CHAPTER III

OVERBURDEN AND INTERBURDEN ASSESSMENT

TABLE OF CONTENTS

<u>Page</u>
LIST OF TABLES
LIST OF FIGUREiv
LIST OF APPENDIXv
1.0 INTRODUCTION
1.1 BACKGROUND
2.0 APPROACH2
2.1 DRILLING AND LOGGING
2.3.1 Parameters
2.4 DATA GROUPING9
2.4.1 Lithologic92.4.2 Drill Hole102.4.3 Overburden/Interburden Unit10
2.5 SUITABILITY SCREENING CRITERIA11
2.5.1 Acid- and Toxic-Forming Potential112.5.2 Plant Root Zone Suitability112.5.3 Vegetative Forage Quality122.5.4 Backfill Water Quality12
3.0 RESULTS12
3.1 SITE GEOLOGY13

3.1.1 Existing Data	13
3.1.2 General Geological Setting	14
3.1.3 General Stratigraphy	14
2121 (1:10 1	1.4
3.1.3.1 Glacial Gravel	
3.1.3.2 Tsadaka Formation	
3.1.3.3 Wishbone Hill Formation	
3.1.3.4 Chickaloon Formation	15
3.2 OVERBURDEN CHARACTERISTICS	15
3.2.1 Lithologic Characterization	15
3.2.1.1 Glacial Gravel	16
3.2.1.2 Tsadaka Conglomerate	17
3.2.1.3 Wishbone Hill Conglomerate	
3.2.1.4 Chickaloon Shale and Claystone	
3.2.1.5 Chickaloon Siltstone	18
3.2.1.6 Chickaloon Sandstone	
3.2.2 Drill Hole Characterization	10
3.2.3 Overburden/Interburden Unit Characterization	
3.2.3.1 Glacial Gravel	20
3.2.3.2 Tsadaka Conglomerate	20
3.2.3.3 Wishbone Hill Conglomerate	
3.2.3.4 Jonesville Overburden	
3.2.3.5 Premier	21
3.2.3.6 Midway	
3.2.3.7 Eska	
3.2.3.8 Sub Eska	
3.2.3.9 Burning Bed	
3.3 COAL CHEMISTRY	23
3.4 COAL SLURRY CHEMISTRY	23
3.5 COAL REFUSE (PARTING) CHEMISTRY	24
4.0 FINDINGS AND CONCLUSIONS	24
4.1 OVERBURDEN/INTERBURDEN SUITABILITY	25

	4.1.1	Acid and Toxic Forming Materials	25
	4.2.2	Plant Root Zone Suitability	26
		Vegetative Forage Quality	
		Backfill Water Quality	
5.0	REFERENCES.		31
6.0	RESPONSIBLE	PARTIES	34

LIST OF TABLES

3-1	Overburden Analytical Methods		
3-2	Overburden Screening Criteria		
3-3	Major Overburden/Interburden Sample Lithotypes		
3-4	Lithologic Geochemical Summary		
3-5	Drill Hole Overburden/Interburden Groupings		
3-6	Overburden/Interburden Geochemical Summary		
3-7	Coal Chemical Analyses		
3-8	Coal Slurry Water Chemistry		
3-9	Coal Refuse Chemistry		
	LIST OF FIGURES		
3-1	General Location Map		
3-2	Overburden Sample Composition by Lithotype		
3-3	Approximate Lithologic Composition for Drill Holes PB-60, PB-80, PB-84, PB-85 and PB-87		
3-4	Approximate Lithologic Composition for Drill Hole PB-69A, PB-74, PB-92, PB-101 and PB-105		
3-5	Approximate Lithologic Composition for Drill Hole PB-107, PB-108 and PB-109		
3-6	Drill Hole Stratigraphic Coverage		
3-7	Lithologic Composition of Major Overburden/Interburden Units		
3-8	Mean SAR Values Overburden/Interburden Units		

LIST OF APPENDICES

APPENDIX A COMPUTERIZED LITHOLOGIC LOGS

APPENDIX B CHEMICAL DATA

APPENDIX B-1 OVERBURDEN CHEMICAL DATA
APPENDIX B-2 TOTAL CHEMICAL ANALYSES
APPENDIX B-3 COAL SLURRY CHEMISTRY
APPENDIX B-4 COAL REFUSE CHEMISTRY
APPENDIX B-5 MINEROLOGY ANALYSIS

APPENDIX B-6 EXCHANGEABLE SODIUM PERCENT ANALYSIS

APPENDIX C LABORATORY QA/QC

APPENDIX C-1 IML LABORATORY DATA

APPENDIX C-2 INTERLABORATORY SPLIT SAMPLE ANALYSES

CORRELATION COEFFICIENTS

APPENDIX C-3 INTERLABORATORY CORRELATION PLOTS

APPENDIX D STATISTICAL SUMMARIES

APPENDIX D-1 DRILL HOLE GEOCHEMICAL SUMMARY STATISTICS APPENDIX D-2 LITHOLOGIC GEOCHEMICAL SUMMARY STATISTICS

APPENDIX D-3 OVERBURDEN/INTERBURDEN GEOCHEMICAL

SUMMARY STATISTICS

APPENDIX E GEOPHYSICAL LOGS

1.0 INTRODUCTION

This section presents the findings of the Overburden Characterization Program for the Wishbone Hill Coal Project. These investigations were conducted to characterize the geochemistry of the overburden and interburden units so that the potential for impacting water quality and revegetation could be assessed. All stratigraphic intervals that will be mined have been sampled and analyzed.

1.1 Background

All overburden characterization methods (including drilling, logging, sampling and analyses) were conducted in accordance with the applicable rules, regulations and recommendations of the State of Alaska Department of Natural Resources Division of Mining (Division) and the Department of Interior - Office of Surface Mining (OSM).

The Division requires chemical analyses of each stratum within the overburden and each stratum immediately below the lowest coal seam to be mined. In addition, the Division requires chemical analyses of the coal for total sulfur content.

1.2 Objectives

The primary objective of the overburden characterization program was to define the physical and chemical characteristics of the overburden units within the permit area so that successful reclamation plans could be developed. Particular emphasis was placed on the identification of acid-forming and toxic-forming zones or strata, and on those overburden chemical characteristics important to post mining revegetation.

The geology of the proposed permit area is described down to and including the stratum immediately below the lowest coal seam to be mined. This description includes the general geology of the permit area, overburden characteristics (including lithologic, physical and chemical properties) of each stratum, chemical analysis of the coal seam and coal group partings (refuse) for acid- and toxic-forming materials. These descriptions and supportive data are submitted in sufficient detail to assist in:

- Defining the major lithostratographic units;
- Determination of potentially acid- and/or toxic-forming strata;
- Identifying potential strata that have physical and chemical properties that may adversely affect a) post-mining ground water quality and b) surface reclamation efforts;
- Identifying the total sulfur content of the coal;
- Development of operational and reclamation plans for handling toxic- and acid-forming materials.

2.0 APPROACH

The overburden characterization program was designed to make full use of existing overburden information to achieve the above objectives. The key elements of the Wishbone Hill Overburden Characterization Program approach were:

- <u>Evaluation of Existing Data</u> Overburden lithologic, geophysical, and geochemical data from exploration and related drill holes were evaluated.
- <u>Phased Drilling and Sampling</u> Phased drilling programs to provide additional overburden information were conducted in 1983, 1984, 1988 and 1989. Sampling of overburden materials for chemical analyses was conducted during the 1988 and 1989 drilling programs.
- Combined Non-Statistical and Statistical Evaluation Lithologic and laboratory chemical
 data were analyzed and evaluated using statistical and non-statistical approaches.
 Statistical methods were used to assess variance, minimum, maximum and mean values.
 The non-statistical elements included evaluation of the overburden based on suitability
 criteria for reclamation.
- <u>Identification of Overburden/Interburden Groups</u> Logical overburden units were defined and characterized based on the mining and operations plans.
- <u>Screening of Overburden/Interburden Units</u> Each unit was screened on the basis of its geochemical characteristics to assess acid- and/or toxic-forming materials and its suitability for reclamation.

2.1 <u>Drilling and Logging</u>

At the time this study was conducted, one hundred forty seven (147) exploration and related bore holes were drilled within the Wishbone Hill Coal Project area (Plate II-3 of the Geology Report). This represents a substantial data base from which to describe the geologic, stratigraphic, lithologic and geochemical characteristics of the overburden/interburden materials. A more complete discussion of the drilling and logging is located in the Geology section of the mine permit application (Chapter II).

A combination of rotary-drilled (chip sampled) and cored drill holes were used for the overburden characterization studies. Each borehole was logged for detailed lithological description of core and cuttings by the site geologist. Project geologists have spent considerable time and effort to obtain consistency between the geologic logs (lithologic descriptions used for each borehole record) collected by various geologists. Lithologic logs were completed on standard forms, with appropriate headings information and scales. Standard descriptions specifying depth interval and characterizing lithologic and mineralogic attributes were completed. Appendix A presents the computerized lithologic logs for drill holes utilized in geochemical and lithologic characterization. Additional lithologic logs are kept on file in the project office in Palmer, Alaska.

All major lithologic units that will be disposed of as spoil have been sampled. Plate II-3 (Geology Report) identifies the drill holes that were sampled and subsequently analyzed for chemical parameters. Drill hole samples were taken from the ground surface down to the first geological stratum below the lowest coal seam to be mined.

In addition to lithologic logs, each borehole was geophysical logged under the supervision of the site geologist. This included the acquisition of gamma caliper, resistivity (electric), and density logs. Sufficient deflection was achieved to adequately identify major lithologic units. Geophysical logs (gamma, resistivity and density) for the 10 drill holes utilized in geochemical characterization are presented in Appendix E. Additional geophysical logs are kept on file in the project office in Palmer, Alaska.

2.2 Sampling

Sampling procedures for cored and rotary-drilled holes followed the guidelines established by western surface coal mine regulatory agencies. Specifically, these guidelines suggest that 10-foot split-core composite samples be obtained from ground to the first under burden unit; and that cuttings from rotary-drilled holes be composite and split-sampled at 5-foot intervals. However, strict adherence to the 5- or 10-foot interval sampling/analysis procedure may actually result in loss of important data. For example, regimented interval sampling may result in the inappropriate compositing of more than one lithotype under some circumstances, making lithologic/geochemical interpretation and correlation more difficult. Similarly, if a sampled interval is lithologically consistent over a considerable depth, then that interval's geochemical attributes may be characterized by a fewer number of properly composite samples. For these reasons, a modified lithologic control sampling technique was utilized to achieve a more accurate and cost-effective approach to the overburden sampling and characterization. The maximum compositing interval was ten feet for cored holes. However, sampling intervals for cored holes were based on lithologic breaks and are frequently less than ten feet. All chip samples were composited over five foot intervals regardless of lithology. Sampling quantities, preparation, and handling procedures followed recommended guidelines. Core samples were composited over the entire sampling interval. Cores were stored in standard core boxes and kept in a dry, cool environment to reduce any chemical or biological oxidation. Chip samples were collected and quickly rinsed with water to remove any contamination from bentonitic drilling muds. The entire chip sample was submitted for laboratory analysis. All samples were ground and sieved through a 2 mm screen prior to conducting the laboratory analyses. All overburden samples were obtained under the supervision of a site geologist.

2.3 Laboratory Analysis

The success of any overburden characterization program is dependent on the quality of the analytical work performed on the samples. Picking a laboratory that is cost-effective, and highly regarded for quality analytical work among peers, industry and regulatory agencies is essential. Two laboratories which have worked with us on a number of projects including the quality control section of the BHP-Utah International Alton coal project are Colorado State University Soil Testing

Laboratory (CSU) and Inter-Mountain Laboratories, Inc. (IML). Both of these laboratories have the qualifications listed above. CSU was chosen for the routine overburden analytical work, while IML was utilized for the QA/QC portion of the overburden characterization program.

CSU is one of the premier soil and overburden testing facilities in the United States. It has been responsible for the development of numerous analytical procedures for soils and overburden, including the DTPA (diethylenetriaminepentaacetic acid) and AB-DTPA (ammonium bicarbonate-DTPA) extraction procedures which have been used in Alaska soil and overburden projects. In addition, CSU is the recognized authority on soil and overburden analyses utilizing an inductively coupled plasma - atomic emission spectrometry (ICP) system and are the authors of the ICP chapter in "Methods of Soil Analysis" (Page, 1986). The lab has invaluable experience with analysis of western soils and overburden and is often utilized by industry, academia, and regulatory agencies. CSU is routinely involved in Quality Assurance/Quality Control (QA/QC) programs and is one of only a few laboratories in the United States which has passed the State of California Water Quality Control Board's QA/QC for selenium.

2.3.1 Parameters

Review of previous overburden work for Alaska coal mines indicates an extensive laboratory parameter list. However, these past overburden characterization studies have been targeted at topsoil substitution. That is not the intent of the Wishbone Hill overburden characterization program. Therefore, a more traditional parameter list has been developed to accurately define acid-forming and toxic-forming zones or strata.

The following parameters were analyzed on all overburden, interburden, and floor (under burden) samples collected for the overburden characterization program.

- pH
- Electrical Conductivity (EC)
- Saturation Percent (Sat %)

- Texture
- Sodium Absorption Ratio (SAR)
- Total Sulfur
- Calcium Carbonate %
- Acid Base Potential (ABP)
- Boron (B)
- Selenium (Se)
- Nitrate Nitrogen

These parameters were selected based on review of current practices, comparison with other western states overburden guidelines, and discussions with the Division and Dr. C. L. Ping (June 20, 1988). Some samples from the 1989 drilling program contained insufficient volumes for a complete laboratory analysis. Therefore, some of these samples lack texture, selenium, boron and nitrate-nitrogen analyses. All of the samples were analyzed for acid and toxic forming materials as required by both state and federal regulations.

In addition to the parameters listed above, the Division (Mr. Sam Dunaway, June 17, 1988 scoping meeting) recommended that additional parameters be evaluated to get a more complete "geochemical picture" for the overburden. Discussions during the June scoping meeting indicated that total elemental analysis would only be necessary on representative samples of each major lithologic unit.

The following parameters were analyzed for total elemental analysis on representative samples from each major lithologic unit.

Al	Cr	Mn	Se
As	Cu	Mo	Sr
В	Fe	Na	Ti
Ba	Hg	Ni	Zn
Ca	K	P	
Cd	Mg	Pb	

Representative samples chosen for these analyses included Wishbone Conglomerate (3990), Tsadaka Conglomerate (4043), glacial gravel (4027), shale (4002), siltstone (3965) and sandstone (3970). These intervals were chosen due to their close proximity to the calculated mean value for

that lithologic or overburden/interburden unit. In addition, total elemental analysis was also conducted on both coarse (4821) and spiral (4822) reject materials.

2.3.2 Analytical Methods

The recommended analytical procedures for the overburden characterization study are those recommended by the Wyoming Department of Environmental Quality - Land Quality Division (Guideline No. 1, 1984). These procedures were discussed with the Division and with Dr. C. L. Ping. The procedures are outlined in Table 3-1.

The procedure for total elemental analysis utilized nitric-perchloric acid digestion followed by ICP analysis. All elements except As, Se and Hg were analyzed by direct nebulization into an ICP. Arsenic and selenium were concentrated using hydride generation. Mercury was analyzed by cold-vapor ICP. Total boron analysis was rerun using teflon digestion tubes due to boron contamination from the pyrex digestion equipment.

2.3.3 Laboratory QA/QC

The analytical laboratory provides geochemical data for use in overburden characterization. To be valuable, the data must be both accurate and precise.

The most common method for determining the accuracy of an analytical procedure is the use of standard reference materials. However, there are few commercially available standard reference materials for overburden. Twenty one (21) overburden sample splits were sent to IML as a check on analytical performance. A variety of statistical methods were used to evaluate the analytical data. These methods included:

- Graphical comparison of CSU and IML data
- Calculation of correlation coefficients for each parameter between the CSU and IML data

Currently, no state or federal regulatory agency requires laboratory QA/QC programs for

overburden characterization studies. However, to insure the validity of the overburden analytical data and to assist in evaluation and interpretation of the potential impacts from any apparent adverse overburden geochemical conditions, a laboratory QA/QC program was included.

The results of this interlaboratory comparisons of the Wishbone Hill sample splits are shown in Appendix C. In general, the results indicate that the data between laboratories are comparable and demonstrate the accuracy (validity) of the overburden chemical data presented in this report.

There is analytical consistency throughout most of the results as indicated by the high correlation coefficients (r) for the data (Appendix C-2). The correlation coefficients (r) values were poor for sand (0.505), silt (0.549), clay (0.183), nitrate-nitrogen (0.498), boron (0.195) and selenium (0.596). All other r values are highly significant: pH (0.916), electrical conductivity (0.839), saturation percent (0.978), calcium (0.978), magnesium (0.994), sodium (0.911), sodium absorption ratio (0.801), total sulfur (0.907), calcium carbonate percent (0.709) and acid-base potential (0.721). The trends of poor analytical performance with selenium, boron and nitrate-nitrogen are consistent with findings of the Western Soil and Overburden Task Force Round Robin Soil and Overburden Analysis Programs (Severson and Fisher 1985; 1986; and 1987). However, the analytical performance presented in this report is superior to that reported by Severson and Fisher (1985, 1986 and 1987).

Although the data are correlated, the IML data for calcium, magnesium, acid-base potential (ABP) and percent sand are consistently higher than CSU. The IML data for pH, sodium absorption ratio (SAR) and clay are consistently lower than CSU. These differences in the data are consistent and relatively easy to explain. IML extracted more bases (calcium, magnesium and calcium carbonate) from the samples. The exact reason for this increase is not known.

The results for boron, selenium and nitrate-nitrogen show increased analytical variability and corresponding lower r values. The reason for the lack of accuracy in these results is due to the low concentration of these parameters. All are near the detection limits of the instruments, thus the increased variability in results is expected. However, it should be pointed out that the results for these parameters (both for the QA/QC results and all of the overburden analyses) are well below the suitability levels outlined in Section 2.5. Therefore, the poor comparability of results for these

parameters is of no concern.

The poor results for clay percentage may be due to a lack of adequate dispersion on the part of IML. This would result in a lower clay percentage and a resultant increase in the sand percentage. This is consistent with the reported results.

2.4 <u>Data Grouping</u>

Initially, the individual lithologic units within the overburden were identified. Secondly, each drill hole was evaluated for its lithologic and geochemical characteristics. This characterization provided the basis for understanding the extent and geochemistry of the various lithologic units that comprise the overburden. The third categorization was then evaluated in context with the anticipated mining and overburden handling operations. To facilitate this subsequent aspect of the overburden evaluation, anticipated mining and overburden handling plans were reviewed. This allowed the development of "overburden/interburden units" that reflect lithologic and geochemical attributes, as well as operational considerations.

These data are then used to develop appropriate plans for handling of the overburden materials during mining and reclamation.

2.4.1 Lithologic

Drill hole geologic logs were used to define the lithologic units within the overburden. Initially, each distinct lithologic unit was evaluated separately. This provided a basis for stratigraphic correlation with the geophysical logs, establishment of lithotypes for overburden/interburden characterization, and a logical basis for the subsequent assignment and interpretation of geochemical data. This evaluation was conducted for drill holes with geochemical data. Lithologic comparisons were also conducted for each distinct overburden/interburden unit.

In addition, representative samples from each lithologic group were submitted for total elemental analyses to get a more "complete" geochemical characterization of the overburden/interburden materials. These representative samples were taken from the following lithotypes: Glacial Gravel, Tsadaka Conglomerate, Wishbone Conglomerate, Chickaloon Shale, Chickaloon Sandstone and Chickaloon Siltstone.

2.4.2 Drill Hole

Thirteen (13) drill holes were evaluated for both lithologic and geochemical characteristics. These drill holes included: PB-60, PB-69A, PB-74, PB-80, PB-84, PB-85, PB-87, PB-92, PB-101, PB-105, PB-107, PB-108, and PB-109.

2.4.3 Overburden/Interburden Unit

Drill holes were then grouped by their appropriate overburden/interburden units. These units include: Glacial Gravel, Tsadaka Conglomerate, Wishbone Conglomerate, Jonesville, Premier, Midway, Eska, Sub Eska, and Burning Bed.

The "overburden/interburden units" were developed on the basis of the following considerations:

- The anticipated mining and overburden handling methods;
- Their relative position in the overburden sequence;
- Their geochemical characteristics with regard to a) surface reclamation/revegetation, and b) post mining water quality

These overburden/interburden units thus not only represent an assemblage of lithotypes (with corresponding physical and geochemical characteristics), but the general means by which they will be handled during the anticipated mining activities.

Because the purpose of this overburden characterization program is oriented primarily towards surface and subsurface reclamation, the focus of the overburden/interburden unit designation approach was on (1) their relative "suitability" for reclamation, and (2) their anticipated fate in the backfill spoils. For example, if the upper 40 feet of the overburden materials (glacial gravel) represent an operational unit of generally suitable materials and will be handled via truck/shovel mining methods, they will tend to be placed in the same relative position in the backfill (i.e., at the surface). Geochemical data from drill holes from the same overburden/interburden group were combined to determine the chemical characteristics of that group.

2.5 <u>Suitability Screening Criteria</u>

Using the overburden/interburden units described in the previous section, a further evaluation was conducted to determine the suitability of these various materials for reclamation. The screening evaluation was based on a variety of criteria, including:

- Acid- and Toxic-forming materials
- Plant root zone suitability
- Vegetative forage material quality
- Backfill water quality

These criteria were reviewed to determine their applicability and appropriateness for screening the quality of the overburden/interburden units. The results of this review, as well as the applicability of these criteria to the Wishbone Hill Coal Project are provided in Table 3-2 and described in subsequent sections.

2.5.1 Acid- and Toxic-Forming Potential

Those chemical parameters indicative of potentially acid- or toxic-forming conditions include low pH (<5), low acid-base potential (ABP < -5 tons CaCO3/1000 tons material), and elevated extractable boron (> 5 mg/kg).

Low pH facilitates potentially phytotoxic conditions due to increased metal availability, especially aluminum. Low acid-base potential is an indicator of acid-forming potential or the lack of neutralization capacity of the spoil materials. Boron in extractable concentrations greater than 5 mg/kg is considered phytotoxic to certain agronomic plant species.

2.5.2 Plant Root Zone Suitability

Chemical parameters that address root zone suitability include the ones listed above as well as high SAR, high pH, and elevated electrical conductivity (EC). Sodium absorption ration (SAR) is an indirect measurement of potential sodium hazard. SAR values greater than approximately 15 can result in unsuitable soil conditions through dispersion and swelling of clays and decreased water infiltration, unless mitigating factors are present. Similarly, high pH (>9.0) is considered an

indication of potential sodic conditions. Electrical conductivity (EC) is an indicator of soil salinity with potential adverse conditions resulting from interferences with the plant-water osmotic potential. Electrical conductivities greater than 12 mmhos/cm are considered detrimental to plant growth.

2.5.3 Vegetative Forage Quality

The importance of selenium (Se) in mine reclamation and revegetation relates primarily to its uptake and accumulation by plants and the resultant toxicity to animals feeding on the plant material. Western states have routinely used extractable selenium values ranging from 0.1 to 2.0 mg/kg as a suitability limit. No suitability values were recommended for selenium in the recent publication on reclaiming mine soils and overburden in the western United States (Fisher et al 1987). Based on the overburden geological/geochemical conditions, the environmental conditions within the Wishbone Hill project area, and a review of existing mining and reclamation practices, a value of < 0.5 mg/kg has been chosen for a suitability limit for this project.

2.5.4 Backfill Water Quality

Several of the above parameters that relate to potential water quality impacts due to mining, include ABP, pH, and EC. In addition, nitrate-nitrogen present in overburden materials can contribute to elevated nitrate conditions in the backfill spoil water. Nitrate-nitrogen values of greater than 50 mg/kg are commonly utilized as a screening value for predicting overburden conditions which potentially may impact the post mining ground water quality.

3.0 RESULTS

The drilling, sampling and laboratory analysis programs provided sufficient data for geological and geochemical evaluations of the overburden materials. These evaluations aided in the identification of acid- and toxic-forming materials and the development of appropriate mining and reclamation plans. These studies were conducted in accordance with recommended overburden guidelines and the applicable rules and recommendations of the Division. The results of the overburden investigations are presented in Sections 3.1 through 3.5. The conceptual geologic framework for

the Wishbone Hill Permit Area (Section 3.1) includes a description of the specific lithologic units that comprise the overburden materials. The geochemical characteristics of these units are discussed in Section 3.2.

3.1 Site Geology

The geology of the Wishbone Hill coal district has been discussed in detail in previous publications (Germer, 1986; Conwell et al, 1982; Barnes, 1967; Warfield, 1962; Barnes and Payne, 1956; Barnes and Ford, 1952; Apell, 1944; Waring, 1934; Martin and Katz, 1912) and in Chapter II of this permit application.

The descriptive geologic "model" for the Wishbone Hill Permit Area consists principally of a technical narrative and geologic cross sections that characterize the stratigraphic, structural, and lithologic attributes of the overburden materials. Based on an extensive drill hole data set, the model forms a physical framework that defines not only the geologic characteristics of the overburden materials, but also correlates the key lithotypes. The model also describes the textural attributes of the key lithotypes, and forms the basis for the geochemical characterizations presented in Section 3.2.

3.1.1 Existing Data

The one hundred forty seven (147) exploration and related drill holes, from recent drilling programs, represent a substantial data base from which to describe the geologic, stratigraphic, and lithologic characteristics of the overburden materials. The available geologic drill hole data set consist of the following: field lithologic descriptions and geophysical logs

The location of these drill holes are presented on the Geologic Cross Section Index and Drill Hole Locations Map (Plate II-3, Geology). This represents a relative drill hole density of approximately one hole per ten acres. The majority of these exploration drill holes penetrated the primary overburden units, and in some cases, deeper geologic units.

3.1.2 General Geologic Setting

The Wishbone Hill coal district is one of four coal districts of the Matanuska coal field. It is located in the lower Matanuska Valley of south central Alaska, approximately 45 miles northeast of Anchorage (Figure 3-1). The district is approximately 2 miles wide and 8 miles long and takes its name from the prominent conglomerate-capped hill that occupies its central part. The location of the Wishbone Hill district is determined by the known extent of the coal-bearing Chickaloon Formation and extends eastward from Moose Creek to the head of Knob Creek. Its northern extent is limited by the Castle Mountain fault. The southern boundary of the district is generally masked by glacial gravel, but lies a few miles north of the Glenn Highway. A more complete description of the geology of the Wishbone Hill Project area is contained in Chapter II of this permit application.

3.1.3 General Stratigraphy

The regional geologic/stratigraphic characteristics of the area are discussed in detail in Chapter II of this permit application. For the purpose of this section on overburden characterization, only a brief summary of the major regional stratigraphic units is given.

The predominant overburden units are of the tertiary Chickaloon Formation. Overlying units in ascending order, consist of Glacial Gravel, Tsadaka Conglomerate or Wishbone Hill Conglomerate. The general stratigraphy is briefly described in the following paragraphs. Geological cross-sections (Plates II-4 through II-10 in Chapter II, Geology) for the proposed mined area provide additional information regarding the stratigraphy of the permit area.

3.1.3.1 Glacial Gravel

Glacial deposits of various types and thicknesses cover nearly the entire district. At most points the bedrock is concealed by a mantle of poorly sorted mixture of clay, sand, gravel, and boulders. This mantle ranges from zero to over one hundred feet in thickness over the Wishbone Hill Project area.

3.1.3.2 Tsadaka Formation

The Tsadaka Formation consists of poorly indurated coarse conglomerate characterized by boulders and cobbles of granite and diorite in a matrix of granitic debris.

3.1.3.3 Wishbone Hill Formation

The Wishbone Hill Formation consists predominantly of conglomerate composed of pebbles, cobbles, and a few boulders in a sandy matrix but it also includes numerous lenticular beds of sandstone and silty claystone.

3.1.3.4 Chickaloon Formation

The upper Chickaloon Formation contains the only known economic coal deposits. Five coal groups are present and include the Jonesville, Premier, Midway, Eska, and the Burning Bed. The predominant lithologic units found in the upper Chickaloon Formation are dark gray shale, carbonaceous black shale, gray claystone, bone, thick coal zones, gray siltstone, tan and light gray fine- to coarse-grain sandstone, and pebble conglomerate. Siderite (ironstone) and calcium carbonate concretions are common within every lithologic unit.

3.2 Overburden Characteristics

Section 2.4 described the general data groupings which include lithologic, drill hole, and overburden/interburden units. Each of these specific groups are described in further detail in the following sections.

3.2.1 Lithologic Characterization

Before detailed evaluation could be performed on the geochemical data, distinct groups of data had to be defined. The most obvious distinctions of groups of similar data are the various lithologic units.

This evaluation resulted in a total of six (6) major lithologic groups which include:

- Glacial Gravel
- Tsadaka Conglomerate
- Wishbone Hill Conglomerate
- Chickaloon Claystones and Shales
- Chickaloon Siltstones
- Chickaloon Sandstones

Some of the drill hole sample intervals for the rotary drilled holes (chip samples) contained more than one of the major lithologic units. In order to evaluate lithologic and geochemical characteristics, it was necessary to remove from consideration the sampling intervals that contained more than one lithologic unit. This helped eliminate complexities caused by the differing chemical characteristics of separate lithologies.

Using this approach, a total of 3983.1 feet of drill hole lithologies were derived from the Wishbone Hill data base and were used to determine the six major lithotypes. The percent of the overburden samples that these represent is presented in Table 3-3. Their sampling percentage is depicted graphically in Figure 3-2. This total does not include twenty three sampled intervals with mixed lithologic units. However, included in the total are eight sample intervals of coal, one of bone and one other interval was composed of ironstone. These minor inclusions (coal, bone and ironstone) are not considered major lithologic units.

Geochemical summary statistics for each of the major lithologic units are given in Table 3-4. Complete statistical evaluations, which included minimum, maximum, mean, standard deviation, and number of observations, are included in Appendix D-2. The general lithologic percentages and geochemical characteristics of the six major lithotypes are discussed in detail in the following sections.

3.2.1.1 Glacial Gravel

Glacial gravel occurs throughout the project area with depths ranging from 0 to over 100 feet. Glacial gravel comprise approximately 18 % of the overburden materials sampled (Table 3.3).

These materials are located below the topsoil and above all other overburden units.

Geochemically, this lithotype is very distinct from the others. The materials are coarse grained (82.2 % sand) and contain the lowest calcium carbonate percentage (0.28 %) of all the overburden lithotypes. Because of this low percentage of calcium carbonate, the glacial gravel also typically have the lowest acid-base potential (2.3). When compared to other lithotypes (Table 3.4), these materials also contain the lowest mean pH (8.0), EC (0.5 mmhos/cm) and SAR (5.66) values. Mean nitrate-nitrogen (1.4 mg/kg), boron (0.25 mg/kg) and selenium (<0.01 mg/kg) are all well below established suitability criteria.

3.2.1.2 Tsadaka Conglomerate

The Tsadaka Conglomerate underlies the glacial gravel in some of the project area and comprises 2.3 % of the overburden material sampled. This conglomerate contains coarse (74.0 % sand) grained materials and exhibits the second lowest EC (1.0 mmhos/cm) and SAR (13.7) values. The mean pH value is higher than in the glacial gravel (8.8) but still within the suitable range. These materials contain the lowest nitrate-nitrogen (0.9 mg/kg) and boron (0.21 mg/kg) values. Selenium values (<0.01 mg/kg) are below detection for most of the sampled intervals. The mean calcium carbonate percentage is 2.0 % with a resultant high ABP (19.6).

3.2.1.3 Wishbone Hill Conglomerate

The Wishbone Conglomerate also underlies the glacial gravel in certain areas within the project areas and comprises 7.0 % of the overburden materials sampled. This conglomerate exhibits relatively fine grained material (53.1 % clay). The pH (8.7) and EC (1.3 mmhos/cm) are within suitable limits. These materials contain the highest nitrate-nitrogen (3.0 mg/kg) and extractable boron (0.50 mg/kg) values of all major lithologic units but these values are still well within suitability guidelines. Mean selenium values are 0.10 mg/kg. Only SAR values (41.4) exceed the suitability criteria listed in Table 3-2. These apparently high SAR values are discussed in more detail in Section 4.1 (Overburden/Interburden Suitability).

3.2.1.4 Chickaloon Shales and Claystone

The vast majority of the overburden within the project area is shale material from the Chickaloon Formation. These shale and claystone lithologic units comprise 37.7% of the Wishbone Hill overburden material sampled. Geochemically, these materials are similar in composition (pH, EC, nitrate-nitrogen, and boron) to the sandstones and siltstones. The mean pH is 8.8, EC is 1.5 mmhos/cm, nitrate-nitrogen value is 1.7 mg/kg, and the extractable boron is 0.33 mg/kg. All these values are within the suitability values listed in Table 3-2. Extractable selenium is 0.09 mg/kg and the calcium carbonate is 1.69 %. The ABP is 15.2 tons CaCO₃/1000 tons which demonstrates the high neutralization capacity of these materials. Sodium absorption ration (SAR) values are relatively high (34.1) and are discussed in more detail in Section 4.1.

3.2.1.5 Chickaloon Siltstone

Siltstones from the Chickaloon Formation comprise approximately fourteen (14.7%) percent of the overburden materials sampled. These materials contain a relatively high apparent SAR value (34.1). All other parameters; pH (8.6), EC (1.5 mmhos/cm), nitrate-nitrogen (1.4 mg/kg) boron (0.35 mg/kg), selenium (0.14 mg/kg), and ABP (25.0 tons CaCO₃/1000 tons) are all well within suitability limits.

3.2.1.6 Chickaloon Sandstone

Sandstones comprise approximately nineteen percent (19.4%) of the overburden materials sampled. As discussed above, these materials are geochemically similar to the shales and siltstones. The mean values are: pH (9.0), EC (1.2 mmhos/cm), nitrate-nitrogen (1.1 mg/kg), boron (0.33 mg/kg), and selenium (0.13 mg/kg). These materials contain the highest calcium carbonate percentage (3.08%) and a resultant high ABP (30.1 tons CaCO₃/1000 tons) These materials contain a relatively high SAR (31.8) value.

3.2.2 Drill Hole Characterization

Thirteen drill holes were utilized for geochemical characterizations. These drill holes included three core holes (PB-60, PB-92, and PB-105) and ten rotary (chip sample) drilled holes (PB-69A, PB-74, PB-80, PB-84, PB-85, PB-87, PB-101, PB-107, PB-108 and PB-109). There are no federal regulations regarding drill hole intensity. However, a number of state regulatory programs have set minimum requirements for drill hole coverage. Drill hole coverage in the western United States ranges from a minimum coverage of 1 hole/640 acres to a maximum of 1 hole/40 acres. Colorado has the minimum standard of 1 hole/640 acres (three hole minimum) followed by New Mexico with 1 hole/150 acres. The most intense drill hole coverage in the United States is 1 hole/40 acres which includes the states of Montana, North Dakota and Wyoming.

Within the Wishbone Hill Mine area 1, a total of 6 drill holes have been utilized for geochemcial characterizations. The approximate area of Mine Area 1 is 81 acres which brings the drill hole intensity to 1 hole/13.5 acres. A total of 7 drill holes have been used for geochemcial characterization in Mine Area 2. The approximate area of Mine Area 2 is 251 acres bringing the coverage to 1 hole/35.8 acres.

Both mine areas have drill hole intensities greater than those recommended by all regulatory agencies (state and federal). In addition, a significant number of drill holes with lithologic and geophysical logs are also within the limits of Mine Areas 1 and 2. Results from these drill holes indicate that the lithologies are relatively consistent throughout the overburden/interburden materials. Thus the approximate 150 drill holes with lithologic and geophysical descriptions provide sufficient documentation and predictability of the geological characteristics of the overburden materials.

The lithologic characterization of each of these drill holes is graphically shown in Figure 3-3 through 3-5. Geochemistry summary statistics are given in Appendix D-1.

3.2.3 Overburden/Interburden Units Characterization

All major overburden/interburden units that will be disposed of as spoil have been sampled. Plate

II-3 in Chapter II identifies the location of the thirteen (13) drill holes which were sampled and analyzed for geochemical characterization. These drill holes represent all major lithologic units located within the overburden and interburden. Table 3-5 gives the general overburden/interburden grouping of each of these drill holes. Figure 3-6 graphically displays the stratigraphic coverage of these drill holes in relationship to the various overburden/interburden units.

The focus of this overburden/interburden assessment is to correlate the average lithologic and geochemical attributes of the major overburden/interburden units located within the project area. The nine (9) major overburden/interburden units that were identified are listed below:

- Glacial Gravel
- Tsadaka Conglomerate
- Wishbone Conglomerate
- Jonesville
- Premier
- Midway
- Eska
- Sub Eska
- Burning Bed

Each of these overburden/interburden units are discussed in detail in the following sections. The lithologic composition of six overburden/interburden units is shown in Figure 3-7. The lithologic composition of glacial gravel, Wishbone Conglomerate and Tsadaka Conglomerate are 100% and are not shown in Figure 3-7. Geochemical summary statistics are given in Table 3-6 for all but glacial gravel, Wishbone Hill Conglomerate and Tsadaka Conglomerate which are located in Table 3-4.

3.2.3.1 Glacial Gravel

The discussion on glacial gravel is contained in Section 3.2.1.1 above.

3.2.3.2 Tsadaka Conglomerate

The discussion on Tsadaka Conglomerate is contained in Section 3.2.1.2 above.

3.2.3.3 Wishbone Hill Conglomerate

The discussion on Wishbone Hill conglomerate is contained in Section 3.2.1.3 above.

3.2.3.4 Jonesville

The overburden material over the Jonesville Coal Group was penetrated by drill hole PB-60. The Jonesville overburden material consists primarily of coarse grained material (62% sandstone). Geochemically, the Jonesville overburden contains the lowest pH (8.0), EC (0.7 mmhos/cm), SAR (4.48), and boron (0.27 mg/kg) of all the overburden/interburden units. Nitrate-nitrogen (1.0 mg/kg), selenium (0.11 mg/kg) and ABP (22.5 tons CaCO3/1000 tons) are all within suitability limits.

3.2.3.5 Premier

The Premier overburden material was characterized geochemically by samples from drill holes PB-80, PB-85, PB-101, PB-105, PB-107, PB-108 and PB-109. This unit represents the largest component of overburden to be removed during the mining process (Chapter II and Section D of the Mine Permit Application).

The Premier overburden material is characterized by an approximate equal mixture of shale (33.2%), siltstone (28.1) and sandstone (38.7). Geochemically, the Premier overburden has higher pH (8.6), EC (1.2 mmhos/cm) and SAR (24.6) values than the Jonesville overburden. Boron (0.36 mg/kg), selenium (0.07 mg/kg), nitrate-nitrogen (1.5 mg/kg) and ABP (23.7 tons CaCO3/1000 tons) are all within suitability levels. A trend of increasing SAR with depth of the stratigraphic units becomes apparent when comparing the data presented in Table 3-6. This trend is graphically displayed in Figure 3-8 and holds true for all the remaining overburden/interburden units.

3.2.3.6 Midway

The materials between the Premier and Midway Coal Groups are classified as Midway overburden.

These overburden materials are characterized geochemically by samples from drill holes PB-69A, PB-80, PB-85, PB-101 and PB-105. The predominant lithotype of this overburden/interburden unit is shale (87 %).

Geochemically these materials are higher in SAR (34.8) than the glacial gravel, Jonesville or Premier overburdens (Figure 3-8). The pH value (8.4) is within suitable levels. Although the value for SAR exceeds the suitability guidelines listed in Table 3-2, impacts to reclamation are not anticipated. This is discussed in more detail in Section 4.1. All other values including pH, EC (1.5 mmhos/cm), nitrate-nitrogen (0.3 mg/kg), boron (0.33 mg/kg) selenium (0.05 mg/kg) and ABP (22.3 tons CaCO3/1000 tons) are all within suitability levels.

3.2.3.7 Eska

The Eska overburden materials are characterized by drill holes PB-69A and PB-74. This overburden contains a high percentage of fine grained materials (78% shale). Geochemically, these materials exhibits increased pH (9.2) and SAR (48.9) over the stratigraphically higher materials. These values fall outside the fair range of suitability listed in Table 3-2. All other chemical parameters are well within suitable levels.

3.2.3.8 Sub Eska

Drill holes PB-69A and PB-74 include materials from above the Sub Eska Coal Group. The trend of increasing fine grained materials changes between the Eska and Sub Eska Coal Groups. This material exhibits a higher percentage of coarse textured material (28% sandstone) than either the Eska or Midway overburden units. Geochemically, the trend of increasing SAR (64.5) continues and the pH value is still relatively high (8.9). All other chemical parameters are well within suitable ranges.

3.2.3.9 Burning Bed

The Burning Bed overburden materials are characterized by drill hole PB-92. In addition, the interval from directly below the lowest coal seam to be mined (391.0 to 391.5 feet) was also sampled and submitted for laboratory analyses in response to the Divisions requirements. The

Burning Bed overburden consists of increasing coarse grained materials (33% sandstone) with 45% siltstone and 8% claystone. The trend of increasing SAR (70.4) continues with a corresponding high pH (9.1). All other chemical parameters are within suitability guidelines.

3.3 Coal Chemistry

Sulfur analysis is often required for high sulfur coals in humid climatic settings where acid production is an issue. Although this is not a concern for Wishbone Hill coals, sulfur analyses have been included to satisfy the Division's requirements. The coal groups within the overburden typically contain less than 0.5 percent sulfur with an average value of 0.31%. Several reports in the literature also document the low sulfur percentages of the Wishbone Hill coals (Rao and Wolff, 1980; Barnes, 1967; Barnes and Payne, 1956; Barnes and Ford, 1952).

Thirty samples of coal representing six separate drill holes (PB-2A, PB-12A, PB-19, PB-23, PB-24, and PB-27) were submitted for chemical analyses for sulfur fractionation. The results are presented in Table 3-7 and demonstrate that pyritic sulfur is present in relatively low percentages (12.7%) compared to the organic sulfur fraction (87.3%). Therefore, acid production potential is extremely low. This is supported by both the overburden geochemical data for ABP (Section 3.2) and the coal slurry water pH (Section 3.4). Acid production from coaly materials is not anticipated within the Wishbone Hill project area.

3.4 Coal Slurry Chemistry

The overburden materials found within the Premier Coal Group (shale partings) received additional geochemical characterization. These materials were subjected to coal washing procedures which are described in more detail in Part D (Operation and Reclamation Plan) of the Permit Application. During the coal washing procedure a sample of the slurry was obtained for chemical analyses. The fresh (unprocessed) water utilized in the process was also analyzed to determine incoming water quality. Throughout the process, the coal slurry pH was monitored and ranged from 8.3 to 8.8. This also demonstrates the relatively high buffering capacity (low acid production) of these materials.

The chemical results were evaluated for potential acid and toxic-forming materials which may impact reclamation. The summary results of the coal slurry chemical analyses are included in Table 3-8. These results indicate that acid and toxic-forming materials are not present in the parting materials within the Premier Coal Group. The complete chemical analyses for the coal slurry is located in Appendix B-3.

3.5 Coal Refuse (Parting) Chemistry

The coal parting materials were also subjected to geochemical analyses, following the coal washing procedure, which included both the standard overburden chemical parameters and total elemental analysis. The specific coal washing process is outline in more detail in Part D (Operation and Reclamation Plans) of the Permit Application. The purpose of the coarse and spiral refuse chemical analysis was to further define the geochemical characteristics of the overburden materials. Emphasis was placed on the identification of acid- and toxic-forming materials which may impact reclamation.

These refuse materials were subjected to the same chemical parameters and analytical methods outline for the overburden in Section 2.3.1 and 2.3.2, respectively. The summary results are provided in Table 3-9. Appendix B-2 contains the standard overburden chemical analyses while Appendix B-4 contains total elemental analyses of the coal refuse (parting) materials.

The results of the coarse refuse chemical analyses indicates that these materials do not contain acid or toxic-forming materials, and therefore, will not impact either surface reclamation or post-mining ground water quality.

4.0 FINDINGS AND CONCLUSIONS

The overburden of the proposed Wishbone Hill Permit area has been described down to and including the stratum immediately below the lowest coal seam (Burning Bed) to be mined. This description includes the lithologic and geochemical characteristics of each overburden/interburden stratum in addition to chemical analyses of the coal. Particular emphasis was placed on the identification of acid-forming and toxic-forming zones or strata, and on those overburden geochemical characteristics important to reclamation.

4.1 Overburden/Interburden Suitability

All overburden/interburden materials have been sampled. The geochemical results have been evaluated according to the suitability criteria outline in Section 2.5 (Suitability Criteria). These criteria represent chemical parameters which identify acid- and toxic-forming materials. In addition, the overburden materials were also assessed for their suitability for a variety of other important reclamation concerns including:

- Plant Root Zone Suitability
- Vegetative Forage Quality
- Backfill Water Quality

The results of the overburden/interburden suitability criteria screening are discussed in the following sections.

4.1.1 Acid- and Toxic-Forming Materials

No acid- and/or toxic-forming materials were identified within the overburden with the exception of the 70.0 to 80.0 foot interval of drill hole PB-69A. This interval contained an acid base potential (ABP) of -10.22. This interval also contained 55 percent coal material (Appendix B-1, Overburden Chemical Data) which contributed a significant amount of organic sulfur to the total sulfur percentage. The calculation of ABP utilizes pyritic sulfur content of the sample for determination of the acid producing potential. The organic sulfur fraction is not considered to be acid forming. Therefore, the negative ABP (-10.22) for the 70-80 foot interval of PB-69A is an overestimation of the actual acid producing potential. In addition, the surrounding intervals 60-70 and 80-90 have more than sufficient buffering capacity (4.88 and 12.34 ABP, respectively) to neutralize any acid produced by this isolated interval.

The results of ABP for all other overburden/interburden units indicate a significant neutralization capacity. Mean values for ABP range from 9.38 to 31.29 (Appendix D-1, Drill Hole Geochemical Summary Statistics). These data indicate that there is sufficient high buffering capacity (9.38 to 31.29 tons of calcium carbonate/1000 tons of material) to neutralize any potential acid production from the overburden/interburden units. In addition, results from baseline groundwater monitoring

and historical mining in this district all indicate that acid- and toxic forming materials are not of concern. Therefore, no impacts from acid-forming materials are anticipated for surface reclamation, surface water or groundwater systems.

4.1.2 Plant Root Zone suitability

Chemical parameters which typically produce root zones which are not suitable for plant growth include pH, EC, boron, selenium, and SAR. Electrical conductivity (EC) and boron values are all well below levels expected of producing unsuitable root zones. The highest EC value reported for all overburden/interburden materials was 3.5 mmhos/cm (PB-69A) which is well within the suitability limits. High boron values (> 5.0 mg/kg) can be phytotoxic to certain agronomic plant species. The highest boron value reported for the overburden/interburden materials was 0.85 mg/kg which occurred in drill hole PB-105. The highest reported selenium value (0.39 mg/kg) occurred in drill hole PB-92 which is below the suggested suitable value listed in Table 3-2.

High pH and SAR values were observed in some overburden/interburden materials. High pH and high SAR are not considered indicative of toxic conditions. High pH values are indicative of a potential sodic condition which impacts the physical characteristics of the root zone material. The geochemical data supports the conclusion that high pH and high SAR values will not impact reclamation which is discussed in the following paragraphs.

The equation for calculation of SAR is given below:

$$SAR = \underbrace{\frac{Na}{\sqrt{Ca + Mg}}}_{2}$$

A relatively low amount of calcium (Ca) and magnesium (Mg) can result in high SAR value. Upon closer inspection of the overburden data it appears that the relatively high SAR values are caused, not by excessive sodium but, by a relatively low concentration of other soluble cations (calcium and magnesium). For instance, the highest reported SAR value (105.4) came from interval 210 to 220 in drill hole PB-74. The high SAR is a result of low calcium (0.04 meq/l) and magnesium (0.01 meq/l). The soluble sodium (16.6 meq/l) is relatively high compared to the calcium and

magnesium values, but this material does not exhibit an overall salt problem as demonstrated by the EC (1.5 mmhos/cm).

It should be pointed out that the applicability of western soil and overburden suitability criteria for sodicity (SAR) may not be directly applicable to Alaska. High SAR overburden materials are common to many western mining operations. These areas are typically low in precipitation and have an abundance of bentonitic or 2:1 type swelling clay materials.

Although some of the overburden materials do exhibit elevated SAR values, these materials are not expected to impact reclamation efforts. Reasons for a reduced severity for the high SAR material include:

- Climatic conditions
- Large volumes of lower SAR overburden materials
- Significant volumes of non-swelling material
- Mixing will reduce the high SAR values
- Weathering will result in lowering of SAR values
- No infiltration problems exist within the high SAR overburden

The climatic conditions (low evaporation) in the Wishbone Hill area are not indicative of those conditions which result in upward migration of sodium as seen in many western states.

Based on the sampling that was done, only a small portion of the overburden materials exhibit excessively high SAR values and have the potential to exhibit expansive characteristics. The majority of the overburden to be mined is of lower SAR (glacial gravel, Jonesville) and has only limited amounts of 2:1 type clays (Premier).

The Premier overburden units comprise the greatest volume of overburden to be removed by mining. Within these units, only 33.2 percent is shale material capable of exhibiting expansive 2:1 type clay mineralogy. Based on saturation percentage data, very little of this materials has the potential to exhibit expansive properties as explained below.

Because saturation percentage is an excellent practical indicator of one of the most important

physical manifestations of sodic hazard, soil swelling, it should be used along with SAR to assess sodic hazard (Merrill et al 1987). A saturation percentage of 80 to 95 should be used as an indicator for swelling tendency associated with sodic hazard. Carlstrom et al (1987) recommend that a saturation percentage equal to or greater than 90 be used to screen for materials that may contain reactive (expansive) clays. Only 9.2% of the Premier shale materials (8 of 87 samples) exhibits saturation percentages of equal to or greater than 90. Therefore, the total amount of Premier overburden materials that have the potential for expansive problems is very limited.

No bentonite was identified during the drilling and logging activities. In addition, the saturation percentage values of the overburden materials are relatively low compared to saturation percents typical for bentonite (> 100%). The mineralogical analyses (Appendix B-5) indicate that some minor amounts of smectite type clays do exist in five of the high SAR samples. However, the majority is kaolinite which is a non-swelling type clay.

Infiltration rates were conducted as part of the hydrological investigations. The slowest infiltration rates for the overburden materials ranged from 10^{-2} to 10^{-4} cm/sec which demonstrates rapid infiltration and the lack of bentonitic type materials.

The lowest stratigraphic overburden/interburden unit (Burning Bed) exhibits the highest SAR values but are primarily sandstones (54%) as demonstrated by the lithologic percentages. High SAR values will not cause adverse growth conditions when the textural material is sand or silt or when the material is a non-swelling clay. Although the Midway, Eska, and Sub-Eska overburden materials do contain high percentages of shale (87%, 78% and 72%, respectively) only minor occurrences of saturation percentages exceed 100% occur in these materials. Therefore, bentonite and bentonitic type materials (swelling 2:1 clays) are present in only limited amounts.

Recent mixing studies conducted with truck/shovel operations in Wyoming demonstrate that mixing occurs to a much greater extent that originally anticipated (more than 20%). Although small volumes of excessively high SAR materials do exist, the mixing that occurs with normal truck/shovel mining is expected to reduce high SAR values to more suitable levels.

Although some overburden materials do exhibit a high pH and SAR, these values will decrease

with time due to solubilization of calcite (calcium carbonate) which occurs within the majority of the overburden materials.

In addition to the points presented above, the post-mining land use is primarily wildlife habitat with shrub utilization for moose browse. Shrubs like a more basic soil condition and would benefit from a more basic soil condition.

High pH spoil material has been reported for this coal district. A revegetation demonstration area was established at the abandoned Omlin Strip Mine Pit which is located within the Wishbone Hill project area. Reclamation efforts do not appear to be significantly affected by high pH and SAR spoils, based on the observations on these reclaimed spoils and previous reclamation work in this coal district (Mitchell et al 1980).

The problem with revegetation of high SAR materials is not one of toxicity but rather a physical problem associated with a lack of water infiltration. If water can infiltrate into high SAR materials revegetation can be easily accomplished. For instance, excellent revegetation has been accomplished on raw, abandoned bentonite mine spoils in Wyoming. These raw spoils are typically high pH 9.0-10.5), have very high saturation percentages (> 100%) and have SAR values exceeding 100. Successful reclamation was easily accomplished by simply applying wood chips and nitrogen fertilizer (Smith, 1984; Schuman et al 1984). The wood chips break up the surface and allow water to infiltrate while the fertilizer creates a better balance of the carbon:nitrogen ratio.

The overburden materials should not hamper revegetation efforts at the Wishbone Hill mine site due to the coarse textured nature of the overburden coupled with the low evaporation of the area and the lack of bentonitic or 2:1 type swelling clay materials. The reapplication of topsoil material will further enhance the reestablishment of native vegetation.

4.1.3 Vegetative Forage Materials Quality

No overburden/interburden materials were identified which could produce vegetation toxic to wildlife and/or livestock. Geochemical results indicate that average selenium values are well below levels expected of producing toxic vegetation. In addition, the environmental conditions

(precipitation) present within the Wishbone Hill project area are not conducive to producing selenium toxic vegetation. No occurrences of selenium toxicity have been reported for Alaska.

4.1.4 Backfill Water Quality

Those parameters which typically impact water quality at surface coal mines include low pH, low ABP, EC, selenium and nitrates. All of these parameters are well below levels suspected of producing environmental impacts to post mining water quality. The highest reported nitrate-nitrogen value (11.0 mg/kg for drill hole PB-84) is well below values expected of producing water quality impacts from mining.

5.0 REFERENCES

Apell, G.A. 1944. Moose Creek district of Matanuska coal fields, Alaska. U.S. Bureau of Mines Rept. Inv. 3784.

Barnes, F.F. and D.M. Ward. 1952. Coal prospects and coal exploration and development in the Lower Matanuska Valley, Alaska, in 1950. U.S. Geol. Sur. Circular 154. Washington, D.C.

Barnes, F.F. and T.G. Payne. 1956. The Wishbone Hill District, Matanuska Coal Field, Alaska. U.S. Geol. Sur. Bull. 1016. Washington, D.C.

Barnes, F.F. 1967. Coal Resources of Alaska. U.S. Geol. Sur. Bull. 1242-B.

Black, C.A. 1965. Methods of Soil Analysis, American Society of Agronomy Monograph No. 9, Part 1. Madison, WI.

Carlstrom, M.G., F.A. Amendola, D.A. Shay and D.J. Dollhopf. 1987. Sodium. <u>In</u>: Williams and Schuman, Ed., Reclaiming Mine Soils an Overburden in the Western United States: Analytical Parameters and Procedures. Soil Conservation Society of America., Ankeny, Iowa.

Conwell, C.N., D.M. Triplehorn, and V.M. Ferrell. 1982. Coals of the Anchorage Quadrangle, Alaska. State of Alaska Department of Natural Resources Special Report 17. College, Alaska.

Fisher, S.E., F. F. Munshower and F. Parady. 1987. Selenium. <u>In</u>: Williams and Schuman, Ed., Reclaiming Mine Soils and Overburden in the Western United States: Analytical Parameters and Procedures. Soil Conservation Society of America., Ankeny, Iowa.

Germer, D. 1986. Geology, Mine Plan, and Potential Utilization of Coal from the Wishbone Hill district, Matanuska Field, Alaska. <u>In</u>: Rao, P.D. (Ed.), Focus on Alaska's Coal '86. MIRL Report Number 72. University of Alaska, Fairbanks.

Martin, G.C. and F.J. Katz. 1912. Geology and coal fields of the lower Matanuska Valley, Alaska. U.S. Geol. Sur. Bull. 500. Washington, D.C.

Merrill, S.D., J.R. Deutsch, and M.W. Pole. 1987. Saturation Percentage. <u>In</u>: Williams and Schuman, Ed., Reclaiming Mine Soils and Overburden in the Western United States: Analytical Parameters and Procedures. Soil Conservation Society of America., Ankeny, Iowa.

Mitchell, G.A., W. W. Mitchell and J.D. McKendrick. 1980. Soil Characterization of Alaska Coal Mine Spoils. <u>In</u>: Roe and Wolf, Ed. Focus on Alaska's Coal '80. MIRL Report Number 50., University of Alaska, Fairbanks.

OTA, 1986. Western Surface Mine Permitting and Reclamation., OTA-279, Washington, D.C., U.S. Government Printing Office., June 1986.

Page, A.L. 1982. Methods of Soil Analysis. American Society of Agronomy Monograph No. 9, Part 2, Second Edition. Madison, WI.

Rao, P.D. and E.N. Wolff. 1980. Petrological, mineralogical, and chemical characterizations of certain Alaska coals and washability products. Focus on Alaska's Coal '80. MIRL Report Number 50. University of Alaska, Fairbanks.

Schuman, G.E., E.J. DePuit, J.A. Smith and L.A. King. 1984. Reclamation of bentonite mined lands in the Northern Great Plains. Proceedings of the American Society for Surface Mining and Reclamation., pg 131-150.

Severson, R.C. and S. Fisher. 1985. Results of the First Western Task Force Round Robin Soil and Overburden Analysis Program. U.S. Geol. Survey Open-File Report 85-220.

Severson, R.C. and S. Fisher. 1985. Results of the Second Western Task Force Round Robin Soil and Overburden Analysis Program. U.S. Geol. Survey Open-File Report 86-49.

Severson, R.C. and S. Fisher. 1985. Results of the Third Western Task Force Round Robin Soil and Overburden Analysis Program. U.S. Geol. Survey Open-File Report 87-352.

Smith, J.A. 1984. Wood residue and fertilizer amendments for reclamation of orphan bentonite mine spoils., M.S. Thesis, University of Wyoming, Laramie, WY.

Sobek, A.W., W.A. Schuller, J.R. Freeman, and R.M. Smith. 1978. Field and Laboratory Methods Applicable to Overburdens and Minesoils. EPA-600/2-78-054. U.S. Environmental Protection Agency, Washington, D.C.

USDA Agricultural Handbook 60. 1954. Diagnosis and Improvement of Saline and Alkali Soils. Washington, D.C.

Waring, G.A. 1934. Core drilling for coal in the Moose Creek Area, Alaska. U.S. Geol. Sur. Bull. 857-E. Washington, D.C.

Warfield, R.S. 1962. Bituminous coal deposits of the Matanuska coal field, Alaska: Central and western parts, Wishbone Hill District. U.S. Bureau of Mines Rept. Inv. 5950.

Williams, R.D. and G.E. Schuman. 1987. Reclaiming Mine Soils and Overburden in the Western United States: Analytical Parameters and Procedures. Soil Conservation Society of America., Ankeny, IW.

6.0 RESPONSIBLE PARTIES

Mr. David Y. Boon was the principal investigator for the Wishbone Hill Overburden Characterization Project. Prior to forming his own company Environmental Monitoring Services, Inc. (EMS), Mr. Boon served as a soil scientist and overburden chemist for the Wyoming Department of Environmental Quality -Land Quality Division (DEQ) for over three years. In this capacity, Mr. Boon evaluated soil and overburden sections of permit applications for coal mines throughout Wyoming. He was responsible for revising the DEQ Soil and Overburden Guidelines (Guideline No. 1). He also conducted technical reviews of soil and overburden guidelines for the following state regulatory programs: Utah, Montana, New Mexico and Kansas. He also conducted technical reviews of various manuscripts for the Office of Surface Mining and was on the editorial review committee for the book; Reclaiming Mine Soils and Overburden in the Western United States: Analytical Parameters and Procedures (Williams and Schuman, 1987). Mr. Boon is currently the Chairman of the Soil and Overburden Technical Division of the American Society of Surface Mining and Reclamation.

TABLE 3-1
OVERBURDEN ANALYTICAL METHODS

Parameter	Procedure - Reference
рН	USDA Handbook 60, Method 2, page 84 and Method 21a, page 102.
Conductivity	USDA Handbook 60, Method 3a, page 84 and Method 4b, page 89-90.
Saturation %	USDA Handbook 60, Method 27a, page 107.
Particle Size	Black (1965), Part 1, Method 43-5, pages 562 - 566.
Texture	USDA Handbook 18, pages 205, 223.
Soluble Ca, and Na	USDA Handbook 60, Method 3a, page 84. Mg, Analysis by ICP
SAR	Calculated: USDA Handbook 60, page 26.
Carbonate %	USDA Handbook 60, Method 23c, page 105.
Selenium	Page (1982), Method 3-5.2.3, page 55; Method 3-5.5.4 page 61, and Method 3-5.5.3 page 60. Analysis by ICP.
Boron	Page (1982) Method 3-5.2.3 page 55 and analysis by ICP.
Nitrate	Page (1982), Method 33-3.2, page 649 and Method 33-8.2, page 679.
Total S	Sulfur furnace
ABP	Calculated: ABP = (Carbonate % x 10) - (Total S x 31.25) Sobek et al (1978).

TABLE 3-2 OVERBURDEN SCREENING CRITERIA

Parameters	Unit	Good	Fair	Poor
рН	SU	5.5 - 8.5	5.0 - 5.5	< 5.0
			8.5 - 9.0	> 9.0
EC	(mmhos/cm)	0 - 8.0	8.0 - 12.0	>12.0
SAR		0 - 10	10 - 15	>15.0
Selenium	mg/kg	< 0.1	> 0.1	> 0.5
Boron	mg/kg	< 5.0		> 5.0
NO3-N	mg/kg	< 50.0		>50.0
ABP	Ton CaCO3	> -5.0		<-5.0
	1000 Tons			

Note:

Overburden screening criteria were developed from Wyoming DEQ Guideline No. 1 (1984) and from appropriate sections of Williams and Schuman (1987).

