

Alaska Department of Natural Resources

Division of Support Services
Information Resource Mangement

550 W. 7
th
 Ave. Suite 706

Anchorage, AK 99501

ColdFusion Coding Standards

For DNR Web Applications

Table of Contents

INTRODUCTION .. 2
COMMON CODE LOCATIONS .. 2

Java Class files ... 2
Java Jar files ... 2
Custom Tags .. 2
Server-wide files .. 2

CODE REPOSITORY .. 2
DOCUMENTING CODE AND APPLICATIONS ... 3

General Guidelines .. 3
CFC/Template Document Header .. 3

APPLICATION.CFC FILES ... 4
Server Level Variables ... 4

ERROR HANDLING AT THE CODE LEVEL .. 5
Using cftry/cfcatch .. 5
onError() Method .. 6

USE OF FRAMEWORKS .. 7
CODING FOR MULTIPLE ENVIRONMENTS .. 7
WHEN TO USE THE SECURE SERVER ... 8
NAMING & CONVENTIONS .. 8

Abbreviations .. 8
Acronyms ... 8
Package Names .. 8
Class/Component/Interface Names .. 9
Methods .. 9
Type Names ... 9
CFML Tags, Custom Tags and Attributes ... 10
Arguments and Variables ... 10
Constants or Static Variables ... 11

USE CFLOCK ON SHARED RESOURCES .. 11
Race Conditions ... 12

VARIABLE SCOPING ... 12
DO NOT ABUSE POUND SIGNS ... 13
USE CONSISTENT CODE FORMATTING ... 13
COLDFUSION CODE PROTECTION BEST PRACTICES... 14

Introduction ... 14
Golden Rule of Web Applications ... 14
Understanding HTTP Methods ... 14
Protecting Your Code .. 15
OWASP Data Validation and Interpreter Injection.. 15

SQL Injection .. 15
LDAP Injection ... 16
XML Injection ... 16
Event Gateway, IM, and SMS Injection .. 16
Best Practices... 16
Best Practice in Action... 17

ADDITIONAL RESOURCES ... 18

COLDFUSION CODING STANDARDS 5/24/2010 2

Introduction

This document describes the coding practices for new ColdFusion applications within
DNR. The purpose of these coding practices is to ensure some level of coding
consistency, to allow code to be reused whenever possible and to allow other developers
to more quickly understand and work with your code. Additionally it provides information
on how to help prevent negatively impacting the server environment.

These guidelines keep in mind that many of our ColdFusion applications are not purely
ColdFusion coding. They may also leverage the best technologies for the job, such as
Java or XML, with ColdFusion tying the various technologies together.

These guidelines are based on Macromedia’s ColdFusion MX Coding Guidelines
available online at: http://livedocs.adobe.com/wtg/public/coding_standards/ and on
ColdFusion Standards & Best Practices:
http://ortus.svnrepository.com/coldbox/trac.cgi/wiki/cbDevelopmentBestPractices

Common Code Locations

Java Class files

Compiled Java class files are stored in /shared/classes/.

The corresponding .java files should be stored in the code repository with the project they
were created for.

Java Jar files

Java Jar files are stored in /shared/lib/.

Custom Tags

ColdFusion custom tags can be stored either in the directory in which they are called. If
being called by multiple applications, use /shared/customtags. Make sure there are no
naming conflicts with existing files before placing new custom tags within the directory.

Server-wide files

Server-wide files for things like a generic email processing form are in directories under
the /shared directory.

Code Repository

It is important to have past versions of an application available should there be a need to
rollback to a prior version. Before you make a change to an application, copy the existing
application to the subversion repository.

http://livedocs.adobe.com/wtg/public/coding_standards/
http://ortus.svnrepository.com/coldbox/trac.cgi/wiki/cbDevelopmentBestPractices

COLDFUSION CODING STANDARDS 5/24/2010 3

Documenting Code and Applications

This section provides guidelines on commenting your source code. In general, we should
comment code to assist other developers who work on it in the future. We do not want our
comments to be visible to the public so we do not want to generate HTML comments from

CFML - we use <!--- ... ---> in CFML which does not get published into the HTML.

