and Wildlife Service as having its existence threatened and is protected by the federal Threatened and Endangered

Species Act.

**Tideland** Land that is overflowed by the tide but exposed during times

of low water.

Till Non-sorted, non-stratified sediment carried or deposited by

a glacier.

The physical configuration of a land surface. **Topography** 

Turbidity Reduced water clarity resulting from the presence of

suspended matter.

Ultraviolet

Breaking down of natural and synthetic materials due do

degradation ultraviolet radiation from the sun.

Understory Foliage layer lying beneath and shaded by the main canopy

of a forest.

Visual Distance Zones

Indicates the distance of the constituent from the view. The zones are determined in USDA Forest Service Agriculture Handbook Number 701, "Landscape Aesthetics-A Handbook for Scenery Management" (p4-12):

Foreground (0 - ½ mile) The viewer can distinguish tree trunks, large branches, individual shrubs, clumps of wildflowers, medium-sized animals, and medium-to-large birds.

Middleground (½ to 4 miles) The viewer can distinguish individual tree forms, large boulders, flower fields, small openings in the forest, and small rock outcrops. Form, texture, and color remain dominant, and pattern is important.

Background (4 miles to horizon) The viewer can distinguish groves or stands of trees, large openings in the forest, and large rock outcrops. Texture has disappeared and color has flattened, but large patterns of vegetation or rock are still distinguishable, and landform ridgelines and horizon lines are the dominant visual characteristic.

Visual Quality Objective (VQO) Objectives identified by the Forest Service for management of the visual resource. The five categories are as follows:

Preservation. Activities preserve the existing visual quality for all users

Activities are designed so as not to be Retention. visually evident to the casual forest visitor.

Partial Retention. Activities may be evident, but will remain visually subordinate to the characteristic landscape.

Modification. Activities may dominate the characteristic landscape, but will borrow from existing form, line, color and texture.

Maximum Modification. Activities may dominate the characteristic landscape. Alterations appear to be natural when viewed as background (p4-80, USDAFS, 1997):

Visual Resources

The visual quality of the landscape. The Forest Service manages view sheds as a resource, establishing specific management objectives for different areas of National Forest System lands.

Waste rock

Also known as development rock, waste rock is the non-ore rock that is extracted to gain access into the ore zone. It contains no gold or only gold below the economic cutoff level.

Watershed

The entire land area that contributes water to a particular drainage system or stream.

**Greens Creek Tailings** 5.4 Glossary 3 5-27

Wetlands Those areas that are inundated or saturated by surface or

ground water at a frequency and duration sufficient to support, and that under normal circumstances do support, a

prevalence of vegetation typically adapted for life in

saturated soil conditions.

Wilderness Land designated by Congress as a component of the

National Wilderness Preservation System.

Xanthates A class of chemicals known as "collector" chemicals, which

attach to floating minerals that makes it hydrophobic, normally non-capable of adhering to the froth in a flotation

circuit.

Zinc Bluish-white hard metal, occurring in various minerals, such

as sphalerite.

Zooplankton Animals that float in the water column (some of which are

able to move short distances in search of food).

Greens Creek Tailings EIS

#### 5.5 **List of References**

Air Sciences Inc.

- + 2000. Meteorological Data Report Greens Creek Project, January 1 - June 30, 2000.
- → 2001. Meteorological Data Report Greens Creek Project, July 1 - December 31, 2000.

Alaska Department of Fish and Game, Division of Wildlife Conservation.

- + 2003. Aquatic Biomonitoring At Greens Creek Mine, 2002. April
- + 2002. Deer Hunter Survey Summary Statistics, Southeast Alaska, August 2001 – January 2002 Hunting Season. November
- ◆ 2002. Hawk Inlet Documented River Otter Harvest

Alaska Department of Labor & Workforce Development, Research, and Analysis Section.

- + 1999. Non-Agriculture Wage and Salary Employment and Earnings, City and Borough of Juneau.
- → 1990 to 1999. Non-Agriculture Wage and Salary Employment, City and Borough of Juneau.
- + 1991 through 1999. City and Borough of Juneau Population 1990-2000.

Andrews, G., Environmental Associate. 1996. Response to ADEC January 22, 1996 Letter Discharge and Mixing Zone Questions. Kennecott Greens Creek Mine.

BC Research Technical Committee. 1989. Draft Acid Rock Drainage Technical Guide Volume I. BiTech Publishers. Steffen Robertson and Kirsten (B.C.) Inc., Norecol Environmental Consultants, and Gormely Process Engineering. Vancouver, BC. August.

Balsiger, J. W. 2001. Alaska Regional Administrator, National Marine Fisheries Service, Juneau. May 16, 2001 letter to Michael C. T. Smith, Michael Baker, Jr., Inc. Anchorage, AK.

### 5 List of References

Baluss, Gwen. 2003. Personal Communication. Tongass National Forest, Juneau Ranger District. September

Boreal Partners in Flight Working Group. 1999. Landbird conservation plan for Alaska Biogeographic Regions. 109 p.

#### Buell, J.W. (Buell & Associates)

- → 1992. Memorandum to J. Cottrell, KGCMC. Greens Creek Mine Mitigation Monitoring B Greens Creek Fish Passage: 1992 Status. Portland. October 12.
- → 1981. Addendum Freshwater Biological Investigations. Greens Creek Joint Venture, Admiralty Island, Alaska.

#### Carlson, R.

- → 1999. Personal Communication with Dr. Richard Carlson National Marine Fisheries Service, Auke Bay Laboratory re: herring and humpback whale observations.
- → 1998. Personal Communication with Dr. Richard Carlson National Marine Fisheries Service, Auke Bay Laboratory

#### Carlson, R.L.

- → 1991. Archaeological Resource Inventory and Impact Assessment of Proposed Waste Rock Sites, Greens Creek Mine Admiralty Island, Alaska. Department of Archaeology, Simon Fraser University, Burnaby.
- → 1990. Cultural Antecedents. In Northwest Coast, W. Suttles, ed. *Handbook of North American Indians, Vol. 7.* W. Sturtevant, gen. ed. Smithsonian Institution, Washington, D.C. pp. 60-69.
- → 1981. Archaeological Impact Assessment, Greens Creek Project – Transportation Corridors and Tailings Sites. Report Prepared for Noranda Mining, Inc., Greens Creek Project, Juneau.

### City and Borough of Juneau

- → 2003. School District. Public School Enrollment, K-12.
- → 2002. Comprehensive Annual Financial Report Fiscal Year Ended June 30, 2002. Operating Revenues.
- → 1990-2000. Department of Community Development. New Housing Units and Vacancy Rate.
- → 1992. Coastal Management Program Enforceable Policies.

#### Condon, P. D.

- → 1999. Characterization and prevention of acid rock drainage processes at the Greens Creek Mine, Admiralty Island, Alaska. University of Oregon. Ph.D. dissertation. Eugene, OR.
- + 1995 Tailings Impoundment Characterization Study. Kennecott Greens Creek Mining Company. February

Cowardin, L. M., V. Carter, F. C. Golet, E. T. LaRoe. 1979. Classification of wetlands and deepwater habitats of the United States. USDOI, FWS Washington, D.C. Jamestown, ND: Northern Prairie Wildlife Research Center Home Page.

Davis, S.. 1990. Prehistory of Southeast Alaska. In Northwest Coast, W. Suttles, ed. Handbook of North American Indians, Vol. 7. W. Sturtevant, gen. ed. Smithsonian Institution, Washington, D.C. pp. 197-202.

DeFreest, Jeff. Pers. Comm. (See USDA, FS 2003)

#### de Laguna, F.

- + 1990a. Eyak. In Northwest Coast, W. Suttles, ed. *Handbook of* North American Indians, Vol. 7. W. Sturtevant, gen. ed. Smithsonian Institution, Washington, D.C. pp. 189-196.
- + 1990b. Tlingit. In Northwest Coast, W. Suttles, ed. *Handbook* of North American Indians, Vol. 7. W. Sturtevant, gen. ed. Smithsonian Institution, Washington, D.C. pp. 203-228.

**Greens Creek Tailings** 5.5 List of References 5-31 → 1960. The story of a Tlingit community: A problem in the relationship between archeological, ethnological, and historical methods. Smithsonian Institution, Bureau of American Ethnology Bulletin 172, U.S. Government Printing Office, Washington, D.C. Native American Book Publishers, Brighton. Michigan.

Emmons, George Thornton. 1991. The Tlingit Indians. Edited with Additions by Frederica de Laguna and a biography by Jean Low. University of Washington Press, Seattle.

Environmental Design Engineering (EDE).

- → 2002a. Kennecott Greens Creek Mining Company, Stage II Tailings Expansion Hydrologic Analysis. February.
- → 2002b. Kennecott Greens Creek Mining Company, Stage II Tailings Expansion Geochemistry Report. February.

Executive Order. 2001. 13186, Responsibilities of Federal Agencies to Protect Migratory Birds. January

George, G. D. and R. G. Bosworth. 1988. Use of fish and wildlife by residents of Angoon, Admiralty Island, Alaska. Alaska Department of Fish and Game, Division of Subsistence, Technical Paper 159, Juneau.

Goldschmidt, W. R. and T. R. Haas. T.F. Thorton, ed. 1946. Haa Aani, our land: Tlingit and Haida land rights and use. Possessory Rights of the Natives of Southeastern Alaska: A report to the Commissioner of Indian Affairs. Mimeo

Grossman, A. 2001. Biologist. U.S. Fish and Wildlife Service, Juneau. Verbal consultation (#01-27V) with Michael C.T. Smith, Michael Baker Jr., Inc.

Hall, J.K. 1995. Native Plants of Southeast Alaska. Windy Ridge Publishing, Juneau, Alaska.

Hasenjager, S. 2001. Sensitive Plant Species Survey-2001 for Kennecott Greens Creek Mining Company Proposed Tailings Stage II Expansion.

Hitchcock, C.L. and A. Cronquist. 1974. Flora of the Pacific Northwest An Illustrated Manual. University of Washington Press. Seattle.

Holland, A., M. Hiegel and W. Richkus 1981. Final Results of the 1981 Field Program for the Greens Creek Project. Part I: Hawk Inlet and Young Bay and Part II: Chatham Strait. Martin Marietta Corp. Environmental Center Baltimore, MD

Hulten, E. 1990. Flora of Alaska and Neighboring Territories, A Manual of the Vascular Plants. Stanford, CA: Stanford Univ. Press.

International Environmental Consultants Inc. (IEC). 1980. Report: Vegetation Baseline Studies for the Greens Creek Project, Admiralty Island, Alaska.

Jemison, L. 2002. Personal Communication with Laurie Jemison, Alaska Department of Fish and Game re: Harbor seal feeding strategies.

Kennecott Greens Creek Mining Company (KGCMC)

- → 2003. Unpublished water quality data base.
- → 2002. Tailings and Production Rock Site Annual Report.
- → 2001. Continuous Meteorological Data Monthly Summary. April
- → 2001a. General Plan of Operations. Appendix 1. (Revision No.
- → 2001b. General Plan of Operations, Appendix 14, Attachment A. Detail Reclamation Plan Cost Estimates
- + 2000. General Plan of Operations, Appendix 3, Tailings Impoundment. August.

#### Klohn-Crippen.

→ 2001. Kennecott Greens Creek Mining Company 2001 Geotechnical Investigation, Field Report-Final. May.

**Greens Creek Tailings** 5.5 List of References 5-33

### 5 List of References

- → 2001. Kennecott Greens Creek Mining Company Existing Tailings Facility-Wide Corner Quarry Liner Design-Final Report. November.
- → 2000. Kennecott Greens Creek Mining Company East Expansion to Tailings Pile Construction Summary. December.
- → 1999. Kennecott Greens Creek Mining Company Evaluation of Tailings Pile. July.

Leghorn, K. and M. Kookesh. 1987. Timber management and fish and wildlife utilization in Tenakee Springs, Alaska. Alaska Department of Fish and Game, Division of Subsistence, Technical Paper 138, Juneau.

Krause, A. 1970. The Tlingit Indians: Results of a trip to the Northwest Coast of America and the Bering Straits. The American Ethnological Society Monograph 26, University of Washington Press, Seattle.

Lipkin, R. and D.F. Murray. 1997. Alaska rare plant field guide. U.S. Fish and Wildlife Service, National Park Service, Bureau of Land Management, Alaska Natural Heritage Program, and U.S. Forest Service.

MacDonald, Stephen, O. and Cook, Joseph. 1999. The Mammal Fauna of Southeast Alaska. University of Alaska Museum. Fairbanks, Alaska. P.138.

Mathews, E. 1996. Task Report 3.1 Marine Mammals and Birds: Distribution and Ecological Role of Marine Mammals. AJ Mine Project for USEPA Supplemental Environmental Impact Statement.

Michael Baker Jr (MBJ). 2002. Alternative Screening Evaluation

Miller, S.D., A. Robertson, and T.A. Donohue. 1997. Net Acid Generation test Fourth International Conference on Acid Rock Drainage. Vancouver, B.C. Canada, May 31 – June 6.

Miller, K. 2003. Essential Fish Habitat consultation species list. Provided by NMFS Alaska Region EFH Coordinator via email, July

Migratory Bird Treaty Act of 1918 (amended in 1936 and 1972)

Montgomery Laboratories.

- → 1995. Second Quarter 1995 Report for PM<sub>10</sub> Air Monitoring.
- → 1996a. Fourth Quarter 1995 Report for PM<sub>10</sub> Air Monitoring.
- → 1996b. Third Quarter 1995 Report for PM<sub>10</sub> Air Monitoring.
- → 1996c. First Quarter 1996 Report for PM<sub>10</sub> Air Monitoring.

National Park Service (NPS). 1998. Archaeological Resources in Wrangell-St. Elias National Park and Preserve: An overview and assessment. Resources Report NPS/ARRCR-98/32. Anchorage.

Nature Conservancy. 1991. Rare Vascular Plant Species of the U.S. Forest Service Alaska Region; Including Sensitive Species Recommendations. Anchorage, Alaska

National Marine Fisheries Service (NMFS)

- → 2001. Steller Sea Lion Protection Measures Final Supplemental Environmental Impact Statement. NOAA-NMFS. November.
- → 2002. Essential Fish Habitat website:http://www.fakr.noaa.gov/habitat/efh.htm

NMFS-USDA, FS 2000. Magnuson-Stevens Fisheries Conservation and Management Act: Essential Fish Habitat (EFH) Consultation Process between the USFS and NMFS, August.

NOAA, 1999. National Status and Trends Program Sediment Quality Guidelines. National Oceanic and Atmospheric Administration, National Ocean Survey. http://ccma.nos.noaa.gov/bioeffects/spq.pdf

Nineteman, D.J. 1978. Spontaneous Oxidation and Combustion of Sulfide Ores in Underground Mines. A Literature Survey. BuMines IC 8775, NTIS PB283510.

**Greens Creek Tailings** 5.5 List of References 5-35

### 5 List of References

Oelklaus, Bill. (Kennecott Greens Creek Mining Company Environmental Engineer)

- → 2001. Memo to Michael C. T. Smith, Michael Baker, Jr., Inc.
- → 2002. Personal communication, 30 July.

O'Kane Consultants Inc. 2001. Cover System Performance at the Kennecott Greens Creek Mine. December

Oregon Institute of Oceanography

- → 1984-2002. Laboratory Results of semi-annual NPDES sediment and mussel tissue sampling in Hawk Inlet, Alaska. Columbia Analytical Lab Data for years 1984 through 2002.
- → 1996. Marine Survey of the Greens Creek Mining Outfall and Diffusers in Hawk Inlet, Alaska. September

Ott Water Engineers, Inc.

- → 1987. Greens Creek Mine Site Hydrology and Sediment/Tailings Pond Design Criteria, Admiralty Island, Alaska. October.
- → 1981. Addendum to the Surface Water Hydrology Baseline Studies for the Greens Creek Project Admiralty Island, Alaska. December.

Pearse, M.J. 1980. Chemical Study of Oxidation of Sulfide Concentrates. Inst. Min. and Metall., Trans., Sec. C. v. 89.

Public Law. 1996. Greens Creek Land Exchange Act of 1995.

Pitcher, K. 2002. Personal Communication with Dr. Ken Pitcher, Alaska Department of Fish and Game Marine Mammal Biologist.

Pojar, J. and A. Mackinnon. 1994. Plants of the Pacific Northwest Coast, Washington, Oregon, British Columbia, and Alaska. Lone Pine Publishing. Vancouver, B.C.

Reimers, G.W., and D.F. Franke. 1991. Effect of Additives on Pyrite Oxidation. BuMines RI 9353, NTIS PB91-225060.

Reimers, G.W., and W.H. Pomproy. 1988. Recent Developments in Metal and Nonmetal Mine Fire Protection. Paper in Recent Developments in Metal and Nonmetal Mine Fire Protection. Proceedings: Bureau of Mines Technology Transfer Seminars. BuMines IC 9206, NTIS PB90-265471.

Remediation Technologies Inc. (RTI). 1998. Kennecott Green Creek Mine Risk Assessment, NPDES Permit No. AK-004320-6 Admiralty Island, Alaska, June.

Ridgway, 2003. Technical Review of the Status of Essential Fish Habitat in Hawk Inlet Subsequent to Mining Operations.

Robertson, Monagle & Eastaugh. 2002. Admiralty Island Monument Values. May.

Rudis, D. 1996. Rudis, D. 1996. Metal Concentrations in Sediments and Selected Biota in Gastineau Channel, Juneau, Alaska. US Fish and Wildlife Service, Southeast Alaska Ecological Services Technical Report SEES-TR-92-01 April 1996 36 pp + app

Rudis, D., P. Schempf and M. Jacobson 2001. Bald Eagle, Blue Mussel, and Sediment Contamination Concentrations from Hawk Inlet, Admiralty Island, Alaska. Poster Presentation for Bird Conference.

Schoen, J. W., and L. R. Beier. 1990. Brown bear habitat preferences and brown bear logging and mining relationships in southeast Alaska. Alaska Dept. Fish and Game Fed. Aid in Wildl. Rest. Final Rep. Proj. W-23-3. Juneau.

Schroeder, R. F. and M. Kookesh. 1990. Subsistence harvest and use of fish and wildlife resources by residents of Hoonah, Alaska. Alaska Department of Fish and Game, Division of Subsistence, Technical Paper 142.

Shepherd Miller, Inc. (SMI) 2000. Technical Review ARD/Metals Leaching and Freshwater Monitoring Plan, Greens Creek Mine. February.

Smith, A. 1991. Review of Acid Generation Potential Testing of Greens Creek Tailings by B.C. Research Corporation. June.

5.5 List of References 5-37 **Greens Creek Tailings** 

### 5 List of References

Sobek, A.A., W.A. Schuller, J.R. Freeman, and R.M. Smith. 1978. Field and Laboratory Methods Applicable to Overburdens and Minesoils. Report EPA-600/2-78-054, U.S. National Technical Information Report PB-280 495. 403 p.

Three Parameters Plus (TTP), Natural Resource Consulting.

- → 2001. Progress Report to Mr. Tom Zimmer, Mine Manager, Kennecott Greens Creek Mining Company, re: Jurisdictional Wetland Mapping. March.
- → 1994a. Jurisdictional wetland survey and functions and values analysis. Volume I. Kennecott Greens Creek Mine, Admiralty Island, Alaska. April.
- → 1994b. Jurisdictional wetland survey and functions and values analysis. Volume II Appendices. Kennecott Greens Creek Mine, Admiralty Island, Alaska. April.

Titus, K., and L. R. Beier. 1993. Population and habitat ecology of brown bears on Admiralty and Chichagof Islands. Alaska Dept. Fish and Game Fed. Aid in Wildl. Rest. Prog. Rep. Proj. W-24-1. Juneau. 40pp.

Titus, K. 2002. Personal Communication with McKie Campbell.

USEL. 1998. Waste Rock Cover Design Final Report. Submitted to Kennecott Greens Creek Mining Company. December

U.S. Army Corps of Engineers. 1987. *Corps of Engineers Wetlands: Delineation Manual.* 

http://www.wes.army.mil/el/wetlands/pdfs/wlman87.pdf

United States Department of Agriculture Forest Service (USDA, FS)

- → 2003c. Biological Evaluation, Threatened, Endangered, and Sensitive Wildlife Species, Greens Creek Tailings Expansion Project Tongass National Forest. L. Rickards
- → 2001a. Notice of Intent to prepare an EIS for the Greens Creek Mine Tailings Disposal project. *Federal Register*. March

- → 2000b. Scoping Document for Greens Creek Mine Tailings Stage II Expansion Project Environmental Impact Statement. March
- → 1997. Tongass Land and Resource Management Plan- Forest Plan.
- → 1996. A Conservation Assessment for the Marbled Murrelet in Southeast Alaska, November,
- → 1992. Environmental Assessment for Additional Waste Rock Disposal Capacity at Greens Creek Mine Admiralty Island National Monument, Alaska. November
- + 1989. Forest Habitats And The Nutritional Ecology Of Sitka Black-Tailed Deer: A Research Synthesis with Implications for Forest Management. March.
- + 1988. Environmental Assessment for Proposed Changes to the General Plan of Operation for the Development and Operation of the Greens Creek Mine, Admiralty Island National Monument, Alaska. March.
- + 1983. Greens Creek Final Environmental Impact Statement, Admiralty Island National Monument, Alaska. January.
- → 1974. National Forest Landscape Management Volume 2. Chapter 1 The Visual Management System. Agricultural Handbook Number 462. April.

US Department of Interior (USDOI). 1993 Comment letter on Greens Creek Mine Tailings Disposal DEIS. Pamela Bergman Regional Administrator. June.

United States Fish and Wildlife Service. 2002. Birds of conservation concern 2002. Division of Migratory bird management, Arlington, Virginia. 99 p.

#### Vos, R.J.

- → 1991. Weathering Characteristics of Waste Rock From Admiralty Island Deposit. December (6 Month Report)
- → 1993. Weathering Characteristics of Waste Rock From Admiralty Island Deposit. (23 Month Report)

**Greens Creek Tailings** 5.5 List of References 5-39

# 5 List of References

→ 1994. Acidification of Siliceous Waste Rock From Admiralty Island Deposit

Zimmer, Tom. 2003. Personal Communication, Email re: Pit 5 Quarry Rock. April.