TABLE 3-3

MAJOR OVERBURDEN/INTERBURDEN SAMPLED LITHOTYPES

Lithotype	Total Lithologic Footage	Approximate Overburden %
Gravel	701.5	17.9
Tsadaka Conglomerate	90.0	2.3
Wishbone Conglomerate	275.0	7.0
Shale	1478.9	37.7
Sandstone	760.0	19.4
Siltstone	577.1	14.7
Other *	40.6	1.0
	3923.1	100.0

^{*} Other = Coal (39.4'), Bone (0.8') and Ironstone (0.4')

TABLE 3-4 LITHOLOGIC GEOCHEMISTRY SUMMARY STATISTICS

Parameter		C	verburd	den Lith	notype		
SL	GG	GG TC		: S	Н	SS	
pH (SU)	8.0	8.8	8.7	8.8	9.0	8.6	
EC (mmhos/cm)	0.5	1.0	1.3	1.5	1.2	1.5	
SAR	5.66	13.7	41.4	34.1	31.8	36.4	
NO3-N (mg/kg)	1.4	0.9	3.0	1.7	1.1	1.4	
B (mg/kg)	0.25	0.21	0.50	0.33	0.33	0.35	
Se (mg/kg)	<0.01	<0.01	0.10	0.09	0.13	0.14	
ABP (tons CaCO3) 1000 tons	2.3	19.6	11.4	15.2	30.1	25.0	

GG = Glacial Gravel

TC = Tsadaka Conglomerate
WC = Wishbone Conglomerate

SH = Shale

SS = Sandstone

SL = Siltstone

TABLE 3-5
DRILL HOLE OVERBURDEN/INTERBURDEN GROUPING

ill Hole ID	Overburden/Interburden Unit
PB-60	Jonesville
PB-69A	Midway - Eska - Sub Eska
PB-74	Eska - Sub Eska
PB-80	Premier
PB-84	Wishbone Conglomerate
PB-85	Premier - Midway
PB-87	Tsadaka Conglomerate
PB-92	Burning Bed
PB-101	Premier
PB-105	Premier - Midway
PB-107	Premier
PB-108	Premier
PB-109	Premier

TABLE 3-6

OVERBURDEN/INTERBURDEN UNITS
GEOCHEMICAL SUMMARY

Parameter	Overburden/Interburden Unit							
	JV	PR	MW	ES	BE	BB		
pH (SU)	8.0	8.6	8.4	9.2	8.9	9.1		
EC (mmhos/cm)	0.7	1.2	1.5	1.8	2.3	1.4		
SAR	4.48	24.6	34.8	48.9	64.5	70.4		
NO3-N (mg/kg)	1.0	1.5	0.3	2.7	2.6	0.3		
B (mg/kg)	0.27	0.36	0.33	0.34	0.15	0.32		
Se (mg/kg)	0.11	0.07	0.05	0.12	0.18	0.19		
ABP tons CaCO3	22.5	23.7	22.3	16.5	49.5	17.9		
1000 tons								

JV = Jonesville

PR = Premier

MW = Midway

ES = Eska

BE = Below Eska (Sub Eska)

BB = Burning Bed

TABLE 3-7
COAL CHEMICAL ANALYSIS

	<u>Pyritic</u>	Sulfate	Organic	Total				
Mean	0.05	0.00	0.27	0.31				
Minimum	0.01	0.00	0.13	0.15				
Maximum	0.39	0.00	0.62	1.01				
Standard Dev.	0.07	0.00	0.11	0.17				

TABLE 3-8
COAL SLURRY CHEMISTRY

		umhos	/cm		r	ng/1		
Sample ID	pН	Cond.	As	Cđ	Se	Hg	Pb	В
Fresh *	8.0	387	0.001	<0.01	<0.001	<0.001	<0.05	0.02
Process *	8.0	382	0.002	<0.01	<0.001	<0.001	<0.05	0.02

Fresh* = Pilot Plant Makeup Water (Fresh Water)
Process* = Process Water from Thickener Overflow

TABLE 3-9
COAL REFUSE CHEMISTRY

arameter	Coarse Reject	Spiral Reject
Н	8.2	7.8
EC (mmhos/cm)	0.4	0.7
SAR	1.0	0.5
NO3-N (mg/kg)	1.4	0.8
B (mg/kg)	0.13	0.10
Se (mg/kg)	0.09	0.05
Total S %	0.052	0.074
CaCO3 %	1.9	2.5
ABP *	17.4	22.7

ABP * = tons of CaCO3/1000 tons of material

FIGURE 3-1
GENERAL LOCATION MAP

FIGURE 3-2 OVERBURDEN SAMPLE COMPOSITION BY LITHOTYPE

CN = CONGLOMERATE

GR = GRAVEL

SH = SHALE

SL = SILTSTONE

SS = SANDSTONE

FIGURE 3-3

APPROXIMATE LITHOLOGIC COMPOSITION FOR DRILL HOLE PB-60, PB-80, PB-84, PB-85 AND PB-87

PB-87

PB-84

PB-80

PB-60

PB-85

FIGURE 3-4

APPROXIMATE LITHOLOGIC COMPOSITION FOR DRILL HOLE PB-69A, PB-74, PB-92, PB-101, AND PB-105

PB-101

PB-105

PB-74

PB-69A

PB-92

FIGURE 3-5

APPROXIMATE LITHOLOGIC COMPOSITION FOR DRILL HOLE PB-107, PB-108 AND PB-109

PB-107

PB-108

PB-109

FIGURE 3-6 DRILL HOLE STRATIGRAPHIC COVERAGE

FIGURE 3-7

LITHOLOGIC COMPOSITION OF MAJOR OVERBURDEN/INTERBURDEN UNITS

JONESVILLE OVERBURDEN

PREMIER OVERBURDEN

MIDWAY OVERBURDEN

ESKA OVERBURDEN

SUB ESKA OVERBURDEN

BURNING BED OVERBURDEN

FIGURE 3-8

MEAN SAR VALUES OVERBURDEN/INTERBURDEN UNITS

APPENDIX

A LITHOLOGIC LOGS

- B CHEMICAL DATA
 - B-1 OVERBURDEN CHEMICAL DATA
 - B-2 TOTAL CHEMICAL ANALYSES
 - B-3 COAL SLURRY CHEMISTRY
 - B-4 REFUSE CHEMISTRY
 - B-5 MINEROLOGY ANALYSIS
 - B-6 EXCHANGEABLE SODIUM PERCENT ANALYSIS
- C LABORATORY QA/QC
 - C-1 IML LABORATORY DATA
 - C-2 INTERLABORATORY SPLIT SAMPLE ANALYSES
 CORRELATION COEFFICIENTS
 - C-3 INTERLABORATORY CORRELATION PLOTS
- D STATISTICAL SUMMARIES
 - D-1 DRILL HOLE
 - D-2 LITHOLOGY
 - D-3 OVERBURDEN/INTERBURDEN GROUP
- E GEOPHYSICAL LOGS

APPENDIX A LITHOLOGIC LOGS

APPENDIX A LITHOLOGIC LOGS

LITHOLOGIC CODES

- BO Bone
- CL Claystone
- CN Conglomorate (Wishbone or Tsadaka)
- CO Coal
- GR Glacial gravel
- IR Ironstone
- SH Shale
- SL Siltstone
- SS Sandstone

COAL GROUP CODES

- BB Burning Bed
- BE Below Eska
- BY Below Midway
- ES Eska
- JV Jonesville
- MY Midway
- PR Premier

02/12/89

Wishbone Hill ---Drill Hole Lithology Data---

Preparer: FJM

rreparer	; run	DIP =		Degrees		Inclin	ation	(-70	Degree	25);Azi	auth	312
	le Interval Thickness	From (Feet)	To (Feet)	Lithology Code	Sea# Code		Conne	nts				
PB-60	17.00	0.00	17.00	GR								
PB-60	5.90	17.00	22.90	CL								
PB-60	3.30	22.90	26.20	SH								
PB-60	3.10	26.20	29.30		SEAM ABO	VE JV						
PB-60	0.50	29.30	29.80									
PB-60	8.90	29.80	38.70									
PB-60	4.10	38.70	42.80	SS								
PB-60	8.50	42.80	51.30	SH								
PB-60	28.70	51.30	80.00	SS								
PB-60	2.80	80.00	82.80	SH								
PB-60	3.20	82.80	B6.00	BO	JV							
PB-60	4.00	86.00		CO	JV							
PB-60	0.30	90.00	90.30	B0	JV							
PB-60	1.40	90.30	91.70	CO	3V							
PB-60	0.80	91.70	92.50	SH	JV							
PB-60	0.80	92.50	93.30		30							
PB-60	0.70	93.30	94.00		70							
PB-60	6.20	94.00	100.20		JV							
PB-60	3.30	100.20	103.50		3V							
PB-60	1.60	103.50	105.10		JV							
PB-60	1.40	105.10	106.50		1 A							
PB-60	25.10	106.50	131.60		1 _A							
PB-60	2.50	131.60	134.10		JV							
PB-60	3.40	134.10	137.50		JV							
PB-60	0.40	137.50	137.90		JV							
PB-60	1.00	137.90	138.90		JV							
PB-60	0.60	138.90	139.50		JV							
PB-60	0.40	139.50	139.90		JV							
PB-60	2.10	139.90	142.00		JV							
PB-60	0.60	142.00	142.60		jv Jv							
PB-60	1.00	142.60	143.60		JV							
PB-60	0.60	143.60	144.20									
PB-60	1.00	144.20	145.20		JV 10							
PB-60	1.30	145.20	146.50		JV							
PB-60	1.20	146.50	147.70		JV							
PB-60	3.30	147.70	151.00		JV							
PB-60	1.50	151.00	152.50	BO	JV							

02/12/89

Wishbone Hill
---Drill Hole Lithology Data---

Prepar	rer: FJM				B0711E%-	Y1:4: /-70	NonemerlaAsiauth 21	2
	Hole Interval No. Thickness	DIP = From (Feet)	To (Feet)	Degrees Lithology Code	Seam Code		Degrees);Azimuth 31:	•
PB-60	0.80	152.50	153.30	CO	JV			
PB-60	1.60	153.30	154.90	B0	JV			
PB-60	2.00	154.90	156.90	CO	JV			
PB-60	0.80	156.90	157.70	BO	JV			
PB-60	0.70	157.70	158.40	CO	JV			
PB-60	1.60	158.40	160.00	B0	JV			
PB-60	1.20	160.00	161.20	CO	JV			
PB-60	1.10	161.20	162.30	B0	11			
PB-60	20.50	162.30	182.80	SS				
PB-60	12.30	182.80	195.10	SH				
PB-60	15.00	195.10	210.10	SS				
PB-60	3.00	210.10	213.10	SH				
PB-60	4.40	213.10	217.50	SS				

N = 49

04/29/89

Wishbone Hill ---Drill Hole Lithology Data---

Preparer: PJM

	le Interval . Thickness	From		Lithology Code		
PB-69A	49.00	0.88	49.00	GR		
PB-691	7.00	49.00		CL		
PB-691	15.40	56.00	71.40	SH		
PB-691	1.90	71.40	73.30	CO	KI	
PB-691	9.70	73.30	74.00	SR	MY	
PB-69A	3.60		77.60	CO	MA	
PB-69A		77.60	126.70			
PB-691	6.30	126.70		SS		
PB-691	12.00	133.00	145.00	SR		
PB-691	7.00	145.00	152.00	SH		Carbanaeous
PB-69A	25.50	152.00		SE		
PB-69A	61.00	177.50	238.50	SS		
PB-691	15.50	238.50	254.00	SH		
PB-691	12.00	254.00	266.00	SS		
PB-69A	20.00	266.00	286.00			
PB-69A	17.00	286.00	303.00	SH		Carbanaeous
PB-691	15.00	303.00	318.00	SS		
PB-69A	2.00	318.00	320.00	CO	ES	
PB-691	3.30	320.00		SE	ES	
PB-691	1.90	323.30	325.20	BO	es	
PB-69A	31.30	325.20	356.50	SH		
PB-691	2.50	356.50	359.00	B O	88	
PB-69A	18.00	359.00		SH	BE	
PB-691	2.00	377.00	379.00	CO	BE	
PB-69A	4.20	379.00	383.20	SH	BE	
PB-69A	5.50	383.20	388.70	BO	BE	
PB-69A	2.10	388.70	390.80		BE	
PB-691	4.20	390.80	395.00	BO	BE	
PB-69A	20.90	395.00	415.00	SB		

04/29/89

Wishbone Hill ---Drill Hole Lithology Data---

Preparer: PJN

trcha	ICL: IAU			_		
		DIP =	45	Degrees		
Drill	Hole Interval	Prom	Ťo	Lithology	Seam	
		(Feet)	(Peet)	Code	Code	Connents
PB-74	108.00	0.00	108.00	GR		
PB-74	117.50	108.00	225.50	SH		
PB-74	2.50	225.50	228.00	BO	RS	
PB-74	1.50	228.00	229.50	SH	ES	
PB-74	2.50	229.50	232.00	BO	ES	
PB-74	2.00	232.00	234.00	SH	ES	
PB-74	3.00	234.00	237.00	BO	RS	
PB-74	4.50	237.00	241.50	SH	ES	
PB-74	1.70	241.50	243.20	BO	ES	
PB-74	26.80	243.20	270.00	SH		
PB-74	2.50	270.00	272.50	BO	BE	
PB-74	4.50	272.50	277.00	SH	BB	
PB-74	4.50	277.00	281.50	C0	BR	
PB-74		281.50	313.00	SH		
PB-74		313.00	366.50	SS		
PB-74		366.50	400.00	SH		

W = 15

Wishbone Hill ---Drill Hole Lithology Data---

Preparer: FJM

rrepa	ien in	DIP =	10	Degrees		
Drill	Hole Interval	From	To	Lithology	Seas	
	No. Thickness	(Feet)	(Feet)	Code	Code	Comments
					******	****************
PB-80	55.00	0.00	55.00	6R		
PB-80	110.40	55.00	165.40			
PB-80	0.60	165.40	166.00		PR	
PB-80	1.00	166.00	167.00		PR	
PB-80		167.00	167.30		PR	
PB- 80		167.30	168.60		PR	
PB-80		168.60	169.80		PR	
PB-80		169.80	173.10		PR	
PB-80		173.10	174.30		PR	
PB-80		174.30	175.10		PR	
PB-B0		175.10	177.00		PR	
PB-80		177.00	177.80		PR -	
PB-80		177.B0	179.80		PR	
PB-80		179.80		BO	PR	
PB-80		181.90	183.40		PR	
PB-80		183.40	185.40		PR	
PB-BC		185.40	193.30		PR	
PB-80		193.30	225.80		PR	
PB-80		225.B0	226.50		PR	
PB-80		226.50	231.40		PR	
PB-80		231.40	231.90		PR	
PB-8(231.90		SH	PR	
PB-BC		235.40	237.10		PR	
P8-8(237.10	241.60		PR	
PB-8(241.60	243.00		PR	
PD-80		243.00	243.60		PR	
PB-B(243.60	245.60		PR	
PB-8(245.60		CO	PR	
PB-8(247.40	248.60	B0	PR	
PB-80		248.60	257.00	SH	PR	
PB-B(257.00	258.00	BO	PR	
PB -80		258.00	260.00	SH	PR	
PB-89		260.00	261.50	CO	PR	
PB -86	0 33.50	261.50	295.00	SH		

N = 33

02/12/89

Wishbone Hill ---Drill Hole Lithology Data---

Preparer: FJM

Drill Hole		DIP = From (Feet)	? To (Feet)	Degrees Lithology Code	Seam Code	Comments
PB-84 PB-84	60.00 275.00	0.00	60.00 335.00	-		MISHBONE CONGLOMERATE

N = 2

02/12/89

Wishbone Hill
---Drill Hole Lithology Data---

Preparer: FJM

i i chaici i	1 411	DIP =	10	Degrees		
Deill Uni	e Interval	From	To	-	Seam	
		(Feet)	(Feet)	Code	Code	Comments
1.D. RU.	1117741633	(1664)				
PB-85	67.00	0.00	67.00	6R		
PB-85	13.00	67.00	80.00			
PB-85	21.00	80.00	101.00			
PB-85	6.20	101.00	107.20	SH		
PB-85	0.B0	107.20	108.00		PR	
PB-85	1.60	108.00	109.60	CD	PR	
PB-85	0.60	109.60	110.20	B 0	PR	
PB-85	0.90	110.20	111.10		PR	
PB-85	1.00	111.10		BD	PR	
PB-85	0.70	112.10	112.80		PR	
PB-85	1.00	112.B0	113.80	B0	PR	
PB-85	2.00	113.80	115.80		PR	
PB-85	1.40	115.80	117.20	SH	PR	
PB-85	1.60	117.20	118.80		PR	
PB-85	0.60	118.80	119.40		PR	
PB-85	0.60	119.40	120.00		PR	
PB-85	2.50	120.00	122.50	CO	PR	
PB-85	0.60	122.50	123.10	BO	PR	
PB-85	0.90	123.10	124.00		PR	
PB-85	0.50	124.00	124.50		PR	
PB-85	2.00	124.50	126.50		PR	
PB-85	2.10	126.50	128.60		PR	
PB-85	0.90	128.60	129.50		PR	
PB-85	1.70	129.50	131.20		PR	
PB-85	2.70	131.20	133.90		PR	
PB-85	δ.70	133.90	140.60		PR	
PB-85	0.60	140.60	141.20		PR	
PB-85	1.70	141.20	142.90		PR	
PB-85	3.20	142.90	146.10		PR	
PB-85	0.80	146.10	146.90		PR	
PB-85	1.60	146.90	148.50		PR	
PB-85	0.50	148.50	149.00		PR	
PB-85	2.40	149.00	151.40		PR	
PB-85	0.80	151.40	152.20		PR	
PB-85	3.80	152.20	156.00		PR	
PB-85	0.70	156.00	156.70		PR	
PB-85	2.40	156.70	159.10	SH	PR	

Wishbone Hill ---Drill Hole Lithology Data---

Preparer: FJM

rrepar	er: run			_		
		DIP =		Degrees	_	
	Hole Interval		To		Seam	_
I.D.	No. Thickness	(Feet)	(Feet)	Code	Code	Comments
PB-85	1.60	159.10	160.70		PR	
PB-85	1.70	160.70	162.40	CO	PR	
PB-85	0.80	162.40	163.20	BO	PR	
PB-85	0.40	163.20	163.60	CO	PR	
PB-85	1.70	163.60	165.30	BO	PR	
PB-85	0.60	165.30	165.90	SH	PR	
PB-85	0.90	165.90	166.80	BO	PR	
PB-85	3.90	166.80	170.70	SH	PR	
PB-85	1.60	170.70	172.30	BO	PR	
PB-85	1.10	172.30	173.40	SH	PR	
PB-85	0.70	173.40	174.10	IR	PR	
PB-85	0.90	174.10	175.00	SH	PR	
PB-85	2.10	175.00	177.10	CO	PR	
P8-85	0.70	177.10	177.80	BO	PR	
PB-85	1.30	177.B0	179.10	SH	PR	
PB-85	0.50	179.10	179.60	B0	PR	
PB-85	1.10	179.60	180.70	CO	PR	
PB-85	0.80	180.70	181.50	BO	PR	
PB-85	3.00	181.50	184.50	CO	PR	
PD-85	0.50	184.50	185.00	BO	PR	
PB-85	0.40	185.00	185.40	CO	PR	
				BO	PR	
PB-85	0.80	185.40	186.20			
PB-85	0.60	186.20	186.80	CO no	PR	
PB-85	0.80	186.80	187.60	BO	PR	
PB-85	1.60	187.60	189.20	SH	PR	
PB-85	0.60	189.20	189.80	B0	PR	
PB-85	2.20	189.80	192.00	SH	PR	
PB-85	0,40	192.00	192.40	BO	PR	
PB-85	2.40	192.40	195.80	SH	PR	
PB-85	2.70	195.80	198.50	CO	PR	
PB-85	0.50	198.50	199.00	SH	PR	
PB-85	0.40	199.00	199.40	BO	PR	
PB-85	1.00	199.40	200.40		PR	
PB-85	0.5 0	200.40	200.90	BO	PR	
PB-85	1.30	200.90	202.20	CO	PR	
PB-85	0.80	202.20	203.00	SH	PR	
PB-85	0.30	203.00	203.30	CO	PR	
PB-85	0.50	203.30	203.80	80	PR	
PB-85	72.30	203.80	276.10	SH		
PB-85	4.30	276.10	280.40	CO	HY	
PB-85	0.60	280.40	281.00	SH	MY	
PB-85	0.80	281.00	281.80	CO	KY	
PB-85	0.40	2B1.80	282,20	B0	MY	·
PB-85	1.40	282.20	283.60	CO	MY	
PB-85	29.20	283.60	312.80	SH		
PB-85	1.00	312.80	313.80	BO	BY	
PB-85	1.10	313.80	314.90	SH	BY	
PB-85	3.90	314.90	318.80	CO	BY	
PB-85	1.00	318.80	319.80	SH	BY	
PB-85	2.00	319.80	321.80		BY	
PB-85	283.20	321.80	605.00		w r	
נטעו	200150	251100	003.00	an.		

02/12/89

Wishbone Hill ---Drill Hole Lithology Data---

Preparer: FJM

	e Interval Thickness	DIP = From (Feet)	? To (Feet)	Degrees Lithology Code	Sea s Code	Comments	
PB-87	30.00	0.00	30.00 30.00			TSADAKA CONGLOMERATE	
PB-87	145.00	90.00	235.00			Allenge Aming Allenge	

N = 3

04/29/89

Wishbone Hill ---Drill Hole Lithology Data---

Preparer: PJN

trehe	TCT. LAU						
	Hole Interval No. Thickness	DIP = Prom (Feet)	64 To (Feet)	Degrees Lithology Code	DRILLED: Seam Code	Conn	Degrees);Azimuth 298
PB-92	80.00	0.00	80.00	GR			
PB-92		80.00	121.2				
PB-92		121.20	137.3				
PB-92		137.30	139.7	SS			
PB-92	30.30	139.70	170.0	SL			
PB-92	2.00	170.00	172.0	CO			
PB-92	2.00	172.00	174.0	BO			
PB-92	59.80	174.00	233.8	88			
PB-92		233.80	269.5				
PB-92		269.50	271.1				
PB-92		271.10	272.5		BB		
PB-92		272.50	277.5		BB		
PB-92		277.50	282.50	CO	BB		
PB-92		282.50	283.40	B0	BB		
PB-92		283.40	290.60	SH	BB		
PB-92		290.60	290.90	BO	BB		
PB-92		290.90	292.20	CO	BB		
PB-92		292.20	305.50	SH	BB		
PB-92		305.50	310.80	BO	BB		
PB-92		310.80	314.30	SH	B8		
PB-92		314.30	314.60	CO	BB		
PB-92		314.60	315.50	SH	BB		
PB-92		315.50	317.50	B0	BB		
PB-92		317.50	327.20	CO	BB		
PB-92		327.20		B0	BB		
PB-92		327.50	331.00	CO	BB		
PB-92		331.00	331.20	BO	BB		
PB-92		331.20	331.30	SH	BB		
PB-92		331.30	347.50	SL	BB		
PB-92		347.50	348.00	SH	BB		
PB-92		348.00	349.50	B0	BB		
PB-92		349.50	350.00	CO	BB		
PB-92		350.00	351.20	BO Sh	BB BB		
PB-92		351.20	353.00 368.50	Sh SL	BB		
PB-92 PB-92		353.00 368.50	369.00	SH SH	BB		
PB-92				BO	BB		
FB~7/	2.50	369.00	371.50	₽U	OD.		

Wishbone Hill ---Drill Hole Lithology Data---

Preparer:	FJM				•.		
·		DIP =	64	Degrees	DRILLED:	Inclination	(-70 Degrees); Azimuth 298
Drill Hold	e Interval	From	To	Lithology	Seam		
I.D. No.	Thickness	(Feet)	(Feet)	Code	Code	Coam	ents

PB-92	2.50	371.50	374.00	SH	BB		
PB-92	1.50	374.00	375.50	SL	B8		
PB-92	0.30	375.50	375.80	SH	BB		
PB-92	1.10	375.80	376.90	CO	BB		
PB-92	1.00	376.90	377.90	SH	BB		
PB-92	5.60	377.90	383.50	SL	88		
PB-92	0.70	383.50	384.20	SH	BB		
PB-92	0.80	384.20	385.00	CO	89		
PB-92	0.70	385.00	385.70	BD	BB		
PB-92	3.80	385.70	389.50	SH	BB		
PB-92	1.50	389.50	391.00	CO	BB		
PB-92	0.70	391.00	391.70	SH			
PB-92	29.90	391.70	421.60	SL			
PB-92	8.80	421.60	430.40	CL			
PB-92	36.90	430.40	467.30	SL			
PB-92	4.60	467.30	471.90	CL			
PB-92	3.70	471.90	475.60	SL			

N = 53

Wishbone Hill ---Drill Hole Lithology Data---

Preparer: FJM

		DIP =	30	Degrees		
Drill	Hole Interval	From	To	Lithology	Sea≢	
	No. Thickness	(Feet)	(Feet)	Code	Code	Comments
PB-10:	63.00	0.00	63.00	GR '		
PB-10		63.00	76.10	SH		
PB-10		76.10	100.50	SS		
PB-10	5.60	100.50	106.10	SH		
PB-10	1 1.30	106.10	107.40	CO		•
PB-10	0.80	107.40	108.20	BO		
PB-10	1 12.90	108.20	121.10	SL		
PB-10	i 6.50	121.10	127.60	SS		
PB-10	1 3.90	127.60	131.50	SL		
PB-10	1 7.30	131.50	138.80	SS		
PB-10	i 5.3 0	138.80	144.10	SL		
PB-10	1 1.40	144.10	145.50	SH		
PB-10	1.10	145.50	146.60	BO	PR	
PB-10	1.50	146.60	148.10	SH	PR	
PB-10	1 0.90	148.10	149.00	BO	PR	
PB-10	1 2.50	143.00	151.50	SH	PR	
PB-10	2.40	151.50	153.90	CD	PR	
PB-10	1 1.50	153.90	155.40	SH	PR	
PB-10	1 2.00	155.40	157.40	BO	PR	
PB-10	1 2.40	157.40	159.80	SH	PR	
PB-10		159.80	160.40	BO	PR	
PB-10	1 2.60	160.40	163.00	CO	PR	
PB-10	1 2.80	163.00	165.80	SH	PR	
PB-10		165.80	166.60	SL	PR	
PB-10	1 1.80	166.60	168.40	SH	PR	
PB-10	1 0.90	168.40	169.30		PR	
PB-10		169.30	170.30	BO	PR	
PB-10		170.30	172.50	SH	PR	
PB-10		172.50	173.30	CO	PR	
PB-10		173.30	178.40	SH	PR	
PB-10		178.40	185.00		PR	
PB-10		185.00	186.30	SH	PR	
PB-10		186.30	188.30	CO	PR	
PB-10			187.10		PR	
PB-10		187.10	193.30	SS	PR	
PB-10		193.30	196.90		PR	
PB-10	1 3.70	196.90	200.60	SH	PR	

Wishbone Hill ---Drill Hole Lithology Data---

Preparer: FJM

rreparer:	Liu						
		DIP =		Degrees			
	Interval		To	Lithology	Sea		
I.D. No.	Thickness	(Feet)	(Feet)	Code	Cod	le	Comments
PB-101	0.50	200.60	201.10	B0	₽R		
PB-101	1.70	201.10	202.80		PR		
PB-101	3.80	202.80	206.60		PR		
PB-101	13.30	206.60	219.90		PR		
PB-101	2.00	219.90	221.90		PR		
PB-101	1.10	221.90	223,00		PR		
PB-101	2.00	223.00	225.00		PR		
PB-101	2.00	225.00	227.00		PR		
PB-101	2.20	227.00	229.20		PR		
PB-101	4.80	229,20	234.00		PR		
PB-101	1.00	234.00	235.00		PR		
PB-101	4.00	235.00	239.00		PR		
PB-101	2.40	239.00	241.40		PR		
PB-101	2.70	241.40	244.10		PR		
PB-101	1.20	244.10	245.30		PR		
PB-101	0.30	245.30	245.60	BO	PR		
PB-101	1.00	245.60	246.60	CO	PR		
PB-101	1.80	246.60	248.40		• • •		
PB-101	33.10	248.40	281.50				
PB-101	15.60	281.50	297.10				
PB-101	8.50	297.10	305.60				
PB-101	2.60	305.60	308.20	SH			
PB-101	1.90	308.20	310.10	CO	ĦY		
PB-101	0.70	310.10	310.80	SH	MY		
PB-101	1.90	310.80	312.70	CO	ĦY		
PB-101	1.20	312.70	313.90	BC	MY		
PB-101	1.70	313.90	315.60	CO	MY		
PB-101	1.20	315.60	316.80	SH			
PB-101	2.00	316.80	318.80	SL			
PB-101	4.20	318.80	323.00	SH			
PB-101	6.70	323.00	329.70	SL			
PB-101	3.70	329.70	333.40	SH			
PB-101	3.70	333.40	337.10	SL			
PB-101	4.70	337.10	341.80	SS			
PB-101	11.10	341.B0	352.90	SH			
PB-101	1.40	352.90	354.30	CO	ВУ		
PB-101	3.70	354.30	358.00	SH	BY		
PB-101	2.70	358.00	360.70	CO	BY		
PB-101	0.40	360.70	361.10	SH	M r		
PB-101	10.10	361.10	371.20	SS			
10 101	10.10	301110	@1 1 * TA	00			

Wishbone Hill ---Drill Hole Lithology Data---

Preparer: FJM

		DIP =	10	Degrees		
Drill Hole	Interval	From	To		Seam	
I.D. No.	Thickness	(Feet)	(Feet)	Code	Code	Comments
PB-105	57.50	0.00	57.50			
PB-105	1.80	57.5 0	59.30		PR	
PB-105	2.20	59.30	61.50		PR	
PB-105	3.00	61.50	64.50		PR	
PB-105	1.10	64.50	65.60	BO	PR	
PB-105	0.70	65.60	66.30		PR	
PB-105	0.20	66.30	66.50	00	PR	
PB-105	2.30	66.50	68.80		PR	
PB-105	0.40	68. B0	69.20		PR	
PB-105	8.30	69.20	77.50		PR	
PB-105	5.70	77.50	83.20		PR	
PB-105	0.80	83.20	84.00		PR	
PB-105	0.70	84.00	84.70		PR	
PB-105	2.50	84.70	87.20		PR	
PB-105	0.50	87.20	87.70		PR	
PB-105	3.00	87.70	90.70		PR	
PB-105	3.80	90.70	94.50		PR	
PB-105	0.40	94.50	94.90	IR	PR	
PB-105	2.30	94.90	97.20	SL	PR	
PB-105	2.30	97.20	99.50	CO	₽Ř	
PB-105	3.10	99.50	102.60	SH	PR	
PB-105	0.70	102.60	103.30		PR	
PB-105	4.20	103.30	107.50		PR	
PB-105	5.10	107.50	112.60	BC	PR	
PB-105	1.70	112.60	114.30	SH	PR	
PB-105	3.10	114.30	117.40	CO	PR	
PB-105	0.80	117.40	118.20		PR	
PB-105	1.90	118.20	120.10		PR	
PB-105	0.60	120.10	120.70		PR	
PB-105	1.70	120.70	122.40	CO	PR	
PB-105	3.20	122.40	125.60	SH	PR	
PB-105	4.80	125.60	130.40	CO	PR	
PB-105	1.50	130.40	131.90	SH	PR	
PB-105	3.00	131.90	134.90		PR	
PB-105	3.80	134.90	138.70	SH	PR	
PB-105	5.40	138.70	144.10	CO	PR	
PB-105	4.30	144.10	148.40	SH	PR	

Wishbone Hill ---Drill Hole Lithology Data---

Preparer: FJM

rreparera	run	DIP =	10	Degrees		
Drill Hol	e Interval	From	Το	Lithology	Seas	
	Thickness	(Feet)	(Feet)	Code	Code	Comments
PB-105	0.30	148.40	148.70	SL	PR	
PB-105	10.00	148.70	158.70	SH	PR	
PB-105	0.80	158.70	159.50	SL	PR	
PB-105	1.70	159.50	161.20	CŌ	PR	
PB-105	0.30	161.20	161.50	BO	PR	
PB-105	1.10	161.50	162.60	SH	PR	
PB-105	0.B0	162.60	163.40	SL	PR	
PB-105	1.30	163.40	164.70	SH	PR	
PB-105	7.50	164.70	172.20	CO	PR	
PB-105	6.50	172.20	178.70	SH	PR	
PB-105	4.00	178.70	182.70	SL	PR	
PB-105	0.50	182.70	183.20	SH	PR	
PB-105	2.80	183.20	186.00	CO	PR	
PB-105	2.00	186.00	188.00	SH	PR	
PB-105	2.40	18B.00	190.40	CO	PR	
PB-105	24.10	130.40	214.50	SH		
PB-105	9.70	214.50	224.20	SL		
PB-105	1.70	224.20	225.30	SH		
PB-105	1.00	225.90	226.90	CF		
PB-105	0.40	226.90	227.30	IR		
PB-105	9.40	227.30	236.70	SH		
PB-105	16.50	236.70	253.20	S S		
PB-105	14.40	253.20	267.60	SH		
PB-105	3.50	267.60	271.10	CO	MY	
PB-105	0.40	271.10	271.50	CT	ĦY	
PB-105	3.10	271.50	274.60	CO	MY	
PB-105	8.90	274.60	283.50	SH		•

N = 64

Wishbone Eill ---Drill Hole Lithology Data---

Preparer: FJE

Preparer:	FJB							
		DIP =	50	Degre	ees			
Drill Hole	Interval	From				RINK	frue	
	Thickness			Code	Code	CODE	Thick	Comments
*****					****			OOMECH OD
PB-107	42 00	0.00					42.00	
PB-107		42.00	215.00				111.20	
PB-107	15.00		230.00					
PB-107							9.64	
PB-107	25.00		255.00				16.07	
	45.00		300.00				28.93	
PB-107	5.00		305.00				3.21	
PB-107	5.00		310.00				3.21	
PB-107	5.00		315.00				3.21	
PB-107	20.00		335.00				12.86	
PB-107	1.00		336.00		PR			
PB-107	6.00		342.00	SH	PR	4	3.86	
PB-107	1.20		343.20		PR	2	0.77	
PB-107	0.60	343.20	343.80	SH	PR	3	0.39	
PB-107	0.80	343.80	344.60	BO	PR	2	0.51	
PB-107	1.40	344.60	346.00	CO	PR	1	0.90	
PB-107	4.00		350.00		PR	2	2.57	
PB-107	1.80		351.80		PR	ĩ	1.16	
PB-107	4.40		356.20		PR	2	2.83	
PB-107	2.30				PR	3	1.48	
PB-107	0.90		359.40		PR	2	0.58	
PB-107	1.60		361.00		PR	3	1.03	
PB-107	2.00		363.00		PR	1	1.29	
PB-107	3.00	363.00	366.00		PR		1.23	
PB-107	8.20		374.20			3		
PB-107	1.60				PR	1	5.27	
PB-107		374.20	375.80		PR	2	1.03	
PB-107	3.90		379.70		PE	4	2.51	
	1.30		381.00		PR	4	0.84	
PB-107	1.20		382.20		PR	4	0.77	
PB-107	1.30		383.50		PR	4	0.84	
PB-107	1.40		384.90		PR	4	0.90	
PB-107	1.30		386.20		PR	4	0.84	
PB-107	1.00		387.20		PR	4	0.64	
PB-107		387.20			PR	4	0.45	
PB-107	1.20		389.10		PR	4	0.77	
PB-107	4.80		393.90		PR	4	3.09	
PB-107	3.40	393.90	397.30	CO	PR	1	2.19	
PB-107	1.50	397.30	398.80	SH	PR	3	0.96	
PB-107	2.30	398.80	401.10	CO	PR	1	1.48	
PB-107	1.10	401.10	402.20	SH	PR	3	0.71	
PB-107	2.30		404.50	CO	PR	1	1.48	
PB-107	1.70		406.20		PR	2	1.09	
PB-107	3.20		409.40		PR	3	2.06	
PB-107	2.80		412.20		PR	i	1.80	
PB-107	1.30		413.50		PR	4	0.84	
PB-107	0.70		414.20		PR	4	0.45	
PB-107	0.60		414.80		PR	4	0.39	
PB-107	7.20		422.00		PR	4	4.63	
PB-107	1.60		423.60					
Th_In!	1.DV	144.00	140.00	vu	PR	1	1.03	

PB-107	1.80	423.60	425.40 BO	PR	2	1.16
PB-107	1.00	425.40	426.40 CO	PR	ĺ	0.64
PB-107	1.10	426.40	427.50 BO	PP	2	0.71
PB-107	23.50	427.50	451.00 SE			15.11
PB-107	9.00	451.00	460.00 SS			5.79
PB-107	27.10	460.00	487.10 SE			17.42
PB-107	1.10	487.10	488.20 CO	MY	i	0.71
PB-107	0.60	488.20	488.80 SH	KY	3	0.39
PB-107	0.40	488.80	489.20 BO	MY	2	0.26
PB-107	0.60	489.20	489.80 SH	MY	3	0.39
PB-107	0.80	489.80	490.60 CO	XY	1	0.51
PB-107	24.40	490.60	515.00 SH			15.68

.

08/18/89

Wishbone Hill ---Drill Hole Lithology Data---

Preparer: FJK

rreherer.	PUL			_				
		DIP =	5 5					
Drill Hole	Interval	From	To	Lith	Seam	MINE	True	
I.D. Mo.	Thickness	(Feet)	(Feet)	Code	Code	CODE	Thick	Comments
PB-108	80.50 19.50 35.00 5.00 50.00	0.00	80.50	GR			80.50	
PB-108	19.50	80.50	100.00	SS			11.18	
PB-108	35.00	100.00	135.00	SH			20.08	
PB-108	5.00	135.00	140.00	SS			2.87	
PB-108	50.00	140.00	190.00	SH			28.68	
PB-108	5.00	190.00	195.00	SS			2.87	
PB-108	15.00	195.00	210.00	SL			8.60	
PB-108	2.10			BO	JY	4	1.20	
PB-108	6.50	212.10	218.60	SH	JY	4	3.73	
PB-108		218.60	220.00	BO	JV	2	0.80	
PB-108	0.90	220.00	220.90	CO	JV	1	0.52	
PB-108	1.10	220.90	222.00	BO	J¥	2	0.63	
PB-108	0.70	222.00	222.70	SH	JY	3	0.40	
PB-108		222.70	226.80	CO	JY	1	2.35	
PB-108		226.80	227.40	BO	JY	2	0.34	
PB-108		227.40	229.80	SH	J¥	3	1.38	
PB-108	2.00	229.80	231.80	BO	JY .	2	1.15	
PB-108		231.80	232.50	SH	JV	3	0.40	
PB-108	0.50	232.50	233.00	BO	JY	2	0.29	
PB-108		233.00	235.00	SH	JV	3	1.15	
PB-108	0.60	235.00	235.60	BO	JV	2	0.34	
PB-108	0.90	235.60	236.50	SH	JV	3	0.52	
PB-108	1.90	236.50	238.40	BO	JY	2	1.09	
PB-108	1.60	238.40	240.00	CO	JY	1	0.92	
PB-108	7.50	240.00	247.50	SI			4.30	
PB-108	32.50	247.50	280.00	SL			18.64	
PB-108	10.00	280.00	290.00	SS			5.74	
PB-108	5.00	290.00	295.00	SL			2.87	
PB-108	30.00		325.00				17.21	
PB-108	25.00		350.00				14.34	
PB-108	5.00		355.00				2.87	
PB-108	45.00	355.00	400.00	SH			25.81	
PB-108	150.00	400.00	550.00	SS			86.04	

*

08/18/89

Wishbone Hill ---Drill Hole Lithology Data---

Preparer: FJK

Drill Hole I.D. No.		DIP = From (Feet)	55 Degree To Lith ((Feet) Code (Seam True	Comments
PB-109	76.00	0.00	76.00 GR	76.00	*****
PB-109	9.00	76.00	85.00 CL	5.16	
PB-109	32.00	85.00	117.00 SS	18.35	
PB-109	83.00	117.00	200.00 SL	47.61	

APPENDIX B CHEMICAL DATA

APPENDIX B-1 OVERBURDEN CHEMICAL DATA

CSU Soil Testing Lab Rm. 6, Voc.Ed. Bldg. Fort Collins, Co 80523 Date: 1/26/89

Date Rec: 11/22/88

Soil Analysis Report

DRILL HOLE P8-60

1) 11 11 14 11			11 13 13 14 14			11	11	## ## ## ## ##	!! !! !!	fi fi fi fi fi ki	######################################		N
Lab	Sample	Lith .	五	pasterior E.C.	ű	Μg	¥	74	SHR	Sat	8 8	. W	N-EON
#	#OI			mm/sodmm		meq/1	7-1-1		# # # # # # # # # # # # # # # # # # #	ļ			
1 1 1 1 1 1 1		ii 				 		 	f 				
750C0	29 B-3B 7		7		1.56	0.32	2.6	0.45	2.7	26.4	0.29	0.11	0.6
ווייייייייייייייייייייייייייייייייייי	20.7.40.0				2.46	0.59	4	1.42	en T	26.7	0.26	0.34	6.0
	42 0-51 3		- -		<u>ب</u>	36	ry O	0.75	4.9	36,4	0.24	0.04	0.2
ということ ひからら ひから ひから ひから かんり	51 2-60 U		- a		55	0,42	4	0.56	4.7	32.7	0.24	0.05	0.4
	51.3 50.0 60 0-70 0		α		2.39	0.82		0.31	2.1	32.2	0.42	0.05	0.2
	20.02.02		0		2.51	0.71	ιυ Ο	0.58	4.0	29.2	0.24	0.05	0.1
03960	8 28-0		Œ		0.97	0.21		0.33	9.2	29.3	0.18	0.16	4.6
R3961	162.3-172.3	ហ	8.8	1.5	0.24	0.17		0.26	33.9	25.5	0.13	0.08	△ 0.1

CSU Soil Testing Lab Rm. 6, Voc.Ed. Bldg. Fort Collins, Co 80523 Date: 1/26/89

Date Rec: 11/22/88

Soil Analysis Report

ORICL HO	∞ .								
	11 I	pung.	Sand Silt	Clay	Texture	Total S	504-5	Cac03	Acid- Base Potential *
			! ! !						
R3954	29.8-38.7	42	83	32	บ	<0.01	0.001	0.8	8. 03
R3955	38.7-42.8	Q	5	36	ರ	0.03	0.003	1.8	17.16
R3956	42.8-51.3	42	19	33	ರ	0.01	0.002	6.0	8,75
R3957	51.3-60.0	S	15	33	SC/50L	0.01	0.002	6.9	68.75
R3958	60.0-70.0	23	σ	18	ᅜ	0.01	0.003	2.1	20.78
R3959	70.0-80.0	83	10	5 8	SCL	0.02	0.003	2.0	19.47
R35/60	80.0-82.8	94	œ	28	ပ	0.08	0.002	1.7	14.56
R3961	162.3-172.3	63	EI	24	SCL	0.05	0.004	1.3	12.50

Dave Bo

CSU Soil Testing Lab Rm. 6, Voc.Ed. Bldg. Fort Colline. Co. 80523		AB-DTPA 2 E B Se N	wddwddy	3.0 27.2 0.41 0.04	3.7 32.5 0.46 0.07	2.9 43.9 0.14 <0:01 0.	39.1 24.1 0.24 0.	53.0 21.9 0.28 0.11 0.	66.0 23.4 0.36 0.16 3.	71.2 55.3 0.33 0.31 1.	70.9 31.1 0.31 0.14 0.	87.3 187.6 0.44 0.09	87.2 63.1 0.36 0.	97.9 96.3 0.34 0.16 1.	74.7 46.0 0.33 0.04 2.	26.4 46.5 0.37 0.06 6.	30.2 84.7 0.37 0.09	33.0 48.5 0.37 0.02 6.	33.7 51.7 U.43 U.U6 B	26.6 58.1 0.37 0.24 0	35,4 35,4 0,38 0,16 1	32.4 38.6 0.37 0.08 3	36.8 34.9 0.37 0.12 1	32.9 36.0 0.34 0.20 Z	32.5 33.9 U.Z/ U.14 U	38.9	32.5 38.9 0.38 0.17 1	54.8 27.2 0.41 0.07 3	62.9 35.6 0.14 0.25 1.	50.7 33.8 0.16	56.1 32.2 < 0.01 0.14 1.	46.4 28.8 0.02	. U U.C4
	eport	EN DW e		53 2.80 6.8 0.	57 1.76 5.5 0.	34 0.68 2.6 0.	2.21 1.59 15.4 0.42 0.11 0.08 12.0 0.12	08 0.06 14.3 0.	12 0.13 23.1 0.	09 0.04 18.0 0.	21 0.22 32.9 0.	05 0.03 17.5 0.	05 0.04 18.6 0.	05 0.03 19.1 0	05 0.07 18.2 0	41 0.19 14.4	32 0.25 16.1 0	25 0.25 16.7	0.33 0.35 19.5 0.14	12 U.13 13.B	41 0.22 19.9	22 0.38 17.7	28 0.29 19.6	59 0.43 22.8	31 0.56 21.4	2, 7, 0 2, 0 3, 0	34 0 46 20 5	14 0.09 18.6	36 0.11 30.4 0.2	36 0.10 24.3 0.	.20 0.08 21.3 0.	31	.39 0.16
	Soil Analysis	#	malos/cm 	-;	7.8 0.	555H 7.6 0.	SH 8.2 2.0	8.9 1.	9.0 2.		ш С	-		9.2	9.3 1.				4.00	4.0 4.0		0.0	g.3	o .	ص د د	55 9.0 6.1 CCBOFD 9.0 2.7	ים יים	, 0, 7 10	8.7	9.8		8,7	C
	HOLE P		# # I I # # # # # # # # # # # # # # # #	R3998 50-60	9		R4001 80-90 04002 90-100	-			R4006 130-140	E4007 140-130							R4015 220-230							K4U23 3UU-3IU DAN24 310-3IU			R5327 320-330	330-	R5329 340-350	320-	

Dave Boon	_					CSU Soil	il Testing	Lab Jd.	
Date Rec:	11/22/88					t ()	llins, Co 80523 /26/89	80523	
		Soil Ana	ysis	Report					
de.	Samo le	Sand	Silt	135	Textur	Total S	504-5	Caco	Acid- Base
ł	#OI	- !!		11	11		X	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Potential *
R3998	50.0-60.0	29	19	13	5CL	0.01	0.010		5.00
	60.07-0.09	₽	22	æ	占	0.04	0.004	9.0	4 .88
	70, 0-80, 0	8	ហ	10	r.	0.36	0.001	0.1	-10.22
		73	ש	12	ឋ	0.22	0.007	5	12,34
	90.0-100.0	9	13	21	5 <u>7</u>	0.08	0.002		8,56
	100.0-110.0	S.	21	33	<u>5</u> 5	0.0	0.003	 	. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
	110.0 - 120.0	44	8	8	占	0.0	0.007	1.7	15.97
	120.0-130.0	16	4	41	Sic	0.03	0.006	0.6	5.25
	130.0-140.0	25	8	2	있 강	0.02	0.008	1.8	16.69
	140.0-150.0	.	8	8	ರ	0.04	0.012	 5	14.13
	150.0-160.0	₽	K	æ	占	0.03	0.009	5.2	51.34
	160.0-170.0	4	31	92		0.03	0.006	2.1	20.25
	170.0-180.0	æ	37	R	占	0.03	0.007	1.7	16.28
	180.0-190.0	49	16	ଷ	SCL/SL	0.01	0.002	2.1	20.75
	190.0-200.0	69	18	51	ᅜ	0.01	0.002	2.5	21.75
	200.0-210.0	25	2	33	있	0.01	0.002	æ.	17.75
	210.0-220.0	61	17	22	ᅜ	0.01	0.003	1.8	17.78
	220.0-230.0	9	18	22	20 <u>.</u>	0.01	0.004	 	18.81
	230.0-240.0	9	18	22	ಭ	0.01	0.004		17.81
	240.0-250.0	16	%	₽	ប	0.02	0.013	m (12.78
	250.0-260.0	92 1	5	S :	u į	0.04	0.006	n r ⊶ (45.11
	260.0-270.0	22.	₹ :	₹ ;	7	٥٠.0 <u>ن</u>	0.003	v c	,
	270.0-280.0	4 (E (4 (당 '	0.01	600.0	- r	20°52
	280.0-290.0	90 (T) (T) () ت	0.0		. c	
	290.0-300.0	?) :	5 (C	4. (, د	0.04 0.04	0.00		, o
	300.0-310.0	₹ ;	8 8) E	ರ ಕ	. Q	F00.0	-i -	10.04
	310.0-320.0	31	- 8	Ç,	占,	0.01 0.01	0.00	- c	00.01
	395.0-405.5	B i		설 (ن پاد	. Ce	0.00	ית בית	7. IS
	405.0-415.0	4 ፤ ህ (N.	₹ ;	ביי האלים	0.00		t ·	00.00
	320-330	55 122	55	97	75 S	0.14	0.002	- c	ָם. מים.
	330-340	*	æ	99	占 :	7n.n	0.00		10.04
	ł	9	24	8	다.	0.04	*	יי פרני	41.73
	350-360	*	K2 ;	8 :	, ,			י ר י	00°20
	•	35	24	4	ن ن	0.07	0.008	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
		R	œ T	36	ដ	0.01	0.00	4. U	44.00

Date Rec: 11/22/88 ORILL HOLE PB-74

CSU Soil Testing Lab Rm. 6, Voc.Ed. Bldg. Fort Collins, Co 80523 Date: 1/26/89

Soil Analysis Report

l Analysis Report	AB-DIPA	E.C. Ca Mg Na K SAR Sat B Se N	mmhos/cmmeq/1	. 21.0 22 24 0.09 39 22 6 0.15		0.3 0.48 0.53 1.9 0.03 3.2 53.0 0.10 0.01	9 0.3 0.59 0.31 2.0 0.08 3.0 28.4 0.17 <0.01	2 0.3 0.67 0.38 2.6 0.06 3.5 21.3 0.11 <0.01	2 0.3 0.69 0.39 2.3 0.02 3.1 21.7 0.16 <0.01	1 0.3 0.50 0.25 2.0 0.02 3.3 32.4 0.06 <0.01	2 0.4 0.41 0.22 2.3 0.08 4.1 24.2 0.26 <0.01	2 0.5 0.38 0.20 3.3 0.08 6.2 18.2 0.26 <0.01	2 0.5 0.78 0.42 4.2 0.19 5.5 22.4 0.24 <0.01 2.	4 1.6 1.38 0.82 8.6 0.31 8.2 23.5 0.33 0.03 1.	2 1.2 0.13 0.09 16.7 0.14 50.3 43.0 0.40 0.05 2.	5 1.2 0.07 0.03 12.7 0.06 56.9 59.8 0.23 0.06 3.	3 1.5 0.06 0.04 13.1 0.06 59.2 74.4 0.20 0.09	7 1.5 0.90 0.35 16.8 0.05 21.3 63.9 0.26 0.15 4.	9 1.2 0.39 0.20 17.0 0.07 31.2 55.7 0.34 0.	0 1.4 0.04 0.02 13.9 0.04 82.2 91.2 0.28 0.16 1.	0 1.7 0.36 0.17 15.5 0.05 30.0 98.9 0.27 0.13 5.	9 1.6 0.34 0.17 17.3 0.07 34.4 87.4 0.34 0.17 2.	0 1.7 0.05 0.02 17.9 0.05 94.9 107.0 0.33 0.22 4.	0 1.5 0.06 0.02 18.6 0.	9 1.5 0.04 0.01 16.6 0.04 105.4 72.2 0.25 0.19 1.	8 1.2 0.03 0.02 15.7 0.08 99.8 56.0 0.20 0.13 0.	4 1.7 0.09 0.04 13.1 0.09 52.7 38.1 0.19 0.06 1.	.9 3.1 0.15 0.06 33.3 0.11 103.3 14.3 0.06 0.27 2.	.0 1.9 0.05 0.02 20.7 < 0.01 107.4 91.7 0.08 0.27 2.	.8 3.0 0.16 0.07 34.7 0.01 103.3 42.6 0.04 0.20 1.	.6 1.8 0.11 0.04 17.9 0.06 65.2 33.3 < 0.01 0.11 0.	.8 2.1 0.23 0.07 20.7 0.09 53.9 47.3 0.03 0.21	.9 2.0 0.13 0.04 19.0 0.07 65.0 102.0 0.05 0.28 1.	
Report		.c. ca M	/ca	ט האיר		.3 U.48 U.	.3 0.59 0.	.3 0.67 0.	.3 0.69 0.	.3 0.50 0.	.4 0.41 0.	.5 0.38 0.	.5 0.78 0.	1.38 0.	0.13 0.	0.07 0.	0.06 0.	0.90	0.39 0.	0.04 0.	0.36 0.	0.34 0.	0.05 0.	0.06 0.	0.04 0.	0.03 0.	0.09 0.	0.15 0.	0.05 0.	0.16 0.	.8 0.11 0.	.1 0.23 0.	.0 0.13 0.	
Soil				ı	. r	9.	7.9	8.2	B.2	8.1	Δi	8.2	9.2	35H 8.	9.					10.	10.	ō,	10.	SH 10.0	6,	580 9.	6	ထ	φ,	œ	œ	œ	9	,
		Lab Sample	#OI #								34078 70-80								R4086 150-160					R4091 200-210				`				R5337 290-300		

Date Rec: 11/22/88 ORILL HOLE P8-74

CSU Soil Testing Lab Rm. 6, Voc.Ed. Bldg. Fort Collins, Co 80523 Date: 1/26/89

		Soil Ana	lysis	Report	1		: 		
			71:0	5		Total	2176	F)113	Acid-
┙	# # O I		X	ביים הוא		1			Potential ,
			:: :::::::::::::::::::::::::::::::::::						
D4072	10-20	90	4	16	ᅜ	<0.01	<0.001	ö	2.00
R4073	20-30	98	C)	12	LS	0.01	<0.001	ö	1.69
R4074	30-40	82	7	16	5	0.01	<0.001	ö	1.69
R4075	4050	80	4	16	꺽	0.01	<0.001	<u>.</u>	1.69
R4076	20-60	8	N	18	S	<0.01	<0.001	<u>.</u>	9.00 9.00
R4077	60-70	84	~	4.	L5/5L	0.01	0.001	e. 0	2.72
R4078	20-80	92	9	18	ᅜ	0.01	<0.001	o	1.69
R4079	9090	89	13	19	ᅜ	0.01	<0.001	o'	1.69
R4080	90-100	72	12	16	ಗ	0.01	<0.001	o.	9.69 E
R4081	100-110	76	12	7	정	0.02	0.002	-	11.59
R4082	110-120	æ	53	33	占	0.01	0.003	'n	24.84
R4083	120-130	32	37	æ	占	<0.01	0.002	ຕໍ	31.06
R4084	130-140	28	41	31	겁	<0.01	0.012	- i	14.38
R4085	140-150	25	4	31	ದ	0.01	0.019	'n	21.28
R4086	150-160	36	,	8	ᆸ	0.01	0.002		17.75
R4087	160-170	92	4	8	ರ	0.01	0.002	'n	19.75
R4088	170-180	22	47	31	ರ	0.01	0.002	. ;	11.75
R4089	180-190	14	22	98	Sig	0.01	0.003	- i	11.78
R4090	190-200	18	46	36	Sicl	0.01	0.006	∹	12.88
R4091	200-210	22	44	4	占	0.01	0.00		13.97
R4092	210-220	16	4 0	ይ	Sicl	0.03	0.003	.;	12.16
R4093	220-230	16	42	42	Sic	0.02	0.005	÷	10.44
R4094	280-290	54	18	28	<u>5</u> 2	0.10	0.002	o'	4 94
R5333	250-260	9 , 6	36	문	占	<0.01	0.002	ന	32,06
R5334	260-270	88	23	33	占	<0.01	0.002	ហ	53.06
R5335	270-280	49	₹ 7	27	<u>당</u>	0.01	0.005	*	48.75
R5336	280-290	64	σ	27	SCL	0.12	0.003	- -	7.34
R5337	290-300	38	9	28	ರ	0.10	0.003	~i ·	18.97
R5338	300-310	40	36	24	_1	0.01	0.005	κi	28.84
R5339	310-320	99	38	26	—	0.03	0.014	<u></u>	17.50

Date Rec: 11/22/88 ORILL HOLE PB-74

CSU Soil Testing Lab Rm. 6, Voc.Ed. Bldg. Fort Collins, Co 80523 Date: 1/26/89

Soil Analysis Report

		•	0	aste	1						BB-D1	HdJ	<u>¥</u>
Lab #	Sample ID#	Lith	H	E.C. mmhos/cm	e Ü	Mg 	Na q/1	Υ	SHR	Sat	B	Se	NO3-N
	320-330	10 S	9.1		0.16	0.07	17.0	0.05	49.3	141.1	0.22	0.14	1.8
25341	330-340	ន	9.1	2.2	0.26	0.0	23.0	0.05	56.4	127.7	0.36	0.09	4.3
R5342	340-350	S	9.1		0.19	0.05	17.7	0.04	51.2	117.3	0.36	0.09	4.4
R5343	350-360	S	9.1		0.48	0.12	37.9	0.10	69.5	128.8	0.39	0.13	3.2
R5344	360-370	S	9.2		0.17	0.04	18.0	0.03	54.9	118.9	0.39	0.11	5 7
R5345	370-380	.	9.5		0.10	0.10	17.8	<0.01	56.4	130.5	0.36	0.16	6,0
R5346	380-390	풊	9.1	1.2	0.08	0.03	12.2	<0.01	51.5		0.23	0.13	ლ ლ
R5347	390-400	퓻	9.0	1.4	0.13	0.05	15.0	<0.01	50.3		0.17	0.12	3.0
ыммер	SUMMARY — DRILL HOLE PB-	E PB-7.	# # # #			 			- - - - -	## ## ## ##		## #1 	
	Minimum		7.60	0.30	0.03	10	1.91	<0.01	ς;	14.3	<0.01	<0.01	0.40
	Maximum		10.00	3.50	1.38	0.82	37.87	0.31	107.4	158.8	0,40	0.31	6.10
	Mean		9.02	1.45	0.31	15	14.82	0.07	4	71.1	0.22	0.11	2.44
	S. Deviation	,	0.70	0.78	0.29	16	8,83	0.06	æ	43.5	0.12	0.03	1.58
	z		38.0	38.0	38.0	0.	38.0	38.0	æ	38.0	38.0	38.0	38.0

Oate Rec: 11/22/88 DRILL HOLE PB-74

CSU Soil Testing Lab Rm. 6, Voc.Ed. Bldg. Fort Collins, Co 80523 Date: 1/26/89

Soil Analysis Report

						To+ 21		# 	Brid-
Lab	Sample	Sand	5114	Clay	Texture	, o	504-5	Cacoa	888 888 888
#									Potential *
* *	320-330	58	18	24	SCL	<0.01	0.007	8.7	87.22
R5341	•	61	17	25	SCL	<u>0.03</u>	0.002	6.2	62.06
R5342	- 1	62	14	24	<u> </u>	<0.01	0.002	7.9	79.06
R5343		9	18	22	252	<0.01	0.002	4.6	46.06
R5344	360-370	5. 4.	22	24	55	<0.01	0.002	18.5	185.06
R5345	- 1	54	54	55	<u>5</u> 27	<0.01	0.002	7.9	79.06
R5346	ì	62	16	22	201	<0.01	0.002	4.4	44.06
R5347	- 1	61	19	20	SCL/SL	<0.01	0.002	9	59.06
					•	* - tons	CaC03/1	000 ton	s material
SUMMARY	- DRILL HOLE	PB-74 ==				;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		11 12 14 14 11 11	#######################################
			! !	! !		i		(,
	Minimum	14.8	2.00	12.00		<0.01 0.01	<0.001	0.20	1.69
	Maximum	96.00	50.00	42.00		0.12	0.019	18.50	185.06
	Mean	50.05	24.66	25.29		0.02	0.003	2.90	28.59
	S. Deviation	22.16	15.40	7.41		0.03	0.004	3.47	34.98
	z	38.0	38.0	38.0		38.0	38.0	38.0	38.0
							11111111111111		

CSU Soil Testing Lab Rm. 6, Voc.Ed. Bldg. Fort Collins, Co BOS23 Date: 1/26/89

Date Rec: 11/22/88

Soil Analysis Report

DRILL HOLE PB-80

		•		aste	. 1						AB-DTPA	ТРЯ	2M KC1
Lab	Sample	Lith	Ŧ	С.	<u>۾</u>	£	ę	¥	SPR	Sat	œ	ů,	N-60N
##	ID#			mmhos/cm		000	1/t	 	 	×	dd		wdd
								 		1	 	1	f 1 1 1
R4026	25-35	8	8.2	0.3	0.69		2.4	90.0	т С		0.13	€.01	0.7
R4027	35-45	89	7.9	0.3	0.48		2.5	0.02			0.10	₽.01	4.0
R4028	45~55	GR	9.1	0.4	1.27		1.6	0.10			0.18	6.01	0.8
R4029	5565	뜐	9.1	9.0	2.01		e. e.	0.11			0.21	₽.01	0.4
R4030	65-75	뜐	8	0.9	1.52		9.0	0.07			0.50	0.05	1.4
R4031	75-85	ᄯ	8. 7	0.8	0.79		6. 2	0.02	10.5		0.43	0.02	1.0
R4032	85-95	돐	9.5	0.8	1.31		6.6	0.13			0.35	0.10	o. 9
R4033	95-105	돐	в, 3	1.1	2.81		9.1	0.20	n o		0.36	0.01	1.1
R4034	105-115	ች	8.4	0.8	1.36	0.37	7.2	0.13	7.7	33.1	0.37	0.02	1.5
R4035	115-125	돐	8.3	1.2	1.46		10.8	0.18	11.4		0.42	0.18	4.0
R4036	125-135	£	9.1	2.2	2.06		19.1	0.23	16.6		0.46	0.14	2.9
R4037	135-145	£	₩.	1.2	0.98		11.9	0.12	14.6		0.40	0.08	2,5
R4038	145-155	£	დ ო	1.8	1.85		16.2	0.20	14.8		0.33	0.05	9.7
R4039	155-165	Ŗ,	8	1.0	1.13		10.6	0.08	12.2		0.21	0.06	1.8
R4040	260-270	C0155H	8.8	4.1	0.87		13.7	0.12	16.6		0.29	0.06	0.7

CSU Soil Testing Lab Rm. 6, Voc.Ed. Bldg. Fort Collins, Co 80523 Date: 1/26/89

Date Rec: 11/22/88

Soil Analysis Report

DRILL HOLE P8-80

11 11 11 11	11	pre2	Silt 	Clay	Texture	Total 5	504-5	Eaco3	Acid− Base Potential *
			[
R4026	25-35	68	•••	2	<u>ر</u>	0.01	<0.001		9.69 1
R4027	35-45	91	0	თ	Ŋ	0.03	<0.001		
R4028	4555	28	**	g,	LS	<0.01	<0.001 <0.001		9.6 8.
R4029	55-65	75	œ	17	7	0.02	0.002	o.	5.44
R4030	65-75					0.03	0.002	ij	11.13
R4031	75-85	49	7	25	SCLALS	0.01	0.002	3.6	35,75
R4032	85~95	74	10	16	105	0.03	0.003	4	44.16
R4033	95-105	99	13	21	2	0.02	0.003	'n	23.47
R4034	105-115	62	14	24	ಭ	0.01	0.003		19.78
R4035	115-125	32	21	47	<u>2</u> 25	0.05	0.008		7.69
R4036	125-135	31	8	37	ں	0.0	0.009		24.03
R4037	135-145	5 0	8	4	占	0.01	0.003		23.78
R4038	145-155	40	8	₽	CCG	0.03	0.006		25.25
R4039	155-165	28	12	문	52	0.05	0.002		30,44
R4040	260-270	54	13	93	SCL	0.16	0.001	1.6	11.03

CSU Soil Testing Lab Rm. 6, Voc.Ed. Bldg. Fort Collins, Co 80523 Date: 1/26/89

Soil Analysis Report

ORILL HOLE PB-84

Date Rec: 11/22/88

	i										PR-II	-BR-LITPR	2M KC1
Lab	Sample	Lith	H.	E.C.	ت	ž.	e Z	¥	SPR	Sat		. N	N-EON
#				ma/soquu		₩	1/t		 	×	dd		mdd
			- - - - -				1	 	 		, - - - - - -		 - - - - -
R3985	20-30	8		6.0	1.89	0.69	3.6	2.33	3.2	26.4	0.12	₽.01	0.5
R3986	30-40	35		1.6	1.53	0.82	15.0	0.57	13.9	24.2	0.34	0 .01	<0.1
R3987	40-50	В		0.3	0.55	0.28	2.2	0.03	9.4	29.1	0.72	0.01	
R3988	50-60	<u> 2</u>	7.8	9.0	0.59	0.28	. 9	0.30	13.5	36.8	0.43	0.04	6.1
R3989	60-70	S		1.1	0.32	0.16	11.7	0.19	23.8	36.2	0.53	0.12	11.0
R3990	70-80	S		1.3	0.37	0.19		0.18	27.3	53.0	0.44	0.14	3.6
R3991	8090	S		1.3	0.35	0.20			27.9	36.7	0.49	0.10	1.5
R3992	90-100	S		1.2	0.38	0.20	14.3	0.11	26.4	41.1	0.46	0.16	2.9
R3993	100-110	2 5		1.3	0.11	0.12			43.7	41.2	0.51	0.10	9.0
R3994	110-120	S		1.4	0.11	90.0			59.6	37.6	0.48	0.13	1.2
R3995	120-130	2		1.3	0.10	0.06	15.3	0.12	52.0	34.5	0.49	0,15	2.0
R3996	130-140	S		1.4	0.15	0.10	17.3	0.12	49.6	33.5	0.43	0.08	1.6
R3997	140-150	S		1.6	0.13	0.07	18.8	0.14	59.2	31.4	0.66	0.17	2.2

CSU Soil Testing Lab Rm. 6, Voc.Ed. Bldg. Fort Collins, Co 80523 Date: 1/26/89

Date Rec: 11/22/88

Soil Analysis Report

DRILL HOLE PB-84

4 e 7	Sample ID#	Sand	5i1t	C1 ay		Total S	S04-5	C#C03	Rcid- Base Potential *
	ك شابة كان منه منه شاء بوي ريس من كان كان كان من من كان كان كان من من من من كان كان كان كان كان كان كان كان كان كا	11 11 11 11 11	!! !! !!	11 11 11 11	· F			 	
SHOPE	20.0-30.0	88	m	O TY	21	0.02	<0.001	0.7	6.38
9866	30.0-40.0	28	12	10	75	0.08	0.003	0.3	0.59
D3987	40.0-50.0	8	~	8	ហ	0.07	<0.001	1.6	13.81
B39F0	50.0-60.0	e	18	4	വ	0.01	0.002	0.5	4.75
998EG	60.0-70.0	1	6 0	26	ပ	0.01	0.001		10.72
06660	70.0-80.0	10	31	23	ပ	0.01	0.001	1.0	9.72
R3991	80.0-90.0	ហ	42	23	Sic	0.01	0.002	0.7	6.75
R3992	90.0-100.0	01	E	26	ပ	0.01	0.001	0.9	8.72
R3993	100.0-110.0	16	27	57	U	<0.01	<0.001	1.0	10.00
R3994	110.0-120.0	~	37	2 6	ပ	0.02	0.001	0.8	7.41
R3995	120.0-130.0	2	31	23	ပ	0.01	<0.001	1.1	10.69
R3996	130.0-140.0	16	Ð.	20	ပ	0.01	<0.001	1.6	15.69
R3997	140.0-150.0	99	38	35	占	<0.01	0.001	2.3	23.03

* - tons CaCO3/1000 tons material

Date Rec: 11/22/88 DRILL HOLE P8-85

Soil Analysis Report

CSU Soil Testing Lab Rm. 6, Voc.Ed. Bldg. Fort Collins, Co 80523 Date: 1/26/89

		11 i 11 i 11 ii 11 ii		**************************************	11 41 16 16 11	11 11 11 11 11	ii 11 11 11 11		11 11 11 11 11	## '	\square	TPR	2M KC1
Lab #	Sample 10#	Lith	<u>.</u>	E.C.	6	₹ 	Na -1-1-1	×	SAR	Sat 7	B	Se	N-60N
11 11 11 11		## ## ## ## ## ## ##	14 11 11 11								. II . II II II	## ## ## ## ##	14 11 11 11 11 11
R4050	10-20	8	7.8		1.06	0.36	3.2	0.19	3.7	27.1	0.19	<0.01	1.0
R4051	20-30	85	7.7	0.7	1.57	1.31	3.4	0.58	2.8	23.7	0.20	40.01	1.0
R4052	30-40	2 5	7.1	_	2.77	2,34	2.7	0.97	1.7	35.2	0.20	6.0 10.0	2,0
R4053	40-50	25	7.3		1.35	1.17	2.7	0.71	2.4	28.6	0.34	₽.01	
R4054	50-60	35	7.0		1.48	1.69	4.2	0.81	ო ო	43.0	0,39	8.0	2.4
R4055	60-70	GR705H	7.5		1.69	1.51	9.5	0.63	о	31.1	0.20	6.01	0.6
R4056	70-80	몫	7.7	0.9	2.21	1.01	0.9	0.69	4.8	31.4	0.34	0.01	1.1
R4057	8090	55	7.5	1.6	7.98	3,78	6.8	1.49	2.8	33.8	0.32	0.01	4.0
R4058	90-100	SS	7.5	1.8	7.98	¥.25	6.0	1.40	۲ 4	38.0	0,30	8.0	០ ស
R4059	100-110	SH72B0	7.7	1.0	3,23	2.19	9.√	0.95	3	37.6	0.21	0.05	0.1
R4060	205-215	Ŧ5	4.6		0.49	0.26	4.1	o.20	6.7	51.6	0.15	₽.	0.2
R4061	215-225	돐	9.6		0.38	0.19	7.0	0.15	13.1		0.17	0.05	₹.0
R4062	225-235	£	9.8	6.0	0.42	0.23	9.0	0.16	15.8	39.6	0.26	0 .0	0.8
R4063	235-245	SH	9.5	0.8	0.65	0.47	9.0	0.24	12.0	51.0	0.27	0.01	0.0
R4064	245-255	돐	7.7	0.8	0.51	0.31	8.0	0.24	12.6	51.4	0.32	₩.01	9.0
R4065	255-265	굓	8.2	0.9	0.64	0.34	9.6	0.23	13.7	40.8	0.25	₫.01	9.0
R4066	265-275	Ŧ5	8.3	1.4	1.09	0.58	15.7	0.26	17.2	33.7	0.33	<0.01	9.0
R4067	285-295	돐	8.1	2.2	1.28	0.72	24.7	0.34	24.7	44.7	0,39	0.02	2.7
R4068	295305	뜻	8.2	1.0	0.42	0.29	12.7	0.18	21.5	39.0	93	<0.01	0.6
R4069	305-315	SH90B0	₩.	0.7	0.28	0.16	8.7	0.08	18.5	52.5	0,36	6. 01	0.2
R4070	325-335	£	9.7	2.1	1.64	0.74	24.3	0.54	22.2	47.1	0.44	0.05	
R4071	335-345	Ŧ5	9.0	2.7	1.17	0.64	30.4	0.33	31.9	44.6	0.46	0.0	4.

