September 21, 2010

The Honorable Lisa P. Jackson
Administrator
U.S. Environmental Protection Agency
Ariel Rios Building
1200 Pennsylvannia Avenue, NW
Washington, DC 20460

Dear Administrator Jackson,

I am writing regarding the petition your agency received from six federally recognized tribes to initiate the Clean Water Act Section 404(c) process to prohibit or restrict discharges of dredged or fill materials, including mine tailings, within the watersheds that would include the Pebble Mine. I ask that you decline to invoke Section 404(c) at this time for reasons I will explain.

Let me begin by assuring you that we share a goal of protecting the waters, wetlands, fish, wildlife, fisheries, subsistence, and public uses of the Bristol Bay watershed. This area is home to bountiful natural resources and beauty including vast runs of sockeye and other pacific salmon that support immensely valuable commercial, subsistence, and sport fisheries. As Governor, I will do everything in my power to see that any new development fully protects the resource values of the area, and does not come at the expense of what we have today.

While I understand and share the petitioners’ desire to protect the resources in Bristol Bay, I disagree that invoking the 404(c) process at this time would contribute to that goal. At best, it would waste agency and public time and resources. At worst, it would work against our mutual aims. I offer the following thoughts for your consideration.

A premature 404(c) determination effectively prohibiting mining in the area would impinge on State land use planning authority. Much of the land in the Bristol Bay area belongs to the State of Alaska. We have completed several iterations of land planning for these lands including exhaustive public outreach and deliberations to find a balance between competing interests and potential land uses. While we recognize that initiating the 404(c) process does not necessarily lead to a particular outcome, even the possibility that the process would conclude with a prohibition against mining over vast expanses of State lands causes us great concern. Federal preemption of traditional State land use authority is an alarming prospect to say the least. To start with, it would undo years of planning effort, but the effects do not stop there. There has been tremendous investment in the area based on the potential for mineral development. We cannot fathom the liability and legal challenges that could accompany
The Honorable Lisa P. Jackson
September 21, 2010
Page 2

an unprecedented, after-the-fact determination by the federal government that mineral development from these State lands is no longer viable.

Clean Water Act Section 404(c) offers no protections beyond those included in the Clean Water Act Section 404(b)(1) permit process. The regulations that implement the two parts of the Clean Water Act include virtually the same prohibitions, and call for virtually the same analyses and findings. Where Section 404(c) rules prohibit “unacceptable adverse effects on municipal water supplies, shellfish beds and fishery areas (including spawning and breeding areas), wildlife, or recreational areas,” the Section 404(b)(1) rules prohibit “significantly adverse effects . . . on municipal water supplies, plankton, fish, shellfish, wildlife, and special aquatic sites” as well as “recreational” and “aesthetic” “values.” The prohibitions and standards are very similar. The difference, of course, is that you are being asked to invoke Section 404(c) now ahead of any environmental planning and permitting processes, whereas the Section 404(b)(1) process would come later as part of the permit process for Pebble or another mine. The fact remains that Section 404(c) does not offer any more protection for area resources than does Section 404(b).

The record is currently insufficient to support the findings demanded by the 404(c) process, and could not begin to approach the record that will exist upon completion of the National Environmental Policy Act (NEPA) and permit processes that would be required for new mine development. As already mentioned, the 404(c) process hinges on the Environmental Protection Agency (EPA) deciding whether there will be “unacceptable adverse impacts” on “municipal water supplies, shellfish beds and fishery areas (including spawning and breeding areas), wildlife, or recreational areas.” The environmental planning and permitting process for the Pebble Mine alone will necessarily produce volumes of studies and information that would allow for fully informed decisions about potential impacts from mining in the area.

Not enough is known about mine plans in the area to gauge impacts as required by the 404(c) process. State and federal agencies have yet to receive designs or permit applications for the Pebble Project, or any other major mine in the Bristol Bay area. Without a specific proposal, EPA cannot evaluate the potential impacts or risks from the project. We do not know where facilities would be located, which wetlands might be impacted, or what the characteristics of the dredged or fill material would be.

A meaningful 404(c) process cannot be concluded in the time frame envisioned by the regulations. While the 404(c) process can be initiated before receipt of a permit application, the normal course would begin with a notice of a proposed determination by the Regional Administrator and conclude with a final determination by the Administrator approximately five months later. We recognize that time frames can be extended for good cause, but doubt that anyone envisioned extending the process over the multiple years it would take to collect information, complete the impact analyses, and develop a sound record on a par with what we could expect from the NEPA and permit processes for a new mine development proposal.

The 404(c) process would short change public participation. The public notice and opportunity for comment and hearing associated with the 404(c) process could not rival the outreach, education, consultation, and other public involvement that would occur should the Pebble Mine or another mine advance to the NEPA and permitting phase.
The Honorable Lisa P. Jackson
September 21, 2010
Page 3

A premature 404(c) determination effectively prohibiting mining in the area would disproportionately impact rural residents and Alaska Natives. Approximately 70 percent of area residents are Alaska Native (2009). Seventeen percent fall below the poverty level (2008). The area has seen an 18 percent population decline in the last ten years. Knowing of your keen interest in the effects of EPA decisions on disadvantaged populations, we hope you would take into account that a 404(c) decision to preclude mining in this economically depressed region would abruptly and conclusively deny area residents any opportunity to avail themselves of the benefits they might seek from responsible mining.

The intended purpose and true utility of the 404(c) process is in addressing actual or imminent adverse effects where the NEPA and permit processes have failed or where there is reason to believe that they will fail. In essence, the 404(c) process is best used as a backstop for the other applicable provisions of Section 404, including application of the 404(b)(1) guidelines and the interagency coordination and dispute resolution procedures developed pursuant to 404(q). There is no purpose or advantage to initiating the process now.

For these reasons, I firmly believe initiating a 404(c) process would be ill-advised and potentially contrary to our shared goal of protecting area resources. I would appreciate your taking our concerns into account. If there is anything else we can do to assist you, please contact my office at 907-465-3500.

Sincerely,

Sean Parnell
Governor

cc: The Honorable Lisa Murkowski, U.S. Senate
The Honorable Mark Begich, U.S. Senate
The Honorable Don Young, U.S. House of Representatives
Dennis McLerran, Regional Administrator, EPA Region 10
John Katz, Director State and Federal Relations, Office of the Governor
Rick Parkin
Environmental Protection Agency
222 W. 7th Avenue
Anchorage, Alaska 99513

VIA EMAIL

Re: Bristol Bay Watershed Intergovernmental Technical Team Meeting, August 9-10, 2011

Dear Mr. Parkin:

On behalf of the State of Alaska, thank you for the recent invitation to participate in the Intergovernmental Technical Team (ITT) formed by the Environmental Protection Agency (EPA) in relation to EPA’s proposed “Bristol Bay Watershed Assessment.” The State appreciates being included and we are interested in providing relevant technical information and scientifically reliable data. A list of state employees attending the upcoming August 9-10, 2011 is enclosed. Sharnon Stambaugh is coordinating the State’s participation in the assessment effort and can be reached at (907) 269-0880, or sharnon.stambaugh@alaska.gov.

While the State appreciates the opportunity to observe and participate in the ITT, this participation should not be viewed as an endorsement of either the group’s activities, or EPA’s overall proposal or process, announced this past February, to conduct a watershed assessment. Nor should the State’s participation in the group or the assessment be construed as an endorsement of third party information gathered by EPA in this process or EPA’s eventual analyses/conclusions/outcome of the assessment.

This assessment and the evolving process that EPA proposes is, frankly, unprecedented and not prescribed in statute or regulation. Indeed, the State believes that if EPA deems a review under Section 404(c) of the Clean Water Act is needed, that review should be conducted in conjunction with a pending permit application where actual activities and potential disposal sites are clearly specified, not in the abstract as it will be in this assessment process. Thus, we reserve the right to raise objections concerning the assessment and process that we may determine is necessary to ensure compliance with applicable law and to preserve the rights of the State in administering its regulatory authorities.

“Develop, Conserve, and Enhance Natural Resources for Present and Future Alaskans.”
I'm sorry that I'll be unable to attend the meetings due to a prior commitment. Sharmon, however, has assembled a team of experienced representatives who are looking forward to meeting with you and your staff.

Sincerely,

[Signature]

Tom Crafford, Director

Cc:
Ed Fogels, DNR, Dept. Commissioner
List, below

List of State Alaska Employees Participating in the ITT:

Sharmon Stambaugh (DNR, Office of Project Management and Permitting)
Gary Prokosch (DNR, Div. of Mining, Land & Water, Water Section)
Dr. Paul Anderson (DHSS, Division of Public Health, HIA Program)
Mike Daigneault (ADF&G, Division of Habitat)
Kate Malloy (ADF&G, Division of Habitat)
Lynn Kent, (DEC, Division of Water)
Allan Nakanishi (DEC, Division of Water)
William Ashton (DEC, Division of Water)
March 9, 2012

VIA E-MAIL TO McLerran.Dennis@epamail.epa.gov & 1ST CLASS MAIL

Mr. Dennis McLerran
Regional Administrator
EPA Region X
RA 140
1200 Sixth Avenue
Seattle, Washington 98101

Re: State of Alaska’s Concerns Regarding the Environmental Protection Agency’s Evolving Bristol Bay Watershed Assessment and Potential Section 404(c) Action

Dear Mr. McLerran:

The State of Alaska, and its resource agencies (Departments of Environmental Conservation (DEC), Natural Resources (DNR), and Fish and Game (ADF&G)), and the Department of Law, are increasingly concerned about the Environmental Protection Agency’s (EPA’s) work on the Bristol Bay Watershed Assessment. The EPA initiated the assessment to inform its decision-making on a May 2, 2010 petition asking EPA to invoke its Clean Water Act (CWA) Section 404(c) authority. The petition asks EPA to prohibit the disposal of fill in watersheds near Bristol Bay in which large mine development may occur in the future. Neither a petition process nor EPA’s process for developing a response are described in the CWA or its associated regulations.

EPA’s watershed assessment effort reaches well beyond any process or authority contemplated by the CWA. Physically, the assessment encompasses approximately 15 million acres of largely state-owned land – an area comparable in size to the entire state of West Virginia. Because the State has a vital interest in assuring that an action affecting natural resources and an area of this magnitude is consistent with law, I write to share the following concerns
(many of which the State has already expressed to EPA) about both the process EPA is following and the substance of its actions:

- **Premature assessment.** Both the EPA’s watershed assessment and its potential exercise of its 404(c) veto authority in the absence of an actual Section 404 permit application are premature and unprecedented. A permit application describing a potential project will trigger the exercise of applicable state and federal regulatory permitting authority reviews, including an associated impacts analysis by the U.S. Army Corps of Engineers (Corps) pursuant to the Section 404(b)(1) guidelines. These regulatory reviews will address the same issues EPA is attempting to consider in its premature assessment. Until an application is filed describing a potential project, EPA will be speculating and prematurely “determining” unavoidable adverse impacts based on hypotheticals and inapplicable modeling, rather than waiting to evaluate real information on specific proposals, as Congress clearly intended.

- **Lack of EPA authority.** EPA has shared little information about its purported legal authority to conduct the watershed assessment. Section 404(c) allows EPA to prohibit or to place restrictions on proposed or future fill to “waters of the U.S.” Although the avowed purpose of the assessment is to provide a basis for a response to the Section 404(c) petition, EPA’s on-going watershed assessment process is neither delineated in the Section 404 statute, nor is it set forth in EPA’s implementing regulations. EPA has stated that its assessment will review potential impacts of hypothetical mining alternatives and activities unrelated to the placement of materials in waters of the U.S. However, this unrestricted analysis of alternatives and activities appears to overstep the Section 404 authority Congress granted to EPA. And indeed, the Corps— the agency charged with issuing Section 404 permits— is not even listed among the federal agencies EPA has enlisted to develop the assessment.

- **Conflict with federal and state law.** The watershed assessment and a premature 404(c) determination by EPA conflict with other laws, including the Alaska Statehood Act, the CWA, and the National Environmental Policy Act (NEPA).
Deciding the 404(c) petition without the benefit of a project application and substantial, scientifically vetted project-specific information would infringe on the State of Alaska’s management and use of State lands. The State selected lands with natural resource potential to provide for the economic welfare of the residents of Alaska. A premature decision could thwart those objectives, as established by both Congress in the Alaska Statehood Act and the Alaska Legislature in a myriad of State laws.

Further, as the State has previously observed, the watershed assessment is an undefined and evolving process with no regulatory structure supporting it. It is difficult to tell where EPA is headed with some of its analyses, who is looking at certain questions, what assumptions are being made, or why certain work is being done in the context of 404(c). The State has tried to be helpful in supplying available data and other factual information, but this should not be construed as any endorsement of the way EPA is proceeding or consensus in any decisions EPA may eventually reach. As the State has also previously stated, the State does not endorse EPA using the assessment to usurp the Corps’ and the State’s primary regulatory authorities, nor is there any cooperative agreement between the State and EPA on the development of the watershed assessment. Nothing we have seen dispels the State’s concerns that the watershed assessment will prematurely “determine” impacts based on hypotheticals and inapplicable modeling, thereby inappropriately and conclusively determining specific impacts dedicated to other regulatory authorities and reviews, or inappropriately narrowing the reasonable range of action alternatives for NEPA review during subsequent permit reviews. National Mining Association v. Jackson, 758 F. Supp. 2d 34, 45 (D.D.C. 2011) (despite EPA’s contention that guidance was only “interim document,” the process and conclusions reached in it and its application in practice nonetheless has a “practical impact on [those] who may seek permits”). See also, Nat’l Ass’n of Home Builders v. Norton, 415 F.3d 8, 15 (D.C. Cir. 2005) (holding that “[f]inality resulting from the practical effect of an ostensibly non-
binding agency proclamation is a concept [this Court has] recognized in the past). Congress clearly did not intend for EPA to invoke such a novel and broad assertion of authority – apparently founded on an inapplicable general, cooperative research provision for establishing national programs (Section 104(a)) – that would insidiously displace other applicable state and federal regulatory processes in EPA’s exercise of its Section 404(c) authority. See, e.g., Minard Run Oil Company v. United States Forest Service, 2011 WL 4389220, at *6 and *10, (3rd Cir. 2011) (holding, among other things, that agency action may be deemed final if “an agency determination of a particular issue that will not be reconsidered in subsequent agency proceedings may represent the consummation of the agency’s decision making process on that issue,” and that agency action should not be taken by “applying a general provision when doing so would undermine limitations created by a more specific provision”).