5-40 \$\infty\$ 5.5 List of References Greek Tailings

#### 5.6 Index

- Air quality, 2-50, 3-1, 3-8, 4-7, 4-62
- Alaska Coastal Management Program (ACMP), 1-22
- Alaska Department of Environmental Conservation, 1-19, 1-21, 2-13
- Alaska Department of Fish and Game (ADF&G), 3-71, 3-74, 3-76, 3-84, 3-86, 3-91, 3-103, 3-104
- Alaska Department of Labor, 3-105, 3-106, 4-55, 4-70
- Alaska Department of Natural Resources, 1-22
- Alaska Division of Governmental Coordination, 1-22
- Alaska Marine Highway, 3-8
- Alaska National Interest Lands Conservation Act (ANILCA), 1-12, 1-15, 3-100, 3-101, 4-62
- Alaska Water Quality Standards (AWQS), 2-54, 4-17, 4-18, 4-24, 4-29, 4-34
- Alternative A (no action), 1-3, 1-8, 2-3, 2-20, 2-21, 2-23, 2-42, 2-45, 2-48, 4-1, 4-6, 4-7, 4-10, 4-15, 4-16, 4-17, 4-18, 4-19, 4-20, 4-21, 4-26, 4-31, 4-36, 4-45, 4-46, 4-49, 4-52, 4-54, 4-55, 4-56, 4-58, 4-64, 4-65, 4-69
- Alternative B, 2-11, 2-25, 2-27, 2-45, 2-46, 2-47, 2-48, 4-1, 4-2, 4-6, 4-7, 4-20, 4-21, 4-23, 4-24, 4-25, 4-26, 4-31, 4-36, 4-37, 4-39, 4-45, 4-53, 4-56, 4-57, 4-62
- Alternative C, 2-19, 2-22, 2-25, 2-29, 2-33, 2-35, 2-37, 2-46, 2-47, 2-48, 2-52, 3-59, 4-2, 4-6, 4-7, 4-11, 4-12, 4-26, 4-28, 4-29, 4-30,

- 4-31, 4-37, 4-41, 4-45, 4-53, 4-56, 4-62
- Alternative D, 2-37, 2-39, 2-47, 2-48, 4-2, 4-6, 4-7, 4-10, 4-31, 4-33, 4-34, 4-35, 4-37, 4-43, 4-45, 4-46, 4-49, 4-53, 4-56, 4-57, 4-62
- Anadromous fish, 1-22
- Angoon, 1-9, 3-5, 3-8, 3-101, 3-102, 4-53, 4-69
- Army Corps of Engineers (ACOE), 1-19, 1-20
- Bald and Golden Eagle Protection Act, 3-77
- Bald eagle, 3-77, 4-46, 4-65
- Bathymetry, 3-12, 3-13
- Beach fringe, 3-70, 3-71
- Biological diversity, 4-4
- Brown bear, 3-69, 3-70, 3-71, 3-103, 4-46, 4-65, 4-66
- Candidate species, 3-84
- Clean Water Act, 1-15, 1-19, 1-20, 3-64, 4-36
- Climate, 3-1, 3-5, 3-6, 3-56
- Commercial fishing, 3-102, 4-60
- Components, 1-8, 2-25, 3-24, 3-25, 4-3, 4-62
- Conservation, 3-100
- Coordination, 1-20, 1-21
- Council on Environmental Quality (CEQ), 4-3
- Crab, 3-81, 3-90, 3-91, 3-99, 4-51
- Cultural resources, 2-51, 3-2, 3-100, 4-52, 4-53, 4-60, 4-62, 4-68, 4-71

**Greens Creek Tailings** 5.6 Index 5-41

Cumulative impacts, 1-13, 2-51, 4-4, 4-58, 4-59, 4-60, 4-61, 4-62, 4-64, 4-65, 4-66, 4-67, 4-68, 4-69 by resource, 4-62 Deer, 3-69, 3-74, 3-75, 3-102, 3-103, 4-46, 4-65 Description, 3-1 Distance zone, 3-8 Diversity, 4-70 Ecosystem, 3-12, 3-14, 3-88, 4-4, 4-52 Effects, impacts, and analyses, 4-3 Employment, 3-104, 3-105, 3-106, 4-54, 4-57, 4-58, 4-69, 4-70 Endangered species, 1-21, 3-81, 4-48, 4-49, 4-60, 4-67 Endangered Species Act, 1-21, 3-81, 4-48, 4-49, 4-60, 4-67 Endangered species units (ESU), 3-Environmental Justice, 2-51, 4-57 **Environmental Protection Agency** (EPA), 1-1, 1-14, 1-19, 1-20, 1-21, 2-1, 4-36 Erosion, 2-12, 2-13, 2-16, 2-19, 3-18, 3-63, 4-63 Essential fish habitat, 4-52, 4-62 Essential Fish Habitat (EFH), 1-21, 2-51, 3-90, 3-91, **3-93**, 4-51, 4-52, 4-68 Estuary, 3-13, 3-16, 3-80, 3-85 Fish Marine, 3-89 Fish habitat, 4-62, 4-68 Fishing, 3-73, 3-90, 3-102, 3-105,

Floodplain, 3-64 Freshwater, 3-1, 3-16 Furbearer, 3-76 Geochemistry, 1-11, 2-2, 3-1, 3-2, 3-17, 3-18, 3-51, 4-10, 4-11, 4-12 Geology, 3-1, 3-11, 3-17, 3-18, 3-23 Ground water quality, 3-26 Geotechnical, 3-62 Goshawk, 3-77 Groundwater flow system, 3-23, 3-25, 3-58 Harbor seal, 3-81, 3-83, 3-84, 4-48, 5-33 Hawk Inlet, 1-1, 2-3, 2-5, 2-6, 2-11, 2-42, 2-45, 2-46, 2-47, 2-48, 3-2, 3-8, 3-10, 3-11, 3-12, 3-13, 3-14, 3-16, 3-17, 3-19, 3-20, 3-25, 3-46, 3-56, 3-70, 3-73, 3-76, 3-77, 3-80, 3-81, 3-82, 3-83, 3-84, 3-85, 3-86, 3-88, 3-90, 3-91, 3-92, **3-95**, **3-97**, **3-100**, **3-102**, **3-103**, **3-**104, 4-7, 4-9, 4-10, 4-11, 4-13, 4-14, 4-15, 4-16, 4-20, 4-21, 4-27, 4-32, 4-48, 4-49, 4-50, 4-51, 4-52, 4-60, 4-61, 4-63, 4-64, 4-67, 4-68 Helicopter, 3-73 Hoonah, 3-8, 3-101, 3-102 Humpback whale, 3-81, 3-83, 3-84, 3-85, 3-86, 4-49, 4-67 Hunting, 3-102, 3-103, 4-46, 4-65 Hydrology, 3-2, 3-5, 4-10, 4-11, 4-62, 4-63, 4-64, 4-70 Income, 3-104, 4-57, 4-58 Intertidal, 3-16, 3-19, 3-88, 4-68 Irretrievable, 4-71

**Issues** 

4-53, 4-60, 4-69

Issues and Alternatives Development, 2-1

Other issues, 1-12

Significant issues, 1-3, 1-10, 1-13, 2-1, 3-2, 4-1

Juneau, City and Borough of (CBJ), 1-9, 1-14, 1-22, 3-105, 3-106, 3-107, 3-108, 4-55, 4-56, 4-60, 4-61, 4-69

Land Use Designation (LUD), 1-18, 3-8, 4-10, 4-63

Large Mine Permit, 1-14, 1-22

Long-term productivity, 4-1, 4-2, 4-70

Management Indicator Species (MIS), 3-69, 3-76, 3-77

Marine environment, 2-51, 3-5

Marine Mammal Protection Act, 1-21, 4-48, 4-49, 4-61, 4-67

Marine mammals, 2-51, 3-81, 3-82, 3-83, 3-84

Marine resources, 4-68

Marine water, 3-16

Marten, 3-69, 3-76, 3-103, 3-104

Minerals, 1-1, 1-18, 2-1, 3-18, 3-49, 3-51, 3-59, 3-105, 4-71

Mining, 1-1, 1-2, *1-3*, 1-12, 2-14, 2-21, 2-25, 3-3, 3-14, 3-27, 3-37, 3-48, 3-49, 3-68, 3-71, 3-82, **3-100**, 3-102, 3-105, 4-10, 4-36, 4-51, 4-58, 4-62, 4-63, 4-64, 4-70

Mitigation measure, 1-8, 1-10, 1-13, 3-51, 3-86, 4-5, 4-58, 4-63

Mitigation measures, 1-13

Monitoring, 1-6, 1-11, 2-11, 2-13, 2-29, 2-30, 2-31, 3-5, 3-8, 3-17, 3-26, 3-27, 3-35, 3-37, 3-42, 3-

45, 3-47, 3-51, 3-57, 3-59, 3-61, 3-71, 4-2, 4-5, 4-10, 4-14, 4-58, 4-60

Monument values, 2-1, 2-2, 2-32, 2-35, 2-41, 2-48, 3-2, 4-5, 4-7, 4-62

Muskeg, 1-1, 3-3, 3-19, 3-20, 3-22, 3-26, 3-47, 3-64, 3-74, 4-36, 4-45

National Environmental Policy Act, 1-1, 1-8, 2-1, 4-3

National Environmental Policy Act (NEPA), 1-1, 1-8, 1-12, 1-15, 1-19, 1-20, 2-1, 2-21, 2-41, 4-3, 4-63, 4-64, 4-70

National Historic Preservation Act, 1-15, 1-18, **3-100** 

National Historic Preservation Act (NHPA), 1-15, 1-18, 3-100

National Marine Fisheries Service, 1-21, 3-86, 3-90

Non Wetlands, 2-19

Northern sea otter, 3-81, 3-83, 3-84, 3-85, 3-86, 4-48, 4-67

Oceanography, 3-12

Old-growth, 2-15, 3-70, 3-74, 3-77

Permit, 1-2, 1-8, 1-14, 1-19, 1-20, 1-21, 1-22, 2-5, 2-6, 2-13, 2-21, 2-25, 2-29, 2-42, 2-45, 2-46, 2-47, 3-3, 3-17, 3-19, 3-56, 3-61, 4-1, 4-2, 4-5, 4-14, 4-15, 4-16, 4-21, 4-26, 4-31, 4-36, 4-63, 4-64

Physical components, 2-49

Proposed action, 1-3, 1-6, 1-8, 1-9, 1-10, 1-11, 1-12, 1-13, 1-15, 1-20, 2-1, 2-29, 2-37, 3-2, 3-3, 3-83, 3-86, 3-92, 4-2, 4-5, 4-6, 4-7, 4-20, 4-45, 4-48, 4-65

purpose and need, 1-3

### 5 Index

Soils, 1-1, 2-3, 2-14, 2-19, 2-29, 3-Reclamation, 1-14, 2-11, 2-12, 2-13, 2-16, 2-17, 3-51, 4-5, 4-15, 4-24, 3-62, 3-69, 4-1, 4-2, 4-8, 4-71 59, 4-64 Species composition, 3-88 Reclamation and closure, 3-51 Steller sea lion, 3-81, 3-83, 3-84, 3-Record of Decision (ROD), 1-1, 1-86, 4-49, 4-67 8, 1-14, 2-11, 2-29, 2-30 Strata, 3-20, 3-62 Recreation, 2-51, 3-63, 3-102, 4-53, Streamflow, 3-22 4-69 Structure, 2-16, 2-37, 4-6, 4-51 Recreational activities, 3-102 Subsistence, 2-51, 3-2, 3-100, 3-101, Regeneration, 2-19 4-4, 4-53, 4-57, 4-60, 4-62, 4-68 Renewable resource, 3-101, 4-71 Suitable land, 3-102 Riparian, 3-64, 3-65, 3-66, 3-69, 4-Sulfate reduction, 2-1, 2-2, 2-29, 2-36, 4-37 30, 2-31, 2-46, 3-18, 3-51, 3-61, Riparian area, 3-64 4-2, 4-12, 4-26 Road construction, 2-20, 2-26, 3-48, Surface water, 2-5, 2-11, 2-50, 3-21, 3-58 3-42, 3-43, 3-44, 3-45, 3-46, 3-56, 3-67, 4-63 Roads, 2-21, 2-32, 3-48, 3-64, 4-61, 4-62 Surface water hydrology, 4-70 Salmon, 3-70, 3-73, 3-81, 3-85, 3-Surface water quality, 3-42, 3-45 86, 3-89, 3-90, 3-91, 3-92 Tailings, 1-5, 1-6, 1-7, 1-9, 1-11, 1chum, 3-86, 3-91, 3-92 14, 2-9, 2-14, 2-16, 2-25, 2-33, 2-49, 2-50, 2-52, 3-6, 3-7, 3-11, 3coho, 3-91, 3-92 29, 3-35, 3-44, 3-48, 3-52, 3-55, 3-57, 3-58, 3-59, 3-60, 3-61, 4-7, pink, 3-86, 3-91, 3-92 4-9, 4-17, 4-18, 4-24, 4-29, 4-34, sockeye, 3-92 4-36, 4-52, 4-64, 5-39 Scenic quality, 3-11, 4-63 Tailings disposal, 1-6, 1-11 Scoping, 1-8, 1-9, 1-10, 1-12, 2-1, Threatened and endangered species, 2-48, 2-52, 4-1, 4-10 1-20, 1-21, 3-81, 4-48, 4-67 Sediment, 2-6, 3-13, 3-63, 3-97, 4-50 Timber sales, 3-68 Selection, 2-19 Tongass Land and Resource Management Plan (TLRMP), 1-Sensitive species, 4-67 15, 3-8, 4-10, 4-46, 4-60, 4-61, 4-Shellfish, 1-20, 3-89, 3-90, 4-50 63 Sitka, 3-69, 3-74, 3-77, 4-45, 4-46, Tongass National Forest, 3-84, 4-60 Tourism, 3-102, 3-104, 4-53, 4-69 Socioeconomic, 1-13, 2-51, 3-104, 4-54, 4-69

Transportation, 3-73, 3-101, 3-102, 3-105, 3-106, 4-58, 4-61

Turbidity, 3-17

U.S. Fish and Wildlife Service (USFWS), 1-20, 1-21, 3-65, 3-83, 3-97

Vegetation, 2-11, 2-14, 2-16, 2-19, 2-31, 2-51, 3-1, 3-10, 3-11, 3-13, 3-18, 3-19, 3-20, 3-37, 3-47, 3-63, 3-68, 4-7, 4-8, 4-36, 4-37, 4-45, 4-46, 4-60, 4-62, 4-65

Visual quality, 2-51, 3-8, 4-7, 4-63

Visual Quality Objective (VQO), 3-8, 3-10, 4-7, 4-10, 4-63

Visual resources, 2-51, 3-8, 3-11, 4-7, 4-62, 4-63

Wage and salary, 3-104, 3-105, 3-106

Waste rock, 1-2

Water management, 2-5, 2-11

Water quality, 1-3, 1-10, 1-19, 1-21, 2-1, 2-2, 2-6, 2-11, 2-30, 2-31, 2-41, 2-42, 2-45, 2-46, 2-47, 2-48, 2-52, 3-2, 3-12, 3-17, 3-26, 3-27, 3-37, 3-38, 3-42, 3-43, 3-45, 346, 3-49, 3-56, 3-58, 4-2, 4-10, 4-11, 4-12, 4-13, 4-14, 4-15, 4-16, 4-21, 4-26, 4-27, 4-31, 4-32, 4-60, 4-63, 4-64, 4-68

Water treatment, 1-6, 2-3, 2-5, 2-11, 2-20, 2-21, 2-29, 2-30, 2-45, 2-46, 2-47, 2-48, 3-19, 3-47, 3-57, 3-58, 4-14, 4-16, 4-21, 4-22, 4-27, 4-32, 4-68

Waterfowl, 3-80

Western hemlock, 3-66, 4-45

Wetlands, 1-3, 1-13, 1-14, 1-20, 2-19, 2-51, 2-52, 3-1, 3-62, 3-63, 3-64, 3-65, 3-66, 3-68, 3-69, 4-15, 4-20, 4-36, 4-37, 4-45, 4-62, 4-64, 4-70, 5-38

Whales, 3-81, 3-82, 3-83, 3-84, 3-85, 4-48, 4-49, 4-51, 4-67

Wilderness, 1-18, 3-8, 4-10, 4-63

Wildlife, 1-20, 1-21, 3-2, 3-63, 3-69, 4-46, 4-53, 4-65, 4-68

Wildlife habitat, 4-70

Winter habitat, 3-74

Winter range, 3-74

5.6 Index 3 5-45 **Greens Creek Tailings** 

# **Appendix F**

Draft EIS Comments, 2003

### Draft EIS Comments

|                                                            |                |                                                                                                  | ,                                     |      |
|------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------|---------------------------------------|------|
| Author<br>(Letters, E-mail messages,<br>and Comment Forms) | Author<br>Code | Association (Individuals, Non-Government Organizations, Businesses, and Federal Agencies)        | Orgin<br>(State and City, or Country) | Page |
| Form Letter A (1304 commnet letters)                       | FLA            | Individual                                                                                       | United States & Canada                | 2    |
| Form Letter B (1112 commnet letters)                       | FLB            | Individual                                                                                       | United States & Canada                | 3    |
| Brian Beffort                                              | BB             | Individual                                                                                       | Reno, NV                              | 4    |
| Pamela Bergmann                                            | PB             | United States Department of the Interior, Office of<br>Environmental Policy and Compliance       | Anchorage, AK                         | 5    |
| Steve Borell                                               | SB             | Alaska Miners Association                                                                        | Anchorage, AK                         | 12   |
| Shirley Campbell                                           | SC             | Individual                                                                                       | Juneau, AK                            | 15   |
| Ann Carpenter                                              | ANNC           | Individual                                                                                       | Juneau, AK                            | 16   |
| David Chambers                                             | DC             | Center for Science in Public Participation (CSP2)                                                | Bozeman, MT                           | 17   |
| Amy Crook                                                  | AC             | Center for Science in Public Participation (CSP2)                                                | Bozeman, MT                           | 17   |
| Jai Crapella                                               | JC             | Individual                                                                                       | Juneau, AK                            | 24   |
| Russell Dick                                               | RD             | Sealaska Corporation                                                                             | Juneau, AK                            | 25   |
| Joe Gutkoski                                               | JG             | Individual                                                                                       | Bozeman, MT                           | 28   |
| Kat Hall                                                   | KH             | Southeast Alaska Conservation Council, Northern<br>Alaska Environmental Center, and Earthjustice | Juneau, AK                            | 29   |
| Mark and Michelle Kaelke                                   | MK             | Bear Creek Outfitters                                                                            | Juneau, AK                            | 40   |
| Judith Leckrone Lee                                        | JLL            | United States Environmental Protection Agency,<br>Geographic Implementation Unit                 | Seattle, WA                           | 42   |
| Joyce Levine                                               | JL             | Individual                                                                                       | Juneau, AK                            | 56   |
| Kamie Liston                                               | KL             | Individual                                                                                       | Juneau, AK                            | 58   |
| K.J. Metcalf                                               | KM             | Friends of Admiralty Island                                                                      | Juneau, AK                            | 59   |
| Alan Monro                                                 | AM             | Individual                                                                                       | Juneau, AK                            | 63   |
| Judith Maier                                               | JM             | Individual                                                                                       | Juneau, AK                            | 64   |
| Jenny Pursell                                              | JP             | Individual                                                                                       | Juneau, AK                            | 65   |
| William Oelklaus                                           | WO             | Kennecott Greens Creek Mine                                                                      | Juneau, AK                            | 66   |
| Jim Rehfeldt                                               | JR             | Individual                                                                                       | Juneau, AK                            | 71   |
| Charles Rinehart                                           | CR             | Individual                                                                                       | New Freedom, PA                       | 72   |
| Robert Robertson                                           | RR             | Individual                                                                                       | Juneau, AK                            | 73   |
| Tina Scruggs                                               | TS             | Individual                                                                                       | Escondido, CA                         | 74   |
| Wesley Shaw                                                | WS             | Individual                                                                                       | Skagway, AK                           | 75   |
| Geoff Shester                                              | GS             | Individual                                                                                       | Juneau, AK                            | 76   |
| Kelly Tonsmeire                                            | KT             | Individual                                                                                       | asdn@ptialaska.net                    | 77   |
| Joyce Wood                                                 | JW             | National Marine Fisheries Service (NMFS)                                                         | Silver Spring, MD                     | 78   |
| Ann Yates                                                  | AY             | Individual                                                                                       | Juneau, AK                            | 84   |
| Madeline Yamate                                            | MY             | Individual                                                                                       | Juneau, AK-                           | 85   |
| Tom Zimmer                                                 | TZ             | Individual                                                                                       | Juneau, AK                            | 86   |

---- Forwarded by Jeff DeFreest/R10/USDAFS on 06/10/2003 08:58 AM -----

XXXXXXXXXXXXXXXX

<xxxxxxxxxxxxxxxxcom>

To: jdefreest@fs.fed.us

cc:

Subject: Comments Regarding Greens Creek Mine Proposal 06/09/2003 05:36

PM

Dear U.S. Forest Official Jeff Defreest:

As a supporter of wildlife, I urge the Juneau Ranger District of the U.S. Forest Service to deny the Kennecott Corp.'s request to increase its toxic waste dumping capacity in the Greens Creek mine on Admiralty Island.

Mine waste from the Greens Creek mine is already polluting surface and ground water with toxic metals and acids. Acid mine drainage is a particular threat to the National Monument because once the acid-generating process begins it is nearly impossible to stop. The long-term impacts to water and wildlife can be devastating. Instead of approving the request for expansion, you should require the mining company to clean up existing sources of pollution.

Admiralty Island is a national treasure, supporting the densest population of brown bears and nesting bald eagles in the world. Please give it the protection it so richly deserves. Thank you for considering my comments.

Sincerely,

XXXXXXXXX XXXXXXXXXX

XXXXXXXXXXXXXXXXXX

----- Forwarded by Jeff DeFreest/R10/USDAFS on 05/27/2003 07:43 AM ---- xxxxxxxxx.com

To: jdefreest@fs.fed.us

cc:

FLB

3

Subject: Deny the Expansion of the Greens Creek Waste Dump

Dear Juneau Ranger District Jeff Defreest,

I write to urge the U.S. Forest Service to protect
Admiralty Island National Monument by denying Kennecott's proposal to expand the size of its mine waste impoundment (the no action alternative).

The Alaska National Interest Lands Conservation Act, enacted by Congress in 1980, sets standards for mining in the Monument. It directs that "the use of (Greens Creek) will not cause irreparable harm to Admiralty Island National Monument."

Mine waste from the Greens Creek Mine is already polluting surface and ground water with toxic metals and acids. Acid mine drainage is a particular threat to the National Monument because once the acid-generating process begins it is nearly impossible to stop. The long term impacts to water and wildlife can be devastating.

The Greens Creek Mine does not meet the standards for mining set forth by Congress. For this reason, the U.S. Forest Service should not authorize an expansion. Instead, it should be actively implementing a plan to address the existing sources of pollution.

Admiralty Island is a national treasure, supporting the densest population of brown bears and nesting bald eagles in the world. Please give it the protection it so richly deserves.

Sincerely,

XXXXXXXXX XXXXXXXXX XXXXXXXXXXX

May 19, 2003

Jeff Defreest Juneau Ranger District of the U.S. Forest Service 8465 Old Dairy Road, Juneau, AK 99801-8401

BB

RB | I am a frequent visitor to SE Alaska, and I care deeply about the landscape, wildlife and communities there. I am writing to urge the U.S. Forest Service to protect Admiralty Island National Monument by denying Kennecott's proposal to expand the size of its mine waste impoundment (the no action alternative).

The Alaska National Interest Lands Conservation Act, enacted by Congress in 1980, sets standards for mining in the Monument. It directs that "the use of (Greens Creek) will not cause irreparable harm to Admiralty Island National Monument."

Mine waste from the Greens Creek Mine is already polluting surface and ground water with toxic metals and acids. Acid mine drainage is a particular threat to the National Monument because once the acidgenerating process begins it is nearly impossible to stop. The long-term impacts to water and wildlife can be devastating.

The Greens Creek Mine does not meet the standards for mining set forth by Congress. For this reason, the U.S. Forest Service should not authorize an expansion. Instead, it should be actively implementing a plan to address the existing sources of pollution.

The U.S. Forest Service markets its mission as, "Caring for the land and serving people." Just in case you're confused about how this applies to the Kennecott situation, allowing toxins to continue to pollute the land and water of the area, and areas downstream, in defiance of national standards is not caring for the land. And offering a sweetheart deal to Kennecott by allowing the expansion of their waste impoundment is caring for only a few people for only a very short time and at the expense of the U.S. public at large, as well as the continued health of our outstanding natural heritage, as expressed in the Admiralty Island National

I ask you to consider the words of Gifford Pinchot, the first Chief of the Forest Service, who summed up the mission of the Forest Service: "to provide the greatest amount of good for the greatest amount of people in the long run."

Admiralty Island is a national treasure, supporting the densest population of brown bears and nesting bald eagles in the world. Please give it the protection it so richly deserves.

Thank you for your time and consideration.

Kind regards.

Brian Beffort

Owner of 1/280-million share in "We the People."

330 Bret Harte. Ave. Reno, NV 89509 775-786-7497



# United States Department of the Interior

OFFICE OF THE SECRETARY Office of Environmental Policy and Compliance 1689 C. Street, Room 119 Anchorage, Alaska 99501-5126

ER 03/428

June 27, 2003

Mr. Pete Griffin, District Ranger Juneau Ranger District USDA Forest Service 8465 Old Dairy Road Juneau, Alaska 99801

Juneau Range - District

Dear Mr. Griffin:

The Department of the Interior has reviewed the U.S. Forest Service's April 2003 Draft Environmental Impact Statement (Draft EIS) for the Greens Creek Tailings Disposal. The proposed action would expand the permitted size of the mine tailings disposal area by approximately 84.5

Our recommendations are made pursuant to the Fish and Wildlife Coordination Act and the National Environmental Policy Act and address ways to minimize impacts to scrub/shrub and forested wetlands, bald eagles, and downstream anadromous and resident fish habitats.