Date Rec: 11/22/88 DRILL HOLE P8-85

CSU Soil Testing Lab Rm. 6, Voc.Ed. Bldg. Fort Collins, Co 80523 Date: 1/26/89

Soil Analysis Report

Lab 5	Sample 10#	Sand	5ilt %	Clay	Texture	Total 5	504-5	CaC03	Reid- Base Potential *
## ## ## ## ## ## ##	# # # # # # #	16 61 41 41	- 					ii 11 11 11 11 11	
84050	10-20					0.01	<0.001	0.2	1.69
R4051	20-30	8	~	14	L5/5L	0.0	<0.001	1.2	10.75
R4052	30~40					0.01	~0.001	0.2	
R4053	40-50	92	2	20	501/51	0.01	<0.001	0.2	1.69
R4054	20-60	8	Ŋ	14	L5/5L	<u><0.01</u>	0.001	e. 0	3.03
R4055	60-70	85	4	74	75	0.02	<0.001	e. O	2.38
R4056	70-80	4.	22	36	占	<0.01	<0.001	э. О	30.00
R4057	90~-90	83	12	99	SCL	<0.01	0.001	12.8	129.03
R4058	90-100	49	œ	5 8	20 20 20 30 30 30 30 30 30 30 30 30 30 30 30 30	0.07	0.001	ი ი	56.84
R4059	100-110	72	G	22	SCL	0.01	0.003	S. 7	56.78
R4060	205-215	8	~	18	<u>بر</u>	0.28	0.001	0.5	-3,72
R4061	215-225	9	42	5	نـ	0.16	0.001	1.2	7.03
P4062	225-235	20	60	(i)	강	0.07	<0.001	1.8	15.81
R4063	235-245	4 8	12	40	S	0.08	0.002	0.9	6.56
R4064	245-255	28	10	35	SCL	0.02	<0.001	6.0	6.81
R4065	255-265	40	16	36	ပ္ပ	0.05	<0.001		9.44
R4066	265-275	36	2	44	ပ	0.01	<0.001	1.5	14.69
P4067	285-295	28	24	48	ပ	0.07	<0.001	1.0	7.81
R4068	295-305	25	12	36	သ	0.02	0.001	1.9	18.41
R4069	305-315	56	12	32	강	0.0	~0.001	2.0	17.81
P4070	325-335	2	R	20	ပ	0.08	<0.001	1.1	8.50
R4071	335-345	20	9 .	46	വ	0.05	<0.001	1.4	13.38

CSUJSoil Testing Lab Rm. 6, Voc.Ed. Bldg. Fort Collins, Co 80523 Data: 1/26/89 Billing:

Date Rec: 11/22/88

Soil Analysis Report

DRILL HOLE PB-87

				aste	## ## ## ## ##		\$ 	11 11 11 11 11 11		 	11 PB	1P8	2M KC1
Lab	Sample	Lith	- 품	С	ů	Ē	R Z	¥	SF-78	Sat	6	8 S	N-EON
#	#01	:		mmhos/cm			4/1			×	dd		mdd.
11 11 11 11 11 11	114 14 14 14 14 14 14 14 14 14 14 14 14										 		
R4041	20-30	G.	4.8	0.5	1.42	0.50	3.7	0.08	3.7	20.5	0.25	<0.01	9.0
R4042	30-40	중	5	0.6	1.04	0.37	5.B	0.0	6.9	19.1	0.15	0 .03	1.4
24043	40-50	S	6.8	0.4	0.20	0.08	4.9	0.03	13.2	19.5	0.16	<0.01	7,7
R4044	50-60	S	9.9	0.7	0.64	0.25	4.4	0.04	12.6	27.9	0.25	0.01	0.8
P4045	60-70	S	8.8		0.84	0.33	12.3	0.03	16.0	28.4	0.20	<0.01	
R4046	20-80	3	8.0	1.4	1.24	0.51	13.8	0.07	14.8	34.2	0.25	0 .01	0.5
R4047	06-08	N	8.8	1.5	0.79	0.44	14.7	0.09	18.7	29.4	0.27	0 .0	0.7
R4048	90-100	문	8.7	1.4	0.86	0.39	14.6	0.15	18.5	42.1	0.50	0.05	9.0
R4049	100-110	뜻	8.8	1.7	1.15	0.69	17.7	0.18	18.4	38.9	0.50	0.06	2.5

CSU Soil Testing Lab
Rm. 6, Voc.Ed. Bldg.
Fort Collins, Co 80523
Date: 1/26/89

Date Rec: 11/22/88

Soil Analysis Report

DRILL HOLE PB-87

						1	1		
del	Samp1e	Sand	Silt	Clay	Texture	Total s	S04-5 C	CaC03	Reid- Base
#			%						Potential X
					T				
D4041	20-30	81	~	12	ᅜ	0.02	<0.001	0.5	4.38
04040	30-40		00	12	ᅜ	0.01	<0.001	1.2	11.69
2,040	40-50		^	10	L5	<0.01	<0.001	0.6	6.00
D4044	50- 10- 10- 10- 10- 10- 10- 10- 10- 10- 1	21	12	17	ᅜ	0.01	0.001	0.5	4.72
D4045	60-20 60-70	202	2	20	SCL/51	0.01	0.002	1.2	11.75
DANAS	70-R0	99	41	50	SCL/5L	<0.01	0.003	2.0	28.09
04047	80-P	74	11	15	ス	0.07	0.002	n, n	55.06
DANAR	90-100	•				0.01	0.003	1.6	15.78
R4049	100-110	24	99	46	Ü	0.02	0.002	0.8	7.44

Date Rec: 11/22/88 DRILL HOLE P8-92

Soil Analysis Report

CSU Soil Testing Lab Rm. 6, Voc.Ed. Bldg. Fort Collins, Co 80523 Date: 1/26/89

R3928 81.4-88.9 55 R3929 88.9-97.4 55 R3931 105.5-113.8 55 R3932 121.2-129.6 5L R3933 121.2-129.6 5L R3933 121.2-129.6 5L R3935 137.3-139.7 55 R3936 139.7-146.7 5L R3937 146.7-154.5 5L R3939 162.2-170.0 5L R3939 162.2-170.0 5L R3940 170.0-174.0 C05080 R3941 174.0-179.5 55				(X	2	7	g		ABDTPA B	rpA	ZM KC1 ND3-N
81.4-88.9 SS 88.9-97.4 SS 97.4-105.5 SS 105.5-113.8 SS 113.8-121.2 SS 121.2-129.6 SL 129.6-137.3 SL 139.7-146.7 SL 146.7-154.5 SL 162.2-170.0 SL 174.0-179.5 SS	<u> </u>	S/CH				۱ ۱	<u> </u>		wdd	{	mdd.
81.4-89.9 SS 88.9-97.4 SS 97.4-105.5 SS 105.5-113.8 SS 113.8-121.2 SS 121.2-129.6 SL 129.6-137.3 SL 137.3-139.7 SS 137.3-139.7 SS 137.3-139.7 SS 146.7-154.5 SL 162.2-170.0 SL 174.0-179.5 SS 174.0-179.5 SS					i		<u>t</u> 1 1	į			
98.9-97.4 S5 97.4-105.5 S5 105.5-113.8 S5 113.8-121.2 S5 121.2-129.6 SL 129.6-137.3 SL 137.3-139.7 S5 137.3-139.7 S5 137.3-146.7 SL 146.7-154.5 SL 162.2-170.0 SL 174.0-179.5 S5	9.8	1.2	0.07	0.07		0.14	44.7	40.6	0,33	0.24	0.1
97.4-105.5 \$5 105.5-113.8 \$5 121.2-129.6 \$2 121.2-129.6 \$2 129.6-137.3 \$2 137.3-139.7 \$5 139.7-146.7 \$2 146.7-154.5 \$2 162.2-170.0 \$2 174.0-179.5 \$5	9.	1.2	0.04	0.05		0.10	67.0	36.4	0.28	0.21	n :
105.5-113.8 SS 113.8-121.2 SS 121.2-129.6 SL 129.6-137.3 SL 137.3-139.7 SS 137.3-146.7 SL 146.7-154.5 SL 162.2-170.0 SL 174.0-179.5 SS	9 .0		0.04	0.03	16.3	0.14	85.4	33.1	0.31	0.14	4 .
121.2-129.6 SL 121.2-129.6 SL 122.3-137.3 SL 137.3-139.7 SS 139.7-146.7 SL 146.7-154.5 SL 154.5-162.2 SL 162.2-170.0 SL 174.0-179.5 SS	9.1	2.1	0.12	0.08	22.7	0.18	71.9	34.7	0.3Q	0.12	e.0
121.2-129.6 SL 129.6-137.3 SL 137.3-139.7 SS 139.7-146.7 SL 146.7-154.5 SL 154.5-162.2 SL 162.2-170.0 SL 174.0-179.5 SS	6.9	2.1	0.17	0.03	-	0.19	63.7	32.1	0.31	0.13	e. 0
1 129.6-137.3 SL 137.3-139.7 SS 139.7-146.7 SL 146.7-154.5 SL 154.5-162.2 SL 162.2-170.0 SL 170.0-174.0 C050 174.0-179.5 SS		1.5	0.08	0.05		0.19	65.4	28.6	0,36	60.0	4.0
137.3-139.7 SS 139.7-146.7 SL 146.7-154.5 SL 154.5-162.2 SL 162.2-170.0 SL 170.0-174.0 C050 174.0-179.5 SS	9.8	2.9 E.3	0.19	0.10		0.27	65.8	26.4	0.37	0.12	m :
5 139.7-146.7 SL 146.7-154.5 SL 154.5-162.2 SL 9 162.2-170.0 SL 0 170.0-174.0 C050 1 174.0-179.5 SS	9.1	•	0.06	0.05	14.9	0.14	64.7	28.6	0.32	0.03	e -0
146.7-154.5 SL 154.5-162.2 SL 162.2-170.0 SL 170.0-174.0 C050 174.0-179.5 SS 179.5-187.5 SS	9.9	1.4	0.04	0.04		0.20	82.1	9 4 .8	0.36	0.16	e. O
9 154.5-162.2 SL 9 162.2-170.0 SL 0 170.0-174.0 C050 1 174.0-179.5 SS 1 179.5-187.5 SS	9.0	2.0	0.10	0.03	22.0	0.27	70.8	•	0.35	0 9	4
162.2-170.0 SL 170.0-174.0 C050 1 174.0-179.5 SS 2 179.5-187.5 SS		1.9	0.06	0.02	21.0	0.16	93.0	31.9	0.33	0.13	ם מ
1 170.0-174.0 C050 1 174.0-179.5 S5 2 179.5-187.5 S5		1.4	0.04	0.0		0.14	87.7		0.27	0.13	e. 0
174.0-179.5	9.5	0.6	0.04	0.04	7.3	0.05	35.4	ď	0.26	0.08	e .
2 179.5-187.5	е. Э	1.6	0.07	0.03	17.1	0.07	75.8	51.3	0.67	0.08	e . O
		1.4	0.03	0.05	15.0	0.10	91.4	91.8	0.27	0.18	4.0
3 187.5-196.6	4.0	1.3	0.05	0.02	13.4	0.08	70.7	111.9	0.23	0.37	4.0
196.6-204.4	9.3	1.0	0.03	0.05	11.7	0.06	76.7	113.7	e.	0.37	o.
5 204.4-212.5	4.6	1.0	0.05	0.03	•	S	58.6	125.6	0.25	33	2.5
5 212.5-220.2	4.6	1.0	0.06		•	0.0	52.6	129.1	0.27	0.10	
, 220.2-227.8	o,	1.3	0.03		14.2			121.3	0.20	0.39	
3 227.8-233.8	4.	1.1	0.04	0.02	12.0	S	69.6	107.5	0.23	0.13	6.0
3 233.8-237.0	9.0	1.2	0.04	0.05	12.4			92.8	0.23	0.03	e .
3 237.0-244.6		1.2	0.04	0.05	12.7	0.05	71.2	94.0	0.23	0.13	0.3
244.6-252.9	9.5	1.6	0.05	0.0	17.2	0.10			0.74	В	0.1
252.9-261.0		1.7	0.09	0.03	18.4	0.12		က်	0.26	0.20	e. 0
3 261.0-268.5	9.0	1.7	0.10	0.05	18.1	0.13	67.0	30.6	0.31	0.10	o.3

Dave Boon	-					CSU Soil	1 Testing Lab Unc. Ed. 1814a.	Lab 14.	
Date Rec:	: 11/22/88 E P8-92) ~ (2)	ins, Co 6/89	80523	
	i	_	Analysis F	Report			1] 1 1 1	
						tal-	į.	 	Pcid-
Lab	Sample	Sand	Silt	Clay	Texture	ហ	504-5	CaC03	Base Date to the
f 1 1	#01				11 11 11 11 11				FOLENCIAL X
 	t - -								
R3928	81.4-88.9	83	33	8	占	0.04	0.003	0.9	7.84
R3929	88.9-97.4	48	24	8	당	<0.01	0.001	1.8	18.03
R3930	97.4-105.5	28	28	44	ப	0.03	0.001	1:1	10.09
R3931	105.5-113.8	45	23	9	CL/5GL	0.01	0.002	٠ <u>.</u>	18.75
R3932	113.8-121.2	53	æ	₽	ರ	0.03	0.002	m (12.13
R3933	121.2-129.6	9	5 8	4	ქ	0.0	0.001	1.2	10.78
R3934	129.6-137.3	3 6	25	42	ப	0.04	0.004	1.0	8.88
R3935		52	ው	С	S	<0.01	0.001	17.3	173.03
R3936	,7-1	43	23	37	ರ	0.02	0.001	<u></u>	11.41
R3937	7-1	46	0.	44	င္ဟ	0.07	0.009	4	12.09
R3938	5-1	4	12	₹	ပ	0.09	0.007	1.2	9.41
R3939	2-1	62	9	35	ಭ	0.20	0.001	0.6	-0.22
R3940	Ġ	82	9	12	15/51	0.43	<0.001		-2.44
R3941	<u>-</u>	61	18	21	2CL	0.03	0.001	1.7	16.09
R3942	ιγ̈́	₩	35	⊕ 4	ದ	0,06	0.001	6.0	7.16
R3943	꺅	42	31	27	占	0.06	0.00	6.	17.16
R3944	196.6-204.4	.4	23	()	ರ	0.04	6.00	\. 	15.75
R3945	4	4.	58		ᇹ	0.01	<u><0.001</u>	 	18.69
R3946	Ϋ́	4	K	29	ರ ಕ	<0.01 -	0.001	7:7	21.03
R3947	Ϋ́	99	31	R :	႕ :		0.001	Z. 1	20.02
R3948	φ.	41	23	8	占	•	0.001	7.0	4.4
R3949	φ.	19	4	37	Sich	0.09	0.001	0.	7.53
R3950	٠.	67	12	21	705 105		0.001	1.8	17.41
R3951	ģ	26	15	53	<u>,</u>		0.003	1.0	87.17 57.17
R3952	φ.	61	മ	R	- - - -	0.07	0.003	2.0	15.51
R3953		22	32	46	ப	<u>.</u>	0.002	N	
						* tons	CaCU3/1	UUU tons	s material

CSU Soil Testing Lab Rm. 6, Voc.Ed. Bldg. Fort Collins, Co 80523 Date: 1/26/89

Soil Analysis Report

DRILL HOLE PB-101

Date Rec: 11/22/88

			ste	1						RBD1	I'PH	¥ 24 25
Lab	Sample Lith	Ŧ	С	ت	Ē	q Z	¥	SAR	Sat	8	.	N-80N
#	#OI		mahos/cm	1	E	\		1	×	#dd		₩dd.
] 1 1 1 1				ii 		 1 1 1 1 1						
R3974		8.8	1.2	0.10	0.08	13.3		45.1	84.2	0.32	0.15	0.1
R3975	86.0-92.5 55	8.8	1.5	0.35	0.29	15.0		26.5	93, 4	0.40	0.08	0.1
R3976	92.5-100.5 55	8.8	1.5	0.28	0.20	14.4		29.6	77.0	0,39	0.11	. 0.1
R3977	100.5-106.1 SH	8.5	1.8	0.28	0.20	18.0		37.0	38.4	0.53	0.14	0.2
R3978	108.2-114.7 SL	9.1	6.1	0.84	0.54	17.4		20.9	29.4	0.40	0.03	លួ
R3979	114,7-121.1 SL	8,3	1.0	0.41	0.30	11.5	0.30	19.3	23 9	0,46	0.04	2,9
R3980	121.1-127.6 55	7.7	1.5	2.33	1.94	12.8		8	25.4	0.47	0.03	0.1
R3981	127.6~131.5 SL	9.1	0.9	0.87	0.64	8.1		4.6	24.5	0.40	0.06	ري دي
R3982	131.5-138.8 55	7.9	1.9	6.29	4.78	6.7		4.1	25.B	0.38	0.07	<0.1
R3983	138.8-142.8 SL	7.7	1.3	3,46	2.06	9.1		4	30.6	0.30	0.26	6.4
R3984	254.6-256.8 CO	9.6	1.5	0.44	0.23	14.9		25.7	32.0	0.30	0.04	0.3

CSU Soil Testing Lab Rm. 6, Voc.Ed. Bldg. Fort Collins, Co 80523 Date: 1/26/89

Date Rec: 11/22/88

Soil Analysis Report

DRILL HOLE PB-101

	Sample IO#	Sand	5i1t %	Clay	Texture	Total S	504-5	CaC03	Acid- Base Potential *
	L							i - -	
R3974	76.1-86.0	53	38	ee	占	0.03	0.005	1.8	17.13
R3975	86.0-92.5	21	44	8	占	0.03	0.001	1.6	15.09
R3976	92,5-100.5	<u>0</u> E	38	35	ದ	0.03	0.002	1.8	17.13
R3977	100.5-106.1	8	20	45	Ü	0.06	0.005	1.9	17.28
R3978	108.2-114.7	57	15	88	2C	0.03	0.004	1.6	15.19
R3979	114, 7-121, 1	69	12	K	201	0.0	0.001	2.2	20.78
R3980	121.1-127.6	69	11	92	20 10 10 10 10 10 10 10 10 10 10 10 10 10	0.01	0.004	2.6	25.81
R3981	127.6-131.5	6 9	11	21	2CF	0.04	0.002	1.6	14.81
R3982	131,5-138.8	4	12	24	5CL	0.01	0.010	2.5	25.00
R3983	138.8-142.8	98	13	21	ပ	0.03	0.004	0.3	2.19
R3984	254.6-256.8	64	מ	31	201	0.07	<0.001	0.7	4.81

CSU Soil Testing Lab
Rm. 6, Voc.Ed. Bldg.
Fort Collins, Co 80523
Date: 1/26/89

Soil Analysis Report

DRILL HOLE P8-105

Date Rec: 11/22/88

61 11 11 11		11 66 41 11 11						ii 11 11 11 11		' 	BB11PA	DA	ZM KC1
Lab	Samp 1 e	Lith	푑	E.C.	.	£	rg Z	¥	SAR	Sat	6	.	N-EON
#	#OI			듵		/baw	1/1		į 1 1		⊮dd		€dd
									 	: 			 - - - - - -
53962	190.4-200.0		9.4	1.0	0.05	0.03	11.0	0.13	51.9	34.3	0.19	0.07	0.1
63969	200.0-210.0		9.0	1.5	0.12	0.08	16.9	0.18	52.6	33, 3	0.25	o.03	о . Э
P3964	210.0-214.5	Ŧ.	9.0	1.5	0.11	0.07	15.8	0.18	51.6	29.5	0.26	0.03	9.0
R3965	5-224.		9.S	2.1	0.31	0.20	21.3	0.39	42.0	30.9	0.33	0.10	0.6
R3966	.2-225.			1.5	0.13	0.09	17.1	0.22		39.1	0.29	0.04	0.7
596E3	.9-226.	_	9.1		0.35	69.0	24.1	1.39	34.5	26.0	0.34	6. 19.	4.0
R3968	.9-227.				0.45	0.51	23.1	0.40	33.5	20.4	0.85	0 .01	0.4
R3969	3-236.	_		1.3	0.08	0.05	15.1	0.16		27.3	0.38	0.05	0.2
D3970		52	8.7	1.4	0.19	0.13	15.7	0.25	39,3		0.32	0.05	0.1
R3971	245.0-253.2		9.4	2.0	0.27	0.16	20.7	1.39			0.43	0.04	0.1
R3972	2-260				09.0	0.42	26.4	3.66	36.9	30.6	0.35	0.19	~0.1
R3973			9.7	1.8	0.09	0.07	18.6	0.39	66.0		0.33	0.10	. 0.1

CSU Soil Testing Lab Rm. 6, Voc.Ed. Bldg. Fort Collins, Co 80523 Date: 1/26/89

Date Rec: 11/22/88

DRILL HOLE P8-105

Soil Analysis Report

Lab	Sample	Sand	Silt	Clay	Texture	Total S	504-5	CaC03	Reid- Base Dotestial *
#	13 14 14 14 11								
296Ed		63	60	29	25	0.09	0.001	1.1	8.22
E3963	200.0-210.0	25	σ	34	SCL	0.04	<0.001	1.7	15.75
R3964		23	13	9 .	, 25	0.02	0.001	1.9	18.41
R3965		46	12	42	ᅜ	0.04	0.005	1.9	17.91
P3966		45	g.	46	25/30	0.02	<0.001		14.38
13967		78	9	16	ᆏ	0.01	0.003	18.7	186.78
839EB		92	6	15	강	<0.01	0.002	2 3	73.06
69668		4	2	32	<u> </u>	0.03	<0.001	1.6	15.06
02660		1 0	17	29	당	0.01	0.001	1.1	10.72
1265		S	13	31	汉	0.02	0.005	1.0	9.53
225Ed		27	42	31	ರ	0.18	0.005	0.2	-3,47
R3973	260.0-267.6	7	19	47	ப	0.06	0.002	1.1	9.19

CSU Soil Testing Lab Rm. 6, Voc.Ed. Bldg. Fort Collins, Co 80523

Soil Analysis Report

DRILL HOLE PB-107

ZM KCI	N-CON	pCd.																											
ABDTPA	В Se																												
	Sat	2		59.4	35.2	32.6	33.8	34.2	33.5	33.7	61.4	48.5	21.6	34.6	30.9	32.1	35.	25.5	29.0	27.1	26.9	23.3	23.B	21.2	22.5	26.2	21.7	21.6	24.3
 	SAR		9.9	20.3	14.2	6.0	e in	2.4		8.8	20.3	2.3	9°.0		9.8		4.0	6.9	6.7	7	11.7	16.1	22.0	22.9	22. 1	39.3	45.6	41.3	29.4
11 11 11	¥		0.1	0.5	0.1	<u>^0.1</u>	0.1	0.1	<0.1	0.1	0.1	0.3	0.5	0.5	0.4	0.4	ლ ე	0.	4	0	0	e .	ლ _	0.0	0.3	0.3	0.4	0.5	0.3
	Ž	1, 1	4.7	13.7	7.2	1.8	2.1	1.7	2,3	2.8	ი	2.0	3.0	ტ ტ	3.1			5.6			7.2	7.3	11.4	18.0	13.3	20.3	21.7	25.1	17.0
	Σg		0.1	0.3	0.2	<0.1	0.2	0.6	<0.1	0.1	0.1	4.0	6.0	0.8	0.5	0.5	0.3	0.5	0.5	0.3	е. О	0.1	0.2	0.5	0.3	0.2	0.1	0.3	0.2
ii 	ra S		4.0	9.0	0.4	0.1	0.5	4.0	0.1	0.1	0.3	1.1	1.1	7.	0.8	0.9	0.6	0,7	0.7	0.5	0.5	0.3	0.4	0.7	0.4	0.4	0.3	0.5	0.5
	ن ن ا	mmhos/cm		1.4	0.7	0.2	0.3	0.3	0.2	0.3	6.0	0.4	9.0	0.7	0.5	9.0	0.5	7.0	7.0	0.8	0.9	0.8	1.2	2.0	1.3	1.8	, C	, (V	1. 5.
	1 H		 .0	8.2	9.4	9	9.4	9.8	9.5	9.5	9.9	9.4	9.4	8.3	8 .3	8.3	8,3	9.4	9.4	8.4	9.4	8.4	8.3	9.1	B	B. 4	4	· m	9.0
11	Lith		[] []	99	æ	G.	(C)	ĊΩ	8	œ	Ŋ	5	بی	ᅜ	것	3	3	ᅜ	것	孓	ᅜ	ᅜ	ᅜ	ᅜ	ភ	i c	l 6	٠ ا	심
	Sample	#O1	 [] 	1	i	15 - 20	ı	1	ı	1	1	1	j	ł	1	1	1	ł	80 - 85	1	ŀ	Ī	ŀ	ī	1	115 -120	1	1	130 -135
	Lab	#			6507	6508	6203	6510	6511	6512	6513	A. 1.1.	6515	6516	6517	6518	6519	6520	6521	6522	6523	6524	6525					100 1100 1000	6531

CSU Soil Testing Lab Rm. 6, Voc.Ed. Bldg. Fort Collins, Co 80523

Date Rec: 11/22/88

Soil Analysis Report DRILL HOLE PB-107

# # # # # # # # # # # # # # # # # # #	
Acid- Base Potenti	* * 1.70 1.70 1.30 1.30 1.40 1.13 1.54 1.54 1.54 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57
CaCO3	* 0.00 0.00 0.41 0.00 0.00 0.00 0.00 0.00
504-5	* * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total	0.00 0.01 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03
Texture	* * * * * * \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
C1 ay	% %%4444%0446 882288888888888888888888888888888888
5ilt	01 88 88 88 88 88 88 88 88 88 88 88 88 88
Sand	50 50 50 50 50 50 50 50 50 50 50 50 50 5
Sample ID #	0 - 5 20 - 5 20 - 15 20 - 15 20 - 25 30 - 35 30 - 35 40 - 45 40 - 45 40 - 45 50 - 55 50 - 55 50 - 55 50 - 65 60 - 65 60 - 65 60 - 65 60 - 65 60 - 65 60 - 65 61 - 10 61 - 11 61 - 11 61 - 11 62 - 10 63 - 10 64 - 10 65 - 10 66 - 10 67 - 10 68 - 10 68 - 10 69 - 10 60 - 1
LAB	6505 6506 6508 6509 6510 6511 6511 6513 6514 6514 6518 6518 6519 6520 6521 6522 6523 6523 6523 6523 6523
ii Ii	

CSU Soil Testing Lab Rm. 6, Voc.Ed. Bldg. Fort Collins, Co 80523

Soil Analysis Report

-107
ed
HOLE
DRILL

	# 		11 1 11 1 15 1 17 1 18 1				11 { 			 		RB-DTPR	ZM KC1
de :	San	Sample	Lith	Ŧ	E.C.	Ca	₩ g	EZ T	¥	SAR	Sat '	B Se	N-60N
			- 1	1					 		 	7.7. 11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
6592		1 T	5	9.5	1.3	0.3	0.1		0	LO.			
6533	140	-145	វភ	8	1.6	0.3	0.1	17.6	0.3	36.9	20.5		
6534	145	-150	너	8,3	2,8	9.0	0.3	26.4	0.7	3 3.8			
6535	150	-155	<u>ا</u>	8.3	1.9	4.0	0.2	20.7	4.0	39.9			
6536	155	-160	ᅜ	9.5	2.1	0.5	0.5	24.3	0.1	40.1	22.4		
6537	160	-165	ហ	9 5	2.2	0.5	0.3	26.0	0.2	42.3	23.7	•	
6538	165	-170	ر ا	ю. Э	1.9	0.8	1.1	26.5	0.2	27.3	20.3		
6233	170	-175	ᅜ	9.5	2.0	0.3	0.1	24.7	e. O	54.2	24.7		
6540	175	-180	Ŋ	9.6	2.1	0.4	о. Э	48.7	0.7	83.3	23.6		
6541	180	-185	떠	9.6	0.7	0.1	0.2	6.3	0.5	16.2	19.7		
6542	185	-190	ᅜ	9.6	1.5	0.4	0.6	15.7	4.0	22.6	21.6		
5543	190	-195	ᅜ	ю С	0.6	0.2	0.5	о. О	0.5	10.5	23.4		
5544	195	-200	당	9.1	1.8	0,4	0.1	19.1	0.9	36.8	15.9		
5545	200	-205	ᅜ	9.0	0.7	0.1	0.1	6.4	0.5	18.1	20.0		
5546	205	-210	ᅜ	8.6	2.3	0.4	о. Э	25.2	0.4	43.3	19.1		
5547	210	-215	ᅜ	9,6	1.4	0.3		15.8	0.3	32.4	19.6		
6548	215	-220	占	U	1.9	0.5		18.8	0.7	27.8	24.9		
6549	220	-222	占	8.3	1.9	9.0		19,6	0.8	27.0	φ. Ω (
6550	222	-225	占	9.8	8.0	0.2		7.0	4.0	14.3	32.3		
6551	225	-227	占	8.4	0.7	0,4	0.2	3.6	e.0		17.6		
6552	227	-230	占	9.3	1.5			17.3	0.9	20.3	29.8		
6553	230	-235	Ŋ	9.3	1.0	0.5	о Э	و م	0.4	15.4	28.5		
6554	235	-240	성	9.5	1.2	0.7	0.4	11.6	0.2		23.1		
6555	240	-245	ᄭ	9,4	0.7	ი ა	0.4	6.	0.4	ъ. С	17.1		
6556	245	250	占	B. 1	2.0	0.8	0.6	23.3	0.5	27.5	22.1		

CSU Soil Testing Lab Rm. 6, Voc.Ed. Bldg. Fort Collins, Co 80523

Date Rec: 11/22/88

Soil Analysis Report

LAB	Sample ID #	Sand	Si1t	Clay	Texture	Total S	504-5	CaCO3	Acid- Base Potential *
EÌ		## 88 ## 88	32.	30	 	0.01	<0.001	1.2	11.19
6533		4	5B	28	占	0.01	0.001	1.0	9.62
6534		46	5ē	28	5CL	0.01	0.001	1.1	10.52
6535		36	32	32	ರ	0.02	<0.001	7.5	10.98
6536		42	26	8	J J	0.02	0.001	1.8	17.21
6537		9.4 4.6	Đ,	33	占	0.01	0.001	1.5	14.32
6538		46	7£	28	SCL	0.02	<0.001	1.8	17.78
6539		36	32	32	占	0.05	0.001	1.2	11.71
6540		9.4 4.6	(E)	35	ر ت	0.02	0.002	1.3	12.54
6541		48	24	2 8	SCL	0.02	<0.001	ე. დ	55,68
6542		40	2ei	32	占	0.03	0.001	1.6	15.29
6543		40	30	99	귕	0.01	0.001	М. М.	36.92
6544		9	16	22	75 25	<0.01	0.001	18.1	181.03
6545		40	26	35	占	<0.01	0.001	7,3	73,13
6546		48	24	28	SCL	0.01	0.001	*	*
6547		44	26	28	占	0.02	0.001	5.4	53.21
6548		32	58	4 0	70/3	0.02	<0.001	2,2	21.48
6549		20	Ä	44	ပ	0.02	0.001	2.1	19,91
6550		20	36	44	ပ	0.02	×	э. 1.	ж
6551		52	20	28	2CL	0.01	0.002	1.8	17.45
6552		28	28	44	ပ	0.03	0.001	2.5	23,59
6553		28	8	42	ں	0.03	0.002	2.0	18,93
6554		32	2 0	40	70/2	Ж	0.002	2.6	*
6555		56	. 20	24	SCL	0.02	0.002	1.9	18.44
6556		62	20	18	ហី	<0.01	0.001	2.7	27.13
: :		l	! 	:					

CSU Soil Testing Lab Rm. 6, Voc.Ed. Bldg. Fort Collins, Co 80523

Soil Analysis Report

DRILL HOLE PB-107

		1					; ; ; ;		i ! !	 		AB-DTPA	2M KC1
Lab	E	imple	Lith	玉	С.	n G	£	æ	ᅶ	SAR	Sat	B A	N03-N
#	ja-rei	#			mmhos/cm		Q I			 	~	edd	mdd
6557	11	-255A	55	8.4	1.6	0.5	1 0	18.0	0.4	21.9	19.6		
6558	250	-255B	SS	4.6	1.0	0.5	0.3	10.1	4.0	15.3	18.4		
6529		-260	សូ	8.8	1.7	6.9	0,2	18.2	e. o	39.1	19.0		
6560		-265	SS	8.5	1.8	o.3	0.2	14.6	0.3	29.4	17.2		
6561		-270	ស	8.3	2.1	0.4	0.3	19,3	0.3	32.1	43.7		
6562		-275	SS	8.4	2,6	4.0	4.0	24.4	9.0	39.9	50.3	,	
6563		-280	SS	9.5	1.9	0.3	0.2	18.1	0.3	35.1	18.1		
6564		-282	S.S.	9.6	2.3	0.4	0.3	25.6	0.3	44.6	56.7		
6565		-290	52	9.8	2.1	0.3	0.2	29.7	0.3	58.9	18.5		
6566		-295	55	9.8	2.1	0.3	0.5	25.0	0.2	49.9	17.5		
6567		-300	SS	9.8	3.0	4.0	0.4	30.7	0.3	48.7	17.8		
6568		-305	ᅜ	8.3	2.9	9.0	0.6	30.4	0.1	38.3	18.0		
6269		-310	22	9.3	э.о	o.s	0.4	25.4	0.4	39.1	17.8		
6570		-315	ᅜ	в Э	2.6	0.5	0.3	32.8	0.4	51.9	19.8		
6571		-320	꾶	8.3	1.6	0.0	0.3	28.5	0.4	53.8	18.7		
6572		-325	ᅜ	9	1.5	0.1	0.1	17.2	0.2	53.8	18.7		
6229		-330	氏	8.2	1.5	0.2	△.1	15.S	0.2	45,4	20.5		
6574		-335	뜻	9.5	1.7	0.2	0.1	18,3	o.s	46.1	21.0		
6575		-340	æ	9.0	1.2	0.2	0.1	22.5	0,2	58.1	21.6		
6576		-345	æ	4.8	1.4	0.2	0.1	12.8	0.5	37.0	20.5		
6577		-345	쫎	8.4	1.4	0.2	0.1	15.3	0.3	42.9	19.4		
6578		-347	ద	8.3	1.2	0.2	0.1	15,3	0.3	37.6	21.0		
6259		-350	g.	. 9	1.2	0.3	0.2	13.0	0.3	25.3	20.1		

CSU Soil Testing Lab Rm. 6, Voc.Ed. Bldg. Fort Collins, Co 80523

Date Rec: 11/22/88

Soil Analysis Report

6557 -255R 58 18 24 5CL 0.01 0.002 1.5 14.65 6558 250 24 5CL 0.01 0.001 2.4 23 6559 255 -260 68 12 20 5CL/5L <0.01 0.003 2.9 28.69 6560 260 24 5CL 0.01 0.003 2.9 28.69 6561 265 270 275 69 1.9 17.50 6561 265 270 69 1.9 17.50 6562 270 275 69 1.9 17.50 6561 275 200 0.04 1.0 17.50 6562 270 26 1.0 0.04 1.7 16.28 6564 28 16 16 20 5CL/5L 0.04 1.0 18.69 6564 28 16 16 20 5CL/5L 0.01 1.00	L.AB	Sample ID #	Sand	5i1t	Clay	Texture	Total S	504-5	CaCO3	Rcid- Base Potential *
250 -255B 56 20 24 SCL 0.01 0.001 2.4 255 -260 68 12 20 SCL/5L <0.01	6557	255A		18	24	5CL	0.01	0.002	1.5	14.65
255 -260 68 12 20 SCL/SL <0.01	٠.		56	20	24	5CL	0.01	0.001	2.4	23.82
260 -265 68 14 18 SL 0.02 0.004 1.8 265 -270 64 16 20 SCL/SL 0.04 0.004 1.7 270 -275 68 12 20 SCL/SL 0.03 0.004 1.7 275 -280 64 16 20 SCL/SL 0.03 0.004 2.0 280 -285 68 16 16 20 SCL/SL 0.01 0.002 1.9 280 -295 68 14 20 SCL/SL <0.01			89	12	8	SCL/SL	<0.01	0.003	2.9	28.69
265 -270 64 16 20 SCL/SL 0.04 0.004 1.7 270 -275 68 12 20 SCL/SL 0.03 0.002 6.0 275 -280 64 16 20 SCL/SL 0.03 0.004 2.0 280 -285 68 16 16 SL <0.01			68	4	18	75	0.02	0.004	1.8	17.50
270 -275 68 12 20 SCL/SL 0.03 0.002 6.0 275 -280 64 16 20 SCL/SL 0.03 0.004 2.0 280 -285 68 14 16 5L <0.01			64	16	20	SCL/5L	0.04	0.004	1.7	16.28
275 -280 64 16 20 SCL/SL 0.03 0.004 2.0 280 -285 68 16 15 SL <0.01			99	12	20	SCL/5L	0.03	0.002	6.0	58.93
280 -285 68 16 5L <0.01			49	16	20	SCL/5L	0.03	0.004	2.0	18.99
285 -290 66 14 20 5CL/5L <0.01	-		68	16	16	占	<0.01	0.002	1.9	19.06
290 -295 68 14 18 SL <0.01			99	14	20	SCL/SL	<0.01	0.002	2.5	24.66
295 -300 78 8 14 5L <0.01			99	14	18	占	<0.01	0,001	5.6	25.63
300 -305 68 14 18 SL 0.22 0.009 2.0 305 -310 62 18 20 5CL/5L 0.11 0.007 1.6 310 -315 62 14 24 5CL 0.07 0.008 1.1 315 -320 68 10 22 5CL 0.06 0.005 1.2 320 -325 68 8 28 5CL 0.09 0.003 0.9 325 -330 64 8 28 5CL 0.06 0.003 0.9 330 -335 60 10 30 5CL 0.06 0.002 0.8 335 -340 70 8 22 5CL 0.05 0.002 4.4 340 -342 8 8 24 5CL 0.03 0.002 3.8 345 -347 70 6 24 5CL 0.06 0.001 1.5 347 -350 72 6 72 5CL 0			78	80	14	5.	<0.01	0.003	6.7	67.49
305 -310 62 18 20 5CL/5L 0.11 0.007 1.6 310 -315 62 14 24 5CL 0.07 0.008 1.1 315 -320 68 10 22 5CL 0.06 0.005 1.2 320 -325 68 8 28 5CL 0.09 0.003 0.9 325 -330 64 8 28 5CL 0.06 0.002 0.8 330 -335 60 10 30 5CL 0.06 0.002 0.8 335 -340 70 8 22 5CL 0.05 0.001 0.8 340 -342 8 8 24 5CL 0.03 0.002 3.8 342 -345 68 8 24 5CL 0.03 0.002 3.0 345 -347 70 6 24 5CL 0.06 0.001 1.5 347 -350 72 6 72 5CL 0	٠.		8 9	14	18	ᅜ	0.22	0.009	2.0	13.21
310 -315 62 14 24 5CL 0.07 0.008 1.1 315 -320 68 10 22 5CL 0.06 0.005 1.2 320 -325 68 8 28 5CL 0.09 0.003 0.9 325 -330 64 8 28 5CL 0.06 0.002 0.9 336 -330 60 10 30 5CL 0.06 0.002 0.9 335 -340 70 8 22 5CL 0.06 0.001 0.8 340 -342 * 0.03 0.05 0.005 0.002 3.8 342 -345 68 8 24 5CL 0.03 0.002 3.0 345 -347 70 6 24 5CL 0.06 0.001 1.5 347 -350 72 6 .22 5CL 0.03 0.001 1.3	• •		62	18	50	SCL/SL	0.11	0.007	1.6	12.38
315 -320 68 10 22 5CL 0.06 0.005 1.2 320 -325 68 8 28 5CL 0.09 0.003 0.9 325 -330 64 8 28 5CL 0.06 0.002 0.9 330 -335 60 10 30 5CL 0.06 0.002 0.8 335 -340 70 8 22 5CL 0.05 0.001 0.8 340 -342 * 0.03 0.05 0.002 3.8 342 -345 68 8 24 5CL 0.03 0.002 2.0 345 -347 70 6 24 5CL 0.06 0.001 1.5 347 -350 72 6 22 5CL 0.13 0.001 1.3			62	14	24	205	0.07	0.008	1.1	8.66
320 -325 68 8 28 SCL 0.09 0.003 0.9 325 -330 64 8 28 SCL 0.06 0.002 0.8 330 -335 60 10 30 SCL 0.06 0.001 0.8 345 -340 70 8 22 SCL 0.05 0.002 4.4 340 -342 * 0.03 0.002 3.8 345 -347 70 6 24 SCL 0.03 0.002 2.0 347 -350 72 6 .22 SCL 0.13 0.001 1.5	• • •		99	10	25	7 25	0.06	0.005	1.2	10.48
325 -330 64 8 28 SCL 0.06 0.002 0.8 330 -335 60 10 30 SCL 0.06 0.001 0.8 335 -340 70 8 22 SCL 0.05 0.002 4.4 340 -342 * 0.03 0.002 3.8 342 -345 68 8 24 SCL 0.03 0.002 2.0 345 -347 70 6 24 SCL 0.05 0.001 1.5 347 -350 72 6 22 SCL 0.13 0.001 1.3			99	8	58	, 2CL	0.09	0.003	0.9	6.58
330 -335 60 10 30 SCL 0.06 0.001 0.8 335 -340 70 8 22 SCL 0.05 0.002 4.4 340 -342 * 0.03 0.002 3.8 342 -345 68 8 24 SCL 0.03 0.002 2.0 345 -347 70 6 24 SCL 0.06 0.001 1.5 347 -350 72 6 22 SCL 0.13 0.001 1.3	• •		3	80	28	SCL	90.0	0.002	0.0	5,99
335 -340 70 8 22 5CL 0.05 0.002 4.4 340 -342 * 0.03 0.002 3.8 342 -345 68 8 24 5CL 0.03 0.002 2.0 345 -347 70 6 24 5CL 0.06 0.001 1.5 347 -350 72 6 22 5CL 0.13 0.001 1.3	,		9	10	99	70S	0.06	0.001	0	5.66
340 -342 * 0.03 0.002 3.8 342 -345 68 8 24 5CL 0.03 0.002 2.0 345 -347 70 6 24 5CL 0.06 0.001 1.5 347 -350 72 6 .22 5CL 0.13 0.001 1.3	• •		20	8	22	SCL	0.05	0.002	4.4	42.50
342 -345 68 8 24 5CL 0.03 0.002 2.0 345 -347 70 6 24 5CL 0.06 0.001 1.5 347 -350 72 6 · 22 5CL 0.13 0.001 1.3	•-,					×	0.03	0.002	3.B	37.43
345 -347 70 6 24 SCL 0.06 0.001 1.5 347 -350 72 6 · 22 SCL 0.13 0.001 1.3	• • •		99	89	24	201	0.03	0.002	2.0	19.13
347 -350 72 6 22 SCL 0.13 0.001 1.3	٠,		2	Ģ	24	2CL	0.06	0.001	1.5	13.36
	• •		72	9	. 22	201	0.13	0.001	1.3	8.87

CSU Soil Testing Lab Rm. 6, Voc.Ed. Bldg. Fort Collins, Co 80523

Soil Analysis Report

80
≓
Ţ
OLE
豆
Ī
ゴ
Ξ
\approx

2M KC1	NO3-N	wdd																										
RB-DTPA	B 20	Edd	THE REAL PROPERTY AND THE PROPERTY AND T					•																				
	Sat	×	24.4	25.6	24.4	24.5	24.4	35.8	34.2	59.2	56.6	91.4	98.6	37.6	43.7	47.6	44.1	64.2	94.0	96.2	1111.0	115.1	101.9	116.3	132.9	121.3	84,6	6.09
	SAR	 	12.8	39,2	28.9	52.3	40.7	46.8	34.0	43,4	70.7	61.3	32.1	67.1	72.5	28.2	63.8	12.7	70.1	51.3	48.2	43.0	18.0	22.0	22.9	22.9	32,3	26.6
	¥	1 1	0.3	0.1	0.1	0.2	0.1	0.1	0.2	0.	0.1	0.1	0.1	0.1	0.2	0.2	0.2	4.0	0.1	0.4	0.2	0.1	0,2	0.1	0°3	0.2	0.1	0.5
	E Z	7	8.7	12.1	10.6	20.2	14.9	17.3	14.8	15.0	21.9	23.3	13.8	28.6	31.6	12.3	28.1	12.2	21.2	43.4	22.7	14.7	10.7	12,9	15.0	13.6	14,4	15.3
	£) wed	0.4	0.1	0.1	0.1	0.1	0.1	0.5	0.1	△.1	0.1	0.1	0.1	0.1	0.3	0.2	1.1	0.1	1.0	0.2	0.1	0.5	0.4	9.0	0.4	0.2	0.3
	C _B	1 1 1 1 1 1 1 1 1 1	0.6	0.1	0.2	0.2	0.2	0,2	0.2	0.2	0.2	0.2	0,2	0.3	e. O	0.1	0.2	0,7		0.4	0.5	0.1	0.2	0.3	e.0	e.0	0.2	0.3
paste	Ε.υ.	mmhos/cm	0.8	1.0	1.0	1.9	1.4	1.5	1.4	1.4	1.8	2.0	m	2.6	2.8	1.0	2.1	1.0	1.6	3.0	2.0	4-	1.0	1.3	1.3	1.3	7.	1.5
d	돔			9.6	₩,	9.6	9.6	8,7	8.6	8.9	9.1	9.1	9.1	9.9	9.0	8.9	8	9.1	9.1	9.0	9.1	9.0	9.0	9.1	9,2	9.2	9.2	9.1
,	Lith	- 1	35	욹	돐	굕	ᅜ	ᅜ	ᇰ	ᅜ	ᅜ	ᅜ	SS	SS	ᇅ	쮼	ᅜ	돐	돐	돐	돐	S	55	សូ	SS	SS	ᅜ	Ϋ́
	Sample		-235	-240	-245	-250	-255	-260	-265	-270	275	-280	-282	-290	-295	-300	-302	-310	-315	-320	-325	-330	-335	-340	-345	-350	-355	-360
	Ŋ	į	l É																								33	
	Lab	#	6580	6581	6582	6583	6584	6585	6586	6587	6588	6283	6590	6591	6592	6593	6594	6595	6596	6597	6598	6299	6600	6601	6602	6603	6604	6605

CSU Soil Testing Lab Rm. 6, Voc.Ed. Bldg. Fort Collins, Co 80523

Date Rec: 11/22/88

Soil Analysis Report DRILL HOLE PB-108

98, ¹² 80	٠,	8.8.8.8 8.8.8.8	30 28 26 28 16 20 9	-280 42 30 28 -285 46 26 28 -280 64 16 20 6
 02×999999	5 1	# # # # # # # # # # # # # # # # # # #	18 16 16 24 24 32 32 32 34 36 36 36 36 37 38 38 38 38 38 38 38 38 38 38 38 38 38	290 -290

CSU Soil Testing Lab Rm. 6, Voc.Ed. Bldg. Fort Collins, Co 80523

Soil Analysis Report

DRILL HOLE PB-108

ZM KC1	N-SUN	
B-0TP	B 5e	
	Sat.	46.3 108.7 108.7 126.2 126.2 18.4 18.5 12.0 116.9 116.9 115.9 115.9 115.9 115.9 115.9
! ! ! C! ! C!	<u> </u>	23.9 24.0 25.0 25.0 27.0 27.0 27.0 27.0 20.0 20.0 20.0 20
[¥	
	Ra q/1	10.2 10.2 10.2 10.2 10.2 10.2 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3
 	1	000-1-00000000000000000000000000000000
	ים פ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-paste	E.C. mmhos/cm	0
	Ţ	0.000000000000000000000000000000000000
		
•	aple #	1365 1370 1370 1380 1380 1380 1380 1480 1480 1480 1480 1480 1480 1480 14
1		365 365 365 365 365 365 365 365
ł l	(m) #	6608 6609 6609 6609 6611 6613 6613 6621 6622 6623 6623 6623

CSU Soil Testing Lab Rm. 6, Voc.Ed. Bldg. Fort Collins, Co 80523

Date Rec: 11/22/88

Soil Analysis Report DRILL HOLE PB-108

Acid- Base Potential *	20.46 40.73 16.03 14.49 17.96 20.33 17.96 17.63 18.23 18.23 18.23 18.23 18.23 19.13 16.03 16.03 16.03 17.03 18.33 18.33 18.33 18.33 18.53
CaCO3	24.1.1.1.2.1.1.2.1.2.1.1.1.1.1.1.1.1.1.1
504-5	0.002 0.002 0.003 0.003 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Total S	000000000000000000000000000000000000000
Texture	- 6 6 6 7 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8
Clay	4 ¥ K B 8 2 2 2 2 8 8 8 4 2 8 8 8 8 8 8 8 8 8 8
5i1t	412 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Sand	4 2 2 8 4 4 4 2 2 2 2 2 2 3 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Sample IO #	365 370 386 386 386 386 386 386 386 386
LAB Sa	6606 360 6607 365 6608 370 6609 375 6610 380 6611 385 6612 395 6613 405 6614 400 6613 405 6619 425 6621 435 6622 445 6624 450 6625 465 6626 460 6627 465 6628 470

CSU Soil Testing Lab Rm. 6, Voc.Ed. Bldg. Fort Collins, Co 80523

Soil Analysis Report

DRILL HOLE PB-108

1		1 	l i		paste	 						AB-0TPR	2M KC1
Lab	Sample	le L	Lith	- モ	E.C.	Ca	Σď	e Z	¥	SAR	Sat	B Se	N-EON
#							we(wed/1				edd	₩dd !
6631	485	\$1 	::::::::::::::::::::::::::::::::::::::	. 4.	0.9	0.1	Н	10.3	0.1		122.7		
6632	490		S	9.3	1.0	0.1	0.2	9.8	<0.5		96.4		
6633	495		SS	9,4	1.2	0.2	0.1	13.9	0.3		60.3		
6634	500		52	9,3	1.4	0.1	0.1	15,3	0.5		56.8		
6635	505		55	9.2	0.9	0.3	0.5	9.8	0.3		55.4		
9699	510		23	9,3	0.9	0.2	0.4	12.8	0.1		70.6	,	
6637	515		53	9.4	0.9	0.2	0.3	13.0	0.1		83.4		
9699	520		SS	9.2	1.2	0.3	0,7	19.3	0.2		60.3		
6639	525		55	9.1	1.2	0.3	0.1	12.9	0.1		40.3		
6640	530 -535		SS	9.2	1.3	0.2	0.2	14.6	0.1	31.4	48.9		
6641	535		25	9.0	1.1	0.4	0.2	12.3	0.1		31.1		
6642	540		S S	9.0	1.0	0.4	0.3	10.1	0.2		37.8		
6643	545		55	9.1	1.1	0.1	0.1	11.9	0.1		60.2		

CSU Soil Testing Lab Rm. 6, Voc.Ed. Bldg. Fort Collins, Co 80523

Date Rec: 11/22/88

Soil Analusis Report

	Total Acid- ture S 504-S CaCO3 Base Potential *	CL <0.01 <0.001 2.0 19.70 === /SL <0.01 0.001 3.2 31.93 CL <0.01 0.001 10.7 106.63 CL <0.01 0.001 11.1 111.43 CL <0.01 0.001 3.3 32.93 CL <0.01 0.001 2.6 26.33 CL <0.01 0.001 3.2 31.53 CL <0.01 0.001 12.5 125.03 /SL <0.01 0.002 8.6 85.86 /SL <0.01 0.002 8.6 85.86 /SL <0.01 0.002 6.3 62.96 CL ** * * * * * *
ama appa appa appa appa para-	Texture	26.75 26.75 26.75 26.75 26.75 26.75 26.75
a Joday sishireuc	t Clay	21 8 8 14 14 15 16 16 17 18 18 18 18 18 18 18 18 18 18
	Sand Silt	722 722 723 744 754 75 75 75 75 75 75 75 75 75 75 75 75 75
B-108	Sample S	490 -495 -500 -500 -515 -515 -525 -530 -540 -545 -550
DRILL HOLE PB-108	LAB Sa	6631 485 6632 490 6633 495 6634 500 6635 505 6636 510 6639 520 6640 530 6641 535 6643 545

CSU Soil Testing Lab Rm. 6, Voc.Ed. Bldg. Fort Collins, Co 80523

Soil Analysis Report ORILL HOLE PB - 109

PH D
•
ij.,
_
۰.
. .
_
_
_
_
_
_
_
_
_
~
_

CSU Soil Testing Lab Rm. 6, Voc.Ed. Bldg. Fort Collins, Co 80523

Date Rec: 11/22/88

Soil Analysis Report DRILL HOLE PB-109

-a #	Sample In #	Sand	Silt 7	Clay	Texture	Total S	504-5	C9C03	Base
# # # # # # # # # # # # # # # # # # #									***************************************
6644	0 - 5	98	ৰ	10	5	<0.01	0.002	i * 	0.06
6645	5 - 10	88	4	6 0	LS	<0.01	<0.001	*	×
6646	10 - 15				*	<0.01	<0.001	0.1	1.10
6647	15 - 20				*	<0.01	<0.001	0.1	0.80
6648	20 ~ 25				×	<0.01	<0.001	0.1	0.90
6649	25 - 30				×	0.01	<0.001	0.1	69.0
6650	30 - 35	98	Ŋ	0	ហ	0.01	<0.001	0.2	1.39
6651	35 - 40				ж	0.01	<0.001	0.2	1.89
6652		88	0	ζ)	ហ	0.01	<0.001	0.1	0.89
6653					×	0.01	<0.001	×	*
6654					×	0.01	<0.001	0.2	1.49
6655		86	۲)	0	ហ	*	<0.001	*	×
6656	60 - 65	86	~ i	0	ഗ	0.01	<0.001	0.1	0.69
6657					*	0.01	×	0.2	×
6658					×	0.01	<0.001	0.2	1.59
6629		26	20	7	125	<0.01	0.001	0.4	4.43
9999		4	2 6	Æ.	占	×	0.001	ж	ж
6661		8	尽	24	SCL	0.01	0.001	1.8	17.42
6662		48	24	5 8	SCL	0.01	0.001	1.2	12.12
6999		42	5 8	8	占	0.02	0.001	1.1	10.51
6664	100 -105	40	30	æ	占	0.02	0.001	1.3	12.01
6665	105 - 110	42	24	9	占	0.01	0.001	1.3	12.62
9999	110 -115	42	58	99	占	0.05	0.001	1.3	11.91