Comments are there to be read - consider your audience!

General Guidelines

Write CFML style <!--- ... ---> comments, for all important entities, that describe

what code does and why - document the how if it is not obvious.

When you make a change, comment it. Identify the change with the date and your user
name:

<!--- 2010-11-26 fmlast Expanded the Comments section --->

When you want to leave a note about a bug to be fixed or functionality to be added, put

TODO: in front of the actual comment so developers can easily search for them:

<!--- 20010-11-26 fmlast TODO: Incorporate everyone's

feedback --->

Additional standard search keywords can be added after TODO:, FIXME:, NOTE: - this is

very important as it helps your audience, other developers. Furthermore, standard tags
like this can be read by code editors such as Eclipse to create a "task list" whenever you're
working on a file.

<!--- 2010-11-26 fmlast TODO: BUG: Fails on Fridays --->

CFC/Template Document Header

Each CFML file should begin with an CFML style <!--- ... ---> comment. This

ensures the filename and application information are not rendered to HTML and viewable
via the web browser. This comment contains the filename and a standard copyright
message followed by an explanation of the file and then, optionally, its modification history:

<!---
filename.cfm
Copyright (c) yyyy State of Alaska Department of Natural Resources

Application: Name_of_application

Purpose: Short purpose of this file

Documentation: Location of external documentation

COLDFUSION CODING STANDARDS 5/24/2010 4

Author: Author’s Name

Description: Brief description of file’s functionality

Parameters: Expected parameters passed into this file

Parameters passed from this file to the next file

Dependencies: Things know to depend on or use this file

 Things this file depends on
Revision History:

Date Author Comments

MM/DD/YYYY FMLast Summary of changes

--
--->

Application.cfc Files

When creating applications that connect to another system (Oracle database, mainframe,
Stellent server, etc), you need to use an Application.cfc file. If Application.cfc as well as
Application.cfm and/or OnRequestEnd.cfm are all present, Application.cfm and
OnRequestEnd.cfm are ignored by the application.

Application.cfc introduced a number of built in methods that handle specific events. The
Application.cfc is the best location to include error checking for remote server availability.
Failure to check the status of remote servers can cause your application to hang and can
eventually bring down ColdFusion if left unchecked.

Server Level Variables

The DNR webservers have ColdFusion scheduled tasks that run every 5 minutes to check
the status of backend systems. These scheduled tasks set or create server level Boolean
variables for programmers to check within their Application.cfc files. This allows for error
handling at the application, session or request levels if the backend systems are not
available.

The server level boolean variables are:

Server Variable Name Tests

server.isMainframeAlive Can we reach the mainframe?

server.isBrokerAliveRO Is the RO broker job running?

server.isBrokerAliveLAS Is the LAS broker job running?

server.isTaminoAlive Can we reach the Tamino XML database?

server.isDatabaseAlive Can we reach the DNR Oracle databases?

server.isEftAlive Can we reach the Electronic Funds Transfer server?

server.isStellentAlive Can we reach the Stellent server?

These variables can be checked for within different areas of your Application.cfc to verify if
the needed service is reachable or running. If it is not and the server variable is false, you
will want to prevent the application from running. You can display a custom error message
or possibly use a generic site-wide error message when the service is unavailable.

COLDFUSION CODING STANDARDS 5/24/2010 5

For more information on Application.cfc files, see the document “ColdFusion
Application.cfc Files” under the ColdFusion section of the webmaster’s web site:
http://int.dnr.alaska.gov/shared/webmasters . Also see Chapter 6, “Defining the application
and its event handlers in Application.cfc” section in the Developing ColdFusion 9
Applications guide at
http://int.dnr.alaska.gov/shared/webmasters/coldfusion9/coldfusion_9_dev.pdf .