Our primary concern is that an adequate long-term water quality monitoring plan be established. We believe that potential acid runoff or leaching could have negative impacts on fish, wildlife, and habitats in the project vicinity. There are a series of statements in the Draft EIS discussing the uncertainty of tailings acidification risk that we believe support a recommendation for a monitoring program longer than the 30-year period discussed in the Draft EIS (Section 3.8.5, Page 3-51, and Appendix B, Pages 24 and 29). The Draft EIS identifies that the average lag period for acid generation is stated as 20 to 50 years (Appendix B). Therefore, a 30-year monitoring period may not be sufficient to detect any potential long-term consequences to surface and ground water quality. We recommend that the Final EIS extend the monitoring period to at least 50 years to ensure against delayed acid-generation in the tailings pile. The four-layer tailings cap is designed to provide an oxygen barrier that prevents acid-generation of tailings which would adversely affect the three downstream fish-bearing streams. We recommend that the vegetative growth on the cap be maintained at all times to provide erosion control. We believe that monitoring to detect cap erosion should also be required in the site's monitoring plan.

Attached are specific comments on the Draft EIS and a summary of an unpublished study of Hawk Inlet, which may prove useful to your analysis for the Final EIS.

Page 1 of 7

We appreciate the opportunity to comment on this document. Mr. Bruce Halstead is the contact for the Fish and Wildlife Service on this project. Please call him at 907-586-7353, if you have questions concerning these comments. Ms. Brenda Johnson is the contact point for the U.S. Geological Survey. Ms. Johnson can be reached at 703-648-6832.

Sincerely,

7 dineta 1 Se

Pamela Bergmann

Regional Environmental Officer - Alaska

Attachments

Page 2 of 7

### ATTACHMENT 1

### SPECIFIC COMMENTS

PB 3

### Introduction

Chapter 1, Page 1-16 of the Draft Environmental Impact Statement (EIS) describes the U.S. Fish and Wildlife Services's (FWS) responsibility under the Endangered Species Act. We recommend that Chapter 1 also include a discussion of FWS's responsibilities under the Fish and Wildlife Coordination Act (FWCA). The FWCA provides a procedural opportunity for the FWS to coordinate with the U.S. Forest Service and offers means and measures to benefit fish and wildlife resources through mitigation of impacts to water resources and associated fish and wildlife.

### Affected Environment

PB 4 Table 3-13 Checklist of Fish Species Found in Streams in or near the Greens Creek Mine Project Area: This table lists Greens Creek twice and Zinc Creek three times with the same species occurrence and abundance information. We recommend that the reiteration of information be reconciled in the Final EIS. This will reduce the number of stream listings and add clarity to the table.

PB

Figure 3-24 Bald Eagle Nest Tree Sites: Figure 3-24 shows the locations of documented bald eagle nests based on 1970-1979 information. More recent information is available on bald eagle nest locations at Hawk Inlet. We recommend that the most current bald eagle nest location information, as shown in the enclosed topographic map (Attachment 3), be included in the Final EIS.

P

Section 3.6.7 Metal Concentrations in Sea Floor Sediments and Biological Tissues: The third paragraph contains several statements that we believe are vague and qualitative. We suggest that specific metals and concentrations be identified, rather than "several metals," "generally high," and "some levels." Without specific information, the background conditions and the effects of the mining expansion on trace metals in sediment and tissues of organisms sampled cannot be evaluated.

P

Figure 3.9 in the Draft EIS is not the figure that has the sampling locations from the RTI investigation (as noted in Pages 3-15); this information is in Figure 3.6. This discrepancy needs to be corrected in the Final EIS. Some of the sampling stations appear similar to sample collection points selected for 1987 and 1997 FWS Hawk Inlet studies. Enclosure 2 summarizes the results from the 1987 and 1997 studies; FWS representatives are available to work with you to integrate these data into your analyses.

P

6

Section 3.8.1 Groundwater Quality: In addition to ranges of concentrations, we believe Table 3-3 should include information about the period of time represented by the analyses and whether any of the data represents pre-mining water quality. We suggest that all wells identified in Tables 3-3, 3-4, and 3-5 be shown in Figure 3-11 or in another appropriate map.

Page 3 of 7

PE 9

<u>Section 3.8.2 Surface Water Quality</u>: Negative impacts on surface water quality directly affect wetlands habitats and the fish and wildlife that use them. As discussed above, surface water quality sampling sites identified in Tables 3-6, 3-7, and 3-8 should be shown in an appropriate map figure. Without this information, the spatial relationship between sampling sites, mine areas, tailings deposits, and drainage cannot be determined.

# **Environmental Consequences**

PB 10 Section 4.5. Hydrology: The tables show model predictions of the concentration of selected constituents in underdrain flow. For all the alternatives, however, tailings seepage makes up less than half the underdrain flow. Therefore, we believe dilution is probably masking differences in the concentration of constituents in tailings seepage caused by the different alternatives. We suggest that an additional section be added to each of the tables to present the modeled concentrations in the undiluted tailings drainage. This would provide information on trace metal concentrations in the undiluted tailings drainage for comparison with State of Alaska Water Quality Standards (AWQS).

PE

Section 4.5.3 Alternative C: Ensuring that the project area water quality does not decline helps protect local forested and scrub/shrub wetlands habitats, migratory birds, bald eagles, and resident and anadromous fish. Sulfate concentrations above the AWQS are predicted for Alternative C for 200 years. Without a trend analysis, it is difficult to predict if metals will also exceed AWQS. We suggest inclusion of a metals trend analysis in Section 4. In addition, a discussion of a mixing zone for metals should be addressed in the Final EIS, particularly as AWQS are presently exceeded.

Page 4 of 7

### ATTACHMENT 2

# SUMMARY OF 1997 HAWK INLET STUDY RESULTS

In 1987, the U.S. Fish and Wildlife Service (FWS) collected blue mussels from Hawk Inlet for metal analyses and collected blood samples from 11 resident bald eagles to document baseline conditions in the area prior to the development of the Greens Creek mine. In 1997, FWS collected marine sediments and blue mussels from 10 locations in Hawk Inlet for metals analyses, and trapped 8 bald eagles to collect blood samples. The study design of the 1997 investigation was peer reviewed and the results were presented in a poster session at the annual meeting of the Society of Environmental Toxicology and Chemistry in November 2002. A final report is in development.

Range of metal concentrations (mean concentrations in ppm dry weight) in marine sediments were: Al 12055.14, As 5.75, B 20.91, Ba 55.99, Be 0.121, Cd 0.643, Cr 73.98, Cu 17.227, Hg <detection level, Mg 11478.16, Mn 371.11, Mo 1.256, Ni 28.83, Pb 4.554, Se 1.008, Sr 147.91, V 41.834, and Zn 58.93. Copper, manganese, lead, and zinc concentrations in sediments collected at the mine facility loading dock area were significantly higher than metal concentrations found in other areas of Hawk Inlet. These concentrations, however, were not at levels considered to have adverse effects on marine biota (Buchman 1999). Most metals detected in marine sediment samples were within expected concentration ranges, as reported in other Southeast Alaska locations (Rudis 1996). Exceptions were chromium, nickel, and strontium, which were found at higher than expected concentrations in some sediment samples. All mercury results were below the detection limit (0.09-0.10 ppm) for sediment samples. All other sediment metal concentrations at the mine facility loading dock area were comparable to results from other locations in Hawk Inlet and the reference sites.

Lead was higher in two 1997 mussel samples and the mean zinc concentration was higher in 1997 samples. Copper concentrations were significantly higher in 1997. Blue mussel metal concentrations of mercury and zinc were comparable to concentrations reported in the 1987 study.

Mean metal concentrations (ppm, wet weight) detectable in bald eagle blood in 1997 were: As 0.06, Cu 0.45, Fe 653.78, Hg 1.149, Mg 56.785, Se 1.592, Sr 0.0347 and Zn 4.136. Other metals were not found at laboratory detection limits. Data reported from 1987 eagle whole blood samples had detectable lead concentrations, but those detection limits were much lower than those of the 1997 study, so a valid comparison between years could not be made for lead. Copper and zinc concentrations were significantly higher (p <0.05) in the 1987 data than in the 1997 data. Mercury results were similar between years.

Due to detection limit differences, it could not be determined if the 1997 eagle blood lead levels were above the range reported in 1987 samples. If blood lead concentrations approached the detection limit, it would represent an increase from the 1987 results. Comparison of the 1997 results with the literature found the 1987 blood lead concentrations were at or near background (<0.20 ppm) based on exposure criteria proposed by Redig (1984) (in Harmata and Restani 1995). The 1997

Page 5 of 7

results for lead were at least below detection limits of 0.468 to 0.507 ppm. Redig's grouping (1985) puts concentrations of 0.5 ppm to 2.0 ppm as representative of a bird with a toxic, but sublethal exposure.

Zinc concentrations were found to be higher in 1987 eagle blood and mussel tissue samples. It is surmised that metal wastes from the former cannery discharged at this site contributed zinc to both water and sediment. Those formerly exposed metal wastes may now be sediment covered, to a depth making them unavailable for recirculating into the aquatic environment.

### Literature Cited

- Buchman, M.F. 1999. NOAA Screening Quick Reference Tables, NOAA HAZMAT Report 99-1, Seattle Washington, Coastal Protection and Restoration Division, National Oceanic and Atmospheric Administration, 12p.
- Harmata, A. R. and M. Restani. 1995. Environmental contaminants and cholinesterase in blood of vernal migrant bald and golden eagles in Montana. Intermount. J. Sci. 1(1):1-14.
- Redig, P.T. 1984. An investigation into the effects of lead poisoning on Bald Eagles and other raptors: final report. Minnesota Endangered Species Program Study 100A-100B. Univ. of Minnesota, St. Paul.
- Redig, P.T. 1985. A report on lead toxicosis studies in bald eagles. Final Rept. U.S. Dept. of Interior, Fish and Wildlife Serv. Proj. No. BPO #30181-0906. FY 84. 11 pp.
- Rudis, D.D. 1996. Metal concentrations in sediments and selected biota in Gastineau Channel, Juneau, Alaska. Technical Rept. U.S. Fish and Wildlife Service, Juneau, Alaska. SEES-TR-92-01. 36pp.

Page 6 of 7

# ATTACHMENT 3 MAP OF EAGLE NEST LOCATIONS

Hank 180

P. Maraden

But 2

But 2

But 2

But 2

But 2

But 3

But 3

But 4

B



# ALASKA MINERS ASSOCIATION, INC.

3305 Arctic Blvd., #202, Anchorage, AK 99503 Ofc 907-563-9229 Fax 907-563-9225 email ama@alaskaminers.org www.alaskaminers.org

| O: Name: MR Joff Jofre  | 907 - 907 - 586. 880 8 |
|-------------------------|------------------------|
| Name:                   | Fax:                   |
| Name:                   | Fax:                   |
| Name:                   | Fax:                   |
| Name:                   |                        |
| OM: Steve Borell        | Fax: (907) 563-')225   |
| BJECT: DEW GREENS CROCK |                        |
|                         |                        |
|                         |                        |



# ALASKA MINERS ASSOCIATION, INC.

3305 Arctic Blvd., #202, Anchorage, Alaska 99503 • (907) 563-9229 • FAX: (907) 563-9225 • www.alasi aminers.org

June 30, 2003

Mr. Jeff Defreest U.S. Forest Service Juneau Ranger District 8465 Old Dairy Road Juneau, AK 99801

JUN-30-03 04:08 PM ALASKA MINERS ASSN.

FAX 907-586-8808

RE: DEIS for Greens Creek Tailings Disposal Facility and Waste Management Permit

Dear Mr. Defreest,

The Alaska Miners Association is a non-profit membership organization established in 939 to represent the mining industry. The AMA is composed of individual prospectors, geologists and engineers, vendors, small family mines, junior mining companies, and major mining companies. Our members look for and produce gold, silver, platinum, diamonds, lead, zinc, copper, coal, lin estone, sand and gravel, crushed stone, armor rock, etc. Our members live and work throughout the state including the Juneau area.

21 5R We wish to go on record in support of DEIS Alternative C. This is the most practical alternative that will provide effective and environmentally safe long term tailings disposal. We also eupport the Sulfate Reduction Monitoring Plan (SRMP) but urge that the disposition of SRMP not be included in the EIS. The EIS must not pre-judge the conclusion of the SRMP. The mine must have the flexibility to incorporate engineering and economic factors based on the results of the FRMP.

The current procedure of utilizing continuos addition of carbonaceous material has prove to be effective in greatly minimizing the potential for acid rock generation after placement of the trilings. The SRMP will determine if additional carbon should be added, and if so, provide guidance regarding the amount, type and application method for any added carbon, if such addition is necessary to ensure long term environmental protection. This will provide for environmental protection while allowing the company to manage the costs of this effort. To require the a diction of carbon before the SRMP is completed or to pre-judge any other conclusion is illogical and cannot be justified. Under the normal permit review process, earbon addition, new technologics, new additives, new techniques, or any other approach, and in any combination, can be evaluated and utilized. This flexibility that is built into the permit review process must not be compromited.

5B

We do have a major concern regarding this DEIS. That concern can be addressed by two questions:

1. Why did this DEIS go into so terribly much detail? and, 2. Why did this DEIS have to take so long and cost so much? This DEIS addressed an important but none-the-less minor petential problem. The Greens Creek minesite is in a very isolated location where there are few no t-mine visitors now and after closure there will continue to be very few visitors. Furthermore, future use

of this area of Southeast Alaska will always be very restricted due to the National Monumer t status of the area. We do not understand the need for this much detail and analysis.

SB 4 This DEIS may arguably result in significant additional costs to future DEISs for other mines and other industrial facilities. This is an unwarranted precedent.

50

The Greens Creek Mine throughout its history has been a model operation. The mine has operated under very stringent requirements and its performance has been of the highest caliber. The company has gone above and beyond those requirements to minimize any potential for system up set and adverse environmental impact. There is no question that Admiralty Island National Monu nent is a national treasure and the Greens Creek Mine has proven beyond any doubt that mining can coexist and operate such an area.

Thank you for the opportunity to comment on this important issue and we arge that Final EIS be published at the earliest feasible date.

Sincerely,

Steven C. Borell, P.E. Executive Director

cc: Stan Foo, Division of Mining

---- Forwarded by Jeff DeFreest/R10/USDAFS on 05/19/2003 10:28 AM -----

SCampbellA@aol.com

To: jdefreest@fs.fed.us

CC

05/18/2003 10:59 Subject: Greens Creek Mine/Admiralty Island National Monument

AM

Mr. DeFreest,

It is important to me that the Forest Service consider my thoughts
Regarding Greens Creek's draft plan to double the size of it's waste dump site on the
Monument. As a 33 year resident of Juneau, a long-time kayaker and hiker, it is with
great concern that the mine is not only polluting Admiralty Island National Monument
with acid mine drainage but is now asking to double the existing water pollution problem.

The list of alternatives for doubling the size of Greens Creek's waste dump are not acceptable because these proposed alternatives will not protect this national treasure from toxic mine pollution. Ignoring the existing problems is a huge mistake. The current pollution problems at the mine need careful scrutiny before an informed decision about the alternatives are considered.

Kennecot can avoid historic pollution of waters with toxic metals and acid mine drainage by dealing with Green Creek's current pollution problems now and using proven techniques for dealing with new waste. Congress set high environmental standards for Greens Creek mine because it is partially located in Admiralty Island National Monument. Because the proposed expansion is based on unproven science, it is a gamble for Admiralty Island National Monument and could pollute Alaskan waters for hundreds of years

5C 2

Again, the Forest Service needs to propose a new alternative that takes a hard look at existing pollution problems and requires the Greens Creek mine to use proven management practices for its expanded waste dump.

Thank you for considering my views.

Respectfully,

Shirley Campbell Juneau, Alaska



carpenter@ncgi.reno. nv.us 05/21/2003 07:20 AM

To: jdefreest@fs.fed.us Subject: Support the Expansion of the Greens Creek Waste Dump

Juneau Ranger District Jeff Defreest

Dear Juneau Ranger District Jeff Defreest,

I write to urge the U.S. Forest Service to protect Admiralty Island National Monument by denying Kennecott's proposal to expand the size of its mine waste impoundment (the no action alternative).

DON"T BE DUPED BY THE MISINFORMATION. The statement above is NOT factual ... I urge you to SUPPORT the project. Kennecott is a globally respected minerals development company, with the expertise and on-the-ground reclamation and mitigation successes to back up its knowledge.

Greens Creek has a naturally occuring 'metals release' issue ... it is a mineralized and altered area that naturally releases metals into nature. Kennecott with its mine plan and accompanying reclamation plan can and will mitigate additional release above what is already occurring by natural processes. densest population of brown bears and nesting bald eagles in the world. Please give it the protection it so richly deserves.

ANNC I urge you to support this project, and reject the FEAR that the Mineral Policy Center is trying to pass off as science.

Sincerely,

Ann Carpenter 5445 Goldenrod Drive Reno, Nevada 89511

# CENTER for SCIENCE in PUBLIC PARTICIPATION

224 North Church Avenue, Bozeman, MT 59715 Phone (406) 585-9854 / Fax (406) 585-2260 / web: www.csp2.org / e-mail: csp2@csp2.org "Technical Support for Grassroots Public Interest Groups"



June 30, 2003

Bill Riley Office of Water Mining Coordinator USEPA Region 10 1200 Sixth Avenue, OW-130 Seattle, WA 98101 riley.william@epa.go

Pete Griffin Juneau Ranger District 8465 Old Dairy Road Juneau, AK 99801 jdefreest@fs.fed.us

Pete McGee Section Chief, State Water Discharge Permits Department of Environmental Conservation 610 University Avenue Fairbanks, AK 99709 pmcgee@envircon.state.ak.us

Stan Foo, Mining Section Chief, ADNR/Division of Mining, Land and Water 550 West Seventh Ave., Suite 900B Anchorage, Alaska 99501 stan foo@dnr.state.ak.us

Fm: David M. Chambers, Center for Science in Public Participation Amy Crook, Center for Science in Public Participation

# RE: COMMENTS OF THE GREENS CREEK MINE DEIS

The Greens Creek Mine is an operating precious/base metal project located largely within the boundary of Admiralty Island National Monument in Southeast Alaska, near Juneau. These comments focus primarily on technical concerns in the Draft EIS. In all previous environmental analyses on the mine (Greens Creek FEIS, Jan 1983; General Plan Changes EA, Mar 1988; and, Waste Rock EA, Nov 1992), it has been assumed that there was little or no potential for acid mine/rock drainage (AMD/ARD) from either the

Since 1999 there has been an extensive amount of work to analyze the ARD potential of the Greens Creek mine waste, and it has been shown that the tailings almost certainly would generate acid if left exposed to oxidizing environment, and there is also concern for a portion of the waste rock that is being brought to the surface for disposal in waste rock Site 23. While this waste is being encapsulated in Site 23 with nonacid generating waste, the encapsulation design, as well as alternatives for isolation, collection and treatment should the encapsulation not function as designed, were not analyzed in the 1992 EA for Site 23. Onset of ARD could have a significant impact on the long-term costs of closure of this project, costs that are not addressed in the present financial assurance calculations. In addition, it is assumed that operation of the water treatment plant, a significant operating expense, will be required for 7 years after closure. There is no substantiation of the 7 year estimate, which is critical in determining the value of the financial assurance.

The consolidated **CSIP**<sup>2</sup> comments below are partitioned by commenter so that questions or responses can be directed to that individual.

June 30, 2003 Page #2

# I. GREENS CREEK DEIS TECHNICAL ISSUES

# A. DEIS TECHNICAL COMMENTS FROM DAVID CHAMBERS:

# 1. Section 1 - Purpose and Need for Proposed Action

The following statement is contradicted by information presented later in the DEIS:

"The Greens Creek Mine supports an annual payroll of approximately \$26 million and employs a workforce of approximately 265 individuals—120 in mining and underground support, 60 in the mill, 55 in surface support, and 30 in administration." (DEIS, p. 1-2, emphasis added)

However, in Section 4.14 Socioeconomics, it is stated:

The socioeconomic effects, measured as prolonged benefits, could include (for example) annual direct payroll of \$19 million. (DEIS, p. 4-45, emphasis added)

The \$19 million figure for an annual direct payroll is repeated again in Table 4-6.

**Recommendation:** Since the information in Section 1 is often copied to other documents, the correct direct payroll information should be presented there.

### 2. Section 2.2.3 - Reclamation

One long standing concern for the reclaimed cover on the waste rock and tailings at Greens Creek is the potential for large trees to grow on the cover, then fall or be blown down, uprooting a portion of the cover and exposing the clay oxygen-barrier layer to desiccation.

This concern is addressed in a footnote of the DEIS as follows:

"To breach the integrity of the cap, the roots of a fallen tree would have to:

- Extend through the top layer of 24 inches of growth material (plus any additional thickness that would occur from rotted vegetation in the 100 to 150 years it would take for any hemlock or spruces to grow to full size),
- · Extend through the 8 to 12 inch layer of drain rock, and
- Extend far enough into the 24 inch compacted clay/gravel layer to disrupt the integrity
  of this layer when the tree fell.

In dry areas where trees have deep tap roots to reach water, such as the Richmond Hill Mine in South Dakota, tree growth on the mine covers has been prohibited because of the potential of blow downs to disrupt the eap. In southeast Alaska the root structures of hemlock and spruce trees are typically very shallow Greens Creek has informally measured the thickness of the root wads of a number of fallen old growth trees in the vicinity of the mine and tailings facility and have not found any that extend to 24 inches in depth, less than the depth of the top layer of the cap. When blow down does occur, the dirt from the root falls back into the hole over the next several years and over time the hole evens with the rest of the forest floor." (DEIS, p. 2-30, footnote 1, emphasis added)

While this empirical observation is a start, the potential impacts should the cover be breached are significant. All the water quality modelling, which assumes the oxygen-barrier cover works 100% as designed, would be invalid if the oxygen-barrier layer was breached, or even exposed.

June 30, 2003 Page #3

DC

3

DC\_

DC

DC

**Recommendation:** A qualified silviculturalist or forest biologist should be employed to verify and/or quantify the potential impacts from tree blow down on the engineered cover.

### 3. Section 3.6.6 - Marine Water Quality

From a description of marine water quality in the DEIS, it appears there is significant lead contamination.

"Limited ongoing baseline marine water quality studies show that lead concentrations in Hawk Inlet and outside the sill vary, with location, from below detection limits to near acute levels (RTI, 1998)." (DEIS, p. 3-15, emphasis added)

However, it is unclear from this description where the lead contamination is occurring.

Recommendation: A more thorough description is needed in the EIS to explain where this contamination is occurring, the source of the contamination, and what measures can be taken to minimize or eliminate the contamination.

# 4. Section 3.6.7 - Metal Concentrations in Seafloor Sediments and Biological Tissues

Typographic Error:

"... S-3 is in intertidal mussel sampling site inside of Hawk Inlet (Figure 3.9)." (DEIS, p. 3-15)

Recommendation: 1 believe the reference should be to Figure 3-6. Figure 3-9 (Not 3.9) shows the tailings area, not Hawk Inlet. In addition, Site S-3 is not shown on Figure 3-6.

### 5. Section 3.8.1 - Groundwater Quality

Figure 3-11 is used to reference the location of Wells Showing Elevated Sulfate Concentrations (Table 3-5). The wells are not labeled on Figure 3-11, and as a result it is not possible to correlate the data in Table 3-5 with well locations.

Recommendation: Label the wells on Figure 3-11, or at a minimum label the wells for which data in Table 3-5 is presented.

# 6. Section 3.8.2 - Surface Water Quality

Figure 3-12 is used to reference the location of Surface Water Quality – FWMP Sites (Table 3-6). The sites are not shown or labeled on Figure 3-12.

Recommendation: Show and label the FWMP sites on Figure 3-12, or at a minimum label the wells for which data in Table 3-5 is presented.

# 7. Section 6.2 - Mass Load Model Results, Appendix B - Hydrology and Geochemistry:

(a) The 5th of 6 paragraphs on Page 63 contains the following sentences:

"Contact waters are assumed to instantaneously mix with surface runoff from the pile and downgradient groundwater, and that mixing will be complete by the time the waters reach a compliance location prescribed by the regulatory agencies. This could be accomplished using a treatment works that would utilize various chemical and physical processes such as oxidation, adsorption, dilution and dispersion that may occur in surface water or

The first sentence refers to mixing, while the second refers to water treatment. It appears that there may have been some material deleted between these two sentences.