CSU Soil Testing Lab Rm. 6, Voc.Ed. Bldg. Fort Collins, Co. 80523

Soil Analysis Report 109

DRILL HOLE PB - 109

				aste	 	 					AB-OTPA	2M KC1
년 유	Sample Lith	Lith	퓹	E.C.	Cg.	Mg h	Na 1/1	¥	SAR	Sat	В 5е	N-EDA Edd
:	ì	1 1 1										
5667	115 -	15	9,2	0.9	4.0	0.2	9.0	6.0	17.1	21.0		
SASA	120 -		9.3	0.8	0.2	0.1	8.3	0.2	22.B	17.9		
6999	125 -		Э	1.4		0.2	12.4	0.3	21.4	21.6		
6670	130 -		4.0	0.8		0.2	6.8	0.2	13,9	19,5		
6671	1.00 1.00 1.00		9	0.7		0.1	6.7	0.2	19.3	21.3		
6672	140		00	6.0	0.1	0.1	9.1	0.5	22.3	19.7		
6673	145		6	8.0		0.1	2.7	0.3	18.4	19.9		
6674	150 -		00	1.4	0,2	0.1	16.7	0.1	45.9	19.6		
6686	155		9	1.5		0.1	16.0	0.2	34.0	18.9		
6687	160 -		9.6	1.7		0.1	19.6	0.2	49.1	15.3		
6688	165 -		9.5	4.4		0.1	15.6	0.2	45.4	19.5		
6689	170 -		9	1.0		0.1	11.1	0.5	31.5	18.1		
6690	175		9.4	1.0		0.1	10.6	0.5	26.6	18.9		
6691	180		9.2	0.9		0.5	9.7	0.3	18.8	18.8		
6692	188		9.2	6.0		0.2	e.~	0.2	16,9	18.6		
6693	190		8.2	9.0		0.1	Ω,	0.2	14.3	19.0		
6694		ᅜ	8.2	0.7		0.1	7.4	0.2	17.1	17.8		

* Not enough sample

CSU Soil Testing Lab Rm. 6, Voc.Ed. Bldg. Fort Collins, Co 80523

Date Rec: 11/22/88

Soil Analysis Report DRILL HOLE PB-109

LAB	Sample	Sand	Silt	Clay	Texture	Total S	5045	E00e0	Acid- Base
**	# OT		- : - :						Fotential *
R 6667	115	42	26	32	0.	0.02	0.001	1.3	12.93
6999	120	8	24	8	205	0.02	ж	2.0	ж
6999	125	4	20	38	ರ	0.03	0.003	2,3	22.59
6670	130	20	20	99	SCL	0.02	0.001	1.2	11.73
6671	135	20	18	35	SCL	0.04	0.001	1.2	11.53
6672	140	윲	20	8	2 5	ж	×	ж	×
E299	145	22	20	8	SCL	0.01	ж	1.3	*
6674	150	28	16	28	20 20 30	×	0.001	o.	*
9899	155	20	2	8	20L	<0.01	×	1.5	×
6687	160	99	12	25	SCL	<0.01	0.001	9.8	98.03
9899	165	28	14	58	7 20 7	0.01	0.001	2.7	26.93
6899	_	62	12	56	2CF	0.01	0.001	4.0	49, 33
0699	175	22	18	8	SCL	0.02	×	2.9	*
6691	180	40	16	운	2C 2C	0.02	0.001	1.4	14.13
6692	185	54	18	28	75 25	0.02	0.001	1.8	17.53
6699	190	54 4	2	56	201	0.01	0.001	1.8	18.13
6694	195	Ą,	18	28	SCL	0.01	ж	э. О	*

* Not enough sample

APPENDIX B-2 TOTAL CHEMICAL ANALYSES

CSU Soil Testing Lab Room 6, Voc. Ed. Bldg. Fort Collins, CO 80523 303-491-5061

NOTE: Your samples will be automatically discarded 30 days from the date on this report unless you notify the lab to keep the samples. Thank you. Date: 2/17/89

Date Rec: 11/22/88 Date Rec: 2/6/89

Research Sofl Analysts

R3965 214.5-224.2 0.79 1.02 0.63 1.28 0.05 7.25 5.46 0.24 0.49 62.5 128 3970 235.7-245.0 0.46 0.93 0.98 1.30 0.03 7.23 2.65 0.11 0.53 53.9 146 3970 235.7-245.0 0.46 1.54 0.85 1.30 0.03 7.23 2.65 0.11 0.53 53.9 146 4002 90-100 0.63 0.74 0.85 1.31 0.04 7.64 5.38 0.18 0.39 39.2 204 4002 35-45 3.10 1.40 2.44 0.85 0.08 6.73 3.77 0.18 0.39 39.2 204 4003 40-50 2.08 0.60 3.88 0.69 0.04 6.94 1.46 0.09 0.14 18.5 51.1 R4821 Coarse Rej. 0.69 0.98 0.28 1.17 0.06 8.00 4.20 0.15 0.53 64.6 115 A4822 Spiral Rej. 1.64 1.35 0.28 0.96 0.08 7.43 5.28 0.19 0.43 58.1 150 Lab Sample Mo Cd V Cr Sr B Ba Pb As Se Hg ## R3965 214.5-224.2 9.7 3.7 211 128 159 5.0 842 56 0.85 <0.25 0.0 3970 236.7-245.0 8.8 3.2 169 112 131 1.6 786 56 6.10 <0.25 0.0 4002 90-100 6.3 2.45 1.1 10.6 2.64 1.55 <0.25 0.0 4027 35-45 7.8 2.9 151 70.6 2.94 1.5 50.32 <0.25 0.0 4043 40-50 7.9 3.2 45.4 21.2 574 0.2 843 5.2 0.3 0.2 5 0.0 4027 0.35 6.1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	Ø ₩	Sample ID #	Ca	1				A1	tal e		<u> </u>		Zn mg/kg-	
3990 70-80 0.46 1.54 0.85 1.71 0.04 7.64 5.38 0.18 0.52 68.7 150 402 90-100 0.63 0.76 1.00 1.38 0.09 6.70 2.19 0.10 0.45 51.2 136 40.3 35-45 3.10 1.40 2.44 0.85 0.08 6.73 3.77 0.18 0.39 39.2 204 4043 40-50 2.08 0.56 3.88 0.69 0.04 6.94 1.46 0.09 0.14 18.5 51.1 128 150 0.15 0.15 0.15 0.15 0.15 0.15 0.15	R396 397	214.5-224.	7.	0.6	9	2.5	0.0	. 2	4	.2	4 4	1 2.6	28	0 -
4027 35-45 3.10 1.40 2.44 0.85 0.08 6.73 3.77 0.18 0.39 39.2 204 4043 40-50 2.08 0.60 3.88 0.69 0.04 6.94 1.46 0.09 0.14 18.5 51.1 R4821 Coarse Rej. 0.69 0.98 0.28 1.17 0.06 8.00 4.20 0.15 0.53 64.6 112 4822 Spiral Rej. 1.64 1.35 0.28 0.96 0.08 7.43 5.28 0.19 0.43 58.1 150 Lab Sample Mo Cd V Cr Sr B Ba Pb As Se Hg # R3965 214.5-224.2 9.7 3.7 211 128 159 5.0 842 56 6.10 <0.25 0.1 83970 236.7-245.0 8.8 3.2 169 112 131 1.6 786 56 6.10 <0.25 0.2 4002 90-100 6.3 2.4 143 112 154 1.5 892 43 0.86 <0.25 0.0 4027 35-45 7.8 2.9 151 70.6 296 1.6 561 45 0.57 <0.25 0.0 R4831 Coarse Rej. 11.9 4.0 141 93.7 201 3.3 927 60 1.76 <0.25 0.2 R4822 Coarse Rej. 11.9 4.0 141 93.7 201 3.3 927 60 1.76 <0.25 0.2	99	70-80	4.0	5.	, e, o	, L		9.	, W		. r. 4	 	7 50 60	12.5
# Sample Mo Cd V Cr Sr B Ba Pb As Se High High High High High High High High	02	35-45	~. 0	4.	4α	ω. ν	0.0	7.	7		· ω -	α	20.	. m r
ab Sample Mo Cd V Cr Sr B Ba Pb As Se Hg 3965 214.5-224.2 9.7 3.7 211 128 159 5.0 842 56 0.85 <0.25 0.1 3970 236.7-245.0 8.8 3.2 169 112 131 1.6 786 56 6.10 <0.25 0.2 4002 990-100 6.3 2.4 143 112 154 1.5 892 43 0.86 <0.25 0.2 4027 35-45 7.8 2.9 151 70.6 296 1.6 561 45 0.57 <0.25 <0.0 4821 Coarse Rej. 119 4.0 141 93.7 201 3.3 3.9 27 60 1.76 <0.25 0.2	482	Coarse Re Spiral Re	9	o w	222		000	0.4	77	7.7.	. 7.	4 φ	11 15	42.2
R3965 214.5-224.2 9.7 3.7 211 128 159 5.0 842 56 6.10 <0.25 0.1 3970 236.7-245.0 8.8 3.2 169 112 131 1.6 786 56 6.10 <0.25 0.0 3990 70-80 12.0 4.3 220 125 158 7.1 982 74 1.55 <0.25 0.25 402 90-100 6.3 2.4 143 112 154 1.5 892 43 0.86 <0.25 0.25 4027 35-45 7.8 2.9 151 70.6 296 1.6 561 45 0.57 <0.25 <0.0 4043 40-50 7.9 3.2 45.4 21.2 574 0.2 843 52 0.32 <0.25 0.0 84821 Coarse Ref. 11.9 4.0 141 93.7 207 3.3 927 60 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0 1.76 <0.25 0.2 843 6.0	l 0 *#	ampl			 				Total Ba	Pb	iioi		-1 $+$ \pm 1	
3970 236.7-245.0 8.8 3.2 169 112 131 1.6 786 56 6.10 <0.25 0.0 3990 70-80 12.0 4.3 220 125 158 7.1 982 74 1.55 <0.25 0.2 4002 90-100 6.3 2.4 143 112 154 1.5 892 43 0.86 <0.25 0.2 4027 35-45 7.8 2.9 151 70.6 296 1.6 561 45 0.57 <0.25 <0.0 4043 40-50 7.9 3.2 45.4 21.2 574 0.2 843 52 0.32 <0.25 0.0 4043 40-50 7.9 3.2 45.4 21.2 577 3.3 927 60 1.76 <0.25 0.0 4821 Coarse Ref. 11.9 4.0 141 93.7 207 3.3 927 60 1.76 <0.25 0.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6	396	14.5-224.		-		1 0	51	- I •	842		8	0.2	-	
4002 90-100 6.3 2.4 143 112 154 1.5 892 43 0.86 <0.25 0.2 4027 35-45 7.8 2.9 151 70.6 296 1.6 561 45 0.57 <0.25 <0.0 4043 40-50 7.9 3.2 45.4 21.2 574 0.2 843 52 0.32 <0.25 0.0 4821 Coarse Ref. 11.9 4.0 141 93.7 207 3.3 927 60 1.76 <0.25 0.2 883 5.2 45.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.	97 99	36.7-245. 70-80			9	12	ω ω		∞		<u>.</u> .	0.2	.0	
4043 40-50 7.9 3.2 45.4 21.2 574 0.2 843 52 0.32 <0.25 0.0 4821 Coarse Ref. 11.9 4.0 141 93.7 207 3.3 927 60 1.76 <0.25 0.2	00	0-10	• •	• •	4 5	111	മ		9.0		ω. r.	0.2	2	
4821 Coarse Ref. 11.9 4.0 141 93.7 207 3.3 927 60 1.76 <0.25 0.2	04	0-5		•	ľ	• 	~		4		m	0.2	0.	
	482	Se	- 0	•	40	86	00	•	27		7.	0.2	2.0	

APPENDIX B-3 COAL SLURRY CHEMISTRY

CSU Soil Testing Lab Room 6, Voc. Ed. Bldg. Fort Collins, CO 80523 303-491-5061

NOTE: Your samples will be automatically discarded 30 days from the date on this report unless you notify the lab to

keep the samples. Thank you.

Date: Billing:

Date

Water Analysis

Test #2 Jan 26, 1989

Project: Wishbone Hill Coal

Dave Rec: 2/6/89

Lab #	Sample ID #	а I	×	Ca	ō N	Asmg/1-	(D)	M	P)	Se	Zn	D 1	Pb
W4587 4588	Fresh* Process*	4.3	<0.5	47.8	14.7	0.001	0.10	0.02	010	.001	0.01	<0.001 <0.001	0.0
Lab #	Sample ID #		A 1	7		B B 1		N 0 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N	1	T ot a	Organic P	Total Total
3	Fro	<0.01	<0.1 <0.1	• •	0.06	0.02		00	0.1	0.00	<0.1 <0.1 not	.1 .1 ude	<0.1 <0.1 NO3-N
Lab #	Sample ID #	S04 (C1	Нq	Cond.	Acidity as CaCO	3 003	HC03	Hardness as CaCO3	s TDS	S L	Settleab Solids	ble s Color*
W4587 4588	Fresh* Process*	65.6	1.6 3.6	8 8 0	387	-921 -968	1	134	180	200 200 * Color	16.0 278 unit	12.0 260 s at pH	<1 <1 8.0
Lab	Sample ID #	 			! ! ! ! !					; ; ; ;			1 1 1 1

Process Water(Clarified) from Thickener Overflow Pilot Plant Makeup Water (Fresh Water) H H 4588 Process* W4587 Fresh*

APPENDIX B-4 COAL REFUSE CHEMISTRY

C	
0	
0	
$^{\circ}$	
Φ	
_	
>	
_	

B1dg. 80523 CSU Soil Testing Lab Room 6, Voc. Ed. Fort Collins, CO 303-491-5061

NOTE: Your samples will be automatically discarded 30 days from the date on this report unless you notify the lab to

keep the samples. Date: 2/17/89

Thank you.

Billing:

Test #2 Jan 26, 1989 Project: Wishbone Hill Coal

Date Rec: 2/6/89

Research Analysts

	1.9 17.4	1.9	0.003	0.052 0.003		SCL	24	ī.	71	1.4	R4821 Coarse Reject 1.4	R4821
d	% Acid- CaCO3 Base equiv.Potential*	CaCO3	% S04-S	Total % S		Texture	% Clay	% Silt	Sand	ZM KC1 ppm NO3-N	Sample ID #	Lab #
0.09	0.13	33.2 38.7	1.0	0.0	1.2	3.7 2.3 0.9 0.4	3.7	.8 0.7	8.2	26.	Coarse Reject Spiral Reject	4 4
B Se	1 AB	Sall Sat	SAR	0 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1	Sat	meq/l in sat.ext Ca Mg Na K	1 1	sat.ext. te Cond. mmhos/cm	paste pH	% H20 as rec.	Sample ID #	Lab #
									1			

22.7 2.5 0.074 0.004 S 6 7 06 0.8 4822 Spiral Reject * tons of CaCO3/1000 tons of material

APPENDIX B-5 MINEROLOGY ANALYSIS

Note:

These values should be used only as a guide in comparing the composition of the samples. The absolute values may vary 10-15% in some cases.

Interstratified Sample No. Smectite & Illite Smectite Vermiculite Chlorite Illite Kaolinite 18 27 3 10 R3929 38 40 Ę Ŷ 0 R3953 0 Ą 4 30 0 1 61 R3963 6 10 R3976 75 0 6 10 35 12 10 R4014 13 37 37 2 13 - 6 R4021 44 10 26 R5332 10 26 10 10 50 R5333 7 4 2 R5342 R6546

D. Boone Clay Mineralogy Results Roger Hopper

8/11/89

Very High	>65%
High	40% - 65%
Moderate	15% - 40%
Low	5% - 15%
Trace	(5%

Interstratified Chlorite Illite Saectite Vermiculite Sample No. Smertite & Illite High Trace Moderate Trace LOK Hoderate R3929 High . Trace R3953 Low Lo⊭ Moderate Trace High Trace Moderate R3943 Trace Trace Lo. Low Low R3976 Very High Trace Moderate Low Moderate Law R4014 Low Low Trace Hoderate Moderate Trace LOW Low R4021 High Trace Moderate Lox LOW Low R5332 LOM Moderate Trace High LD⊭ R5333 Trace Trace Trace R5342 Very High Lo⊭ High Trace LOK Moderate

APPENDIX B-6 EXCHANGEABLE SODIUM PERCENT

CSU Soil Testing Lab Room 6, Voc. Ed. Bldg. Fort Collins, CO 80523 303-491-5061 Date: Billing:

Research Soil Analysis

Exch. CEC

Lab #	Sample ID #	na meq/100g	meq/100g	ESP	
R 3929)	7.5	15.4	48.8	
3953	3	7.3	13.0	55.9	
3963	3	3.9	11.6	34.0	
3976	3	10.1	27.8	36.3	
4014	ļ	5.3	12.2	43.4	
4021		3.2	13.8	23.2	
5332	2	9.8	17.3	56.8	
5333		15.7	21.2	74.1	
5342		25.7	33.3	77.2	
6546	3	3.3	12.3	26.6	

APPENDIX C LABORATORY QA/QC

APPENDIX C-1 IML LABORATORY DATA

3

Inter-Mountain Laboratories, Inc.

Sheridan, Wyoming 82801

Tel. (307) 672-8945

1633 Terra Avenue

EMS FT. COLLINS, COLORADO

.

Page 1 of 4

March 6, 1989

Texture	LOAMY SAND LOAMY SAND LOAMY SAND	SANDY LOAM SANDY LOAM LOAM LOAM	SANDY LOAM SILT LOAM SANDY LOAM	SANDY LOAM SANDY LOAM SANDY LOAM SANDY LOAM LOAMY SAND	SANDY LOAM SANDY LOAM LOAM LOAMY SAND LOAMY SAND
Clay %	6.0 2.5 2.5	6.2 9.8 15.3	7.1	10.7 11.6 8.0 7.1 6.0	2,3 6,2 5,3 1,6
 	17.0	17.8 18.7 46.0	19.6 51.5 30.5	25.1 24.0 19.5 22.2 11.8	5.5 20.4 19.4 16.7 16.8
Sand	77.0 80.5 85.1	76.0 71.5 38.7	73.3 30.5 56.0	64.2 64.4 72.5 70.7 82.2	92.2 71.6 74.4 78.0 81.6
SAR	20,4 33.0 1.94	27.7 22.0 27.8	3.95 27.2 35.4	45.4 40.8 3.08 3.35 2.06	14.0 6.03 4.07 3.63 21.4
Sodium * meq/l	14.1 21.9 2.64 7.06	17.6 17.3 15.5	10.3 16.0 23.6	26.3 23.6 3.16 4.42 3.73	7.54 5.01 4.14 5.95 12.5
Magnesium meq/l	0.24	0.17 0.37 0.15	5.32 0.23 0.23	0.21 0.25 0.33 0.57 2.58	0.16 0.28 0.38 1.02 0.16
Calcium meq/l	0.72 0.65 2.87	0.64 0.87 0.47	8.27 0.46 0.66	0.46 0.42 1.78 2.91 3.97	0.42 1.10 1.69 4.34 0.52
Satur- ation %	27.4 29.2 25.1	21.9 30.9 83.8	25.6 97.9 34.7	32.5 22.9 27.0 25.2 34.5	40,8 25,9 24,5 23.1 24,6
EC mmhos/cm @ 25°C	1.20	1.24	1,94 1,19 1,68	1.88 1.55 0.48 0.74 0.99	0.69 0.64 0.58 1.04 0.94
T. C.	8 8 8 7 7 7 7 9 8 9 8 9 7 9 9 9 9 9 9 9	တော် ထာ ထာ ကြောက္တေ	7.7 8.8 9.6	8.6 7.7 1.6	7.8 7.8 7.5 8.2 8.2
Depths					
Location	R3939 R3953 R3958 R3960	R3964 R3973 R3976	R3982 R3975 R3928	R3932 R3954 R3955 R4059	R4061 R3956 R3957 R3959 R3962
tab No.	28446 28446 28446	28448 28449 28450	28451 28452 28453	28455 28455 28456 28457 28458	28459 28461 28461 28462 28463

Miscellameous Abbreviations: SAR= Sodium Adsorption Ratio, CEC= Cation Exchange Capacity, ESP= Exchangeable Sodium Percentage, Exch= Exchangeable, Available

Inter Mountain Laboratories, Inc.

Sheridan, Wyoming 82801

Tel. (307) 672-8945

1633 Terra Avenue

EMS FI. COLLINS, COLORADO Page 2 of 4

March 6, 1989

9446 R3939 0.21 6.56 12.1 5.49 4.43 0.66 9445 R3953 0.20 6.25 54.3 48.0 4.75 0.37 9446 R3958 0.08 2.50 57.8 55.3 4.31 0.13 9447 R3956 0.07 2.81 29.5 26.7 5.00 0.28 9448 R3964 0.09 2.81 29.5 26.7 5.00 0.28 9449 R3964 0.09 2.81 20.5 26.7 5.00 0.28 9449 R3975 0.07 2.81 21.9 14.43 0.17 9451 R3975 0.09 2.81 26.3 5.63 0.17 9454 R3975 0.09 2.81 31.0 28.5 6.39 0.25 9455 R3955 0.09 2.81 14.0 11.1 5.88 0.23 9458 R4059 0.09 2.81 14.0	Lab No.	Location	Depths	Total Sulfur %	1,S, A8 t/1000t	Neut. Pot. t/1000t	T.S. ABP t/1000t	Nitrate- Nitrogen ppm	Soron	Selenium ppm	
0.20 6.25 54.3 48.0 4.75 0.08 2.50 57.8 55.3 4.31 0.09 2.81 29.5 26.7 5.00 0.09 2.81 21.9 19.1 4.87 0.07 2.19 28.1 25.9 4.87 0.09 2.81 38.7 35.9 6.64 0.11 3.44 23.5 20.1 5.19 0.09 2.81 38.7 35.9 6.64 0.11 3.44 23.5 20.1 5.19 0.09 2.81 14.0 11.1 5.88 0.09 2.81 14.0 11.1 5.88 0.09 2.81 14.0 11.1 5.88 0.09 2.81 14.0 17.5 7.16 0.07 2.19 17.5 7.16 0.09 2.81 45.1 42.3 6.67 0.09 2.81 45.1 42.3 6.67 0.09 2.81 45.1 42.3 5.33	8444	R3939		0.21	6.56	12.1	5.49	4.43	0.66	0.08	
R3958 0.08 2.50 57.8 55.3 4.31 R3960 0.17 5.31 5.61 0.30 8.47 R3964 0.09 2.81 29.5 26.7 5.00 R3973 0.09 2.81 21.9 19.1 4.43 R3975 0.07 2.19 28.1 25.9 4.87 R3975 0.09 2.81 38.7 35.9 6.64 R3975 0.09 2.81 38.7 35.9 6.64 R3975 0.09 2.81 38.7 35.9 6.64 R3976 0.09 2.81 14.0 11.1 5.88 R3937 0.08 2.50 31.0 28.5 6.39 R3954 0.09 2.81 14.0 11.1 5.88 R4059 0.00 2.81 41.6 39.1 5.69 R4061 0.07 2.19 19.2 17.5 6.67 R3955 0.09 2.81 45.1 42.3 6.67 R3957 0.09 2.81	8445	R3953		0.20	6.25	54.3	48.0	4.75	0,37	0,09	
R3960 0.17 5.31 5.61 0.30 8.47 R3964 0.09 2.81 29.5 26.7 5.00 R3973 0.09 2.81 21.9 19.1 4.43 R3975 0.07 2.19 28.1 25.9 4.87 R3975 0.09 2.81 38.7 35.9 6.64 R3978 0.08 2.50 31.0 28.5 6.39 R3954 0.09 2.81 14.0 11.1 5.88 R4059 0.09 2.81 14.0 11.1 5.88 R4059 0.10 3.12 88.5 85.4 7.90 R4051 0.07 2.19 17.5 7.16 R3955 0.08 2.50 41.6 39.1 5.93 R3959 0.07 2.19 45.1	8446	R3958		0.08	2,50	57.8	55,3	4.31	0,13	0,05	
R3964 0.09 2.81 29.5 26.7 5.00 R3973 0.09 2.81 21.9 19.1 4.43 R3976 0.07 2.19 28.1 25.9 4.87 R3975 0.07 2.19 28.1 25.9 4.87 R3975 0.09 2.81 38.7 35.9 6.64 R3978 0.09 2.81 38.7 35.9 6.64 R3932 0.08 2.50 31.0 28.5 6.39 R3935 0.08 2.50 101. 98.6 6.70 R3955 0.09 2.81 14.0 11.1 5.88 R4059 0.09 2.81 14.0 11.1 5.88 R4051 0.09 2.50 30.3 27.8 7.21 R4051 0.07 2.19 19.2 17.0 6.97 R3956 0.07 2.19 19.2 17.0 6.97 R3959 0.09 2.81 45.1 45.3 6.67 R3959 0.07 2.91	18447	R3960		0.17	5,31	5,61	0.30	8.47	0.30	0,11	
R3973 0.09 2.81 21.9 19.1 4.43 R3976 0.07 2.19 28.1 25.9 4.87 R3982 0.12 3.75 70.1 66.3 5.63 R3975 0.09 2.81 38.7 35.9 6.64 R3978 0.09 2.81 38.7 35.9 6.64 R3978 0.08 2.50 31.0 28.5 6.39 R3935 0.08 2.50 31.0 28.5 6.39 R3954 0.09 2.81 14.0 11.1 5.88 R4059 0.09 2.81 14.0 11.1 5.88 R4059 0.09 2.81 14.0 11.1 5.88 R4061 0.07 2.19 19.2 17.5 7.16 R3956 0.07 2.19 19.2 17.0 6.97 R3957 0.09 2.81 45.1 42.3 6.67 R3959 0.07 2.31 59.5 54.2 5.33 R3957 0.17 5.31	8448	R3964		0.09	2.81	29.5	26.7	5.00	0.28	<0.02	
R3976 0.07 2.19 28.1 25.9 4.87 R3982 0.12 3.75 70.1 66.3 5.63 R3982 0.09 2.81 38.7 35.9 6.64 R3928 0.011 3.44 23.5 20.1 5.19 R3932 0.08 2.50 31.0 28.5 6.39 R3935 0.09 2.50 101. 98.6 6.70 R3954 0.09 2.81 14.0 11.1 5.88 R3955 0.09 2.81 14.0 11.1 5.88 R4059 0.10 3.12 88.5 85.4 7.21 R4051 0.24 7.50 25.0 17.5 7.16 R3956 0.07 2.19 19.2 17.0 6.97 R3957 0.08 2.50 41.6 39.1 5.69 R3959 0.07 2.81 45.1 42.3 6.67 R3962 0.17 5.31 59.5 5.33 53.3 53.5 53.3	28449	R3973		0,09	2,81	21.9	19.1	4.43	0.39	0.08	
R3982 0.12 3.75 70.1 66.3 5.63 R3975 0.09 2.81 38.7 35.9 6.64 R3975 0.09 2.81 38.7 35.9 6.64 R3928 0.11 3.44 23.5 20.1 5.19 R3932 0.08 2.50 31.0 28.5 6.39 R3954 0.09 2.81 14.0 11.1 5.88 R3955 0.09 2.81 14.0 11.1 5.88 R4059 0.10 3.12 88.5 85.4 7.90 R4059 0.10 3.12 88.5 85.4 7.90 R4061 0.24 7.50 25.0 17.5 7.16 R3956 0.07 2.19 41.6 39.1 5.69 R3959 0.09 2.81 45.1 42.3 6.67 R3962 0.17 5.31 59.5 54.2 5.33	28450	R3976		0.07	2,19	28.1	25.9	4,87	0.17	0.08	
R3975 0.09 2.81 38.7 35.9 6.64 R3928 0.11 3.44 23.5 20.1 5.19 R3932 0.08 2.50 31.0 28.5 6.39 R3935 0.08 2.50 101. 98.6 6.70 R3954 0.09 2.81 14.0 11.1 5.88 R3955 0.08 2.50 30.3 27.8 7.21 R4059 0.10 3.12 88.5 85.4 7.90 R4061 0.24 7.50 25.0 17.5 7.16 R3956 0.07 2.19 19.2 17.0 6.97 R3957 0.08 2.50 41.6 39.1 5.69 R3959 0.09 2.81 45.1 42.3 6.67 R3959 0.17 5.31 59.5 54.2 5.33	8451	R3982		0.12	3,75	70.1	66,3	5,63	0.12	0.07	
R3928 0.11 3.44 23.5 20.1 5.19 R3932 0.08 2.50 31.0 28.5 6.39 R3935 0.08 2.50 101. 98.6 6.70 R3954 0.09 2.81 14.0 11.1 5.88 R3955 0.08 2.50 30.3 27.8 7.21 R4059 0.10 3.12 88.5 85.4 7.90 R4061 0.24 7.50 25.0 17.5 7.16 R3956 0.07 2.19 19.2 17.0 6.97 R3957 0.08 2.50 41.6 39.1 5.69 R3959 0.09 2.81 45.1 42.3 6.67 R3962 0.17 5.31 59.5 54.2 5.33	8452	R3975		0.03	2.81	38.7	35,9	6.64	0.18	0.08	
R3932 0.08 2.50 31.0 28.5 6.39 R3935 0.08 2.50 101. 98.6 6.70 R3954 0.09 2.81 14.0 11.1 5.88 R3955 0.08 2.50 30.3 27.8 7.21 R4059 0.10 3.12 88.5 85.4 7.90 R4061 0.24 7.50 25.0 17.5 7.16 R3956 0.07 2.19 19.2 17.0 6.97 R3957 0.08 2.50 41.6 39.1 5.69 R3959 0.09 2.81 45.1 42.3 6.67 R3962 0.17 5.31 59.5 54.2 5.93	28453	R3928		0.11	3.44	23.5	20.1	5.19	0.28	0,13	
R3935 0.08 2.50 101. 98.6 6.70 R3954 0.09 2.81 14.0 11.1 5.88 R3955 0.08 2.50 30.3 27.8 7.21 R4059 0.10 3.12 88.5 85.4 7.90 R4061 0.24 7.50 25.0 17.5 7.16 R3956 0.07 2.19 19.2 17.0 6.97 R3957 0.08 2.50 41.6 39.1 5.69 R3959 0.09 2.81 45.1 42.3 6.67 R3962 0.17 5.31 59.5 54.2 5.93	8454	R3932		0,08	2.50	31.0	28.5	6.39	0.25	0.09	
R3954 0.09 2.81 14.0 11.1 5.88 R3955 0.08 2.50 30.3 27.8 7.21 R4059 0.10 3.12 88.5 85.4 7.90 R4061 0.24 7.50 25.0 17.5 7.16 R3956 0.07 2.19 19.2 17.0 6.97 R3957 0.08 2.50 41.6 39.1 5.69 R3959 0.09 2.81 45.1 42.3 6.67 R3962 0.17 5.31 59.5 54.2 5.93	8455	R3935		0.08	2,50	101.	98.6	6,70	0.26	0.05	
R3955 0.08 2.50 30.3 27.8 7.21 R4059 0.10 3.12 88.5 85.4 7.90 R4061 0.24 7.50 25.0 17.5 7.16 R3956 0.07 2.19 19.2 17.0 6.97 R3957 0.08 2.50 41.6 39.1 5.69 R3959 0.09 2.81 45.1 42.3 6.67 R3962 0.17 5.31 59.5 54.2 5.93	8456	R3954		0.03	2,81	14.0	11.1	5.88	0.23	0.08	
R4059 0.10 3.12 88.5 85.4 7.90 R4061 0.24 7.50 25.0 17.5 7.16 R3956 0.07 2.19 19.2 17.0 6.97 R3957 0.08 2.50 41.6 39.1 5.69 R3959 0.09 2.81 45.1 42.3 6.67 R3962 0.17 5.31 59.5 54.2 5.93	28457	R3955		0.08	2,50	30,3	27.8	7.21	0.22	90.0	
R4061 0.24 7.50 25.0 17.5 7.16 R3956 0.07 2.19 19.2 17.0 6.97 R3957 0.08 2.50 41.6 39.1 5.69 R3959 0.09 2.81 45.1 42.3 6.67 R3962 0.17 5.31 59.5 54.2 5.93	28458	R4059		0,10	3,12	88.5	85.4	7.90	0.18	0.03	
R3956 0.07 2.19 19.2 17.0 6.97 R3957 0.08 2.50 41.6 39.1 5.69 R3959 0.09 2.81 45.1 42.3 6.67 R3962 0.17 5.31 59.5 54.2 5.93	28459	R4061		0.24	7.50	25.0	17.5	7.16	0.25	0.04	
R3957 0.08 2.50 41.6 39.1 5.69 R3959 0.09 2.81 45.1 42.3 6.67 R3962 0.17 5.31 59.5 54.2 5.93	8460	R3956		0.07	2,19	19.2	17.0	6.97	0.23	0.04	
R3959 0.09 2.81 45.1 42.3 6.67 R3962 0.17 5.31 59.5 54.2 5.93	28461	R3957		0.08	2.50	41.6	39.1	5.69	0.20	0.04	
R3962 0.17 5.31 59.5 54.2 5.93	3462	R3959		0.09	2.81	45.1	42.3	6.67	0.18	0.05	
	28463	R3962		0.17	5.31	59.5	54.2	5.93	0.23	0.06	

Abbreviations used in acid base accounting: I.S.= Total Sulfur, AB= Acid Base, ABP= Acid Base Potential, PyrS= Pyritic Sulfur, Pyr+Org= Pyritic Sulfur + Organic Sulfur, Neut. Pot. = Neutralization Potential

3

Inter-Mountain Laboratories, Inc.

Sheridan, Wyoming 82801

Tel. (307) 672-8945

1633 Terra Avenue

EMS FT. COLLINS, COLORADO

Page 1 of 2

March 6, 1989

Texture	SANDY LOAM SANDY LOAM	LOAMY SAND LOAMY SAND
Clay %	8.0	້ນ ຮ. ວັນ ຮ.
÷ %°	19.5	16.7 18.3
Sand	72.5	78.0 76.4
SAR	3.08	3.63 3.76
Sodium meq/l	3.16	5.95
Magnesium meq/l	0.33	1.02 0.94
Calcium meq/l	1.78	4.34
Satur- ation %	27.0 27.6	23.1
EC mmhos/cm 0 25°C	0,48	1.04
Ħ	7.7	7.5
Depths		
Location	R3954 28456(DUP)	R3959 28462(DUP)
Lab No.	28456 28467	28462 28468

Inter-Mountain Laboratories, Inc. Sheridan, Wyoming 82801

Tel. (307) 672-8945

1633 Terra Avenue

Page 2 of 2

EMS FT, COLLINS, COLORADO

March 6, 1989

<u>7</u> 3	Total 1.S. Sulfur AB	က် ဆ	Neut. Pot.	T.S. ABP	Nitrate- Nitrogen	8aron pp™	Selenium ppm
		00t	t/1000t	t/1000t	ppm		
	0.09 2.8	81	14.0	11,1	5.88	0.23	
		23	13.7	11.2	6,99	0,25	
	0.09 2.81	81	45.1	42.3	6.67	0.18	
		,	0 7		CC	,,,	n ns

Abbreviations used in acid base accounting: T.S.= Total Sulfur, AB= Acid Base, ABP= Acid Base Potential, PyrS= Pyritic Sulfur, Pyr+Org= Pyritic Sulfur + Organic Sulfur, Neut. Pot.= Neutralization Potential

COLORADO STATE UNIVERSITY

Sample Site: Lab No: Date Sampled: Date Received:	Wishbone Hills Proc Thickener Overflow 897591 02/15/89	cess Water (cla Test #2	arified) from	1
Lab Conductivi Total Dissolved Total Dissolved Boron, mg/l Fluoride, mg/l Ammonia Nitroge Total Kjeldahl Ortho Phosphore Total Organic I Total Phosphore Total Alkalinic Total Acidity a Total Hardness Sodium Adsorpt Color, c.u Total Suspended	ty, umhos/cm @ 25C d Solids (180), mg/l. d Solids (calc), mg/l. en as N, mg/l nitrogen, mg/l phosphorus as P, mg/l ty as CaCO3, mg/l as CaCO3, mg/l as CaCO3, mg/l as CaCO3, mg/l dion Ratio di Solids, mg/l	33	30 44 43 26 30 46 01 96 05 24 33 39 31	
Bicarbonate Carbonate as Chloride Nitrate as I Nitrite as I Sulfate Calcium Magnesium Potassium	as HCO3	mg/l meg/ 151 2.4 0 0.0 3.2 0.0 0.05 <0.0 64 1.3 49 2.4 15 1.2 2.0 0.0 6.0 0.2	71 48 00 09 01 01 33 44 22	
Major Cations.	ifference	3.9		
Aluminum	<pre><</pre> <0.005 <pre><0.5 </pre> <pre><</pre> <pre><0.002 </pre> <pre><0.02</pre>	Iron Lead Manganese Mercury Selenium Zinc		<0.05 <0.02 <0.02 <0.001 <0.005 <0.01

COLORADO STATE UNIVERSITY

QUALITY ASSURANCE

ATOMIC ABSORPTION TRACE METAL ANALYSIS

Identification: EPA QC WS378-5,12,18, WP287-1

(Analyzed concurrently with Wishbone Hills samples)

Analyzed: February 16 - February 24, 1989

Parameter	Result		95% Confidence Interval
Arsenic, ug/l	56.0	51.0	41.6-58.7
Cadmium, ug/l		7.4	5.3-8.8
Lead, ug/1	36.0	34.0	27.6-39.8
Mercury, ug/1	3.1	3.0	2.16-3.85
Selenium, ug/l	23.0	25.0	17.4-28.3

ICAP TRACE METAL ANALYSIS

Identification: EPA QC WP1083 ICAP-19, ICAP-7

(Analyzed concurrently with Wishbone Hills samples)

Analyzed: February 17, 1989

Parameter	Result	True Value	% Recovery
Aluminum, ug/l	101	97.0	104 1
Barium, ug/l	101	97.0	104.1
Chromium, ug/1	100	103	97.1
Copper, ug/l	99.5	103	96.6
Iron, ug/l	98.5	102	96.6
Manganese, ug/l	98.0	102	96.1
Zinc, ug/l	97.1	101	96.1

NUTRIENT ANALYSIS

Identification: EPA QC WP284, WP486, WS378

(Analyzed concurrently with Wishbone Hills samples)

Analyzed: February 16 - 22, 1989

Parameter	Result	True Value	95% Confidence Interval
Ammonia as N, mg/l	2.09	2.00	1.78 - 2.18
Nitrate as N, mg/l	0.09	0.10	0.06 - 0.16
Total Kjeldahl as N, mg/l	0.54	0.50	0.31 - 0.70
Orthophosphate as P, mg/l	0.497	0.50	0.46 - 0.54

APPENDIX C-2

INTERLABORATORY SPLIT SAMPLE ANALYSES CORRELATION COEFFICIENTS

	Simple	Regression X ₁ : CSU-P	H Y1: IML-PH	
Count:	R:	R-squared:	Adj. R-squared:	RMS Residual:
20	,916	.838	.829	.236
Source	DF:	Analysis of Variance Sum Squares:	Table Mean Square:	F-test:
REGRESSION	1	5.205	5.205	93.241
DEGIDITAL	18	1 005	056	p = .0001

No Residual Statistics Computed

6.21

19

TOTAL

Simple Regression X₁: CSU-PH Y₁: IML-PH

Beta Coefficient Table

Variable:	Coefficient:	Std. Err.:	Std. Coeff.:	t-Value:	Probability:
INTERCEPT	-1.795				
SLOPE	1.183	.123	.916	9.656	.0001

Variable:	95% Lower:	95% Upper:	90% Lower:	90% Upper:
MEAN (X,Y)	8.044	8.266	8.063	8.247
SLOPE	.926	1.441	.971	1.396

Simple Regression X₁: CSU-EC Y₁: IML-EC

Count:	R:	R-squared:	Adj. R-squared:	RMS Residual:
20	.839	.704	.687	.251

Analysis of Variance Table

Source	DF:	Sum Squares:	Mean Square:	F-test:
REGRESSION	1	2.684	2.684	42.729
RESIDUAL	18	1.131	.063	p = .0001
TOTAL	19	3.815		

No Residual Statistics Computed

Simple Regression X₁: CSU-EC Y₁: IML-EC

Beta Coefficient Table

Variable:	Coefficient:	Std. Err.:	Std. Coeff.:	t-Value:	Probability:
INTERCEPT	.214				
SLOPE	.75	.115	.839	6.537	.0001

Variable:	95% Lower:	95% Upper:	90% Lower:	90% Upper:
MEAN (X,Y)	1	1.236	1.021	1.215
SLOPE	.509	.991	.551	.949

	Simple F	Regression X ₁ : CSU-SA	T Y1: IML-SAT	
Count:	R:	R-squared:	Adj. R-squared:	RMS Residual:
20	.978	.956	.954	4.3
Source	DF:	Sum Squares:	Mean Square:	F-test:
REGRESSION	1	7295.469	7295.469	394.481
RESIDUAL	18	332.889	18.494	p = .0001
i				

No Residual Statistics Computed

Simple	Regression X-	: CSU-SAT	Y ₁ : IML-SAT
--------	---------------	-----------	--------------------------

Beta Coefficient Table

Variable:	Coefficient:	Std. Err.:	Std. Coeff.:	t-Value:	Probability:
INTERCEPT	-8.6				
SLOPE	1.13	.057	.978	19.862	.0001

variable:	95% Lower:	95% Upper:	90% Lower:	90% Upper:
MEAN (X,Y)	32.27	36.31	32.622	35.958
SLOPE	1.01	1.25	1.031	1.229

	Simple	Regression X ₁ : CSU-C	a Y ₁ : IML-Ca	
Count:	R:	R-squared:	Adj. R-squared:	RMS Residual:
20	.978	.956	.953	.424
		A 1 4 M 1	T-61-	
Source	DF:	Analysis of Variance Sum Squares:	Table Mean Square:	F-test:
Source REGRESSION	DF:			F-test: 386.608

No Residual Statistics Computed

72.66

TOTAL

19

Simple Regression X₁: CSU-Ca Y₁: IML-Ca

Beta Coefficient Table

Variable:	Coefficient:	Std. Err.:	Std. Coeff.:	t-Value:	Probability:
INTERCEPT	.324				
SLOPE	1.174	.06	.978	19.662	.0001

<u>Variable:</u>	95% Lower:	95% Upper:	90% Lower:	90% Upper:
MEAN (X,Y)	1.552	1.951	1.587	1.916
SLOPE	1.048	1.299	1.07	1.277

	Simple	Regression X ₁ : CSU-Mo	g Y₁:IML-Mg	
Count:	R:	R-squared:	Adj. R-squared:	RMS Residual:
20	.994	.989	.988	.132

Source	DF:	Sum Squares:	Mean Square:	F-test:
REGRESSION	1	27.816	27.816	1587.377
RESIDUAL	18	.315	.018	p = .0001
TOTAL	19	28.132		

Simple Regression X₁: CSU-Mg Y₁: IML-Mg

Beta Coefficient Table

Variable:	Coefficient:	Std. Err.:	Std. Coeff.:	t-Value:	Probability:
INTERCEPT	.071				
SLOPE	1.096	.028	.994	39.842	.0001

Variable:	95% Lower:	95% Upper:	90% Lower:	90% Upper:	
MEAN (X,Y)	.642	.766	.653	.755	\neg
SLOPE	1.039	1.154	1.049	1.144	\neg

Simple	Regression 2	1: CSU-Na	Y ₁ : IML-Na
--------	--------------	-----------	-------------------------

Count:	R:		Adj. R-squared:	RMS Residual:
20	.911	.829	.82	3.304

Analysis of Variance Table

Source	DF:	Sum Squares:	Mean Square:	F-test:
REGRESSION	1	953.246	953.246	87.325
RESIDUAL	18	196.49	10.916	p = .0001
TOTAL	19	1149.736		

No Residual Statistics Computed

Simple Regression X₁: CSU-Na Y₁: IML-Na

Beta Coefficient Table

Variable:	Coefficient:	Std. Err.:	Std. Coeff.:	t-Value:	Probability:
INTERCEPT	.028				
SLOPE	1.143	.122	.911	9.345	.0001

Variable:	95% Lower:	95% Upper:	90% Lower:	90% Upper:
MEAN (X,Y)	10.565	13.67	10.836	13.399
SLOPE	.886	1.4	.931	1.355

Simple Regression X ₁ : CSU-SAR Y ₁ : IML-SAR					
Count:	R:	R-squared:	Adj. R-squared:	RMS Residual:	
20	.801	.642	.622	8.847	
Source	DF:	Sum Squares:	Mean Square:	F-test:	
REGRESSION	1	2525.513	2525.513	32.27	
1.201.200.014					
RESIDUAL	18	1408.706	78.261	p = .0001	

Simple Regression X ₁ : CSU-SAR Y ₁ : IML-SAR					
	Beta C	oefficient Table			
oefficient:	Std. Err.:	Std. Coeff.:	t-Value:	Probability:	
555					

Variable:	Coefficient:	Std. Err.:	Std. Coeff.:	t-Value:	Probability:
INTERCEPT	5.553				
SLOPE	.392	.069	.801	5.681	.0001

Variable:	95% Lower:	95% Upper:	90% Lower:	90% Upper:	
MEAN (X,Y)	13.342	21.655	14.068	20.929	
SLOPE	.247	.537	.272	.511	\neg

Simple Regression X1: CSU-SAND Y1: IML-SAND							
Count:	R:	R-squared:	Adj. R-squared:	RMS Residual:			
20	.505	.255	.214	13.203			

Source	DF:	Sum Squares:	Mean Square:	F-test:
REGRESSION	1	1076.712	1076.712	6.177
RESIDUAL	18	3137.797	174.322	p = .023
TOTAL	19	4214.51		

Simple Regression X₁: CSU-SAND Y₁: IML-SAND

Beta Coefficient Table

Variable:	Coefficient:	Std. Err.:	Std. Coeff.:	t-Value:	Probability:
INTERCEPT	50.024				
SLOPE	.462	.186	.505	2.485	.023

Variable:	95% Lower:	95% Upper:	90% Lower:	90% Upper:	
MEAN (X,Y)	64.892	77.298	65.975	76.215	\neg
SLOPE	.071	.853	.14	.785	\neg

Simple Regression X1: CSU-SILT Y1: IML-SILT

Count:	R:	R-squared:	Adj. R-squared:	RMS Residual:
20	.549	.301	.262	9.279

Analysis of Variance Table

Source	DF:	Sum Squares:	Mean Square:	F-test:
REGRESSION	1	667.958	667.958	7.758
RESIDUAL	18	1549.792	86.1	p = .0122
TOTAL	19	2217.75		

No Residual Statistics Computed

Note: 1 case deleted with missing values.

Simple Regression X₁: CSU-SILT Y₁: IML-SILT

Beta Coefficient Table

Variable:	Coefficient:	Std. Err.:	Std. Coeff.:	t-Value:	Probability:
INTERCEPT	11.797				
SLOPE	.471	.169	.549	2.785	.0122

Variable:	95% Lower:	95% Upper:	90% Lower:	90% Upper:	
MEAN (X,Y)	16.89	25.61	17.652	24.848	
SLOPE	.116	.827	.178	.765	

Simple Regression X₁: CSU-CLAY Y₁: IML-CLAY

Count:	R:	R-squared:	Adj. R-squared:	RMS Residual:
20	.183	.033	02	4.427

Analysis of Variance Table

Source	DF:	Sum Squares:	Mean Square:	F-test:
REGRESSION	1	12.165	12.165	.621
RESIDUAL	18	352.784	19.599	p = .441
TOTAL	19	364.949		

No Residual Statistics Computed

Simple Regression X₁: CSU-CLAY Y₁: IML-CLAY

Beta Coefficient Table

Variable:	Coefficient:	Std. Err.:	Std. Coeff.:	t-Value:	Probability:
INTERCEPT	4.704				
SLOPE	.086	.109	.183	.788	.441

Variable:	95% Lower:	95% Upper:	90% Lower:	90% Upper:	
MEAN (X,Y)	5.575	9.735	5.938	9.372	\neg
SLOPE	143	.315	103	.275	٦

	Simple Regre	ession X ₁ : CSU-TOTAL	S Y1: IML-TOTAL	S
Count:	R:	R-squared:	Adj. R-squared:	RMS Residual:
20	.907	.823	.813	.023
Source	DF:	Analysis of Variance Sum Squares:	Table Mean Square:	F-test:
REGRESSION	1	.042	.042	83.451
RESIDUAL	18	.009	.001	p = .0001
TOTAL	19	.051		

Simple Regression X₁: CSU-TOTAL S Y₁: IML-TOTAL S

Beta Coefficient Table

Variable:	Coefficient:	Std. Err.:	Std. Coeff.:	t-Value:	Probability:
INTERCEPT	.075				
SLOPE	.755	.083	.907	9.135	.0001

Variable:	95% Lower:	95% Upper:	90% Lower:	90% Upper:
MEAN (X,Y)	.105	.126	.107	.124
SLOPE	.582	.929	.612	.899

Simple Regression X₁: CSU-CaC03 Y₁: IML-CaCO3

Count:	R:	R-squared:	Adj. R-squared:	RMS Residual:
20	.709	.502	.474	1.84

Analysis of Variance Table

Source	DF:	Sum Squares:	Mean Square:	F-test:
REGRESSION	1	61.402	61.402	18.143
RESIDUAL	18	60.919	3.384	p = .0005
TOTAL	19	122.321		

No Residual Statistics Computed

Note: 1 case deleted with missing values.

Simple Regression X₁: CSU-CaC03 Y₁: IML-CaCO3

Beta Coefficient Table

Variable:	Coefficient:	Std. Err.;	Std. Coeff.:	t-Value:	Probability:
INTERCEPT	2.664				
SLOPE	.478	.112	.709	4.259	.0005

Variable:	95% Lower:	95% Upper:	90% Lower:	90% Upper:	
MEAN (X,Y)	3.12	4.848	3.271	4.697	
SLOPE	.242	.713	.283	.672	

Simple Regression X ₁ : CSU-ABP Y ₁ : IML-ABP						
Count:	R:	R-squared:	Adj. R-squared:	RMS Residual:		
20	.721	.519	.493	18.309		
Source	₽Ŀ	Analysis of Variand		- A A-		

Source	DF:	Sum Squares:	Mean Square:	F-test:
REGRESSION	1	6518.577	6518.577	19.447
RESIDUAL	18	6033.64	335.202	p = .0003
TOTAL	19	12552.217		

Simple Regression X₁: CSU-ABP Y₁: IML-ABP

Beta Coefficient Table

Variable:	Coefficient:	Std. Err.:	Std. Coeff.;	t-Value:	Probability:
INTERCEPT	23.602				
SLOPE	.484	.11	.721	4.41	.0003

Variable:	95% Lower:	95% Upper:	90% Lower:	90% Upper:
MEAN (X,Y)	27.628	44.831	29.13	43.329
SLOPE	.253	.714	.294	.674

Count:	R:	R-squared:	Adj. R-squared:	RMS Residual:
20	.498	.248	.206	1.072
REGRESSION	1	6.822	6.822	5.94
Source	DF:	Analysis of Variance Sum Squares:	Mean Square:	F-test:
RESIDUAL	18	20.672	1.148	p = .0254
	19	27.493		, , , , , , , , , , , , , , , , , , ,

Simple Regression X ₁ : CSU-NITRATE, NITROGEN Y	1: IML-NITRATE, NITROGEN
--	--------------------------

Beta Coefficient Table

No Residual Statistics Computed

Variable:	Coefficient:	Std. Err.:	Std. Coeff.:	t-Value:	Probability:
INTERCEPT	5.711				
SLOPE	.605	.248	.498	2.437	.0254

Variable:	95% Lower:	95% Upper:	90% Lower:	90% Upper:
MEAN (X,Y)	5.508	6.514	5.595	6.427
SLOPE	.083	1.127	.175	1.036

Count:	R:	R-squared:	Adj. R-squared:	RMS Residual:
20	.195	.038	016	.119
REGRESSION	1	.01	.01	.71
RESIDUAL	18	.253	.014	p = .4106
	19	.263		

Simple	Regression	X ₁ : CSU-BORON	Y1: IML-BORON

Beta Coefficient Table

Variable:	Coefficient:	Std. Err.:	Std. Coeff.:	t-Value:	Probability:
INTERCEPT	.344				
SLOPE	309	.367	195	.842	.4106

Variable:	95% Lower:	95% Upper:	90% Lower:	90% Upper:
MEAN (X,Y)	.2	.311	.21	.301
SLOPE	-1.08	.462	945	.327

Simple Regression X ₁ : CSU-SELENIUM Y ₁ : IML-SELENIUM					
Count:	R:	R-squared:	Adj. R-squared:	RMS Residual:	
20	.596	.355	.319	.023	
Source	DF:	Analysis of Variance Sum Squares:	Table Mean Square:	F-test:	
REGRESSION	1	.005	.005	9.894	
RESIDUAL	18	.009	.001	p = .0056	
			,		

.014

TOTAL

19

Simple Regression X ₁ : CS	SU-SELENIUM	Y1: IML-SELENIUM

Beta Coefficient Table

Variable:	Coefficient:	Std. Err.:	Std. Coeff.:	t-Value:	Probability:
INTERCEPT	.045				
SLOPE	.212	.067	.596	3,145	.0056

Variable:	95% Lower:	95% Upper:	90% Lower:	90% Upper:
MEAN (X,Y)	.056	.077	.058	.075
SLOPE	.07	.354	.095	.329

APPENDIX C-3 INTERLABORATORY CORRELATION PLOTS

APPENDIX D STATISTICAL SUMMARIES

APPENDIX D-1 DRILL HOLE GEOCHEMICAL SUMMARY STATISTICS

	1	10 10 10 10 10 10 10 10 10 10 10 10 10 1		:	;	;	1		ם ב		7	· ·			otal			Ho1d-
	x	E.C. Ca Mg Na mmhos/cmmeq/l	ري دي	£ .	Mg Na meq/l	<u>ا</u> يد	SAR	Sat X	8	Se ppm	ന∈!	Snd	51£ (הוא בוא	ហ	504-5	CaC03	Base Pot.
PB-69A Minimum	ı mı	0.5	0.05	0.03	2.6	!	2.9		<0.01	<0.01			 1			<0.01	0.1	-10.22
Maxiaca Mean	ນຸດກຸ ບັດ	о C	0.61	2.0 3.0 3.0	წ. წ. ნ. წ.	0.81	27.9 2.9	187.6 46.9	0.46	0.31	2 G	დ 4 დ დ	<u>م ر</u> ش رت	 	0.36	0.013	ւր – Մ	57.06
S. Deviation	0.5	9.0	1.31	0.57	9.9	0.18	24.8		0.13	0.07					2	0.003		13.56
PB-80 Minimum	د. و	9	0.48	0.18	1.6	0.05	1,6	20.7			e e			•	Ξ	.00 .00	(T	ď
Moximum	ю. О	2.5	2.81	0.98	19.1	0.23	16.6	38.9			6				16	0.003	Ծ	44.16
Mean S. Deviation	a, co.	. o . s	1.37	0.20	a ru ru co	0.12		31.1 5.4	0.32	0.08	1.0	5 7 7	4 0	28 13 	0.03	0.003	6 2	18.16 12.36
PB-87 Minimum	8,4	4.0	0.20	0.08	3.7	0.03	e,	19.1	ក	<0.01				•	5		0.5	
Maximum	0 0	7	1.42	0.69	17.7	0.18	18.7	42.1	8	0.06					8		ហ	
Mean S. Deviation	 	0.5	0.34	0.16	10.6 4.8	0.03		28.9 7.9	0.28	0.02	0.0	69 18	27 	511	0.01	0.001	 	16, 10 15, 44
PB-85 Minimum	7.0	0.5	0.28	0.16	2.7	-	1.7	23.7	0.15		0,1			•	10	.0.001	0.2	-3.72
Maximum Total	ص ص د	۲. د د	 98 93	55.	30.4		31.9	52.5	0,50		4.6				8	0.003	12.8	128.03
nean S. Deviation	ວ ຕ	0.6	2.03	1.17	າ ທ	0.50	9.6 9.6	9.43 0.03	0.3	0.01		88	4 =	11 3	0.08	0.08	2.2	28.38
PB-74 Minimum	5.0	0.3	0.03	0.01		0.01	e,	4 E	0.0	Q, 01	0.4			•	į	9.001		69
Maxieum	10.0	1.7	1.38	0.82	37.9	0.31	107.0	158.8	0.40	0.31	6.1	88	· 장	14	0.12	0.019	18.50	185.10
Mean	9.0	ស	0.31	0.15		0.07	48.5	71.1	0.22	0.11	2.4				20	0,003		28.59
S. Deviation	7.0	0.8	0.29	0.16		0.06	33.6	43.5	0.12	0.09	1.6				69	0.004		34.98

DRILL HOLE pH E.C. Ca Mg Na K	Ŧ	-paste E.C. Ca Mg Na K mmhos/cmmeq/1	ا ا	Mg N	Z 1/b	~	585 E	Sat XX	B B	Se Mg	N KG N F F	Snd	21f C	Cly S	_	504-5 (CaC03	Acid- Base Pot.
ion	ထိတ်တိတ်	0.6 1.4 0.4	0.03 0.19 0.07	0.02 0.04 0.02	7.3 25.1 15.9	0.04 0.27 0.12 0.07	35.4 93.0 70.7	26.4 129.1 60.0 36.8	0.20 0.74 0.32 0.12	0.08 0.39 0.18	0.00 0.3 1.00	19 82 44 14	6 12 44 46 22 33 10 8	6000	10.49 9.00 0.00	005 002 002 002	0.6 17.3 2.1 3.1	-2.44 173.03 19.41 31.32
PB-60 Minimum Maximum Mean S. Deviation	7.8 8.8 0.3	0.400	0.24 2.51 1.63 0.75	0.17 0.82 0.45 0.22		0.26 1.42 0.58 0.35	ე. ლ. დ. დ. ლ. თ. დ.	22 22 24 26 26 27 36 36 36 36 36 36 36 36 36 36 36 36 36	0.13 0.25 0.08	0.04 0.34 0.09	0.4 1.6 6.0 4.1	34 13 13	8 18 15 34 11 34	0000	0 0 0 0 0 0 0 0	986 984 1986 1986	0.00 0.00 0.00 0.00 0.00	8.03 68.75 21.25 18.47
PB-105 Minimum Maximum Mean S. Deviation	7.9 9.1 0.3	3.2 0.6 0.6	0.05 0.60 0.23 0.16	0.03 0.63 0.20 0.19	11.0 26.4 18.8 4.2	0.13 3.66 0.72 0.98	33.5 6.9 9.6 9.6	20.4 39.1 5.4	0.19 0.85 0.36	60.01 0.19 0.06 0.05	0.00	27 78 53 14	6 15 42 47 15 32 9 10	0000	01 118 04 05 05 0.0	001 002 002 002	0.2 5.9 5.0	-3.47 186.78 31.29 50.15
PB-101 Minimum Maximum Mean S. Deviation	7.7 8.8 9.9 4.0	0.9 1.5 0.3	0.10 6.59 1.45	0.08 4.78 1.02 1.36	8.1 19.0 19.0	0.14 0.95 0.52 0.29	4.1 45.1 21.0 12.8	25 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.30 0.53 0.40	0.03 0.26 0.09	6.1. 4.6.4.	21 68 17	5 21 44 51 20 32 13 9	0000	01 < 0. 03 0. 02 0.	001 003 003	0.3 2.6 1.7	25.19 25.81 15.93 6.90
PB-84 Minimum Maximum Mean Mean S. Deviation	7.6 9.9 9.5 7.0	0.9 1.2 0.9	0.10 1.89 0.51 0.54	0.06 0.82 0.25 0.23	2.2 18.8 13.0 4.9	0.03 0.35 0.59	3.5 39.6 31.3	24.2 53.0 35.5 7.1	0.12 0.72 0.47	60.01 0.17 0.09 0.06	11.0 2.8 2.9	2 8 8 E E	2552 1352 2528	0000	01 40. 02 0. 02 0.	000 000 001 001	0.3 0.5 0.5	0.59 23.03 9.87 5.30

-	Hq	pH E.C.		Mg Na	E Z		H	SAR Sand	5ilt	Clay	Total S	504-5 CaCO	ll mı	Acid-Base Potential *
					11		***			;;; ;;; ;;;				
Minimum	9.1		0.10	<0.1	1.7	<0.1	2.9	10	Œ	4	() []	<0 00 C>	C	- 3U
Maximum	ກັ	O.0	1.20	1.10	48.7	0.30	69	78	, E	52	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	0.009	. E	181,03
Medical	ω. 4		0.44	0.30	15.3	0.33	27.7	4	2	90	0.02	0.00	1 E	56.40
S. Deviation	0.2		0.23	0.21	ហ	0.17	17.3	17	10	60	0.03	0.005	, c	31.83
PB-108														
Minimum	4.8		0.10	<0.1	υ, 0.	<0.1	e.	23	2	14	<ñ. D1	CD. DD1	7.0	7,06
Maximum	ທ ຫ	a.c	0.80	1.70	43.4	0.50	72.5	92	4	90	D. 455	0.005		150, 86
Mean	9.		0.25	0.33	14.4	0.17	31.6	25	21	27	0.04	0.001	(A)	30.44
S. Deviation	0 N		0.15	0.32	6.3	0.10	16.2	15	σv.	σ	0.08	0.001	(m)	33.67
PB-109														
Minimum	6.4		0.10	<0.1	0.2	<0.1	2.1	₽	0	0	<0.01	0.001	0.1	0.06
Maximum	8.7	1.7	5.60	4.50	19.6	5.60	49, 1	38	묾	38	0.04	0.003	0	98.03
Mean	ල ස්		0.48	0.30	6.4	0.35	14.7	ម្ចា	17	24	0.01	0.001	7.4	9.38
S. Deviation	0		0.85	0.73	4.6	0.86	11.9	18	œ	t yt	0.01	0.001	1.9	17.37
										*	* r		CaCO3/1000 tons	s material
	#						11							11

APPENDIX D-2 LITHOLOGIC GEOCHEMICAL SUMMARY STATISTICS

LITH CODE : GR

			aste							BH-NTPA-	TDA	2 ₹ KC.1	
Lab	Sample Lith	玉	С.	r C	Đ	ro Z	¥	SAR	Sat)	. %	N-EON	
#	#0I	 	mmhos/cm		meq/l.			1	א	dd		edd	-
1	يجهو بجهود دينظ هلمنان بمثقة مكتفة شعفة يجيف يجهود شغيفة منفطة شغطة يغفله مغلقة		; !		· · · · · · · · · · · · · · · · · · ·						Į.	4 24 41 41 41 41 41 44 44 44 44 44 44 44 44	}
R4028		8.1	4.0	1.27	0.59	1.6	0.10	1.6		0.18	<0.01	0.8	
R4041	20-30 GR	8.4	o.s	1.42	0.20	9.7	0.08	n,	20.5	0.35	<u>0.01</u>	9.0	
R4050		7.8	0.5	1.06	0.36	3,2	0.19	ω '-		0.19	6.01	1.0	
R4051		7.7	0.7	1.57	1.31	ω 4	0.58	2.8		0.20	6.01	1.0	
R4052		7.1	8.0	2.77	2,34		0.97	1.7		0,50	<0.01	2.0	
R4053		<u>د</u> س	0.6	1.35	1.17		0,71			0.34	<u><0.01</u>	m 	
R4054		•	1.0	1.48	1.69		0.81			0.39	6.01	 4	
R4072		7.7	e. 0	0.50	0.33		0.09	ຫ ໜ້		0.15	<0.01	4.0	
R4073		*	0.3	0.48	0.25		0.03			0.10	6. 01	0.4	
R4074		*	6.0	0.59	0.31		0.08			0.17	0.0	0.9	
R4075			0.3	0.67	0.38		0.06			0.11	<u>6</u> .01	2.5	
R4076			0.3	0.69	0.39		0.02			0.16	<0.01	2.2	
R4077			0.3	0.50	0.25		0.02			0.06	6. 01	1.2	
R4078			4.0	0.41	0.22		0.08		24.2	0.26	.0. 01	2.1	
R4079				0.38	0.20		0.08			0.26	<0.01	1.6	
R4080			0.5	0.78	0.42		0.19		22.4	0.24	<0.01	6	
R3982			0.9	1.89	69.0		2.33			0.12	<0.01	o.s	
R3986			1.6	1.53	0.82		0.57		24.2	0.34	6.01	<0.1	
R3987			0.3	0.55	0.28		0.03			0,72	0.01		
R3988			8.0	0.59	0,28		0.30			0.43	0.04	6.1	
R4026		9.	e. 0	0.69	0.33		0.06	d (f)		0.13	₽.01	2.0	
R4027		7.9	0.3	0.48	0.26		0.05		29.3	0.10	<0.01	4.0	

de #	Sampl ID#	Sand	Silt	Clay	Clay Texture	Total S	05 7	CaCO3	Acid- Base Potential	*
R4028	45-55	87	4	9,	r.	<0.01	<0.001	0.3	3.000	
R4041	20-30	8	۲~	12	ᅜ	0.02	<0.001	0.0	4.375	
R4050	10-20					0.01	<0.001	0.2	1.688	
R4051	20-30	00 †	2	14	LS/5L	0.04	<0.001	1.2	10.750	
R4052	30-40					0.01	<0.001	0.2	1.688	
R4053	40-50	78	~ i	2	SCL/SL	0.01	<0.001	0.2	1.688	,
R4054	2060	94	Ŋ	*	L5/5L	<0.01	0.001	0.0	3.031	
R4072	10-20	80	4	16	ᅜ	<0.01	<0.001	0.2	2,000	
R4073	2030	96	N	12	57	0.01	<0.001	0.2	1.688	
R4074	30-40	82	N	16	ᅜ	0.01	<0.001		1.688	
R4075	40-50	80	₹	16	당	0.01	<0.001	0.2	1.688	
R4076	20-60	8	CΙ	18	75	<0.01	<0.001		3,000	
R4077	60-70	94	7	14	LS/SL	0.01	0.001		2,719	
R407B	20-80	76	9	18	5	0.01	<0.001		1,688	
R4079	9090	68	13	19	សី	0.01	<0.001	0,2	1.688	
R4080	90-100	72	12	16	당	0.01	<0.001	0,4	3,688	
R3985	20-30	88	ന	ው	LS	0.05	<0.001	٥.٧	6,375	
R3986	30-40	78	12	10	ᅜ	0.08	0.003	0.3	0.594	
R3987	40-50	8	⊘ i	60	ហ	0.07	<0.001	1.6	13,813	
R3988	50-60	98	18	44	ပ	0.01	0.002	0.0	4.750	
R4026	25-35	89	П	10	LS	0.01	<0.001	0.4	3.688	
R4027	35-45	91	0	ው	ហ	0.03	<0.001	D	4.063	

LITH CODE	OE : GR	 	 	1	 	 	! ! ! !							1
		† † † † †	r d			1 	 		 		AB-DTPA	PR	24 AC1	
년 #	Sample ID#	Lit	Ŧ.	E.C. mmhos/cm	ر م	Mg meq/1	€	¥	SAR	Sat	8 pbu	Se	NO3-N PP®	
E 6505	0-5	 	o	0.5		0.1	######################################	0.1		30.6		**************************************		
	5-10	뜐	9,7	4 , 1	0.6	т О	13.7	0.2	20.3	59.4				
6507	10-15	딿			4.0	0.2	7.2	0.1	14.2	35.2				
6508	15-20	땅		0.2	0.1	40.1	 	₽.1	6.0	32.6				
6203	20-25	땅	*		0.5	0.5	2.1	0.1	ທ ຕ	33.8				
6510	25-30	쭚	*		0.4	0.6	1.7	0.1	2.4	34.2				
6511	30-32	땴			0.1	₽	2,3	0.	 	33.5				
6512	35-40	3			0.1	0.1	2.8	0.1	8.8	33.7				
6644	0-5	(•	0.4	0.1	5.0	0.1	10.5	23.4				
6645	5-10	8		•	5.6	1.9	4	Ţ.	2.1	14.8				
6646	10-15	땴			o.s	0.1	2.0	0.1	9.4	29.7				
6647	15-20	쓙			0.2	0.1	1.6	0. 5	4.6	30.9				
6648	20-25	8			0.2	0.1	2.1	0.5	6.0	28.0				
6649	25-30	8	в		0.2	0.1	1.9	0.1	5.2	31.9				
6650	30-32	쯦			0.3	0.1	4	0.1	11.4	31.5				
6651	35-40	8			0.3	0.1	m m	0.1	7.4	25.9				
6652	40-45	8	ც	e. o	0.2		1.9	0,1	ຜູ້ນ	32.9				
6653	45-50	땽			0.2	0.1	ლ ო	0.1	ი თ	30.6				
6654	55-60	땅	9.8		0.3	0. 5	2.6	0.1	7.2	31.8				
6655	60-65	뜐		0.3	0.4	0.1	1.9	e. 0	ლ ლ	36.3				
9299	65-70	딿	9.4	O.3	0.2	<u>0</u> .5	7	0.4	2.2	32.6				
6657	75-80	쫎		0.3	e. O	0.1	1.9	0.2	4.0	33.B				
8658				O.	0.8	0.5	2.4	0.2	a. 1	33.2				
SUMMARY	7	SHMPLES								11				
	Minia∪a		6.40	0.20	0.10	<0.1		<0.1	19	14.80	0.06		<0.01	
	Maximum		9,70	1.60	5,60	2.34		2.33	8	59.40	0.72		- :	
_ 	Tean		8.04	0.49	0,76	0.41	3.43	0.25	5,66	29.52	0.25	6.01	1.40	
٠,	5. Deviation	ation	0.52	0.32	0.91	0.51		0.42	96	7.16	0.15		•	
	z		44.00	44.00	44,00	44.00		44.00	8	44.00	22.00		21.00	

Acid- Base Potential		0.060 13.813 2.263 2.584 38.000
CaC03	* 0 0 0 0 0 0 0 * * 0 0 0 0 0 0 0 0 * 0 * 0 0 0	0.10 1.60 0.28 0.29 39.00
504-5	* * 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
Total S 504	*	60.01 0.08 0.02 0.02 42.00
Texture	******** ******* **** ** *** *** *** *** *** ***	
Clay Textu	32 10 0 0 0	0.00 44.00 13.18 9.13 26.00
<u> </u>	l ii	0.00 18.00 4.59 4.43 26.00
Sand	98 98 888 98 98 8	88.57.8
Sample 10#	0.000	
Lab	6505 6507 6507 6507 6507 6511 6648 6648 6652 6653 6653 6653 6653	Minimum Maximum Mean STD.