For example, the formulation of alternatives, the consideration of direct and cumulative impacts, and the formulation of mitigation measures in response to potential dredge and fill activities are key components of the Section 404(b)(1) guidelines, and are the responsibility of the Corps, which is the sole agency authorized to apply the guidelines. But EPA’s watershed assessment would usurp the Corps’ role. As Judge Walton recently held in National Mining Association v. Jackson, 2011 WL 123194, at *10, EPA plays a “limited role” under Section 404, and “nothing in Section 404 ... gives EPA the authorization to develop a new evaluation or permitting process which expands its role.” See also, 40 C.F.R. 230.2 (c) (stating that “[n]o modifications to the basic application, meaning, or intent of these Guidelines will be made without rulemaking” under the Administrative Procedure Act, 5 U.S.C. 551 et seq.). Indeed, the Corps, the agency charged with permitting dredge and fill activities under CWA Section 404, is not even among the federal agencies that EPA has enlisted to develop the assessment.

• **Reliance on draft guidance.** The watershed assessment appears to inappropriately rely on draft guidance relating to the delineation
of “waters of the U.S.” The draft guidance was released by EPA and the Corps in the spring of 2011, but has never been adopted. Many commenters, including the State of Alaska, objected that this draft guidance illegally expands the scope of federal CWA jurisdiction. EPA should not rely on this draft guidance for its watershed assessment.

- **Lack of scientific credibility.** The State has previously advised EPA that EPA may not currently have sufficient scientifically vetted water quality and hydrological data for the area to conduct the review EPA proposes for its watershed assessment. EPA also proposes to use inappropriate modeling and documents that are internal or commissioned reports that have limited distribution and that have not been subject to external peer review. Further, in arranging for the preparation of various portions of the watershed assessment, EPA has contracted with at least one consultant who has publicly expressed actual bias against the Pebble project in particular. These aspects of the assessment are troubling, will undermine the scientific credibility of the watershed assessment, and will yield unreliable conclusions. We believe a meeting should be convened soon between EPA and the State to have an in-depth discussion of these and other technical aspects of the ongoing work EPA and its contractors are performing.

- **Use of hypothetical “large scale development” projects.** The assessment contemplates potential adverse impacts from hypothetical projects that could result in EPA placing unnecessary or inappropriate Section 404(c) limits on future development. The petition and any 404(c) decision should not be decided based upon hypothetical projects.

- **Disregard of federal and state laws, processes, and permits, and the Alaska Constitution.** Any assessment and consideration undertaken under section 404(c) must consider the legal permitting framework that is designed to protect water quality. Enclosed is a list of laws and other documents that EPA should recognize in considering whether it is even appropriate for it to evaluate potential impacts of hypothetical development prior to submittal of a Section 404 permit application. This host of federal and state permitting authorities (including the Alaska Water Quality Standards and the Bristol Bay Area Plan) clearly apply to
protect waters, wetlands, fish, wildlife, fisheries, subsistence, and public uses of the Bristol Bay watershed.

- **Limited review time.** The area EPA is reviewing for its watershed assessment is enormous. The watershed assessment area encompasses roughly 15 million acres, comparable to the size of West Virginia, and consists largely of State-owned lands. EPA states it intends to release a draft watershed assessment of this enormous area in late April 2012, and a final by the fall of 2012. This aggressive schedule further undercuts the reliability of this premature assessment, when compared to the intensive, multi-year NEPA review schedules that are required to address specifically proposed projects. Further, EPA’s entire Section 404(c) process may be completed in as little as 111 days. This rushed process is woefully insufficient for a final decision that could significantly affect the economic future of such a large region.

- **Disregard of potential benefits.** EPA indicates that the watershed assessment will not consider any potential benefits of large scale development to water quality or to human health, safety, and welfare. The assessment will therefore present a limited and biased assessment of only negative impacts, and will fail to disclose the state and regional benefits that might result from large mine development. The assessment would therefore bypass the consideration by the Corps and other regulatory authorities of key social, economic, public interest, and environmental justice issues that are required to be addressed during review of a proposed fill activity.

- **Other ramifications of 404(c) action.** EPA’s exercise of its 404(c) authority has the potential to extinguish both the State of Alaska’s mineral rights under the Statehood Compact and the mineral interests held by locators and lessees. The State will explore all available legal options in response to an exercise by EPA of its Section 404(c) authority, including remedy from the federal government for breach of the Statehood Act. According to the U.S. Supreme Court, even if the federal government prohibits a development right under a *valid* invocation of authority, it cannot do so without being held liable and responsible for the payment of damages if rights to ownership and the development of those same rights have already vested. *See Mobil Oil Exploration & Producing*
As you know, while the State of Alaska has provided or made available factual information to EPA over the last few months at EPA’s request, this information sharing by the State should, again, not be construed as endorsing the process or conclusions that come out of EPA’s assessment. We believe that EPA’s actions in using the watershed assessment to address the pending petition are unlawfully preemptive, premature, arbitrary, capricious, and vague.

The State asks that EPA cease its work on the Bristol Bay Watershed Assessment. We also ask that EPA refrain from exercising its Section 404(c) authority until a Section 404 permit application has been submitted and other applicable regulatory reviews are conducted. We look forward to EPA’s prompt written responses to the substantial legal and process concerns raised in this letter and, on a parallel path, to a meeting to discuss the technical questions and issues we have at this time.

Sincerely,

Michael C. Geraghty
Attorney General

Enclosures: Alaska Statehood Act (excerpts)
State of Alaska Constitution (excerpts)
List of Alaska Statutes and Regulations Applicable to Large Mines
Disc containing Bristol Bay Area Plan for State Lands (2005)
An act to provide for the admission of the State of Alaska into the Union

SEC. 1. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, That, subject to the provisions of this Act, and upon issuance of the proclamation required by section 8 (c) of this Act, the State of Alaska is hereby declared to be a State of the United States of America, is declared admitted into the Union on an equal footing with the other States in all respects whatever, and the constitution formed pursuant to the provisions of the Act of the Territorial Legislature of Alaska entitled, "An Act to provide for the holding of a constitutional convention to prepare a constitution for the State of Alaska; to submit the constitution to the people for adoption or rejection; to prepare for the admission of Alaska as a State; to make an appropriation; and setting an effective date", approved March 19, 1955 (Chapter 46, Session Laws of Alaska, 1955), and adopted by a vote of the people of Alaska in the election held an April 24, 1956, is hereby found to be republican in form and in conformity with the Constitution of the United States and the principles of the Declaration of Independence, and is hereby accepted, ratified, and confirmed.

SEC. 2. The State of Alaska shall consist of all the territory, together with the territorial waters appurtenant thereto, now included in the Territory of Alaska.

SEC. 3. The constitution of the State of Alaska shall always be republican in form and shall not be repugnant to the Constitution of the United States and the principles of the Declaration of Independence.

SEC. 4. As a compact with the United States said State and its people do agree and declare that they forever disclaim all right and title to any lands or other property not granted or confirmed to the State or its political subdivisions by or under the authority of this Act, the right or title to which is held by the United States or is subject to disposition by the United States, and to any lands or other property, (including fishing rights), the right or title to which may be held by any Indians, Eskimos, or Aleuts (hereinafter called natives) or is held by the United States in trust for said natives; that all such lands or other property, belonging to the United States or which may belong to said natives, shall be and remain under the absolute jurisdiction and control of the United States until disposed of under its authority, except to such extent as the Congress has prescribed or may hereafter prescribe, and except when held by individual natives in fee without restrictions on alienation:
Provided, That nothing contained in this Act shall recognize, deny, enlarge, impair, or otherwise affect any claim against the United States, and any such claim shall be governed by the laws of the United States applicable thereto; and nothing in this Act is intended or shall be construed as a finding, interpretation, or construction by the Congress that any law applicable thereto authorizes, establishes, recognizes, or confirms the validity or invalidity of any such claim, and the determination of the applicability or effect of any law to any such claim shall be unaffected by anything in this Act: And provided further, That no taxes shall be imposed by said State upon any lands or other property now owned or hereafter acquired by the United States or which, as hereinabove set forth, may belong to said natives, except to such extent as the Congress has prescribed or may hereafter prescribe, and except when held by individual natives in fee without restrictions on alienation.

SEC. 5. The State of Alaska and its political subdivisions, respectively, shall have and retain title to all property, real and personal, title to which is in the Territory of Alaska or any of the subdivisions. Except as provided in section 6 hereof, the United States shall retain title to all property, real and personal, to which it has title, including public lands.

SEC. 6. (a) For the purposes of furthering the development of and expansion of communities, the State of Alaska is hereby granted and shall be entitled to select, within twenty-five years after the date of the admission of the State of Alaska into the Union, from lands within national forests in Alaska which are vacant and unappropriated at the time of their selection not to exceed four hundred thousand acres of land, and from the other public lands of the United States in Alaska which are vacant, unappropriated, and unreserved at the time of their selection not to exceed another four hundred thousand acres of land, all of which shall be adjacent to established communities or suitable for prospective community centers and recreational areas. Such lands shall be selected by the State of Alaska with the approval of the Secretary of Agriculture as to national forest lands and with the approval of the Secretary of the Interior as to other public lands: Provided, That nothing herein contained shall affect any valid existing claim, location, or entry under the laws of the United States, whether for homestead, mineral, right-of-way, or other purpose whatsoever, or shall affect the rights of any such owner, claimant, locator, or entryman to the full use and enjoyment of the land so occupied: Provided further, That for the purposes of this section the term "public lands of the United States in Alaska which are vacant, appropriated, and unreserved" shall include, without limiting the use thereof, the retained or reserved interest of the United States in lands which have been disposed of with a reservation to the United States of all minerals or any specified mineral or minerals.
(b) The State of Alaska, in addition to any other grants made in this section, is hereby granted and shall be entitled to select, within twenty-five years after the admission of Alaska into the Union, not to exceed one hundred and two million five hundred and fifty thousand acres from the public lands of the United States in Alaska which are vacant, unappropriated, and unreserved at the time of their selection: *Provided,* That nothing herein contained shall affect any valid existing claim, location, or entry under the laws of the United States, whether for homestead, mineral, right-of-way, or other purpose whatsoever, or shall affect the rights of any such owner, claimant, locator, or entryman to the full use and enjoyment of the lands so occupied: *And provided further,* That no selection hereunder shall be made in the area north and west of the line described in section 10 without approval of the President or his designated representative.

(c) Block 32, and the structures and improvements thereon, in the city of Juneau are granted to the State of Alaska for any or all of the following purposes or a combination thereof: A residence for the Governor, a State museum, or park and recreational use.

(d) Block 19, and the structures and improvements thereon, and the interests of the United States in blocks C and 7, and the structures and improvements thereon, in the city of Juneau, are hereby granted to the State of Alaska.

(e) All real and personal property of the United States situated in the Territory of Alaska which is specifically used for the sole purpose of conservation and protection of the fisheries and wildlife of Alaska, under the provisions of the Alaska game law of July 1, 1943 (57 Stat. 301; 48 U. S. C., secs. 192-211), as amended, and under the provisions of the Alaska commercial fisheries laws of June 26, 1905 (34 Stat. 478; 48 U. S. C., secs. 230-239 and 241-242), and June 6, 1924 (43 Stat. 465; 48 U. S. C., secs. 221-228), as supplemented and amended, shall be transferred and conveyed to the State of Alaska by the appropriate Federal agency: *Provided,* That the administration and management of the fish and wildlife resources of Alaska shall be retained by the Federal Government under existing laws until the first day of the first calendar year following the expiration of ninety legislative days after the Secretary of the Interior certifies to the Congress that the Alaska State Legislature has made adequate provision for the administration, management, and conservation of said resources in the broad national interest: *Provided,* That such transfer shall not include lands withdrawn or otherwise set apart as refuges or reservations for the protection of wildlife nor facilities utilized in connection therewith, or in connection with general research activities relating to fisheries or wildlife. Sums of money that are available for apportionment or which the Secretary of the Interior shall
have apportioned, as of the date the State of Alaska shall be deemed to be admitted into the Union, for wildlife restoration in the Territory of Alaska, pursuant to section 8 (a) of the Act of September 2, 1937, as amended (16 U. S. C., sec. 669g-1), and for fish restoration and management in the Territory of Alaska, pursuant to section 12 of the Act of August 9, 1950 (16 U. S. C., sec. 777k), shall continue to be available for the period, and under the terms and conditions in effect at the time, the apportionments are made. Commencing with the year during which Alaska is admitted into the Union, the Secretary of the Treasury, at the close of each fiscal year, shall pay to the State of Alaska 70 per centum of the net proceeds, as determined by the Secretary of the Interior, derived during such fiscal year from all sales of sealskins or sea-otter skins made in accordance with the provisions of the Act of February 26, 1944 (58 Stat. 100; 16 U. S. C., secs. 631a-631g), as supplemented and amended. In arriving at the net proceeds, there shall be deducted from the receipts from all sales all costs to the United States in carrying out the provisions of the Act of February 26, 1944, as supplemented and amended, including, but not limited to, the costs of handling and dressing the skins, the costs of making the sales, and all expenses incurred in the administration of the Pribilof Islands. Nothing in this Act shall be construed as affecting the rights of the United States under the provisions of the Act of February 26, 1944, as supplemented and amended, and the Act of June 28, 1937 (50 Stat. 325), as amended (16 U. S. C., sec. 772 et seq.).