Error Handling at the Code Level

Error handling at code level allows the programmer to

 control the exception error handling

 keep an application running by recovering gracefully from and exception error

 keep an exception from negatively impacting server performance

 give a customized error message to the user

 retry an operation in case of a temporary problem and

 create error handling exception that are custom to the application (like
InvalidLASCode, etc.).

Code level error handling in ColdFusion is done with the cftry/cfcatch tags. The

cftry/cfcatch tags should be used with all

 calls to a database

 file handling operations

 calls to other services (web services, broker calls, etc) not controlled by the
application.

Using cftry/cfcatch

From the ColdFusion 8 documentation on using cftry/cfcatch tags:

“The cftry tag lets you go beyond reporting error data to the user:

 You can include code that recovers from errors so your application can continue
processing without alerting the user.

 You can create customized error messages that apply to the specific code that
causes the error.

For example, you can use cftry to catch errors in code that enters data from a user

registration form to a database. The cfcatch code could do the following:
1. Retry the query, so the operation succeeds if the resource was only temporarily

unavailable.
2. If the retries fail:

 Display a custom message to the user

 Post the data to an email address so the data could be entered by company staff
after the problem has been solved.”

Additionally there are standard cfcatch and onError variables that allow you to obtain error
information.

The method onError() in Application.cfc will allow an application to handle errors that are
not handled by individual try/catch blocks.

http://int.dnr.alaska.gov/shared/webmasters
http://int.dnr.alaska.gov/shared/webmasters/coldfusion9/coldfusion_9_dev.pdf

COLDFUSION CODING STANDARDS 5/24/2010 6

onError() Method

The onError() method in ColdFusion provides a way to handle any exceptions that are not
handled by individual try/catch blocks. It is placed in the Application.cfc

<cffunction name="onError" access="public" returntype="void">
</cffunction>

The onError() method takes two arguments.EventName, which is a string and Exception,
which is a structure. The EventName will be one of the following:

onApplicationStart
onSessionStart
onRequestStart
onRequest
onRequestEnd
onApplicationEnd
onSessionEnd

With the onApplicationEnd and onSessionEnd events the application is not able to display
an error message to the user, however the application is able to log errors that occur
during these events.

The method should look like the following:

<cffunction name="onError" access="public" returntype="void">
<cfargument name="Exception" required="true" type="struct" />
<cfargument name="EventName" required="true" type="string" />
</cffunction>

The application can send and email or create an entry in a log when an error occurs as
well as show a message to the user.

In order to display a simple error message to the user the application should check to
make sure the event is not onSessionEnd or onApplicationEnd.

Once this is done an error message can be coded in the function or included using
<cfinclude>.

The final onError() method should look as follows:

<cffunction name="onError" access="public" returntype="void">
<cfargument name="Exception" required="true" type="struct" />
<cfargument name="EventName" required="true" type="string" />

<cfif NOT (Arguments.EventName IS "onSessionEnd") OR
(Arguments.EventName IS "onApplicationEnd")>
<cfinclude template="globalErrorTemplate.cfm" />
</cfif>

</cffunction>

ColdFusion has made implementing a global error handler easy with the use of
the onError() method.

COLDFUSION CODING STANDARDS 5/24/2010 7

For more information on error handling see Chapter 6, “Handling Errors” section of the
Developing ColdFusion 9 Applications guide at
http://int.dnr.alaska.gov/shared/webmasters/coldfusion9/coldfusion_9_dev.pdf .

Use of Frameworks

The use of frameworks for coding ColdFusion applications is strongly encouraged. It
assists in productivity and maintainability of code. Most ColdFusion applications within
DNR have utilized the FuseBox framework. Information on FuseBox is available at
http://fusebox.org.

If FuseBox does not work for your application, consider another Model-View-Controller
framework. A number of frameworks are reviewed in this Adobe Developer’s Network
article, An introduction to ColdFusion Networks
(http://www.adobe.com/devnet/coldfusion/articles/frameworks_intro.html).

Coding for Multiple Environments

Our applications often connect to databases or mainframes with their own
development/test/production environments. Best practices would have our test
environment connect to the database test environment. By coding your application to
“sniff” out the current environment, you can have your database or mainframe connections
automatically select the correct environment to connect to.