Please clarify the wording/meaning of this paragraph.

groundwater downgradient of the tailings facility."

DC 2

DC

June 30, 2003 Page #4

### (b) The Note on Page 67 states:

NOTE: For all alternatives and tables - the hardness downgradient of the tailings facility was calculated in the mass load model. Consequently, the predicted hardness used to calculate allowable metal concentrations was the predicted hardness in the combined drain water and receiving water.

Was the hardness used in the mass load model calculation limited to a maximum of 400 mg/l as required by EPA?

June 30, 2003 Page #5

### B. DEIS TECHNICAL COMMENTS FROM AMY CROOK:

# 2.2.1 Water Management During Active Operations:

This section suggests a new water treatment plant is needed. Why is this necessary? Would any of the alternatives cause an increase in the quantity of water needing to be treated during the life of the mine? Would any of the alternatives cause a change in the quality of the current water collected for treatment such that a different type of wastewater treatment plant is needed during the life of the mine? Does the current wastewater treatment plant have enough capacity to fully treat the increased run off from the expanded tailings impoundment, and all collected storm water during a 25 year, 24 hour runoff event?

Recommendation: The DEIS needs to assess the current and future wastewater treatment needs vs. the adequacy of the existing infrastructure and provide a full explanation. The bond calculation needs to cover the cost of any additional wastewater treatment facilities during operation or in a long-term closure plan.

# Section 2.2.3 Concurrent reclamation pg 2-34:

Instead of only initiating reclamation planning as parts of the tailings impoundment are available in the next 2-5 years, the Forest Service must require the KGCMC to begin concurrent reclamation of parts of the tailings impoundment as soon as possible to minimize acid mine drainage and metals leaching potentials, and other water quality problems.

Recommendation: This requirement should be made an enforceable standard in the Plan of Operation.

### Section 2.4.1 Water Quality

The DEIS mentions or implies perpetual treatment will be needed to prevent water quality violations with discharges from the mine (pg 2-36, 2-37). In the section describing the effects of alternative C it is stated that "elevated arsenic and antimony that are predicted by the model are likely to be removed from solution when the water from the under drain contacts the atmosphere causing iron and manganese compounds to chemically precipitate, adsorb arsenic and antimony, and settle from solution" (Page 2.36-7). The effects of this precipitate on the environment, biota and other water uses (drinking water, recreation, etc.) need to be described. Recent literature shows that metal precipitate is still biologically available.

Recommendation: The bond needs to be re-calculated to include the costs of perpetual treatment of all managed waters, fresh and salt.

# Section 3.6.7 Metal Concentrations in Seafloor Sediments and Biological Tissues

There is a clear indication from the data cited in this section that metals levels are elevated near the mine outfall and at other sampling sites (the text says acute levels are reached but does not discuss this statement). The discussion in this section is too limited to fulfill its stated goal of "determining whether mine operations caused any increase above natural levels of metals in sediment and tissues of organisms sampled." In addition to fully determining if existing metal levels in the sediments are causing problems, the expected increase in metal loading to Hawk Inlet from each alternative must be calculated.

The sediment concentrations of heavy metals at the background station (S-2) showed no substantive change compared to sample sites S-1. However, metal levels in biota showed an increase at all three sampling sites. Further investigation needs to be made to determine if station S-2 is really unaffected by mine operations and thus can truly be used as a background stations for comparisons.

Recommendation:

AC 2





June 30, 2003 Page #6

AC 401

 Available data needs to be presented in a table showing metal concentrations in sediments and biota. Please include sediment criteria values (for example; NOAA PELs, Washington State, British Columbia) in the table for comparison to evaluate how local concentrations compare to regulatory values.

AC 402

 Metal concentration increases need to be fully evaluated, including any speciation or biological transformations of metals (mercury and selenium in particular).
 Methyl mercury values need to be sampled in sediments and biota to determine concentrations

4.3 AC and then food web impacts must be evaluated.
4) Complete biological surveys need to be conducted to determine the health of the benthic invertebrate and fish communities.

AC 4.5

5) A risk assessment of the impacts to the local marine environment must be conducted to determine whether mine operations are now, or will by the end of the mine life impact marine sediments and biota

AC 4.6

6) Evaluate influence of mine operations on background sampling locations. If there is influence from the mine re-locate describe how the monitoring information will be interpreted and consider changing the background sampling sites.

AC 4.7

7) Determine what the heavy metal load will be to the marine environment for the life of the mine and complete an impact assessment on biota with this information.

AC

 Figure 3.9 does not show sample site S-3, nor does figure 3.6. Please provide a map of this sampling location.

AC 5

# 3.7 Geology and Geochemistry

This section describes seeps from the tailings impoundment, but doesn't present any monitoring information or discussion of the water quality sampling or source control measure taken to control surface water discharges.

Recommendation: Include a discussion of this information along with a description of any surface and groundwater and biota sampling conducted in other know seeps including CC Creek, Further Creek, and Proffett/Franklins Creek.

AC

# 3.7.9 Groundwater flow systems

Label all well locations on figure 3-11 so that monitoring information may be correlated with well location.

### 3.8 Water quality

Will increasing the size of the tailings impoundment increase the seepage from underneath or along side the facility?

AC

Recommendation: If so, calculate the additional load to ground and surface waters.

Further seep is showing elevated levels of sulfate and conductivity, while pH was significantly depressed to 4.0 (Letter McGee to Oelklaus, October 10, 2001). The DEIS identifies several other seeps originating from the tailings impoundment, including CC Creek, Further Creek, and Proffett/Franklins Creek. Page 3-29-30 discusses a direct discharge of surface water and groundwater coming from the tailings impoundment and going into Cannery Creek and Tributary Creek. All seeps should be considered point sources.

June 30, 2003 Page #7

Recommendation: EPA must consider each seep to surface waters as a point source under their NPDES permit requiring full monitoring and calculated water quality based effluent limits.

### Table 3-5

AC 8

Table 3-5 shows data from monitoring wells located down gradient from the tailings impoundment. There are several metal levels that are in exceedances of the WQS (e.g. site MW-01-15C, MW-01\_06A, MW-01-06B, MW-01-08A dissolved silver; site MW-01-3B dissolved selenium; site MW-96-4, MW-01-3A dissolved areanci; MW-01-08 dissolved copper, etc.). Sulfate, TDS, and conductivity were elevated at several sites. The method detection levels used for silver and cadmium appear to be above the WQS, and thus inappropriate for determining if there are exceedances of WQS.

Recommendation: 1) The full extent of seepage from the tailings impoundment to ground and surface water must be quantified and reported. EPA and ADEC must consider each seep to surface waters as a point source under their NPDES permit requiring full monitoring and calculated water quality based effluent limits. 2) All analytical methods must use low enough detection levels to determine if there are exceedances of the WQS.

### Table 3-6:

Table 3-6 shows a summary of FWMP sites above and below the tailings impoundment. Several water quality parameters and metal levels exceed WQS (e.g. FWMP site #9 pH of 4.2, dissolved cadmium, copper, lead, mercury, silver, and zinc). These discharges should have the same type of analytical and source control action plan as was developed for further seep. The DEIS identifies reactive waste rock as the source for some of the contaminant leaching (pages 3-46-47).



This section describes water quality impacts from reactive waste rock that is located throughout the mine site. The waste disposal permit, 0111-BA001 states that "This permit may be modified to include other mine related disposal areas or waste materials if the Department determines that there is an environmental problem associated with the management of those areas or waste materials." (page 5). ADEC must recognize that this evidence of water quality impacts from waste rock deposition throughout the mine site gives ample information to justify including all waste rock disposal sites in the waste disposal permit. In addition, all discharges to surface water should be considered point sources and regulated under the NPDES permit.

Recommendations: 1) Regulatory agencies should require an action plan from KGCMC that quantifies the source and amount of contamination entering into surface waters below the tailings impoundment. 2) ADEC must include all waste rock disposal sites throughout the mine site in the waste disposal permit with full monitoring and bonding requirements. 3) EPA must consider each seep to surface waters as a point source under their NPDES permit requiring full monitoring and calculated water quality based effluent limits.

# AC

### Section 3.8.5 Tailings Geochemical Properties

The contact water has elevated levels of calcium, sulfate and magnesium ions (page 3-54). Recent studies have shown that Total Dissolved Solids (TDS) that contain calcium are toxic to fish at levels as low as 250 ppm (Stekoll 2003). Is TDS sampling conducted in surface waters affected by runoff and seepages from the mine? What are the TDS constituents and concentrations in local streams with spawning populations?

---- Forwarded by Jeff DeFreest/R10/USDAFS on 06/09/2003 10:57 AM ---jai crapella To: jdefreest@fs.fed.us <jaiping@yahoo.c om> Subject: Greens Creek 06/03/2003 02:28 PM

Hello,

I am writing to voice my concern for your plans to double Greens Creek's tailings pile. While the mine provides needed economic benifits for Juneau it has been consisitently Tel violating clean water standards. Before any expansion can be consistered I think you have to address the current problems Grenns Creek has with it's existing factity. You have an extra important duty to be vigilant since Admirality National Monument is right there.

I am against any expansion of Greens Creek at this time.

Thank you, Jai Crapella Juneau, AK



One Sealaska Plaza - Suite 400 Juneau, AK 99801-1276

Fax (907) 463-3897

| To: Pete Griffin                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fax Number: 586- 8808                                                                                                                                                                                               |
| From: Natural Resources Department - (907) 586-9276                                                                                                                                                                 |
| Russell Dick, Manager Natural Resources Ron Wolfe, Corporate Forester Jan Huberth, Executive Secretary Rick Perkins, GIS Manager Michele Metz, Administrative Assistant Derik Frederiksen, Environmental Specialist |
| Date: 6/30/03 No of Pages (inc. cover): 3  Comments: Greens Creek Tailings Disposal DES  Comments                                                                                                                   |
|                                                                                                                                                                                                                     |



SEALASKA

June 30, 2003

Mr. Pete Griffin Juneau District Ranger Juneau Ranger District U.S. Forest Service 8465 Old Dairy Road Juneau, AK 99801

Re: Greens Creek Tailings Disposal, DEIS

Dear Mr. Griffin:

RD

Scalaska Corporation appreciates having the opportunity to review and comment on the above referenced document. Extending the life of the Greens Creek mine is very important to providing highly paid jobs for people in northern Southeast Alaska and for enhancing its economy and social structure.

Our review indicates that Greens Creek is very concerned about managing the tailings pile in an efficient manner so that it will have a minimum impact on the environment over a very long time. The recommended Alternative B certainly meets all reasonable conditions that were addressed in the DEIS. This DEIS does a comprehensive job of addressing the tailings footprint, effluent discharge, visual impact, impacts on waters of the United States, remediation treatment if required, and the immediate habitat.

Sealaska has concluded that Alternative B brings a reasonable balance to meeting impacts resulting from managing the tailings disposal area over the long term including well after the Greens Creek mine is expected to be inactivated. If areas exist that could be improved, they could include:

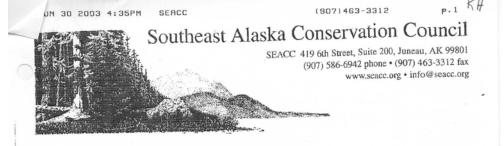
- Have a smaller foot print to assure that the drainage pattern efficiently gathers
  effluent and deposits it in Hawk Inlet. However, this should be balanced with having
  a tailings pile that does not greatly impact the viewshed from Hawk Inlet.
- Consider having some treatment of effluent during the time that the mine is active. It
  is important that treatment has a negligible impact on the economics of operating the
  mine and marketing its metals.

RI

The operation of the mine already has been interrupted due to world markets; therefore, it is important that any requirements placed on the management of the tailings be flexible and low in cost so that the mine can operate on as full time a basis as possible.

SEALASKA

Thank you for providing Sealaska Corporation the opportunity to comment on this DEIS.


Sincerely,

SEALASKA CORPORATION

Natural Resources Manager

JG

March 24,2003 Dear Jeff. following are our comments on the Greens Gr. mines 1. Please do not allow KennecoTT to expind its mine waste Jeff Defreest impoundment. Juneau District Tongass Nat. Forest Box 21628 2. the Greens Gr Mine does not meet the standards for mining set forth by Congress on mysted Juneau AK 99802 Over



June 30, 2003

Bill Riley Office of Water and Mining USEPA Region 10 1200 Sixth Ave, OW-130 Seattle, WA 98101

Pete McGee Section Chief, State Water Discharge Permits DEC 610 University Ave. Fairbanks, AK 99709

Stan Foo, Mining Section Chief 550 West Seventh Ave., Suite 900B Anchorage, Alaska 99501

Mr. Jeff Defreest Juneau Ranger District 8465 Old Dairy Road Juneau, AK 99801

RE: Comments on state and federal permits for the Greens Creek mine

### Introduction

The following comments are submitted by the Southeast Alaska Conservation Council (SEACC), Northern Alaska Environmental Center ("Northern Center") and Earthjustice on the Kennecott Greens Creek Mine Tailings Disposal Draft Environmental Impact Statement.

ALASKA SOCIETY OF AMERICAN FOREST DWELLERS, Peint Baker \* ALASKANS FOR JUNEAU \* CHICHAGOF CONSERVATION COUNCIL, Tenaker \* CUSTOMARY & TRADITIONAL GATHERING COUNCIL, OF RAKE \* FRIENDS OF BENNIRS BAY, Juneau \* PRIENDS OF GLACIER BAY, GUIDNAS \* JUNEAU ALDDIJION SOCIETY JUNEAU GROUP SIBERRA CLUB \* JOWER CHATHAM CONSERVATION SOCIETY, For Alexander \* LYNN CARAL CONSERVATION, Halms \* NARROWS GENNERVATION COLLITION FERDINGER\* COUNCIL, Telican \* PRIENCE OF WALLES CONSERVATION LEAGUE, Guing \* STITA CONSERVATION SOCIETY TONGASS CONSERVATION SOCIETY, Kerchilan \* TARJU CONSERVATION SOCIETY, Juneau \* WRANGELJ, RESOURCE COUNCIL \* VARUITAT RESOURCE CONSERVATION COUNCIL

p.3

SEACC is a coalition of 18 volunteer citizen organizations based in 14 Southeast Alaska communities. SEACC's membership includes commercial fishermen, Alaska Natives, small-scale timber operators and value added wood product manufacturers, tourism and recreation business owners, hunters and guides, and Alaskans from many other walks of life. We are dedicated to safeguarding the integrity of Southeast Alaska's unsurpassed natural environment while providing for the sustainable use of our region's resources.

JUN 30 2003 4:35PM SERCC

The Northern Center promotes conservation of the environment in Interior and Arctic Alaska through advocacy, education, and sustainable resource stewardship. The Interior and Arctic regions of Alaska face many mining challenges similar to those at Greens Creek.

Earthjustice is a non-profit public interest law firm dedicated to protecting the magnificent places, natural resources, and wildlife of this earth and to defending the right of all people to a healthy environment. Earthjustice brings about far-reaching change by enforcing and strengthening environmental laws on behalf of hundreds of organizations and communities. Earthjustice represents SEACC and Northern Center in an adjudication of the Alaska Department of Environmental Conservation's waste disposal permit for the Greens Creek Mine.

Kennecott Greens Creek Mining Company (KGCMC) propose to expand both the area and the disposal capacity of the existing tailings facility at the Greens Creek Mine in the Admiralty Island National Monument. Under the current permit, the existing tailings facility has space for about 1 million tons of tailings. Based on known and anticipated ore reserves, KGCMC has requested that site capacity be increased to store roughly 6 million tons of tailings. Increased production will lead to increases in waste rock and construction rock in addition to the increase in tailings.

SEACC, Northern Center and Earthjustice support the No Action alternative based on the failure of the Forest Service to provide an alternative that reasonably assures the public that Admiralty Island National Monument will not be irreparably harmed by the proposed action. The Forest Service must prepare and circulate for public opinion and comment a supplemental DEIS because the range of alternatives and scope of analysis in the DEIS is so inadequate as to preclude meaningful analysis.

Environmental Threats From All of the Sites with Potential Acid Mine Drainage

The scope of the DEIS is confined to the proposed expansion of the Greens Creek tailings facility. The Forest Service limits the "purpose and need" for the EIS to "consider changes to the 1983 approved Plan of Operations (as amended) for the Greens Creek Mining Company regarding tailings disposal in order to allow for continued operations." The scope is too narrow to meet the requirements of the National Environmental Policy Act (NEPA) and too narrow to address all the environmental

threats facing Admiralty Island National Monument from continued operation of the

Under NEPA, agencies must prepare supplemental environmental impact statements if there are "significant new circumstances or information relevant to environmental concerns and bearing on the proposed action or its impacts." 40 C.F.R. § 1502.9(c)(1)(ii) (2002). Subsequent to the original 1983 EIS for the mine, monitoring has disclosed significant acid generating potential in the tailings, the waste rock, and possibly even some of the construction rock. None of the previous environmental analyses done under the National Environmental Policy Act (NEPA) ever addressed the potential for AMD at the Greens Creek mine. In fact, the original Environmental Impact Statement (EIS) in 1983 describes the "stable chemical nature of the tailings," A 1988 environmental assessment states that the "tailings would not be acid producers" and that "acid production and acid leaching potential are low." The 1992 environmental assessment for additional waste rock disposal capacity at Greens Creek Mine assumed that "It here would be low potential for metals to reach groundwater due to the low infiltration of water through the waste rock and the lack of oxygen in the waste rock pile which would promote metals leaching." In 2000, the Forest Service concluded that additional environmental analysis was unnecessary to approve the expansion of Greens Creek tailings pile within the footprint approved in the 1988 Decision Notice. 1

Recent monitoring data demonstrates that acid mine drainage and heavy metals leaching is occurring not only from the tailings but also from the waste rock dumps. Mine operators are presently placing potentially acid generating material in waste rock Site 23, and the inactive Sites D & E contain similar material as well. In addition, monitoring data raises questions about the whether construction rock used for the road and the mill site pad has acid generating potential. Most recently, in January 2003, the Department of Environmental Conservation issued a report substantiating the existence of acid mine drainage at waste rock sites in Greens Creek Mine. DEC Memorandum dated January 28, 2003 Concerning Solid Waste Permit Number 0111-BA001. The long-term potential for acid mine drainage threatens Admiralty Island National Monument's fisheries, wildlife, and surface and ground water quality.

Despite the significant new circumstances and information subsequent to the 1983 FEIS, the Forest Service has never prepared an EIS or Environmental Assessment to address the significant issue of acid mine drainage and increased heavy metals concentrations throughout the Greens Creek Mine. In fact, every environmental analysis to date has assumed no acid generating potential. See 1983 FEIS at p. 4-24, 1988 EA at p. 4-23, 1992 EA at pp. 79-80, 2003 DEIS at p. 3-51.

None of these analyses, including the 2003 DEIS, acknowledge what is now known about acid mine drainage at the waste rock and construction rock sites. The 2003

3

KH

KH

KH

5

A Supplemental EIS is Required Because the DEIS Failed to Address the

KH

3

See Memo from Assistant Forest Supervisor Salinas to Greens Creek Project File (April 4, 2000). On April 14, 2000, SEACC submitted a letter to Salinas objecting to the Assistant Forest Supervisor's conclusion that additional NEPA analysis was unnecessary. By this reference, we incorporate these referenced materials into the administrative record for this DEIS

DEIS analyzes only the impacts associated with the expansion of the tailings facility. Even though there is documented evidence of acid generation and leaching of metals in the waste rock and the construction rock, the Forest Service has continued to approve General Plans of Operations at Greens Creek without preparing an EIS. The risks of acid mine drainage are potentially catastrophic. The data on the acid generating potential in the waste rock and the construction rock constitute significant new information that needs to be considered in a supplemental environmental impact statement. An EIS that covers the entire GPO - including the waste rock piles - is needed to address the risks of acid mine drainage from the waste rock, to consider alternatives to minimize this risk, and to provide for public participation in these decisions.

III. The Alternatives Analysis is Deficient Because the Scope is Too Narrow and It Does Not Satisfy NEPA Requirements.

The Forest Service analyzed only alternatives that would modify the GPO to permit expansion of the tailings disposal facility. These alternatives fail to respond to the significant new information regarding the existence of, and impacts to monument values from, acid generating material in the waste rock and construction rock. In addition, the alternatives analysis fails to provide a sufficient range of alternatives or a detailed discussion of each alternative.

A. The Forest Service Failed to Analyze Reasonable Alternatives that Remedy Threats of Acid Drainage from Waste Rock and Construction Rock

KGCMC has proposed expanding the tailings facility and extending the life of the mine in response to known and anticipated ore reserves. These increases will lead to increases in waste rock and construction rock that will affect the lease area and mine site. Despite the fact there is documented evidence of the threat of acid mine drainage at waste rock and construction rock sites, the DEIS fails to consider alternatives that would remedy these significant environmental risks. The issue of potential acid drainage was not recognized or analyzed as a significant issue in the November 1992 EA and FONSI that was a part of the approval process for waste rock Site 23. Since that time the KGCMC has implemented special handling procedures, approved by the Forest Service, to isolate the waste rock with the most potential for acid production in the center of that waste rock pile. These special handling procedures, which address the possibility of acid mine drainage, were not discussed with the public, and have not been subject to an environmental analysis, even though the issue they address might result in a significant environmental impact.

NEPA requires the Forest Service to "[r]igorously explore and objectively evaluate all reasonable alternatives." 40 C.F.R. § 1502.14(a) (emphasis added). However, the Forest Service made no effort to put forth alternatives that identify and remedy the threats posed by the impacts of potential acid generating material from waste rock and construction rock. In particular, the alternatives do not address the potential acid mine drainage problems with the road, the mill site, and the quarries. The Forest

Service's failure to consider alternatives that address these environmental threats defeats the purpose of NEPA's alternatives analysis requirement.

JUN 30 2003 4:37PM

KH

KH

KH

Waste rock Site D & E, both sites that are no longer in use, should have engineered covers placed on them to test the effectiveness of the cover design, and the sites that are to be backfilled into the mine should have a definite backfill schedule stated. instead of allowing them to continue to leach contaminants on the surface as is now the

B. The Forest Service Did Not Describe Each Alternative in Sufficient Detail Or Explore and Evaluate All Reasonable Alternatives.

NEPA requires the Forest Service to "[d]evote substantial treatment to each alternative considered in detail including the proposed action so that reviewers may evaluate their comparative merits." 40 C.F.R. § 1502.14(b).

The Forest Service has failed to describe in sufficient detail the various alternatives. For example, the preferred alternative, Alternative C, provides for a continuous addition of carbon to the tailings during placement, but there is no explanation of how this would be done. Carbon addition to prevent acid formation over the long-term is a new, unproven technique, and there are no examples of it being done successfully in the past. Therefore there is even more need for the Forest Service to describe this alternative in detail.

In addition, the plans for the preferred alternative are insufficient to determine the risks of significant environmental impacts. Alternative C provides for the use of a postclosure construction of an engineered soil cover on the pile. The DEIS states that "folnce the cap is in place, runoff water will not come in contact with tailings." 2003 DEIS at p. 2-29. The Forest Service relies too heavily on the success of the cap. It is unlikely that the effectiveness of the cap can be stated with this degree of certainty. There is a risk that the cap will not work and the result will be significant environmental impacts. The DEIS fails to explain what would happen if the cap failed and what system would be put in place to replace the cap.

The Forest Service has also failed to rigorously explore all reasonable alternatives. The pyrite reduction alternative was eliminated from detailed study "because of the difficulty of reclamation of the containment cells, technical feasibility (integrity of long term repository), and high costs associated with its development." 2003 DEIS at p. 2-47. However, pyrite reduction has proven to be a reasonable alternative in the past. For example, this technique is presently being used at the Thompson Creek Mine in Idaho, and incorporated by the Forest Service into its operating plan after analysis in an EIS.

IV. The Cumulative Impacts Section is Deficient Because It Lacks Analysis and Ignores the Threat from Waste Rock and Construction Rock.