(f) Five per centum of the proceeds of sale of public lands lying within said State which shall be sold by the United States subsequent to the admission of said State into the Union, after deducting all the expenses incident to such sales, shall be paid to said State to be used for the support of the public schools within said State.

(g) Except as provided in subsection (a), all lands granted in quantity to and authorized to be selected by the State of Alaska by this Act shall be selected in such manner as the laws of the State may provide, and in conformity with such regulations as the Secretary of the Interior may prescribe. All selections shall be made in reasonably compact tracts, taking into account the situation and potential uses of the lands involved, and each tract selected shall contain at least five thousand seven hundred and sixty acres unless isolated from other tracts open to selection. The authority to make selections shall never be alienated or bargained away, in whole or in part, by the State. Upon the revocation of any order of withdrawal in Alaska, the order of revocation shall provide for a period of not less than ninety days before the date on which it otherwise becomes effective, if subsequent to the admission of Alaska into the Union, during which period the State of Alaska shall have a preferred right of selection, subject to the requirements of this Act,
except as against prior existing valid rights or as against equitable claims subject to allowance and confirmation. Such preferred right of selection shall have precedence over the preferred right of application created by section 4 of the Act of September 27, 1944 (58 Stat. 748; 43 U. S. C., sec. 282), as now or hereafter amended, but not over other preference rights now conferred by law. Where any lands desired by the State are unsurveyed at the time of their selection, the Secretary of the Interior shall survey the exterior boundaries of the area requested without any interior subdivision thereof and shall issue a patent for such selected area in terms of the exterior boundary survey; where any lands desired by the State are surveyed at the time of their selection, the boundaries of the area requested shall conform to the public land subdivisions established by the approval of the survey. All lands duly selected by the State of Alaska pursuant to this Act shall be patented to the State by the Secretary of the Interior. Following the selection of lands by the State and the tentative approval of such selection by the Secretary of the Interior or his designee, but prior to the issuance of final patent, the State is hereby authorized to execute conditional leases and to make conditional sales of such selected lands. As used in this subsection, the words "equitable claims subject to allowance and confirmation" include, without limitation, claims of holders of permits issued by the Department of Agriculture on lands eliminated from national forests, whose permits have been terminated only because of such elimination and who own valuable improvements on such lands. As to all selections made by the State after January 1, 1979, pursuant to section 6(b) of this Act, the Secretary of the Interior, in his discretion, may waive the minimum tract selection size where he determines that such a reduced selection size would be in the national interest and would result in a better land ownership pattern.

(h) Any lease, permit, license, or contract issued under the Mineral Leasing Act of February 25, 1920 (41 Stat. 437; 30 U. S. C., sec. 181 and following), as amended, or under the Alaska Coal Leasing Act of October 20, 1914 (38 Stat. 741; 30 U. S. C., sec. 432 and following), as amended, shall have the effect of withdrawing the lands subject thereto from selection by the State of Alaska under this Act, unless such lease, permit, license, or contract is in effect on the date of approval of this Act, and unless an application to select such lands is filed with the Secretary of the Interior within a period of ten years after the date of the admission of Alaska into the Union. Such selections shall be made only from lands that are otherwise open to selection under this Act. When all of the lands subject to a lease, permit, license, or contract are selected, the patent for the lands so selected shall vest in the State of Alaska all the right, title, and interest of the United States in and to that lease, permit, license, or contract that remains outstanding on the effective date of the patent, including the right to all rentals, royalties, and other payments
accruing after that date under that lease, permit, license, or contract, and including any authority that may have been retained by the United States to modify the terms and conditions of such lease, permit, license, or contract: Provided, That nothing herein contained shall affect the continued validity of any such lease, permit, license, or contract or any rights arising thereunder. Where only a portion of the lands subject to a lease, permit, license, or contract are selected, there shall be reserved to the United States the mineral or minerals subject to that lease, permit, license, or contract, together with such further rights as may be necessary to the full and complete enjoyment of all rights, privileges, and benefits under or with respect to that lease, permit, license, or contract, upon the termination of the lease, permit, license, or contract, title to the minerals so reserved to the United States shall pass to the State of Alaska.

(i) All grants made or confirmed under this Act shall include mineral deposits. The grants of mineral lands to the State of Alaska under subsections (a) and (b) of this section are made upon the express condition that all sales, grants, deeds, or patents for any of the mineral lands so granted shall be subject to and contain reservation to the State of all of the minerals in the lands so sold, granted, deeded, or patented, together with the right to prospect for, mine, and remove the same. Mineral deposits in such lands shall be subject to lease by the State as the State legislature may direct: Provided, That any lands or minerals hereafter disposed of contrary to the provisions of this section shall be forfeited to the United States by appropriate proceedings instituted by the Attorney General for that purpose in the United States District Court for the District of Alaska.

(j) The schools and colleges provided for in this Act shall forever remain under the exclusive control of the State, or its governmental subdivisions, and no part of the proceeds arising from the sale or disposal of any lands granted herein for educational purposes shall be used for the support of any sectarian or denominational school, college, or university.

(k) Grants previously made to the Territory of Alaska are hereby confirmed and transferred to the State of Alaska upon its admission. Effective upon the admission of the State of Alaska into the Union, section 1 of the Act of March 4, 1915 (38 Stat. 1214; 48 U. S. C., sec. 353), as amended, and the last sentence of section 35 of the Act of February 25, 1920 (41 Stat. 450; 30 U. S. C., sec. 191), as amended, are repealed and all lands therein reserved under the provisions of section 1 as of the date of this Act shall, upon the admission of said State into the Union, be granted to said State for the purposes for which they were reserved; but such repeal shall not affect any outstanding lease, permit,
license, or contract issued under said section 1, as amended, or any rights or powers with respect to such lease, permit, license, or contract, and shall not affect the disposition of the proceeds or income derived prior to such repeal from any lands reserved under said section 1, as amended, or derived thereafter from any disposition of the reserved lands or an interest therein made prior to such repeal.

(I) The grants provided for in this Act shall be in lieu of the grant of land for purposes of internal improvements made to new States by section 8 of the Act of September 4, 1841 (5 Stat. 455), and sections 2378 and 2379 of the Revised Statutes (43 U. S. C., sec. 857), and in lieu of the swampland grant made by the Act of September 28, 1850 (9 Stat. 520), and section 2479 of the Revised Statutes (43 U. S. C., sec. 982), and in lieu of the grant of thirty thousand acres for each Senator and Representative in Congress made by the Act of July 2, 1862, as amended (12 Stat. 503; 7 U. S. C., secs. 301-308), which grants are hereby declared not to extend to the State of Alaska.

(m) The Submerged Lands Act of 1953 (Public Law 31, Eighty-third Congress, first session; 67 Stat. 29) shall be applicable to the State of Alaska and the said State shall have the same rights as do existing States thereunder.
Excerpts from the Alaska Constitution:

Article 8 - Natural Resources

§ 1. Statement of Policy

It is the policy of the State to encourage the settlement of its land and the development of its resources by making them available for maximum use consistent with the public interest.

§ 2. General Authority

The legislature shall provide for the utilization, development, and conservation of all natural resources belonging to the State, including land and waters, for the maximum benefit of its people.

§ 3. Common Use

Wherever occurring in their natural state, fish, wildlife, and waters are reserved to the people for common use.

§ 4. Sustained Yield

Fish, forests, wildlife, grasslands, and all other replenishable resources belonging to the State shall be utilized, developed, and maintained on the sustained yield principle, subject to preferences among beneficial uses.

§ 5. Facilities and Improvements

The legislature may provide for facilities, improvements, and services to assure greater utilization, development, reclamation, and settlement of lands, and to assure fuller utilization and development of the fisheries, wildlife, and waters.

§ 6. State Public Domain

Lands and interests therein, including submerged and tidal lands, possessed or acquired by the State, and not used or intended exclusively for governmental purposes, constitute the state public domain. The legislature shall provide for the selection of lands granted to the State by the United States, and for the administration of the state public domain.

§ 7. Special Purpose Sites

The legislature may provide for the acquisition of sites, objects, and areas of natural beauty or of historic, cultural, recreational, or scientific value. It may reserve them from
the public domain and provide for their administration and preservation for the use, enjoyment, and welfare of the people.

§ 8. Leases

The legislature may provide for the leasing of, and the issuance of permits for exploration of, any part of the public domain or interest therein, subject to reasonable concurrent uses. Leases and permits shall provide, among other conditions, for payment by the party at fault for damage or injury arising from noncompliance with terms governing concurrent use, and for forfeiture in the event of breach of conditions.

§ 9. Sales and Grants

Subject to the provisions of this section, the legislature may provide for the sale or grant of state lands, or interests therein, and establish sales procedures. All sales or grants shall contain such reservations to the State of all resources as may be required by Congress or the State and shall provide for access to these resources. Reservation of access shall not unnecessarily impair the owners’ use, prevent the control of trespass, or preclude compensation for damages.

§ 10. Public Notice

No disposals or leases of state lands, or interests therein, shall be made without prior public notice and other safeguards of the public interest as may be prescribed by law.

§ 11. Mineral Rights

Discovery and appropriation shall be the basis for establishing a right in those minerals reserved to the State which, upon the date of ratification of this constitution by the people of Alaska, were subject to location under the federal mining laws. Prior discovery, location, and filing, as prescribed by law, shall establish a prior right to these minerals and also a prior right to permits, leases, and transferable licenses for their extraction. Continuation of these rights shall depend upon the performance of annual labor, or the payment of fees, rents, or royalties, or upon other requirements as may be prescribed by law. Surface uses of land by a mineral claimant shall be limited to those necessary for the extraction or basic processing of the mineral deposits, or for both. Discovery and appropriation shall initiate a right, subject to further requirements of law, to patent of mineral lands if authorized by the State and not prohibited by Congress. The provisions of this section shall apply to all other minerals reserved to the State which by law are declared subject to appropriation.

§ 12. Mineral Leases and Permits

The legislature shall provide for the issuance, types and terms of leases for coal, oil, gas, oil shale, sodium, phosphate, potash, sulfur, pumice, and other minerals as may be prescribed by law. Leases and permits giving the exclusive right of exploration for these
minerals for specific periods and areas, subject to reasonable concurrent exploration as to different classes of minerals, may be authorized by law. Like leases and permits giving the exclusive right of prospecting by geophysical, geochemical, and similar methods for all minerals may also be authorized by law.

§ 13. Water Rights

All surface and subsurface waters reserved to the people for common use, except mineral and medicinal waters, are subject to appropriation. Priority of appropriation shall give prior right. Except for public water supply, an appropriation of water shall be limited to stated purposes and subject to preferences among beneficial uses, concurrent or otherwise, as prescribed by law, and to the general reservation of fish and wildlife.

§ 14. Access to Navigable Waters

Free access to the navigable or public waters of the State, as defined by the legislature, shall not be denied any citizen of the United States or resident of the State, except that the legislature may by general law regulate and limit such access for other beneficial uses or public purposes.

§ 15. No Exclusive Right of Fishery

No exclusive right or special privilege of fishery shall be created or authorized in the natural waters of the State. This section does not restrict the power of the State to limit entry into any fishery for purposes of resource conservation, to prevent economic distress among fishermen and those dependent upon them for a livelihood and to promote the efficient development of aquaculture in the State. [Amended 1972]

§ 16. Protection of Rights

No person shall be involuntarily divested of his right to the use of waters, his interests in lands, or improvements affecting either, except for a superior beneficial use or public purpose and then only with just compensation and by operation of law.

§ 17. Uniform Application

Laws and regulations governing the use or disposal of natural resources shall apply equally to all persons similarly situated with reference to the subject matter and purpose to be served by the law or regulation.

§ 18. Private Ways of Necessity

Proceedings in eminent domain may be undertaken for private ways of necessity to permit essential access for extraction or utilization of resources. Just compensation shall be made for property taken or for resultant damages to other property rights.
Article 12 - General Provisions

§ 1. State Boundaries

The State of Alaska shall consist of all the territory, together with the territorial waters appurtenant thereto, included in the Territory of Alaska upon the date of ratification of this constitution by the people of Alaska.

§ 2. Intergovernmental Relations

The State and its political subdivisions may cooperate with the United States and its territories, and with other states and their political subdivisions on matters of common interest. The respective legislative bodies may make appropriations for this purpose.

§ 3. Office of Profit

Service in the armed forces of the United States or of the State is not an office or position of profit as the term is used in this constitution.