Using the ColdFusion variable CGI.SERVER_NAME (or the older CGI.HTTP_HOST) you
can test to see which environment you are in and set up the appropriate environment-
related variables.

For example, to set the variable isTest based on which system it is on, the code might look
like this:

 <cfswitch expression="#CGI.HTTP_HOST#">
 <cfcase value="intdev.dnr.alaska.gov">
 <cfset isTest = "true"/>
 </cfcase>
 <cfcase value="int.dnr.alaska.gov">
 <cfset isTest = "false"/>
 </cfcase>
 <cfcase value="dev.dnr.alaska.gov">
 <cfset isTest = " true "/>
 </cfcase>
 <cfcase value="test.dnr.alaska.gov">
 <cfset isTest = " true "/>
 </cfcase>
 <cfcase value="dnr.alaska.gov">
 <cfset isTest = " false "/>
 </cfcase>
 <cfdefaultcase>
 <cfset isTest = " false "/>
 </cfdefaultcase>
 </cfswitch>

http://int.dnr.alaska.gov/shared/webmasters/coldfusion9/coldfusion_9_dev.pdf
http://fusebox.org/

COLDFUSION CODING STANDARDS 5/24/2010 8

When to use the Secure Server

In conjunction with the standard public Internet web site, is a secure, or encrypted, web
server. It has a separate document home from the public Internet web site (see the
handout on File Organization in the DNR Webmaster’s Center).

The secure server site is used when handling confidential data such as credit card or
social security numbers or when asking for username/password information and
authenticating it against an ETS server.

Naming & Conventions

Use good names for components, methods, arguments and local variables. Naming is
very important and will most of the time document your code. Always remember to use
meaningful names and stay away from cryptic abbreviations or naming strategies.

Abbreviations

AVOID abbreviations if possible. For example, calculateSalary() is a better method name
than calcSalary(). Although you can use well known abbreviations, please try to avoid
them if possible.

 Acronyms

Acronyms should be avoided in names, but if they must be used, then all acronyms must
be capitalized no matter where they are located on a string name.

-- DO THIS --

URLScanner.cfc

parseHTTPString()

-- NOT THIS --

url-scanner.cfc

UrlScanner.cfc

parseHttpString()

ParseHttpString()

 Package Names

Package names should be unique and in lowercase letters. Underscores may be used or
hiphens if necessary. You can package your objects/files using two well known
approaches:

1) By Functionality (Best Practice)

2) By object types

The best practice is to use packaging by functionality if at all possible. This creates better
packaging layout and maintainability. Here is an example from an application's model or
business layer folder:

COLDFUSION CODING STANDARDS 5/24/2010 9

+ model

 + security

 + remote-api

 + products

 + users

 + conversions

 + util

Class/Component/Interface Names

Class/Component/Interface names should be nouns, as they represent most likely things
or objects. They should be written in camel case with only the first letter capitalized for
each word. Use whole words and avoid acronyms and abbreviations if possible.
Examples:

-- DO THIS --

URLConverter

RSSReader

Serializable

ISearchEngine

-- NOT THIS --

urlConverter

rssreader

serializable

iSearchEngine

Methods

Methods should be verbs, in mixed camel case with the first letter lower cased and then
each internal first letter of words capitalized. Examples:

-- DO THIS --

run()

doThis()

executeInBackground()

isLocated()

-- NOT THIS --

RUN()

dothis()

executeINBackGround()

ISLocated()

Type Names

All ColdFusion type names in arguments, return types and the like should all be in lower
case when they are native ColdFusion types. If they are components they should be the

COLDFUSION CODING STANDARDS 5/24/2010

 10

EXACT name of the component. This is extermely important if for some reason the code
executes in a case-sensitive system, then the code will not work. ALWAYS have the exact
case of components and definitions.