32

JUN 30 2003 4:36PM

KH

5

KH

14

The DEIS fails to recognize any significant risk of harm to the environment. The cumulative impacts analysis not only fails to address the significant risk of harm to the environment from the expansion of the tailings facility, but also fails to recognize the risk of that harm together with the risks of acid mine drainage from the waste rock and construction rock.

NEPA requires that agencies consider cumulative impacts in an EIS. 40 C.F.R. § 1508.25. Cumulative impact is defined as "the impact on the environment which results from the incremental impact of the action when added to other past, present, and reasonably foreseeable future actions regardless of what agency (Federal or non-Federal) or person undertakes such other actions." 40 C.F.R. § 1508.7.

The Forest Service asserts that "[p]ast, present, and reasonably foreseeable future impacts included in these analyses are not limited to tailings disposal impacts." 2003 DEIS at p. 4-5, 4-48. Similarly, the Forest Service asserts that the scope for the analysis of cumulative impacts includes identifying "potential effects of the expansion of the tailings pile and attendant extended life of the Greens Creek mine that may occur on the natural resources and human environment." 2003 DEIS at p. 4-49. Again, in the Cumulative Effects by Resource section, the Forest Service states that its analysis includes "the cumulative effects of past mining operations." 2003 DEIS at p. 4-51.

However, contrary to these assertions, a review of the potential impacts on the resources in the Greens Creek mine area reveals no discussion of reasonably foreseeable cumulative impacts from the waste rock or construction rock. It is already known that there is significant acid generating potential not only in the tailings, but also in the waste rock and construction rock. The increased production associated with expansion of the tailings facility will also result in increased waste rock with significant acid drainage potential. Yet the Forest Service fails to address this significant risk in its cumulative impacts analysis. For example, the entire discussion of hydrology in Chapter 4 reveals no consideration of the risk that acid mine drainage from the waste rock could exacerbate impacts from the tailings. 2003 DEIS at pp. 4-10 to 4-32.

At a very minimum, the Forest Service is required to recognize that the acid generating potential in the waste rock and construction rock magnifies the cumulative impacts associated with expansion of the tailings facility. The DEIS cumulative impacts section must include an analysis of impacts from waste rock and construction sites on each resource in the Greens Creek mine area and Monument values.

V. The DEIS Fails to Address Reasonably Foreseeable Risks of Significant Direct Impacts to the Environment from the Expansion of the Tailings Pile

The DEIS fails to consider the risk of significant direct adverse effects to the environment from acid mine drainage from the tailings pile if the untested control technologies do not work as expected. NEPA requires the Forest Service to consider and disclose this risk in the EIS.

Like the environmental analyses in 1983, 1988, and 1992, the 2003 DEIS assumes that acidification will not occur in the tailings pite. 2003 DEIS at p. 3-51. However, subsequent to those earlier analyses, monitoring disclosed significant acid generating potential in the tailings. For example, the 1999 Shepherd-Miller report, Technical Review ARD/Metals Leaching and Freshwater Monitoring Plan, Greens Creek Mine, concluded that the existing tailings at Greens Creek are acid generating and that acid and heavy metals could potentially threaten the ground and surface water on the National Monument. Despite this newly discovered evidence, the DEIS completely ignore this significant risk of harm.

Instead of addressing the problem of acid generating potential in the tailings, the Forest Service relies completely on the success of the reclamation plan. It assumes that the soil cap required in the plan will mitigate impacts by controlling or preventing acid mine drainage. As mentioned above, there cannot be such a high degree of certainty in the success of the reclamation plan. There is a significant risk of harm to the environment that the Forest Service fails to consider when it relies on a reclamation plan that assumes that "once the cap is in place, runoff water will not come in contact with tailings." 2003 DEIS at p. 2-29. There is a significant risk that the reclamation plan will not work and result in substantial harm to the environment. The DEIS dismisses this risk with a one-sentence assertion that any acid drainage resulting from a failure of the cap "should" be remedied by adding lime to the surface. 2003 DEIS at p. 3-51. This assertion is unsupported by any analysis and does not meet NEPA's requirement that the Forest Service insure the scientific integrity of the discussions and analysis in the DIES.

There are two critical assumptions used in the water quality modelling that may not hold true:

First, the engineered oxygen-barrier cover will work, and will work at 100% efficiency for the indefinite future. Although the design of the cover is probably the best approach for isolating the waste, both tailings and waste rock, given present technology, it is nonetheless unproven technology. It depends on maintaining a saturated clay oxygen-barrier layer to be effective. Construction flaws, a long dry spell, or accidental breach of the cover (from a landslide, falling trees, etc) could allow oxygen to penetrate the waste more deeply than modeled.

It is stated in the description of the oxygen diffusion modeling: "... acidification ... is not expected to occur in tailings in the field because runoff and infiltration prevents acid salt accumulation. After placement of the engineered soil cover, the reduced supply of oxygen will slow sulfide oxidation thereby controlling salt accumulation." (DEIS, Appendix B, Hydrology and Geochemistry, p. 31); and, "... the tailings acidification risk is considered minimal. However, the data upon which this analysis is based are variable, and the underlying assumptions have a high degree of uncertainty making this estimate subject to error." (DEIS, Appendix B, Hydrology and Geochemistry, p. 29) This cover must work essentially in perpetuity. If the integrity of the cover does not hold, significant environmental contamination will result.

KH 16

KH

The second assumption, is that the addition of carbon in the preferred Alternative C will maintain a reducing environment in most of the tailings. The mass balance model assumes: "Water will become completely reduced as the added carbon initiates sulfate reduction." (DEIS, Appendix B, Hydrology and Geochemistry, Table 11, Alternative C, p. 61); and, "Water will remain reducing so that concentrations will change little." (DEIS, Appendix B, Hydrology and Geochemistry, Table 11, Alternative C, p. 61)

KH

18

The use of carbon to induce and maintain a reducing environment in the tailings has been utilized to reduce the levels of contamination in heap leach piles, but it has not been demonstrated that the technique will work over the long term - i.e. in perpetuity. If the reducing environment is not maintained as predicted by the stochastic mass load model, zinc (and other metals?) levels may not be reduced by the sulfate reduction reactions sustained by carbon addition - a reduction factor of approximately 500. If this reduction factor in the model is inaccurate, or if the carbon addition does not work over the long term as anticipated, zinc and other metals levels could increase significantly, possibly necessitating water treatment.

VI. The Forest Service Did Not Follow NEPA Requirements Regarding Incomplete or Unavailable Information

The DEIS points to uncertainty when discussing both the reclamation plan for the tailings facility and the cumulative impacts analysis. In its discussion of the reclamation methods, the Forest Service states that "the overall tailings acidification risk is considered minimal," but then admits that "the data upon which this analysis is based are variable. and the underlying assumptions have a high degree of uncertainty, making this estimate subject to error." 2003 DEIS at p. 3-51. Similarly, in its discussion of cumulative impacts, the Forest Service states that "there would be very small differences between any of the action alternatives in terms of cumulative effects," but then adds that "[t]hese small differences are greatly overshadowed by the inherent uncertainty in making estimates of past, present, and reasonably foreseeable cumulative effects." 2003 DEIS at

NEPA requires that when there is incomplete or unavailable information, the Forest Service make clear that such information is lacking. 40 C.F.R. § 1502.22. If the costs of obtaining that information are not exorbitant and the information is "essential to a reasoned choice among alternatives," the agency must include the information in the EIS. 40 C.F.R. § 1502.22(a). However, if the costs of obtaining that information are exorbitant or the means to obtain it are unknown, the agency must include the following within the EIS: (1) A statement that such information is incomplete or unavailable; (2) a statement of the relevance of the incomplete or unavailable information to evaluating reasonably foreseeable significant adverse impacts on the human environment; (3) a summary of existing credible scientific evidence which is relevant to evaluating the reasonably foreseeable significant adverse impacts on the human environment, and (4) the agency's evaluation of such impacts based upon theoretical approaches or research methods generally accepted in the scientific community, 40 C.F.R. § 1502.22(b).

The only limitation in the CEQ regulations is that the information must be "relevant to reasonably foreseeable significant adverse impacts." The regulations specify that "'reasonably foreseeable' includes impacts which have catastrophic consequences, even if their probability of occurrence is low, provided that the analysis of the impacts is supported by credible scientific evidence, is not based on pure conjecture, and is within the rule of reason." 40 C.F.R. § 1502.22(b).

The DEIS fails to demonstrate that the Forest Service conducted this analysis as required by NEPA even though it acknowledges incomplete information regarding the reclamation plan for the tailings facility and the cumulative impacts analysis. The incomplete information regarding the reclamation plan for the tailings facility includes the reasonably foreseeable impacts from the acid generating potential in the existing tailings. There is credible scientific evidence that such impacts would have catastrophic consequences on the surface and groundwater within Admiralty Island National Monument if the reclamation plan does not work. Acid mine drainage, once it starts, is almost impossible to stop and lasts forever. It would forever poison the waters of the Greens Creek area or, in the alternative, require expensive water treatment in perpetuity. The Forest Service's confidence in the effectiveness of the cap and in the fact that the overall tailings acidification risk is minimal cannot be reconciled with the Forest Service's uncertainty about the reclamation and closure methods. Rather than addressing the "high degree of uncertainty" regarding the tailings acidification risk, the Forest Service instead focuses on reclamation and monitoring programs to prevent or control acid mine drainage. Even if the probability of occurrence of impacts from acid mine drainage is low, the catastrophic consequences that would flow from the impacts require the Forest Service to go through this type of analysis. The impacts from acid mine drainage meet the "reasonably foreseeable" criteria because they have catastrophic consequences, are clearly supported by credible scientific evidence, are not based on pure conjecture, and are within the rule of reason. Therefore the Forest Service must follow the process set forth in 40 C.F.R. § 1502.22.

KH 20

The Forest Service must complete the same analysis for the cumulative impacts section because the DEIS acknowledges that there is incomplete information relevant to reasonably foreseeable cumulative effects. The Forest Service failed to include a complete cumulative impacts analysis in the DEIS because of the "inherent uncertainty in making estimates of past, present, and reasonably foreseeable cumulative effects." 2003 DEIS at p. 4-49. Similar to the analysis above, such information is "relevant to reasonably foreseeable significant adverse impacts" because the impacts would have catastrophic consequences, are clearly supported by credible scientific evidence, are not based on pure conjecture, and are within the rule of reason. The cumulative effects from the acid generating potential in the tailings, the waste rock, and the construction rock could result in catastrophic, long-term, consequences for Admiralty Island National Monument's values, including fisheries, wildlife, and surface and groundwater quality.

The acid-generation potential in the tailings is the main threat to the environment (Shepherd-Miller, 2000, Table 4, p.39). If the cover does not stop all of convective flow of oxygen into both the tailings and waste rock, as is assumed in the modeling, then

(907)463-3312

The incomplete information relevant to reasonably foreseeable significant adverse impacts in both of these sections is essential for a reasoned choice among alternatives. Therefore the Forest Service is required to include this information in a supplemental draft EIS.

### VII. Monument Values

Because Greens Creek operates in Admiralty Island National Monument, the mine must be held to the highest environmental standard and carry out its operations in a way that assures the long-term integrity of the Monument's extraordinary values. To date the Forest Service has failed to meet its obligations under section 503 of ANILCA. The preferred alternative will only worsen the existing significant water quality issues at the mine site and take the mine in the wrong direction, further from meeting the legal requirements that were established for managing Admiralty Island National Monument.

The proposed alternative is based on technology that has not been successfully implemented at other mine sites and relies on assumptions that admittedly have a "high degree of uncertainty." This approach is simply unacceptable and contrary to the statutory obligation imposed by Congress on the Forest Service to assure that the use of Monument lands leased by Greens Creek "not cause irreparable harm to ... Admiralty Island National Monument."

The response to the issue of monument values in the DEIS completely misses the point. Acid mine drainage and heavy metals cause extreme environmental harm that lasts for hundreds of years. These metals and acid are mobile once they leach from waste piles. Therefore, the long term environmental risk to Monument values exists whether or not the tailings pile is expanded into Monument lands or into lands directly adjacent to the Monument. The Monument value issue revolves around the level of precaution and protective technology that the Forest Service employs when it allows waste to be placed on and around Monument lands. The issue clearly is not how much of the pile ends up actually being placed within Monument boundaries, but whether steps the Forest Service require Kennecott to take will insure that Monument values are protected from irreparable harm.

# VII. Greens Creek Draft ADEC Solid Waste Disposal Permit Comments

SEACC, Northern Center and Earthjustice support the comments submitted by CSP2 on June 30, 2003, with the notable exception of section 4 (p 11-14). We support "scenario 4" due to the fact that ADEC and the Forest Service have continually accepted bond figures based on arbitrary calculations. Scenario 4 provides the most reasonably protective land management strategy for Admiralty Island National Monument and the Greens Creek mine.

Due to the fact that the new solid waste permit is essentially unchanged from the original version, and DEC has taken relatively few steps to address the issues that we raised in the past, we reference our original comments on the first DEC solid waste permit (July 31st 2002).

Neither DEC nor the Forest Service have adequately demonstrated that the terms and conditions of the monitoring and reclamation plans currently in effect will guarantee that water quality standards will be met. Therefore, it is unacceptable for DEC to exempt waste piles that will not be adequately monitored or reclaimed under other existing permits referenced in the DEC solid waste permit.

Site E serves as an appropriate example of the failed efforts of DEC to justify the exemption of waste piles from the current DEC permit based on their "coverage" in other existing permits. This pile has tremendous potential to cause significant environmental harm due to acid mine drainage and documented heavy metal leaching but is not subject to any meaningful permit requirements.

The site E example calls into question DEC's continued efforts to exempt waste piles based on their coverage by other permits and leads us to believe that there is a significant chance that other waste piles have slipped through the cracks of this convoluted approach to permitting mine waste. We are concerned about the inadequate geographic scope of the solid waste permit and call into question its ability to ensure proper management of all the sites at the mine that have the potential to cause environmental harm.

Sincerely,

JUN 30 2003 4:42PM

Mining and Water Quality Grassroots Organizer

# BEAR CREEK OUTFITTERS

# FLY FISHING GUIDE SERVICE

9723 Trappers Lane Juneau, Alaska 99801 (907) 789-3914 phone/fax info@flyfishsoutheast.com

June 5, 2003

MK

District Ranger 8465 Old Dairy Road Juneau, AK 99801

RE: Greens Creek Tailing Disposal Draft EIS

We own and operate a fly fishing guide service, Bear Creek Outfitters. We use Greens Creek from 3-4 days each week from June to mid September. Our clients have caught very good numbers of Dolly Varden, cutthroat, pink, chum, and silver salmon, and steelhead over the years on this stream. In addition, we have seen returning king salmon in the creek making it one of a very few, island-based return sites for this species.

In addition to offering excellent fishing, the creek is accessible to our planes in virtually any weather conditions. Throw in the awesome wildlife viewing opportunities available there and it is easy to see why it is the single most important stream to the continued success of our business.

Given the \$350,000 in fines for water quality violations which Kennecott has received while conducting operations at Greens Creek, it is incredible that the Forest Service is even considering an expansion of the tailings facility and that furthermore, the Forest Service has conducted this EIS under the assumption that all wastewater discharge will meet Alaska Water Quality Standards (DEIS 4.10). Quite clearly that has not been the case. As Forest Service permit holders, we find it hard to imagine that the Forest Service would permit the scope of our operations to expand were a similar record of non-compliance a part of our company's operating history.

Be that as it may, we do support the mining venture at Greens Creek, but believe it should be conducted with the highest regard for the mitigation of both the short and long-term impacts it has on the Admiralty Island.

MK 3 Greens Creek Tailings Disposal DEIS comments- Bear Creek Outfitters Page 2

It is our understanding that the greatest potential for the creation of acid mine drainage will occur from 50-100 years after the proposed tailing facility is closed. From our review of this DEIS there are no requirements in place to monitor water quality during this critical time period. We believe that a 100- year monitoring program and remediation bond for both the marine waters of Hawk Inlet and Greens Creek proper should be instituted as part of this permit if granted. While constraining the applicant to monitoring of this length and magnitude may appear excessive, it should be deemed a necessity for their undertakings given the time frame in which acid mine drainage is generated, but more importantly because the operation takes place adjacent to both a National Monument/Wilderness Area and essential habitat for brown bears and anadromous fish. Furthermore, it is clear that any expansion of the tailings facility at Greens Creek will result in the expansion of potential for more acid generation and thus increases in monitoring duration and performance bonds are justified.

The people and businesses which use and enjoy Admiralty Island will be here long after Kennecott completes operations at Greens Creek. We believe the duty of the Forest Service is to insure the values of the Island for coming generations and that if it can not do so through mandating monitoring and funds for remediation in the long-term, that this expansion should be denied.

Michilo Karke

Thank you for the opportunity to comment.

Sincerel

Mark and Michelle Kaelke

Owners

JLL



### UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 10 1200 Sixth Avenue Seattle, WA 98101

Reply To Attn Of: ECO-088

01-012-AFS

Thomas Puchlerz, Forest Supervisor Tongass National Forest, Supervisor's Office 648 Mission Street Ketchikan, Alaska 99901-6591

Dear Mr Puchlerz:

The U.S. Environmental Protection Agency (EPA) has reviewed the draft Environmental Impact Statement (EIS) for the *Greens Creek Tailings Disposal* (CEQ #030181) in accordance with our responsibilities under the National Environmental Policy Act (NEPA), Council on Environmental Quality regulations (40 CFR Parts 1500-1508), and Section 309 of the Clean Air Act. The draft EIS examines changing the existing Greens Creek Mining Company Plan of Operation to create additional space for tailings disposal, thus facilitating the continued operation of the Mine. The draft EIS identifies Alternative C, the alternative that proposes adding carbon to enhance immobilization of dissolved metals, as the preferred alternative.

We have helped your Agency develop parts of the EIS that deal with water quality as a cooperating agency due to our knowledge and authorities concerning water quality and the Clean Water Act. We submitted several sets of comments on preliminary versions of the draft EIS. These comments focused on ensuring a balanced presentation of some key but very complex technical issues, including the degree of uncertainty associated with some of the draft EIS findings.

We have rated the draft EIS, EC-2 (Environmental Concerns-Insufficient Information). We base our environmental concerns on:

- \$ Uncertainty about whether water would meet AWQC (Alaska Water Quality Criteria) for sulfate and selenium
- \$ Missing information associated with the preferred alternative on water quality impacts for eight key parameters;
- Inconsistent use of AWQC and NPDES effluent limits;
- \$ Uncertainties about the source, type, amount, and placement of carbon (associated with the preferred alternative) to effectively immobilize dissolved metals, and
- \$ A confusing and overly technical discussion of pyrite circuits which effectively prevents comprehension and consideration by lay readers.

It is our understanding from participating as a cooperating agency, from statements on pages 2-11 and 4-14, and from discussions with Bill Oelklaus, Environmental Manager for Kennecott Greens Creek Mining Company (KGCMC), that the existing



treatment system would be used in conjunction with Alternative C if necessary to ensure attainment of AWQC until such time as project post-closure monitoring indicates such treatment is no longer necessary. This critical mitigation measure must be spelled out clearly in the preferred alternative. Furthermore, bonding for potential long-term waste water treatment should be part of any Forest Service and/or State permit for the project. Please clarify these points in the final EIS. EPA would have environmental objections to Alternative C without the use of the existing treatment system because the draft EIS predicts it would result in exceedances of AWQC at the point of compliance.

We appreciate the opportunity to review this draft EIS and participate in the development of this EIS as a cooperating agency. We are interested in continuing to work with the Forest Service to resolve these issues. Please feel free to call Bill Riley, Regional Mining Coordinator, at (206) 553-1412, or Chris Gebhardt, lead NEPA reviewer, at (206) 553-0253, to discuss our comments and how they might best be addressed.

Sincerely,

Judith Leckrone Lee, Manager Geographic Implementation Unit

cc: Stan Foo, DNR
Pete McGee, ADEC
McKie Campbell
Bill Oelklaus, KGCMC
John Leeds, ACOE

## EPA Detailed Comments on the Draft Environmental Impact Statement for the Greens Creek Tailings Disposal

### General Comments

# Predictions that the Preferred Alternative Would Exceed the Sulfate Standard

The draft EIS predicts that the preferred alternative would result in water quality that exceeds the Alaska Water Quality Criteria (AWQC) for sulfate at the point of compliance (i.e., the lease boundary). The final EIS should include design elements, including mitigation measures, that ensure that the preferred alternative would meet applicable AWQC both during operations and after closure. As stated in the cover letter, it is our understanding that Kennecott Greens Creek Mining Company (KGCMC) intends to rely on the existing waste water treatment plant to assure compliance with AWQC and also intends to examine the use of passive wetland treatment systems as a potential means of effectively treating runoff and leachate from the tailings pile. These measures need to be described and incorporated into the action alternatives along with data that demonstrates that AWQC will be met for sulfate after treatment. This is discussed in more detail below.

# Critical Water Quality Information Missing for the Preferred Alternative

The draft EIS lacks predictions of water quality impacts associated with the preferred alternative for antimony, chromium, copper, lead, mercury, nickel, selenium, and silver (see p. 4-27). The preliminary draft EIS contained this information so it is apparently an oversight. The final EIS must include water quality predictions for antimony, chromium, copper, lead, mercury, nickel, selenium, and silver for Alternative C, the preferred alternative, and demonstrate attainment of AWQC for all parameters.

### Inconsistent and Confusing Use of AWQSs and NPDES Effluent Limits

The draft EIS compares the water discharged from the tailings pile to freshwater AWQC for each alternative to determine exceedences but then compares the loading to the current permit which uses marine AWQC as its basis for calculations. Either the discharges from the pile are going to the freshwater environment surrounding the pile (making the comparison to marine water irrelevant) or they are going to the marine environment (making the freshwater standards irrelevant). It is very confusing to read that the discharge won't meet AWQC but when compared with the "allowable" loads, they were less than "some small" percent of those prescribed in the current permit. The final EIS should explain what set of criteria - marine or freshwater - is relevant to protect beneficial uses and then consistently use those standards for comparison purposes.

### 2

# Use of Existing Water Quality Treatment to Ensure AWQCs Are Met

The draft EIS rarely discusses using the existing water treatment plant, if needed, to ensure attainment of AWQC. Readers could question whether continued use of water treatment is actually proposed. Descriptions of the tailings pile in the alternatives chapter (Figure 2-5) indicate that the tailings pile would cover the location of the existing water treatment plant. Only Alternative B addresses this problem by relocating the treatment plant. This oversight could also raise questions in the readers' mind about whether the preferred alternative would include using water treatment if needed. The final EIS must explicitly and clearly describe water treatment for all alternatives in chapter two, identify the new location of the water treatment plant, describe the overall effect on water quality from proposed actions and mitigation measures (including water treatment), and demonstrate that the mine is sufficiently bonded to operate the water treatment plant for as long as necessary.

# Uncertainty about the Method and Effectiveness of Carbon Addition

The EIS indicates that the preferred alternative would employ an adaptive management approach for adding carbon to enhance immobilization of dissolved metals. This strongly contrasts with the specific direction in Alternative D for carbonate addition where the final EIS specifies the amount of carbonate needed to fully neutralize the tailings and prevent the onset of acid rock drainage (ARD). To ensure that the preferred alternative would successfully deal with the potential for ARD and metals mobilization, the final EIS should answer as many questions as possible related to the feasibility and effectiveness of carbon addition. For example, the final EIS should describe more specifically how amending the tailings with carbon leads to sulfate reduction, where such an approach has been used and with what success, describe potential sources of carbon, their respective methods of application, and provide a rough estimate of the amount of carbon that might be needed. This section should describe the types of sulfide reducing bacteria that occur in the pile and the potential for the proliferation of other bacteria that could deter or perhaps reverse the sulfate reduction process (e.g., Thiobacillus ferrooxidans). Confusing and Overly Technical Discussion of Pyrite Circuits

The discussion about pyrite circuits is overly complex. The EIS should summarize and simplify the discussion with flowcharts and diagrams that explain the basic physical and chemical processes in a pyrite circuit, a chart summarizing the differences between the pyrite circuit alternatives, and a simple explanation of why the pyrite circuit alternative was not considered in detail.