§ 4. Disqualification for Disloyalty

No person who advocates, or who aids or belongs to any party or organization or association which advocates, the overthrow by force or violence of the government of the United States or of the State shall be qualified to hold any public office of trust or profit under this constitution.

§ 5. Oath of Office

All public officers, before entering upon the duties of their offices, shall take and subscribe to the following oath or affirmation: "I do solemnly swear (or affirm) that I will support and defend the Constitution of the United States and the Constitution of the State of Alaska, and that I will faithfully discharge my duties as . . . to the best of my ability." The legislature may prescribe further oaths or affirmations.

§ 6. Merit System

The legislature shall establish a system under which the merit principle will govern the employment of persons by the State.
§ 7. Retirement Systems

Membership in employee retirement systems of the State or its political subdivisions shall constitute a contractual relationship. Accrued benefits of these systems shall not be diminished or impaired.

§ 8. Residual Power

The enumeration of specified powers in this constitution shall not be construed as limiting the powers of the State.

The provisions of this constitution shall be construed to be self-executing whenever possible.

§ 10. Interpretation

Titles and subtitles shall not be used in construing this constitution. Personal pronouns used in this constitution shall be construed as including either sex.

§ 11. Law-Making Power

As used in this constitution, the terms "by law" and "by the legislature," or variations of these terms, are used interchangeably when related to law-making powers. Unless clearly inapplicable, the law-making powers assigned to the legislature may be exercised by the people through the initiative, subject to the limitations of article XI.

§ 12. Disclaimer and Agreement

The State of Alaska and its people forever disclaim all right and title in or to any property belonging to the United States or subject to its disposition, and not granted or confirmed to the State or its political subdivisions, by or under the act admitting Alaska to the Union. The State and its people further disclaim all right or title in or to any property, including fishing rights, the right or title to which may be held by or for any Indian, Eskimo, or Aleut, or community thereof, as that right or title is defined in the act of admission. The State and its people agree that, unless otherwise provided by Congress, the property, as described in this section, shall remain subject to the absolute disposition of the United States. They further agree that no taxes will be imposed upon any such property, until otherwise provided by the Congress. This tax exemption shall not apply to property held by individuals in fee without restrictions on alienation.
§ 13. Consent to Act of Admission

All provisions of the act admitting Alaska to the Union which reserve rights or powers to the United States, as well as those prescribing the terms or conditions of the grants of lands or other property, are consented to fully by the State and its people.

§ 14. Approval of Federal Amendment to Statehood Act Affecting an Interest of the State under that Act

A federal statute or proposed federal statute that affects an interest of this State under the Act admitting Alaska to the Union is ineffective as against the State interest unless approved by a two-thirds vote of each house of the legislature or approved by the people of the State. The legislature may, by a resolution passed by a majority vote of each house, place the question of approval of the federal statute on the ballot for the next general election unless in the resolution placing the question of approval, the legislature requires the question to be placed before the voters at a special election. The approval of the federal statute by the people of the State is not effective unless the federal statute described in the resolution is ratified by a majority of the qualified voters of the State who vote on the question. Unless a summary of the question is provided in the resolution passed by the legislature, the lieutenant governor shall prepare an impartial summary of the question. The lieutenant governor shall present the question to the voters so that a "yes" vote on the question is a vote to approve the federal statute. [Amended 1996]
Alaska Statutes and Regulations Applicable to Large Mines

Alaska Department of Environmental Conservation (DEC) Authorities

Alaska Statutes
AS 17.20 – Alaska Food, Drug, and Cosmetic Act
AS 44.46 – Department of Environmental Conservation
AS 46.03 – Environmental Conservation
AS 46.08 – Oil and Hazardous Substances Releases
AS 46.09 – Hazardous Substance Release Control
AS 46.14 – Air Quality Control
AS 46.35 – Permit Extension

Alaska Regulations
18 AAC 15 – Administrative Procedures
18 AAC 30 – Alaska Food Code
18 AAC 50 – Air Quality Control
18 AAC 60 – Solid Waste Management
18 AAC 70 – Water Quality Standards
18 AAC 72 – Wastewater Disposal
18 AAC 75 – Oil and Hazardous Substances Pollution Control
18 AAC 80 – Drinking Water
18 AAC 83 – Alaska Pollutant Discharge Elimination System Program

Alaska Pollutant Discharge Elimination System (APDES) Permits. Mines that have a discharge to surface or marine waters of the U.S. are required to obtain an APDES permit prior to discharging.

Air Quality Open Burn Permits. Burning cleared vegetation requires a permit from the Department of Environmental Conservation.

Air Quality General Permits. Diesel electric generators may qualify for a General Operation Permit if they meet certain criteria. Rock crushers that emit under 100 tons per year (TPY) of emission may qualify for a General Minor Permit.

Air Quality Permits. Facilities that produce air pollutant emissions are required to have a state Air Quality Control Permit to Construct (Title I Permit) and a state Air Quality Control Permit to Operate (Title V Permit). Compliance with the Clean Air Act (CAA)

Certificate of Reasonable Assurance for Corp of Engineers 404 Permits. Activities involving dredging or fill materials within waters of the United States require a Section 404 permit from the Army Corp of Engineers. The
Clean Water Act Section 401 requires the applicant to obtain state certification that any discharge under the Clean Water Act will comply with applicable state water quality standards. These standards include designation of the beneficial uses of the water, as well as numerical and narrative water quality criteria established to protect the beneficial uses.

Construction Stormwater General Permit. DEC approves Storm Water Pollution Prevention Plans (SWPPPs) which may be covered under a general permit authorization or combined with an APDES wastewater permit.

Domestic and Non-Domestic Wastewater Disposal Permit. Required for the discharge of wastewater into or upon waters and land surfaces of the state. Plans for the disposal of wastewater from milling operations and other non-domestic wastewater are to be submitted to DEC for approval for either a Wastewater Disposal Permit or an APDES permit.

Domestic Sewage Treatment System. Facilities that collect, treat and dispose of domestic sewage are governed by a plan review to ensure that minimum environmental standards are met. Detailed construction plans, specifications and engineering reports must be certified by a Registered Professional Engineer.

Drinking Water Systems. Prior to construction DEC must approve detailed engineering plans and specifications for a public drinking water system. Once the construction has been completed, DEC must approve the operations of the system.

Food Sanitation Permit. Required for the operation of a food service facility, either at a construction camp or permanent facility.

Oil Discharge Prevention and Contingency Plan. Approval of an oil discharge prevention and contingency plan is required prior to the operation of a facility with above ground fuel tanks that hold more than 420,000 gallons of refined petroleum products or 210,000 or more gallons of crude oil.

Solid Waste Management Permit. Required if tailing or waste rock has the potential for impacting state waters.

Alaska Department of Fish and Game (ADF&G) Authorities

<table>
<thead>
<tr>
<th>Alaska Statutes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 16.05.841</td>
<td>Fishway required</td>
</tr>
<tr>
<td>AS 16.05.861</td>
<td>Penalty for violating fishway and hatchery requirements</td>
</tr>
</tbody>
</table>
As 16.05.871 - 901 Protection of fish and game, construction without approval prohibited, exemption for emergency situations, penalty for causing material damage, penalty for violations

As 16.05.930 Exempted activities

Alaska regulations 5 AAC 95 Fish and game habitat

Title 16 permit. This permit, regardless of land ownership, is required for any activity conducted within fish-bearing waters, such as bridges, culverts, fords (winter or summer), material sites, tailings facilities, and water-withdrawal structures. ADF&G's Division of Habitat issues this permit.

Special areas permit. If a project is within a state refuge, sanctuary, or critical habitat, any activity within the special area will require a special areas permit from ADF&G.

Scientific collection permit. A permit from ADF&G, called a scientific collection permit, is required for any sampling of fish or wildlife resources.

Alaska department of natural resources (DNR) authorities

Alaska statutes
As 27.19.010 - 100 Reclamation: plans, bonding, exemptions for small operations, cooperative management agreements, violations
As 27.30.010 - 099 Exploration incentive credits
As 38.05.185 - 195 Qualifications and mining claims
As 38.05.200 - 242 Leasing, annual labor requirements, liens, labor, rentals, recording
As 38.05.245 - 275 Prospecting sites, prospecting on submerged and tidal lands, surface use of land and water, abandonment, transfers, recognition of mining locations
As 43.65.010 - 212 Mining license tax: mining license, production royalties.
As 46. 15 Water rights; reserving water for instream use, including fish spawning
As 46.17 Dam safety: basis for program and state jurisdiction

Alaska regulations
11 AAC 02 - Appeals
11 AAC 05 – Filing fees for water rights and dam safety; in-stream flow certificates; water appropriations

11 AAC 86 – Administrative Procedures
Article 01: Payments; notices; locations on state selected lands; mineral deposits open to location; surface use; sale, lease or other transfer; plans of operation in lieu of land use permits
Article 02: Staking, recording and maintaining claims and leasehold locations.
Article 03: Upland mining leases
Article 04: Prospecting sites
Article 05: Offshore permits and leases
Article 06: Millsites

11 AAC 88 – Administrative regulations

11 AAC 93 – Water Management
Articles 01 and 02: Existing water rights; appropriation and use of water; dam safety hazard classification; dam inspections and emergency actions; dam certificates of approval; temporary water use
Article 03: Appeals

11 AAC 96 – Miscellaneous Land Use Activity
Article 01: Provisions for general land use activity; operations requiring permits; applications; bonds; completion of operations; appeals; general stipulations

11 AAC 97 – Administrative Regulations
Article 01: Mining reclamation: Applicability;
Article 02: Reclamation Performance Standards: Land reclamation performance standards; disposal of structures and debris; underground mines; heap leach operations; acid rock drainage; material sites
Article 03: Reclamation plan: reclamation plan approval; reclamation plans; plan amendments; record keeping; transfer of interest
Article 04: Reclamation bonding: bonding instruments; acreage to be bonded; bonding amounts; bonding pool; liability exceeding bond; release and refund of bond; assignment of bonds
Article 05: Exemptions of small operations
Article 06: Violations and penalties: Failure to file reclamation statement; violations of plans; risk assessment fee.
Article 07: Cooperative management agreements
Article 08: General provisions

15 AAC 55 – Administrative regulations: Mining license tax
Article 01: Licensing and filing requirements
Article 02: Computation of tax
Article 03: Exemption from taxes
Article 04: General provisions
Article 08: Mining production royalty

Plans of Operation Approval. This approval authorizes the plan of operations for non-coal mines, and is required for all mining projects on state land. DNR's Division of Mining, Land and Water/Mining Section issues this approval.

Reclamation Plan and Bond Approval. This approval authorizes the reclamation plan and bond cost estimate for non-coal mines on all lands in Alaska. DNR's Division of Mining, Land and Water/Mining Section issues this approval.

Right-of-Way for Access and Utilities. For projects on state land, a right-of-way (ROW) is required for infrastructure such as roads, pipelines, and powerlines. Other access authorizations may be required for non-State lands as well. DNR's Division of Mining, Land and Water/Lands Section issues this approval. If pipelines for fuel or natural gas ROWs are part of the project, these are reviewed and permitted through the State Pipeline Coordinator's Office.

Millsite Lease. A Millsite Lease is required for mine project facilities on State land. This lease gives the proponent a surface property right for the facilities. DNR's Division of Mining, Land and Water/Mining Section issues this lease.

Permit to Appropriate Water. Appropriation of a significant amount of water on other than a temporary basis requires authorization by a Water Rights Permit. A Water Right is a property right for the use of public surface and subsurface waters. Temporary uses of a significant volume of water, for up to 5 years, require a Temporary Water Use Permit. DNR's Division of Mining, Land and Water issues this permit.

Dam Safety Certification. A Certificate of Approval to Construct and a Certificate of Approval to Operate must be obtained for any significant dam in the State. These certificates involve a detailed engineering review of the dam's design and operation. The certificates are issued by DNR's Division of Mining, Land and Water/Dam Safety Unit.

Upland or Tideland Leases. A project may require a property interest in lands not adjacent to the minesite itself. For use of state-owned tidelands, a tideland lease is issued for marine facilities such as docks. Likewise, for use of state-owned uplands, a lease is required for facilities such as transportation and staging facilities. DNR's Division of Mining, Land and Water/Lands Section issues these leases.
Material Sale. If materials such as sand, gravel, or rock, are needed from state lands off the millsite lease, then a separate material sale must be issued. DNR’s Division of Mining, Land and Water/Lands Section issues this sale.

Winter Travel Permits. Cross-country travel on snow or ice roads is commonly used to stage equipment and supplies for a project. A permit from Division of Mining, Land and Water/Lands Section must be obtained before constructing such roads on state land, or conducting overland travel. Crossings of fish-bearing water bodies by snow or ice roads will require authorization by Alaska Department of Fish & Game Habitat prior to construction.

Cultural Resource Protection. Clearance must be obtained from the State to ensure that a project will not significantly impact cultural and archaeological resources. If significant disturbance cannot be avoided, then a compensation strategy is developed. Cultural resource clearances are obtained from DNR’s State Historic Preservation Office.
April 17, 2012

VIA E-MAIL TO McLerran.Dennis@epamail.epa.gov & 1ST CLASS MAIL

Mr. Dennis McLerran
Regional Administrator
EPA Region X
RA 140
1200 Sixth Avenue
Seattle, Washington 98101
McLerran.Dennis@epamail.epa.gov

Re: State of Alaska’s Concerns Regarding the Environmental Protection
Agency’s Evolving Bristol Bay Watershed Assessment and Potential
Section 404(c) Action

Dear Mr. McLerran:

Thank you for your April 5, 2012 response to my March 9, 2012 letter regarding EPA’s efforts on the Bristol Bay Watershed Assessment and potential Clean Water Act (CWA) Section 404(c) action. Frankly, I must confess disappointment that your April 5 letter reflects such little consideration by EPA of the significant issues raised by the State.