-- DO THIS --

<cfargument name="paths" type="array" >

<cfargument name="user" type="model.users.User">

<cffunction name="getSecurityService"

returnType="model.security.SecurityService">

-- NOT THIS --

<cfargument name="paths" type="ARRAY" >

<cfargument name="user" type="model.users.user">

<cffunction name="getSecurityService"

returnType="model.security.SECURITYSERVICE">

CFML Tags, Custom Tags and Attributes

All CFML and custom tags should be writing in lower case form, just like HTML tags.
Attributes for CFML tags should follow the same behavior as arguments and variables as
seen below. If attributes can all be placed in one line, then do that. However, if they will
span and cause breaks, consider breaking the attributes into multiple lines and aligning
them to the first attribute.

-- DO THIS --

<cfhttp url="...">

<cfabort>

<cfdump var="#session#">

<cfhttp url="#urladdress#" method="GET"

resolveurl="Yes" throwOnError="Yes"/>

-- NOT THIS --

<CFHTTP>

<CFABORT>

<CFDump Var="#session#">

-- Unecessary Multi Line --

<cfhttp url="#urladdress#"

method="GET"

resolveurl="Yes"

throwOnError="Yes"/>

Arguments and Variables

They should be descriptive lowercase single words, acronyms or abbreviations. If multiple
words are necessary they should follow camel case with first letter lowercase. Examples:

-- DO THIS --

niceLocation = "Miami";

results = "";

avgSalary = "323";

COLDFUSION CODING STANDARDS 5/24/2010

 11

-- NOT THIS --

NICELOCATION = "Miami";

Results = "";

average-salary = "323";

Constants or Static Variables

They should all be in upper case separated by underscores "_". Examples:

-- DO THIS --

INTERCEPTOR_POINTS = "";

LINE_SEP = "-";

MAX = "123";

-- NOT THIS --

interceptor-points = "";

line_sep = "d";

max = "123";

Use cflock On Shared Resources

Use cflock whenever you need to make your code thread safe. This applies to variables in
shared scopes such as: server and application scope. You sometimes want to even lock
session scope if you are working with framesets, but usually locking session scope is not
necessary anymore. Also remember to use cflock whenever you are accessing shared
resources, such as file operations, cache operations, etc.

 Always use a timeout and throwOnTimeout attributes on the cflock tag.

 If you use exclusive locks on a resource, make sure that you also provide

readonly locks when trying to read from such resources.

 Use named locks for locking resources that do not apply to scopes such as

server,application, session. However, please understand that the name of the lock is

on a per server basis. So make sure the name is unique enough so other

applications running on the same server do not collide with it. If they do, you will be

providing unecesarry bottlenecks as named locks are global.

 Good locking article:

http://www.adobe.com/devnet/server_archive/articles/cf_locking_best_practic
es.html

 Do not overinflate the code within lock tags. Locking code should only occur on small

bits of code and when you are acessing the shared resource. Of course, there are

special ocassions to do more than just saving in shared scope, but use it as a rule of

thumb.

http://www.adobe.com/devnet/server_archive/articles/cf_locking_best_practices.html
http://www.adobe.com/devnet/server_archive/articles/cf_locking_best_practices.html

COLDFUSION CODING STANDARDS 5/24/2010

 12

Race Conditions

There will be cases where you need to do a double test in order to avoid race conditions
on shared resources. This strategy can be applied when you need to test, for example, if a
resource is created, an object is configured, etc. What this strategy does is provide two if
statement criterias that can verify behavior on the resource, squished between a cflock
tag. This prevents threads that have already entered the locking stage and are waiting

execution, to re-execute the locked code.

-- DO THIS --

<cfif structKeyExists(application,"controller")>

 <cflock name="mainControllerCreation" timeout="20"

throwOnTimeout="true" type="exclusive">

 <cfif structKeyExists(application,"controller")>

 <cfset application.controller =

createObject("component","coldbox.MainController").in

it()>

 </cfif>

 </cflock>

</cfif>

-- NOT THIS --

<cfif structKeyExists(application,"controller")>

 <cflock name="mainControllerCreation" timeout="20"

throwOnTimeout="true" type="exclusive">

 <cfset application.controller =

createObject("component","coldbox.MainController").in

it()>

 </cflock>

</cfif>

As you can see from the previous code snippet, if you do not have the double if
statements, then code that is waiting on the lock, will re-execute the creation of the
controller object. Therefore, since we can test the resource state, we can provide a multi-
thread safety net.