### Monitoring

JLI

The draft EIS states (Page 2-35, Section 2.3, Monitoring) that no new monitoring plan has been developed because the existing plan is functioning appropriately. The final EIS should strive to incorporate up-to-date monitoring data that correctly depict the impacts of the current facility. Freshwater Monitoring Plan monitoring data for 2001 were only recently released in a 2001 annual report and this release followed preparation of the draft EIS. The final FEIS would

3

benefit from inclusion of an evaluation of those results and other monitoring data at least through 2002 or even early 2003. Including up-to-date data would better disclose current conditions, anticipate impacts related to expansion alternatives, and indicate any need for increased monitoring. With this comment in mind, it is noted that Section 3.8 on ground water quality summarizes information on the occurrence and interpretation of elevated sulfate conditions in what would appear to be virtually all downgradient ground-water directions from the tailings pile, including north, south, and west. Though the interpretations presented in the draft EIS (page 3-42) suggest only contaminant sources other than leakage from the tailings pile, up-to-date monitoring information could help eliminate alternative explanations and could indicate that areas should receive improved monitoring coverage to amply measure the water conditions or to answer still unanswered questions. The same need to have up-to-date monitoring information applies to surface water, particularly the Hawk Inlet Catchment as described on page 3-46 and 3-47 of the draft EIS.

# Interim Closure Measures in the Event of a Temporary Shut Down

The Greens Creek Mine is an underground zinc/silver mine. The EIS should describe the potential impact of current historically low zinc prices on the continued operation and reclamation of the Mine. The EIS should also describe specific measures that would be taken in the event of a temporary suspension of operations to prevent oxidation of tailings, as is required by the ADEC solid waste permit. This is critical since the continual addition of fine-grained tailings to the pile helps to impede oxidation.

### Specific Comments

- The draft EIS does not contain a summary as required by 40 CFR 1502.12. The final EIS should include a summary.
- Page 1-1 explains the mining process ore concentrate would be trucked approximately nine miles to the Hawk Inlet port at the Cannery, etc. The EIS should describe these connected actions and the additional impacts from continuing to mine ore reserves beyond those described in earlier NEPA documents.
- 코니 Page 1-2 states that the remaining storage is estimated to last roughly 2 years versus 4 years on page 3-4 of the PDEIS. Please explain why.
- Page 1-5 states the purpose and need statement. The proposed action entails changing the plan of operation, not merely considering changing the plan of operation. The purpose and need statement should be written in a more active way.
- Page 1-5 states that permitting this expansion would require modifying the existing lease. Is this a decision to be made based on information in this EIS? We recommend that the EIS succinctly identify all the decisions to be made using a bulleted format.
- プレ니 Page 1-6 states that before the proposed expansion could begin, the existing reclamation plan

would need to be updated to set performance criteria for achieving AWQC. The EIS should explain when and how performance criteria would be set.

- Page 1-8 describes the engineered cover or cap. This section should quantify the amount of water running off the cap and describe the extent that evapotranspiration and cap design are reducing the water flowing off the cap.
- Page 1-14 could also describe EPA's Section 309 and NEPA review responsibilities.
- Page 1-15 states that discharges must meet all effluent limitations including technology standards for water quality. Technology-based effluent limitations and water quality-based effluent limitations are different and both must be met to satisfy the CWA.
- Page 1-16. Section 1.6.2 should be revised to reflect the current State structure.
- Page 2-1, Section 2.1, Issues and Alternatives Development. Under Water Quality, The draft EIS notes that the process of greatest concern is sulfide oxidation which can lead to the release of sulfate and heavy metals into water. The release of acidity should also be added to the list.
- Page 2-2 states that sulfate reduction helps to reduce the concentrations of critical metals, especially zinc. This sentence should explain how sulfate reduction helps to reduce the concentrations of critical metals.
- Page 2-2 describes the no action alternative. The EIS should state how long the mine could operate until limits to the size of the tailings pile would force operations to cease.
- This Page 2-5 states that 29 acres of the permitted 56 acres would be used for the tailings pile. This section should briefly state how the other 27 acres would be used.
- Page 2-11 states that Alternative B would entail continued treatment of tailings contact water during operation but does not describe or summarize the existing treatment system. The EIS should do this.
- TL | Page 2-11 should define what is meant by phreatic levels.
- Page 2-12 states that Alternative C would utilize the post-closure construction of an engineered soil cover on the pile to minimize infiltration of oxygen and water into the pile. The EIS should describe the type of soil proposed to be used, the effectiveness of the soil in minimizing oxygen and water, the availability of this soil, and the cost of the cap (to address economic feasibility and reclamation concerns).
- Page 2-12 states that this alternative aims for long-term chemical stability of the tailings through a continuous addition of carbon. Ideally, the EIS should describe how carbon would be transported from the Cannery, the extent of the carbon supply, the amount added, and the longevity of the carbon in the pile. However, the EIS states that results from a sulfate reduction

4

,

monitoring plan (SRMP) would determine the amount of carbon used. The EIS should state at least conceptually how carbon could be injected into the pile.

- Page 2-13 states that when compared to the proposed action, this alternative would reduce both the lease area and the disturbed area within the Monument by approximately 22 acres, and increase the lease area and disturbed area outside the Monument by 4.8 acres. It appears that changing the location of the footprint could minimize the extent of impacts within the Monument for the other alternatives. The final EIS should state if redesign could minimize impacts to the Monument.
- Page 2-15. Figure 2-4 shows that the tailings footprint covers the existing water treatment plant but the list on this page does not indicate that relocating this plant is part of the plan. What happens to it?
- Page 2-19 identifies one element of Alternative C as the construction of a new water management pond system. The EIS should describe the system to a greater extent including if ponds are lined or unlined.
- Page 2-19 states that it is anticipated that additional carbon from an external source will be required to assure long-term sulfate reduction and chemical stability of the tailings disposal facility. The EIS should identify the potential types and location(s) of the external source of carbon, identify how much could potentially be needed, and the possible range of associated costs.
- Page 2-19 states that the SRMP would determine the best form of supplemental carbon addition, the required amount, and the best method of application. To the extent possible, this information should be in the EIS. For example, the EIS should identify the best supplemental carbon addition and its application based on sample testing and available carbon sources and predict a range of possible quantities based on chemical analysis.
- Page 2-19 states that post-closure water quality meets applicable effluent limits in the Kennecott NPDES permit. The current permit, however, contains effluent limitations applicable to a discharge to marine waters, not fresh waters. This is a source of confusion.
- Page 2-20 states that about 2 million tons or 1 1/2 million cubic yards of limestone would be needed to sufficiently neutralize the tailings. The EIS should explain why it can specify quantities for limestone addition but not for carbon addition the preferred approach for avoiding metals mobilization.
- Page 2-20 states that tailings placement and pile height would be the same as Alternatives B and C. The first paragraph of this section, Figure 2-6 and Table 2-1, all say that the tailings placement area increases. Please reconcile these different statements.
- Page 2-25. Section 2.2.1, Figure 2-7 shows the relocated treatment plant for Alternative B but relocation of this plant is not shown on any of the other figures for other alternatives even though

the area where it is now located is proposed to be covered with tailings.

- Page 2-27 discusses cap design as a method to protect surface water. The final EIS should predict precipitation uptake through evapotranspiration. It should also predict how much precipitation would infiltrate through the cap following vegetation.
- Page 2-27 states that drainage water will continue to be captured through the drain system, flow into the wet-wells, and subsequently be transferred to the water treatment plant. The EIS should state if drainage systems would be maintained after mine closure and if money is set aside to ensure that such maintenance occurs.
- Page 2-28 describes the cap layers. The EIS should state if material is readily available to construct each layer of the cap.
- Page 2-31. Define what are "-3" and "-2" materials.
- Page 2-32 states that the company will identify sites that exhibit an existing ability to maintain enough water year-round for effective reestablishment of a wetlands environment. The EIS should contain this information.
- 2-33. Section 2.3 states that the company continually analyzes water quality. Is monitoring happening continually (i.e., indefinitely in time without interruption) or frequently? The EIS should explicitly state how often monitoring occurs happens (e.g., the company analyzes water quality weekly, monthly, etc.).
- 2-33. Section 2.4.1 See comments about AWQC in general comments. Moreover, it is very confusing to read that the discharge would not meet AWQC but when compared with the "allowable" loads, they were less than (some small percent) those prescribed in the current permit. The final EIS should explain what set of standards is relevant to protect beneficial uses and then consistently use those standards for comparison purposes.
- Pages 2-33 2-35 discuss water quality. It is difficult to understand the effects of different alternatives on water quality, especially compliance with AWQC, due to ambiguities about whether or when treatment occurs, marine discharge versus freshwater discharge, and the location of the point of compliance.
- Pages 2-38 2-50 discusses pyrite circuit scenarios. This section is overly complicated to the extent that it precludes understanding by non-technical readers. The EIS should include flowcharts and diagrams that explain the basic processes of a pyrite circuit and what happens chemically and a chart summarizing the differences between the pyrite circuit alternatives.
- Page 3-1 states that the Greens Creek Mine is an underground zinc/silver mine. The EIS should describe the potential impact of current historically low zinc prices on the continued operation and reclamation of the Mine. The EIS should also describe specific measures that would be taken in the event of a temporary shutdown to prevent oxidation of tailings, as is required by the

| JLL<br>46 | ADEC solid waste permit.                                                                                                                                                                                                                                                                                                                                            |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 541<br>47 | Pages 3-1 and 3-2 list issues. We recommend that the EIS list issues in order of importance, from most important to least important.                                                                                                                                                                                                                                |
| JLL<br>48 | Page 3-4. Recommend that Table 3-1 also include annual precipitation.                                                                                                                                                                                                                                                                                               |
| JLL<br>49 | Page 3-4. The title of Table 3-1 states that it contains the data from 1994 - 2000 yet the table only shows 1997 - 2000 data. The final EIS should include data from 1994-1997 or change the title, and, if possible, include more recent data.                                                                                                                     |
| 50        | Page 3-7 states that the project site area has been designated as having attained air quality standards, or as being unclassifiable for all criteria pollutants. The final EIS should define "unclassifiable" for those readers unfamiliar with the Clean Air Act.                                                                                                  |
| 51        | Page 3-15 should read, "Turbidity averaged 0.556 Nephelometric Turbidity Units."                                                                                                                                                                                                                                                                                    |
| JLL<br>52 | Page 3-15 should explain why lead concentrations in Hawk Inlet and outside the sill vary, with location, from below detection limits to near acute levels.                                                                                                                                                                                                          |
| 277       | Page 3-7 should state if the tripling of lead in polychaete worm tissue is attributable to mine activities.                                                                                                                                                                                                                                                         |
| 54L       | Page 3-17 should estimate the percentage of argillites and phyllites in the ore rock and the overall buffering capacity these geologic layers would provide.                                                                                                                                                                                                        |
| J4L<br>55 | Page 3-18 discusses treated water discharging into Hawk Inlet. The EIS should explain how water is currently treated.                                                                                                                                                                                                                                               |
| 56        | Page 3-23 should explain or define "quiet water marine".                                                                                                                                                                                                                                                                                                            |
| 57        | Page 3-31. The EIS should explain why a map of Alternative B is in the affected environment chapter.                                                                                                                                                                                                                                                                |
| 58        | General. Including the applicable water quality standard on charts discussing water quality would be extremely useful to reviewers to understand unacceptable pollution levels. Page 3-42 should state when the source of the sulfate in the Pit 5 area will be confirmed by excavating test pits and conducting additional geochemical and water quality analyses. |
| JLL       | Page 3-47 should explain why the lower pH caused by the old access road constructed of rock containing pyrite is not indicative of the reaction that may be occurring in the tailings.                                                                                                                                                                              |
| JLL       | Page 3-49 states that Vos estimated that acidification would not occur for more than 10.9 years, which would provide ample time for application of site closure technologies (e.g., the cover) to                                                                                                                                                                   |

mitigate the ARD risk. The EIS should clarify how there would be "ample time" if mining is to

occur for an additional 22 years before placing the cover on the tailings pile.

Page 3-50, Section 3.8, Water Quality. The DEIS uses paste pH measurements of tailings (shown in Figure 3-14) to support the concept that the tailings will neither acidify during operations nor for an indefinite period after closure. The same data are used in Appendix B (Michael Baker, Inc, 2003, pages 25-26) to conclude that the tailings have maintained an alkaline pH throughout the operation of the facility. However, these data may be somewhat misleading in that a check on the source of the most recent paste pH values shown in Figure 3-14, those from 1999, are listed in the Shepherd Miller, Inc (2000) reference as rinse pH rather than paste pH values. The paste pH values for the 1999 tailings samples, as listed in the Shepherd Miller reference, are all lower in pH than the rinse pH values, and none are alkaline. Interpretive statements based on an assumption of alkaline paste pH for tailings should be corrected in the EIS. The EIS should verify data and interpretive statements that have been carried over from previous reports.

 $\neg$ LL | Figure 3-13 on page 3-51 should explain why more recent data points are indicating more acid  $\bigcirc$ L | generation potential.

Date Page 3-58 should explain why zinc is not liberated in the milling process if argillite contains abundant amounts of it.

Page 3-63 references Appendix D, the Jurisdictional Wetlands Survey. Appendix D is the Sensitive Plant Species Survey, Appendix A is the Jurisdictional Wetlands Survey.

Page 3-64 and 3-67 describes wetland and general plant associations, respectively. The EIS should contain maps identifying these plant complexes.

Page 3-67 references Appendix D, Wetlands. Wetlands is in Appendix A, not Appendix D.

| Page 3-74 should describe the general population trend of Sitka black-tailed deer and waterfowl and shorebirds. The EIS should also state if the increase in deer accidents in the Year 2000 was attributable to an increase in the deer population.

Page 3-76 should spell out the Red-br. Sapsucker.

Pages 3-78 and 3-80 both contain section on Marine Mammals and describe species listed under the Endangered Species Act. The EIS should consolidate its Marine Mammal section and identify species protected under the Marine Mammal Protection Act.

Pages 3-80 and 3-81 state that staff have observed few Steller sea lions transiting near the mouth and within Hawk Inlet every year but paragraph 4 on page 3-85 states that when the salmon are running, sea lions are abundant inside the Inlet. The EIS should reconcile these statements.

TU Page 3-83 should define seafloor features.

- Page 3-89 references Section 3.1 (Oceanography). Section 3.6.7 is Oceanography not Section 3.1 (Location). The final EIS should correct this.
- Page 3-94 should explain why Table 3-14 contains only pre-mining data when data is collected annually.
- Page 3-95, Section 3.13.6 is entitled "Summary of Freshwater Environment" but does not discuss Essential Fish Habitat, the subject of Section 3.13. Subsection 3.13.6 should summarize Essential Fish Habitat (EFH) in both marine and freshwater environments.
- Page 4-1 should state what the life of the mine would be if Alternative A is adopted.
- 76
   Page 4-3, Section 4.1.1 The discussion of effects in %3 is also included in %1. The final EIS should consolidate these discussions.
- Page 4-5 discusses connected actions (past, present, and reasonably foreseeable future). The EIS should discuss the possibility of a shutdown caused by historically low zinc prices.
- Page 4-8 should discuss who would view the altered landscape and the impact of altered views on the viewers. For example, the EIS should state if the view would affect the attractiveness of the area to cruise liner passengers and people on guided tours.
- Page 4-10 identifies the need for a monitoring program to measure metals uptake by wetland communities and stream sediments, and bioaccumulation. The EIS should also identify follow-up actions for contingencies that occur and are detected by the monitoring plan.
- プレ니 Page 4-11 should explain why the model developed by Environmental Design Engineering did not consider carbon addition.
- Page 4-11 should contain a flow chart identifying what models are used for different points in the hydrologic cycle (e.g., precipitation, infiltration, etc.).
- Page 4-12 discusses a time frame of 50 to 500 years. The EIS should state if changes already occurring due to global climate change have been factored into the models.

  Page 4-13. See comments above from Chapter 3 on comparing the freshwater AWQS and technology-based loading limitations.
- Page 4-14 states that Kennecott Mining will continue an appropriate method of water treatment until the tailings effluent can be discharged without treatment so that applicable AWQC are met. The draft EIS never fully identifies applicable AWQC, instead making comparisons to both freshwater AWQC and the loading limits of the current permit for discharges to marine waters (not the marine water AWQC).
- $\Im L$  Page 4-14 should state how surface water runoff from the pile would be treated.

- | Page 4-16. Table 4-2 and other water quality tables should highlight the text differentiating the tables (e.g., underdrain flow and downgradient groundwater).
- Page 4-18 should explain Table 4-2.
- General. The EIS shows that the level of some pollutants for all alternatives would exceed water quality standards. EPA will object to degraded water quality. The EIS must show how the preferred alternative would meet water quality standards.
- Page 4-21 references Appendixes B for the ADEC permit. Appendix F contains the ADEC permit not Appendix B. The final EIS should correct this.
- Pages 4-26 and 4-27 contain the same table. The EIS lacks a table showing the effect of Alternative C on water quality for antimony, chromium, copper, lead, mercury, nickel, selenium, and silver. This water quality information for the preferred alternative is critical.
- Page 4-33 should indicate whether proposed activities are covered under an existing nationwide permit. In addition, the EIS states that these wetlands received a "low" value rating in the functions and values analysis partly because of their proximity to existing disturbance. The EIS should discuss the total impairment to wetlands in the cumulative effects section.
- Page 4-34 states that activity associated with the proposed stormwater pond system would fill approximately 300 linear feet of high value riparian wetland. The EIS should describe this high value wetland in the text description for other alternatives and show it on maps.
- Page 4-43, Section 4.10 states that any discharge will be required to meet the AWQC for the protection of the marine uses (listed in 18 AAC 70.020). This document, however, never uses these standards for comparison purposes. The tables in Chapter 4 use the freshwater criteria and the loading limits of the current permit. The loading limits of the current permit use an authorized mixing zone making the technology-based limits, which are not subject to mixing zones, more stringent than the water quality-based limits for many parameters.
- Page 4-45 contains a section on the socio-economic impact. The EIS should state the effect on recreational opportunities, if any exist, from expanding the mine and the tailings pile.
- Page 4-48 and 4-49 spends one page of text defining cumulative effects in the context of the project rather than describing them. The information here is insufficient. Recommend that this section be significantly altered to describe the effect on resources of concern over time and space. Focus on how water quality, monument values, and wetlands have been impacted over time due to various activities.
- JLL | Page 4-50 should also include the Marine Mammal Protection Act as part of Section 4.16.3.
- | Page 4-51 section 4.16.4 describes future actions not future cumulative impacts. The little effects' analysis focuses on socioeconomic effects. This and other cumulative effects pieces

10

52

should be developed around resources rather than activities and focus on the environmental aspects.

### Editorial Comments (No response to comments necessary.)

- Page 2-6. Change "however the height would increased by 80 feet above original ground surface to about 160 feet" to "however the height would be increased from 80 feet above the original ground surface to about 160."
- Page 2-11. Correct the format of bulleted text.
- Page 2-13. Change sentence to read, "(approximately 12 years at present rate of production for known reserves and 10 years for potentially developing undiscovered reserves)."
- Page 2-19, γ3. Correct "system.Installation".
- Page 2-23. Correct "a low permeability liner would required".
- Page 2-28, Footnote 1. Correct "spruce trees are typically very shallow Greens Creek has informally".
- Page 2-31. Change the different font inside the parentheses at the top of the page so it is consistent with the rest of the text.
- Page 3-63. Correct misspelled "Habitats of the Unites States".
- Page 3-79. Change the font of "Polystichum aleuticum" so that it is the same size as the other text.
- Page 3-88. Place a space between "Road Mile" and "7.2".
- Page 3-93. Replace the ":" with a "." for the text "flows at about 1:0 cfs".
- Page 3-100. Replace the "0" in "0ver 95 percent" with an "O".
- Page 3-100. Remove the "," after "commercial fishing vessels, (George, 1982)".
- Page 3-101. Remove the "e" and replace "predominate" with predominant" in "residents are e predominate users".
- Page 3-102 and other locations. Consistently use ADF&G or ADFG.
- Page 4-6. Add a "." in "Admiralty Island National As shown".

12

- Page 4-15. Remove the "and" from "Alternative A are shown in Table 4-2 and ."
- Page 4-15. Remove the second "discharge" from "marine discharge discharge permit".
- Page 4-42. Change the word "form" to "from" in "pressure form harvesting".
- Page 4-47. Remove the word "the" in "more than the under the no action".
- Page 4-50. Correct the phrase "that govern general land used in (http:...)."

13

"joyce levine"

<jlevine823@hotm To: jdefreest@fs.fed.us
ail.com> cc:

Subject: Greens Creek Mine Comments
06/23/2003 12:20
PM

Hello Mr. DeFreest:

As I realized today that I had forgotten to write up my comments concerning the Greens Creek Mine and send them to you as a hard copy by mail, I am now sending them via this e-mail.

1 2L Living in Juneau, at times it is as though Admiralty Island is our backyard. The Greens Creek Mine is partially located within the Admiralty Island National Monument, so it concerns me that there are plans by the Forest Service to allow for the doubling of the size of the waste dump at the Mine!! The Mine is presently releasing heavy metals and acid drainage into the waters of the area. It concerns me greatly that being this is a National Monument, the proper safeguards are not being followed which greatly endangers, because of the toxicity, the incredible number of bears, as well as the fish and other wildlife in the area.

Before any further allowances are given to the Greens Creek Mine, I would like the Greens Creek Mine and the Forest Service to clean up the toxic dump that is presently there. The Admiralty Island National Monument is a national treasure and not an area that exists for the purpose of being a toxic dump. Greens Creek has a long history of polluting Alaskan waters. According to the EPA, Greens Creek is Alaska's second biggest toxic polluter and has violated the Clean Water Act hundreds of times. Shame on them. We should not allow the Mine to create more problems of pollution. Greens Creek needs to deal with the mess they have already made and clean it up.

IL

They should not be given permission to further pollute the Admiralty Island National Monument, a fortress of bears, until they show that they are taking care of the pollution that they have already created. There are methods for dealing with these type of pollution problems, but it does not seem as though the Mine is taking those steps. Again, I ask that you not allow the toxic dumping to increase any further as they have not shown that they are responsible for the mess they have already created.

Sincerely yours,

Joyce Levine P.O. Box 21705 Juneau, AK 99802 jlevine823@hotmail.com ---- Forwarded by Jeff DeFreest/R10/USDAFS on 06/30/2003 01:54 PM -----

"joyce levine" <jlevine823@hotmail.com>

To: jdefreest@fs.fed.us
cc: stan\_foo@dnr.state.ak.us
Subject: Greens Creek DEIS Comments
06/30/2003 12:38 PM

Hello Mr. DeFreest:

These comments below I would like to add on to the comments I sent you previously concerning the expansion of the tailings disposal at the Greens Creek Mine on Admiralty Island.

I have concerns about the tailings disposal and do not feel confident in the Plan. It seems that the major focus in the document concerning the tailings is how to treat the tailings, which is important. However, there is very little in the document concerning the liquid tailings coming through the pipe as far as what precisely is going to be in that tailings liquid and I would like the Forest Service to be specific in addressing that. It seems as though there are alot of assumptions that the plan is ok. Although the document contains a great deal of information, it seems sketchy to me that it will truly actually work and not be toxic to the environment.

ゴム

The Department of Environmental Conservation confirmed that acid drainage is leaking out of the existing waste pile and heavy metals are now polluting ground and surface waters. It is enivatable that in time, the new expanded tailings will also leak from whatever method you set up. I do not see in the DEIS what the plan of action is for the present leakage nor what plan is set up for the expanded systems probable leakage problelms with toxins into salmon streams and watersheds which wildlife exist on in the area of the proposed tailings. The DEIS does not assume any leaks will happen which is a very nice wish but as we can presently see, not a reality. The Plan does not take any responsibility of the effects that the heavy metals, even if treated, will have on the fish or wildlife by the tainted water which leaks.

9 2 7

Quality standards. These are mine tailings. These tailings contain heavy metals which accumulate in fish and wildlife. There are many instances throughout the United States, especially in Colorado, where heavy metals have caused incredible problems with human and wildlife health. There is no doubt, in my mind, that the same problem will happen here. Mistakes, naturally happen. I also do not believe that the containers which are being built for the mine will be leakproof. I would like there to be at least two other back up plans in case of an accident. I would also like a better and frequent monitoring system set up.