The only issue that EPA essentially addresses deals with what EPA perceives as its authority to conduct the assessment. Reiterating what is posted on its assessment website, EPA states that it is “performing” the assessment under CWA Section 104, and EPA quotes a portion of Section 104(a)(1). However, when read in context, the State believes that Section 104 does not justify EPA’s expansive interpretation, which usurps and undermines the regulatory authorities of other state and federal agencies. Section 104(a)(1) states:

The Administrator shall establish national programs for the prevention, reduction, and elimination of pollution and as part of such programs shall—
(1) in cooperation with other Federal, State, and local agencies, conduct and promote the coordination and acceleration of, research, investigations, experiments, training, demonstrations, surveys, and studies relating to the causes, effects, extent, prevention, reduction and elimination of pollution. (Emphases added.)

As I stated in my March 9 letter, the cited section pertains to the establishment of national programs, not site or region-specific endeavors that would dramatically impact the regulatory and property rights of individual states because – and I hope we can be candid with each other about this – the EPA’s assessment is essentially directed at the Pebble Mine Project.

Moreover, the State's confusion about EPA's source of authority to conduct this assessment is not dispelled by your April 5 correspondence. In the EPA's Federal Register Notice, published February 24, 2012, requesting nominations of individuals for an external peer review panel to review the assessment, EPA cites Section 404 for its authority, not Section 104(a)(1). (http://www.gpo.gov/fdsys/pkg/FR-2012-02-24/html/2012-0325.htm) Likewise, EPA does not cite any federal regulations to support the complex assessment process it is undertaking.

EPA's authority under the CWA is not plenary. Mingo Logan Coal Company v. U.S. Environmental Protection Agency (D.D.C. 2012), Case No. 10-0541 (ABJ). Land and water use management and environmental considerations are jointly shared across numerous state and federal agencies and environmental laws. Indeed, Congress expressly stated in the CWA that “[i]t is the policy of the Congress to recognize, preserve, and protect the primary responsibilities and rights of States to prevent, reduce, and eliminate pollution, to plan the development and use (including restoration, preservation, and enhancement) of land and water resources, and to consult with the Administrator in the exercise of his authority under this chapter.” 33 U.S.C. § 1251(b).

Further, Senator Muskie, a prime sponsor of the CWA, recognized that a dredge and fill permitting regime already existed:

Thus, the Conferees agreed that the Administrator ... should have a veto over the selection of the site for dredged spoil disposal and over any specific spoil to be disposed of in any selected site.

The decision is not duplicative or cumbersome because the permit application transmitted to the Administrator for review will set forth both the site to be used and the content of the matter of the spoil to be disposed. The Conferees expect the Administrator to be expeditious in his
determination as to whether a site is acceptable or if specific spoil material can be disposed of at such site. (Emphasis added.)

The State finds itself in a "damned if you do, damned if you don't" situation. We are asked to cooperate in a process which, in our view, lacks authority and is inappropriate for the reasons set forth in my March 9 letter. If we do cooperate, we are "participating" in the process and our position is misrepresented. If we choose to ignore an assessment which is not lawfully grounded, it is argued we have forfeited our right to complain. It is unfortunate the EPA has chosen to equivocate on this threshold issue regarding the source of its authority for the action under consideration.

A representative from DNR will contact your office soon to coordinate a time to discuss the technical and related concerns the State presently has with EPA’s assessment. It is also my hope that EPA will reconsider its position regarding legal authority for its current actions, halt the assessment, and adequately address the significant legal concerns expressed in my March 9 letter. If you would like a meeting to discuss those concerns, please contact me at (907) 269-3787.

Sincerely,

Michael C. Geraghty
Attorney General

Cc: Dan Sullivan, Commissioner, Dept. of Natural Resources, State of Alaska
Larry Hartig, Commissioner, Dept. of Environmental Conservation, State of Alaska
May 29, 2012

VIA EMAIL & FIRST CLASS MAIL

Ms. Lisa Jackson
Administrator
USEPA Headquarters
Ariel Rios Building
1200 Pennsylvania Avenue, N.W.
Washington, DC 20460
Jackson.lisap@epa.gov

Mr. Dennis McLerran
Regional Administrator
EPA Region X
RA 140
1200 Sixth Avenue
Seattle, WA 98101
McLerran.Dennis@epamail.epa.gov

Office of Environmental Information (OEI) Docket (Mail Code 2822T)
Docket # EPA-HQ-ORD-2012-0276
U.S. Environmental Protection Agency
1200 Pennsylvania Ave., N.W.
Washington, DC 20460
ORD.Docket@epa.gov

Re: Request for 120-day Extension of Time on Public Comment Period
For EPA’s Draft “Assessment of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska;”
Request that Cited Reference, Bibliography, and Source Data Materials be Posted on EPA’s Bristol Bay Website;
Docket # EPA-HQ-ORD-2012-0276

Dear Ms. Jackson and Mr. McLerran:

The State of Alaska requests a 120-day extension of time for the public to provide comments on the draft “Assessment of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska” (hereinafter “assessment”) that EPA released on Friday, May 17, 2012. The 60-day public review period that ends on July 23 is inadequate for the public, including the State, to address the technical and legal merits of the assessment in question. We submit the 120-day extension, with a new comment deadline of Tuesday, November 20, 2012, is warranted for each of the following reasons:

- The three-volume assessment totals more than 1,000 pages. The executive summary, assessment, and nine appendices to the assessment include cited references totaling roughly

Note: While EPA’s website and press comments state that the public comment deadline is July 23, 2012, the list serve notice that EPA circulated on May 18, 2012 states public comments “will be accepted until July 24, 2012.”
Ms. Lisa Jackson, Mr. Dennis McLerran
Re: Request for 120 Day Extension of Time on Public Comment Period and Request that Cited Reference, Bibliography, and Source Data Materials be Posted
May 29, 2012
Page 2

2,000 documents that are not contained in the three-volume assessment, but upon which EPA, its contractors, and other agencies apparently relied. In short, this is a voluminous amount of complex information that requires thorough public review and comment. As EPA is well aware, normally such information for a specific proposed project takes several years to gather and be scientifically vetted and scrutinized by multiple state and federal agencies, which has not occurred here.

- The peer review members that EPA is empanelling will be studying, meeting, discussing and presumably advising EPA on the sufficiency of this document until early fall. Based on EPA’s publicly released information regarding the panel’s schedule, presumably the panel will be releasing its findings in September. The public should be allowed to access all of the information generated and considered by this panel (including its findings, comments, conclusions, reference materials, etc.), as well as to question the panel members, so that the panel’s information can be probed as part of the public’s comments. Thus public comment should close at least 60 days after the panel has concluded EPA’s charge and the panel’s information released. Requiring the public to comment by July 23, well in advance of the release of the panel’s information and meetings, and while many Alaskans are engaged in commercial fishing and/or subsistence activities, strikes us as an unnecessary rush to judgment.

- The draft assessment involves important questions of state and federal law, including under the CWA, many of which implicate state rights and a vast amount of state lands. The state, and the public, needs adequate time to study these issues and offer public comment.

In order to allow public commenters, including the State of Alaska, more time to review, analyze, and comment upon EPA’s assessment, an extension of a minimum of 120 days is essential. We respectfully ask that this extension be granted.

In closing, the State of Alaska also requests that EPA immediately post on-line at EPA’s Bristol Bay website all of the cited reference, bibliography, and source data materials (roughly 2,000 documents) that are listed throughout the executive summary, assessment, and each of the appendices. Readily available, website access to this information is essential to allow for meaningful public comment on EPA’s assessment.

Thank you for your prompt attention and response to these requests.

Sincerely,

Michael C. Geraghty
Attorney General

cc:
Via Email & 1st Class Mail
Senator Lisa Murkowski
Kristen_Daimler@murkowski.senate.gov
Senator Mark Begich
Nellen_Budd@begich.senate.gov
Congressman Don Young
Pamela.Day@mail.house.gov
July 23, 2012

Via Email & First Class Mail

Ms. Lisa Jackson
Administrator
USEPA Headquarters
Ariel Rios Building
1200 Pennsylvania Avenue, N.W.
Washington, DC 20460
Jackson.lisap@epa.gov

Mr. Dennis McLerran
EPA Regional Administrator
EPA Region X
RA 140
1200 Sixth Avenue
Seattle, WA 98101
McLerran.Dennis@epamail.epa.gov

Office of Environmental Information (OEI) Docket (Mail Code 2822T)
Docket # EPA-HQ-ORD-2012-0276
U.S. Environmental Protection Agency
1200 Pennsylvania Ave., N.W.
Washington, DC 20460
ORD.Docket@epa.gov

Docket # EPA-HQ-ORD-2012-0276

Dear Ms. Jackson and Mr. McLerran:

I am submitting this letter on behalf of the State of Alaska, detailing the State’s comments on legal and process issues relating to the U.S. Environmental Protection Agency’s (EPA’s) May 2012 “External Review Draft” of “An Assessment of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska,” also frequently referred to as EPA’s draft “Bristol Bay Watershed Assessment” (hereinafter Assessment). Director Tom Craford with the Alaska Department of Natural Resources’ (DNR’s) Office of Project Management and Permitting (OPMP) is also submitting a separate letter today containing the State’s detailed technical comments on the Assessment.
EPA acknowledges that this Assessment was initiated in response to a petition\(^1\) requesting that EPA exercise its Clean Water Act (CWA) Section 404(c) veto authority\(^2\) on discharges associated with mining at the so-called Pebble project, a project located on State land. Integral to all of the State’s comments on EPA’s draft Assessment are the core points that if permit applications for a detailed mining proposal for the Pebble project are submitted,

- the U.S. Army Corps of Engineers (Corps) and the State’s permitting systems require rigorous environmental review of those applications that will consider a wide array of public interests,
- any permits that may be issued would apply EPA-approved Alaska water quality standards, both for a mine at Pebble or any other location in the state, and
- EPA plays a prescribed part in the Corps’ and the State’s permitting reviews.

As you know, I earlier submitted comments to you regarding EPA’s Assessment effort, via letters dated March 9, 2012 and April 17, 2012. Copies of those letters and the referenced materials are enclosed. The comments in those letters discussing the State’s concerns are still relevant and are incorporated herein by reference as the State’s comments on the draft Assessment, as well as any final Assessment and future CWA Section 404(c) action that EPA may take based on EPA’s consideration of the Assessment.\(^3\) These concerns include:

- the Assessment is premature;
- EPA lacks authority to conduct the Assessment and the Assessment conflicts with federal and Alaska law;
- the lack of sufficient scientific data and an actual permit application undermines the Assessment’s scientific credibility;
- EPA’s development of the Assessment disregards federal and Alaska laws, processes, and permits, and the Alaska Constitution; and
- EPA’s broad and unreasonable assertion of regulatory authority to conduct the Assessment based on a general statutory provision upsets the property rights of the State and other third parties and unnecessarily raises difficult and sensitive takings questions.

\(^1\) See, e.g.,
http://yosemite.epa.gov/R10/ECOCOMM.NSF/88b658c2629593548825784600834974/e3c2faaf
b80b72538825788e0072ab99IOpenDocument (stating, “[w]e launched this study in response to concerns from federally recognized tribes and others who petitioned the agency;” EPA press release dated February 7, 2011 (stating that EPA “initiated this assessment in response to concerns from federally-recognized tribes and others who petitioned the agency in 2010 to assess any potential risks to the watershed”).

\(^3\) EPA’s written responses to these two letters did not allay any of the concerns and issues raised by the State and, from the State’s perspective, EPA’s letters fail to justify EPA’s unprecedented action in developing the Assessment.
Further to the issues and concerns earlier raised by the State, as well as the State’s detailed technical comments submitted today, I also provide the following additional comments on the Assessment and EPA’s efforts surrounding it.

I. **EPA’s decision to prepare the Assessment and related efforts are an unlawful expansion of EPA’s Section 404(c) regulatory process, in violation of the CWA, Administrative Procedure Act (APA), and the 1992 Memorandum of Agreement (1992 MOA) between EPA and the U.S. Army Corps of Engineers (Corps).**

To date, EPA has failed to point to any regulations that support the review it is conducting, and the mere citation to a statute of general applicability (CWA Section 104) does not provide adequate support for the action EPA is taking. EPA’s reliance upon the Assessment to address a petition is a novel departure from not only the Section 404 permitting regime, but the shared state-Corps-EPA regulatory scheme reflected overall in the CWA. Indeed, the CWA recognizes, preserves, and protects “the primary responsibilities and rights of the States to prevent, reduce, and eliminate pollution, to plan the development and use (including restoration, preservation, and enhancement) of land and water resources, and to consult with the Administrator in the exercise of his authority under this chapter.” Thus, Congress reserved to the states primary regulatory authority over land and water use under the CWA, consistent with the Tenth Amendment to the U.S. Constitution.