Variable Scoping

ColdFusion variables must be scoped according to where they are created and located
unless for good dynamic reasons. This will improve performance and readability when
diagnostics are needed. The default scope that can be omitted is the variables scope,
which is by default implied. Even scoping variables/columns in queries is mandatory to
avoid collisions.

-- DO THIS --

<cfoutput>#url.name#</cfoutput>

<cfoutput query="qCountries">

 #qCountries.name#

</cfoutput>

COLDFUSION CODING STANDARDS 5/24/2010

 13

-- NOT THIS --

<cfoutput>#name#</cfoutput>

<cfoutput query="qCountries">

 #name#

</cfoutput>

Do Not Abuse Pound Signs

Pound signs are most often used to output variables to their set values or evaluate them.
There are many places where you DO NOT need to place hash signs. This only delays
the evaluation and is not best practice. Most likely you will only need to use pound signs
when using cfoutput or when dealing with certain tag attributes that require the evaluation
of a variable.

-- DO THIS --

<cfset name = request.firstname>

<cfif isValid></cfif>

<cfset SomeVar = Var1 + Max(Var2, 10 * Var3) + Var4>

-- NOT THIS --

<cfset name = #request.firstname#>

<cfif #isValid#></cfif>

<cfset #SomeVar# = #Var1# + #Max(Var2, 10 * Var3)# +

#Var4#>

Use Consistent Code Formatting

Try to always use tabs and spacing correctly when spacing code and formatting it. Always
indent your tags when they are nested, it provides readability and consistency.

-- DO THIS --

<cfif isValid>

 <cfset test = luis>

</cfif>

 <cffunction name="getValue"

 access="public"

 returnType="any"

 output="false">

 <cfreturn test>

</cffunction>

-- NOT THIS --

<cfif isValid>

<cfset test = luis>

</cfif>

<cffunction name="getValue" access="public"

returnType="any" output="false">

<cfreturn test>

COLDFUSION CODING STANDARDS 5/24/2010

 14

</cffunction>

ColdFusion Code Protection Best Practices

Introduction

This section delineates some best practices when dealing with SQL injection attempts or
just plain old URL/FORM variable manipulations, when building ColdFusion web
applications.

Golden Rule of Web Applications

Never ever ever trust the incoming data. It is YOUR responsibility to protect your code.

Understanding HTTP Methods

First of all, you also need to understand what a POST, GET, DELETE, PUT are used for.
The method attribute of the FORM element specifies the HTTP method used to send the
form to the processing agent. This attribute may take the following values:

GET: With the HTTP "get" method, the form data set is appended to the URI specified by

the action attribute (with a question-mark ("?") as separator) and this new URI is sent

to the processing agent.

POST,PUT,DELETE: The form data set is included in the body of the form and sent to the

processing agent, with expectations of either a save, update or delete.

The GET method should be used when the form is idempotent (i.e., causes no side-
effects). Many database searches have no visible side effects and make ideal applications
for the GET"' method. If the service associated with the processing of a form causes side
effects (for example, if the form modifies a database or subscription to a service), the
"post, put or delete" method should be used.

The most important fact is that the GET method should be used for idempotent
transactions. Here is the definition for idempotent:

"Idempotent operation means that it can be repeated without causing any errors or

inconsistencies if the operation is carried out once or many times".

Thanks to Roger Benningfield:

“Allowing GET requests to change the state of server resources can be a very dangerous

game, without so much as a whiff of malicious behavior. An app that allows clients to

change or delete data just by fetching a URI is asking for trouble in 2006.”

COLDFUSION CODING STANDARDS 5/24/2010

 15

There is a time for using GET and a time for using POST,PUT,DELETE and ALL OF
THEM should not trust the client data.