There is also an assumption that the liquid tailings will meet water

JL

The proposed enlargement area is adjacent to Admiralty National Monument so the concerns I have are even greater because of this incredibally sensitive and wild area.



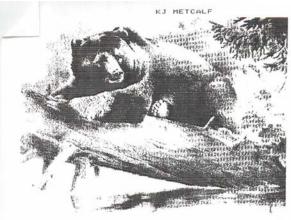
---- Forwarded by Jeff DeFreest/R10/USDAFS on 06/30/2003 04:42 PM ---"Liston,
Kamenar" To: <jdefreest@fs.fed.us>
<KListon@Oceana. cc:
org> Subject: Greens Creek EIS comment letter
06/30/2003 03:41
PM

RE: Comments on Draft EIS for expansion of the Greens Creek Tailings Disposal area

Dear Mr. DeFreest:

KL

As a Juneau resident who frequently fishes and camps on and around Admiralty Island, I strongly urge you to select the No Action alternative in the Greens Creek Tailings Disposal Area Expansion Environmental Impact Statement (EIS). As you know, the marine ecosystem surrounding Admiralty Island National Monument is home to myriads of humpback whales, Steller sea lions, orcas, seabird colonies and a host of other species that attract millions of visitors from all over the world. This national treasure is not the place to release toxic substances into the marine environment. I am very concerned about the impacts of the proposed increase of persistent toxins into the waters that nourish the fish I eat. It would be irresponsible of the U.S. Forest Service to allow untested experimental pollution control techniques on Admiralty Island. Have the proposed pollution control techniques been used successfully elsewhere? Why experiment where the stakes are so tremendous?


KL

I am aware of the economic benefits that the Greens Creek mine provides to the local economy as described in the Draft EIS. However, the Draft EIS does not describe where the profits go. You mentioned at the "public hearing" in Juneau that the mine is actually owned by a multinational corporation. In addition to knowing how much revenue and how many jobs the mine provides for the Juneau area, how much of the profits from the mine leave Alaska? What percent of the mine's profits goes to Alaskans and what percent goes to people that live in foreigncountries?



At the Juneau "public hearing" you described that the mine will have to close anyway in 10-12 years. Whether in two years or twelve, the people currently employed by the mine still will not have a sustainable job. The real choice here is whether to close the mine now and have a minor Superfund site or wait 12 years and have one of the largest environmental disasters in Alaska. Congress designated Admiralty Island a National Monument for good reason. Please do not ruin this crown jewel of Southeast Alaska. Please do not allow the Greens Creek mine to continue its toxic operations. Please select the No Action alternative.

Sincerely, Kamie Liston PO Box 20252 Juneau, AK (907) 790-1905



907 586 6738

P. 01 KM

DEFENDERS AND FRIENDS OF ADMIRALTY IS: AND TONGASS WILDLANDS WATCH

P.O. Box 20791 Juneau, AK 99802 Ph/fax (907)586-6738 www.friendsofadmiralty.org Admiralty friends@Yahoo.com

June 30, 2003

Mr. Jeff Defreest Juneau Ranger District 8465 Old Dairy Rd.. Juneau, AK 99801

Dear Mr. Defreest:

Friends of Admiralty Island submit the following comments on the draft environmental impact statement (DEIS) for the Greens Creek Tailings Disposal.

The Friends of Admiralty Island is a Juneau based non-profit public interest organizat on with a membership of over 250. Our basic mission, since our incorporation in 1997, has been to advocate for and facilitate the education, research, use and management that reflect the unique and valuable Monument and Wilderness values of Admiralty Island.

KM 1 In a letter dated March 28, 2002 to Monument Ranger Susan Marthaller, we attached a Friends of Admiralty Island position paper on a comprehensive management plan for Admiralty Island National Monument and urged the Monument Ranger to begin such a planning process expeditiously. In our scoping comments for this Draft EIS, we again attached the above-referenced position paper. For the record, attached to these DEIS comments is the May 28, 2002 response from Monument Ranger Susan Marthaller to our 3/28/02 request for a comprehensive plan. While agreeing "generally" with our position,

the Monument Ranger informed us that the agency would continue an a piecemeal decisionmaking process for activities on Admiralty Island National Monument. We believe that the Draft EIS fails to recognize and protect the Monument values, as described by Congressional direction and in the 1997 Tongass Land Management Plan.

KM

We subscribe to and incorporate as our own position the comments submitted on June 30. 2003, by the Southeast Alaska Conservation Council (SEACC), Northern Alaska Environmental Center and Earthjustice on this tailings disposal Draft EIS.

KM 3 In Summary, we support the No Action Alternative until a Supplemental EIS is prepared, in compliance with NEPA standards, that address:

- 1. Monument values and how they are to be protected
- the environmental issues associated with all of the sites with documented and potential acid mine drainage
- the long-term and accumulative environmental impacts, reclamation and mitigation relating to all mining activities

KM

The SEACC/NAEC/Earthjustice comments detail the rationale for 1 and 2 above. We will address the rationale for 3 below.

We agree with the SEACC/NAEC/Earthjustice statement,

KM 5 "The response to the issues of Monument values in the DEIS misses the point. Acid mine drainage and heavy metals cause extreme environmental harm that lasts for hundreds of years. These metals and acids are mobile once they leach from waste piles. Therefore, the long term environmental risk to Monument values exists whether or not the tailings pond is expanded into Monument lands or onto lands that are directly adjacent to the Monument. The Monument value issue revolves around the level of precaution and protective technology that the Forest Service employs when it allows waste to be placed on or around Monument lands. The issue clearly is not how much of the pile ends up actually being placed within Monument boundaries." but whether the protective steps the Forest Service requires Kennecott to take to minimize the potential for acid mine drainage will insure that monument values are protected from irreparable harm."

The DEIS describes Monument impacts only in terms of the square footage of tailings that occupy Monument land. This falls far short of first and foremost being able to define what Monument values are present in the project area and what standards will be used to protect these values.

We reference our 3/28/02 letter, which stated;

The direction for management is clearly spelled out in ANILCA as stated in TITLE V, Sec. 503. (c), which directs the Forest Service to manage Admiralty National Monument to; "—protect objects of ecological, geological, historical, prehistorical and scientific interest." TITLE XIII Sec. 1306. (a) substantiates the need for a plan when it refers to administrative sites; "In conformity with the conservation and management plans prepared for each unit and the purposes of assuring the preservation, protection and proper management of any conservation unit, the Secretary may establish sites and visitor facilities-."

The 1997 Tongass Land Management Plan has reinforced ANILC direction by adding specifics in two different sections. In NONWILDERNESS NATIONAL MONUMENTS (3-41) The goal statement, in part, reads; "Admiralty island, exclusive of Mansfield Peninsula, was designated as a National Monument for the scientific purposes of preserving intact a unique coastal island ecosystem. The goal of preservation was to assure continued opportunities for study of Admiralty Island's ecology and its notable cultural, historic, and wildlife resources, within the relatively unspoiled natural ecosystem. Protection and study of Tlingit cultural resources, other historical resources, brown bear and bald eagle populations are specifically directed."

Notwithstanding the DEIS's failure to address the Congressional mandate as detailed in Section 503 of the ANILCA, the 1997 Tongass Plan also clearly requires protection of monument values. Given the agency's failure to complete an island wide comprehensive plan, we are gravely disappointed that this DEIS fails to deal in any meaningful way with the impacts of past, present and cumulative mining activities and acid mine drainage on Monument values.

KM

As an example the DEIS states that brown bear, in the area, have become habituated to mine activity. See DEIS at 3-71. Additionally mine facilities do occupy bear habitat How does one know what the implications are to the local bear population when measured against a non-existent management standard that should be based on ANILCA and the 1997 Tongass plan direction for the National Monument? This is all complicated by the very real possibility of long-term degradation of water quality.

This leaves the Forest Service, mine operator, other agencies and the public with no idea what the bear management objectives are and what monitoring and mitigation steps are required. Under this scenario the only way to know if this project has adversely impacted the bears is to examine the population after final mine reclamation and after some years (perhaps hundreds of years) of water quality monitoring. And then it is too late.

KM

 $\not$  \ \ | The same logic applies to the other Monument resources.

We urge the Forest Service to halt additional mine expansion until the agency takes the requisite hard look at the effect of past, current and future mine operations oa Monument values, acid mine drainage, water quality.



AM

---- Forwarded by Jeff DeFreest/R10/USDAFS on 06/19/2003 02:33 PM ----

Alan Munro

<amunro@gci.net>

To: jdefreest@fs.fed.us

06/19/2003 12:42

Subject: AINM,a citizen-activist's comments

PM

Dear Jeff DeFreest.

I know you folks in the USFS are still evolving from the strict old-school discipline of the multi-use forest concept, but this is the 21st Century. Now that the Greens Creek mining folks have their rural-exclusion permit from the CBJ Assembly, there will certainly be a carte blanche toxic tailings explosion out there on our Admiralty Island National Monument, like never before.

I subsistence hunt and fish and otherwise recreate on Admiralty and have done so for over 30 years now, and I never-ever had to worry about these current man-made pollutants that are leaking and leaching out into the surrounding environment--until right

What can I tell my kids and their kids about this problem? Well, I'll just have to give them your e-mail and you can tell them yourself, since I hardly understand what makes for this situation to exist in the first place or where to start. It is hard, very hard, to accept the fact, and to especially try to understand how a multi-national mining industry subsidiary can just come in here, and move right in there and do that to our precious National Monument. My God, that is most certainly a sacrilege to any one's spiritual values! It clearly represents a transgression of enormous proportions. How can this industry get away with doing that? Especially when it is your chosen professional career, and job to protect that wilderness for the many, and countless really--generations not even born who should be able to recreate there, as I do?

Obviously there is some pretty nasty politicking going on. But I firmly believe you folks can actually stop it, if you just join the illustrious ranks of other courageous "whistle blowers" within the USFS. Start a revolution right out at Old Dairy Road, District Offices and become a party to saving our National Monuments from imminent destruction due to self-serving politicians and outright pure corporate greed. Doing so will ensure that your names will go down in history. Thank you in advance for actually caring. My heartiest cheers to you, and onward and upward folks!

I remain yours in the fight for totally unpolluted National Forests across the entire United States of America, Alan R. Munro, a citizen activist, and Juneau resident, subsistence and recreation user of Admiralty Island National Monument for over 30 years now and counting!

120 W. 9th Street Juneau, Alaska 99801 586-3694

United States Forest Service Juneau District Ranger. Attn: Jeff De Freest 8465 Old Dairy Road Juneau, Alaska 99801 16993 6-lacier 1744. Juneau, Alaska 99801 May 27, 2003

JM

Mr. Jeff De Treest,

I have heard that the Kennecott Corporation's Green's Creek mine is the second biggest toxic polluter in Alaska, that the mine released 59 million pounds of toxic enemicals in the year 2000, that the company has repeatedly violated clean Water Act, has paid hundreds of thousands of dollars in fines and wishes to double the size of their waste dumps on Admiralty National Monument.

Although Green's Creek mine is a primary employer in Juneau, the company should be held to the line in Juneau, the company should be held to the highest standards. No other standard is acceptable, highest standards. No other standard is acceptable, the U.S. Forest Service must first of all require Kennecott Corporation to dean up the tokic waste in existence on the site and only then should require the use of tested and proven techniques for the additional mine wastes.

Compromises and experimentation are not acceptable atternatives to compliance with the highest standards and environmental integrity, sincerely, fall Maier

---- Forwarded by Jeff DeFreest/R10/USDAFS on 06/30/2003 08:24 AM -----

"Mike Tobin,
Jenny Pursell" To: jdefreest@fs.fed.us
<mikejen@gci.net cc:
> Subject: from Jenny Pursell re Green Creek Mine mine
tailings and proposed expansion
06/28/2003 10:49
AM

Dear Mr. DeFreest,

I am sending you this email as I am greatly concerned about the projected expansion of the Green Creek Mine's waste dump. I am concerned about this because of the leaching of mine tailings, which precipatates acids and heavy metals into the environment. Admiralty Island National Monument is too valuable of a natural resource to take any further risks of introducing more acids and metals into the soils and waters of the surrounding environment, which ultimately will effect the National Monument.

Green Creek Mine has violated the Clean Water Act 391 times by releasing illegal levels of copper, zinc, cyanide, and acids into the environment. With such a record of noncompliance it is astonishing to me that the National Forest Service would even consider allowing them to double their mine tailings dump!

I strongly recommend that the Forest Service exert pressure on them for 100% compliance with the regulations of the Environmental Protection Agency and Alaska's Department of Environmental Conservation. I also believe that the Forest Service should recommend to Green's Creek that they clean-up the toxic waste that they have already produced. These measures taken by the Forest Service would help to protect our national treasure, Admiralty Island National Monument. I would like to see the National Forest Service advocate for the protection of Admiralty Island National Monument by not allowing Greens Creek Mine to expand their mine tailings dump! Thank you for your time and attention to this matter.

Jenny Pursell, P.O. Box 33578, Juneau, Ak. 99803

7P

wo

Kennecott Greens Creek Mining Company P.O. Box 32199 Juneau, Alaska 99803-2199 (907) 789-8100 FAX (907) 789-8108 (Island)

26 June 2003

Mr. Pete Griffin, District Ranger Juneau Ranger District United States Forest Service 8465 Old Dairy Road Juneau, Alaska 99801



RE: Comments on the Greens Creek Tailings Disposal Draft Environmental Impact Statement

### Dear Mr Griffin:

Presented below are Kennecott Greens Creek Mining Company's (KGCMC's) comments on the draft environmental impact statement (DEIS) for the Greens Creek Tailings Disposal Project. In general, KGCMC feels the Forest Service has done an admirable job in administering the environmental review process. The process used by the interdisciplinary team (IDT) and cooperating agencies to assess environmental impacts and prepare the DEIS has been exceptional, as many hurdles have been overcome with cooperation and persistence.

In detailed reviews of the DEIS, KGCMC has identified key areas of concern, noted below:

00

KGCMC's major concern is the carbon amendment study advocated in Alternative "C" and how the carbon amendment research is interpreted. The Alternative "C" definition on page 2-14, Section 2.1.3 and subsequent carbon addition section on page 2-21 explain the framework for a Sulfate Reduction Monitoring Program (SRMP). KGCMC interprets the SRMP as a program to determine if any additional carbon amendments are needed over and above the existing additions that are ongoing at the site. Thus, the program would study varying degrees of additional carbon amendments and their effectiveness in sulfate reduction, starting with no amendment and increasing from there.

Notwithstanding the research period and subsequent plan submittal to the Forest Service, sulfate reduction will be difficult to assure in perpetuity as currently required by the DEIS Alternative C definition. KGCMC feels that this assurance requirement is exceptionally stringent given that another viable alternative exists for ensuring compliance in the effluent discharge, namely continuation of discharge to the marine environment, the use of which is indicated in the DEIS document as having negligible effects in any of the alternative options [DEIS pages; 4-15 (Alt. A), 4-21 (Alt. B), 4-25 (Alt. C), 4-29 (Alt C)].

Thus, as a consequence of these concerns, KGCMC suggests a hybrid alternative to Alternative C to allow for future best use of technology at the tailings disposal site:

RECEIVED

Juneau Ranger

66

Mr. Pete Griffin

26 June 2003

· Retain Operational Flexibility. By locking in a SRMP program within the EIS, the Forest Service may inadvertently limit the company's use of the best available technology as time progresses. The flexibility needed to continue to determine the best methods to handle final tailings water effluent after closure is already inherent in the requirements of the State of Alaska Waste Management Permit (WMP), which includes 5-year environmental audits. Both the General Plan of Operations (GPO) and the WMP contain KGCMC commitments to reevaluate and determine what is the best technology for the Greens Creek operation. Such technology assessments include the TIEMP program and compliant water discharges. Given the Baker Hydrology and Geochemistry results presented in the DEIS, it is clear that a sustainable tailings effluent discharge method is available to assure water quality compliance, at a minimum, through continued marine discharge after closure. KGCMC does not agree with a requirement of the SRMP program within the structure of the EIS, and recommends an alternative to include the SRMP program (as described in Appendix C in the DEIS) into the updated GPO. In this manner, the requirement continues to exist in the framework of flexibility and cooperation with the agencies, while allowing the company to fully participate in the development of a SRMP program suited to the site rather than a dictated program that may result in unwarranted and unforeseen limitations on operations and/or yielding no appreciable environmental benefit.

KGCMC also suggests that if the Forest Service continues to advocate the SRMP in the FEIS, then the FEIS must present full definitions and requirements for that program. The FEIS presentation should also discuss the intent of the program within the EIS structure to limit future misinterpretations. Alternatively, the SRMP developed through the cooperative process proposed in the above paragraph would contain this information.

- Recognition of Options for Quarry Resources. The reduced Tailings Footprint and Lease Boundary changes in Alternative "C" are acceptable as compared to the KGCMC proposal (Alternative "B"), with the recognition and understanding that the elimination of the southern most quarry within the Monument Boundary may cause KGCMC to apply for an additional quarry site in the future, if construction materials become limited from the reduced acreage of the proposal. KGCMC does not expect this problem, but has several experiences of "rock shortages" due to rock suitability issues from past quarry sites. KGCMC will extend quarry site investigations prior to excavations to identify if a problem arises prior to the construction phases and will address additional future quarry leases as needed.
- Continued Use of Existing Systems for Final Reclamation Purposes. Inclusion of provisions for final reclamation considerations to address the continued use of the

outfall line and mixing zones post closure for any of the alternatives should also be addressed within the FEIS document.

In comparison to the Forest Service's preferred Alternative "C", these changes are suggested as an improvement to the alternative as it stands and does not remove any enforcement or oversight authority of the regulatory agencies. It also allows the inclusion of alternative technology for determining the best methods of final tailings water effluent discharges, including continued marine discharge.

As a part of the metrics required for site water quality requirements, consideration should be given in the EIS to setting the compliance points at the lease boundary to eliminate further confusion regarding this issue and to maintain consistency with the companion Alaska Department of Environmental Conservation (ADEC) Waste Management Permit requirement.

wo 5

In Table 2-1, located on page 2-6, we suggest clarification of the cement amendments for the alternatives. The cement quantities shown at the bottom of Table 2-1 represent materials for tailings backfill into the mine and not surface placement of tailings materials, the Table section they appear to occur in when carried over from the first half of Table 2-1 on the previous page (page 2-5).

On page 1-1, there is a confusing logic gap in the last paragraph, in the sentence that says "[b]ecause this soil was placed in the mine's approved waste rock disposal site, the capacity for the disposal of tailings was decreased." This sentence creates confusion about whether the approved waste rock site and the tailings disposal site are in fact the same site. We believe the correct observation is that because the soil was placed in the waste rock disposal site. more waste rock had to go to the tailings facility, thereby reducing capacity available for tails.

5. The reference on page 1-5 to "known reserves" in the parenthetical in the first paragraph of subsection 1.1 is inconsistent with the explanation at page 1-2 to the effect that it takes the combination of "known reserves" and potential additional mine life from likely discoveries to get to 22 years. The FEIS should clarify that this combination of both "known reserves" and "likely discoveries" together provides the basis for the 22 years.

6. The DEIS's discussion at pages 1-13 to 1-14 of the Forest Service's responsibilities and related legal authorities fails to acknowledge Section 503 of the Alaska National Interest Lands Conservation Act (ANILCA), which specifically provides for development of the Greens Creek Mine project.

wo

The second paragraph under the "U.S. Army Corps of Engineers" heading includes the sentence: "Activities involving tailings storage, treatment, and disposal are among those requiring a Section 404 permit." This is a misleading statement in that it suggests that as a

general proposition the Corps regulates operation of tailings treatment facilities under Section 404 of the Clean Water Act (CWA). Certainly, under Section 404, the Corps regulates wetlands fill operations that may be involved in constructing a tailings treatment facility. The extent to which the Corps can use Section 404 permits to regulate other aspects of a tailings treatment/disposal operation, however, is the subject of litigation. The most recent decision suggests that the Corps' Section 404 authority can include authorizing disposal of mine waste into waters of the U.S., but that arguably is a more narrow function that the DEIS's generalization that "activities involving tailings storage, treatment, and disposal are among those requiring a Section 404 permit."

wo 10

Mr. Pete Griffin

The carryover paragraph on pages 1-16 to 1-17 describing the Division of Governmental Coordination's (DGC's) responsibilities for implementation of the Alaska Coastal Management Program (ACMP) needs to be updated in the FEIS to reflect the fact that this activity is now a part of the Alaska Department of Natural Resources (DNR's) permitting functions.

WO 11

Though there is nothing incorrect about the description of the City and Borough of Juneau's (CBJ's) responsibility "for revision of the current Greens Creek Large Mine Permit," at page 1-17, in light of the new CBJ ordinance recently enacted, the EIS would now be more informative if the first sentence went on to say "which can be accomplished through a summary approval process or a permit amendment."

wo 12

10. The last phrase under "Monitoring" on page 2-35 should also mention the nature of the limited modifications (e.g., the plan is being modified to add appropriate sampling sites).

wo 13

11. In the last paragraph on page 2-35, the discussion about Water Quality under Alternative A is somewhat confusing in that it suggests that the underdrain flow mixes with both surface and groundwater at a single compliance location, when in practice such blending occurs broadly within the Tailings containment area.

[12. The handling of Alternative A in Table 2-5, page 2-39, is confusing insofar as it characterizes zero wetlands acreage impacts as "minor" rather than "none" and assigns an impact measure of "negligible" to other elements (e.g., birds, subsistence, etc.) when Alternative A is supposed to represent no change from the status quo.

15

13. Two-thirds of the way down on page 4-10, the second paragraph states that "[t]he reclamation plan for all alternatives would comply with Appendix 14 of the 1983 Greens Creek FEIS." This is incorrect. The correct reference should be to the current (October 2000) Appendix 14 to the GPO.

16

114. The last sentence on page 4-42 indicates that in the context of Threatened and Endangered Species, possible impacts from ore barges or ship traffic were considered. While we agree with the conclusion that Steller sea lions and humpback whales are not adversely affected by

mine related ship traffic, the focus of the discussion in section 4.9 should be on effects of the tailings expansion and thus the second sentence in the carryover paragraph spanning pages 4-42 and 4-43 should be stricken from the FEIS as unnecessarily covering activities beyond the context of the EIS scope.

17

W □ [15. The citation in the first paragraph on page 4-48 dealing with "Cumulative Impacts" should be to 40 (not 43) CFR 1508.7.

In closing, KGCMC also regarded the public meeting format as an excellent method to make the Baker Team and Agency representatives available to the public in an environment that stimulated questions and allowed the public to build a better understanding of the project. The public access to the experts was quite good in this case, and we believe those in attendance left with a better understanding of the project Alternatives as well as having their individual questions addressed.

Thank you for the opportunity to comment on the DEIS.

Sincerely,

Environmental Manager

Kennecott Greens Creek Mine

---- Forwarded by Jeff DeFreest/R10/USDAFS on 05/27/2003 07:42 AM ----Jim Rehfeldt <rehfeldt@alaska To: jdefreest@fs.fed.us .com> Subject: Greens Creek Waste Piles

05/26/2003 07:46 PM

I have the following comments concerning the request by the Greens Creek mine to double the size of its waste piles: There should be high environmental standards for this mine due its location in a

highly valued National Monument. A new alternative that is based on proven management practices for the expanded waste piles should be added.

JR

Larger waste piles should not be permitted until the mine is in compliance with environmental regulations concerning the existing waste piles.

An informed decision about the alternatives cannot be made until the effects of the pollution from the existing piles is evaluated.

Jim Rehfeldt Juneau

JR



Charles Rinehart <alphacryptored@web tv.net>

To: idefreest@fs.fed.us

Subject: Comments Regarding Greens Creek Mine Proposal

06/06/2003 10:11 PM

Dear U.S. Forest Official Jeff Defreest:

As a strong supporter of wildlife, I urge the Juneau Ranger District of the U.S. Forest Service to deny Kennecott Corp.'s anxious request to increase its toxic waste dumping capacity in the Greens Creek mine located on Admiralty

Right now, mine waste originating from Greens Creek mine is already polluting surface and ground water with toxic metals and acids. Acid mine drainage is a particular odious threat to the National Monument because as anyone familiar with mining could clue you in on, once an acid-generating process starts, it's virtually impossible to stop it in its tracks! The long-term impacts to clean water and wildlife woud be thoroughly devastating! Rather than approving a request to expand, you need require the mining company to clean up all existing sources of pollution.