Ca Mg Na K SRR Sat B Sector Ppm	LITHO	l l	 									 		
30-40 CN 8.5 0.6 1.04 0.37 5.8 0.09 6.9 19.1 0.15 40.01 50.00 50.0 0.4 0.04 0.26 0.28 8.4 0.04 12.6 27.9 0.16 40.01 50.00 0.4 0.26 0.28 8.4 0.04 12.6 27.9 0.25 40.01 50.00 0.4 0.26 0.28 8.4 0.04 12.6 27.9 0.25 40.01 50.00 0.4 0.28 8.8 1.1 0.24 0.21 13.8 0.07 14.8 34.2 0.25 40.01 50.00 0.4 0.7 0.09 18.7 29.4 0.27 40.01 50.00 0.4 0.7 0.09 18.7 29.4 0.27 40.01 50.00 0.4 0.7 0.09 18.7 29.4 0.27 40.01 50.00 0.4 0.7 0.09 18.7 29.4 0.27 40.01 50.01 50.00 0.4 0.7 0.09 18.7 29.4 0.27 40.01 50.01 50.00 0.4 0.7 0.09 18.7 29.4 0.27 40.01 50.01 50.00 0.4 0.7 0.09 18.7 29.4 0.27 40.01 50.01 50.00 0.4 0.14 0.39 0.12 50.01 50.	# # # #	1	Lith	Hd Hd	ste E.C. mmhos/cm	చ్	Mg meq/1-	e Z	¥	SAR	Sat X x t	198-01 199-01	TPA	ZM KC1 NO3-N PPM
40-50 CN 8.9 0.4 0.20 0.08 4.9 0.03 13.2 19.5 0.16 40.01 50-60 CN 8.9 0.7 0.64 0.25 8.4 0.05 16.0 28.4 0.25 40.01 50-60 CN 8.8 1.1 0.84 0.25 18.4 0.05 16.0 28.4 0.25 40.01 50-60 CN 8.8 1.1 0.84 0.25 18.4 0.05 16.0 28.4 0.25 40.01 5.00 CN 8.4 1.1 0.32 0.44 11.7 0.19 23.8 36.2 0.28 40.01 16.0 CN 8.7 1.3 0.37 0.19 14.4 0.18 27.3 36.7 0.49 0.10 100-10 CN 8.8 1.2 0.35 0.20 14.4 0.18 27.3 36.7 0.49 0.10 110-120 CN 8.8 1.2 0.35 0.20 14.4 0.18 27.3 36.7 0.49 0.10 110-120 CN 8.8 1.3 0.11 0.12 14.9 0.14 43.7 41.2 0.51 0.10 110-120 CN 8.8 1.4 0.11 0.06 17.3 0.14 43.7 41.2 0.51 0.10 110-120 CN 8.8 1.4 0.11 0.06 17.3 0.14 59.6 37.6 0.48 0.13 110-120 CN 8.8 1.4 0.11 0.06 17.3 0.14 59.6 37.6 0.49 0.19 110-120 CN 8.8 1.4 0.11 0.06 17.3 0.14 59.6 37.6 0.49 0.19 110-120 CN 8.8 1.4 0.11 0.06 17.3 0.12 55.0 34.5 0.49 0.15 110-120 CN 8.8 1.4 0.11 0.06 17.3 0.12 55.0 34.5 0.49 0.15 110-120 CN 8.8 1.4 0.11 0.06 17.3 0.12 55.0 34.5 0.49 0.15 110-120 CN 8.8 1.4 0.13 0.10 17.3 0.12 55.0 34.5 0.49 0.15 0.10 17.3 0.12 55.0 34.5 0.49 0.15 0.10 17.3 0.14 59.5 31.4 0.66 0.17 Near Near 8.7 0.14 0.33 0.36 0.14 3.24 0.11 30.31 33.58 0.38 0.38 0.08 0.08 0.08 0.08 0.08 0.0	11	11 61 14	8	# ம	0.6	1.04	0.37		0.09	6.9	19.1	0.15	40.01	4.1
60-70 CN 8.8 1.1 0.84 0.33 12.3 0.05 16.0 28.4 0.20 <0.01 87-90 CN 8.8 1.4 0.74 0.75 13.8 0.05 16.0 28.4 0.27 <0.01 87-90 CN 8.8 1.4 0.79 0.44 14.7 0.09 18.7 28.4 0.25 <0.01 87-90 CN 8.4 1.1 0.32 0.14 11.7 0.19 23.8 36.2 0.53 0.12 87-90 CN 8.7 1.3 0.37 0.19 14.4 0.18 27.3 53.0 0.44 0.14 87-90 CN 8.7 1.3 0.35 0.20 14.6 0.16 27.3 53.0 0.44 0.14 90-100 CN 8.7 1.3 0.39 0.20 14.6 0.16 27.9 36.7 0.49 0.10 110-120 CN 8.9 1.4 0.11 0.06 17.3 0.14 59.6 37.6 0.49 0.13 110-120 CN 8.8 1.3 0.10 0.06 17.3 0.14 59.6 37.6 0.49 0.13 110-120 CN 8.8 1.4 0.19 0.06 17.3 0.14 59.6 37.6 0.49 0.15 110-130 CN 8.8 1.4 0.15 0.10 17.3 0.12 49.6 33.5 0.43 0.18 110-120 CN 8.8 1.4 0.13 0.07 18.8 0.14 59.2 31.4 0.66 0.17 WATHLESMALLS WASHING S. Deviation 0.14 0.33 0.36 0.36 0.35 0.15 0.07 N 15.00 1	R4043 R4044	50-05 50-60 60-60	88	0 0 0 0	4.0	0.20	0.3		0.0	13.2	27.9	0.16	8 8 8 8	0.8
80-90 CN 8.8 1.5 0.79 0.44 14.7 0.09 18.7 29.4 0.27 <0.01 CO	R4045 R4046	2 2 2 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3	3 5	ம் ம ம	yel 12 * 1 0 1 10	0.0 1.24	0.33 0.51		o o 6.8	16.0 14.8	28.4 34.2	9 9 8 8	8.8 9.9	
bu-70 CN	R4047	8	38	œ ·		0.79 67.6	0.44		9.0	18.7	29.4	0,27	6.01	
80-90 CN 8.7 1.3 0.35 0.20 14.6 0.16 27.9 36.7 0.49 0.10 90-100 CN 8.8 1.2 0.38 0.20 14.3 0.11 26.4 41.1 0.46 0.16 1100-110 CN 8.8 1.2 0.38 0.20 14.3 0.11 26.4 41.1 0.46 0.16 1100-110 CN 8.9 1.4 0.11 0.06 17.3 0.14 43.7 41.2 0.51 0.10 1100-120 CN 8.8 1.3 0.11 0.06 17.3 0.14 59.6 37.6 0.48 0.13 130-140 CN 8.8 1.4 0.15 0.10 17.3 0.12 55.0 34.5 0.49 0.15 130-140 CN 8.8 1.4 0.15 0.10 0.06 17.3 0.12 55.0 34.5 0.49 0.15 0.08 140-150 CN 8.6 1.6 0.13 0.07 18.8 0.14 59.2 31.4 0.66 0.17 Near 8.90 1.60 0.10 0.06 4.91 0.03 6.89 19.10 0.15 0.00 Near 8.74 1.17 0.45 0.21 13.24 0.11 30.31 33.58 0.38 0.08 5.00 0.36 0.17 Near 15.00 15	K43783	2-8-2	<u> </u>	n œ 4 √		0.32	0.19		0.13	27.3	23.0		0.14	9.6
90-100 CN	R3991	06-08	중	6,7	1.3	0.35	0.20		0.16	27.9	36. 7	0,49	0.10	
100-110 CN 8.7 1.3 0.11 0.12 14.9 0.14 43.7 41.2 0.51 0.10 110-120 CN 8.9 1.4 0.11 0.06 17.3 0.14 59.6 37.6 0.48 0.13 120-130 CN 8.8 1.4 0.15 0.10 17.3 0.12 55.0 34.5 0.49 0.15 130-140 CN 8.8 1.4 0.15 0.10 17.3 0.12 49.6 33.5 0.49 0.15 130-140 CN 8.6 1.6 0.13 0.07 18.8 0.14 59.2 31.4 0.66 0.17 Nhimum 8.40 0.40 0.40 0.10 0.06 4.91 0.03 6.89 19.10 0.15 <0.01 Nean 8.74 1.17 0.45 0.21 13.24 0.11 30.31 33.58 0.38 0.08 5.00 15.0	R3992	90-100	3	9,8	1.2	0.38	0.20		0.11	26.4	41.1	0.46	0.16	
110-120 CN 8.9 1.4 0.11 0.06 17.3 0.14 59.6 37.6 0.48 0.13 120-130 CN 8.8 1.3 0.10 0.06 15.3 0.12 55.0 34.5 0.49 0.15 130-140 CN 8.8 1.4 0.15 0.10 17.3 0.12 49.6 33.5 0.49 0.15 130-140 CN 8.6 1.6 0.13 0.07 18.8 0.14 59.2 31.4 0.66 0.17 17 0.08 1.40 0.14 0.33 0.10 0.06 4.91 0.03 6.89 19.10 0.15 0.07 18.83 0.19 59.62 53.00 0.66 0.17 18.83 0.19 59.62 53.00 0.66 0.17 18.83 0.19 59.62 53.00 0.66 0.17 18.83 0.19 19.10 0.15 0.07 15.00	83993	100-110	공	8.7	1	0.11	0.12		0.14	43.7	41.2	0.51	0.10	
120-130 CN	R3994	110-120	중	e. 9		0.11	0.0		0.14	59.6	37.6	0.48	0.13	
130-140 CN	R3995	120-130	Z	œ .		0, 10	90.0		0.12	22. C	ա 1	.	0.15	
Ninimum 8.40 0.40 0.10 0.06 4.91 0.03 6.89 19.10 0.15 <0.01 Minimum 8.74 1.17 0.45 0.21 13.24 0.11 30.31 33.58 0.38 0.08 S. Deviation 0.14 0.33 0.36 0.14 3.92 0.05 17.63 8.23 0.15 0.07 N 15.00	R3996	130-140	Z i	о О	•	0.15	0.10		0.12	4.0 0.0	. n	4.0	8.0	
HLL SRMPLES == 6.40 0.40 0.10 0.06 4.91 0.03 6.89 19.10 0.15 <0.01 cimum 8.90 1.60 1.24 0.51 18.83 0.19 59.62 53.00 0.66 0.17 in second 8.74 1.17 0.45 0.21 13.24 0.11 30.31 33.58 0.38 0.08 0.08 0.045 0.14 3.92 0.05 17.63 8.23 0.15 0.07 15.00 15.00 15.00 15.00 15.00 15.00 15.00	R3997	140-150	3	e G	1.6	U. 13	o.u		U. 14	54. K	4. TD	0. pp	n. 17	
HLL SRMPLES = 8.40 0.40 0.10 0.06 4.91 0.03 6.89 19.10 0.15 <0.01 cimum 8.90 1.60 1.24 0.51 18.83 0.19 59.62 53.00 0.66 0.17 1 in second 8.74 1.17 0.45 0.21 13.24 0.11 30.31 33.58 0.38 0.08 0.08 0.14 0.33 0.36 0.14 3.92 0.05 17.63 8.23 0.15 0.07 15.00 15.00 15.00 15.00 15.00 15.00														
ALL SMMPLES														
0 0.40 0.10 0.06 4.91 0.03 6.89 19.10 0.15 <0.01	SUMMER	뒾					ñ H H H H	11 11 11 11 11 11	11 11 11 11					11 61 64 64 64 64
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Minimum		8.40		0.10	0.06	4.91	0.03	6.83	19, 10	0.15	<0.01	0.50
$egin{array}{llllllllllllllllllllllllllllllllllll$		Maximum		8.90		1.24	0.51	18.83	0.19	53.62	23. 13.	0.66	0.17	11.00
4 0.33 0.36 0.14 3.92 0.05 17.63 8.23 0.15 0.07 0 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 3		Mean		8.74		0.45	0.21	13,24	0.11	30.31	33.53	E !	8 9	25.25
. 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 1			tion	0.14 4.0		 8	. 14 	9.92 5.92		17.63 te oo	տ դ Մ. Տ	. 15 . 15	ים. היי	8.5 8.5
		z		15.00	ļ	13.00	13.00	13.00	13.00	13.00	73.00		20.00	7 + C

## ###################################	ab Sample San	Sand	5ilt -x	Clay	Texture	Total S	504-5	CaCO3	Acid- Base Potential >	
R4042 R4043 R4044 R4045 R4047 R39990 R39991 R39992 R39992 R39992 R39992 R39992	# 000000000000000000000	88 83 77 74 74 75 70 70 70 70 70 70 70 70 70 70 70 70 70	8 C C C C C C C C C C C C C C C C C C C	20 20 20 20 20 20 20 20 20 20 20 20 20 2	52 53 54 54 55 50 50 50 50 50 50 50 50 50 50 50 50		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	2.00.1.00.1.1.0.0.1.1.0.0.1.1.0.0.1.1.1.0.0.1.1.1.0.0.1.1.1.0.0.1	11.688 6.000 28.094 28.094 55.063 10.719 9.719 6.750 8.719 10.000 7.406 10.688 15.688	
SUMMARY	- ALL SAMPLES	ES =====							######################################	
	Minimum Maximum Mean STD.	5.00 83.00 37.20 30.76 15.00	7.00 42.00 24.67 12.23 15.00	10.00 59.00 38.13 19.49 15.00		<pre><0.01 0.02 0.01 0.01 15.00</pre>	<pre><0.001 0.003 0.001 0.001 15.000</pre>	0.50 5.50 1.49 1.23 15.00	4,719 55.063 14.669 12.391 15.000	# # # # # # # # # # # # # # # # # # #

* - tons CaCO3/1000 tons material

													1
	 										ABDTPR	rpa	ZM KC1
Lab	Sample	Lith	푭	о Ш.	rg C	£	æ.	¥	SHR	Sat	œ	S.	N-EON
1	# #		 	ma/socimm) e 9 e (meq/1		1	×	Edd.	 	edd.
i# # - - -							† † † †			 - - - 	! 		
R4057	06-08	SS	7,50	1.6	7.98	3,78		1.49	2.8	33.8	0.32	0.01	0.4
R4058	90-100	55	ហ	 B.	98	4.25		1.40	2.4	38.0	0.30	₽.01	0.5
	81.4-88.9	S	9.8	1.2	0.07	0.07	12.1	0.14	44.7	40.6	0.33	0.24	0.1
R3929	88.9-97.4		9.1	1.2	0.04	0.05		0.10	67.0	36.4	0.28	0.21	0.3
	97.4-105.5		0.6	1.5	0.04	0.03		0.14	85.4	33.1	0.31	0.14	4.0
	105.5-113.B		9.	2,1	0.12	0.08		0.18	71.9	34.7	0.30	0.12	0.3
	113.8-121.2		6	2.1	0.17	0.09		0.19	63.7	32.1	0.31	0.13	0.3
R3935	137.3-139.7		٠. ت	1.3	0.06	S	14.9	0.14	64.7	28.6	0.35	0.03	e . O
	174.0-179.5		φ. ω	1.6	0.07	0.03		0.07	75.8	51.3	0.67	0.08	0.3
	179.5-187.5		9.0	1.4	0.03	0.02		0.10	4.16	81.8	0.27	0.18	4.0
	187.5-196.6		4.6	m .	0.05	0.05		0.08	70.7	111.9	0.23	0.37	4.0
R3944	196.6-204.4		9.3	1.0	0,03	0.02		0.06	76.7	113.7	0.30	0.37	0.3
	204.4-212.5	SS	4.6	1.0	0.05	0.03		0.05	58.6	125.6	0.22	33	2.0
	212,5-220.2		4.6	1.0	0.06	0.03	11.2	0.04	52.6	129.1	0.27	0.10	0.1
	220.2-227.8	SS	٠, س	1.3	0.03	0.02		0.04	85.5	121.3	0.20	0.39	0.3

ж	
Acid- Base Potentia	128.031 56.844 7.844 18.031 10.094 18.750 12.125 173.031 16.094 7.156 17.156 17.156 18.688 21.031
CaCO3	12.8 0.9 1.1 1.3 1.3 1.9 1.9 1.9 1.9
504-5	0.0000000000000000000000000000000000000
Total S	00000000000000000000000000000000000000
Texture	ਫ਼ਫ਼ਜ਼ਫ਼੶ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ ਫ਼ਫ਼ਜ਼ਫ਼
	884848482464888
Silt	24 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Sand	8.46.46.46.46.46.46.46.46.46.46.46.46.46.
Sample ID#	2 80-90 8 90-100 9 90-100 9 90-100 9 97.4-105.5 1 105.5-113.8 1 13.8-121.2 1 174.0-179.5 1 174.0-179.5 1 174.0-179.5 1 174.0-179.5 1 174.0-179.5 2 12.5-20.2
+2 +	R4057 R4058 R3929 R39329 R3933 R3932 R3932 R3932 R3944 R3944 R3946

ITH	ស											
 											8B-NTD8	2M KC1
다. 다.	Sample ID#	Lith	r	E.C. mmhos/cm	C.a.	Mg 1	Na 	ν	SAR	Sat	B Se	N-EON Ppm
								11				
6590	Ņ		9.1	1.3	0.2	0.1	13.8	0.1	32.1	98.6		
6591	Ņ	55	9.9	2.6	e. -0	0,1	28.6	0.1	-	37.6		
6599	325-330	SS	0.6	1.4	0.1	0.1	14.7	0.1	\Box	115.1		
999		SS	0. 6	1.0	0.2	S	10.7	0		101.9		
6601	335-340	S	9.1	1. a	0.3	0.4	12.9			116.3		
6602	340-345	55	9.5	 	0.3	9.0	15.0		22.9	132.9		
6603	345-350	SS	9,2	1.3	0.3	0.4	13.6	0,2	22.9	121.3		
6614	400-405	55	9.0	4.	0.1	0.1	14.7		43.0	115.1		
6615	405-410	55	9.0	0.1	0.2		10.7		18.0	101.9		
6616	410-415	S	9.1	1.3	. .3		12.9		22.0	116.3		
6617	415-420	SS	9.2	1.3	e. o	9.0	15.0		22.9	132.9		
6618	420-425	SS	9,2	1.3	e. 0		13.6		22.9	121.3		
6614	400-405	ស	ט, ניז	1.3	0.1		14.2	0.1	27.8	70.0		
6615	405-410	22	ი	1.2	o '5			0.1	21.4	82.4		
6616	410-415	ហ	9.	1.2	0.1		13.1		39.B	75.55		
6617	415-420	S	ტ	6.0	0.1		<u>.</u> ب	0.1	24.0	89.8		
6618	420-425	25	9,2	1.1	0.1	0.1	16.1	0.1	47.2	66.2		
6619	425-430	55	o,	-					33.1	129.1		
6620	430-435	SS	ლ თ	9.0	0.2				20.5	116.9		
6621	435-440	ហ	۵, در	7.0	0.2		m ~	0.5		108.0		
6622	440-445	25	4,6	6.0	0.5	4.0			18.6	125.1		

다 다 다	Sample IO#	Sand	Silt x	C1ay	Texture	Total S	504-5	CaC03	Acid- Base Potentia
6590	280-285	46	26	28	52	: *		* * *	*
6591	285-290	54	16	23	SCL/SL	<0.01	0.005	15.1	150.86
6233	325-330	36	32	32	占	0.02	ж	*	ж
9600	330~335	36	34	읎	占	0.01	×	×	ж
6601	335-340	32	36	83	占	0.01	ж	*	ж
6602	340-345	20	4	38	Sichol	0.05	×	1.9	ж
6099	345-350	30	38	32	占	0.06	0.001	2.0	20.03
6614	400-405	36	33	32	겁	0.02	ж	ж	ж
6615	405-410	36	3 4	R	占	0.01	ж	ж	ж
6616	410-415	32	98	32	겁	0.01	×	ж	ж
6617	415-420	22	4	38	Sicloc	0.05	ж	1.9	ж
6618	420~425	œ	89	32	占	0.06	0.001	2.0	20,03
6614	400-405	ე. 4	39	18	꺿	0.03	0.001	 8.:	17.63
6615	405-410	26	92	18	거	<0.01	0.001	1.6	16,03
6616	410-415	6.4	25	14	ᅜ	<0.01	0.001	5.7	56.83
6617	415-420	28	8	22	25	0.01	0.001	1.9	19.23
6618	420~425	9	23	18	꺿	<0.01	0.001	5.6	56.23
6619	425-430	62	16	22	201	0.01	0.001	2.9	28, 53
6620	430-435	64	18	18	ᅜ	<0.01	0.001	1.8	18,23
6621	435-440	64	4	22	55	<0.01	0.001	9	23.03
6622	440-445	9	18	22	50,	0.01	0.001	1.6	15.63

ITH C	55		 					 	1] 	
							1	[]] []		; ` ! ! !	AB0TPA	TPB	ZM KC1
Lab	Sample	Lith th	표.	Е.С.	ري. ت	D. E	rg Z	¥	2 1	Sat t	OO:	ů,	N-EON
#	#01			mmhos/cm		me(eq/1	 	1	×	udd		wdd
t	227.8-233.8	ł	4.6				12.0	0.05	69.6			0.13	0.3
R3955	7-42	SS	7.8	0.9	2.46	0.59	4	1.42	t)	26.7	0.26	0.34	6.0
R3957	51.3-60.0	SS	8.1				4	0.56	4			S	0.4
R3958	3.0-70.	53	е Э	_			2.7	0.31	2.1			0.05	0.2
R3959		55	7.9	-			ហ	0.58	4.0			0.05	0.1
R3961	162, 3-172, 3	S S	ю Ю	_			15.3	0.26	33.9			0.08	<0.1
R3970	236, 7-245, 0	S	8.7	1.4			15.7	0,22	39 3			0.05	0.1
R3971	245.0-253.2	SS		ان 0			20.7	1.39	44 . 3			.	0.1
R3974		52	_	1.2			13.3	0.14	45, 1			0.15	0.1
R3975	Ĭ	55	8	1.5			15.0	o. 54	26.5			0.08	0.1
R3976	5-100	S)		1.5			14.4	0.95				0.11	△.1
R3980	Ξ	SS					12.8	0.62	œ			0.03	0.1
R3982	131.5-138.8	52	٧.	1.9			ۍ م	0.91	4.			0.02	△ 0.1
R4011	180-190	SS	ຕ້	1.7			18.2	0.13	74.7			0.0	2.5 5
R4012	190-200	SS	9.2	1.4			14.4	0.11				0.06	6. 8
R4013	200-210	SS	<u>ო</u>	.u			16.1	0.08	30.2			0.0	ю. В
R4014	210-220	55	σ, 4	1.6			16.7	0.03				0,02	6.2
R4015	220230	55	9.4	1.8			19.5	0.14				0.09	6.8
R4023	300-310	22	9.0	2.1			22.6	0.13	33.1			0.15	1.1

Sand Silt
227.8-233.8 41 29
50 15
62
63
57 4
20
53
21
吊
63
64
6 4
63
61
9
41

		, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	d Ha	paste E.C.	ري ن	E	ø	¥	S S S	Sat .	ABDTPA- B Se	PA	2M KC1 ND3-N
1	#0I		1	mahos/cm	1 1		7		Į.	×	wdd		mdd
6623	445-450	55	4	0.7		0.3	7.6	0.2	14.2	139.1			
6624	450-455	ស					•			115.9			
6625	455-460	S)					<u>ب</u> ص		10.4	144.3			
6626	460-465	22							т т	150.5			
6627	465-470	22	T					0.4	9.8	125.4			
6628	470-475	53	4					0.1	20.0	124.7			
6629	475-480	ស	9				12.1		20.4	130.2			
6630	480-485	SS	4.	0.9			യ വ	0.1	23.3	139.7			
6617	415-420	Ŋ	4.6	0.9	0.1	0.1		0.1		122.7			
6618	420-425	55	ტ ტ	0.1			9.8	_	26.5	96.4			
6619	425-430	SS	۵, 4	5.7		0.1				60.3			
6620	430-435	ß		1.4		0.1			45.8	56.8			
6621	435-440	55	9.2	0.9				е О		55.4			
6622	440-445	SS		•				0.1		70.6			
6623	445-450	55		0.9			13.0						
6624	450-455	ស្ល	9.2	1.2		0.7	•	0.2					
6625	455-460	SS		1.2		0.1	12.9	0.1	23.9				
6640	530-535	55		1.3				0.1	31.4	48.9			
6641	535-540	55	9.0	1.1	0.4		•	_	23.7	31.1			
6642	540-545	55		1.0	Ĭ.		10.1	0.2	17.4	37.8			
6643	545-550	55				0.1	11.9	•	36.4				
2999	115-120	22	დ ს	•	0.8				8.1	20.2			
6668	120-125	S				0,2			۲.	19,9			
6999	125-130	55	•			Մ	0.2		7.1	22.9			
6670	130-135	SS	9	•	•	4.0				18.6			
6671	135-140	55	9.1	6.0	S	е .	9.1	0.3	14.8	21.8			
6672	40-1	S	9.		•	0.1			14.3	20.5			
SUMMARY	- ALL SAMPLE	ES					## ## ## ## ##		11			ii [] [] [] []	## ##
	Minimum			0.60	0.03	0.02	0.50	0.1		18.60	. 13	.01	•
	Maximum		9.50	2.60	7.98			9		\Box	0.67	0.39	
	Mean		8,99	1.20	0.62	0,50	12, 33	0.32	31.80	74.72	0.33	0.13	1.06
	S. Deviation	_		•	<u>4</u> ល	0.93	7.0	0.66		ď	6	 i	'n.
	z		81.00	81.00	٥.	81.00			81.00	81.00			34.00

*		
Acid- Base Potential	i	s material
CaC03		UUU tons
504-5	* 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0	Cacu3/1000
Total S		rons F
Texture	88888888888888888888888888888888888888	•
Clay	25 25 25 25 25 25 25 25 25 25 25 25 25 2	
Silt	44444444444444444444444444444444444444	
Sand	000 000 000 000 000 000 000 000 000 00	
	445-450 450-455 455-460 460-465 465-470 470-475 475-480 480-485 415-420 420-425 420-425 420-425 420-425 420-425 430-435 430-435 430-435 430-435 430-435 430-435 130-435 130-435 130-435 130-455 130-435 130-135 130-135 130-135 130-135 130-140 130-145 130-140 130-145 130-140 130-145 130-140 130-145 130-140 130-135	
	6623 6624 6624 6625 6627 6629 6629 6629 6621 6621 6623 6624 6624 6624 6624 6624 6624 6624	

HLI	5	 						ne ofte few fest after gate to		[- 	
			th the Co) 	 	 	7	000	+	AB0TPA	Р.Н.– В д	ZM KC1
D #	Sample Lich ID#	<u>.</u>	7 T	i i	neq/1-		۷ ,	א ב	7 % C		1 1	
											 - - - -	
R3933	121.2-1295L	о С	 S	0.08	0.05	16.7	0.19	65.4	28.6	0.36	0.09	4.0
R3934	129.6-1375L	.		0.19	0.10	25.1	0.27	65.8	26.4	0.37	0.12	0.3
R3936	139.7-1465L	8.9	•	0.04	0.04	17.0	0.20	82.1	34.8	0.36	0.16	e.0
R3937	~	9.9	2.0	0.10	0.09	22.0	0.27	70.8	28.3	0.35	0.30	0.4
R3938	154.5-1625L	8.7	9.1	0.06	0.05	21.0	0.16	93.0	31.9	0.33	0.13	0,5
R3939	162.2-1705L	9.9	4.	0.04	0.04	17.3	0.14	87.7	31.2	0.27	0.13	0.3
R3949	233.8-2375L	9.0		0.04	0.02	12.4	0.04	68.3	92.8	0,23	0.09	
R3950	237.0-2445L	9. 9	1.2	0.0	0.02	12.7	0.03	71.2	94.0	0.33	0.13	
R3951	244.6-2525L	o, Ci	1.6	0.05	0.04	17.2	0.10	82.1	40.7	0.74	0.35	0.1
R3952	252.9-2615L	0.6	1.7	0.09	0.05	18.4	0, 12	71.7	33, 1	0.26	0.20	
R3953	261.0-2685L	9.0		0.10	0.05	18.1	0.13	67.0	30.6	0.31	0.10	
R3954	29.8-38.75L	7,9		1.56	0.32	2.6	0.45	2.7	26.4	0.29	0.11	
R3965	214.5-2245L		2.1	0.31	0.20	21.3	0.39	42.0	30.9	0.33	0.10	
R3978	108.2-1145L			0.84	0.54	17.4	0.95	20.9	20° 4.	0.40	0.05	
R3979	114.7-1215L			0.41	0.30	11.5	0.30	19.3	25.8	0.46	0.04	
R3981	127.6-1315L	9,1	0.9	0.87	0.64	8.1	0.34	9.4	24.5	0.40	0.06	5.2
R3983	138.8-1425L		1.3	3.46	2.06	8.1	0.55	4.9	30.6	0.30	0.26	

Rcid− Base Potential *	10.78 11.41 12.09 2.128 17.41 17.91 16.09 17.91 17.91 17.91 17.91
CaCO3	2011-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0
504-5	0.004 0.001 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
Total S	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
Texture	
Clay	446446622846488223 44444662
Silt -x	8200000442100882311111111111111111111111111111111
Q.	\$864462010 2010 3010 3010 4010 4010 4010 4010 4010 4
ample ID#	121.2-129 129.6-137 139.7-146 146.7-154 154.5-162 162.2-170 233.8-237 237.0-244 244.6-252 252.9-261 261.0-268 29.8-38.7 214.5-224 108.2-114 114.7-121 127.6-131
Lab #	R3933 R3934 R3936 R3937 R3939 R3951 R3952 R3953 R3954 R3953 R3965 R3965

LITH CODE: SL

			580	3te						•	AB-DTPA	<u>일</u> 전1
Lab	Sample	Lith	H. C.	п. С.	e G	£	m Z	¥	SAR	Sat	9 9	N-EON
	#01	; ;		_		_meq/1			1	2	edd	mdd
1		성	8.9	0	0.3	0.1	8.3	0,1	20.3	61.		
6514	45-50	ᅜ	9.4	4.0		4.0	2.0		9	48.5		
6515	50-55	75	9.4	0.6		0.9				21.6		
6516	55-60	7	B.3	0.7	1.2	0.8	ი ი			34.6		
6517	60-65	ᅜ	დ ო	0.5	0.8	0,5	3.1	4.0		30.9		
6518	65-70	ᅜ	e. 9	0.6	0.9	o .s		0.4	4.0	32.1		
6519	70-75	ᅜ	8 .3	0.5		D. 3	a. 5	0.3	4.8	32.4		
6520	75-80	ភ	9.4	0.7		O. 53	•	4.0		ў. 2		
6521	80-85	ᅜ	9.4	0.7		0.5		4.0	6.7	29.0		
6522	85-90	Ŋ	9. 4.	9.0	0.5	е, О	9.6	4.0	14.7	27.1		
6523	90-95	叼	9.4	0.9				0 4	11.7	26.9		
6524	95-100		9.4	0.8		0.1		0,3	16,1	23.3		
6525	100 - 105		о. О	1.2	0.4	0.5	11.4	0.3	22.0	23.8		
6526	105 - 110		8.1	2.0	0.7	0.5	18.0	9.0	22.9	21.2		
6527	110 - 115		9. S	1.3	0.4	e. O			22.1	22.5		
6528	115 - 120		9.4	1.8	0.4	0.2	20.3	e. 0	3 9 .3	26.5		
6259	120-125		ф. ф.	2.0	0.3		21.7	0.4	45.6	21.7		
6530	125-130		е. Э	2.5	0.5	•	25.1	S	41.3	21.6		
6531	130-135		9.4		0.5	0.2	17.0	о Э	29.4	24.3		
6532	135-140		9.S	1.3	e.0	0.1	13.7	0,2	31.5			
6533	140-145		4.6	1.6	m -	0.1	17.6	0.3	36.9	20.2		

Lab #	Lab Sample Sand # ID#	Sand	Silt -2	Clay	Texture	Total S	504-5	CaC03	Acid- Base Potential *	
6513	40-45	 			 	<0.01	*		 	
6514	45-50	10	38	25	ပ	0.03	0.002	0.0	8.26	
6515	50-55	20	18	32	705	<0.01	0.001	14.0	140,13	
6516	55-60	18	88	4	ഠ	0.01	0.001	m m	32.53	
6517	6065	2 8	9 4 6	40	9 19 19	0.01	<0.001	1.6	16.20	
6518	65-70	18	38	44	ப	0.02	<0.001	 4	14.00	
6219	70-75	18	38	4	ပ	0.02	<0.001	1.2	11.60	
6520	75-80	88	8	36	占	0.01	0.001	15.5	155, 23	
6521	80-85	24	98	40	מכל	0.01	0.001	1.6	16.43	
6522	85-90	22	\$ 6	44	ပ	0.02	0.001	1.4	14,13	
6523	90-95	8	30	40	7073	0.02	0.001	1.6	15.53	
6524	95-100	36	9 4	8	ರ	0.01	0.001	1.2	12.33	
6525	100-105	4 ()	æ	88	占	0.01	0.001	1.3	12.73	
6526	105-110	4	28	24	SCLAL	<0.01	<0.001	6.2	62.00	
6527	110-115	94 4	%	33	ರ	<0.01	0.001	1.6	15,73	
6528	115 - 120	98	8	35	ರ	0.02	<0.001	т. Э	13.00	
6223	120-125	æ	35	90	占	0.02	<0.001	2.7	27.00	
6530	125-130	38	32	R	占	0.02	0.001	-	10.63	
6531	130-135	38	A A	99	占	0.01	0.001	6	12.32	
6532	135-140	38	32	30	占	0.01	<0.001	1.2	11.50	
6533	140-145	44	28	28	占	0.01	0.001	1.0	9.93	

LITH CODE: SL

			paste	ste							AB-DTPA	2ª KCI
Lab	Sample	Lith	五	п. С.	۾	Ē	ro Z	ᅩ	SFR	Sat	B 5e	N-EON
#			1	05/c		-meq/1-		1 1 1		×	Edd	wdd
6534	145-150	占	m	2.8	0.6	0.3	26.4	0.7	39.8	19.8		
6535	150 - 155	ᅜ		1.9	0,4	0.5	20.7	0.4	39.9	21.9		
6536	155-160	3		2.1	0 3	0.2	24.3	0.1	40.1	22.4		
6537	160 - 165	ᅜ		2.2	0.5	0	26.0	0.2	42.3	23.7		
6538	165-170	占		1.9	0.8	_	26.5	0.2	27.3	20.3		
6233	170-175	성		2.0	0.3	0.1	24.7	0.3	54.2	24.7		
6540	175 - 180	ᅜ		2.1	4.0	о . Э	48.7	0.7	83.3	23.6		
6541	180-185	ᅜ		0.7	0.1	0,2	6.3	0.2	16.2	19,7		
6542	185-190	ᅜ		1.5	4.0	0.6	15.7	4.0	22.6	21.6		
6543	190-195	ൃ			0.2	0.2	က်	0.2	10.5	23.4		
6544	195-200	ᅜ		1.8	4. 0	0.1	19.1	e. 0	36.8	15.9		
6545	200-210	ᅜ	9.0		0.1	0.1	6.4	0.2	18.1	20.0		
6546	210-215	ᅜ		2.3	4.0	e. o	25, 2	0.4	43.3	19, 1		
6547	215-220	ᅜ		1.4	0.3	0,2	15.8	0.3	32.4	19.6		
6548	220-225	ᅜ		1.2	0.7	0.4	11.6	0.5	15.2	25.1		

Acid- Base Potential *	10.83 11.60 17.83 14.63 18.40 19.16 56.30 16.23 181.03 73.13 *
CaC03	1.1.1 1.2.1.1 1.3.1.2 1.3.1.3 1.4.4 1.5.5 1.6.7
504-5	0.00.00.00.00.00.00.00.00.00.00.00.00.0
Total S	
Texture	
Clay	688888888888888
Silt-	25 8 4 2 2 4 4 8 8 8 4 8 8 8 8 8 8 8 8 8 8
Sand	4 6 4 6 4 6 6 7 7 8 4 6 6 7 8 7 8 7 8 8 7 8 8 8 8 8 8 8 8 8 8
Sample ID#	145-150 150-155 150-155 160-165 160-165 170-175 170-175 170-175 185-190 190-195 195-200 200-210 210-215
Lab #	6534 6535 6536 6537 6537 6539 6539 6541 6542 6543 6544 6545

LITH CODE: SL

			paste	ste							AB-DTPA	Нс	2M KC1
Lab	Sample	Lith	盂	Ε. C.	a U	ጀ	Ž	¥	SPR	Sat	œ	ري ۾	N-EON
#	#01	1		mmhos/cm		meq/l			i i i	×	-wdd		₩dd
6549	220-222	띡	9.4	0.7			9	0.4	9.8	17.1	! !	 	1
6556	245-250	ᅜ	9.1	2.0		0.6	23,3	ភ	27.5	22.1			
6568	300-302	占	е. Э	2.9		9.0	30.4	0.1	38.3	18.0			
6570	310-315	식	е. Э	2.6		e. O	32.8	4.0	51.9	19.8			
6584	250~255	ᅜ	9 9	1.4		0.1		0.1	40.7	24.4			
6585	255-260	ᅜ	8.7	1.5		0.1	17.3	0.1	46.8	33.8			
6586	260~265	ᅜ	9.8	1.4		0.2		0.2	34.0	34.2			
6587	265-270	식	9.9	1.4		0.1		0.1	43.4	59.5			
6588	270-275	ᅜ	9.1	1.8		0.1	21.9	0.1	70.7	56.6			
6283	275-280	억	9.1	2.0		0.1		0.1	61.3	91.4			
6592	290-295	ᅜ	9.0	2.8		0.1	31.6	0.2	72.5	43.7			
6604	350-355	ᅜ	9,2	1.4		0.5	14.4	0.1	32.3	84.6			
SUMMARY -	SUMMARY - ALL SAMPLES					\$4 14 11 11					* *** *** *** *** *** *** *** ***		THE COLUMN COLUM
	Minimum		7.70	0.40	0.04	<.001	2.00	0.0	2.30	15.90		0.04	0.10
	Maximum		9,30	2.90	3.46	2.06	48,70	9	93.00	94.00		35	6.40
	Mean		8.55	1.47	0.48	0.30	15,93	o. 30	36.40	31.78		0.14	1.44
	5. Deviati	Ü	0.33	0.64	0.49	0.32	8.88	0.18	24.98	17.69	0.11	80.0	2.03
	Z		64.00	64.00	64.00	64.00	64.00	64.00	64.00	64.00		17.00	17.00
	جود کے اسا کی جو جو جو جو جو کے ایک کیا کیا کیا کیا ہے۔ ایک ایک ایک کیا جاتا باتا ہے۔												

	Q.	Sand	Silt -%	Clay	Texture	Total S	504-5	CaCO3	Acid- Base Potential *
6549	549 220-222	95	######################################	24	SCL	0.02	0.002		19.06
6556	245-250	62	20	18	ᅜ	<0.01	0.001	2.7	27.13
6568	300-302	68	1.4	18	ᅜ	0.22	0.009	2.0	20.08
6570	310-315	62	14	24	3CL	0.07	0,008	1.1	10.85
6584	250-255	56	20	7	2CL	0.08	0.004	ი ო	33.03
6585	255-260	54	2	8	201	0.04	0.002	6.6	65.66
6586	260-265	44	24	e Cy	占	0.04	0.001	1.9	18.93
6587	265-270	28	æ	4	ပ	0.05	0.002	1.2	12.26
6588	270-275	9.4 4.0	94 4	32	占	0.04	0.002	2.1	21.06
6283	275-280	42	30	28	占	<0.01	0.002	2.9	28.66
6592	290-295	46	18	36	S C	0.09	0.002	2.7	27.06
6604	350-355	38	98	28	لـــ	0.03	*	1.9	×
SUMMARY -	SUMMARY - ALL SAMPLES	ES =====		11 11 11 11 11					
	Minimum	10.00	6.00	18.00		<0.01	<0.001	0.30	-0.22
	Maximum	68.00	44.00	52.00		0.20	0.009	18.10	181.00
	Mean	41.64	25.59	32.76		0.03	0.002	2.61	24.95
	STD.	13.25	8.84	7.73		0.04	0.002	3.26	33,16
	z	63.00	63.00	63.00		63.00	62.000	63.00	60.00

13

.

* - tons CaCO3/1000 tons material

LITH CODE:			7017	ysısı	report.	1	 	i ! !	! ! !	1	1		
				aste							AB01	Нф	¥ KC1
Lab #	Sample ID#	Lith	Hd.	E 1	F	- i i		¥	ox !	Sat	8 1 1	95 1	N-EON edd
													1 1 1 1 1
R4070	325-335	돐		2.1	1.64	0.74	24.3	0.24		47.1	0.44	0.02	1.1
R4071	335-345	HS		2.7	1.17	0.64	30.4	0,33	31.9	44.6	0.46	0.04	6.4
R4082	110-120	HS		1.2	0.13	0.09	16.7	0.14		43.0	0.40	0.03	2.2
R4083	120-130	SH		1,2	0.07	0.03	12,7	0.0		59.8	0.23	0.06	ლ თ.
R4084	130-140	ĸ		1.5	0.06	0.04	13, 1	9.0		74.4	0.20	0.03	1.8
R4085	140-150	S.		1.5	0.90	0.35	16.8	0.05	•	63.9	0.26	0.15	4.0
R4086	150-160	SH		1.2	0.39	0.20	17.0	0.0		55.7	0.34	0.10	3.4
R4087	160-170	FS.		1.4	0.04	0.02	13.9	0.04		91.2	0.28	0.16	1.8
R4088	170-180	돐	10.0	1.7	0.36	0.17	15.5	0.03	30.0	98.9	0.27	0.13	5.1
R4089	180-190	Ŧ		1.6	0.34	0.17	17.3	0.07		87.4	0,34	0.17	ري ت
R4090	190~200	Ϋ́		1.7	0.03	0.05	17.9	0.03	94.0	107.0	0.33	0.25	7.
R4091	200-210	£		5	0.06	0.02	18.6	0.02		96.6	0.36	0.21	6.1
R4092	210-220	T,	σ σ	1.5	0.0	0.01	16.6	0.04		72.2	0.25	0.19	1.4
R4094	280-290	H.	4.6	1.7	0.0	0.04	13.1	0.03		38.1	0.19	0,06	1,1
R4095	405-415	H H	5	1.9	0.14	0.0	18.6	0.13		27.2	0.41	0,0	ო ლ
R3956	8-51.	Ŧ.	Т.	0.8	1.36	0.36	o, o	0.75	6.4	36.4	0.24	<u>.</u>	0.2
R3960	L	.	8.1	7.0	0.97	0.21	ი თ	0.33		29°3	0.18	0.16	4 .
R3962	4-200		8	1.0	0.03	0.03	11.0	0.13		34.3	0.19	0.02	
R3963			8.8	 .0	0.12	0.08	16.9	0.18		ლ ლ	0.22	0.03	e. o
R3964	י		8.6	S	0.11	0.0	15.8	0.18		29.7	0.26	0.03	9.0
R3966			9		0.13	0.09	17.1	0.25		39.1	0.29	0.04	0.7
R3969		ZH SH	9.4	e	0.08	0.05	15.1	0.16		27.3	0.38	0.05	o. 2
R3972	253.2-260.0		7.9	9.2	0.60	0.42	26.4	3.66		30.6	0.35	0.19	<0.1
R3973	9		9	1.8	0.0	0.07	18.6	0.39		33.8	0.33	0.10	0.1
R3977	η	F. S.	9	1.8	0.28	0.20	18.0	0.23		38.4	0.53	0,14	0.2

Soil Analysis Report

# q#		Sand	5i1t		Texture	Total S	504-5	CaC03	Acid- Base Potential *
 	325-335	20	: :: ::	05		0.08	<0.001		. B
R4071	335-345	2	, W	46	ı U	0.02	<0.001	1.4	13,375
R4082	110-120	æ	8	æ	占	0.01	0.005	សួ	24.84375
R4083	120-130	32	37	31	占	<0.01	0.002	э. 1	31.0625
R4084	130-140	28	41	31	占	40.01	0.012	1.4	14.375
R4085	140-150	ß	44	31	占	0.01	0.019	2.1	21.28125
R4086	150-160	38	34	8	占	0.01	0.002	1.8	17.75
R4087	160-170	5 8	44	æ	占	0.01	0.002	2.0	19,75
R4088	170-180	22	47	31	占	0.01	0.002	1.2	11.75
R4089	180-190	14	2	36	Sicl	0.01	0.003	1.2	11.78125
R4090	190-200	18	4	98	SicL	0.01	0.006	1.3	12.875
R4091	200-210	23	44	Ç,	占	0.01	0.009	1.4	13,96875
R4092	210-220	16	₽	96	Sich	0.03	0.003	т П	12.15625
R4094	280-290	ų V	18	8	강	0.1	0.002	0.8	4.9375
R4095	405-415	45	KS	æ	CL/SCL	0.02	0.004	C)	33.5
R3956	42.8-51.3	42	19	6	占	0.01	0.002	0.0	8.75
R3960	80,0-82,8	Đ.	ග	8	u	0.08	0.002	1.7	14.5625
R3962	190.4-200.0	63	œ	23	5CL	0.09	0.001		8.21875
R3963	200.0-210.0	57	σ	(i)	강	0.04	<0.001 0.001		15.75
R3964	210.0-214.5	വ	13	щ 4	SCL	0.05	0.001		18,40625
R3966	224.2-225.9	45	g,	46	CZSC	0.05	<0.001		14.375
R3969	227.3-236.7	40	R	32	강	0.03	<0.001		15.0625
R3972	253.2-260.0	27	4	Ë	占	0.18	0.005	0.2	-3.46875
R3973	260.0-267.6	34	19	47	ں	0.06	0.002		9,1875
R3977	100.5-106.1	32	20	45	ပ	0.06	0.002	1.9	17.28125

Soil Analysis Report

6 2.01 0.82 3.3 0.11 2.8 20.7 0.21 <0.01 0.4 9 1.52 0.51 8.0 0.07 7.9 38.3 0.50 0.02 1.4 1.31 0.45 6.6 0.13 7.1 30.1 0.35 0.10 0.3 1.32 0.37 7.2 0.13 7.1 30.1 0.35 0.10 0.3 1.36 0.37 7.2 0.13 7.7 33.1 0.37 0.02 1.5 1.46 0.34 10.8 0.18 11.4 38.9 0.42 0.18 1.1 2.06 0.59 19.1 0.23 16.6 36.4 0.46 0.14 2.9 2.06 0.59 19.1 0.23 16.6 36.4 0.46 0.14 2.9 1.13 0.38 10.6 0.02 14.8 27.8 0.33 0.05 3.7 1.13 0.38 10.6 0.08 12.2 35.8 0.21 0.06 2.5 1.15 0.69 17.7 0.18 18.4 38.9 0.50 0.06 2.5 2.21 1.01 6.0 0.68 4.8 31.4 0.34 0.01 1.1 5.0.49 0.26 4.1 0.20 6.7 51.6 0.15 <0.01 0.8 0.42 0.23 3.0 0.16 15.8 39.6 0.26 <0.01 0.8 0.65 0.47 9.0 0.24 12.0 51.0 0.27 0.01 0.8 0.64 0.34 9.6 0.23 13.7 40.8 0.25 <0.01 0.6 1.28 0.72 24.7 0.34 24.7 44.7 0.39 <0.01 0.6 1.29 0.72 0.29 12.7 0.18 21.5 39.0 0.39 <0.01 0.6 1.20 0.72 12.7 0.18 21.5 39.0 0.39 <0.01 0.6 1.20 0.72 0.73 13.7 0.39 0.30 0.39 <0.01 0.6 1.20 0.72 0.73 13.7 0.39 0.30 0.39 0.002 2.7 1.20 0.72 0.73 13.7 0.39 0.00 0.39 <0.01 0.6 1.20 0.72 0.73 13.7 0.39 0.00 0.39 <0.01 0.6 1.20 0.72 0.73 13.7 0.39 0.00 0.39 <0.01 0.6 1.20 0.72 0.73 13.7 0.39 0.00 0.39 <0.01 0.6 1.20 0.72 0.73 13.7 0.39 0.00 0.39 <0.01 0.6 1.20 0.72 0.73 13.7 0.39 0.00 0.39 <0.01 0.6 1.20 0.72 0.73 13.7 0.39 0.00 0.39 <0.01 0.6 1.20 0.72 0.73 13.7 0.39 0.00 0.39 <0.01 0.6 1.20 0.72 0.73 13.7 0.39 0.00 0.39 0.00 0.00 0.00 0.00 0.00	54 Sample L ID#	soli nnalysispaste ith pH E.C.		5 E	Na Na Na Na Na	v	SPR	Sat XX XX		70HP	ZM KC NO3-N PPm
52 0.51 8.0 0.07 7.9 38.3 0.50 0.02 1. 79 0.18 7.3 0.05 10.5 29.7 0.43 0.02 1. 81 0.45 6.6 0.13 7.1 30.1 0.35 0.10 0.1 81 0.95 8.1 0.20 5.9 37.8 0.36 0.01 1. 46 0.37 7.2 0.13 7.7 33.1 0.36 0.01 1. 46 0.37 10.8 0.18 11.4 38.9 0.42 0.18 0.1 0.18 0.18 0.14 0	SH 8.1 0.		2.01	0.82	9. 9	0.11	2.8	20.7	0.21	<0.01	4.0
79 0.18 7.3 0.05 10.5 29.7 0.43 0.02 1. 31 0.45 6.6 0.13 7.1 30.1 0.35 0.10 0. 81 0.95 8.1 0.20 5.9 37.8 0.36 0.01 1. 36 0.37 7.2 0.13 7.7 33.1 0.37 0.02 1. 46 0.34 10.8 0.18 11.4 38.9 0.42 0.18 0. 06 0.59 19.1 0.23 16.6 36.4 0.46 0.14 2. 98 0.34 11.9 0.12 14.6 27.8 0.40 0.06 2. 85 0.53 16.2 0.20 14.8 27.8 0.33 0.05 3. 86 0.39 14.6 0.15 18.5 42.1 0.50 0.05 1. 86 0.39 17.7 0.18 18.4 38.9 0.50 0.05 1. 49 0.26 4.1 0.20 6.7 51.6 0.15 0.02 0. 42 0.23 9.0 0.16 15.8 39.6 0.26 <0.01 0. 51 0.31 8.0 0.24 12.0 51.0 0.25 <0.01 0. 64 0.34 9.6 0.23 13.7 40.8 0.25 <0.01 0. 64 0.34 9.6 0.23 13.7 40.8 0.25 <0.01 0. 65 0.72 24.7 0.34 24.7 44.7 0.39 0.02 2. 28 0.72 24.7 0.34 24.7 44.7 0.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00	65-75 SH 8.8 0.9		1.52	0.51	8	0.07	٧ ص	38.3	0.20	0.02	7,4
31 0.45 6.6 0.13 7.1 30.1 0.35 0.10 0.81 0.95 8.1 0.20 5.9 37.8 0.36 0.01 1.36 0.37 7.2 0.13 7.7 33.1 0.37 0.02 1.36 0.34 10.8 0.18 11.4 38.9 0.42 0.18 0.14 2.06 0.59 19.1 0.23 16.6 36.4 0.46 0.14 2.08 0.34 11.9 0.12 14.6 27.8 0.40 0.06 2.85 16.2 0.20 14.8 27.8 0.33 0.05 3.85 0.53 16.2 0.20 14.8 27.8 0.33 0.05 3.85 0.39 14.6 0.15 18.5 42.1 0.50 0.05 1.86 0.39 17.7 0.18 18.4 38.9 0.50 0.05 1.38 0.19 7.0 0.68 4.8 31.4 0.34 0.01 1.34 0.35 0.05 0.05 0.05 0.05 0.05 0.05 0.05	SH 8.7 0.		0.79	0.18	6. 7	S	10.S	29.7	0.43	0.02	1.0
81 0.95 8.1 0.20 5.9 37.8 0.36 0.01 1.36 0.37 7.2 0.13 7.7 33.1 0.37 0.02 1.36 0.34 10.8 0.14 2.0 0.6 0.59 19.1 0.23 16.6 36.4 0.46 0.14 2.0 0.6 0.59 19.1 0.23 16.6 36.4 0.46 0.14 2.0 0.34 11.9 0.12 14.6 27.8 0.40 0.06 2.85 0.34 11.9 0.12 14.6 27.8 0.33 0.05 3.13 0.39 14.6 0.15 18.5 42.1 0.50 0.05 1.0 0.6 1.0 0.09 17.7 0.18 18.4 38.9 0.50 0.05 0.05 1.0 0.50 0.15 1.0 0.50 0.05 0.05	SH 8.5 0.		1.3	0,45	9	0.13	7.1	30.1	0.33	0.10	ი - ი -
36 0.37 7.2 0.13 7.7 33.1 0.37 0.02 1.4 46 0.02 1.0 0.19 11.4 38.9 0.42 0.18 0.19 0.14 2.0 0.14 2.0 0.14 2.0 0.14 0.14 2.0 0.14	SH 8.3 1.		2.81	0.95	9	0.20	დ დ	37.8	0,36	0.01	
46 0.34 10.8 0.18 11.4 38.9 0.42 0.18 0. 06 0.59 19.1 0.23 16.6 36.4 0.46 0.14 2. 98 0.34 11.9 0.12 14.6 27.8 0.40 0.06 2. 13 0.38 10.6 0.09 12.2 35.8 0.21 0.06 1. 13 0.38 10.6 0.08 12.2 35.8 0.21 0.06 1. 15 0.39 14.6 0.15 18.5 42.1 0.50 0.05 0. 1. 15 0.69 17.7 0.18 18.4 38.9 0.50 0.05 0. 0. 2. 21 1.01 6.0 0.68 4.8 31.4 0.34 0.01 1. 49 0.26 4.1 0.20 6.7 51.6 0.15 0.01 1. 49 0.26 4.1 0.20 6.7 51.6 0.05 0. 0. 40 0	SH 8.4 0.		1.36	0.37	7.2	0.13	7.7	33.1	0.37	0.05	
06 0.59 19.1 0.23 16.6 36.4 0.46 0.14 2. 98 0.34 11.9 0.12 14.6 27.8 0.40 0.06 2. 85 0.53 16.2 0.20 14.8 27.8 0.33 0.05 3. 13 0.38 10.6 0.08 12.2 35.8 0.21 0.06 1. 86 0.39 14.6 0.15 18.5 42.1 0.50 0.05 0. 15 0.69 17.7 0.18 18.4 38.9 0.50 0.06 2. 21 1.01 6.0 0.68 4.8 31.4 0.34 0.01 1. 49 0.26 4.1 0.20 6.7 51.6 0.15 <0.01 0. 89 0.19 7.0 0.15 13.1 51.0 0.17 0.02 0. 42 0.23 9.0 0.16 15.8 39.6 0.26 <0.01 0. 51 0.31 8.0 0.24 12.0 51.4 0.35 <0.01 0. 51 0.34 9.6 0.23 13.7 40.8 0.25 <0.01 0. 64 0.34 9.6 0.23 13.7 40.8 0.25 <0.01 0. 65 0.72 24.7 0.34 24.7 44.7 0.39 0.02 2. 68 0.72 24.7 0.34 24.7 44.7 0.39 <0.01 0.	SH 8.3 1.		1.46	0.34	10.8	0.18	11.4	38.9	0.42	0.18	
98 0.34 11.9 0.12 14.6 27.8 0.40 0.06 2.85 0.53 16.2 0.20 14.8 27.8 0.33 0.05 3.13 0.38 10.6 0.08 12.2 35.8 0.21 0.06 1.08 0.39 14.6 0.15 18.5 42.1 0.50 0.05 0.15 0.69 17.7 0.18 18.4 38.9 0.50 0.05 0.05 1.01 6.0 0.68 4.8 31.4 0.34 0.01 1.00 0.26 4.1 0.20 6.7 51.6 0.15											