Protecting Your Code

As for security, form variables are just as easy to modify as URL variables. However, there
are several ways to protect from attacks, SQL injection or plain mischief:

1) <CFPARAM> tag with strict data-type and scaling will prevent URL and FORM

variable abuse. This tag binds incoming FORM or URL variables to specific types and

even create default values for them.

2) Use of <CFQUERYPARAM> is the most common form of stopping URL/FORM

variable abuse with direct SQL and “it makes your queries faster as well (If your db

supports it). Use this tag to protect any part of your SQL statements that come from

an external source, even ORDER BY or GROUP BY statements.

3) Get into the habit of adding the maxlength attribute to cfqueryparam’s, to limit the

number of characters/digits to bind a column with.

4) Use of Stored Procedures will prevent SQL injection as all variables are binded by the

use of <CFPROCPARAM>.

5) Try to always use a custom error page that cannot display to the user the entire error

message. This will hide your internal information and encapsulate your errors.

6) It is the role of the developer to protect the database and its contents, no matter if you

are using a POST or a GET.

7) Do not trust the client on the incoming data; always do data type checking and

authorization/authentication checking on the server-side.

OWASP Data Validation and Interpreter Injection

This section is taken from the Open Web Application Security project (OWASP) Data
Validation at http://www.owasp.org/index.php/Data_Validation .

This section focuses on preventing injection in ColdFusion. Interpreter Injection involves
manipulating application parameters to execute malicious code on the system. The most
prevalent of these is SQL injection but it also includes other injection techniques, including
LDAP, ORM, User Agent, XML, etc. As a developer you should assume that all input is
malicious. Before processing any input coming from a user, data source, component, or
data service it should be validated for type, length, and/or range. ColdFusion includes
support for Regular Expressions and CFML tags that can be used to validate input.

SQL Injection

SQL Injection involves sending extraneous SQL queries as variables. ColdFusion
provides the <cfqueryparam> and <cfprocparam> tags for validating database
parameters. These tags nests inside <cfquery> and <cfstoredproc>, respectively. For
dynamic SQL submitted in <cfquery>, use the CFSQLTYPE attribute of the

http://www.owasp.org/index.php/Data_Validation

COLDFUSION CODING STANDARDS 5/24/2010

 16

<cfqueryparam> to validate variables against the expected database datatype. Similarly,
use the CFSQLTYPE attribute of <cfprocparam> to validate the datatypes of stored
procedure parameters passed through <cfstoredproc>.

LDAP Injection

LDAP injection is an attack used to exploit web based applications that construct LDAP
statements based on user input. ColdFusion uses the <cfldap> tag to communicate with
LDAP servers. This tag has an ACTION attribute which dictates the query performed
against the LDAP. The valid values for this attribute are: add, delete, query (default),
modify, and modifyDN. <cfldap> calls are turned into JNDI (Java Naming And Directory
Interface) lookups. However, because <cfldap> wraps the calls, it will throw syntax errors if
native JNDI code is passed to its attributes making LDAP injection more difficult.

XML Injection

Two parsers exist for XML data – SAX and DOM. ColdFusion uses DOM which reads the
entire XML document into the server’s memory. This requires the administrator to restrict
the size of the JVM containing ColdFusion. ColdFusion is built on Java therefore by
default, entity references are expanded during parsing. To prevent unbounded entity
expansion, before a string is converted to an XML DOM, filter out DOCTYPES elements.

After the DOM has been read, to reduce the risk of XML Injection use the ColdFusion XML
decision functions: isXML(), isXmlAttribute(), isXmlElement(), isXmlNode(), and
isXmlRoot(). The isXML() function determines if a string is well-formed XML. The other
functions determine whether or not the passed parameter is a valid part of an XML
document. Use the xmlValidate() function to validate external XML documents against a
Document Type Definition (DTD) or XML Schema.