Admiralty Island is a fast disappearing national treasure, supporting the densest population of brown bears and nesting bald eagles in the world.

Please, you must give it the protection it so richly deserves. I thank you for weighing my comments.

Sincerely yours,

Charles Rinehart 240 North Constitution Avenue New Freedom, PA 17349

Robert B. Robinson 4424 Teel Court Juneau, Alaska 99801 (907) 789-2700

Pete Griffin Juneau Ranger District 8465 Old Dairy Road Juneau, Alaska 99801

May 21, 2003

Dear Mr. Griffin.

I have read the Greens Creek Tailings Expansion DEIS, and I feel the analysis does a good job of insuring a minimal amount of environmental degradation resulting from increased tailings storage capacity for the mine. Either Alternative B or C represents a satisfactory means for extending the life of the mine. My opinion is that while using less Monument land is important, the chief concerns of the Forest Service should be water quality during operation and after reclamation, as well as permitting a 2 I plan with good economics for the operator.

3

The Greens Creek mine has great value to the Juneau economy. As stated in the DEIS, Juneau has been experiencing a decline in real wages for some time, even including state government employment. I feel it can hardly be over-emphasized how crucial the living-wage jobs provided by Greens Creek mine are to the community. The fact that the mine is such an important economic asset to Juneau needs to be given considerable significance in planning and permitting the tailings storage expansion.

H think the Cumulative Impacts section of the DEIS is on the right track. There is really no way to know what the status of this land and water may be decades in the future. However it is clear that a valuable resource is in this vicinity, and that mining operations are already underway. Significant ore bodies are few and far between, so it stands to reason that this land should be utilized primarily for the exploitation of the Greens Creek resource. The most significant cumulative impact of the tailings expansion is the socioeconomic benefit the continued operation of the mine will have on the Juneau area.

I hope the Forest Service is able to improve and expedite the construction of the enlarged Greens Creek tailings facility.

Rol lobinson Robert B. Robinson

RECEIVED

Juneau Ranger District



Scruggs <mscruggs@owl.csus m.edu>

To: jdefreest@fs.fed.us cc: Subject: Greens Creek Mine dump

05/19/2003 09:04 PM

Jeff DeFreest, Minerals Program Manager Juneau Ranger District 8465 Old Dairy Road Juneau, Alaska, 99801

Dear Mr. DeFreest:

T3

I have just learned that the Green Creek Mine continues to release toxic acid and pollution into Alaskan waters inspite of large fines. And now this mine wants permission to double the size of its waste dump! Please say NO! to Alaska's biggest polluter. act!

Sincerely,

Scruggs

Tena

Box 3131

PO

Escondido, CA 92033

Jeff Defrest Juneau District Ranger 8465 Old Darry Road Juneau, AK 99801

Jeff-

ws

I haven't had the chance to meet you yet so I'm not sure how necessary this letter is but. I did want to cast my vote against the proposed expansion of Greens Creek Mine. I understand that increased income generated from more mining could be a welcome belister to a hurting economy but the science behind the move sounds questimable at best. Place do your best to protect our stake forests from irreparable harm (or, at best, very costly repair) by opposing this measure. We've only got one Admiralty Island, afterall.

Thonks for your time, - WORAW

JUN 0 9 2003

General Delivery Show Weshow 43@hotmal.com 99848

### Geoff Shester, 531 Park St. Apt B, Juneau, AK 99801 (907) 321-4737

### Delivered via Email

Jeff DeFreest United States Forest Service Juneau Ranger District 8465 Old Dairy Road Juneau, AK 99801

June 30, 2003

RE: Comments on Draft EIS for expansion of the Greens Creek Tailings Disposal area

Dear Mr. DeFreest:

As a Juneau resident who frequently fishes, kayaks, and camps on and around Admiralty Island, I strongly urge you to select the No Action alternative in the Greens Creek Tailings Disposal Area Expansion Environmental Impact Statement (EIS). As you know, the marine ecosystem surrounding Admiralty Island National Monument is home to myriads of humpback whales, Steller sea lions, orcas, seabird colonies and a host of other species that attract millions of visitors from all over the world. This national treasure is not the place to release toxic substances into the marine environment. I am very concerned about the impacts of the proposed increase of persistent toxins into the waters that nourish the fish I eat. It would be irresponsible of the U.S. Forest Service to allow untested experimental pollution control techniques on Admiralty Island. Have the proposed pollution control techniques been used successfully elsewhere? If the experiment goes awry, the stakes are tremendous.

I am aware of the economic benefits that the Greens Creek mine provides to the local economy as described in the Draft EIS. However, the Draft EIS does not describe where the profits go. You mentioned at the "public hearing" in Juneau that the mine is actually owned by a multinational corporation. In addition to knowing how much revenue and how many jobs the mine provides for the Juneau area, how much of the profits from the mine leave Alaska? What percent of the mine's profits goes to Alaskans and what percent goes to people that live in foreign countries? How much money from the mine leaves the U.S.?

At the Juneau "public hearing" you described that the mine will have to close anyway in 10-12 years. I understand the difficulty in making a decision that may take away jobs. However, this decision is not yours to make. The jobs provided by the mine are not sustainable. Whether in two years or twelve, the people currently employed by the mine will have no job. The real choice here is whether to close the mine now and have a minor Superfund site or wait twelve years and have one of the largest environmental disasters in Alaska.

Congress designated Admiralty Island a National Monument for good reason. Please do not ruin this crown jewel of Southeast Alaska. Please do not allow the Greens Creek mine to continue its toxic operations. Please select the No Action alternative.

Sincerely,

Geoff Shester



Kelly Tonsmeire <asdn@ptialaska.net>

05/19/2003 04:18 PM

To: jdefreest@fs.fed.us cc:

Subject: Greens Creek

I am opposed to increasing the size of Greens Creek's waste dump because this will increase the current pollution problems at the mine. I urge the Forest Service to require Greens Creek to use proven management practices for its expanded waste dump. Kelly Tonsmeire



JW

UNITED STATES DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration PROGRAM PLANNING AND INTEGRATION Silver Spring, Maryland 20910

JUN - 3 2003

United States Forest Service Juneau District Ranger Attn: Jeff DeFreest 8465 Old Dairy Road Juneau, Alaska 99801

Dear Mr. DeFreest:

The National Oceanic and Atmospheric Administration (NOAA) has reviewed the Draft Environmental Impact Statement (DEIS) for the Greens Creek Tailings Disposal in the Greens Creek Watershed, Alaska. The project involves general mining operations including disposal of tailings and discharge of waters into the adjacent Hawk Inlet.

NOAA's National Marine Fisheries Service (NMFS) has jurisdiction under Section 305(b) of the Magnuson-Stevens Fishery Conservation and Management Act with regard to Essential Fish Habitat (EFH). Federal agencies are required to consult with NMFS on all actions that may adversely affect EFH. NMFS is required to make conservation recommendations which may include measures to avoid, minimize, mitigate or otherwise offset adverse effects. For the purposes of this DEIS, EFH includes all segments of streams where salmon reside during any period of the year as well as the marine waters and substrates of Hawk Inlet.

Provided here are general and specific comments on the proposed action. In particular, these comments emphasize concerns with respect to mine operations and sediment contamination of fish spawning and rearing habitat and the toxic effects of heavy metals and chlorine on aquatic life. Low concentrations of some heavy metals are extremely toxic to plant and animal life, and some metals have the potential to accumulate in greater concentrations as they move through the food chain.

Regional NOAA Fisheries staff are working with your U.S. Forest Service staff on many of these areas. Should you have any specific questions, please contact Katharine Miller with the NMFS Alaska Region at (907) 586-7643.

Sincerely,

RECEIVED

JUN 0 9 2003

Juneau Ranger

Joyn Wood

Jóyce Wood NEPA Coordinator





# NOAA's National Marine Fisheries Service Comments: Greens Creek Tailings Disposal Draft Environmental Impact Statement

The National Oceanographic and Atmospheric Administration's National Marine Fisheries Service (NMFS) has reviewed the Draft Environmental Impact Statement (DEIS) for the Greens Creek Tailings Disposal. The Greens Creek Mine is located in the Greens Creek Watershed within the Admiralty Island National Monument adjacent to Hawk Inlet. Under the current general plan of operations, tailings are placed in a dewatered state into the tailings pile. Non-contact water (surface and ground) is diverted around the tailings pile. Contact water is collected and treated before being discharged into Hawk Inlet through an existing National Pollution Discharge Elimination System (NPDES) permitted discharge system. The proposed preferred alternative would expand the existing tailings facility by 84.5 acres to a total area of approximately 140.5 acres. Tailings disposal would occur on approximately 40 acres within the new area, with the remaining 45 acres being used for rock quarries, a stormwater pond system, and storage for reclamation materials. Tailings would continue to be placed on the pile without chemical or biological additives. Non-contact water would continue to be diverted around the tailings pile, and treated contact water would continue to be discharged to Hawk Inlet under the NPDES permit.

JW

Section 305(b) of the Magnuson-Stevens Fishery Conservation and Management Act requires Federal agencies to consult with NMFS on all actions that may adversely affect Essential Fish Habitat (EFH). NMFS is required to make conservation recommendations which may include measures to avoid, minimize, mitigate or otherwise offset adverse effects. For the purposes of this DEIS, EFH includes all segments of streams where salmon reside during any period of the year as well as the marine waters and substrates of Hawk Inlet. These areas provide habitat for a number of anadromous and marine species including pink salmon, chum salmon, coho salmon, Dolly Varden char, cutthroat trout, several species of shrimp, halibut, black cod, and king crab. Unfortunately, the level of detail provided in the DEIS sections on the marine environment (sections 3.6.6 and 3.6.7) is insufficient for NMFS to make a determination on potential impacts to EFH from the proposed activity. Therefore, NMFS requests that the U.S. Forest Service (USFS) initiate an EFH consultation to fulfill its statutory obligation under the Magnuson-Stevens

JW

NMFS' main concerns with respect to mine operations are related to sediment contamination of fish spawning and rearing habitat and the toxic effects of heavy metals and chlorine on aquatic life. Low concentrations of some heavy metals are extremely toxic to plant and animal life, and some metals have the potential to accumulate in greater concentrations as they move through the food chain. Because many animals residing in soft-bottom benthic communities are important food items in the diets of higher trophic level species, the possible cumulative impacts of mine activities on marine sediment and biota should be evaluated. During review of the initial EIS for operation of the Greens Creek Mine in 1982, NMFS recommended developing a monitoring program designed to detect changes in the quality of habitat for resident and migratory organisms associated with Hawk Inlet and its freshwater tributaries. This monitoring program included

sampling of intertidal and subtidal bottom sediments, the corresponding biota, and the water column for heavy metal concentrations. NMFS' recommendations were included in the marine monitoring program required under the Greens Creek NPDES permit, which requires quarterly water column monitoring, bi-annual sediment sampling, and semi-annual testing of tissues from Nephthys procera, Nereis ssp, and Mytilus edulus.

Given the existence of an ongoing marine monitoring program, quantitative information should be provided in the DEIS regarding marine water quality or heavy metal concentrations in seafloor sediments and biota. Most of the information provided in sections 3.6.6 (Marine Water Quality) and 3.6.7 (Metal Concentrations in Seafloor Sediments and Biological Tissues) is presented in qualitative terms indicating that some metals were found in "generally high" levels prior to mine operations and some metals were "significantly higher" after mine operations. This level of detail is insufficient for NMFS to determine whether increases in metal concentrations as a result of mine operations pose a risk to living marine resources and EFH. To adequately assess the impacts of mine operations and proposed changes in mine operations on marine resources and EFH, NMFS requires data on the concentrations of metals measured, the time frame over which sampling occurred, sampling frequency, and analysis of trends in the data over time.

Because of the lack of sufficient data in the DEIS, NMFS cannot agree with the conclusion in Section 4.10 (Essential Fish Habitat) that "no discernable effects are expected on marine habitats, subtidal substrata and biota, benthic (sea bottom) habitats in the project area, intertidal sands, submerged sill habitats, kelp habitats, rocky habitats, or freshwater fish habitats, thus no impact on EFH is expected." Although data or information may exist elsewhere to substantiate this conclusion, it is not supported by data or information provided in the DEIS.

Finally, based on the information in the DEIS, Alternative C would have the least impact on freshwater and marine resources during mine operation and after closure. This is the only alternative for which the water quality model indicates that zinc concentrations in the under drain water will not exceed Alaska Water Quality Standards. This result is significant because zinc is readily bioaccumulated and thus can pose a threat to fish, birds, and marine mammals. In addition, Alternative C would require the least amount of disturbance to wetlands. As a result, NMFS recommends that Alternative C be selected over the proposed alternative (Alternative B).

### Specific Comments:

JW

Section 3.6.6 indicates that "(m)arine water quality parameters are monitored on a regular basis" but does not provide information on the frequency of monitoring, the specific parameters that are regularly monitored, or any changes in marine water quality that have occurred during the period that the mine has been in operation. [For inorganic nutrients, the document contains only a qualitative statement that concentrations of inorganic nutrients are "comparable to those at Auke Bay near Juneau." No information is provided on what these concentrations are, when measurements were taken to determine these concentrations, and whether any changes in these concentrations have occurred over time. [Likewise, this section indicates that lead concentrations

3

"vary, with location, from below detection limits to near acute levels" but does not provide specific data on what the concentrations are at specific locations or during what period of time the data were collected. NMFS recommends that this section contain information on the marine water quality sampling program including the parameters being sampled, the frequency of sampling, and a summary of sampling results with both baseline data and data collected since mining operations commenced.

Section 3.6.7 states that studies have "documented the metal concentrations in seafloor sediment and seafloor creature tissues during the mine's pre-operational, operational and temporary closure (post operational) periods" and that the "results of these studies are useful for ascertaining natural metal levels and for determining whether mine operations caused any increase above the natural levels for metal in sediments and tissue of marine organisms sampled." Unfortunately, this section does not provide the quantitative results of these studies. Instead, it discusses the results in qualitative terms indicating that some metals were found in "generally high" levels prior to mine operations and some metals were "significantly higher" after mine operations. This level of detail is not sufficient for determining whether increases in metal concentrations as a result of mine operations pose risks to marine resources. To adequately assess the impacts of mine operations and proposed changes in mine operations on marine resources, NMFS recommends that this section provide the quantitative concentrations of metals measured, the time frame over which sampling occurred, sampling frequency, and trends in the data.

Section 3.6.7 also states that "polychaete worms were sampled as indicators of heavy metals accumulating in marine life in Hawk Inlet" and that concentrations of lead and arsenic increased after mine operations, but no information is provided on the frequency of sampling or the time frame for the sampling results. No data are provided for the arsenic increases. Specific data are only provided for lead. No information is provided about when the specific data were collected or whether lead levels have continued to increase. NMFS recommends that this section provide current quantitative data from the tissue sampling including frequency of sampling, a comparison of baseline and subsequent results and analysis of any trends in the data. Section 3.6.7 needs a discussion of the extent to which mine operations are responsible for increases in metal concentrations in sediments and tissues so that the alternatives being considered can be evaluated for potential impacts to marine resources.

The paragraph on page 3-16 appears to indicate that tissue sampling occurred at three sites (S-1, S-2 and S-3), but the legend to the map in Figure 3-6 indicates that sites S-1 and S-2 were sediment sampling sites and sites 1, 2 and 3 were bioaccumulation sampling sites. No S-3 is shown in this figure.

**Figure 3-11** in Section 3.8, Water Quality, should identify the wells and sampling stations by the names used in the text and tables (e.g. MW-25 FWMP #27) so that the location of the wells can be compared to the data for individual wells provided throughout this section.

4

JW)

JW

Table 3-3 in Section 3.8.1 (Groundwater Quality) provides data on groundwater monitoring for four wells down gradient of the existing tailings pile. Values are presented as a range and average value for each parameter. The text or table should specify the time period over which the data were collected (e.g. is all of the data from 1998 through 2002?), the frequency of sampling, and the baseline (pre-mine) value for each parameter, if available. The time period (annual, monthly, daily, etc.) over which the average value is calculated is not specified. If this value is the average over several sampling periods (e.g. the entire time frame over which the data were collected), the usefulness of this value is not clear. The determination of whether measured values are within allowable water quality parameters is not based on the average over several sampling periods.

over several sampling periods (e.g. the entire time traine over which the data with considerable water quality parameters is not based on the average over several sampling periods. Data on instances, if any, when measured values have approached or exceeded allowable water quality parameters would be more valuable fo assessing actual water quality impacts. The location of these wells needs to be identified in relation to freshwater sources into which they

Section 3.8.2, Surface Water Quality, states "(s)urface water quality has been evaluated from FWMP samples taken from Tributary Creek down gradient from the tailings facility and Cannery Creek up gradient and down gradient from the existing tailings facility (Figure 3-12)." Why Figure 3-12 is referenced here when neither Tributary Creek nor Cannery Creek are identified in

Figure 3-12 is not clear.

might drain.

Page 3-45 states "The data from Tributary Creek revealed dissolved levels of cadmium, copper, mercury and zinc having values above AWQS..." but no information is provided about what these values were. The document indicates that "since 1990 these parameters have been analyzed at levels below AWQS." This statement is of only marginal value because the time frame during which values exceeded AWQS is not specified, and the actual measurements are not provided.

Page 3-93, Section 3.13.4 (Freshwater and Salmon Habitat: Original Conditions). The final sentence in the first paragraph states "(a)lthough few of these systems will be affected by any alternative of the proposed action (the exception being Tributary Creek tributary to Zinc Creek), salmon spawning in any of these streams will migrate through Hawk Inlet which does have the potential to be affected..." This statement appears to contradict the assertion made in Section 4.10 that "(n)o discernible effects are expected on marine life, phytoplankton, marine fish or

shellfish, salmon, or Hawk Inlet area fisheries."

Page 4-15, Section 4.5.1 states "(t)here would be negligible adverse effects if tailings effluent is discharged directly to marine waters in Hawk Inlet without treatment." This statement is not supported by data or information presented in the DEIS. Although the water quality model indicates that allowable discharge levels under the existing NPDES permit will not be exceeded, the results from the water quality model do not take into account potential changes, if any, in heavy metals concentrations in marine habitats and biota. Because the DEIS does not present the results of the monitoring program for assessing heavy metal concentrations in marine sediment and biota, a conclusion based on the information presented that an impact to these resources has not occurred and will not occur in the future is not possible.

Page 4-27, Table 4-4. These tables are a repeat of the tables on Page 4-26.

23

In conclusion, NMFS is concerned with the potential for changes in the quality of habitat for resident and migratory organisms associated with Hawk Inlet and its freshwater tributaries due to accumulation of heavy metals from mine operations. The Final Environmental Impact Statement should include analysis of the data that have been collected from sampling of intertidal and subtidal bottom sediments, the corresponding biota, and the water column for heavy metal concentrations. This analysis should be of sufficient detail to support a determination regarding potential impacts to EFH and associated species, as well as any appropriate mitigation measures.

200

The USFS should initiate an EFH consultation with NMFS as required by the Magnuson-Stevens Act. For additional information on EFH consultation procedures, please contact Katharine Miller with the NMFS Alaska Region at (907) 586-7643.

cc: EPA Juneau, Chris Meade USACOE, Colonel Griffith ADEC, ADF&G, ADNR, USFWS, Juneau

June 20,2003

United States Forest Service Juneau District Ranger Attention: Jeff DeFreest 8465 Old Dairy Road Juneau AK 99801

Dear Ranger DeFreest:

I am very concerned about the acid drainage from mining done by Greens Creek Mine (a.k.a. Hazardous Yellow Creek Mine) on Admiralty Island. I am even more concerned about the proposed plan to double the size of the mine's toxic waste dumping.

Please stop this pollution. Why are we willing to ruin our land when it is all we have to support ourselves now and in the future? Do you want to be responsible for turning a relatively healthy, beautiful, productive piece of land into a useless waste dump? Is that what the Forest Service is all about?

I hope that you will carefully consider your priorities in this issue and not only keep Greens Creek from increasing their waste but get them to clean up their existing waste!

Thank you for your consideration of my letter.

Ann K. Yates PO Box 20837 Juneau AK 99802 907-209-7606 aky ml@hotmail.com ann't yates

District



Madeline Yamate <xspaws@aol.com>

06/10/2003 11:28 AM

To: jdefreest@fs.fed.us

Subject: Comments Regarding Greens Creek Mine Proposal

Dear U.S. Forest Official Jeff Defreest:

I ask the US Forest Service to deny Kennecott Corp.'s request to increase its waste dumping capacity at the Greens Creek
mine on Admiralty Island. The mine is located in a National Monument, a mine on Admiralty island. The mine is located in a National Monument, a beatiful island that should be preserved for posterity. The operation should not be allowed to increase the scope of its effects on the natural systems of the island but instead should be gradually phased out of existence.

Thank you for accepting my comments.

Sincerely,

Madeline Yamate 1454 Springdale Dr Woodland, CA 95776

Old- TZ-b

# State of Alaska

ADEC Waste Management Permit

**ACMP Consistency Determination** 

Greens Creek Tailings Disposal www.state.ak.us/dec/deh/solidwaste/greenscreek.htm

# **Comment Form**

| Eccommon This me                                                                                                                   | XPORTS - SO BETTER,                                                                                                                                                                  |               |
|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| RECOMMEND THE MO                                                                                                                   |                                                                                                                                                                                      | 2177          |
| Alconing / mg me                                                                                                                   |                                                                                                                                                                                      |               |
|                                                                                                                                    | re -                                                                                                                                                                                 |               |
|                                                                                                                                    |                                                                                                                                                                                      |               |
|                                                                                                                                    |                                                                                                                                                                                      |               |
|                                                                                                                                    |                                                                                                                                                                                      |               |
|                                                                                                                                    |                                                                                                                                                                                      |               |
|                                                                                                                                    |                                                                                                                                                                                      |               |
|                                                                                                                                    |                                                                                                                                                                                      |               |
|                                                                                                                                    |                                                                                                                                                                                      |               |
|                                                                                                                                    |                                                                                                                                                                                      |               |
|                                                                                                                                    |                                                                                                                                                                                      |               |
|                                                                                                                                    |                                                                                                                                                                                      |               |
| Comments submitted by:                                                                                                             |                                                                                                                                                                                      |               |
| Name Ton Bruch Address 617 Williams has Sity/State/Zipcode January                                                                 | 434                                                                                                                                                                                  |               |
| City/State/Zipcode_ June                                                                                                           | A1C 99801                                                                                                                                                                            |               |
|                                                                                                                                    | E-mail Address:                                                                                                                                                                      |               |
| hone No                                                                                                                            |                                                                                                                                                                                      |               |
| Comments pertaining to the ADEC W                                                                                                  | aste Management Permit are due by Ly                                                                                                                                                 | me O          |
| Comments pertaining to the ADEC W                                                                                                  | aste Management Permit are due by Ju<br>P Determination are due by June 10 <sup>th</sup> , 2                                                                                         | ine 9<br>2003 |
| Comments pertaining to the ADEC W Comments pertaining to ACM                                                                       | aste Management Permit are due by Ju<br>P Determination are due by June 10 <sup>th</sup> , 2<br>ing, or mail comments to:                                                            | ine 9<br>2003 |
| Comments pertaining to the ADEC W Comments pertaining to ACM lease submit comments during the meet Stan Foo, N                     | aste Management Permit are due by Ju<br>P Determination are due by June 10 <sup>th</sup> , 2<br>ing, or mail comments to:<br>fining Section Chief                                    | ine 9<br>2003 |
| Comments pertaining to the ADEC W Comments pertaining to ACM lease submit comments during the meet Stan Foo, N ADNR/Div            | aste Management Permit are due by Ju<br>P Determination are due by June 10 <sup>th</sup> , 2<br>ing, or mail comments to:<br>lining Section Chief<br>ision of Mining, Land and Water | ine 9<br>2003 |
| Comments pertaining to the ADEC W Comments pertaining to ACM lease submit comments during the meet Stan Foo, N ADNR/Div 550 West S | aste Management Permit are due by Ju<br>P Determination are due by June 10 <sup>th</sup> , 2<br>ing, or mail comments to:<br>fining Section Chief                                    | ine 9<br>2003 |