Fort Collins, Co 80523 Date: 1/26/89

Soil Analysis Report

# 4	Sample ID#	Sand	Silt	Clay	Texture	Total S	504-5	CaCO3	Acid- Base Potential *
1 	55-65	25	11 1 1	17	75	0.02	0.002	9	5.4375
R4030	65-75	3	3	ç	υ 	600	0.00	n u	11,125
K4U31 R4032	75-85 85-95	4 ¥	4 01	, <u>u</u>	ار 50	36.0	0.003	ນ 4 ດ ເນ	44.15625
R4033	95-105	99	13	21	ᅜ	0.02	0.003	す	23.46875
R4034	105 - 115	62	4	2 4	SCL	0.01	0.003		19, 78125
R4035	ភ្ជ	35	7	4	201	0.05	0.008	יס	7,6875
R4036	125-135	m	85	37	ٍ ت	0.0	0.00	មា រ	24.03125
R4037	32	28	8	4	ರ	0.01	0.003	4	23, 78125
R4038	ξį.	40	2	4	ე ე	0.03	0.006	ø	25.25
R4039	ŝ	28	12	99	SCL	0.05	0.002	-	30.4375
R4048	Ď					0.01	0.003	ø	15, 78125
R4049	ģ	24	유	45	ഠ	0.05	0.002	Œ	7.4375
R4056	Ö	42	2	99	占	<0.01 0.01	<0.001	0	믒
R4060	य्य	8	~	18	ൃ	0.28	0.001		-3.71875
R4061	ល់	34	4 51	24		0.16	0.001		7.03125
R4062	225-235	28	ග	4	105	0.02	<0.001	1.8	15.8125
R4063	ហ៊ុ	4	~	4	ഗ്ഗ	0.08	0.002	o 0	6.5625
R4064	ψ	28	10	33	S S	0.02	<0.001	D 5	6.8125
R4065	ıΰ	4	16	8	<u>ე</u>	0.02	<0.001	1.1	9.4375
R4066	ឃុំ	36	8	44	ധ	0.01	<0.001	1.5	14.6875
R4067	垃	28	24	48	ப	0.02	<0.001	1.0	7.8125
R4068	ΪĎ	25	12	36	ე <u></u>	0.02	0.001	 	18,40625
		11 11 11 11 11 11							

Soil Analysis Report

į	1
Ü	j
	1
ı	1
٤	
ί	
Č	=

吕	E: 5H			n					i ! !	; ; ; ; ;		 	 	
				oaste			 		 		88-0ТРЯ	[PA	ZM KC1	- 1100 - 1100 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110 - 1110
Lab	Sample	Lith	玉	E.C.	e C	Ω	n Z	¥	SAR	Sat	<u>aa</u>	Ş	N-EON	Lab
#	#OI			mmhos/ca	-	meq/l	4/1		1	×	MGG	n	mdd.	# !
				! !		· · · · · · · · · · · · · · · · · · ·		i - - -						
63888	60-70	ᄯ	7.8	0.9	2.67	1.76	ເນ ເນ	₹	e.	32.5	0.46	0.07	4.0	R3999
R4001	80-90	퍐	8.2	2.0	2.21	1.69	16.4	₫	11.7	34.1	0.22	0.08		R4001
R4002	90-100	돐	-	1.2	0.11	0.08	12.0	0.12	39.1	24.1	0.24	0.03	 E.:	R4002
R4003	100-110	돐		1.3	0.08	0.06	14.3	12	53.0	21.9	0.28	0.11		R4003
R4004	110-120	ਮ ਨ		2.4	0.12	0.13	23.1	16	66.0	23.4	0.36	0.16		R4004
R4007	140-150	ᅜ	o,	1.8	0.06	0.04	18.9	8	84.5	77.5	0.34	0.18		R4007
R4008	150-160	당		~.√	0,05	0.03	17.5	8	87.3	187.6	0.44	0.09		R4008
R4009	160-170	Ϋ́ Ε		1.8	0.05	0.04	18.6	10	87.2	63.1	0.36	0.15	0.7	R4009
R4017	240-250	Ŧ	6	2	1.16	0.44	23.8	17	26.6	58.1	0.37	0.24	0.9	R4017
R4021	280-290	Ŧ.		2 9	0.53	0.43	22.8	10	32.9	36.0	0,34	0.20	6	R4021
R4022	290-300	Ŧ	9.1	2.2	0.31	0.56	21.4	5	32.5	35.9	0.27	0.14	2.0	R4022
R4025	395~405	£	9.2	2.0	0.34	0.46	20.5	2	32.5	38.9	0.38	0.17	1.7	R4025

Soil Analysis Report

lab #	Sample ID#	Sand	Silt x	Clay	Texture	Total S	1 1	S04~5 CaC03	Acid- Base Potential *
							1		THE AND THE
R3999	60-70	4	22	æ	占	0.0	0.0		4.875
R4001	80-90	79	ው	12	ᅜ	0.22	0.007		12.34375
R4002	90-100	9	19	7	201	0.08	0.002		8.5625
R4003	100-110	54	21	ស្ល	SCL	0.04	0.003		8.84375
R4004	110-120	4	28	58	7	0.04	0.007		15.96875
R4007	140-150	9.4 4.6	98	83	占	0.04	0.012		14.125
R4008	150-160	40	ĸ	33	ರ	0.03	0.009	5,2	51.34375
R4009	160-170	4	33	92	_	0.03	0.006		20.25
R4017	240-250	16	36	4	ப	0.02	0.013		12,78125
R4021	280-290	18	93	40	O	0.03	0.006		6.25
R4022	290-300	99	19	42	ပ	0.04	0.002	в С	6.8125
R4025	395-405	99	2 8	44	ں	0.06	0.002	6.0	7.1875

Sail Analysis Report

규	-
	•
	j
Ę	;
Į	-
-	4

_	_	1	! !													
₹ 22	N-EON	mdd	ŀ													
AB-DTPA	B	wdd	1 1 1 1 1													
	Sat		24.9	34.5	32.3	17.6	29°B	18.7	18.7	20.5	21.0	24.4	24.2	47.6	44.1	64.2
	SHS		27.8	27.0	14.3	6.8	20.3	53.8	53.8	45.4	46.1	28.9	52.3	28.2	63.8	12.7
	¥	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.7	0.0	0.4	e. O	6.0	4.0	0.2	0.2	5	0.1	0.2	о И	0 N	0.4
	ro Z	meq/1	18.8	19.6	7.0	3,6	17.3	28.5	17.2	15.5	18,3	10.6	20.5	12.3	28.1	12.2
	Ē		0.4	വ		0.2	0.6	ლ ე	0.1	⇔ .1	0.1	0.1	0.1	с О	0.2	1.1
	ت ت		0.5	9.0	0.5	0.4	0 8	0.3	0.1	0.2	0.2	0.5		0.1	0.2	0.7
paste	ш С	mmhos/cm	1.9	1.9	8.0	0.7	1.5	1.6	1.5	1.5	1.7	1.0	1,9	1.0	2.1	1.0
d	품.	i	8.5	. 9	9.0	œ	ю Э	е Э	в. Э	8.2	8.2		დ	9.9	8.8	9.1
1	Lith	1	1	占	占	占	占	R	돐	돐	ᅜ	돐	£	R	돐	돐
	Sample	#0.I	215-220	220-222	222-225	225-227	227-230	230-235	235-240	240-245	245-250	240-245	245-250	295-300	300-305	305-310
	Lab	#	6548	6549	6550	6551	6552	6553	6554	6555	6556	6582	6583	6593	6594	6595

Soil Analysis Report

Lab	Sample	Sand	5:14	Clay	Texture	Total S	504-5	CaC03	Heid Base
#	1		- X			i i 			Potential
6548	215-	32	28	4	בעכר	0.02	<0.001	2.2	22.10
6549	220-222	20	8	44	ပ	0.02	0.001	2.1	20,53
6550	222-225	20	99	박	ပ	0.02	*	3.1	ж
6551	225-227	52	2	89	SCL	0.01	0.002	1.8	17.76
6552	227~230	58	89	4	ပ	0.03	0.001	2.5	24.53
6523	230-235	89	10	22	<u></u> 25	0.06	0.005	1.2	12.36
6554	235-240	89	60	58	, 135	0.09	0.003	0.9	6.33
6555	240-245	6.4	8	58	걼	0,06	0.002	0.9	7.86
6556	245-250	90	10	99	, 135	0.06	0.001	0.8	7.53
6582	240~245	46	2 8	28	2C 7	0.07	0.002	0.7	7.06
6583	245-250	26	8	74	ᅜ	0.08	0.005	2,7	22.06
6593	295-300	24	18	28	ပ	0.09	<0.001	1.0	10.00
6594	300-305	24	15	9	ပ	0.08	0.001	0.0	8,33
6595	205-210	ų,	74	UP.	5/5		0	ر د	رن دري

Soil Analysis Report

į	j
	•
į	_
į	I

LITH CODE:	IDE: SH					! ! !		 	! ! !		1	1	1 1 1 1
		1 1 1									RB-01PA	Hd	2¥ KC1
Lab	Sample	Lith	- 표.	щ. С.	ස	Æ	m Z	¥	SHR	Sat	œ	S,	N-CON
# !	#QI		 - - - - -	mmhos/cm			meq/l			 			EQC
6596	310-315	1	9.1			-		0.1	70.1	94.0			
6597	315-320	ᄯ	9.0	3.0	0.4	1.0	43.4	0	51.3	36. 2			
6598	320-325	돐	9.1	•				0,2	48.2	111.0			
6605	355-360	돐	9.1					0.2	26.6	60.9			
9099	360-365	뜻	9.0	6.0				0.3	11.3	46.3			
6607	365-370	돐	9.9	1.6					24.0	39.2			
6608	370-375	뜻	9.5	1.2				0.1	23.9	20.0			
6099	375~380	풊	9.1	1.0				0.3	9.6	108.7			
6610		뜻	9.1	1.3				0.1	34.1	126.2			
6611		뜻	9.2	1.8				0.1	44.1	98.4			
6612		뜻	9.1	1.6				0.1	46.1	83°			
661		ᅜ	9.1	1.3				0.1	32.0	94°.5			
6659	400-405	占	8.2	ດ.ນ				0.2	5.2	21.9			
6660	405-410	占		9.0				0.2	4.4	30.2			
YARMMI 12	' - ALL SAMPLES	ES ====	## ## ## ##						 	ii II II II	#		
	!												
	Minimum		2	0.50	5	8	3.30		2.80	17.60	0.15	0.1	<0.01
	Maximum		10.00	3.20	2.81	1.76	43.40	ي	105.4	187.6	0.53	0.24	6.40
	Mean		28	1,45	62	സ്	15.06	ø	34.10	49.06	0.33	0.03	1.70
	S. Deviation		57	0.55	4	ឃ្ល	6, 79	Ö	24.49	28.94	0.09		1.57
	<u></u>		8	87.00		9	97.00	0	87.00	97.00	60.00		59.00
		11 11 11 11					: 	 					

Soil Analysis Report

Lab Se	Sample IO#	Sand	5i1t	Clay	Texture	Total S	504-5	CaCO3	Acid- Base Potential *
6596 6597 6598 6615		8.48	848	288	* 550	0.03	* * * 0.002 0.002	,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	* * \$20.36
6606 6607 6608 6609 6610 6611 6612 6659 6659	360-365 365-370 370-375 380-385 385-390 390-395 395-400 400-405	4 7 8 8 4 4 8 8 8 9 4 4 8 8 8 9 8 9 9 9 9 9	47784888888888	44888888888	50 C C C C C C C C C C C C C C C C C C C	0.01 0.02 0.03 0.03 0.02 0.02 0.02	0.002	0.4	20.46 40.73 16.03 19.06 11.49 17.96 20.33 4.43
SUMMARY - ALL Mini Maxi Mean S. D	. ALL SAMPLES Minimum Maximum Mean Mean S. Deviation N	114.00 80.00 41.64 15.96	2.00 50.00 24.11 11.64 84.00	12.00 60.00 34.30 9.84 9.84	::: ::::::::::::::::::::::::::::::::::	<0.010.450.050.0785.00	<0.001 0.02 .00 .00 .00	0.20 5.20 1.69 0.92 85.00	-3.72 51.34 15.18 9.88

APPENDIX D-3 OVERBURDEN/INTERBURDEN GEOCHEMICAL SUMMARY STATISTICS

LITH CODE : GR

pH E.C.	Na K SAR Sat Bpp	
4	6 0.10 1.6 23.2 0.	18 <0.01
8.4 0.5 1.42	7 0.08 3.7 20.5 0.	K.
	2 0.19 3.7 27.1 0.	19 <0.01
	4 0.58 2.8 23.7 0.	20 <0.01
	7 0.97 1.7 35.2 0.	50 <0.01
	7 0.71 2.4 28.6 0.	34 <0.01
	2 0.81 3.3 43.0 0.	39 <0.01
	5 0.09 3.9 22.6 0.	15 <0.01
o.0	9 0.05 3.2 23.0 0.	10 <0.01
6.0 6.	0 0.08 3.0 28.4 0.	17 <0.01
.2 0.3	6 0.06 3.5 21.3 0.	11 <0.01
	3 0.02 3.1 21.7 0.	16 <0.01
.1 0.3	0 0.02 3.3 32.4 0.	06 <0.01
.2 0.4	3 0.08 4.1 24.2 0.	26 <0.01
.2 0.5	3 0.08 6.2 18.2 0.	26 <0.01
.2 0.5	2 0.19 5.5 22.4 0.	24 <0.01
.8 0.9	6 2.33 3.2 26.4 0.	12 <0.01
.8 1.6	0 0.57 13.9 24.2 0.	34 <0.01
.6 0.3	0 0.57 13.9 24.2 0. 2 0.03 3.4 29.1 0.	72 0.01
9.08	2 0.03 3.4 29.1 0.00 13.5 36.8 0.	43 O O4
e. 0	0 0.57 13.9 24.2 0.2 0.03 3.4 29.1 0.9 0.30 13.5 36.8 0.	יי יי
m	0 0.57 13.9 24.2 0.00 0.30 13.5 36.8 0.4 0.06 3.4 26.7 0.00	13 <0.01
	0.57 0.03 0.06 0.06 0.05 0.05	0.10 <0.01

R4028 45-55 87 4 9 LS <0.01	# #	Sample ID#	Samd	Si1t	Clay	Clay Texture	Total S	504-5	CaC03	Acid- Base Potentia
20-30 81 7 12 SL 0.02 <0.001	R4028	45-55	28	4	6	1.5	<0.01	<0.001	0.3	3.000
10-20 0.01 <0.001	R4041	20-30	81	~	12	ᅜ	0.05	<0.001	0.5	4.375
20-30 84 2 14 L5/SL 0.04 <0.001	R4050	10~20					0.01	<0.001	0.2	1.688
30-40 40-50 78 2 20 SCL/SL 0.01 <0.001	R4051	20-30	84	۲3	학 [L5/5L	0.04	<0.001	1.2	10.750
40-50 78 2 20 SCL/SL 0.01 <0.001	R4052	30-40					0.01	6.001	0.2	1.688
50-60 84 2 14 LS/SL <0.01	R4053	40-50	78	Ŋ	20	SCL/SL	0.01	<0.001	0.2	1.688
10-20 80 4 16 SL <0.01	R4054	20-60	8	Ŋ	7	L5/SL	<0.01	0.001	0.3	3,031
20-30 86 2 12 LS 0.01 <0.001	R4072	10-20	8	4	16	억	<0.01	<0.001	0.2	2.000
30-40 82 2 16 SL 0.01 <0.001	R4073	20-30	8	Ø	12	5	0.01	<0.001	0.2	1.688
40-50 80 4 16 SL 0.01 <0.001	R4074	30-40	82	Ŋ	16	ᅜ	0.01	<0.001	0.2	1.688
50-60 80 2 18 SL <0.01	R4075	40-50	80	4	16	걱	0.01	<0.001	0.2	1.688
60-70 84 2 14 L5/5L 0.01 0.001 0.3 70-80 76 6 18 5L 0.01 <0.001 0.2 80-90 68 13 19 5L 0.01 <0.001 0.2 90-100 72 12 16 5L 0.01 <0.001 0.4 20-30 88 3 9 L5 0.02 <0.001 0.7 30-40 78 12 10 5L 0.08 0.003 0.3 40-50 90 2 8 5 0.07 <0.001 1.6 50-60 38 18 44 C 0.01 <0.002 0.5 25-35 89 1 10 L5 0.03 <0.001 0.4 35-45 91 0 9 5 0.03 <0.001 0.5	R4076	20-60	80	(/I	18	ᅜ	<0.01	<0.001	0.3	3,000
70-80 76 6 18 SL 0.01 <0.001	R4077	60-70	94	~ i	14	L5/5L	0.01	0.001	0.3	2.719
80-90 68 13 19 SL 0.01 <0.001 0.2 90-100 72 12 16 SL 0.01 <0.001 0.4 20-30 88 3 9 LS 0.02 <0.001 0.7 30-40 78 12 10 SL 0.08 0.003 0.3 40-50 90 2 8 5 0.07 <0.001 1.6 50-60 38 18 44 C 0.01 0.002 0.5 25-35 89 1 10 LS 0.03 <0.001 0.4 35-45 91 0 9 5 0.03 <0.001 0.5	R4078	20-80	76	o	18	ᅜ	0.01	<0.001	0.2	1.688
90-100 72 12 16 SL 0.01 <0.001	R4079	06-08	99	13	19	ᅜ	0.01	<0.001	0.2	1.688
20-30 88 3 9 L5 0.02 <0.001	R4080	90-100	22	12	16	걱	0.01	<0.001	0.4	3.688
30-40 78 12 10 SL 0.08 0.003 0.3 40-50 90 2 8 5 0.07 <0.001 1.6 50-60 38 18 44 C 0.01 0.002 0.5 25-35 89 1 10 LS 0.01 <0.001 0.4 35-45 91 0 9 5 0.03 <0.001 0.5	R3985	20-30	88	ო	ים	LS	0.02	<0.001	٥.٧	6.375
40-50 90 2 8 5 0.07 <0.001 1.6 50-60 38 18 44 C 0.01 0.002 0.5 25-35 89 1 10 LS 0.01 <0.001 0.4 35-45 91 0 9 5 0.03 <0.001 0.5	R3986	30-40	78	12	10	ᅜ	0.08	0.003	е. О	0.594
50-60 38 18 44 C 0.01 0.002 0.5 25-35 89 1 10 LS 0.01 <0.001 0.4 35-45 91 0 9 5 0.03 <0.001 0.5	R3987	40-50	8	7	6	w	0.07	<0.001	1.6	13.813
25-35 89 1 10 LS 0.01 <0.001 0.4 35-45 91 0 9 5 0.03 <0.001 0.5	R3988	20-60	88	18	44	ں	0.01	0.002	ი. ი	4.750
35-45 91 0 9 5 0.03 <0.001 0.5	R4026	25-35	68	-	10	2	0.01	<0.001	0.4	3.688
	R4027	35-45	91	0	ው	ហ	0.03	<0.001	0.5	4.063

LITH COD	E : GR	1	#= 0;- 4;0 np == 0 to						i i 1	; ; ;			ere entre
1		1							i ! ! ! !		AB-0TPR	Bd	
요 #	Sample ID#	Lith	Н	C. s/cm	r	Mg meq/l-	e Z	노 .	SHR	Sat	8	Se	NO3-N ppm
R 6505	0-5		9	0.5	0.4	0.1	1	0.1		30.6			
	5-10	쫎	9.2	1.4	9.0	0.3	13.7	0.2	20.3	59.4			
6507	10 - 15	95 25	œ.	0.7	0.4	0.2	7.2	0.1		35.2			
6508	15-20	쫎			0.1	₽.	 9	Q.1	_	32.6			
6203	20-25	8			0.5	0.2	2.1	0.1	-	33.8			
6510	25-30	95 25	9,6	0.3	0.4	0.6	1.7	0.1	2.4	34.2			
6511	30-35	쏪			0.1	0.1	2,3	6.1	_	33.5			
6512	35-40	<u>6</u> 2			0.1	0.1	2.8	0.1	_	33.7			
6644	0-5	2 5			0.4	0.1	0.5	0.1	10.53	23.4			
6645	5-10	<u>9</u> 5			5.6	1.9	4.2	Ţ.	2.	14.8			
6646	10-15	5 5			0.5	0.1	2.0	0.1	Э, 4.	29.7			
6647	15-20	GR	9.0		0.2	0.1	1.6	0 .5	_	30.9			
6648	20-25	GR GR			0.2	0.1	2.1	<u>0.5</u>	_	28.0			
6649	25-30	8			0.2	0:1	1.9	0.1	о 2	31.9			
6650	30-35	д			0.3	0,1	4.	0.1	-	31.5			
6651	35-40	8			e.0	0.1	ო ო	0.1	-	25. 9			
6652	40-45	CY CY		0.3	0.2	0.1	1.9	0.1	_	32.9			
6653	45-50	땅			0.2	0.1	en en	0.1	_	30.6			
6654	55-60	2		0.3	0.3	ტ. წ	, V	0.1	7.2	31.8			
6655	60-65	a a			0.	0.1	1.8	т С	œ m	ø			
6656	65-70	쓚			0.2	⇔ .5	0.7	†		32,6			
6657	75-80	쓚	4.8		e. 0	0.1	1.9	0.2	4.0	m			
6658	- 1	(e, 0	0.4	0.8	ი ი	2. 4.	0.2	n T	33.2			
SUMMARY		SHMPLES					***************************************			# # # # # # # #	# # # # # #		
	Minimum		6.40	0.20	0.10	<0.1	0.70	<0.1	1.61	14.80	0.06	<0.01	
	Maximum		8.70	1.60	5.60	2,34	15.04	2.33	20.30		0.72	0.04	•
	Mean		8.04	0.49	0.76	0.41	3.43	0.25	5.66		0.25	~0.0 1	1.40
	S. Devi	Deviation	0.52	0.32	0.91	0.51	2.78		3.96	7.16	0.15	0.0	1.27
	z		44.00	44.00	44.00	44.00	44.00	44.00	44.00	44.00	22.00	22.00	21.00
	الله الله الله الله الله الله الله الله	## ##		*** *** *** *** *** *** *** *** *** **	W 1884 1884 1884 1887 1887 1887 1884 1884		1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t				 		

- Gp#	2#	Sand	5i1t %	Clay	Clay Texture	Total S	504-5	CaC03	Acid- Base Potential	x
8 6505 9-7-8 6506 50-7-9 6506 50-7-9 6509 50-7-9 6509 50-7-9 6509 50-7-9 6649 50-7-9 6659 6550 6550 6550 6550 6550 6550 655			li li	32 10 0 0 0	******************	* • • • • • • • • • • • • • • • • • • •	* * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	* 0.00000	* * * 3 4 4 5	
		38.00 98.00 82.20 12.54 26.00	0.00 18.00 4.59 4.43 26.00	0.00 44.00 13.18 9.13 26.00	1) 11 14 14 14 14	0.08 0.08 0.02 0.02 42.00	<pre><0.001 0.003 <0.001 <0.001 <1.000 </pre>	0.10 1.60 0.28 0.29 39.00	0.060 13.813 2.263 2.584 38.000	11 11 11 11

Tsdaka Overburden

					1		 		 		0-98	TPB	ZM KC1
Lab #	Sample ID#	Sample Lith ID#	玉	E.C. mmhos/cm	C.a	Mg e	Na q/1	ч	SAR	Sat %	B bb		N-80N Wdd
11 11 11 11 11 11	## ## ## ##		## 		} } } } 								
R4042	30-40	S		9.0	1.04	0.37	B		6.9	19.1		<0.01	1.4
R4043	40-50	3		0.4	0.20	0.08	4		13.2	19.5		40.01	1.1
R4044	50-60	S		0.7	0.64	0.25	8.4		12.6	27.9		<u>6</u> .01	0.8
R4045	60-70	S		1.1	0.84	0.33	12.3		16.0	28.4		<0.01	
R4046	70-80	S	8	1.4	1.24	0.51	13.8	0.07	14.8	34,2	0.25	0.0	0.5
R4047	06-08	S		1.5	0.79	0.44	14.7		18.7	29.4		<0.01	0.7
	,	,											
SUMMARY	SUMMARY -Tsdaka Overburd	Overburde	ii u				11 11 11 11 11		11 				
_	linimum		B 5	4.0	0.2	0.1	4.9	0.	6.9	19.1	0.15	<0.01	
<u>.</u>	Maximum		9.9	1.5	1.2	5	14.7	0.1	18.7	34.2	0.27	6.01	
<u> </u>	lean		8	1.0	о. О	0.3	10.0	0.1	13.7	26.4	0.21	6.01	6.0
VI	5. Deviat	tion	0.1	0,4	о. Э	0.1	3.8	0.	9	ر 4	0.05	<0.01	
<u> </u>	z		6.0	6.0	9.0	6.0	6.0	6.0	6.0	6.0	6.0	6.00	
1													

Tsdaka Överburden

Lab +	Sample ID#	Sand	5i1t	C1ay	Texture	Total S	504-5	Cac03	Roid- Base Potential *
				 	## 			ii 11: 11: 11: 11: 11: 11:	
R4042	30-40	80	6	12	강	0.01	<0.001		11.69
R4043	40-50	8	!~	10	2	<0.01	<0.001	0.6	6.00
R4044	20-60	71	7	17	ᅜ	0.01	0.001		4.72
R4045	60-70	2	10	尺	75/105	0.01	0.002		11.75
R4046	70-80	99	4	20	20L/5L	<0.01	0.003	2.8	28.09
R4047	90-90	74	11	15	당	<0.01	0.002		55.06
SUMMARY - Tsd	- Tsdaka Overburden	urden =							
	Minimum	66.0	7.0	10.0		<0.01	<0.001	0.5	4.7
	Maximum	83.0	14.0	20.0		0.01	0.003	n, n	55.1
	Mean	74.0	10.3	15.7		0.01	0.001	2.0	19.6
	S. Deviation	n, o,	₹	9. B		0.01	0.001	1.7	17.6
	z	5.0	5.0	5.0		e. n	6.000	6.0	6.0
				11					### (First Sect. S

* - tons CaCO3/1000 tons material

Wishbane Overburden

		1		stro	•					•		TPH	公交
- ab	Sample	Lith	<u></u> 품.	<u>.</u> П	۵	Đ	Ž,	¥	SHR	Sat	œ.	B N	N-EON
- 1	- 1			MADOS/CI			4/1			×	4	B	₩ dd
					! ! !	1 1 1 1	ł 		· · · · · · · · · · · · · · · · · · ·		; ; ;		
R3989	60~70	3	4.6	1,1		0.16	11.7			-		0.12	11.0
R3990	<u>8</u>	S	8	т С	0.37	0.19	14.4	0.18	27.3	S3.0	0.44	0.14	3.6
R3991	06-08	8	8.7	1.3		0.30				-		0.10	
R3992	90-100	S	8 .0	1.2		o.29				_		0.16	
R3993	100-110	8	8. 7	1.3		0.12		0.14				0.10	
R3994	110-120	8	8	1.4		0.06				-		0.13	
R3995	120-130	S	60	1.3		0.06				-		0.15	
R3996	130-140	3	9.8	7.4		0.10	17.3			-			1. 6
R3997	140-150	8		1.6		0.07		0.14				0.17	
YOUNG	Climmady -Wishbons Duert				ii 		11 11 11 11	## ## ## ##	# # # # !!	#######################################	11 11 11 11	# # # # !!	
			; ;										
	Minimum		8. 4	1:1	0.1		11.7	0.1	23.8	31.4	0 4	0.1	
	Maximum		6 0	1.6	4.0			0.5	59.6	59.0	0.7		
	Mean		69.7	1.3	0.5			0.1	41.4	8			•
	S. Deviatic	Ĕ	0	0.1	0.1	0.1	0 ن	o.	14.2	6.0	0.1	•	Э. О
	Z		0.0	9.0	9.0			9.0	9. D	9.0	9.0	9.0	

Mishbone Overburden

tab #	Lab Sample # ID#	Sand	5i1t 2	C1ay	Texture	Total	504-5	CaCO3	Acid- Base Potential *
	60.0-70.0 70.0-80.0 80.0-90.0 90.0-100.0 100.0-110.0 120.0-130.0 130.0-150.0	010 010 010 010 010 010 010	94 422 422 724 89	320 22 22 22 22 22 22 22 22 22 22 22 22 2	Poocoori	0.000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	1.1 1.0 0.7 0.9 1.0 1.1 1.1 2.3	10.72 9.72 6.75 8.72 10.00 7.41 10.69 15.69 23.03
SUMMARY -W	-Wishbone Overburden Minimum 5.0 Maximum 30.0 Mean 12.7 S. Deviation 7.0 N 9.0	5.0 30.0 12.7 7.0 9.0	27.0 42.0 34.2 4.2	32.0 59.0 53.1 7.9 9.0		60.01 0.02 0.01 0.01 9.00	CO. 001 O. 002 O. 001 O. 001 9. 000	2.3 1.2 0.5	6.8 23.0 11.4 4.8 9.0

* - tons CaCO3/1000 tons material

Jonesville Overburden

		1		paste						٠	RB-DTPA	TPR	2M KC1
Lab #	Sample ID#	Lith	표 표	E.C. mmhos/cm		וים	Na q/1		SAR	Sat %	B	Se.	1 € !
			[] 		i i 			 		 			
R3954	29.8-38.7	ᅜ							2.7	26.4	0.29	0.11	
	38.7-42.8	SS	7.8								0.26	0.34	
	42.8-51.3	Ţ	_							36.4	0.24	0.0	
	51.3-60.0	50	_								0.24	0.03	
	60.0-70.0	ស	ლ დ	0.6	2.39	0.82	2,7	0.31	2.1	35.2	0.42	0.03	0.2
	70.0-80.0	ស							_		0.24	0.03	-
R3960	80.0-82.8	돐							_		0.18	0.16	
	;	•	•										
SUMMARY	SUMMARY -Jonesville Uver	₹	Jurden										
Σ	linimum			0.5					1 0	26.40	0.18	0.04	0.10
Σ	Maximum			6.0					20		0.42		
Σ	Mean		8.0	0.7	1.83	0.49	4.47	0.63	4.48	30.46	0.27	0.11	
Ŋ	S. Deviation	2		0.1					8		0.07		
Z	_			7.0					8		7.00	7.00	

Jonesville Overburden

Lab *	Sample ID#	Sand	5i1t	Clay	Texture	Total	504-5	Cac03	Acid- Base Potential *
R3954 29. R3955 38. R3956 42. R3957 51. R3958 60.	29.8-38.7 38.7-42.8 42.8-51.3 51.3-60.0 60.0-70.0	24 4 4 5 E 5 E 5 E 5 E 5 E 5 E 5 E 5 E 5	22 44 19 19 19	33 3 33 1 33 3 33 1 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	00 00 00 00 00 00 00 00 00 00 00 00 00	0.00	0.003 0.002 0.002 0.002	0.4.0.9.9.9 8 8 9 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	8.03 17.16 8.75 68.75 20.78
R3959 R3960	70.0-80.0	3 8 7		28]] 	0.08	0.003	1.7	14.56
SUMMHKT	- Jonesville Minimum	overburden 34.0	 8.0	18.0		<0.01	0.001	8.0	8.0
	Maximum Mean	73.0	24.0 15.4	99.00 99.00		0.08	0.003	n n n n	68.8 22.5
		12.8	6.2	7.0	n ter /m= use que cas ces == == ==	7.00	7.000	7.0	19.4

* - tons CaCO3/1000 tons material

Premier Overburden

		1 1 6 1 6 1 7 1		 	: 					BB	TDA	2M KC1
e e	-1	H.	E.C. mmhos/cm	Can l	Mg	Na 1-1-1-1	ν	SAR	Sat	B Se	%	NO3-N
 	## 			H H H H H			il 11 11 11 11					
	Ŧ	7.7				6.0			31.4	0.34	0.01	1.1
	ហ្គ	\				6. 9		9	33.8	0,32	0.01	4.0
	ហ្គ	7.5				6.0		₹.	38.0	0.30	<u>0.01</u>	0.5
	H72	280 7.7				⊳ .e		ς, Θ	37.6	0.21	0.05	0.1
	I	8.1				ლ ლ			20.7	0.21	6.0 1	4.0
	표	8				8 .0		_	ж Ж	0.50	0,02	1.4
	Ŧ	69				ر			29.7	0,43	0.02	1.0
	I	ω, ω				6.6		7.1	30.1	0,35	.0. 0.10	0.3
	I	.00				8.1		ιν O	37.8	0.36	0.01	1.1
105-115 5	I	8.4	9.0	1.36	0.37	7.2	0.13	7.7	33.1	0.37	0.05	1.5
	I	т С				10.8		11.4	38.9	0.42	0.18	4.0
	표	9.				19.1		16.6	36.4	0.46	0.14	ر. م
	王	9.				11.9		14.6		0.40	0.08	2. U
	Ŧ	60	1.8					14.8		0.33	0.02	ъ.°
	Ŧ	B	1.0					12.2		0.21	0.06	 B
ന	ហ៊	В	1.5			15.3		33.9	29°51	0.13	0.08	₽.1
_	ហ្គ	œ.	1.2					45.1		0.32	0.15	0.1
	ហ៊	8.8						26.55 55	93.4	0.40	0.08	0.1
ហ	เงิ	ю. В	1.5			14.4		29.6	77.0	0,39	0.11	△.1
	ĭ		6.			18.0		37.0	æ. ₩.	0,53	0.14	0.2
^	닖	9.1	1.9			17.4		20.9	29.4	0.40	0.05	ณ เร
_	넒	80	1.0			11.5		19.3	25.B	0.46	0.04	2, 9
G	SS	٧.	1.5			12.8		œ	25.4	0.47	0.03	
ហ	۳	8.1	ص ص			9.1		4.	24.5	0.40	0.06	5,2
8	Ñ	, c	1.9			9.7		4.1	25.8 8	0.38	0.0	△.1
œ	占	7.	1.3			8.1		4.9	30.8	0.30	0.26	٠,

Premier Overburden

# # H	
Acid- Base Potenti	30.00 128.03 56.84 56.84 11.13 11.13 11.13 12.73 12.73 13.03 14.01 15.03 15.03 15.03 15.03 15.03 15.03 15.03 15.03 15.03
Cacoa	6.4.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6
504-5	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Total S	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
Texture	
Clay	888877
Silt	221 8 8 8 4 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
Sand	24.00.00
Sample 10#	
ii 20 i	R4056 R4056 R4059 R4059 R4030 R4033 R4033 R4033 R4033 R4033 R4039 R4039 R3961 R3978 R3978 R3983 R3983 R3983

Premier Overburden

											AB-DTPA	2¥ KC1
Lab	Sample	Lith	五.	E.C.	C e	Ē	Mg Na	¥	SHR	Sat	CO	N-80N
- 1	#17	 	- i	### XSOU###					1:	 		
1	! !]	8.3	2.8	l wo	0.3	26.4	0.7	39.8	19.8		
5535	150-155	ᅜ	. 9	1.9	0.4	0,2	20.7	0.4	39.9	21.9		
5536	155-160	ᅜ	10	2.1	S	0.5	24.3	0.1	40.1	22.4		
5537	160-165	정	8.5	2:2	0.5	e. O	26.0			23.7		
5538	165-170	서	Э	1.9	0.8	1:1	26.5			20.3		
5539	170-175	젃	<u>ထ</u>	2.0	.3	0,1	24.7	e. O		24.7		
5540	175-180	ᅜ	9.6	2.1	4.0	e.	48.7			23.6		
5541	180-185	ᅜ	9.8	٥.٦	0.1	0,2	е. Э	0.2	16.2	19.7		
5542	185-190	ᅜ	9.6	1.5	0.4	0.6	15.7			21.6		
5543	190-195	성	ហ	9.0	0.2	0, 2	ر 0	0.2		23.4		
5544	195-200	짓	9,1	1.8	4.0	0.1	19.1	0.3	36.B	15.9		
5545	200-210	ᅜ	9.0	0.7	0.1	0.1	6.4	0.2	18.1	20.0		
5546	210-215	ᅜ	9.0	r. 9	0.4	о Э	25.2	0,4	43.3	19.1		
5547	215-220	ᅜ	9.0	1.4	о. Э	0.2	15.8	6. 0	32.4	19.6		
6548	220-225	꺿	9 2	1.2	7.0	D. 4	11.6	o.s	15.2	22.1		

Premier Overburden

Lab *	Sample 10#	Sand	Silt	Clay	Texture	Total S	504-5	E00 8 0	Hoid- Base
 	1 1 1		***************************************	1	***************************************				
6534	1	46	26	28		0.01	0.001	1.1	10.83
6535	150~155	36	32	32	占	0.02	<0.001	7.5	11.60
6536	155-160	42	界	8	占	0.02	0.001	1.8	17.83
6537	160-165	34	9 ,	35	占	0.01	0.001	1.5	14.63
6538	165-170	46	8	8	SCL	0.02	<0.001	1.8	18.40
6233	170-175	36	32	32	占	0.02	0.001	1.2	12.33
6540	175-180	# (C)	%	35	占	0.02	0.002	 	13, 16
6541	180-185	48	24	28	205	0.05	<0.001	ູນ	56.30
6542	185-190	4	8	32	占	0.03	0.001	1.6	16.23
6543	190-195	40	8	8	占	0.01	0.001	Ю	37.23
6544	195-200	09	18	23	SCL	<0.01	0,001	18.1	181.03
6545	200-210	40	8	32	占	<0.01	0.001	Z, 3	73.13
6546	210-215	40	24	83	강	0.01	0.001	*	ж
6547	215-220	44	28	28	ದ	0.02	0.001	ν. 4	59.83
6548	220-225	32	5 8	4	C/CL	*	0.002	2.6	*

Premier Overburden

				aste							AB-DTPA	
Lab ab	Sample	Lith	핕	С.	n e	Σ	Ŕ	¥	SHR	Sat	B	N-EON
	OI			mmhos/cm		ē !	4/1		1	~	wdd	bbm
6548	11	ដ	9.5	1.9	0.5	0.4	18.8	0.7	27.8	24.9		
6549	220-222	占	ю Э	1.9	0.6	5	19.6	0.8	27.0	34.5		
6550	222-225	占	8.6	0.8	0.2	о Э	7.0	0.4	14.3	32.3		
6551	225-227	겁	9	0,7	4.0	0.2	3.6	ლ ი	6.8	17.6		
6552	227-230	ರ	9	.5	8.0	9.0	17.3	6.0	20.3	29.B		
6553	230-235	<u>F</u>	Э	1,6	0.3	0.3	28.5	0.4	23°8	18.7		
6554	235-240	ፚ	Э	1.5	0.1	0.1	17.2	0.2	53°B	18.7		
6555	240-245	돐	9	1.5	0.2	<u>0.1</u>	15.5	0.2	45.4	20.2		
6556	245-250	<u>F</u>	8	1.7	0.2	0.1	18.3	0.5	46.1	21.0		
6582	240-245	ᄧ	ω 4	1.0	0,2	0.1	10.6	0.1	28.9	24.4		
6583	245-250	돐	Θ 0	1.9	0.2	0.1	20.2	0.2	52.3	24.2		
6593	295-300	돐	о С	1.0	0.1	9	12.3	0.2	28.5	47.6		
6594	300-305	ጙ	8	2.1	0.2	0.2	28.1	0.2	63.8	44.1		
6595	305-310	퓻	0	1.0	0.7	1.1	12.2	0.4	12.7	64.2		

Premier Overburden

.		Sand	Silt 	Clay	Texture	Total S	504-5	CaCO3	Rcid- Base Potential *
	215	32	28	40	CZCL	0.02	<0.001	2.2	22.10
6549	220222	20	38	44	ပ	0.02	0.001	2.1	20.53
6550	222-225	20	8	44	ഠ	0.02	×	т т	*
6551	225-227	52	8	88	SCL	0.01	0.002	69	17.76
6552	227-230	5 8	2 8	44	ப	0.03	0.001	, S	24.53
6553	230-235	68	<u>=</u>	R	705 201	0.06	0.005	1.2	12,36
6554	235-240	89	ත	89	, 135	0.09	0.003	6.0	9,39
6555	240-245	49	œ	8	, 13	0.06	0.002	9.0	7.86
6556	245-250	9	10	믒	, 13	0.06	0.001	0.8	7.53
6582	240-245	46	8	8	<u>5</u> 5	0.07	0.002	0.7	7.06
6583	245-250	56	20	₹	205	0.08	0.005	2,2	22.06
6233	295-300	24	18	8	ပ	0.09	<0.001	1.0	10.00
6594	300-305	24	16	9	C	0.09	0.001	0.8	8.33
6595	305-310	3 6	24	4	C/C	0.45	0.001	2.6	25.53

Premier Overburden

Premier Overburden

de.#	Sample ID#	Sand	5i1t	Clay	Texture	Total S	504-5	CaC03	Acid- Base Potential
######################################	310		 		 	0.09	 	2.3	
6597	315-320	86	8	32	占	<0.01	×	2.5	×
6598	320-325	40	24	36	占	<0.01	0.002	2.0	20.36
6505	355-360	30	20	S	ပ	0.04	0.001	2.2	21.93
9099	360-365	4	14	46	ပ	0.18	0.002	2,0	20.46
5607	365-370	10 44	12	ě	강	0.14	0.001	4.1	40.73
6608	370-375	32	38	32	占	0.04	0.001	1.6	16.03
6099	375-380	36	ф ф	8	占	0.04	0.002	1.9	19.06
6610	380-385	42	32	99	_	0.03	0.003	1.4	14,49
6611	385-390	40	æ	8		0.03	0.002	1.8	18.46
6612	390-395	52	8	8	SCL//SL	0.02	0,002	1.8	17.96
6613	395-400	52	2 6	22	55	0.02	0.001	2.0	20.33
6659	400-405	26	20	24	것	<0.01	0.001	0.4	4.43
6660	405-410	4	8	9. 4.	겁	ж	0.001	ж	ж

Premier Overburden

											AB-DTPA	2M KC1
± - + + + + + + + + + + + + + + + + + + +	Sample ID#	Lith	¥.	E.C. mmhos/cm	Ca	Mg Pem	Na 1/11/p	y	SAR	Sat	B Se	N-EON bp-
11						11			14			
	40-45	ᅜ	о О	٠. 9	е О	-	е Э	0.1				
	45-50	ᅜ	9.4	0.4	1.1	0.4	2.0			•		
	50-55	ᅜ	8.4	0.6	1.1	0.9	9.B	0.5		21.6		
	55-60	정	8.3	0.7	1.2	0.8	9.9	5	3.9	34.6		
	60-65	ൃ	ლ დ	0.0	0.8	0.5	3.1	0.4		30.9		
6518	65-70	식	დ ო	9.0	0.9	0.5	ф.	0.4	4.0	32.1		
	70-75	ൃ	е Э	0.5	9.0	о. Э	ci Ci	ი ე	4.8	32.4		
	75-80	ൃ	9.4	0.7	0.7		5.6	0.4	6.9	25. 57		
	80-85	ᅜ	Ω. 4.					0.4	6.7	29.0		
	85-90	ᅜ	9.4				9.6	0.4	14.7	27.1		
	90-95	ᇧ	œ.	0.9	5	е О	7.2	0.4	11.7	26.9		
	95-100	억	4				7,3	о Э	16.1	23 3		
	100-105	서	6 3	1, 12	o. 4	0.2	11.4	о Э	22.0	23.8		
	105-110	여	8.1	2.0	0.7		18.0	0.6	22.9	21.2		
	110-115	ਯੀ	<u>ထ</u> က	1.3	4.0		13.3	0.3	22.1			
	115-120	ᅜ	8.4	1.8	4.0	ر د ا	20.3	e. D		26.2		
	120-125	어	9,4	2.0			21.7	O.	45 6			
	125-130	어	ю Э	, 10 10			25.1	5				
	130-135	ᅜ	8.4	1.5		0.2	17.0	о. Э		24.3		
	135-140	서	യ വ	 		0.1	13.7	0.2	31.5	23.5		
	140-145	ᅜ	Ω, 4.	1.6		0.1	17.6	о Э		20.2		

Premier Overburden

Lab	Sample	Sand	Silt	Clay	Texture	Total S	504-5	CaC03	Acid- Base
									Potential :
6513	9		! !	i 1 1 1	*******	<0.01	 	0.5	
6514	45-50	10	88	S	ပ	0.03	0.002	0.8	8.26
6515	50-55	20	18	8	J J	<0.01	0.001	14.0	140,13
6516	55-60	18	8	44	ပ	0.01	0.001	m m	32,53
6517	60-65	26	9 .	4	כייבר	0.01	<0.001	1.6	16.20
6518	65-70	18	æ	4	۵	0.02	<0.001	1.4	14.00
6219	70-75	18	38	44	۵	0.02	<0.001	1.2	11.60
6520	75-80	8 8	82	98	ದ	0.01	0.001	15.5	155.23
6521	80-85	24	8	4	10/0 C/C	0.01	0.001	1.6	16.43
6522	85-90	22	,	4	ப	0.02	0.001	7.4	14.13
6523	90-95	æ	æ	4	r C/C	0.02	0.001	1.6	15.53
6524	95-100	98	Đ.	æ	占	0.01	0.001	1.2	12, 33
6525	100-105	4.	8	83	占	0.01	0.001	1.3	12.73
6526		48	8	7	SCL/L	<0.01	<0.001 0.001	6.2	62.00
6527	$\dot{\Box}$	æ Ø	9	絽	ಕ	<0.01	0.001	1.6	15.73
6528	ı'n	æ	90 30	33	占	0.02	<u> </u>	1.3	13.00
6259		38	32	8	占	0,02	6.001	ν.	27.00
6530	125-130	8 8	32	윤	占	0.02	0.001	1.1	10.63
6531	ó	98	9. 4	28	겁	0.01	0.001	1.3	12.32
6532	ι'n	38	32	8	ದ	0.01	<0.001	1.2	11.50
6233	140-145	44	58	8	占	0.01	0.001	1.0	9.93

Premier Overburden

; ; ; ; ;				paste							RB-0TPA	2M KC1
~~	Sample IO#	.ㅂ 九	<u>표</u>	E.C. mmhos/cm	C	Mg	Na q/1	x	SHR	Sat	B Se	N-EON FPP
6590	280-285	55	9.1	1.3	0.2	0.1	13.8	0.1	32.1	98.6		
6591	285-290	ស្ល	9.0	2.6	0.3	0.1	28.6	0.1	67.1	•		
6299	325-330	SS	9.0	1.4		0.1	14.7	0.1	43.0	115.1		
6600	330-332	SS	9.0	1.0	0.2	0.5	10.7	0.2	18.0	101.9		
1099	335-340	55	9.1	1.3		0.4	12.9	0.1	22.0	116.3		
6602	340-345	SS	υ, (7	 e.:		9.0	15.0	e. O	22.9	132.9		
6603	345-350	22	9.2	1.3		0.4	13.6	0.2	22.9	121.3		
6614	400-405	55	9,0	1.4		0.1	14.7	0.1	43.0	115.1		
6615	405-410	SS	0 0	1.0		0.2	10.7	0.2	18.0	101.9		
6616	410-415	SS	9.1	1.3	о Э	0.4	12.9	0.1	22.0	116.3		
6617	415-420	55	9.	1.3		0.6	15.0		22.9	132.9		
6618	420-425	SS	o,	1.3	0.3	0.4	13.6	0.2	22.9	121.3		
6614	400-405	ស	9.2	T.3	0.1	0.4	14.2	0.1	27.8	20.0		
6615	405-410	SS	e, e,	1.2	0.2	S	12.1	0.1	21.4	82.4		
6616	410-415	55	9, 12	1.2	0.1	0.1	13.1	0.1	39.B	25.55		
6617	415-420	25	ტ ო	0.9	0.1	0.2	a, m	0.1	24.0	83.8		
6618	420-425	55	9.	1.1	0.1	0.1	16.1	0.1	47.2	66.2		
6619	425-430	SS	<u>ი</u>	1.1	0.1	0.2	12.9	0.1	33.1	129.1		
6620	430-435	22	ω Ω	0.0	0.2	0.2	9.0	0.2	20.5	116.9		
6621	435-440	SS	o,	0.7	0.2	e. O	۳. س	0	14.5	108.0		
6622	440-445	SS	4.6	6.0	0.2	4.0	10.2	0.1	18.6	125.1		

Premier Overburden

. i.i	
Acid Base Potent	150.8 20.03 20.03 17.63 18.23 23.03 18.23 18.23
Caco3	* * * * * * * * * * * * * * * * * * *
504-5	* 0 * * * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total S	* 6.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
Texture	87
C1ay	226666666666666666666666666666666666666
Silt Z	%
Sand	42%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Sample ID#	280-285 285-290 325-330 330-335 330-335 340-345 340-345 400-405 400-405 410-415 410-415 420-425 420-425 430-435 440-445
# #	6590 6591 6591 6601 6602 6602 6614 6617 6618 6618 6618 6618 6618 6618

Premier Overburden

mddpbw	139.1 115.9 144.3 150.5 124.7 130.2 139.7 96.4
X	14.2 139.1 10.5 115.9 10.4 144.3 9.9 125.4 20.0 124.7 20.4 130.2 23.3 139.7 26.5 96.4
	000000000000000000000000000000000000000
meq/1-	0.3 0.8 0.9 0.3 0.3 0.7 0.5 0.1 0.1 0.3 0.3 0.3 0.3 0.3 0.3
0.2	
mmhos/cm ====================================	7.000.1 7.000.1 6.000.1
	, o,
85 S S S S S S S S S S S S S S S S S S S	ស្រស្សស្រុស
ID# ====================================	465-470 470-475 475-480 480-485 415-420
H	6629 6630 6630 6617

Premier Overburden

*	
Acid- Base Potential	16. 33 18. 53 19. 13 17. 03 18. 53 18. 53 19. 70 111. 43 11. 53 11. 53 125. 03 125. 03
CaC03	11.1
504-5	0.0000000000000000000000000000000000000
Total S	
Texture	
Clay	**************************************
5i1t 2	44447007000 0 0 4471 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sand	00004034477754344078473844444
Sample IO#	445-450 455-460 460-465 460-465 460-465 470-475 470-475 420-420 430-435 435-440 440-445 455-460 530-535 535-540 115-120 115-120 115-120 135-140
# #	6623 6624 6627 6629 6629 6629 6629 6619 6619 6621 6641 6669 6669 6669

Premier Overburden

		 							† † - -	! ! !	BA-NTPA		Z KC
- 	Sample ID#	Lith	<u>+</u>	E.C. mmhos/cm	Ca 	Mg	Na rq/1	y	SAR	Sat		. W	N-EON
6549	220-222	서	₩.	0.7		O.	6. 9	0.4		17.1			
6550	245-250	ч	9.1	2.0	0.8	9.0	23.9	0.5		22.1			
6568	300-305	ᅜ	ლ დ	2, 0	9.0	0.6	30.4	0.1	38.3	18.0			
6570	310-315	ᅜ	0	2.6	0.5	ლ ი	32.8	0.4		19.8			
6584	250-255	ᅜ	9.0	1.4	0.2	0.1	14.9	0.1	40.7	24.4			
6585	255-260	억	9.7	 	0.2	0.1	17.3	0.1	46.B	35.B			
6586	260-265	식	9.0	4.4	0.2	0.2	14.8	0.2	34.0	34.2			
6587	265-270	ᅜ	9.9	1.4	0.2	0	15.0	0.1	43.4	59.2			
6588	270-275	식	9.1	1.8	0.2	6.1	21.9	0.1	70.7	56.6			
6283	275-280	ᅜ	9.	2.0	0.2	0.1	23.3	0.1	61.3	91.4			
6592	290-295	떣	0.0	2.8	о Э	0.1	31.6	0.2	72.5	43.7			
6604	350-355	ᅜ	9.2	1.4	0.2	0.2	14.4	0.1	32.3	94.6			
SUMMARY	' - Premier O	lverbur	den :::			1(11 11 11 11		[] [] [] [] []	11 11 11 11 11	#1 #1 #1 #1		11 11 11 11	
	Minimum		6.40	0.20	0.10	<0.1		Η.	10	14.80	0.13	<0.01	<0.01
	Maximum		9.50		7.98	4.78		9	9	151	0.53	0.26	6.40
	Mean		8.59		0.60	0.41	12.67	0.30	24.64	44.16	0.36	0.07	1.51
	5. Deviation	_	0.47		1.05	0.65		44	8	33,47	0.09	0.06	1.80
	z	- •	204.0		204	204.0		0.	o.	204.0	26.0	26.0	26.0

Premier Overburden

Lab #	Sample IO#	Sand	5i1t 2	Clay	Texture	Total S	504-5	CaC03	Acid- Base Potential *
6549 6556 6556 6570 6584 6585 6585	<i>∨</i> 1 4 🗅 → លេល ប	30 0 0 0 0 1 4 4 0	00440077	4 8 8 4 4 9 C C	ឧសន្តនាន	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0000000000000000000000000000000000000		19.06 20.08 33.03 65.66 18.93
6588 6589 6589 6592 6604 SUMMRRY -	270-270-270-290-350-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8	34 42 46 38 5burden	36 18 36	35 38 38 38 38	,998- -	0.09 10.09 10.09	0.002	2.9	
Minia Maxia Mean S. De	Minimum Maximum Mean S. Deviation N	10.00 98.00 49.98 18.69	0.00 44.00 20.30 10.13 183.0	0.00 60.00 27.34 10.24 183.0	 	<pre><0.01 0.40 0.03 0.05 196.0</pre>	<pre><0.001 0.010 0.001 0.002 185.0</pre>	0.10 10.10 2.53 2.97 191.0	0.06 101.03 23.67 30.22 177.0

Midway Overburden

	جود الجود بوات كرام المام ا المام المام الم	11 		oaste				## ## ## ##	# # # #		II I	TPB	2M KC1
Lab #	w	نه	표	E.C. mmhos/cm	Ca	Mg mer	Na 1/1	У	SAR	Sat	8	95 	NO3-N
						16 45 41 41			11 11 11 11 11				
R3962	190.4-200.0	돐		1.0		8	11.0						0.1
R3963	200.0-210.0	Ŧ5	8 8	1.5	0.12	0.08	16.9	0.18	52.6	33 .9	0.22	0.03	e. o
R3964	210.0-214.5	ᄯ		ស		6	15.8			_			9.0
R3965	214.5-224.2	것		2.1		20	21.3			_			0.6
R3966	224.2-225.9	퍇		1.5		8	17.1			-			٥.٦
R3967	225.9-226.9	占		2,5		63	24.1			-			4.0
R3968	226.9-227.3	IR		2.1		2	23.1			-			4.0
R3969	227.3-236.7	Ψ.		1.3		띥	15.1			_			0.2
R3970	236.7-245.0	SS		1.4		133	15.7			_			0.1
R3971	245.0-253.2	22		2.0		16	20.7			-			0.1
R3972	253.2-260.0	胀		3.2		47	26.4						40. 1
R3973	260.0-267.6	ᄯ		1.8		6	18.6			_			6 .1
R3998	20-60	CL605H				8	6.8			_			0.1
R3999	60-70			0.9		26	ហ ហ			_			4.0
R4000	70-80	CD555H		0.5		68	2.6			-			4.0
R4060	205-215	H5		0,5		8	4.1			_			0.2
R4061		뜻		0.7		13	7.0						o .
SUMMARY	- Midway	Overburds	Ċ.		11	## ## ## ## ## ##	;;; ;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;					## ## ## ##	
	1												
	Minimum		-	-	0.05	ee	_						
	Maximum		_	-	7.5 3	8	_		-				
	Mean		_	_	0.87	4	_		_				
	S. Deviation	E	0.42	0.70	1.77	0.71	7,21	0.83	20.46	88.89	0.16	50.0	23
	z	-			18.0	8			-	_			

Midway Overburden

R3962 190.4 R3963 200.0 R3964 210.0	# 01	Sand	5i1t	Clay	Texture		504-5	CaC03	Base Potential *
	90.4~200.0	E 9	0 11 11 11 11 11 11 11 11 11 11 11 11 11	29	SCL	0.09	0.001	1.1	8.22
	00.0-210.0	25	o,	34	SCI	0.04	<0.001	1.7	15.75
	10.0-214.5	വ്	(i)	Ж ф	SCL	0.02	0.001	1.9	18.41
	14.5-224.2	4	12	42	ᅜ	0.04	0.002	6.1	17.91
	24.2-225.9	₹	on.	46	C/5C	0.02	<0.001 0.001	<u>.</u>	14,38
	25.9-226.9	82	G	16	7	0.01	0.003	18.7	186.78
	26.9-227.3	92	6	ដ	ሪ	<0.01	0.002	7.3	73.06
	27.3-236.7	4	2	32	SCL	0.03	<0.001	1.6	15.06
	36, 7-245, 0	10 40	17	23	SCL	0.01	0.001		10.72
	45.0-253.2	S	19	æ	201	0.02	0.005	J.	9.53
	53.2-260.0	27	4 5	31	ದ	0.18	0.002		-3.47
	60.0-267.6	₩ 4	13	74	Ų	90.0	0.002		9.19
	50.0-60.0	26	13	25	201	0.01	0.010		5.00
	60.0-70.0	40	22	38	占	0.04	0.004		4.88
	70.0-80.0	88	ហ	10	รา	0.36	0.001		-10.22
	205-215	8	N	18	占	0.28	0.001		-3,72
	215-225	학	4 (1	24	اــ	0.16	0.001		7. U3
SUMMARY -	Midway OVerb	0Verburden==	***************************************						
	ı	; ; ;					Ç	0	
Σ	Minimum	27,00					, usi		
Z X		54.00					0.002	2 4	
: ທ	S. Deviation	16.65	11.07	10.33		0.10	0.003	4.35	44.54
Z	_	18.00					18.00	18.00	

* - tons CaCO3/1000 tons material

Eska Overburden

			ste							AB-D	TPR	Z KCI	
유#	Sample Lith IO#	퓚	E.C. mmhos/cm	e l	Mg meq/l	e Z	x	SPR	Sat %	B Se	Se	N-EON BDB	
		## ## ## ## ## ##					# !!						
R4020	270-2805H	ტ ლ	1.9	0.28	0.29	19.6		36.8	34.9		0.12	1.7	
R4021	280-2905H	9.1	G	0.53	0.43	22.8		32.9	36.0		0.20	2.6	
R4022	290-300SH	9.1	2.2	0.31	0.56	21.4	0.29	32.5	35.9	0.27	0.14	7.0	
R4023	300-31055	9.0	2.1	0.37	0.56	22.6		33, 1	40.2		0.15	1.1	
R4024	310-320SS80CD	9.0	2.7	0.33	0.60	26.5		38°9	36.4		0.13		
R4067	285-2955H	9.1	2,2	1.28	0.72	24.7		24,7	44.7		0.05	2.7	
R4068	295-3055H	8.2	1.0	0.42	0.29	12.7		21.5	39.0		6.01		
R4069	305-3155H90B0	4.6	0.7	0.28	0.16	9.7		18.5	52.5		<u><0.01</u>		
R4070	325-3355H	8.7	2.1	1.64	0.74	24.3		22.2	47.1		0.02		
R4071	335-3455H	9.0	2.7	1.17	0,64	30.4		31,9	44.6		0.04		
R4082	110-1205H	9.7	1.2	0.13	0.03	16.7		50.3	43.0		0.03		
R4083	120-1305H	9.6	1.2	0.07	0.03	12.7		56.9	59.8		0.06	თ ო	
R4084	130-140SH	ტ ტ	1.5	0.06	0.04	13.1		59.2	74.4		0.0		
R4085	140-150SH	9.7	1.5	0.90	0.35	16.8		21.3	63.9		0.15		
R4086	150-1605H	9.8	1.2	0.39	0.20	17.0		31.2	55.7		0.10	m T	
R4087	160-170SH	10.0	1.4	0.04	0.05	13.9		82.2	91.2		0.16	 9	
R4088	170-180SH	10.0	1.7	0.36	0.17	15.5		30.0	88.9		0.13	ນ. 1	
R4089	180-190SH	თ. თ	1.6	0.34	0.17	17.3		34.4	87.4		0.17		
R4090	190-2005H	10.0	1.7	0.05	0.05	17.9		94.9	107.0		0.22	4.7	
R4091	200-2105H	10.0	1.5	0.06	0.05	18.6		91.2	96.6		0.21	6.1	
R4092	210-220SH	9.9	1.5	0.04	0.01	16.6		105.4	72.2		0.19	♥. 	
SUMMARY	- Eska Overburden	len sass		11		#			#	***************************************			
	Minimum	8,10	0.70	0.40	0.01		9	11.74			<0.01	0.20	
	Maxisco	10,00	3.50	2.21	1.69		4 (√i	105.43			0.31	6.80	
	Mean	9.24	1.77	0.38	0.27		14	48.89			0.12	2.67	
	S. Deviation	0.50	0.52	0.47	0.3	4 79	0.03	25.81	30.16	0.0¢	0.07	1.95 50	
	z	40.00	4C. UC	40.00	40.UU		3	÷ 0.00				70.00	

Lab #	Sample ID#	Sand	5ilt	7	Texture	Total S	504-5	CaC03	Acid- Base Potential	
 	אינה ליונה ליונה לעולה לעולה לעולה החוף מינה משום מנונה לאונה לאונה פניי לאונה ליונה לעולה (מולה משום מונה מנונה									
R4020	270.0-280	94	32	9 ,	占	0.01	0.003	N	20.78	
	280.0-290	18	33	4	ப		0.006	0,7	6.23	
	<u>-</u>	<u>6</u>	19	4.5	ದ	0.04	0.002	0.8	6.81	
	300.0-310	41	22	37	占	0.04	0.003	1.8	16.84	
	310.0-320	<u>ლ</u>	98	33	占		0.006	1.7	16.89	
	285-295	8	24	₩	ല	0.07	<0.001	1.0	7.81	
	295-305	52	12	8	25		0.001	1.9	18.41	
	305-315	2 6	12	32	SCL		<0.001	2.0	17.81	
	325-335	8	문	යි	ப		<0.001	1.1	9.50	
	335-345	8	#	46	u		<0.001	7.	13.38	
	110-120	æ	23	66	占		0.005	ر. ت	24.84	
	120-130	8	37	3	占	0.01	0.002	э. 1	31.06	
	130-140	99	41	æ	ದ		0.012	1,4	14.38	
	140 - 150	13	44	ਲ	占	0.01	0.019	2.1	21.28	
	150 - 160	98	4	8	占	0.01	0.002	1.8	17.75	
	160 - 170	29	44	æ	占	0.01	0.002	2.0	19.75	
	170 - 190	S S	47	Б	占	0.01	0.002	1.2	11.75	
	180 - 190	14	20	98	Sicl	0.01	0.003	1.2	11.78	
	190-200	18	46	38	SicL	0.01	0.006	1.3	12.88	
	200-210	S	44	#E	占	0.01	0.009	1.4	13.97	
	210-220	9	48	*	Sicl	0.03	0.003	1.3	12.16	
					•	ů	V	71000 to	ons materia	
SUMMARY -	Eska Overburden	burden:		11 11 11 11 11	######################################			11 11 11 11 11 11		
-	Minimum	14.00	9.00	12.00		<0.01	<0.001	09.0	5.25	
_	Maximum	79.00	50.00	55.00		0.22	0.019	5. 50	51.34	
•	Mean	38.23	29,58	31.18		0.03	0.003	1.73	15.53	
- 1 -		. 6 . 8 . 8	40.00	40.00		40.04	40.004	40.00	40.00	
				11						