Event Gateway, IM, and SMS Injection

ColdFusion MX 7 enables Event Gateways, instant messaging (IM), and SMS (short
message service) for interacting with external systems. Event Gateways are ColdFusion
components that respond asynchronously to non-HTTP requests – e.g. instant messages,
SMS text from wireless devices, etc. ColdFusion provides Lotus Sametime and XMPP
(Extensible Messaging and Presence Protocol) gateways for instant messaging. It also
provides an event gateway for interacting with SMS text messages.

Injection along these gateways can happen when end users (and/or systems) send
malicious code to execute on the server. These gateways all utilize ColdFusion
Components (CFCs) for processing. Use standard ColdFusion functions, tags, and
validation techniques to protect against malicious code injection. Sanitize all input strings
and do not allow un-validated code to access backend systems.

Best Practices

 Use the XML functions to validate XML input.

 Before performing XPath searches and transformations in ColdFusion, validate
the source before executing.

 Use ColdFusion validation techniques to sanitize strings passed to xmlSearch for
performing XPath queries.

 When performing XML transformations only use a trusted source for the XSL
stylesheet.

COLDFUSION CODING STANDARDS 5/24/2010

 17

 Remove DOCTYPE elements from the XML string before converting it to an XML
object.

 Use <cfparam> or <cfargument> to instantiate variables in ColdFusion. Use this
tag with the name and type attributes. If the value is not of the specified type,
ColdFusion returns an error.

 To handle untyped variables use IsValid() to validate its value against any legal
object type that ColdFusion supports.

 Use <cfqueryparam> and <cfprocparam> to valid dynamic SQL variables against
database datatypes.

 Use CFLDAP for accessing LDAP servers. Avoid allowing native JNDI calls to
connect to LDAP.

Best Practice in Action

The sample code below shows a database authentication function using some of the input
validation techniques discussed in this section.

<cffunction name="dblogin" access="private"

output="false" returntype="struct">

<cfargument name="strUserName" required="true"

type="string">

<cfargument name="strPassword" required="true"

type="string">

<cfset var retargs = StructNew()>

<cfif IsValid("regex", uUserName, "[A-Za-z0-9%]*")

AND IsValid("regex", uPassword, "[A-Za-z0-9%]*")>

<cfquery name="loginQuery"

dataSource="#Application.DB#" >

SELECT hashed_password, salt

FROM UserTable

WHERE UserName =

<cfqueryparam value="#strUserName#"

cfsqltype="CF_SQL_VARCHAR" maxlength="25">

</cfquery>

<cfif loginQuery.hashed_password EQ Hash(strPassword

& loginQuery.salt, "SHA-256")>

<cfset retargs.authenticated="YES">

<cfset Session.UserName = strUserName>

<!-- Add code to get roles from database -->

COLDFUSION CODING STANDARDS 5/24/2010

 18

<cfelse>

<cfset retargs.authenticated="NO">

</cfif>

<cfelse>

<cfset retargs.authenticated="NO">

</cfif>

<cfreturn retargs>

</cffunction>

Additional Resources

CFC Best Practices: http://www.adobe.com/devnet/coldfusion/articles/cfc_practices.html

ColdFusion Best Practices for Oracle Databases:
http://www.adobe.com/devnet/server_archive/articles/cf_best_practices_oracle.html

Improving ColdFusion Application Performance:
http://ria.dzone.com/articles/improving-coldfusion-performance

Performance Tuning for ColdFusion Applications
http://www.adobe.com/devnet/coldfusion/articles/coldfusion_performance_04.html

ColdFusion Standards & Best Practices:
http://ortus.svnrepository.com/coldbox/trac.cgi/wiki/cbDevelopmentBestPractices

http://www.adobe.com/devnet/coldfusion/articles/cfc_practices.html
http://www.adobe.com/devnet/server_archive/articles/cf_best_practices_oracle.html
http://ria.dzone.com/articles/improving-coldfusion-performance
http://www.adobe.com/devnet/coldfusion/articles/coldfusion_performance_04.html
http://ortus.svnrepository.com/coldbox/trac.cgi/wiki/cbDevelopmentBestPractices