EPA’s decision to prepare the Assessment to provide the foundation upon which to respond to a petition for 404(c) action on the Pebble Project is a final agency action that imposes substantive changes to the Section 404 permitting process and the more limited process provided to EPA in the regulations promulgated under Section 404(c) and the 1992 MOA. *National Mining Association v. Jackson*, 768 F. Supp. 2d 34, 44-45 and 49 (D.D.C. 2011) (holding that EPA’s actions adopting an Enhanced Coordination Process (EC Process) and Multi-Criteria Integrated Resource Assessment (MCIR Assessment) were final and created a new layer of EPA review that “altered the permitting procedures under the [CWA] by changing the codified review process”); *cf. National Mining Association v. Jackson*, 816 F. Supp. 2d 37, at 45-49 (D.D.C. 2011) (holding that EPA’s adoption of the EC Process and the MCIR Assessment exceeded EPA’s CWA authority, and were issued without notice and compliance with the APA).

II. **EPA’s Assessment is based on 1998 guidance that unlawfully circumvents other applicable state and federal regulatory authorities, and reliance on the guidance in this context is arbitrary and capricious.**

Making the current situation even more muddled, EPA acknowledges that its Assessment was conducted based on a 1998 EPA guidance document, *Guidelines for Ecological*

5 33 U.S.C. § 1251(b) (emphasis added).
6 Assessment at 1-2.
Risk Assessment. The Assessment was not based on any process described in CWA Section 104 or any regulations promulgated in connection with Section 104. The guidance EPA relies upon does not cite CWA Section 104 for authority or for any other reason. Further underscoring the evolving and vague nature of EPA’s efforts relating to the Assessment and the pending petition, EPA did not state in its February 2011 announcement that it would be conducting an “ecological risk assessment.” And, until the Assessment was released on May 18, 2012, EPA had not disclosed that the Assessment would be based on 1998 guidance, even though the State and others repeatedly asked on what basis EPA was formulating its watershed assessment. The regulated community and state and federal authorities with shared regulatory rights and responsibilities over mining activities could not have anticipated the disjointed patchwork of authority and guidance that EPA would rely upon to undertake the Assessment, triggered by a “petition” asking EPA to exercise its Section 404(c) authority.

In all of the studies that EPA has cited as precedent for its Assessment and to which the State could obtain copies of, the State was unable to find any instance where EPA has cited Section 104 as authority to conduct an assessment as a precursor and tool to determining whether to exercise its Section 404(c) authority in response to a petition, and in the absence of a permit application and detailed project proposal. The 1998 guidance was not promulgated as regulations to implement Section 104. It is also questionable whether the agency has adhered to the 1998 guidance, including the requirements of developing a risk characterization to “express results clearly, articulate major assumptions and uncertainties, identify reasonable alternative interpretations, and separate scientific conclusions from policy judgments.” In any event, EPA’s application of the 1998 guidance conflicts with, inter alia, the CWA, NEPA, APA, and Alaska law. It unlawfully circumvents and usurps the regulatory roles held by the State and other federal authorities. EPA’s reliance upon the guidance in this context is arbitrary and capricious.

III. The Assessment and EPA’s reliance upon it in any exercise of CWA Section 404(c) authority usurps the State’s land and water resource management prerogatives and public interest considerations preserved under, inter alia, the CWA and the Alaska Statehood Act.

As noted above, the subject of EPA’s Assessment involves the Pebble project, which is on land owned by the State, land that the State selected and manages as open for potential mineral development. The State also notes that because EPA’s methodology fails to consider the socio-economic benefits of mining, EPA’s Assessment and conclusions are inherently biased in favor of preservation of largely state-owned lands, and forecloses consideration of important public interests otherwise considered under the National Environmental Policy Act (NEPA), the Alaska Statehood Act, the Alaska Constitution, and Alaska law. As the State has repeatedly made clear, development of the Pebble project would only be considered through rigorous state-

7 EPA/630/R-95/002F (April 1998).
9 See, e.g., State’s 2005 Bristol Bay Area Plan (BBAP), at 2-31 to 2-32.
federal regulatory review and public participation through the permitting process. The State or the Corps, or any other federal agency, has not expressed any intent to rubber-stamp approval of a proposal for mining at the Pebble project. And, EPA has a prescribed part of that permitting review process. Such consideration would be given in the context of an actual permitting process under, *inter alia*, NEPA, state laws, and the State’s management plan for the Bristol Bay area. See, e.g., 42 U.S.C. §§ 4331 and 4332. However, EPA’s preemptive review unnecessarily and unlawfully constrains full consideration of a variety of public interests by the State and the Corps concerning the use of the lands targeted by the Assessment.

For example, EPA does not meaningfully and objectively consider the State’s core management plan for the area, the 2005 BBAP. The State’s BBAP is cited only once, on page 6-7 in Appendix G of the third volume of the Assessment, in a discussion dealing with potential transportation plans for the Bristol Bay area. EPA’s bias against these potential plans – the nature and development of which EPA fails to note would be subject to rigorous state and federal environmental reviews when and if they are permitted – is evident:

That there is some interest in industrialization of Bristol Bay beyond the Pebble Mine is evident in various State of Alaska sources. The ADNR’s Bristol Bay Area Plan from the (BBAP 2005, citing the ADOT’s Southwest Alaska Transportation Plan, November 2002), lays out an

10 The 2005 BBAP states “[t]he general resource management intent for the Pebble Copper area is to accommodate mineral exploration and development and to allow DNR the discretion to make specific decisions as to how development may occur, *through the authorization process*.” (Emphasis added). The 2005 plan also states:

Mineral development in this unit is expected to be authorized after a public process that is as extensive as this Area Plan, and with the benefit of site-specific data and design that is prepared for the development and not now available. For that reason, mineral development that is subject to an extensive public and agency process that involves public meetings and comment in the area, and that involves site-specific design may require different widths and habitat-protection measures than those specified in Chapter 2.

Mineral development within R06-24 should be performed in such a manner as to ensure that impacts to the anadromous and high value resident fish streams are avoided or reduced to levels deemed appropriate in the state/federal permitting processes related to mineral deposit development....

Id. at 3-112. Cf: September 21, 2010 letter from Alaska Governor Sean Parnell to EPA Administrator Lisa Jackson, March 9, 2012 letter from Alaska Attorney General Michael Geraghty to EPA Region X Regional Administrator Dennis McLerran, and August 8, 2011 letter from DNR Director Tom Crafford to EPA’s Rick Parkin, both of which are enclosed and discuss the detailed and lengthy state and federal review to which an actual proposal and permit application would be subject before it could be permitted; these letters are incorporated by reference as part of the State’s comments on EPA’s draft Assessment.
ambitious long-range vision for future development of a network of roads and highways in the Bristol Bay region (Figure 2). The roads, highways, and related infrastructure envisioned by the BBAP include “regional transportation corridors” that would connect Cook Inlet to the area of the Pebble prospect, as well as Aleknagik (already connected by road to Dillingham), King Salmon, Naknek, Egegik, and Port Heiden, and finally, to Chignik and Perryville, on the southern Alaska Peninsula. The State also foresees other “community transportation projects” that involve extensions, improvements, or new roads within or adjacent to Bristol Bay watershed (Chigniks Road Intertie, King Cove-Cold Bay Connection, Newhalen River Bridge, Illiamna-Nondalton Road Intertie, and Naknek-South Naknek Bridge and Intertie). The plans also identify three potential “Trans-Peninsula transportation corridors” (Wide Bay/Ugashik Bay, Kuiulik Bay/Port Heiden, and Balboa Bay/Herendeen Bay,) routes that could serve for roads, oil and gas pipelines or other utilities as needed (BBAP 2005, Figure 2.5).

Nowhere else is the State’s 2005 BBAP cited, much less discussed, and the plan does not only address measures to assess development projects, but discusses other management tools and goals for protecting area resources, including fish resources and habitat, as well as the subsistence, commercial, and sport uses of fish. The State’s prerogative under the CWA and sovereign right to plan, protect, and manage the use of state-owned land for an array of public interests is no small matter, but EPA’s Assessment usurps and marginalizes the State’s authority.

IV. Notwithstanding EPA’s contention that the Assessment does not constitute “final agency action,” EPA’s Assessment renders conclusions that mark the consummation of agency action on specific issues and impacts, these conclusions are not subject to appeal, and these conclusions will have essentially binding effect on third party interests and future regulatory reviews, including EPA’s consideration of Section 404(c) action in response to the pending petition.

EPA asserts that the Assessment does not “outline decisions made or to be made” by EPA.11 Notwithstanding, EPA reaches dozens, and likely hundreds, of final conclusions in the Assessment that will have direct and appreciable legal consequences on the interests of others,12 at the same time it fails to adequately array or account for potential mitigation measures (e.g., dam design standards, response measures, and potential permit stipulations), including those that the Corps might require for a Section 404 permit or that the State might require for a CWA Section 402 permit.13 In addition, EPA reaches non-appealable conclusions on a host of

11 Assessment at i.
13 EPA approved the State of Alaska’s Section 402 permitting program in 2008. This program is also referred to as the Alaska Pollutant Discharge Elimination System (APDES) Program. AS 46.03.100 and 18 AAC Chapter 83.
other issues. For example, EPA reaches a number of firm conclusions about impacts from a potential tailings spill and efforts to remediate following the spill.\(^\text{14}\) Another example, EPA reaches the conclusion that pipeline failures would “certainly cause long-term local loss of fish and invertebrates.”\(^\text{15}\) EPA’s Federal Register Notice concerning the peer review panel acknowledges the “highly influential” character of the Assessment.\(^\text{16}\) The State also reiterates that in establishing the peer review panel to study the Assessment, EPA explicitly cited its authority under CWA Section 404, further undermining EPA’s protestations that it has not embarked on a Section 404(c) review with the Assessment.\(^\text{17}\)

Thus, findings and conclusions regarding, among other things, risks and impacts – speculative as they are – will serve as EPA’s presumptive starting point for all future regulatory reviews, including disposition of the pending petition under Section 404(c), as EPA has stated it will rely on the Assessment to address the 404(c) petition before it.\(^\text{18}\) The Assessment, which is not subject to appeal, makes findings that will have preclusive effect in all future regulatory decisions, at least for EPA. *National Mining Association v. Jackson*, 768 F. Supp.2d at 45 (holding that “Guidance Memorandum here has a practical impact on the plaintiff’s members seeking permits” and “despite EPA’s assertions that the Guidance Memorandum is only an interim document, [i]t is being treated and applied in practice as if it were final.” *Cf. State of New York v. Nuclear Regulatory Commission*, 681 F.3d 471, at 476-477 (D.C. Cir. 2012) (holding that “[i]t is not only reasonably foreseeable but eminently clear” that Nuclear Regulatory Commission’s Waste Confidence Decision “would be used to enable licensing decisions based on its findings,” and while the Commission contended “that the site-specific factors that differ from plant to plant can be challenged at the time of a specific plant’s licensing,” the Decision “nonetheless renders uncontestable general conclusions about the environmental effects of plant licensure that will apply in every licensing decision”).

V. The credibility of the Assessment is significantly undermined by the rushed nature of its development, as well as the inadequate time allowed for public and peer review.

The State believes that the scientific credibility of the Assessment is significantly undermined by the very short time frame in which EPA prepared the Assessment (approximately one year), as well as the short window of time that EPA provided for public review and comment (60 days) and peer review. The State sought both a 120-day extension of time on the public review period for the Assessment, as well as access to the Assessment’s underlying reference

\(^{14}\) 6.1.6 and 6.1.7 (6-29).
\(^{15}\) 6.2.1.3 (pages 6-34-45).
\(^{18}\) “Once EPA’s assessment has undergone public and peer review and has been finalized, the agency will use the assessment and other available information, including industry data submissions, to inform future decision making.” Enclosure 1, page 1, to June 22, 2012 letter from EPA’s Associate Administrator Arvin Ganesan to Representative Darrell Issa, Chairman, Committee on Oversight and Government Reform, U.S. House of Representatives.
materials in a letter dated May 29, 2012 (enclosed). It did so for a variety of reasons that are recapped here:

• The three-volume Assessment totaled more than 1,000 pages. The executive summary, Assessment, and nine appendices to the Assessment include cited references totaling roughly 2,000 documents that are not contained in the three-volume Assessment, but upon which EPA, its contractors, and other agencies apparently relied. In short, this is a voluminous amount of complex information that requires thorough public review and comment. Normally, such information for a specific proposed project takes several years to gather and be scientifically vetted and scrutinized by multiple state and federal agencies, but that has not occurred here.

• The peer review members that EPA empaneled will be studying, meeting, discussing, and presumably advising EPA on the sufficiency of the Assessment until early fall. Based on EPA’s publicly released information regarding the panel’s schedule, presumably the panel will be releasing its findings in September. The public should be allowed to access all of the information generated and considered by this panel (including its findings, comments, conclusions, reference materials, etc.), as well as to question the panel members, so that the panel’s information can be probed as part of the public’s comments. Thus, the State reasonably asserted that public comment should close at least 60 days after the panel has concluded EPA’s charge and the panel’s information released. Requiring the public to comment by July 23, well in advance of the release of the panel’s information and meetings, and while many Alaskans are engaged in commercial fishing and/or subsistence activities, promotes an unnecessarily rushed process. 19

• The draft Assessment involves important questions of state and federal law, including under the CWA, many of which implicate state rights and a vast amount of state lands. The state, and the public, need adequate time to study these issues and offer public comment.