Subesk	Subeska Overburden		# 	i	# # # #	i, i 1 1, 1,	! !		1 9 9 1	 	 		1 1 4 1 1 1 1 1
	,	•	P	ast	1						14	OTPR	2M KC1
_ !	w i	Lith	H.	E.C. mmhos/cm	Ca	M. 199	Na eq71		SAR	Sat	B bo	. Se	N03-N-04
						 	[11 11 11 11 11 11 11	## ## ## ## ## ##	
R5327	320-330	퓻					•				0.14		1.4
R5328	330-340	뜻	8	2.7	0.36	0.10	24.3	0.20	50.7	33.8	0.16	0.26	
R5329	340-350	ᄯ									< 0.01		1.8
R5330	350-360	굓					•				0.02		4.1
R5331	360-370	ᄯ	•							•	0.0		1.9
R5332	370-380	쟔									0.05		
R5333	250-260	퓻							103.3		0.06		2.1
R5334	260-270	쟔						•			0.08		
R5335	270280	ᄯ								•	0.04		
R5336	280-290	ᄯ							-		< 0.01		
R5337	290-300	돐							53.9		0.83		1.0
R5338	300-310	ᅜ									0.05		
R5339	310-320	S							-	•	0.07		
R5340	320-330	ស	9.						49° 3	141.1	0.22		
R5341	330-340	ស	9.1	ĸ							0.36		
R5342	340-350	S	о. 	t							0.36		
R5343	350-360	SS									0.39		
R5344	360-370	SS									0.39		
R5345	370-380	£							56.4		0.36		
R5346	380-390	돐	9.1	1.2		0.03	•	<0.01	51.5		0.23	0.13	
R5347	390-400	퓻		1.4					_•		0.17	***	
SUMMARY	- Subeska	Overburg	densa							16 11 11 11 11	! 		
						(•			(
	minimum minimum					n.02						0.03	
	Maximum					0.16						0.31	6.0
	W.					0.0	-					0.18	
	S. Deviation	_	0,2	7.0	0.11	0.03	o, o	0.07	18.3	48.1	0.14	0.07	1. ឆ
	z					21.0						21.0	
							11 11 11 11 11						

Subeska Overburden mmeeenmmmenmeenmmmeeenmmmeeenmmmeeenmmmeeenmmmmeeenmmmeeenmmmeeenmmmeeenmmmeeenmmmeeenmmmeeenmmmeeenmmeeenmmee

R5327 320-330 52 26 SCL 0.14 0.002 1.1 6.69 R5328 340-340 34 30 36 CL 0.07 0.004 4.3 15.94 R5329 340-350 46 24 30 5CL 0.01 0.002 5.7 57.06 R5330 350-360 47 25 28 5CL <0.01 0.002 5.7 57.06 R5331 350-360 34 36 5CL <0.01 0.002 5.7 57.06 R5334 260-270 34 36 CL <0.01 0.002 3.2 32.06 R5334 260-270 34 36 30 CL <0.01 0.002 4.5 57.06 R5334 260-280 49 27 5CL 0.01 0.002 4.9 4.9 5.2 4.0 8.0 4.0 8.0 4.0 8.0 4.0 8.0 4.0 8.0 <	Lab #	Sample IO#	Sand	5i1t) J	Texture	Total S	504-5	CaC03	Acid- Base Potential *
330-340	R5327		52	22	26		41.0	0.002		6.69
340-350 46 24 30 5CL 0.04 <0.001 4.3 350-360 47 25 28 5CL 0.010 0.002 5.7 370-380 30 34 36 CL 0.01 0.002 5.7 250-280 49 24 27 5CL 0.01 0.002 3.2 250-280 49 24 27 5CL 0.01 0.002 3.2 250-300 38 34 28 CL 0.01 0.002 3.2 300-310 40 36 24 27 5CL 0.01 0.002 4.9 27 5CL 0.01 0.002 4.9 310-320 36 38 24 CL 0.01 0.002 4.9 310-320 36 38 24 CL 0.01 0.002 7.9 310-320 56 18 24 5CL 0.01 0.002 7.9 310-350 62 14 24 5CL 0.01 0.002 7.9 350-360 61 17 22 5CL 0.01 0.002 7.9 350-360 62 14 24 5CL 0.01 0.002 7.9 350-360 62 16 22 5CL 0.01 0.002 7.9 360-390 62 16 22 5CL 0.01 0.003 3.7 50-390 7.9 60 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.	R5328	330-340	E	吊	99	占	0.07	0.00		15.94
350-360 47 25 28 5CL <0.01 0.002 5.7 360-370 32 24 44 C 0.01 0.008 2.7 370-380 34 36 5CL <0.01 0.008 2.7 550-260 34 36 30 CL <0.01 0.002 3.2 270-280 49 24 27 5CL 0.01 0.002 3.3 270-280 49 24 27 5CL 0.01 0.002 5.3 300-310 40 36 38 24 L 0.01 0.002 4.9 310-320 38 34 28 CL 0.01 0.002 4.9 310-320 36 38 26 L 0.01 0.002 5.2 310-320 56 11 17 22 5CL <0.01 0.003 0.14 1.8 350-360 66 11 17 22 5CL <0.01 0.002 6.2 350-370 56 11 22 5CL <0.01 0.002 7.9 310-350 62 14 24 5CL <0.01 0.002 7.9 310-350 62 14 24 5CL <0.01 0.002 7.9 310-350 62 16 22 5CL <0.01 0.002 7.9 310-350 62 16 24 5CL <0.01 0.002 7.9 310-350 62 16 22 5CL <0.01 0.003 3.7 50 50 50 50 50 50 50 50 50 50 50 50 50	R5329	340-350	46	24	읎	105	0.04	<0.001	4	41.75
360-370 32 24 44 C 0.07 0.008 2.7 250-380 30 34 36 CL 0.01 0.006 4.5 250-280 39 34 36 CL 0.01 0.005 4.5 250-280 49 24 27 5CL 0.01 0.002 5.3 2 20-280 49 24 27 5CL 0.01 0.002 4.9 20-300 38 34 28 CL 0.12 0.003 1.1 290-300 38 34 28 CL 0.10 0.003 2.2 300-310 40 36 24 C 0.10 0.003 2.2 300-310 40 36 24 C 0.01 0.005 2.9 310-320 38 36 38 26 C 0.01 0.005 2.9 310-320 58 18 24 5CL 0.01 0.002 4.6 320-330 62 14 24 5CL 0.01 0.002 4.6 350-360 60 18 22 5CL 0.01 0.002 7.9 370-380 54 22 24 5CL 0.01 0.002 7.9 390-390 62 16 22 5CL 0.01 0.002 4.4 390-390 62 16 22 5CL 0.01 0.002 18.5 370-380 54 24 5CL 0.01 0.002 18.5 370-380 55 370-380	R5330	350-360	47	53	83	SCL	<0.01	0.002	ν. ~	57.06
370-380 30 34 36 CL 0.01 0.006 4.5 250-260 34 36 30 CL <0.01 0.002 3.2 250-260 34 36 30 CL <0.01 0.002 3.2 250-260 34 36 30 CL <0.01 0.002 3.2 250-280 49 24 27 5CL 0.01 0.002 4.9 27 5CL 0.01 0.002 4.9 280-300 38 34 28 CL 0.01 0.003 1.1	R5331		35	5 4	44	ပ	0.07	0.008	2.7	25.06
250-260 34 36 30 CL <0.01 0.002 3.2 250-260 38 29 33 CL <0.01 0.002 5.3 270-280 64 9 27 5CL 0.10 0.002 5.3 280-300 38 34 28 CL <0.01 0.002 5.3 300-300 38 34 28 CL 0.10 0.003 1.1 290-301 40 36 28 CL 0.10 0.003 2.2 310-320 58 18 24 CL 0.01 0.003 2.2 330-340 61 17 22 5CL <0.01 0.002 6.2 340-350 62 14 24 5CL <0.01 0.002 7.9 350-360 62 18 22 5CL <0.01 0.002 7.9 360-370 54 22 5CL <0.01 0.002 7.9 380-30 62 16 22 5CL <0.01 0.002 7.9 380-30 62 16 22 5CL <0.01 0.002 18.5 370-380 62 16 22 5CL <0.01 0.002 18.5 370-380 84 24 5CL <0.01 0.002 5.9 Winimum 30 9 20 CCL/5L <0.01 0.002 5.9 Waximum 64 38 44 0.014 18.5 Wean 11 8 6 0.04 0.003 3.7	R5332		8	æ,	99	占	0.01	0.006	Մ	44.88
260-270 38 29 33 CL <0.01 0.002 5.3 270-280 49 24 27 5CL 0.01 0.002 4.9 280-300 38 34 28 CL 0.10 0.003 1.1 280-300 38 34 28 CL 0.10 0.003 1.1 310-320 36 38 24 L 0.03 0.005 2.9 310-320 36 38 24 CL 0.01 0.005 2.9 330-340 61 17 22 5CL <0.01 0.007 8.7 330-340 62 14 24 5CL <0.01 0.002 7.9 350-370 54 24 22 5CL <0.01 0.002 7.9 380-370 62 16 22 5CL <0.01 0.002 18.5 370-380 62 16 22 5CL <0.01 0.002 18.5 380-370 61 19 20 5CL/5L <0.01 0.002 18.5 380-370 61 19 20 5CL/5L <0.01 0.002 18.5 380-370 61 19 20 5CL/5L <0.01 0.002 5.9 380-370 61 19 20 5CL/5L <0.01 0.002 5.9 380-370 70 21 0.003 3.7 370-380 70 70 70 70 70 70 70 70 70 70 70 70 70	R5333		34	98	R	ರ	<0.01	0.002	3.2	32.06
270-280 49 24 27 5CL 0.01 0.002 4.9 280-290 64 9 27 5CL 0.12 0.003 1.1 290-300 38 34 28 CL 0.10 0.003 2.2 310-320 36 38 26 L 0.01 0.003 2.2 310-320 36 38 26 L 0.01 0.005 2.9 320-330 58 18 24 5CL <0.01 0.005 2.9 340-350 62 14 24 5CL <0.01 0.002 4.6 350-350 60 18 22 5CL <0.01 0.002 7.9 350-350 62 14 24 5CL <0.01 0.002 7.9 350-360 60 18 22 5CL <0.01 0.002 4.6 360-370 54 22 5CL <0.01 0.002 4.4 390-400 61 19 20 5CL/5L <0.01 0.002 7.9 380-390 62 16 22 5CL <0.01 0.002 7.9 380-390 62 16 22 5CL <0.01 0.002 7.9 380-390 62 16 22 5CL <0.01 0.002 18.5 390-400 11 19 20 5CL/5L <0.01 0.002 18.5 390-400 11 19 20 5CL/5L <0.01 0.002 7.9 380-390 64 38 44 0.014 18.5 30 3.7 3.7 3.9 3.7 3.9 3.7 3.9 3.7 3.9 3.7 3.9 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	R5334		88	53	93	ರ	6.01	0.002	ი ი	53.06
280-290 64 9 27 SCL 0.12 0.003 1.1 290-300 38 34 28 CL 0.10 0.003 2.2 300-310 40 36 24 L 0.01 0.003 2.2 300-310 40 36 24 L 0.01 0.005 2.9 310-320 36 38 26 L 0.03 0.014 1.8 320-330 58 18 24 SCL <0.01 0.007 8.7 330-340 61 17 22 SCL <0.01 0.007 8.7 330-340 62 14 24 SCL <0.01 0.002 4.6 350-370 54 22 SCL <0.01 0.002 4.6 360-370 54 22 SCL <0.01 0.002 4.6 360-370 54 22 SCL <0.01 0.002 7.9 380-390 62 16 22 SCL <0.01 0.002 4.4 390-400 61 19 20 SCL/5L <0.01 0.002 5.9 370-380 30 9 20 <0.01 <0.004 5.0 Mean 48 24 27 0.03 0.004 5.0 Mean 51 21 8 6 0.004 0.003 3.7 No 21 00 21 0.0 1 0.0	R5335		4	\$	22	얺	0.01	0.002	4.	48.75
290-300 38 34 28 CL 0.10 0.003 2.2 300-310 40 36 24 L 0.01 0.005 2.9 310-320 36 38 26 L 0.03 0.014 1.8 320-330 58 18 24 5CL <0.01 0.005 2.9 340-350 62 14 24 5CL <0.01 0.002 7.9 350-360 60 18 22 5CL <0.01 0.002 7.9 350-360 60 18 22 5CL <0.01 0.002 18.5 370-380 54 24 22 5CL <0.01 0.002 18.5 370-380 62 16 22 5CL <0.01 0.003 3.7 370-380 70 70 70 70 70 70 70 70 70 70 70 70 70	R5336		4	ው	23	ડ 당	0.12	0.003		7.94
300-310	R5337		æ	E	89	占	0.10	0.003		18.97
310-320 36 38 26 L 0.03 0.014 1.8 320-330 58 18 24 5CL <0.01 0.007 8.7 330-340 61 17 22 5CL <0.01 0.002 6.2 340-350 62 14 24 5CL <0.01 0.002 7.9 350-360 60 18 22 5CL <0.01 0.002 7.9 350-370 54 22 24 5CL <0.01 0.002 7.9 360-370 54 24 22 5CL <0.01 0.002 7.9 380-390 62 16 22 5CL <0.01 0.002 7.9 380-390 62 16 22 5CL <0.01 0.002 7.9 380-390 61 19 20 5CL/5L <0.01 0.002 7.9 380-390 64 39 20 <0.01 0.002 1.1 11 11 11 11 11 11 11 11 11 11 11 11	R5338		4	38	24	_	0.01	0.005		28.84
320-330 58 18 24 5CL <0.01 0.007 8.7 330-340 61 17 22 5CL <0.01 0.002 6.2 340-350 62 14 24 5CL <0.01 0.002 6.2 340-350 60 18 22 5CL <0.01 0.002 7.9 350-360 60 18 22 5CL <0.01 0.002 7.9 360-370 54 22 24 5CL <0.01 0.002 18.5 370-380 54 24 22 5CL <0.01 0.002 18.5 370-380 62 16 22 5CL <0.01 0.002 7.9 380-390 61 19 20 5CL/5L <0.01 0.002 7.9 390-400 61 19 20 5CL/5L <0.01 0.002 5.9 390-400 61 19 20 5CL/5L <0.01 0.002 5.9 390-400 64 38 44 0.14 0.014 18.5 62 62 62 62 62 62 62 62 62 62 62 62 62	R5339		36	æ	92	_	0.03	0.014		17.50
330-340 61 17 22 SCL <0.01 0.002 6.2 340-350 62 14 24 5CL <0.01 0.002 7.9 350-360 60 18 22 SCL <0.01 0.002 7.9 360-370 54 22 24 SCL <0.01 0.002 18.5 370-380 54 24 22 SCL <0.01 0.002 7.9 380-390 62 16 22 SCL <0.01 0.002 7.9 380-390 61 19 20 SCL/5L <0.01 0.002 5.9 390-400 61 19 20 SCL/5L <0.01 0.002 5.9 Winimum 30 9 20 <0.01 <0.001 1.1 Waximum 64 38 44 0.14 0.014 18.5 S. Deviation 11 8 6 0.004 5.0 No 21 00 21 00	R5340		85 28	18	4	<u> </u>	<0.01	0.007		87.22
340-350 62 14 24 5CL <0.01 0.002 7.9 350-360 60 18 22 5CL <0.01 0.002 4.6 360-370 54 22 24 5CL <0.01 0.002 18.5 370-380 54 24 22 5CL <0.01 0.002 18.5 370-380 62 16 22 5CL <0.01 0.002 7.9 380-390 62 16 22 5CL <0.01 0.002 7.9 390-400 61 19 20 5CL/5L <0.01 0.002 5.9 37 - Subeska Overburden ====================================	R5341		5	17	ß	S J	<0.01	0.002		62.06
350-360 60 18 22 5CL <0.01 0.002 4.6 360-370 54 22 24 5CL <0.01 0.002 18.5 370-380 54 24 22 5CL <0.01 0.002 18.5 380-390 62 16 22 5CL <0.01 0.002 7.9 390-400 61 19 20 5CL/5L <0.01 0.002 5.9 Winimum 30 9 20 <0.01 <0.001 1.1 Maximum 64 38 44 0.14 0.014 18.5 S. Deviation 11 8 6 0.04 5.00 No 21 00 21 00	R5342		62	14	24	<u>2</u> 5	<0.01	0.002		79.06
360-370 54 22 24 5CL <0.01 0.002 18.5 370-380 54 24 22 5CL <0.01 0.002 7.9 380-390 62 16 22 5CL <0.01 0.002 7.9 380-390 61 19 20 5CL/5L <0.01 0.002 4.4 38 44 0.14 0.014 18.5 Mean 64 38 44 0.14 0.014 18.5 S. Deviation 11 8 6 0.04 0.003 3.7 S. Deviation 11 8 6 0.04 0.003 3.7 S. Deviation 11 8 6 0.04 0.003 3.7 S. Deviation 11 8 6 0.004 5.0 S. Deviation 11 8 6 0.003 3.7 S. Deviation 11 8 6 0.004 5.0 S. Deviation 11 8 0	R5343		8	18	22	汉	<0.01	0.002		46.06
370-380 54 24 22 5CL <0.01 0.002 7.9 380-390 62 16 22 5CL <0.01 0.002 4.4 390-400 61 19 20 5CL/5L <0.01 0.002 5.9 5.9 5.9 5.9 50-400 61 19 20 5CL/5L <0.01 0.002 5.9 5.9 5.9 50 5CL/5L <0.01 0.002 1.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	R5344		5	22	24	것	<0.01	0.002		
380-390 62 16 22 5CL <0.01 0.002 4.4 390-400 61 19 20 5CL/5L <0.01 0.002 5.9 3Y - Subeska Overburden ====================================	R5345		Ž.	75	S ₂	ડ	6.01	0.002		
390-400 61 19 20 SCL/5L <0.01 0.002 5.9 2Y - Subeska Overburden ====================================	R5346		62	16	2	ડ	60.01	0.002	प प	
- Subeska Overburden ====================================	R5347		61	19	2	SCL/5L	.0.0 1	0.002	ທ່	•
Minimum 30 9 20 <0.01 <0.001 1.1 Maximum 64 38 44 0.14 0.014 18.5 Mean 48 24 27 0.03 0.004 5.0 S. Deviation 11 8 6 0.04 0.003 3.7 No. 21 00 21 00 21 00	YOUNG IN	Sibacks	t. rapri	ii 11 11 11 11 11		16 #1 11 11 11 11	11 12 13 14 14			
30 9 20 <0.01 <0.001 1.1 64 38 44 0.14 0.014 18.5 48 24 27 0.03 0.004 5.0 ition 11 8 6 0.04 0.003 3.7)))	j j							
64 38 44 0.14 0.014 18.5 48 24 27 0.03 0.004 5.0 ition 11 8 6 0.04 0.003 3.7 21 21 21 21 00 21 00 21 00		Minimum	8	gn.	2		40.01	<0.001	1:1	69.9
48 24 27 0.03 0.004 5.0 viation 11 8 6 0.04 0.003 3.7		Maxieus	4	86	4		0.14	0.014	18.5	185.06
eviation 11 8 6 0.04 0.003 3.7		Mean	46	7	23		0.03	0.004	5.0	49.50
21 21 21 21 21 21 21 21 21 21		S. Deviation	11	æ	ø		0.04	0.003	ю	37.80
21 21 21 21 21 22 21 21		z	2	2	7		21.00	21.00	21.8	21.00

Burning Bed Overburden

Hap by Sample Lith pH E.C. Ca Mg Na K SRR Sat B Ser Dimensional Mathos/Can Learners of Lith pH E.C. Ca Mg Na K SRR Sat B Ser Dimensional Mathos/Can Learners of Lith pH E.C. Ca Mg Na K SRR Sat B Ser Dimensional Mathos Can Learners of Lith Can			i	Ċ		•						AGTU-BA		Z¥ KC
## ID# mahos/cm	Lab	ampl	<u>.,</u>	L	E.C.		£	e X	¥	SHR	Sat		. W	113
940 170.0-174.0 C05080 9.2 0.6 0.04 0.04 7.3 0.05 35.4 40.6 0.26 0.08 3941 174.0-179.5 55 9.3 1.6 0.07 0.03 17.1 0.07 75.8 51.3 0.67 0.08 3943 187.5-186.6 55 9.0 1.4 0.05 0.02 13.4 0.07 75.8 51.3 0.67 0.08 3944 187.5-186.6 55 9.4 1.3 0.05 0.02 13.4 0.08 70.7 111.9 0.27 0.18 3944 196.6-204.4 55 9.3 1.0 0.03 0.02 11.7 0.06 76.7 113.7 0.30 0.37 3946 212.5-220.2 55 9.4 1.0 0.05 0.03 11.2 0.06 76.7 113.7 0.30 0.37 3948 227.8-233.8 55 9.4 1.0 0.05 0.03 11.2 0.06 76.7 113.7 0.03 0.37 3948 227.8-233.8 55 9.4 1.0 0.05 0.03 11.2 0.04 65.6 129.1 0.27 0.19 3949 227.8-233.8 55 9.4 1.1 0.04 0.02 12.0 0.05 69.6 107.5 0.22 0.03 3949 227.8-233.8 55 9.5 1.3 0.04 0.02 12.0 0.05 69.6 107.5 0.22 0.03 3949 227.8-222.9 51 9.0 1.2 0.04 0.02 12.7 0.05 69.6 107.5 0.23 0.03 3949 227.8-222.9 51 9.0 1.2 0.04 0.02 12.7 0.05 69.6 107.5 0.23 0.03 3951 244.6-252.9 51 9.0 1.7 0.04 0.02 12.7 0.05 71.2 94.0 0.23 0.13 3951 244.6-252.9 51 9.0 1.7 0.09 0.05 184.1 0.12 0.04 0.05 184.1 0.12 0.04 0.05 184.0 0.12 0.13 0.10 0.10 0.10 0.10 0.10 0.10 0.10	#	#01	į	 	O i		96				×	dd		mdd
9340 170.0-174.0 CG5080 9.2 0.6 0.04 0.04 7.3 0.05 35.4 40.6 0.28 0.3941 174.0-1795 55 9.3 1.6 0.07 0.03 17.1 0.07 75.8 51.3 0.67 0.3943 174.0-1795 55 9.4 1.3 0.05 0.02 15.0 0.10 19.0 75.8 51.3 0.67 0.3943 1875-196.6 55 9.4 1.3 0.05 0.02 15.4 0.08 70.7 111.9 0.23 0.3944 196.6-204.4 55 9.4 1.0 0.05 0.02 11.7 0.06 76.7 113.7 0.30 0.3945 213.4 220.2 55 9.4 1.0 0.05 0.02 11.7 0.06 76.7 113.7 0.30 0.3945 212.5-220.2 55 9.4 1.0 0.05 0.03 11.7 0.05 58.6 125.6 0.22 0.3946 212.5-220.2 55 9.4 1.0 0.05 0.03 11.7 0.05 58.6 125.6 0.22 0.3947 220.2-227.8 55 9.4 1.1 0.04 0.02 12.0 0.05 58.6 125.1 0.27 0.3948 227.8-233.8 55 9.4 1.1 0.04 0.02 12.0 0.05 59.6 107.5 0.23 0.3948 227.0-244.6 51 9.0 1.2 0.04 0.02 12.0 0.05 59.6 107.5 0.23 0.3950 227.0-244.6 51 9.0 1.2 0.04 0.02 12.4 0.04 68.3 92.8 0.23 0.3950 237.0-244.6 51 9.0 1.7 0.04 0.02 12.0 0.05 59.6 107.5 0.23 0.3950 237.0-244.6 51 9.0 1.7 0.04 0.02 12.0 0.05 59.6 107.5 0.23 0.3950 237.0-244.6 51 9.0 1.7 0.04 0.02 12.0 0.05 59.6 107.5 0.23 0.3950 237.0-244.6 51 9.0 1.7 0.04 0.02 12.0 0.05 59.6 107.5 0.23 0.3950 237.0-244.6 51 9.0 1.7 0.04 0.02 12.0 0.05 59.6 107.5 0.03 0.0 1.3 0.3950 237.0-244.6 51 9.0 1.7 0.09 0.05 18.4 0.13 67.0 30.6 0.31 0.3951 10.2 52.5 52.5 52.5 52.5 52.5 52.5 52.5 5	1 			1	1		1	1	 	 - -				
9341 174.0-179.5 55 9.3 1.6 0.07 0.03 17.1 0.07 75.8 51.3 0.67 0.03 3942 179.5-196.5 55 9.0 1.4 0.03 0.02 13.4 0.09 91.4 81.8 0.27 0.3943 187.5-196.5 55 9.0 1.4 0.03 0.02 13.4 0.09 91.4 81.8 0.27 0.3944 196.6-204.4 55 9.3 1.0 0.03 0.02 11.7 0.06 76.7 113.7 0.30 0.3945 274.4-212.5 55 9.4 1.0 0.05 0.03 11.7 0.05 58.6 125.6 0.22 0.3948 224.4-222.2 55 9.4 1.0 0.05 0.03 11.7 0.05 58.6 125.6 0.22 0.3948 227.2-227.8 55 9.4 1.1 0.04 0.02 14.2 0.04 68.5 123.1 0.27 0.3949 227.8-237.0 51 9.0 1.2 0.04 0.02 14.2 0.04 68.5 123.3 0.23 0.3949 227.8-237.0 51 9.2 1.2 0.04 0.02 12.0 0.05 69.6 107.5 0.23 0.3949 227.0-244.6 54 9.2 1.2 0.04 0.02 12.4 0.04 68.3 92.8 0.23 0.3950 237.0-244.6 54 9.2 1.2 0.04 0.02 12.4 0.04 68.3 92.8 0.23 0.3950 237.0-244.6 54 9.2 1.2 0.04 0.02 12.4 0.04 68.3 92.8 0.23 0.3950 237.0-244.6 54 9.0 1.7 0.04 0.02 12.4 0.05 18.1 0.2 0.0 1.7 0.00 0.05 18.4 0.12 71.7 33.1 0.26 0.3950 237.0-244.6 54 9.0 1.7 0.04 0.05 18.4 0.12 71.7 33.1 0.26 0.3950 237.0-244.6 54 9.0 1.7 0.04 0.05 18.4 0.12 71.7 33.1 0.26 0.3950 11.2 0.05 18.4 0.12 71.7 33.1 0.26 0.3950 11.2 0.05 18.1 0.05 18.1 0.01 0.05 18.1 0.01 0.05 18.1 0.01 0.05 18.1 0.01 0.01 0.05 18.1 0.01 0.01 0.01 0.01 0.01 0.01 0.01	8	0-174.0	品	9.2	9.0	0.0	0.04		0.05	- 1	ö		0.08	0.3
3942 173,5-187,5 9.0 1.4 0.03 0.02 15.0 0.10 91.4 81.8 0.27 0.3	8	0 - 179.5	S	9.3	1.6	0.07	0.03		0.07	-	-		0.08	0.3
3943 187.5-196.6 55 9.4 1.3 0.05 0.02 13.4 0.08 70.7 111.9 0.23 0.3 3944 196.6-204.5 9.3 1.0 0.03 0.02 11.7 0.06 76.7 113.7 0.30 3946 212.5-220.2 5.5 9.4 1.0 0.06 0.03 11.7 0.04 85.6 125.6 0.22 0.22 3947 220.2-227.8 5.5 9.4 1.0 0.06 0.02 14.2 0.04 85.6 123.6 0.22 0.0 3948 227.8-237.0 5.1 9.0 1.2 0.04 0.02 12.0 0.04 85.5 117.2 0.04 0.02 12.7 0.04 0.22 0.0 0.03 11.2 0.04 0.02 12.7 0.05 10.7 0.05 10.7 0.0 0.02 12.7 0.05 10.7 0.0 0.03 12.7 0.04 0.02 12.7 0.01	8	5-187.5	SS	9.0	1.4	0.03	0.05		0.10	91.4	,t		0.18	0.4
9344 196.6–204.4 55 9.3 1.0 0.03 0.02 11.7 0.06 76.7 113.7 0.30 0.344 196.6–204.4 55 9.4 1.0 0.05 0.03 11.7 0.05 58.6 125.6 0.22 0.347 200.4–220.2 55 9.4 1.0 0.06 0.03 11.7 0.05 58.6 125.6 0.22 0.348 220.2–220.2 55 9.4 1.1 0.04 0.02 12.0 0.05 69.6 107.5 0.23 0.348 227.8–233.8 55 9.4 1.1 0.04 0.02 12.0 0.05 69.6 107.5 0.23 0.348 227.8–233.8 55 9.4 1.1 0.04 0.02 12.0 0.05 69.6 107.5 0.23 0.33 0.349 233.8–237.0 SL 9.3 1.2 0.04 0.02 12.0 0.05 69.6 107.5 0.23 0.23 0.33 0.24 0.24.6 SL 9.3 1.2 0.04 0.02 12.7 0.05 69.6 107.5 0.23 0.23 0.23 0.24 0.24.6 SL 9.0 1.2 0.04 0.02 12.7 0.05 71.2 94.0 0.23 0.23 0.23 0.25 0.24.6–252.9 SL 9.0 1.7 0.09 0.05 18.4 0.12 71.7 94.0 0.23 0.3952 252.9–261.0 SL 9.0 1.7 0.09 0.05 18.4 0.12 71.7 33.1 0.24 0.3953 261.0–268.5 SL 9.0 1.7 0.10 0.05 18.4 0.12 71.7 33.1 0.24 0.3953 261.0–268.5 SL 9.0 1.7 0.10 0.05 18.4 0.13 67.0 30.6 0.31 0.3953 13.4–97.4 SS 9.1 1.2 0.07 0.07 12.1 0.14 44.7 40.6 0.33 0.3924 13.8–137.3 SL 9.2 1.2 0.17 0.09 22.7 0.19 63.7 32.1 0.31 0.3931 10.2 113.8–121.2 SS 9.1 1.2 0.17 0.09 22.7 0.19 63.7 32.1 0.31 0.3931 121.2-129.6 SL 9.9 1.5 0.08 0.05 18.7 0.19 65.7 28.6 0.36 0.36 0.3931 121.2-129.6 SL 9.9 1.5 0.08 0.05 18.7 0.19 65.7 28.6 0.36 0.39 0.3931 13.3–139.7 SS 9.1 1.3 0.06 0.05 14.9 0.14 64.7 28.6 0.36 0.39 0.3931 13.3–139.7 SS 9.1 1.3 0.06 0.05 11.4 64.7 28.6 0.36 0.39 0.3931 121.2-129.5 SL 9.9 1.4 0.04 17.0 0.20 82.1 34.8 0.35 0.39 0.3931 121.2-129.5 SL 9.9 1.3 0.06 0.05 21.0 0.7 70.8 28.3 0.35 0.39 0.3931 121.2-129.5 SL 9.9 1.3 0.06 0.05 21.0 0.7 75.8 51.3 0.27 0.27 0.3941 174.0-179.5 SS 9.3 1.6 0.07 0.07 75.8 51.3 0.57 0.0 0.07 0.07 75.8 51.3 0.67 0.00 0.07 0.07 75.8 51.3 0.05 0.07 0.07 0.07 0.07 0.07 0.07 0.07	8	5-196.6	55	4.	1.3	0.05	o.			70.7	,		0.37	0.4
9345 204.4-212.5 55 9.4 1.0 0.05 0.03 11.7 0.05 58.6 125.6 0.22 0. 3946 212.5-220.2 55 9.4 1.0 0.06 0.09 11.2 0.04 52.6 129.1 0.27 0. 3947 220.2-227.8 55 9.4 1.0 0.06 0.09 11.2 0.04 652.6 129.1 0.27 0. 3948 227.8-232.8 55 9.4 1.1 0.04 0.02 14.2 0.04 65.5 121.3 0.20 0. 3949 223.8-237.0 51 9.0 1.2 0.04 0.02 12.4 0.04 68.5 121.3 0.20 0. 3949 223.8-237.0 51 9.0 1.2 0.04 0.02 12.4 0.04 68.3 92.8 0.23 0. 3950 237.0-244.6 51 9.2 1.6 0.04 0.02 12.7 0.05 71.2 94.0 0.23 0. 3951 244.6-252.9 51 9.0 1.7 0.04 0.02 12.7 0.05 71.2 94.0 0.23 0. 3952 252.9-261.0 51 9.0 1.7 0.09 0.05 18.4 0.12 71.7 33.1 0.26 0. 3953 261.0-268.5 51 9.0 1.7 0.09 0.05 18.4 0.12 71.7 33.1 0.26 0. 3953 18.9-97.4 55 9.0 1.7 0.09 0.05 18.4 0.12 71.7 33.1 0.26 0. 3953 18.9-97.4 55 9.0 1.5 0.04 0.05 13.8 0.14 44.7 40.6 0.33 0. 3953 113.8-121.2 55 9.0 1.5 0.04 0.05 13.8 0.14 85.4 33.1 0.31 0. 3953 113.8-121.2 55 9.0 1.5 0.04 0.05 13.8 0.14 85.4 33.1 0.31 0. 3953 113.8-121.2 55 9.1 1.5 0.04 0.05 13.8 0.14 85.4 33.1 0.31 0. 3953 13.2 1-2-129.6 51 8.9 1.5 0.06 0.05 14.9 0.14 64.7 28.6 0.35 0.39 0.39 13.3 13.2 12.2-129.5 51 8.9 1.4 0.04 0.05 14.9 0.14 64.7 28.6 0.35 0.39 0.39 13.7 146.7 51 8.9 1.4 0.04 0.05 14.9 0.14 64.7 28.6 0.35 0.39 0.39 13.7 146.7 51 8.9 1.4 0.04 0.05 14.9 0.14 64.7 28.6 0.35 0.39 0.39 13.7 146.7 15.5 51 8.9 1.4 0.04 0.05 14.9 0.14 64.7 28.6 0.35 0.39 0.39 15.2 12.2 12.2 52 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39	8	6-204.4	SS	ლ ტ	1.0	0.03	0			76.7	en.		0.37	0.3
946 212.5-220.2 SS 9.4 1.0 0.06 0.03 11.2 0.04 52.6 129.1 0.27 0.346 220.2-227.8 SS 9.5 1.3 0.03 0.02 14.2 0.04 85.5 121.3 0.20 0.346 227.8-237.8 SS 9.5 1.3 0.03 0.02 14.2 0.04 85.5 121.3 0.20 0.346 227.8-237.8 SS 9.4 1.1 0.04 0.02 12.0 0.05 69.6 107.5 0.23 0.3950 237.0-244.6 SL 9.3 1.2 0.04 0.02 12.7 0.05 69.6 107.5 0.23 0.3951 244.6-252.9 SL 9.2 1.6 0.05 0.04 17.2 0.10 82.1 40.7 0.74 0.3951 244.6-252.9 SL 9.0 1.7 0.04 0.02 12.7 0.05 71.2 94.0 0.23 0.3951 244.6-252.9 SL 9.0 1.7 0.09 0.05 18.4 0.12 71.7 33.1 0.26 0.3952 252.9-261.0 SL 9.0 1.7 0.09 0.05 18.4 0.12 71.7 33.1 0.26 0.3953 881.9-97.4 SS 9.1 1.2 0.04 0.05 18.1 0.13 67.0 30.6 0.33 0.3958 881.9-97.4 SS 9.1 1.2 0.04 0.05 18.1 0.13 67.0 30.6 0.33 0.3953 173.8-121.2 SS 8.9 2.1 0.17 0.09 0.05 18.3 0.14 85.4 33.1 0.31 0.33 0.33 11.5 5-113.8 SS 9.1 2.1 0.12 0.08 0.25 7 0.19 63.7 2.1 0.31 0.31 0.33 11.5 5-113.8 SS 9.1 1.3 0.12 0.03 0.05 18.3 0.14 85.4 33.1 0.31 0.31 0.33 11.5 5-113.8 SS 9.1 1.3 0.08 0.05 14.9 0.10 65.0 85.4 28.6 0.35 0.393 11.5 -129.5 SS 8.9 1.4 0.04 0.04 17.0 0.20 82.1 34.8 0.35 0.393 137.3-139.7 SS 9.1 1.3 0.06 0.05 14.9 0.14 64.7 28.6 0.35 0.393 137.3-139.7 SS 8.9 1.4 0.04 0.04 17.0 0.20 82.1 34.8 0.35 0.393 154.5-162.2 SL 8.7 1.9 0.04 0.04 17.0 0.20 82.1 34.8 0.35 0.393 154.5-162.2 SL 8.7 1.9 0.04 0.04 17.0 0.20 82.1 34.8 0.35 0.393 154.5-162.2 SL 8.7 1.9 0.04 0.04 17.0 0.20 82.1 34.8 0.35 0.393 154.5-162.2 SL 8.7 1.9 0.04 0.04 17.0 0.25 0.14 87.7 31.2 0.27 0.393 154.7 0.17 0.05 0.14 87.7 31.2 0.27 0.393 154.1 174.0-179.5 SS 9.3 1.6 0.07 0.09 17.1 0.07 75.8 51.3 0.67 0.09 0.05 0.09 0.05 0.09 0.05 0.05 0.09 0.05 0.09 0.05 0.09 0.05 0.09 0.05 0.09 0.05 0.09 0.09	8	4-212.5	S 2	4.0	1.0	0.09	o.03	11.7					0.33	0.2
3947 220.2–227.8 55 1.3 0.03 0.02 14.2 0.04 65.5 121.3 0.20 0.05 99.6 107.5 0.23 0.03 0.05 12.0 0.05 69.6 107.5 0.23 0.03 0.03 0.05 12.0 0.05 69.6 107.5 0.03 0.03 0.05 12.0 0.05 69.6 107.5 0.03 0.03 0.03 0.05 12.7 0.05 0.05 0.05 12.7 0.05 0.03	8	5-220.2	Š	4.0	1.0	0.06		11.2	•	-			0.10	0.1
3948 227.8–233.8 55 9.4 1.1 0.04 0.02 12.0 0.05 69.6 107.5 0.23 0.3 3949 233.8–237.0 5L 9.0 1.2 0.04 0.02 12.4 0.04 68.3 92.8 0.23	8	2-227.8	25	9. S	1.3	0.03	•	•	•				0.33	e.o
3949 233.8-237.0 St. 9.0 1.2 0.04 0.02 12.4 0.04 68.3 92.8 0.23	33	8-233.8	55	۰. 4	1.1	0.04	0.05	٠,		_			0.13	0.3
9950 237.0-244.6 SL 9.3 1.2 0.04 0.02 12.7 0.05 71.2 94.0 0.23 0.0 3951 244.6-252.9 SL 9.2 1.6 0.05 0.04 17.2 0.10 82.1 40.7 0.74 0.39 0.05 18.4 0.12 71.7 33.1 0.26 0.31 0.25 252.9-261.0 SL 9.0 1.7 0.09 0.05 18.4 0.12 71.7 33.1 0.26 0.31 0.35 261.0-268.5 SL 9.0 1.7 0.10 0.05 18.4 0.12 71.7 33.1 0.26 0.31 0.32 81.4-88.9 SS 8.8 1.2 0.07 0.07 12.1 0.14 47.7 40.6 0.33 0.33 0.3929 81.4-88.9 SS 9.1 1.2 0.04 0.03 16.3 0.14 85.4 33.1 0.31 0.31 0.39 0.34 105.5-113.8 SS 9.0 1.5 0.04 0.03 16.3 0.14 85.4 33.1 0.31 0.31 0.31 105.5-113.8 SS 9.1 2.1 0.17 0.09 22.7 0.19 63.7 32.1 0.31 0.31 0.31 105.5-113.8 SS 9.1 2.1 0.17 0.09 22.7 0.19 63.7 32.1 0.31 0.31 0.31 105.5-113.9 SS 9.1 1.5 0.08 0.05 16.7 0.19 63.7 32.1 0.31 0.31 0.31 105.5-137.3 SL 8.6 2.3 0.19 0.10 22.7 0.19 65.4 28.6 0.36 0.32 113.9-121.2 SS 9.1 1.3 0.06 0.05 14.9 0.14 64.7 28.6 0.35 0.35 137.3-139.7 SS 9.1 1.3 0.06 0.05 14.9 0.14 64.7 28.6 0.35 0.35 137.3-139.7 SL 8.9 2.0 0.10 0.09 22.0 0.27 20.6 0.32 0.35 137.3-146.7 SL 8.9 2.0 0.10 0.05 22.0 0.15 0.32 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35	8	8-237.0	며	9.0				- 1				N	0.03	0.3
3951 244.6–252.9 SL 9.2 1.6 0.05 0.04 17.2 0.10 82.1 40.7 0.74 0.7 3952 252.9–261.0 SL 9.0 1.7 0.09 0.05 18.4 0.12 71.7 33.1 0.26 0.9 3953 261.0–268.5 SL 9.0 1.7 0.10 0.05 18.4 0.12 71.7 33.1 0.31 0.26 0.31 3928 81.4–88.9 SS 9.0 1.7 0.07 0.07 12.1 0.14 44.7 40.6 0.33 0. 3929 81.9–97.4 SS 9.1 1.2 0.04 0.05 13.8 0.10 6.70 36.4 0.28 0.33 0. 3930 97.4–105.5 SS 9.1 2.1 0.17 0.09 22.7 0.18 87.7 0.30 0.31 <t< td=""><td>8</td><td>0-244.6</td><td>너</td><td>9.3</td><td>1.2</td><td>0.04</td><td>•</td><td>12.7</td><td></td><td>-</td><td></td><td>ú</td><td>0.13</td><td>e. 0</td></t<>	8	0-244.6	너	9.3	1.2	0.04	•	12.7		-		ú	0.13	e. 0
3952 252.9-261.0 SL 9.0 1.7 0.09 0.05 18.4 0.12 71.7 33.1 0.26 0.31 0.39 0.05 18.1 0.13 67.0 30.6 0.31 0.39 0.09 0.05 18.1 0.13 67.0 30.6 0.31 0.31 0.39 0.31 0.39 0.31 0.31 0.31 0.31 0.33 0.31 0.33 0.31 0.33 0.31 0.33	8	6 - 252.9	ᅜ	9,2	1.6		•	•	0.10	82.1		Ķ	0.35	0.1
3953 261.0-268.5 SL 9.0 1.7 0.10 0.05 18.1 0.13 67.0 30.6 0.31 0.33 0.39	33	9-261.0	ᅜ	9.0	1.7	•		18.4	٦.		(1)		0.50	o.3
3928 81.4-88.9 SS 8.8 1.2 0.07 0.05 13.1 0.14 44.7 40.6 0.33 0.33 0.33 0.33 0.34 0.28 0.10 67.0 36.4 0.28 0.31 0.28 0.31 0.32 0.31 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.33 0.33 0.33 <t< td=""><td>8</td><td>0-269.5</td><td>ᅜ</td><td>-</td><td>1.7</td><td></td><td></td><td>18.1</td><td></td><td>67.0</td><td>ö</td><td></td><td>0.10</td><td>0.3</td></t<>	8	0-269.5	ᅜ	-	1.7			18.1		67.0	ö		0.10	0.3
3929 88.9–97.4 55 9.1 1.2 0.04 0.05 13.8 0.10 67.0 36.4 0.28 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.32 0.32 0.31 0.32 0.31 0.32 0.32 0.31 0.32 0.32 0.31 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 <t< td=""><td>8</td><td>4-88.9</td><td>SS</td><td></td><td>1.2</td><td></td><td></td><td></td><td>-</td><td>44.7</td><td>Ö</td><td></td><td>0.54</td><td>0.1</td></t<>	8	4-88.9	SS		1.2				-	44.7	Ö		0.54	0.1
3930 97.4-105.5 55 9.0 1.5 0.04 0.03 16.3 0.14 85.4 33.1 0.31 0.31 0.31 0.31 0.31 0.32 0.34 34.7 0.30 0.30 0.32 113.8-121.2 55 8.9 2.1 0.17 0.09 22.7 0.19 63.7 32.1 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.31 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.33 0.33 0.33 0.33 0.33 0.33 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.33 0.32 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33	8	9-97.4	55	9.1	1.2				0.10	67.0	ø	•	0.21	0.9
3931105.5-113.8559.12.10.120.0822.70.1963.734.70.300.113932113.8-121.2558.92.10.170.0922.70.1963.732.10.310.13933121.2-129.65L8.91.50.080.0516.70.1965.428.60.360.03934129.6-137.35L8.62.30.190.1025.10.2765.826.40.370.13935137.3-139.75S9.11.30.060.0514.90.1464.728.60.320.03936139.7-146.75L8.91.40.040.0922.00.2770.828.30.350.33937164.7-154.55L8.91.40.060.0521.00.1693.031.90.350.33939162.2-170.05L8.91.40.040.047.30.0535.440.60.023940170.0-174.00.050809.31.60.070.0317.10.0775.851.30.670.0	8	4-105.5	SS	9.0	1.5		•	٠.		85.4	ന	•	0.14	4.0
3932 113.8-121.2 SS 8.9 2.1 0.17 0.09 22.7 0.19 63.7 32.1 0.31 0.1 3933 121.2-129.6 SL 8.9 1.5 0.08 0.05 16.7 0.19 65.4 28.6 0.36 0.0 3934 129.6-137.3 SL 8.6 2.3 0.19 0.10 25.1 0.27 65.8 26.4 0.37 0.1 3935 137.3-139.7 SS 9.1 1.3 0.06 0.05 14.9 0.14 64.7 28.6 0.32 0.0 3936 137.3-139.7 SS 9.1 1.3 0.06 0.05 17.0 0.20 82.1 34.8 0.36 0.13 3937 146.7-154.5 SL 8.9 2.0 0.10 0.05 22.0 0.27 70.8 28.3 0.35 0.3 3938 154.5-162.2 SL 8.9 1.4 0.06 0.05 22.0 0.27 70.8 28.3 0.35 0.3 3939 162.2-170.0 SL 8.9 1.4 0.04 0.04 7.3 0.05<	33	5-113.8	ស្ត	9.1	2.1			22.7		71.9	34.7		۲.	0.3
3933 121.2-129.6 SL 8.9 1.5 0.08 0.05 16.7 0.19 65.4 28.6 0.36 0.0 3934 129.6-137.3 SL 8.6 2.3 0.19 0.10 25.1 0.27 65.8 26.4 0.37 0.1 3935 137.3-139.7 SS 9.1 1.3 0.06 0.05 14.9 0.14 64.7 28.6 0.32 0.0 3936 137.3-139.7 SS 9.1 1.4 0.04 0.04 17.0 0.20 82.1 34.8 0.35 0.1 3937 146.7-154.5 SL 8.9 2.0 0.10 0.09 22.0 0.27 70.8 28.3 0.35 0.3 3938 154.5-162.2 SL 8.7 1.9 0.06 0.05 21.0 0.16 93.0 31.9 0.33 0.1 3939 162.2-170.0 SL 8.9 1.4 0.04 0.04 7.3 0.05 35.4 40.6 0.26 0.0 3940 170.0-174.0 C05080 9.3 1.6 0.07 0.07 7.3 0.0	8	.8-121.2	53	-	2.1		•	22.7		63.7			٣,	0.3
3934 129.6-137.3 SL 8.6 2.3 0.19 0.10 25.1 0.27 65.8 26.4 0.37 0.1 3935 137.3-139.7 SS 9.1 1.3 0.06 0.05 14.9 0.14 64.7 28.6 0.32 0.0 3936 139.7-146.7 SL 8.9 1.4 0.04 0.04 17.0 0.20 82.1 34.8 0.36 0.1 3937 146.7-154.5 SL 8.9 2.0 0.10 0.09 22.0 0.27 70.8 28.3 0.35 0.3 3938 154.5-162.2 SL 8.7 1.9 0.06 0.05 21.0 0.16 93.0 31.9 0.33 0.1 3939 162.2-170.0 SL 8.9 1.4 0.04 0.04 17.3 0.14 87.7 31.2 0.27 0.1 3940 170.0-174.0 C05080 9.2 0.6 0.07 0.03 17.1 0.07 75.8 51.3 0.67 0.0	8	2-129.6	7		1.5		•	16.7	0.19	65.4	-		ο.	4.0
3935 137.3-139.7 S5 9.1 1.3 0.06 0.05 14.9 0.14 64.7 28.6 0.32 0.0 0.35 139.7-146.7 SL 8.9 1.4 0.04 0.04 17.0 0.20 82.1 34.8 0.36 0.1 3937 146.7-154.5 SL 8.9 2.0 0.10 0.09 22.0 0.27 70.8 28.3 0.35 0.3 3938 154.5-162.2 SL 8.7 1.9 0.06 0.05 21.0 0.16 93.0 31.9 0.33 0.1 3939 162.2-170.0 SL 8.9 1.4 0.04 0.04 17.3 0.14 87.7 31.2 0.27 0.1 3940 170.0-174.0 005080 9.2 0.6 0.04 0.04 7.3 0.05 35.4 40.6 0.26 0.0 3941 174.0-179.5 SS 9.3 1.6 0.07 0.03 17.1 0.07 75.8 51.3 0.67 0.0	8	6-137.3	김		9			25.1		n,	Ġ	'n,	٦.	•
3936 139.7-146.7 SL 8.9 1.4 0.04 0.04 17.0 0.20 82.1 34.8 0.36 0.1 3937 146.7-154.5 SL 8.9 2.0 0.10 0.09 22.0 0.27 70.8 28.3 0.35 0.3 3938 154.5-162.2 SL 8.7 1.9 0.06 0.05 21.0 0.16 93.0 31.9 0.33 0.1 3939 162.2-170.0 SL 8.9 1.4 0.04 0.04 17.3 0.14 87.7 31.2 0.27 0.1 3940 170.0-174.0 005080 9.2 0.6 0.04 0.04 7.3 0.05 35.4 40.6 0.26 0.0 3941 174.0-179.5 SS 9.3 1.6 0.07 0.03 17.1 0.07 75.8 51.3 0.67 0.0	8	.3-139.7	ហ្គ		e.1		•			64.7	œ	u,	ο.	e. 0
3937 146.7-154.5 SL 8.9 2.0 0.10 0.09 22.0 0.27 70.8 28.3 0.35 0.3 3938 154.5-162.2 SL 8.7 1.9 0.06 0.05 21.0 0.16 93.0 31.9 0.33 0.1 3939 162.2-170.0 SL 8.9 1.4 0.04 0.04 17.3 0.14 87.7 31.2 0.27 0.1 3940 170.0-174.0 C05080 9.2 0.6 0.04 0.04 7.3 0.05 35.4 40.6 0.26 0.0 3941 174.0-179.5 SS 9.3 1.6 0.07 0.03 17.1 0.07 75.8 51.3 0.67 0.0	96	7-146.7	ᅜ	⁻.	1.4						4	ŋ	7	
3938 154.5-162.2 SL 8.7 1.9 0.06 0.05 21.0 0.16 93.0 31.9 0.33 0.1 3939 162.2-170.0 SL 8.9 1.4 0.04 0.04 17.3 0.14 87.7 31.2 0.27 0.1 3940 170.0-174.0 C050B0 9.2 0.6 0.04 0.04 7.3 0.05 35.4 40.6 0.26 0.0 3941 174.0-179.5 SS 9.3 1.6 0.07 0.03 17.1 0.07 75.8 51.3 0.67 0.0	8	7-154.5	ᅜ	٠.	2.0						œ	m	m	
3939 162.2-170.0 SL 8.9 1.4 0.04 0.04 17.3 0.14 87.7 31.2 0.27 0.1 3940 170.0-174.0 COSOBO 9.2 0.6 0.04 0.04 7.3 0.05 35.4 40.6 0.26 0.0 3941 174.0-179.5 SS 9.3 1.6 0.07 0.03 17.1 0.07 75.8 51.3 0.67 0.0	8	5-162.2	꺽	٠.	⁻•		•	;	7		,	'n,	۳,	0.5
3940 170.0-174.0 CO5OBO 9.2 0.6 0.04 0.04 7.3 0.05 35.4 40.6 0.26 0.0 3941 174.0-179.5 SS 9.3 1.6 0.07 0.03 17.1 0.07 75.8 51.3 0.67 0.0	E,	2-170.0	ᅜ		4.		•			Ľ	_	ú	***	
3941 174.0-179.5 55 9.3 1.6 0.07 0.03 17.1 0.07 75.8 51.3 0.67 0.	8	0-174.0	요			•	•	•		ທໍ່	ö	Ľ	o.	0.3
	8	4.0-179.5	ស្ល	4	1.6		0.03	17.1		'n		_•	•	0.3

Burning Bed Overburden

Lab #		Sand	Silt %	Clay	Texture		504-5	Cac03	Base Potential
340	170.0-174.0	82	9	12	L5/5L	0.43	<0.001		2.44
R3941	174.0-179.5	1.9	18	21	다 다	0.03	0.001	1.7	16.09
R3942	179.5-187.5	34	35	34	ಕ	0.06	0.001	0.9	7.16
R3943	_	42	31	23	てい	0.06	0.001	1.9	17.16
R3944	196.6-204.4	⊕	33	9.4	占	0.04	<0.00 1	1.7	15.75
R3945	204.4-212.5	4	83	문	占	0.01	<0.001	1.9	18.69
R3946	212.5-220.2	47	23	28	201	⇔ .01	0.001	2.1	21.03
R3947	220.2-227.8	33	31	æ	占	0.01	0.001	2.1	20.72
R3948	227.8-233.8	41	දි	æ	占	0.02	0.001	2.0	19.41
R3949	233.8-237.0	19	4	37	Sig	0.08	0.001	1.0	7.53
R3950	237.0-244.6	67	12	21	ᅜ	0.02	0.001	1.8	17.41
R3951	244.6-252.9	26	15	53	강	0.0 1	0.003	2.1	21.28
R3952	22	61	σ,	8	25L	0.07	0.003	2.0	17.91
R3953	61.1	22	없	46	ပ	0.20	0.002	2	14.81
R3928		33	æ	æ,	占	0.04	0.003	0.9	7.84
R3929	٠,	4	24	58	얺	<0.01	0.001	1.8	18.03
R3930	٠.	8	28	4	ப	0.03	0.001	•••• •••	10.09
R3931	105.5-113.8	45	23	æ	CL/5CL	0.01	0.002	. 9	18,75
R3932	13.	53	æ	₽	<u>ქ</u>	0.03	0.002	E	12.13
R3933		7 6	26	₽	ರ ಎ	0.04	0.001	1.2	10.78
R3934	٦.	8	S S	₹.	ပ	0.04	0.004	1.0	88.
R3935		ଧ	ው	£	S	<0.01	0.001	17.3	173.03
R3936	٠.	4 3	20	37	ರ	0.02	0.001	1.2	11.41
R3937	٠.	4	10	4	S	0.07	0.009	4.	12.09
R3938	154.5-162.2	4 3	12	4	ပ	0.09	0.007	1.2	9.41
R3939	162.2-170.0	8	ወ	35	S S	0.20	0.001	0.6	-0.22
R3940	170.0-174.0	85	ø	12	15/51	0.43	<0.001		-2.44
R3941	174.0-179.5	61	18	77	강	0.03	0.001	1.7	16.09

Burning Bed Overburden

 		* 		paste			 				RB-DTPA-	TPH	2M KC1
Lab	Sample	Lith	핍	ີ່. ພ່.	ٿ	£	ē;	¥	£	Sat	œ	n g	N-EON
#	#01		1			ě	d/1/b			"	<u>dd</u>		edd
! ! !		 			į			i					
R3942	179.5-187.5	55	9.0	1.4	0.03	0,02	15.0	0.10	4	81.8	0.27	0.18	4.0
R3943	187.5-196.6	SS	Ω. 4	1.3	0.05	0.02	13.4	0.08	70.7	111.9	0.23	0.37	4.0
R3944	196.6-204.4	SS	ტ ტ	1.0	0.03	0.02	11.7	0.06	~	113.7	0.30	0.37	
R3945	204.4-212.5	55	9. 4	1.0	0.05	0.03	11.7	ප	9	125.6	0.22	o. 35	0.2
R3946	212.5-220.2	55	9. 4.	1.0	0.06	0.03	11.2	0.04	ø	129.1	0.27	0.10	
R3947	220.2-227.B	SS	ហ	1.3	0.03	0.02	14.2	0.04	S	121.3	0.20	0.33	
R3948	227.8-233.8	55		1.1	0.04	0.02	12.0	0.05	9	107.5	0.23	0.13	
R3949	233.8-237.0	억	9.0	1.2	0.04	0.02	12.4	0.04	m	92.8	0.53	0.03	e.0
R3950	237.0-244.6	ᅜ		1.2	0,0	0.02	12.7	o ය	N	94.0	0.23	0.13	
R3951	244.6-252.9	뗘		1.6	0.05	0.04	17.2	0.10		40.7	0.74	0.35	
R3952	252.9-261.0	머		1.7	0.09	0.05	18.4	0.12	γ.	33.1	0.26	0.20	
R3953	261.0-268.5	ᅜ	9.0	1.7	0.10	0.05	18.1	0.13	0	30.6	0.31	0.10	
		-	-									1	
X E E E E E D O	SUMMHKT - Burning sed uv	ed uver	-curaen	<u> </u>					 				
	Minimum		9.6		0.03		7.26	8	35.37	26.4	0.20	0.08	0.10
	Maximum		۵, س	e. 7	0.19	0.10	25.09	0.27	93.01	129.1	0.74	0.39	0.50
	Mean		9.1		0.06		15.16	10	70.39	68.4	0.32	0.19	0.29
	S. Deviation	_	0.2		0.03		3,96	90	13.35	38.1	0.14	0.11	0.09
	z		40.0		40.0		40.0	40.0	40.0	40.0	40.0	40.0	40.0
							-						

Burning Bed Overburden

1	Sample ID#	Sand	5i1t	Clay	Texture	Total S	504-5	Cacoa	Acid- Base Potential
42	179.5-	Æ.	32	# E	ដ	0.06	0.001	0.9	7.16
R3943	187.5-196.6	4	æ	27	ביל	0.0	0.001	6.	17, 16
23944	1	4 ₩	23	4	占	0.04	<0.001		15, 75
R3945	- 1	4	8	8	占	0.01	<0.001	₽.	18.69
R3946		47	K	58	SCL	<0.01	0.001		21.03
23947	220.2-227.8	99	31	æ	占	0.01	0.001		20.72
R3948	- 1	41	23	윤	占	0.02	0.001		19,41
R3949		13	*	Æ	Sicl	0.08	0.001		7,53
R3950		67	12	7	SCL	0.02	0.001		17,41
R3951		20	15	8	ડ	<0.01	0.009		21.28
R3952		61	ው	90	당	0.07	0.003		17.91
R3953		22	32	46	U	0.20	0.002		14.81
		-				< - tons	CaC03/1	000 ton	s material
SUMMHRY	- Burning Bed	Uverbu					fi 11 11 11 11 11 11		
	Minimum	19.00	6.00	12.00		<0.01	<0.001	0.60	-2.44
	Maximum	82.00	44.00	46.00		0.43	0.009	17.30	173.03
	Mean	45.28	22.90	31.83		20.0	0.002	1.99	17,93
	S. Deviation	15.02	9.96	8.15		0.10	0.002	2.49	25.61
	z	40.0	40.0	40.0		40.0	40.0	40.0	40.0

APPENDIX E GEOPHYSICAL LOGS

Geophysical logs are included for the following boreholes:

PB-60	PB-108
FD-00	ED-TO
PB-69A	PB-1
PB-74	PB-13rd
PB-80	PB-19
PB-84	PB-48
PB-85	PB-70
PB-92	PB-73A
PB-101	PB-86
PB-107	PB-100

NOTE:

Geophysical logs were not completed for boreholes PB-87, PB-105 and PB-109; however, hole sample logs are included for PB-87 and PB-109. A core description is included for PB-105.

SP/RESISTIVITY

BOREHOLE EQUIPMENT AND RECORDING DATA OPERATION DATA COUNTRY _ CLIENT Idemitus Kosan REMARKS BOREHOLE DATA DATE LOGGED 6-21-88 AREA __WishBone West__ 10G Yes Yes TAPING PANEL

LOG RECONDINECTOR SPEED TCS NORM 30 REFER TO Lithology REFER TO Lithology LOG DEPTH SCALE 120:1 2_0f_3 LOGS

BOREHOLE PB-73A

CLIENT Idemitus Kosan

AREA WishBone West
COUNTRY USA

0

GAMMA RAY

API

200

BOREHOLE PB-84 AREA WishBone West

CLIENT Idemitsu Kosan COUNTRY USA

1.0 g/cc

LINEAR DENSITY

sdu

3.0 g/cc

HOLE SAMPLE LOG

Hole	F	B-	-8~	7Log	ged Bv	F.J.	Mrkon	ijich	Date	Aug	1-2	<i>8</i> 8_ _F	Page	1 Of	2
Drille	er	Ma	rk	HI	or - M	ike	Mrkor LOG 11/2/1 Desteun	v		TD	235		Date	8-2	-88
Prob	е/	BP	3	John	~	NO	LOG			TD			Date		-
Est. I	Mud W	/t	1	-//	_ Hole Siz	e	1/2/	Log Typ	pes			Collar E	Elev	_ 191	
Proje	ect Nan	ne _ ${\cal M}$	$\frac{w}{a7}$	ishl)one	e 17/11	- 10	State	Lease	12	- q		_ Sec	Coor N	_ T <u>/ '</u>	R_ <u></u>
	nty arks .		<i>a</i> 1	JU			State	e/(· · · · · · · · · · · · · · · · · · ·		_ Conar C	COO!. 14	E	
Depth		П	РС						Descri	ption					
		T	+	l \	G 100	10	Grave	1						,	
10					Grac		Ovace								
10 -									,						
20 -		-	-										· 		
-			-			,, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>									
30 →		\vdash	+	 	Tza	taka	Congl	DM en	at =						
40 –					1200			Jin Ch	~ 0 ~						
+0-	-														
50 -			-						A	Note			·// /		
-				-						<u> </u>	3-1-88 ost cu	of dr	liled	70 7	5
60 -			+										7 /	ned, no	ex 7.
70 -							1				orning	pit	pet h	ad fill	90
'0]										17	selt in	Sith	water	r mad	e
80 –			_								une pr	- 710	, .		
-		-	╬												
90 -		╁┼		-	Sha	16	gran	1 110	V V /	- COLIA	· '				
(00 –						1	5 /		/						
Į10-	ļ.		_												
-		╟┼	+	-	Sh	19 fe	700	5.14.	- OP 1	Cas 1	SOMO		<u>,, </u>		
120-					Jun	CIO LU	1	31119	70		JUNIC	Sui	r CU		
/ 30 -															
, 50			\perp												
/ 40 -		-	+												
-			+												
/ 50 –			\dagger		*.										
/ 60 -															
* -			\bot												
/ 70 -			+					·····							
		 	+										 		
<i>†</i> 80 –			+												
/ 90 -															
			\perp												
200-		$ \cdot $	+	🔻		·									
-		╽┟	+											PB-8	7
10 -			1										Hole Page	1 0 01	$\overline{}$

	Run	Depth Log	Core Thick.	Picture (Lith Log)	Interval Analyzed/ Type Anls.	Box No.	Bag No.	Core Description
-								
	·							
		22.9						Top of Coring
	Run			CORE LOSS				
	±1 22.9-			1.8'		Box	•	
	27.5					1		
					% ASH			
-		٦ 4 .٦						24.7
						,	200	
			1.5		80.62	Box 1	BAL	CARB-SHALE / SHALE
		*	, , , ,	Andrew Miles				
								26.2
			1.5		8.45		BAL	COAL
-		4- 4- 4			(G. 1)		7	
-		275					7 3 6 4 9 444 4 4 4	27.5
-						1	BAG	
-							3	
-			1.8		12.71			COAL
-								
		29.3						29.3
-			0.5		87.29	30X 2	8AG	SHALE
-		29.8		===		~	1	29.8
			* 4 * * * **					
1	•							
4							1 1 **	

Core Hole Description

Page of 8

ı	nterval	Cored:		2.5 - 9	2.0		·				<u> </u>	
		Recovere		9.5'				Describ	ed by:	F. J. A	1 konj	ich
				ble. Describe co	lor, bedding, fractu	res, fossi					٧١	
е	Run	Depth Log	Core Thick.	Picture (Lith Log)	Interval Analyzed/ Type Anls.	Box No.	Bag No.			Core Des		asia di Santa asia di Pangana any any any any any any any any any
					% ASH			B2 F				
			0.3		42.26	Bgx	BAG	82.5 &2.8	BONE	COAL		
			12		10:289	Box B	BAG	·	COAL			
-	•							84.0				
			ನಿರ	110	33.72		BAL		COAL			
						• • •						
-								86.0				
			1.0		19.80		BAG		COAL			
i i			, , ,		, , , , , , , , , , , , , , , , , , , ,			8 7.0				
1 1 1 1							BAG					
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;			1.8		8.82		8		COAL			
								88.8				
					20.10		BAL 9		COAL			
					24.10	***	9	90.0			,	
			.0.3		42.44	Box	BAG		BONE	COAL		
			14		22.70		BA6					
									COAL			
-	e the things are an area and a second area and a		6.8				BAG 12	91.7			·	
_											İ	
C	commen	ts:										

ı	nterval	Cored: _	9	2.0-94	1.0			1
ı	nterval	Recovere	ed:	2.0	×		ا	Described by: F.J. Mrkonjich
	Describe o	ore loss loca	ition, if possi	ble. Describe co	lor, bedding, fractu	es, foss	ils, grada	ations, grains and mineralization, where applicable.
le	Run	Depth Log	Core Thick.	Picture (Lith Log)	interval Analyzed/ Type Anls.	Box No.	Bag No.	Core Description
				_		BoX 9	BAG 12	9a.5
			0.8		9,59	Box q	BA6-	COAL
								93.3
					59.39	Box-	BAG 14	CARB-SHALE
			0.7					94.0
								94- 100.3 Shale a silty sand ste
	° a							
-			· · · · · ·					
				de constante de la constante d		1		
				1				
				The second secon				
-			7 . 1 .	1		2 1 1	1	
				1				
						1 - 1		1
								Anna Paragraphic Anna P
-								
-				5			1 1 1	
		, , , , ,					, , ,	
-						1		
				4				
						4 304		
•							. ,	
		<u> </u>	* + • • • •	-		<u> </u>		

WISHBODE HILL - WEST Hole_ Date 12-1-88 PB-60 Project Area _ 100.6 -110.3 Interval Cored: F. J. Mrkoniic 10.3 Described by: __ Interval Recovered: _ Describe core loss location, if possible. Describe color, bedding, fractures, fossils, gradations, grains and mineralization, where applicable. Interval **Picture** Scale Depth Bag Core Box Analyzed/ Run **Core Description** (Lith Log) No. Log Thick. No. 100 100.2 BAG BOX 15 CARB-SHALE 55.39 101 101.5 102 66.09 BAG CARB - SHALE 2.0 16 103 103.5 BAG 104 COAL 11.91 105 105.1 BAL 18 35.22 BONE COAL 106 106.5 BAL CARB - SHALE 107.7 BOX BAL 20 NOT ANALYZEN CARB - SHALE 109 109.5 BAG SHALE & SILTY SAUSTONE ... 110 Comments: 320 - 130

Core Hole Description

Page 4 of 8

Page 5 of 8 **Core Hole Description** WISHBONE HILL - WEST Hole Date 12-1-88 PB-60 Project Area _ 130.0 - 140.0 Interval Cored: _ 10.0 Described by: Interval Recovered: _ Describe core loss location, if possible. Describe color, bedding, fractures, fossils, gradations, grains and mineralization, where applicable. Interval Bag Scale Depth **Picture** Core Box Analyzed/ Run **Core Description** Thick. Ft. 130 Log (Lith Log) No. No. NOT SHALE AVALIZED AUALIZE) 130.5 BAG BOX 131 SHALE 131.6 BAL 132 COAL 31.13 /33 133.5 BAG COAL 5.43 24 134 134.2 BAG 1.5 75.33 25 SHALE 135 135.7 BAG 136 SHALE 24 75.37 136.6 BAL 137 SHALE 68.67 27: 137.5 COAL 21.49 BOX 137.9 138 16 BOX BAL BONE COAL 1.0 51.49 16 29 138.9 139: BAL COAL 16.43 0.4 30 139.5 BAG BONE COAL 40.64 139.9 140 Comments: 320 - 130

Page 6 of 8 **Core Hole Description** WISHBONE HILL WEST PB-60 Date 12-1-88 ____ Hole __ Project Area 140.0 - 150.0 Interval Cored: _ F.J. Mrko 10.0 Interval Recovered: Described by: _ Describe core loss location, if possible. Describe color, bedding, fractures, fossils, gradations, grains and mineralization, where applicable. Interval Scale Depth Core **Picture** Bag Box **Core Description** Run Analyzed/ Ft. 140 Log Thick. (Lith Log) BOX BAG COAL 32 140,6 BAL COAL 141.0 141 BAL 13.81 COAL 34 142 142.0 BAG SHALE 55.68 35 142.6 BAG 143 36 COAL 1.0 143.6 BAL SHALE 61.69 144 0.6 37 144.2 BOX BAG COAL 38 5.72 145 145.2 BAG 4935 BODE COAL 39 146 146.5 BAL SHALE 40 68.48 147.7 148 BAL 5.77 COAL 41 149 149.4 BAL COAL 8.10 42 150 Comments: 320 - 130

				scription		~			e_7 of 8
	Project			0.0 -16	L-WES	!	+	Hole PD-60 Dat	le <u>12-1-88</u>
				10.0	0.0			Described by: F. J. Mnkon	uich
		Recover			lor, bedding, fractu	res. foss		tions, grains and mineralization, where applica	F
Scale Ft.		Depth Log	Core Thick.	Picture (Lith Log)	Interval Analyzed/ Type Anis	Box No.	Bag No.	Core Description	
<u>151</u>).6		8.10	BoX BoX	42 BA6	COAL ISI.O	
<i>1</i> 52			1.5		39:49	18	4/3	BONE COAL	
<i>J</i> 53			0.8		27.74		BAG 44	COAL	
-								153.3	
<i>154</i>			1.6		41.69		8AG 45	BONE COAL	
155							BAG	154.9	
154			2.0		891		46	COAL	
/57				CORE				156.9	
158			0,9	Loss	22.57		BAC BAC 48	157.6 COAL	
159			1.6		48.86	Box 19	BAG 49	BONE COAL	
160								160.0	
	Comme	nts:						·	
									
	320 - 130								

Int	erval	Cored: _	160	0.0 - 1	62.5								
		Recovere		2.5				Describe	ed by:	F.J. Mrka	njieb	1	
				ble. Describe co	lor, bedding, fractur	es, fossi					N I		
F	₹un	Depth Log	Core Thick.	Picture (Lith Log)	Interval Analyzed/ Type Anis	Box No.	Bag No.	160.0		Core Descrip	tion		
十						Rex	BAG	140.0					
							30		COAL				
1			1.2		20.56	19			COAL				
								1/ 1 2					
								1612					
						D. Cole	O A*/		Bour	C = 0 /			
			1,1		49.57	19	BAG 51		BONE	COAL			
								1/.3 3					
					HOT			162.3	11	1 . 1.			
1					AUALIZED				, silty	sandsta	on e		
1			, ,				, , , , , ,		,				
	,		, , , , , , , , , , , , , , , , , , , ,										
1		, , , , ,					. ,					. *	
						. v :							
·										4 - *			
-					· · · · · · · · · · · · · · · · · · ·	; ; ;			÷				
-							1 + 5						
							1 1 1						
							4						
							, ,						
			i i										
1								1					
								•					
				1		, , , , , ,							
1_				!				<u> </u>					
C	mmen	ite:											
JUI	CA			, , <u>, , , , , , , , , , , , , , , </u>				•					

Project Area WISHBONE HILL - WEST Hole PB-92 276.0-286.0 Interval Cored: _ _ Described by: F.J. Mrkonjich Interval Recovered: _____ 10.0 Describe core loss location, if possible. Describe color, bedding, fractures, fossils, gradations, grains and mineralization, where applicable. Interval Scale Depth Core **Picture** Box Bag Run Analyzed/ **Core Description** Ft. 27८ Log Thick. (Lith Log) No. 277 277.0 BAG Box SHALE 25 5A 277.5 BAG 278 COAL 7.70 279 279.2 BAG 6.42 280 COAL 281.0 281 BAG 17.05 COAL 1.5 385 282.5 BAG COAL 0.9 24.61 8 283 283.4 283.7 COAL 28.28 0.3 BOX BAL 284 79.36 284.2 SHALE/SILTSTONE 0.5 26 10A NOT. 385 ANALIZED 286 Comments: 320 - 130

Core Hole Description

Page__1 of __1O___

	val Cored val Recov		86.0 - 10°	<u> </u>			Described by:	J. Mrkoniich
				lor, bedding, fractu	res, foss		tions, grains and mineralization	V
le Rui	n Depth Log	Core Thick.	Picture (Lith Log)	Interval Analyzed/ Type Anis,	Box No.	Bag No.	Co	re Description
	Log	0.5	(Lith Log)	79.36 23.54	30X	BAG IOA IO BAG III	SHALE/ 290.1 SHALE/ 290.6 COAL 290.9 COAL 292.2	SILTSTONE
				NOT ANALIZED		12.	294.4 SHAL	

320-130

Page 3 of 10 **Core Hole Description** Date 12-1-88 Project Area WISHBONE HILL - WEST PB-92 ____ Hole _ 296.0 -306.0 Interval Cored: 10.0 Described by: Interval Recovered: _ Describe core loss location, if possible. Describe color, bedding, fractures, fossils, gradations, grains and mineralization, where applicable. Interval Bag No. Picture Box Scale Depth Core Analyzed/ **Core Description** Run Ft. 29/ (Lith Log) No. Thick. Box SHALE / SILTSTONE NOT 27 BAGGED 297 NOT 298 ANALIZED 299 300 301 Box 28 BALLED 302 303 304.2 SHALE Box BAG 7438 28 13A 304.7 BOX BAL SHALE 28 13 305.5 306

		2.0	3/20	BOX	18	COAL		
		20	a6.39	28	19	COAC		
Comme	nts:							
320 - 130								
							*	

Core Hole Description WISHBONE HILL - WEST Hole PB-92 Date 12-1-88 Project Area 306.0 -316.0 Interval Cored: F. J. Mrkonlich 10.0 Interval Recovered: _ Described by: _ Describe core loss location, if possible. Describe color, bedding, fractures, fossils, gradations, grains and mineralization, where applicable. Interval Scale Depth Core **Picture** Box Bag Run Analyzed/ **Core Description** Ft. Log Thick. (Lith Log) No. No. 306 BOX BAG 28 14 COAL 367 307.5 BAG BOX 30g 28 15 10.30 2.0 COAL 309 309.5 BOX BAG 310 (OAL **ને**9 16 1.3 1339 310.8 311 BAG BONE COAL 47.51 07 17 311.5 BAG 312 SHALE 59.80 1.9 313 313.4 BAL 3538 09 BONE COAL 19 314.3 COAL 25.44 20 314.6

 			3155 IAL	BONE COAL	
1		30	ט		
_					`
Comn	nents:	 			attat.
		 <u> </u>			

BONE COAL

Page 5 of 10 **Core Hole Description** PB-92 Date 12-1-88 Project Area WISHBONE HILL - WEST Hole ___ 316.0 - 326.0 Interval Cored: 10.0 F. J. Mrkoniic Described by: __ Interval Recovered: Describe core loss location, if possible. Describe color, bedding, fractures, fossils, gradations, grains and mineralization, where applicable. Interval Depth Log Bag Scale **Picture** Box Core Analyzed/ Run **Core Description** Thick. (Lith Log) Ft. 신년 No. No. BOX BAG BONE COAL 30 22 43.28 317 317.5 BAG 318 23 66.98 20 SHALE 319 319.5 BAL 40.82 BONE COAL 24 320 320.3 BAL 25 ઢ્યા COAL 12.04 1.7 322.0 322 BAL 24 COAL 5.28 1.5 373 323.5 BOX BAL 5.04 31 COAL 27 324.9 BOX BAL 6.56 31 COAL 1.6 28 326 Comments:

Page 6 of 10 **Core Hole Description** Date 12-1-88 Project Area WISHBONE HILL - WEST Hole ___ PB-92 326.0 - 336.0 Interval Cored: _ F. J. Mrkonjich 10.0 Described by: _ Interval Recovered: _ Describe core loss location, if possible. Describe color, bedding, fractures, fossils, gradations, grains and mineralization, where applicable. Interval Scale Ft. ろみし Depth Core **Picture** Box Bag Run Analyzed/ **Core Description** Log Thick. (Lith Log) BUX BAG 324.5 COAL 31. 28 BAG COAL 14:06 07 29. 327 327.2 327.5 COAL 5.23 30 BAG 31 328 COAL 1.5 6.72 329 329.0 BAG 32 COAL 15.03 330 20 331.0 331 COAL 331.5 BAG BOX 05 18.5 32 33 SILTSTONE NOT 332 ANALIZED *მ*33 33¢

		V	
Comme	ents:		
320 - 130			

Core Hole Description Project Area WISHBONE HILL -WEST Hole PB-92 Interval Cored: 347 - 357.0 10.0 _ Described by: _ F. J. Mr kon jic Interval Recovered: ____ Describe core loss location, if possible. Describe color, bedding, fractures, fossils, gradations, grains and mineralization, where applicable. Interval Scale **Picture** Depth Core Box Bag Run Analyzed/ **Core Description** 547 Log Thick. (Lith Log) No. NOT BOX SILTSTONE BALLED 347.5 34 ANALIZED SHALE 87.00 348 J2.85 BAL BONE COAL 349 35 3495 BAL BOUE COAL 34.27 350 36. 350.0 BAG 58.51 SHALE 37 1.2 351 351.2 BAL 38 BONE COAL 50.88 3515 352 BAG SHALE 1.5 62.06 39 353.0 353 BAG SILTSTONE / SHALE 74.95 05 39A 353.5 NOT 354 ANALIZED 355 356 357 Comments:

Page 8 of 10 **Core Hole Description** PB-92 Date 12-1-88 Project Area WISHBONE HILL - WEST Hole ___ 367.0 - 377.0 Interval Cored: _ F. J. Mrkoniic 10.0 _ Described by: _ Interval Recovered: _ Describe core loss location, if possible. Describe color, bedding, fractures, fossils, gradations, grains and mineralization, where applicable. Interval Scale Depth **Picture** Box Bag Core Run Analyzed/ **Core Description** Thick. (Lith Log) Ft. Log 367 SILTSTONE ANALIZED 368.0 368 BAL BOX SILTSTONE 8422 36 40A 368.5 BAG SHALE 57.88 40 369.0 369 BAL 4 31.52 COAL 370 371.0 371 Box BAL COAL 30.16 0.5 42 371.5 BONE COAL BAL 45.82 0.8 317 43 372.3 BAL SHALE 62.37 373 1.7 44: 374.0 374 NOT BALGED SHALE 题 87.72 1.5 375 375.5 SHALE 67.97 45 375.8 0.3 376 COAL 1.1 46 /3.78 376.9 377 SHALE Comments:

Core Hole Description Page 9 of 10 Project Area WISHBONE HILL -WEST ____ Hole __ PB-92 Date 12-1-88 377.0 -387.0 Interval Cored: _ 10.0 Described by: F. J. Mrkon ich Interval Recovered: Describe core loss location, if possible. Describe color, bedding, fractures, fossils, gradations, grains and mineralization, where applicable. Interval Scale Depth Bag No. Core **Picture** Box Run Analyzed/ **Core Description** Ft. 377 (Lith Log) Log Thick. No. BAG BOX. 47 37 1.0 SHALE 377.9 378 BOX NOT. SILTSTONE AWALIZED 37 BAGGED BOX NOT. 379 38 BAGGED 380 381 382 383 BAG BOX 8170 38 3835 BAG BOX. BONE COAL 37.3*0* 384 48 38 384.2 BAG COAL 6.22 49 385 385.0 BAL COAL 30:64 50 385.7 386 SHALE BOY **1334** 39 386.2 BOX BAG 39 51 387

Comments:	

Core Hole Description Page 10 of 10 Project Area WISHBOWE 14ILL - WEST Date <u>/</u> / 2 - / - 88 Hole _ 387.0 - 391.5 Interval Cored: _ 4.5 Described by: F.J. Mrkonjic Interval Recovered: _ Describe core loss location, if possible. Describe color, bedding, fractures, fossils, gradations, grains and mineralization, where applicable. Interval Analyzed/ Scale Depth Core **Picture** Box Bag Run **Core Description** Ft. 38つ Log Thick. (Lith Log) No. No. BOX BAG SHALE 73.18 387.5 39 51 388 BAG SHALE 20 76.34 389 389.5 390 COAL BAG 1.5 17.48 53 391.0 391 SHALE BAL 0.5 67.79 391.5 54 BAL SHALE 7417 0.5 392.0 55A 392 393 394

1	

Interval	Recover	ed:	8:7					oy: <u>F.J. M</u>	
Describe o	Depth	Core Thick.	Picture (Lith Log)	Interval Analyzed/ Type Anls.	Box No.	Bag No.	tions, grains ar	d mineralization, whe	
				70 ASH	Röx 8	bot	141.0		
		1.8				BALL	ED 142.8	SILTSTOI	JĘ
<u>stessijenskonfront</u> roterskoriondroterskoriondroters		1.3	CORE LOSS				144.1		
		0.7		68.58	Box	BAG	144.8	SILTSTO	NE
		1.1		51.47		BAG		BONE-CO	DAL
		1.5		55.95		BA6-3		SHALE	
		6.9		54.21		BAG	148.1	SHALE	
		7.5		70.19	V	BAG		SHALE	

Page / of /3

Project Area WISHBONE HILL - WEST Hole PB-101 Date 12-2-88 150.0 - 160.0 Interval Cored: _ 7.3 Described by: _ Interval Recovered: Describe core loss location, if possible. Describe color, bedding, fractures, fossils, gradations, grains and mineralization, where applicable. Interval Box Bag Depth Core **Picture** Scale Analyzed/ **Core Description** Run No. (Lith Log) Log Thick. Type Anis. BOX BAG SHALE 150.5 5 BAG 151 SHALE 5A 151.5 CORE NOT 152 1.1 LOSS ANALIZED 152.6 153 COAL BAG 16.59 1.3 6 153.9 154 SHALE 61.72 154.2 0.3 SHALE 62.53 154.6 BAG SHALE 155 56.57 9 155.4 BOX BA6 10 154 BONE COAL 47.14 2.0 157 157.4 BAG SHALE 66.51 0.8 2 158 158.2 CORE 1.6 LOSS 159.8 BONE COAL 160 Comments:

Core Hole Description

Page 2 of 13

WISHBONE HILL - WEST Hole PB-101 Date 12-2-88 Project Area _ 160.0 -170.0 Interval Cored: F.J. Mrkon 10.0 Described by: _ Interval Recovered: Describe core loss location, if possible. Describe color, bedding, fractures, fossils, gradations, grains and mineralization, where applicable Interval **Picture** Box Bag Depth Core Scale **Core Description** Analyzed/ Run Log Thick. (Lith Log) No. Ft. 160 BAL BONE COAL 0.6 160.4 161 BAL COAL 14.35 4 162 162.6 COAL BAG 32.46 163.0 163 BAG SHALE 64.69 1.3 164 164.3 BAG 165 SHALE 1.5 7157 7 165.8 SHALE 166 69.99 0.3 166.1 BAG BOX SHALE NO 69.99 0.5 BAG 166.6 167 SHALE BAG 91.02 1.2 ľ 167.8 168 SHALE 84.78 BAG 0.6 1 168.4 BAG COAL 13.64 0.9 169 169.3 BAG 42.47 BONE COAL 169.9 170 COAL 28.06 Comments:

Core Hole Description

Page 3 of /3

Page 4 of 13 **Core Hole Description** Project Area WISHBONE HILL -WEST Hole_ PB-101 Date 12-2-88 170.0 -180.0 Interval Cored: . F.J. Mrkonjic 8.6 Described by: _ Interval Recovered: Describe core loss location, if possible. Describe color, bedding, fractures, fossils, gradations, grains and mineralization, where applicable. Interval Scale Ft. /70 Core Thick. Вох Bag **Picture** Depth **Core Description** Analyzed/ Run No. (Lith Log) Log BOX BAG COAL 04 170.3 BAL SHALE 171 171.7 BAG SHALE 172 63,06 1725 COAL 25.76 0.8 BAG 173 8 173.3 NOT CORE 174 AUALIZED LOSS 174.7 175 BAG 7429 SHALE 9.0 176 176.7 BOX 177 -BAL SHALE 6829 12 1. 177.4 BAG SHALE 1.0 6272 178 2 178.4 BAG 179

180			
Com	ments:		

3

5.12

1.8

COAL

Core Hole Description WISHBONE HILL - WEST Hole PB-101 Date /2-2-88 Project Area 180.0 - 190.0 Interval Cored: 5.4 Described by: _ Interval Recovered: Describe core loss location, if possible. Describe color, bedding, fractures, fossils, gradations, grains and mineralization, where applicable Interval Depth Log **Picture** Box Bag Core Scale **Core Description** Analyzed/ Run Thick. (Lith Log) Ft. 180 COAL 3 180.2 CORE NOT LOSS 181 ANALIZED 181.4 COAL BAG 32.17 182 1822 BAG 4 NOT. 183 AVALIZED VOID 2,4 184 184.6 BAG COAL 32.17 0.4 185.0 185 CORE NOT AUALIZED LOSS 10 1860 186 SHALE 5. 186.3 0.3 187 COAL BAG 11.98 20 188 1883 BAG BONE COAL 49.10 0.8 189 189.1 SHALE SAUDSTONE NOT BOX 66.34 07 BALLED 12 189.8 SHALE/SANDSTONE 190 66.24

Comments:	

Project Area WISHBONE HILL - WEST Hole ____ PB-101 Date 12-2-88 - 200.0 190.00 Interval Cored: 5.5 F.J. Mrkonjich Described by: _ Interval Recovered: Describe core loss location, if possible. Describe color, bedding, fractures, fossils, gradations, grains and mineralization, where applicable. Interval Picture (Lith Log) Depth Box Bag Core Scale Analyzed/ **Core Description** Run No. Ft. Log Thick. 191 NOT VOID ANALIZED 192 193 193.3 BOX BAG 13 34.22 194 COAL 194.8 BAG CORE NOT 1.0 ANALIZED LOSS 195.8 196 BAG COAL 23.73 2 196.9 BAG 80.56 2A SHALE 199.8 NOT ANALIZED 200 Comments:

Core Hole Description

Page 6 of 13

Page 7 of /3 **Core Hole Description** Project Area WISHBONE HILL - WEST Hole ____ PB-101 200.0 210.0 Interval Cored: _ F.J. Mrkonic 8.7 Described by: _ Interval Recovered: Describe core loss location, if possible. Describe color, bedding, fractures, fossils, gradations, grains and mineralization, where applicable. Interval **Picture** Box Bag Depth Log Core Thick. Scale Ft. **Core Description** Analyzed/ Run (Lith Log) No. 100 NOT CORE 0.8 AVALIZED. LOSS 200.6 BOX BAG BONE COAL 45.16 13 201.1 BOX BAC 61.07 SHALE 1.7. 202 202.8 203 Box BAG COAL 1.24 204 204.6 NOT CORE ANALIZED 1.2 LOSS 205.8 206 BAG 18.08 COAL 0.8 2: 206.6 SHALE BAL-2A 65.62 0.4 207.0 201 SHALE BAG 6850 0.5 3 207.5 BAL 76.11 *1.*2 SHALE 4 208.7 BAG SHALE 210

201

	1.8	NOT DOT BAGGED	SHALE	
Comme	nts:	1 45 £		
320-130				
			4	

Core Hole Description Project Area WISHBONE HILL - WEST Hole PB-101 Date <u> 12-2-88</u> 210.0 - 220.0 Interval Cored: 5.6 Described by: _ Interval Recovered: Describe core loss location, if possible. Describe color, bedding, fractures, fossils, gradations, grains and mineralization, where applicable Interval Scale Ft. <u>210</u> Depth **Picture** Box Bag Core **Core Description** Analyzed/ Run Thick. (Lith Log) Log Type Anls NOT BOX BALLED SHALE NOT ANALIZED 211 211.2 NOT BOX NOT. 1.8 SHALE 212 14 BALLED AUALIZED 213.0 213 CORE NOT LOSS 1.9 AVALIZED 214 214.9 215 BOX NOT SHALE 15 DALGED 216.1 216 BOX SHALE 15. 1.3 217 211.4 NOT 218 CORE ANALIZED 1.8 LOSS 219 219.2 NOT ADVAUCED CASIUL ANALIZED NO . CORK 219.9 220 Comments:

320 - 130

Page_8 of _______

Page 9 of 13 **Core Hole Description** Date 12-2-88 Project Area WISHBONE HILL - WEST Hole ___ PB-101 220.0 - 230.0 Interval Cored: 8.9 F.J. Mrkon Described by: _ Interval Recovered: Describe core loss location, if possible. Describe color, bedding, fractures, fossils, gradations, grains and mineralization, where applicable. Interval Analyzed/ Bag **Picture Box** Scale Depth Core **Core Description** Run Ft. 권() No. Log Thick. (Lith Log) Bok BAG COAL 7.99 1.0 15 220.9 221 BOX BAG COAL 4.75 1.0 15. J 221.9 ત્રેય્ર NOT ANALIZED 222.2 SHALE BAG BOX 69.42 15 3 222.7 SHALE 63.69 15 223.0 Box. BAG 84.83 SHALE 15 4A 20 225.0 BOX BAG COAL 7.60 15

224 225 226 227.0 227 BOX BAL BONE COAL 228 229 229.2 NOT 08 VOID ANALIZED 230.0 230

Comments:	

Core Hole Description

Project Area WISHBONE HILL - WEST Hole PB-101 Date 12-2-88

Interval Cored: 230.0 - 240.0

Interval Recovered: 9.0

Described by: F. J. Mrkonjich

icale Ft.	Run	Depth Log	Core Thick.	Picture (Lith Log)	Interval Analyzed/ Type Anis.	Box No.	Bag No.		Core Description	
 			<i>j.</i> .l		79.86	B0X	BAG 2		SHALE	
હ (-			0.4		{3.0 &		BA6-	231.1 231.5	SHALE	
હ્ય			/ . 8	The state of the s	6045		BAG U			
<u> </u>									SHALE	
			0.7		8474		BAL 5	233.3	SHALE	
છ <i>4</i> -			1.0		46.21		BAG	234.0	BONE COAL	
હું - હું -							6	235.0	More COME	
·			0.8	TEST. SAMPLE SECTECH	1 : ;	Y	N.B.	235.8	SILTSTONE	
36 -			1.1			Box 16	N.B.		SILTSTONE	
ಬ <u>7</u> -						Box	0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	236.9	CIALE	
238					75.46	17	BAG	238.0	SHALE	
			1.0	CORE	NOT AVALIZED				Ś	
139 <u>-</u>			0.2	a - mar e i	21.75	17	1	239.0 239.2	COAL	
24 <i>6</i> _			J.0		22.34	Box 17	BAG 2		COAL	

Comments:	 	
· · · · · · · · · · · · · · · · · · ·		gradia and a gradual and a

Core Hole Description

Page_//_of_/3

		Recover		10.0					ру: <u>F. J. A</u>	
-1-	scribe o	ore loss loca Depth Log	ction, if possi Core Thick.	Picture (Lith Log)	interval Analyzed/	Box No.	Bag	tions, grains ar	d mineralization, whe	
10	,	-			Type Anis,	Box	BA6		00.4.	
<u>/</u>			2.0		22.34	17	2	201.2	COAL	
		-	0.2		18.19	17 Box	3	241.2 241.4	COAL	
2			1.2		58:41	17	BN6 -4		SHALE	
3							BAL	242.C		
			1.5		82 23		YA.		SHALE	
4								244.1		
			1.2		16.83		BAG 5		COAL	
5			0.3		52.44	Box	5A	245.3 245.6	BONE CO	AL
4			7.0		21.75	Box 18		410.6	COAL	
						10	- ls /	246.6	0//A1 <i>F</i>	
בר			0.8		69,41	2 1 2	BAG	247.4	SHALE	
18			1.0		58.98		BAG		SHALE	
-								248.4		
19			1.5		88.58		BAG 3A	mbennesserie este conferentes.	SHALE	
50								249.9		

Core Hole Description Project Area WISHBONE HILL - WEST Hole PB-101 ____ Date <u>/</u> ノス-ス-88 307.0 - 317.0 Interval Cored: _ F. J. Mrkonlic 10.0 Described by: __ Interval Recovered: _ Describe core loss location, if possible. Describe color, bedding, fractures, fossils, gradations, grains and mineralization, where applicable. Interval Scale Depth **Picture** Вох Bag Core Run Analyzed/ **Core Description** Ft. 307 Log Thick. (Lith Log) No. BAG BOX 80.09 24 1A SHALE 308 308.2 Box BAG COAL Ţ, 309 369.3 BOX BAG COAL 5 34 12.14 0.8 310 310.1 SHALE Box BAG 61.51 0.7 25 1 310.8 311 COAL BAG 2 312 3123 8A6 3 COAL 19.08 312.7 <u>B13</u> BAG BONE COAL 1.2 52.24 313.9 314 BAG 5 COAL 13,67 1.7 315 315.4 SHALE 71.22 5A 315.8 316-317

Comments:	
320 - 130	

Page 12 of 13

Core noie Description		Page 751 OI
Project Area WISHBONE HILL - WEST	Hole ρ_{B-10}	Date / / 2 - 8 5
Interval Cored: 345.0 - 355.0		
	Described by: F.J. M	. k !: /
Interval Recovered: 7.2	Described by:	rkonjich
Describe core loss location, if possible. Describe color, bedding, fractures, fossils,	gradations, grains and mineralization, where	e applicable.

Scale Ft. 345	Run	Depth Log	Core Thick.	Picture (Lith Log)	Interval Analyzed/ Type Anis.	Box No.	Bag No.		Core Description
 			0,8	CORE LOSS	NOT AVALIZED	B0X 88		345.8	?
346			1.0		NOT AVALIZED	BOX 28	N.B		SHALE
347			0.8		NOT ANALIZED	Вех 29	<i>№</i> .В	346.8	SHALE
3 <i>4</i> 8				CORE	Not			247.4	2
			1.3	Lass	APALIZED	O coV		248.8	
349			0.7		AVALIZED	B0X 29	N.B	249.5	SHALE
35 <i>0</i>			0,8	CORE	NOT ANALIZED	PAY	DAZ	350.3	
351						30X	 		~ 10
<i>35</i> 2			2.6		67.32				SHALE
353								352.9	
			1.4		32.19	1301 29			COAL
354						Box	C BAC	354.3	
<i>3</i> 55			2.0		70.61	29	3		SHALE

	354.3 BOX BAC	
2.0	= 70.61 29 3 SHALE	
Comments:		
320 - 130		

Page 13 of 13 **Core Hole Description** PB-101 Project Area WISHBONE HILL ~ WEST Hole ___ 12-2-88 355.0 - 365.0 Interval Cored: . F.J. Mrkoniic 10.0 Described by: _ Interval Recovered: _ Describe core loss location, if possible. Describe color, bedding, fractures, fossils, gradations, grains and mineralization, where applicable. Interval **Picture** Вох Scale Depth Core Analyzed/ **Core Description** Run Log Thick. (Lith Log) No. BOX BAG SHALE 3 29 2.0 70.6el 354 356,3 BAC BOX SHALE 7771 3540 357 SHALE BOX BAG 87.41 357.3 5 HALE BOX BA6 0.7 87.40 30 358.0 358 BAG COAL 14.35 2 359.0 359 BAG 19.89 COAL 1.7 360 3607 SHALE BAG 82.50 341 361.1 BOX 30 SANDSTONE N.B NOT AVALIZED 342 3.9

Comments:	

F	Project	Area	Nishba	our M	<u> </u>		t	tole PB-1	٧٧	Page / of <u>Z</u>
ı	nterval	Cored: _								
ı	nterval	Recover	ed:				(Described by:	Doon #	D. Germen
C	Describe o	ore loss loca	ation, if possi	ble. Describe co	lor, bedding, fractur	es, foss		tions, grains and mi		applicable.
	Run	Depth Log	Core Thick.	Picture (Lith Log)	Interval Analyzed/ Type Anis.	Box No.	Bag No.		Core Desc	ription
	Gastug -	57.5	Inick.	(Litti Log)	Type Anis.		20.	coal,	fractur	eol
	Rau#/ 17.	€8.0	7.8			B _o ×	75- 193	·	•	
	75-61-5-	\$9.0	5.3	-e-e- -e- -e-c-		Bpx /	59.8	- carb.	shale	
_		80.10	 		-,, 	Down	7	aa /		
С	ommen					Box7		g/		· · · · · · · · · · · · · · · · · · ·
		Sto	rt C	oring	9-50	Oc	4.11	1988		

Core Hole Description Hole PB-105 Date Oct. 11/88 Project Area Wighbone Interval Cored: Described by: #21 Interval Recovered: Describe core loss location, if possible. Describe color, bedding, fractures, fossils, gradations, grains and mineralization, where applicable. Interval Scale Ft. Depth Log Picture Вох Bag Core Analyzed/ **Core Description** Run (Lith Log) Thick. No. Type Anis. No. carb. sh. 4.43,2 œ many coal streaks siltatone lt. gray siltatore 16. gray 4 \$ 4 67. canb. Sh with bone Carb. Sh with 3" coal at BTH cacb. Sh Box 3 siderite BTH half 67.0 5.3 #3 carb. sh Coat at DT'H I" 67.5~ Box carb. sh with many and streaks

700 0 0 - c-	72	beolding 10 dgrees	ACA
Comments:			
320-130			

Page_3 of 24 **Core Hole Description** Date Oct. 11 /88 Hole PB-105 Project Area Wishbone Interval Cored: Interval Recovered: Described by: Describe core loss location, if possible. Describe color, bedding, fractures, fossils, gradations, grains and mineralization, where applicable. Interval Scale Depth **Picture** Core Bag Run Analyzed/ Box **Core Description** Log (Lith Log) Thick. Type Anis. No. No. carb. Sh. brownish gray prounish gray fractured top half many coal streaks x 1 77 740 740 Box carb.3h many coal streaks 3.5 dgrees ACA X Carb. sh 77.8 with many coal streaks at BT'M fairly sticky 770 Bone SO SX Jeg 1 Bone Comments: 320 - 130

Page 4 of 24 **Core Hole Description** Project Area Wishbone Hill Hole PB-101 Interval Cored: Described by: Interval Recovered: Describe core loss location, if possible. Describe color, bedding, fractures, fossils, gradations, grains and mineralization, where applicable. Depth Picture Bag Scale Core Box Run Analyzed/ **Core Description** Log Thick. (Lith Log) No. No. Type Anis. Boue Carb. Sh. Bong many coal Bone 6 80 '٧ Siltstone Co. gray hard 47.4 Boue Box Coal solid Coal solid # D. coal solid 47.0 88.0 ? solid solid Comments:

	-	Area(* * * * * *	U			. 1010	Page	/
	Interval	Cored: _								
	Interval Recovered:						Described by:			
	Describe of	core loss loca	ation, if possi	ble. Describe co	lor, bedding, fractu	res, foss	ils, grada	ations,	grains and mineralization, where applicable.	
cale Ft.	Run	Depth Log	Core Thick.	Picture (Lith Log)	Interval Analyzed/ Type Anis.	Box No.	Bag No.		Core Description	
	#727,2 -	27.0), o	-c-c-		100 8	30.7 90 30.7 90	Bas/	coal solid	
	92.2 -	95.0		-c- -c-c-		0	?~ 95.3·	N		
	÷168#	930	3.7	-e- -e-			م. م.ورو	699	Carb. sh brownish gray few coaly streaks	
	2~ 4.5-	940				Box 4	46		few coaly streams	
	+ #9	()	0.4	- Co			77 94.50	Bac	Siderite very hard It. brownish gray silfstone	
-	945-99	96.0	3 .			Box 7	963 26		1t. gray	
	99.5	97.0	0.3			8	26.3.372 953	\$ B9	Bone	
		28. a	0.5	U/////////////////////////////////////		Box 6	97	(coal solid BTM Yor pr	oke
		99.0	16	L083		1				
-	#/0	2000	3,0	-c-c-		Bex 7	99.57	bag 3		
	Commen 94.5		t. //	17:3	o end					

Page 6 of 24 **Core Hole Description** _____ Date Oct.12/88 Hole PB-10± Project Area Wishbone Interval Cored: Described by: Interval Recovered: Describe core loss location, if possible. Describe color, bedding, fractures, fossils, gradations, grains and mineralization, where applicable. Interval Depth **Picture** Run Analyzed/ **Core Description** Log Thick. (Lith Log) Type Anis. Carb. 8h few coal streaks brownish gray coal bouy BT/14 half Carb. Sh many coal streaks brownish black ેં Carb. sh few coal streaks
fairly sof*
sticky shared swelled → pulled pipes β_{ex} 1070 90 Bone shared sticky - pulled pipes clear 75 degrees ACA faily carb. 0 core lost top a BTH
recovered 3.5' in 5' run Comments: 320 - 130

Page 7 of 24 **Core Hole Description** Date Oct. 12/28 Hole PB-101 Project Area Wishbone Hill Interval Cored: Described by: Interval Recovered: Describe core loss location, if possible. Describe color, bedding, fractures, fossils, gradations, grains and mineralization, where applicable Interval **Picture** Box Bag Depth Core Scale **Core Description** Analyzed/ Run (Lith Log) Ft. Log Thick. No. Type Anis. CORE FOSS Bour carb. sh wany coal streaks 7#3 61 coal solial vitrious 七/弁 11.00 7 114. 3. 117.0 118.0 Box 1/A 0 1190 w Coal solid Comments:

	Proiect	Area U	<u>Jishbo</u>	ne Hi	<u> </u>		(Hole	PB-1	0.5		_Date Oct	-12/88
		Cored: _			-								
		Recover	ed.					Desc	cribed by:				
				ble. Describe col	or, bedding, fractu	es, foss			-		on, where a	pplicable.	# · · · · · · · · · · · · · · · · · · ·
le	Run	Depth Log	Core Thick.	Picture (Lith Log)	Interval Analyzed/ Type Anis.	Box No.	Bag No.				re Descriț		
	7/#	1/29	0.6	- c- c-			7. 9.C.	Bag 4	Carb.	sh	mau (y coal	streak
	119.5~	.121.0					120.72	t	Cool	9o(id i	itrious	
	- 7 ht/	433. °	<i>1.7</i>	-c-c-		Box 10	ددر ۱۳۰۰ ۱۳۰۰	4	Carb.	sh	wai	iy coal	? strec
		(2), o	3,3				2.4~ /24.5	6					
	1 91# 6	1		-c-e- -c-e- -e-e- -B-B-			1245-6	Bag/	Carb.	sh	bou	y BTM	0.2'
	~474	126.0	Å				13/26		Coal	90(1	el v	itrious	
	1.92.4	1270				Box	~ 107.1	9.					
	7		3.7			77.	٠ پو						
		129.0					754 ~31	(L					
	→#17	1360	12	208T				C	ool				
			·				Ι,	ً.9د	7~ 130	4			
С	ommen	ts:						<i>71</i> ·	130				

ı	Interval	Cored: _		 				
ı	Interval	Recover	ed:	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		I	Described by:
1	Describe o	ore loss loca	tion, if possi	ble. Describe col	or, bedding, fractu	es, foss	ils, grada	tions, grains and mineralization, where applicable.
	Run	Depth Log	Core Thick.	Picture (Lith Log)	Interval Analyzed/ Type Anis.	Box No.	Bag No.	Core Description
Ī	#	11294		<i>411774</i>		- \$	4	R .
	17		—	7/201/20				C atmost
١				-e-			30:	Carb. Sh with few coal streat
-	ب بارد	() [,0	11/5				7 9	
١	7		-/1	-c-c-			3	v.
1	7			_e_			67	
	/			_c-c-				
1	1.861	137-	/ 1-1				131	Ciltatone 16 aray
	7						17.9	Siltstone Itigray uslightly shared
1								u stratity shared
1		33.0				- 1	<i>'</i> &	
-		3,7	2.6		7 7 7	Ø	33.7	
						×		
+	<u> </u>					90		- 21/21 2 with apply wishs
1		1340				<i>ب</i>	133	Siltstone with early wisps R Stoleritic very hard
1	#						7	R Stateritic very harri
	8		 				-	carb. sh many coal streaks
1	\			-c-c-			9.4	friable
1	4.58.7	1360		_c _	, , , , , , , , , , , , , , , , , , ,		61	
1	v			-c-c-			140	
	,			-c-			~	Carb. sh with few coal ba
-	14	1340)	7 less than 2"
1	રકે.	120-	٥				36	T less than 2" many fracture 60° ACA
	7		3.8	_c-c-			6.0	many fraction of
							: : ;	
1		137.0		c-			*	
						β_{0}	4	6
					* * * * * * * * * * * * * * * * * * * *	8 3	1.9	2
1				The second		\$:	38	
1		(38.°					Ų.	
1				CORE				
1	\downarrow	,	0.4	7982				
Ī		1290		////			Ę./	
1	#	171				Box	30	<i>b</i> 0 <i>d</i>
ł	3					×	1	h
			4.4			1	79,	
1		ربره				Ш.:		<u> </u>
								·
С	ommen	ts:						

#19 /38-7~ 143.7 — #20 143.7~ 148.7 —			Picture (Lith Log)	interval Analyzed/ Type Anis.	Box No.	Bag No.	escribed by: #20~#22 F. Harkonjich Ins., grains and mineralization, where applicable. Core Description Coal Solid vitrious
# #19 138.7 ~ 143.7 — # # 20 143.7 ~ 148.7 — **	Depth Log (400 C	Core	Picture	interval Analyzed/	Box No.	Bag No.	Core Description
#19 138.7~ 143.7 ————————————————————————————————————	Log (44.0			Analyzed/	No.	No. 739 9 6	
19,38.7~143.7 ——> #20143.7~148.7 ——>	£ 5	4			3	10 00 p	coal solid vitrious
9 138.7~ 148.7 ————————————————————————————————————	٥				3	9 5	Con Solia Virrious
8.7~ 143.7 ————————————————————————————————————	٥				3	2 141.7 141.7	
8.7~ 143.7 ————————————————————————————————————	٥	4.			3	14/1/	
~ 143.7 — # # po 143.7 ~ 148.7 — — — — — — — — — — — — — — — — — — —	٥					7.7 11/4.7	
7> #20 143.7~ 148.7>	٥					1/4.7	
7 ————————————————————————————————————	٥					11/4/27~	_
7 ————————————————————————————————————	٥				:80	14.7	_
#3.7~ /48.7>					80	2 00	
#3.7~ 148.7					80	S. 30	
#3.7~ 148.7					0	1 1 1 1 1 1	
#3.7~ 148.7	يزديز دم				×	2	a forest
#20 143.7~ 148.7	, <u>α</u> α ο		た アンアンアオ		12	3.7	Bony BTM 6" tractures 60 degrees.
#3.7~ 148.7	برززه	1: 1:	774A		100		
#3.7~ 148.7	الألألأ وا		//////			143.7	and
o 143.7 ~ 148.7			47.618				Coal Carb. Sh
~ 148.7			-c-c-			144. P	· Carb. Sh
~ 148.7			-c-			0	
~ 148.7	1440		-c-c-			144	Carb. Sh
			_c _			6	
			_r_c_) de	
						3	
	1460	// 3	_c_c_		Hii	7	
		4.			1		
			_c_c_		0		
	1470				X	£	Carb. 9h
/c# \	7.7-				1	7	
/*************************************					1:::	}: : •	•
7 + 2 + 2 + 2 + 3 + 3 + 3 + 3 + 3 + 3 + 3						82	
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	,48.0					3	
 					. 4.4		
# 2		D.X				3 6 E	Siltstone very dry
12	ه ۵.ر	本				, i	
	147-				1 1	\$	
					, ,	2 6	Shale Itigray very sticky
		3.4				द्व	0
	160 d						
•	•						4
Comments:	~		bring /	97230 Oc	<u> </u>	· fa	t 148.7'
		gan c	~~~~	9:45 00	<u> </u>		

Page_//_of__24 **Core Hole Description** Date Oct. 13/8 Hole PB-105 Project Area Wishbone Interval Cored: Described by: Interval Recovered: Describe core loss location, if possible. Describe color, bedding, fractures, fossils, gradations, grains and mineralization, where applicable. Scale Depth Core **Picture** Box Bag Run Analyzed/ **Core Description** Log Thick. (Lith Log) No. No. Type Anis. Sh 16. gray very sticky carb. Sh with thin osal streaks Box Sh slightly comb. #しと X 153.7 1.57.0 18. Siltstone slightly carb. at BTM # نگ Comments:

320 - 130

Page 12 of 24 **Core Hole Description** Hole <u>PB-10</u>5 Project Area Wishbone Hill Date Oct. 13/84 Interval Cored: Ruu #23~#30 Described by: Interval Recovered: Describe core loss location, if possible. Describe color, bedding, fractures, fossils, gradations, grains and mineralization, where applicable Depth **Picture** Scale Core Box Bag Run Analyzed/ **Core Description** Log Thick. (Lith Log) No. No. Type Anis. #23 多 Bone 80x 18 Carb. sh many coal streaks 162.0 Siltatone It. gray lost CORE 105+ とか丼 Carb. sh few wood streaks 0.8 Coal solid vitrious 63 \$0 * 168. 1660 167.0 4620 \$ 50 m Coal solid vitrious 1690 Comments: 320 - 130

Page 13 of 24 **Core Hole Description** Project Area Wishbone Hill Hole PB-101 ____ Date _Oct. 13 / DB Interval Cored: Described by: Interval Recovered: Describe core loss location, if possible. Describe color, bedding, fractures, fossils, gradations, grains and mineralization, where applicable. Interval Depth Picture Scale Core Box Bag Analyzed/ Run **Core Description** Log (Lith Log) Thick. Type Anis. No. No. Carb. sh brownish black bony at Top Sh lt. gray shared with some cool band less than 5" sticky containing a lot of moisture 9¢# 1740 ~ pulled piles 1770 178.0 Siltstone It gray mod. hard u plant fossil on tractural plane 40 degrees ACA か 179.0 Comments: 320 - 130

Page 14 of 24 **Core Hole Description** Project Area Wishbour Hole PB-10 f _____ Date _*Dc+* /3 /88 Interval Cored: Interval Recovered: Described by: Describe core loss location, if possible. Describe color, bedding, fractures, fossils, gradations, grains and mineralization, where applicable. Interval Picture Bag Scale Ft. Depth Core Box Analyzed/ **Core Description** (Lith Log) Log Thick. Type Anis. No. Siltstone It gray
Sideritic top 6"-with early wisps carb. sh coal solid vitrious 1840 1 Siderite coal solid vitrious 16 Coal solid vitrious 1840 Coal solid vitrious Comments: 320 - 130

	l Cored: _		bone	1.77				PB-105 Date Oct 13/88
	l Recover	eq.					Desc	ribed by: #3/~3> F. Mrkou)!
		-	ble. Describe co	lor, bedding, fractu	res, fossi			grains and mineralization, where applicable.
e Run	Depth Log	Core Thick.	Picture (Lith Log)	Interval Analyzed/ Type Anls.	Box No.	Bag No.		Core Description
#30 189.2-194.2	194.0			iype Anis.	80x 19	-1882 1969 - 1869 - 1858 1958-1942 1942 1945 1965 1965 1983 1983 1983 1986 1986 1988 1988 1988 1988 1988 1988	3 bag/ 4	Shi carb. It gray Some coal band 1000 than Carb. Sh Shale gray very hard.

Į		Cored: _		ooue					
ŧ	nterval	Recovere	ed:					Desc	scribed by: #33~30 D. Germen
1	Describe o	core loss loca	tion, if possi	ble. Describe co	lor, bedding, fractur	es, foss	ils, grad	ations,	s, grains and mineralization, where applicable.
	Run	Depth Log	Core Thick.	Picture (Lith Log)	Interval Analyzed/ Type Anis.	Box No.	Bag No.		Core Description
		201.	<i>(</i> 8			Box 3	- 20 to t B. cot - 11/10 6 11/10 11/9 16/	bas 1	Shale gray Cach. Sh Shale gray
	\$ 306-940C	2060	7/.7			0, .	30 4 6 304 00 20 30	4	Shale; It gray; very tractured calcite or silica on fractured mod hard Shale: md gray; competent
	5.0/c~0.30¢	307°				Box 2/	8:0-107.2 307.7-109.4 JORA	t (200) 1	slightly rooted; slightly sil
-							1	•	
C	ommen	ts:	Rult 0	drilling	62000	w_	Oct	.14	1/88 @ 20 X. 6'

1		Cored: _		ONR				Hole PB-/05 Date Oct 15/82
ı	nterval	Recover	ed:				ſ	Described by:
				ble. Describe co	olor, bedding, fractu	res, foss		tions, grains and mineralization, where applicable.
ale t.	Run	Depth Log	Core Thick.	Picture (Lith Log)	Interval Analyzed/ Type Anis.	Box No.	Bag No.	Core Description
		24					F-5-9/C 5-80C	Sh; and gray; slightly roote slightly silty wh: and gray; slightly root
	#34 210.5-2145	3	7			B & 2 /	(K) (S/E-0-47E 0-6)	u Sh: and gray: slightly roc slightly silty; competent
	5.618 -5731¢ 9.6#	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				Box	28x 7 216x 216x 216x 218x	Siltstone: med. gray; thin Shaley + Sandy 30nes < 3" Thick fractured
	#37						30cc 3.6/c	s Siltstone; lk gray; rooted

Page 18 of 24 **Core Hole Description** Hole PB-105 ____ Date Oct 15/28 Project Area Wigh bone Interval Cored: Described by: #39~ 40 Mrkaijich Interval Recovered: Describe core loss location, if possible. Describe color, bedding, fractures, fossils, gradations, grains and mineralization, where applicable. Scale Depth Core **Picture** Box Bag Run Analyzed/ **Core Description** Log Thick. (Lith Log) Type Anis. claystone / shale; It gray very fractured + soft 2040 Sh: well to dk gray; mod hard dayey section (<2") Bx 23 siderite comented @ base 3" fractured claystone; v. hard; siderite cemented . It gray 0.4 Siderite Shale / Clay Stone mal gray carb. sh 228. t-228. 6 Shale / Clay stone Hool gray begin Oct 16/08 9:15 am E, d Oct 15/88 320 - 130

Page 19 of 24 **Core Hole Description** Project Area Wishbone Hill Hole PB-105 Date Oct. 16/88 Interval Cored: Described by: Ran # 火/へ 44 Interval Recovered: Describe core loss location, if possible. Describe color, bedding, fractures, fossils, gradations, grains and mineralization, where applicable Depth **Picture** Bag Core Box Analyzed/ **Core Description** Log Thick. (Lith Log) No. No. Type Anis. Carb. shale 229.9-230.3 Shale med to dark gray sh; dk gray to blk: Carponaceous fractured; soft thin coul lamination8 Ŧ 55; It gray: fg to ufg wild cool: silty layers <3" thick Comments: 320 - 130

Page <u>20</u> of <u>24</u> **Core Hole Description** Project Area Wishbour Hill Interval Cored: Described by: Interval Recovered: Describe core loss location, if possible. Describe color, bedding, fractures, fossils, gradations, grains and mineralization, where applicable Interval **Picture** Scale Ft. Depth Bag Core Box Analyzed/ Run **Core Description** Log Thick. (Lith Log) Type Anls. No. ss: 16 to md. gray: fg: sh layers (max. 2") + laminations wild coal common 177.0 Interbedded SS+Sh; gray sh is very silty SS is fg

dip approx 28°

5" siderite bound @ 246.0" 246.4"

mod hol. few fractures

(Silty shale in btm 6") E Comments:

320-130

Page 2/ of 24 **Core Hole Description** Project Area Wishbone Hill Date 0+.16/88 Hole PB-105 Interval Cored: Described by: Pay 45~ 5 Interval Recovered: Describe core loss location, if possible. Describe color, bedding, fractures, fossils, gradations, grains and mineralization, where applicable Interval Depth Picture Bag Scale Core Rox Run Analyzed/ **Core Description** Log (Lith Log) Thick. Type Anis. No. Interbedded ss and sh wavy laminations , rooted wild cool fragments 4" siderite band @ 2 to. 2 - xto.t bedding \$20° ~o.ast sh; gray to alk gray; slightly carbonaceous 2" bone strk @244.2" Fresh to moderatelly weathered with weak zone in Frable shale or chystone mechanical us natural
Fissility difficult to distinguish as material is removed w/ difficulty from take. Predominantly light gray to light dive gray Siltotone and Shale medium strong to weak weak gones to 0.6' Last at carbonaceous @ 747. on Oct 17/88 Start coring Comments: _ 320 - 130

Page 22 of 24 **Core Hole Description** _____Date <u>Oct 16,1988</u> Project Area Wishbone Hill Hole PB-10-5 Interval Cored: Interval Recovered: Described by: Describe core loss location, if possible. Describe color, bedding, fractures, fossils, gradations, grains and mineralization, where applicable Interval Depth Log Picture Scale Ft. Bag Core Rox Analyzed/ Run **Core Description** (Lith Log) Thick. Type Anis. No. No. B 3 262.7 Box 263.0 263.4 Light ofive gray, Friable shale and/or claystone w/ carbnaceous [~3 mm coaly partings very weak to weak mechanically destroyed when removed from tube ه دوود 63 median light gray, un stratified siltstone, solid medium strong (SILTSTONE) (400) Light office gray 2625 Partings very weak Friable Int mm carbonaceous coal, black, hand, vitrious おんず conchoidal massive w/ coal cleats @ 60 and 50 degrees ACA Comments: 320 - 130

	Interval	Cored: _						
		Recover						escribed by:
	Describe c	ore loss loca	ation, if possi	ble. Describe col		res, toss	ils, grada	ns, grains and mineralization, where applicable.
ale t.	Run	Depth Log	Core Thick.	Picture (Lith Log)	Interval Analyzed/ Type Anis.	Box No.	Bag No.	Core Description
	#4 3 	→ 7/.•	5.9 0.5 0.4			Box	36,50	Bone Streak CLAYSTONE Friable destroyed mixed w/ coal fragments
	← 0.75c ~ 0.65c ←	373.6	3.1	-e-e- -e-e-		40	تر امریز درد از درد محدرد تر امریز درد	Olive black w/ Intum CARB.
	<	⇒76.0 >77.0 >79.0	2.5			Box30	2760~277.0 277.0 277.0	Olive black w/ Intum CARB. carbnaceous partings Fisility noted, locally Frable medium gray to olive black,
	12#	2000		materia, pristra provincia materia, pristra controla materia, pristra controla materia, compania			٥ ١٩٤	•

320 - 130

Page 2 4 of 24

Hole PB-10 5 Date Oct. 17/88 **Core Hole Description** Project Area Wabone Hall Interval Cored: Described by: Interval Recovered: Describe core loss location, if possible. Describe color, bedding, fractures, fossils, gradations, grains and mineralization, where applicable. Scale Depth Log Core Picture Box Bag Run Analyzed/ **Core Description** Thick. (Lith Log) No. Type Anis. 281.3-281.5 wild coal medium gray to plack plack (SHALE) J89. + T.D. Comments: 320 - 130

i			-			
					Logged By 15 2 2 TORK Date 6.16.87 Page 1 Of	
-	Orille	r <u>3</u>	1/_ 1	حة	TUS: / Excs TO 750 Date 6-(4-95	
	Prob	•			TDDate	
	Est.	Mud W	t		Hole Size 43/4 Log Types Collar Elev. 1036	
- :	Proje	ect Nan	ne 🚅	<u>کې ند</u>	- ningone kar	
:	Сли	ntv 🗥	AT.	- 5 u	Somouch State ALASKA Collar Coor. N E	
	Sem	arks	Ly e	[الحرية	THER BURGEN FOR GEOCHEMIAL ANALYSIS JUPA	
			1 3	PC		
1305	Depth	rog		7	STATE STATE AND SANDIST TOPSIL	
122	- ق	• 1	3		5 - May Vellanush braum (1042 Flat) -0 Greenis Gen (SCA SIV) LT GERICOS (GLACIE GENERAL)	
	10 -		3		10- 350 mino 1555 YELLOWISH BRUDT, GREENISH GRAY (567 61) DR. OR GRAY SCHALL COLLINEAR COL	
i en		8-	2		IC AS ABOUT (CHACIAL CARACEL) WESTES, CHAMITICS SUARTE	
-	20 -	•			25" AS ABOUT (CLACIAL GRAVEL) ROUT 15% COBBLES . 1.5% BOUNDERS	
1400	20	•	3		TE AT A BOUT KINGLAL STRAUMED TO CORDUEL (55) AND FOR SAND (35) 1.111 Sily (10)	-262 Dell
]	_	5		302 MS ASOUTE (GLACIAL GOAVE)	PONTE!
	30 →	•	3		35" PO AGOUE (COLACIAL CRANGE)	324 BOULDES
1515 -	-		3		40 AS AGOUS (CILACIAL GRAVE)	
	40 -			+	45" MARIES QUANTE GRAMITICE AND FOLDERING (WILMING GROWTH)	
		· ·			50 AS ABOUT (LILACIAL CLOWELS) CORELES 15-20% 5-10% BOULDERS	
1620-	50 -				55 LA AGOS (COLACIAL GRANGES)	
	-			+		
	60 -	S	$\ \ $			1
		-3		$\vdash\vdash$	(652 AS ABOVE (CILINIAN WHANES)	1
	70 -			Н-	5 AS ASONE (COLACIAN GRAVELS)	
1755 -	<u>l</u> .	:3	1	-	75" AS ABOVE (CHALLAL CHEAVERS) 76" BE GRANGE STREETERS	PY 3/2)
1,533	80	5.5	ζ.		80° CHICALETELY TO WIGHT WEAR OLIVERS AY (57 S/Z) TO HOOK GRAY	
(LE	Ļ	2,3	3 /4		35 2 38 DUNING LETS CHEEN, NORT NO DE WEATING COME DECONORS SANDE	342
	90	2.7	1		95" MED DIL GERY (NA) TO BE GOLD (ND) V. FH. GO (SARCES FORLE)	HARD
*	1 ~		1 6	Ш	95 BL MASSUE (SAM DESONIE)	-
CAPID CUTTING	00	105	1 1		105 AS ABOUE (CHMIDSTONIA)	-
IBLADE :	"		ي ا		JOS AF AROUN (SAMOSTUME)	-
	10	1/2	,	Ш	IVO- AT ABOUT (SANDSTONE)	
	117	1	,		115 DU LIBAY (M3) V. FM. CE. LIKHDSTONE)	4
!		٦., ٢.	1.	П	120 WO DE CROY (EIA) TO DE GO LUED (SILTSTONE) SOME CHEO FRAGMENT	<u> </u>
	20	T==		П	125" DIE GRAY (HE) TO SHING BLACK 5×211 (SILTETONE) SL. SLIDY	_
7.		1==	-		130° AS ASONG (SILTSTMING) FEW LEAF FOSCILS	1
; <u>;</u>	30	1=			135° AS ABOUT (SILTSTANE)	
	1		-	十	HO AS ABOUT (SILTSTAME)	
1910 -	- 40	1=	-	H	145° OLIVE BLACK (54 211) ISHITSTONE)	
	1	1=	-	Н	150° AD ADUS (SCUTSTONIS)	
•	50	<u> </u>	-	H	ISS & ABOVE (SILTSFINE)	
,		1=-	-	H		
	60	1	-	-		7
1925 -	4	1=	-		165" DLIVE BLACE (5" Z/1) (GILTET DIE)	7
	70	1	- 1	2	170° AS ABOVE (OUTSONE)	1
	I	-		? -	175 AS MEGINE (SISTES SAID)	1
	80		-1		130° LA MANA (SITTING)	_
		, [= , =	4	^ 	185" AC ABOVE (CLTSTONE)	-1
i	90	,	-	-	190" AS ABOVE (ALTERNAS)	-1
			-	_	195° M DENE /SHITTOUR	-
19 40			- 1	1	2003 K ASSE (SINTETSHE)	-
1470		TO	.		BACGED SAMRES	_
	10	,			BAG 13FZ 0=- 100= How 33-109	-
					RACT 2 3 F2 105 - 200 TO Page 1 OF	