In its May 29 letter, the State also suggested that EPA post the reference materials on its Bristol Bay Watershed Assessment website for ready public access and to allow for meaningful

19 The State also notes that one of the charge questions to the peer review panel is “[w]ere any significant literature, reports, or data missed that would be useful to complete this characterization, and if so what are they?” The EPA also asks the panel whether “there is significant literature, reports, or data not referenced that would be useful to refine [the hypothetical mine] scenarios, and if so what are they?” It defies credibility that the panel members would have any time to research and determine whether information was missing that was necessary to prepare the Assessment and make it complete, in addition to their assignment to review the Assessment and attempt to answer the charge questions. Notwithstanding, among the obvious key pieces of missing information is a Section 404 permit application and project proposal, along with an associated Section 404 permit application and NEPA review that reflects the input of the Corps, other federal agencies, and the State.
public comment. Notwithstanding, in a letter dated July 5, 2012, EPA declined both the State’s request for an extension of the public comment period, as well as request for ready access to the Assessment’s reference materials.

While EPA has not expressed a reasonable basis for its accelerated development of the Assessment or the extremely short process it is allowing for public and State participation, the State is concerned that EPA is rushing this review at least in part as a response to assertions made in the May 2, 2010 petition. The petitioners requested that EPA commence a Section 404(c) public process now because the petitioners alleged that the State’s 2005 BBAP is flawed. Petitioners assert that if EPA proceeds with its Section 404(c) authority now, before a Section 404 permit application is submitted, such action would allow the Corps, EPA, and other agencies to avoid having to consider the State’s 2005 BBAP in an environmental impact statement (EIS) prepared in accordance with NEPA, a process which requires consideration of state management plans. Implicitly, petitioners argue that because EPA is generally exempted from complying with NEPA’s requirements in the absence of a permit application, EPA’s preemptive review can forego consideration of state management plans. Such unlawfully preemptive action, facilitated by this truncated Assessment process, directly violates CWA Section 101(b). EPA does not have plenary authority to thwart consideration of state land and water management plans, given the regulatory and land management roles outlined for the states, EPA, and the Corps under the CWA and other applicable laws.

In short, Alaska believes this premature Assessment and the highly accelerated process that EPA is embarked upon is not well-founded in law and simply inadequate, when compared to the rigorous environmental reviews that are assured with a specific mine proposal and permit application, a review that would require several years and the expertise of multiple agencies at the state and federal levels (including by EPA). Given (1) the extremely short time-frame that EPA has allowed for public review of the draft Assessment, (2) EPA’s decision not to provide full and immediate access to the reference materials EPA relied upon in developing the

20 May 2, 2010 petition, at 6-8. The petitioners acknowledged that they have challenged the validity of the 2005 BBAP in state court. Id. at 7, n.20.
21 Pebble Limited Partnership, in press comments, has stated that it expects to submit permit applications for the Pebble project, including for a Section 404 permit, in late 2012.
22 Petitioners cite NEPA regulation 40 C.F.R. § 1506.2(d), which provides that

[(t)he better integrate environmental impact statements into State or local planning processes, statements shall discuss any inconsistency of a proposed action with any approved State or local plan and laws (whether or not federally sanctioned).
Where an inconsistency exists, the statement should describe the extent to which
the agency would reconcile its proposed action with the plan or law.

23 33 U.S.C. § 1371(c).
24 33 U.S.C. §12.51(b) (the states retain the primary responsibilities and rights “to prevent, reduce, and eliminate pollution, to plan the development and use (including restoration, preservation, and enhancement) of land and water resources.”
Assessment, (3) EPA’s protracted and not yet completed response to the State’s Freedom of Information Act request relating to the Assessment, (4) the timing of the associated peer review, and (5) EPA’s action to address the petition pending before it, the State expressly reserves the right to raise additional comments and concerns at a subsequent date.

VI. EPA’s Assessment appears to violate the Data Quality Act.

Given the rushed timing of the Assessment, short public review and comment period, and lack of access to the underlying works referenced and relied upon in the Assessment, EPA has not assured the use of quality data in conducting its Assessment. EPA states: “Where possible, we have relied on peer-reviewed, published data and information. However, much of the information on Bristol Bay has not been published in the peer-reviewed literature.”

The Data Quality Act (DQA) requires federal agencies to use accurate, quality data, free of conflicts of interest. EPA is subject to the act. The federal Office of Management and Budget (OMB) issued final guidelines for federal agencies to assure compliance with the act. Those guidelines provide that in the scientific and research context, there is a presumption in favor of peer reviewed information. And OMB instructs that prior to dissemination, federal agencies should responsibly account for “influential scientific, financial, or statistical information” that will have “a clear and substantial impact on important public policies or important private sector decisions,” such as those clearly at stake here.

EPA issued guidance in October 2002 in response to OMB’s final guidelines. At the outset, EPA notes that one of its goals is for “communities, individuals, businesses, State and local governments, Tribal governments – [to] have access to accurate information sufficient to effectively participate in managing human health and environmental risks.”

EPA also issued a May 5, 2000 Order and revised EPA Quality Manual for Environmental Programs, CIO 2105.0 (formerly 5360 A1), directing EPA to use quality data in its work, and to also put into place a system that vets information to ensure it is quality data. EPA’s Quality Policy and Procedures, dated October 21, 2008, expect assurance of quality EPA products and services. EPA’s Science Panel Council Peer Review Handbook requires that for highly influential scientific assessments, the underlying work product of third parties, including other federal agencies, industry, and environmental groups, that are relied upon in the assessment be peer reviewed.

26 Assessment at xiv.
30 Guidelines for Ensuring and Maximizing the Quality, Objectivity, Utility, and Integrity of Information Disseminated by the Environmental Protection Agency (EPA/260R-02-008 October 2002).
31 Id. at 3.
32 CIO 2106.0 and CIO 2106-P-01.0.
Without ready access to the referenced materials relied upon in the Assessment, and adequate time to review them, it is impossible to verify whether the materials are appropriately cited for the Assessment and whether they have been reviewed in light of the DQA, Peer Review Handbook, EPA Quality Manual, and EPA Quality Program Policy and Procedures, have been peer reviewed, and are free of conflict of interest. EPA does not indicate which materials have not been peer reviewed, let alone whether or not EPA views a specific work product exempt from peer review. Nor does having a peer review panel analyzing the Assessment and its appendices, but not the underlying reference materials, excuse the use of non-peer reviewed work product for what EPA readily characterizes as a “highly influential scientific assessment.”

Closing Comments and Recommendations

As you know, while the State of Alaska has provided or made available factual information to EPA over the last several months at EPA’s request, this information sharing by the State should not be construed as endorsing the process, findings, or conclusions that came out of EPA’s Assessment. We believe that EPA’s actions in using the Assessment to address the pending petition are unlawfully preemptive, premature, arbitrary, capricious, and vague.35

The State once again asks that EPA cease its work on the Assessment. We also ask that EPA refrain from considering the exercise of its Section 404(c) authority until a Section 404 permit application has been submitted, including a detailed project proposal, and after other applicable regulatory reviews are conducted.

The State appreciates EPA’s consideration of the significant legal, process, and technical concerns raised in the State’s comments on the draft Assessment. Should you have any questions regarding the foregoing, or wish to schedule a meeting to discuss the State’s comments and concerns regarding the Assessment, please contact Deputy Attorney General Jim Cantor, (907) 269-5100, with the Alaska Department of Law, or Deputy Commissioner Ed Fogels with the Alaska Department of Natural Resources, (907) 269-8431.

Sincerely,

Michael C. Geraghty
Attorney General

Enclosures

34 Assessment at xv.
35 At the same time, we note that EPA has formulated a process and methodology of review without meaningfully seeking the State’s input on whether the process is lawful or scientifically defensible. EPA convened only one pro forma meeting of the so-called “Intergovernmental Technical Team” (IGTT), and appeared wed to the process (vague as it was) upon which it was already engaged.
cc: Via Email & 1st Class Mail:
Lisa Murkowski, U.S. Senate, Kristen_Daimler@murkowski.senate.gov
Mark Begich, U.S. Senate, Nellen_Budd@begich.senate.gov
Don Young, U.S. House of Representatives, Pamela.Day@mail.house.gov
Larry Hartig, Commissioner, Department of Environmental Conservation,
 State of Alaska, Larry.Hartig@alaska.gov
Cora Campbell, Commissioner, Department of Fish and Game,
 State of Alaska, Cora.campbell@alaska.gov
Daniel Sullivan, Commissioner, Department of Natural Resources,
 State of Alaska, Daniel.Sullivan@alaska.gov
Kip Knudson, Director of State/Federal Relations, Office of the Governor;
 State of Alaska, Kip.Kudson@alaska.gov
July 23, 2012

Via E-mail and U.S. First Class Mail

Ms. Lisa Jackson
Administrator
USEPA Headquarters
Ariel Rios Building
1200 Pennsylvania Avenue, N.W.
Washington, DC 20460
Jackson.lisap@epa.gov

Mr. Dennis McLerran
EPA Region X
Regional Administrator
RA 140
1200 Sixth Avenue
Seattle, WA 98101
McLerran.Dennis@epamail.epa.gov

Office of Environmental Information (OEI) Docket (Mail Code 2822T)
Docket # EPA-HQ-ORD-2012-0276
U.S. Environmental Protection Agency
1200 Pennsylvania Ave., N.W.
Washington, DC 20460
ORD.Docket@epa.gov

Dear Ms. Jackson and Mr. McLerran:

The State of Alaska, through the Department of Natural Resources (ADNR) Office of Project Management and Permitting (OPMP), submits these comments in response to the U.S. Environmental Protection Agency (EPA) draft document “An Assessment of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska” (“Assessment”). Please note that these comments do not endorse the Assessment contents, process or any premature exercise of EPA’s Clean Water Act Section 404(c) authority in Bristol Bay watersheds.

ADNR, through OPMP, coordinates review of mining and other development projects in Alaska that involve multiple state agencies (see Alaska Statutes Sec. 27.05.010). OPMP does not regulate mines but coordinates activities of

“To responsibly develop Alaska's resources by making them available for maximum use and benefit consistent with the public interest.”
resource agencies that do. This letter, along with its enclosure, includes input from the Alaska Departments of Natural Resources (ADNR), Fish and Game (ADF&G), Environmental Conservation (ADEC), Transportation, and Commerce, Community and Economic Development. In addition to this letter of technical comments from the agencies, the State of Alaska, through the Attorney General’s Office, is submitting comments on legal and process issues with the Assessment today.

The State’s review of the Assessment was conducted by resource agency technical staff from many disciplines including habitat biology, engineering, risk assessment, hydrology, geology, and chemistry. Most of the reviewers actively review, regulate, permit and inspect current and potential mining operations in Alaska. These staff represent hundreds of years of direct experience studying and managing Alaska’s natural resources.

The State, in previous letters to EPA, has questioned the applicability of the Assessment process in the absence of a detailed project proposal. The Assessment has not incorporated the effects of permit stipulations and mitigation on the overall impact on the risks. Permit stipulations and mitigation through the permitting process would be an integral part of any large development project in the region. Without considering the robustness and completeness of the state and federal permitting processes, the Assessment has mischaracterized the impacts and their significance.

In the State’s view, the Bristol Bay fishery is a world-class resource recognized by Alaskans and others long before EPA’s assessment. Many years of effective management by ADF&G have focused on maintaining a robust fishery and supporting habitat. Characterizing this important fishery was the least difficult charge before EPA in its development of the Assessment.

The Assessment acknowledges that most fish and game populations in the Bristol Bay watershed are healthy and robust. The Assessment appropriately characterizes and summarizes the available information on the abundance, diversity, productivity, and uses of the fish and wildlife resources of the Bristol Bay region. In addition, the sections of the Assessment that address Alaska Native cultures and subsistence portray the role that salmon plays in the culture and way of life of the Bristol Bay communities and residents.

However, as reflected in the technical comments from the State, EPA was far less successful in characterizing mine development, determining the likelihood of failures, identifying mitigation measures, and assessing likely impacts of mine development. Nor does the Assessment acknowledge the relative importance of subsistence uses to all Bristol Bay area residents.

Existing state resource agency review, permitting and management processes have been successful in addressing potential impacts to our fish and game
resources from a wide range of anthropogenic effects including large scale mining, and would certainly be instrumental in addressing potential impacts from mine development in the Bristol Bay region.

Detailed technical comments on the Assessment are enclosed. Highlights of the technical comments follow:

I. **The assessment draws speculative conclusions about potential impacts from a hypothetical large mine**

The Assessment contemplates potential adverse impacts from a hypothetical mine scenario that could result in EPA placing unnecessary or inappropriate Section 404(c) limits on future development. The Assessment draws from earlier conceptual plans prepared by Northern Dynasty Minerals Ltd. (NDM). The Assessment also mentions other potential mining operations in the area that are in very early exploration status such as the Groundhog, Humble and Big Chunk projects.

It is difficult to make technical observations regarding the mine development model used in the Assessment because the basis of the model is comprised of a number of assumptions, not site-specific data or actual mine plans. While the hypothetical mine and scenarios described by EPA may appear to be realistic, based on a given set of conditions, they do not represent the only options and outcomes that could apply to a mine located in the Bristol Bay area that is in planning, development, operational or closure stages. Thus, the Assessment does not provide an accurate assessment of potential mine development impacts. For example:

- The Assessment has virtually no discussion on the local and regional geology and hydrogeology which would be a required part of state agency review of any proposed mine project. The Assessment only mentions field investigations and testing from previous exploration programs. However, site-specific data exists on key aspects of the subsurface environment, but that information was not considered in the assessment of direct hydrologic impacts and its effects on fish and habitat. An obvious source for site-specific data is the Pebble Limited Partnership (PLP) Environmental Baseline Document (EBD), a 27,000 page document released in November, 2011.
- The Assessment does not adequately consider Alaska regulations, standards, or the mitigating aspects of modern mine construction methods, operation, and closure. The Assessment provides a very basic review from dated mining projects outside of this region that do not adhere to modern mining methods, regulations, or engineering
standards. These examples, which may have no applicability to this study area, were used to predict potential impacts to the study area.

- EPA states that the mine scenarios described in the Assessment reflect “current good, but not necessarily best, mining practices” for porphyry copper mining. Therefore, the assumptions made by the EPA based on “good practices” may not reflect the “best practices” that may be used by an actual mining operation or that may be required by state or federal regulatory agencies through the permitting process for a large mine. This approach is unrealistic considering the amount of scrutiny expected from the public and the requirements of the regulatory agencies that issue permits and approvals for mines in Alaska.

- The hypothetical inflows and outflows of a speculative design do not constitute a water balance. A fundamental element in any mine review is an accurate water balance for the project. The Assessment attempts to describe the negative hydrological effects of a conceptual and unpermitted facility, but an understanding of water balance cannot be reached in the absence of a detailed proposal, including proposed water use within the facility itself.

- A tailings storage facility dam failure is the single most significant potential impact of the dam. Yet no site-specific sediment volumes are estimated or calculated and no site-specific sediment transport study was completed. The generalized discussion in these “failure” sections includes some description, but there is no substantiating evidence to support the hypotheses.

II. Insufficient technical and scientific support for conclusions based on groundwater/surface water interconnections in the study area

In the Assessment and at the public meetings in Alaska and Seattle, EPA emphasized the interconnection of groundwater and surface water in the study area. The Assessment does not describe how site-specific studies at potential development sites would determine the potential and risk of changes to groundwater and resulting impacts to fresh water. For example:

- The Assessment does not take into account the seasonal fluctuations of groundwater and surface water flow and its effect on determining impacts from the mining scenario. Furthermore, the Assessment does not consider the substantial amount of information contained in the EBD. This includes information needed to determine the rates of groundwater flow, soils composition, porosity, hydraulic conductivities,
permeability, presence of permafrost, fracturing in bedrock and other important aspects of groundwater before any mine development.

- There are hundreds of references to groundwater in the Assessment and it is repeatedly listed as a key factor in fish habitat and other wildlife habitat functions. Yet, hydrogeology within the proposed pit and tailings storage facilities is not described in the Assessment.

- The Assessment assumes that the mine would be located on a water divide and there will be little groundwater contribution into the area defined by the cone of depression. However, the surface water divide does not necessarily match the groundwater divide. The Assessment did not evaluate regional groundwater flow to determine the location of the groundwater divide.

- The amount of water used during mining operations is not consistently reported in the Assessment. This has major implications to the water balance, instream flows, and the health of fisheries below the hypothetical mine. Dewatering and mining activities in the mine site will change the local, and possibly the regional, groundwater flow field, which will change the water balance.

- The Assessment does not adequately consider the complex, site-specific and stream flow conditions and relate the information directly to measured fish/salmon presence and potential impact. The EBD contains information that shows gaining and losing reaches in the area of study. However, the Assessment does not include sufficient information on groundwater / surface water interactions that must be used to estimate impacts to fish habitat from mining activity.

III. Inadequate consideration of mitigation measures

The Assessment references "potential mitigation measures." Aside from the efficacy of mitigation discussion in Appendix I, there is little evidence of mitigation measures being considered and incorporated into the hypothetical mine design and into the main chapters of the Assessment. In addition there is inconsistent use of the terms “conventional”, “standard” and “best” mitigation practices throughout the Assessment. For example:

- The Assessment discusses culverts as a risk to fish habitat and passage. The State has communicated to PLP that bridge designs, not culverts, will be the starting point for consideration of all proposed water crossings. Effective culvert designs can accommodate fish passage in some instances. State inspection programs along development project
corridors monitor and prevent the long-term impacts described in the Assessment. Given the sensitivity of the rivers and streams to the fisheries, the inferior designs described in the draft Assessment would not be approved by the State.

- In the Assessment, there is no discussion of the mitigation requirements that could be imposed by the Army Corps of Engineers (Corps) relative to the placement of roads and stream crossings or mitigation to and avoidance of wetlands. Additionally, the Alaska Department of Environmental Conservation (ADEC) reviews all Corps permit applications to determine if there are reasonable and appropriate assurances that water quality standards will be met to protect aquatic life.

The technical comments enclosed highlight numerous examples where mitigation measures at all stages of mine construction, development, operation and closure were not adequately characterized in the Assessment.

IV. Data presented is not representative, complete or current

In reviewing the Assessment as a scientific and technical document, the State noted EPA's choice of some references used, the use of outdated sources, and selective bias in the data and information featured in the Executive Summary (ES) and main Assessment chapters. In particular, the ADF&G had many additional sources of fisheries data readily available from that agency which are listed in the attached technical comments but were not considered in the Assessment.

In several instances, EPA chose the most conservative measure, data, counts, and indexes to determine potential impact from mining in the area of study. This repeatedly led to the conclusion that greater or more extensive impacts would occur than what may be realistic for the hypothetical mine scenario. The Assessment does not acknowledge data that is available in the EBD which, upon further research and study, may change the conclusions regarding risks and impacts. Further, there are sections of the Assessment that selectively use generalized and conservative assumptions over available field-collected data. Standard risk assessment protocols favor the use of actual, site specific data over generalizations, assumptions, and modeling. The draft Assessment does not follow these longstanding risk assessment protocols. Specific examples of bias in selecting data include:

- Overstatement of risk from road runoff based on literature describing environmental problems with residues from urban hard surface roads such as road salting, metals, oil and grease, high volumes of traffic, and
other impacts. Mine project roads and traffic could have very different impacts. The State technical comments provide more applicable and recent literature to consider.

- The Assessment inappropriately uses the output from a toxicity calculation method (biotic ligand model) on pre-Tertiary waste rock leachate to infer site-specific, downstream impacts without necessary consideration of kinetics, downstream mixing and pH changes. Instead of using field-collected data available from the EBD, the Assessment uses the most conservative input criteria in the model, leading to even a more conservative result.

- Not mentioned in the Assessment is that EPA approved the State of Alaska Water Quality Standards as being protective of aquatic life and that no state has fully adopted the biotic ligand methodology for setting statewide water quality standards. The necessity of a water quality model to determine the need for more stringent, site-specific water quality criteria requires a far more detailed study than what was presented in the Assessment. The resultant use of this stringent water quality approach as a standard of measure leads to an erroneous conclusion where the predicted water quality impact to aquatic life is potentially substantially greater than what would be calculated in a well researched and technically reviewed study.

- The information on the roads and pipeline do not point out that some road sections out of Williamsport and around Pedro Bay have already been constructed. This omission may lead readers to assume that only a mining project would necessitate roads and road building in the study area.

- In Chapter 4, the Assessment provides examples of catastrophic dam failures, and further describes failure mechanisms, such as overtopping and slope instability and then discusses failure statistics. However, the Assessment fails to point out that the failure statistics, as presented, do not distinguish catastrophic failures from relatively inconsequential incidents. This effectively exaggerates the probability of failure of the dam in the hypothetical mine scenario.

- All of the dams described are less than 30 meters high, and have questionable design and operational histories. The Assessment has estimated the likelihood of failure of the hypothetical mine dam using historic records of dam failures recorded in the years 1960 to 2010. Many were constructed in periods prior to current regulatory, engineering, and oversight requirements. The Assessment does not acknowledge that the tailings dam failure statistics presented are biased by the failure incidents of small dams, because there have been no
catastrophic failure of large dams approaching the scale of the mine scenarios used in the Assessment.

- The Assessment provides examples of impacts from mines developed from the late 1800 and early 1900s, related to acid mine drainage and mobilization of metals and does not distinguish nor consider current mine technology or regulatory framework and oversight to prevent environmental harm. These historic examples do not apply directly to a modern mine under current regulatory regimes.

- Rather than using best available fish abundance data, the Assessment uses the highest index counts with an unsupported justification that it is “likely” to be representative. By applying the highest index count across an entire stream system, or even across large areas or reaches of the stream where spawning may or may not occur (because spawning is generally restricted to particular reaches or habitat conditions that do not exist everywhere in the stream), the Assessment may have overestimated the number of potentially impacted fish.

- Salmon reductions caused by mining are speculated to “cause roughly proportionate declines in bears, wolves and bald eagles.” The amount of decline would not likely be proportionate, as salmon constitute only a portion of these species’ diets.

- Throughout the Assessment, there is inconsistent information relating loss of fish habitat to a direct and quantifiable loss of fish production.

V. Incomplete and selective discussion of socio-economic impacts and potential benefits of mining.

The Assessment acknowledges the economic, social, and cultural benefits that the fish and wildlife resources provide to the residents of the region and the State. The Assessment does not consider any potential benefits of mine development to human health, safety, and welfare, including for those individuals who live in the region. The Assessment presents a limited and biased picture of only adverse impacts of a hypothetical mine, and fails to disclose to the public those benefits to the region and State that might result from large mine development.

References available from the State and PLP could have been used to describe additional economics regarding the positive impacts this type of development has already had in the region. The annual Alaska Mineral Industry Reports includes annual reported expenditures by the PLP on the Pebble project for 2006 –2010. For instance, in 2009 and 2010, respectively:
VI. Unclear risk assessment methodology

EPA relied upon the 1998 ecological risk assessment guidance (Guidelines for Ecological Risk Assessment EPA/630/R-95/002F. April 1998). That document is more appropriate for smaller scale studies where there are identified sources of constituents of concern, pathways and receptors in a clearly defined area.

- The document expands the concept of ecological risk assessment over a wide area whereas most risk assessments focus on a smaller area with known, not hypothetical impacts.

- Quantitative chemical risk estimates are presented without an initial discussion of the basic risk assessment process of data collection and evaluation, exposure assessment, toxicity assessment, and risk characterization.

- The Assessment discusses impacts on fisheries from normal operations and the probability of tailings dam failures and potential negative impacts from single and multiple mines, but fails to compare those statistics with probabilities of other potential negative impacts such as disease, blights, drought, or over-fishing. Consequently, there is no frame of reference for understanding the magnitude of the risk from the mine compared to other impacts to the area.
• Chapter 6 evaluates risk of engineered structure failure but not according to current industry and regulatory standards. The Assessment fails to recognize these basic risk management tools used by industry and regulators.

VII. Inconsistent scale and scope of project area

The scope of the Assessment and methods for evaluating impacts of mining uses various geographic regions and scales of study, depending on the subject area and availability of information. Generally, four different geographic scales are applied to the study and include:

• The Bristol Bay Region, which encompasses the bay and the land area of six watersheds that drain into it;

• The Nushagak River and Kvichak River watershed, which comprise the largest of the Bristol Bay watershed’s six watersheds and compose about 50% of the total Bristol Bay watershed area;

• The headwaters of the tributaries that flow within the proposed Pebble Project including: the North Fork Koktuli River, located to the northwest of the Pebble deposit, which flows into the Nushagak River via the Mulchatna River; the South Fork Koktuli River, which drains the Pebble deposit area and converges with the North Fork west of the Pebble deposit; and Upper Talarik Creek, which drains the eastern portion of the Pebble deposit and flows into the Kvichak River via Iliamna Lake; and The hypothetical mine site, which includes the area of direct impact as described in the hypothetical mine scenario.

Although the document is titled An Assessment of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska, the Executive Summary limits the scope of the watershed assessment to the Nushagak and Kvichak River watersheds. However, in assessing potential impact of mining to the study area, most of the focus and discussion is limited to the area of the North Fork and South Fork Koktuli Rivers, Upper Talarik Creek and the hypothetical mine site.

While the presentation of the various geographic scales and associated information gives perspective to the expansive area that makes up the larger Bristol Bay region, the Assessment fails to address or quantify the potential impacts of the hypothetical mine as it relates to the various scales it presents.

As an example, if Bristol Bay has about 90,000 km of streams and Nushagak and Kvichak has about 58,000 km of streams, those numbers and associated
contribution to the respective fish contribution should be compared with the area of streams that would be impacted by the mine to give an overall perspective of impacts. The Assessment cites that 125.1 kilometers of streams would be lost for the maximum hypothetical mine scenario which would equate to an overall stream loss of 0.1 percent of the Bristol Bay watershed or about 0.2 percent of the Nushagak and Kvichak watersheds. (Furthermore, presentation of kilometers down to the tenth of a kilometer implies a level of accuracy in impact assessment that is misleading). The Assessment fails to put into context how the loss of length of streams and habitat or area of wetlands directly relates to effects on fish production and the overall effect on subsistence, sport or commercial fishing at the larger scales. Without quantifying the effect of the impacts at each scale presented, the Assessment is essentially incomplete for the purpose of a risk assessment document.

VIII. Non-scientific presentation of the Assessment

A scientific and technical assessment begins with a discussion of the array of issues and then continues through site-specific knowledge, logical narrowing down of issues to those that are most important and a conclusion. The State is concerned with the approach taken in the Assessment, which appears to begin with conclusions. Some sections, start with conclusions, and then subsequently follow with facts that support the conclusion. This approach is inappropriate for a scientific document developed by a regulatory agency that may be used as the basis for future decisions.

Common to every report section are lengthy descriptions of the high quality of Bristol Bay environmental conditions, productivity, habitat or importance to indigenous cultures. In a standard environmental document, such a description would be covered in one section of the document and would not need to be repeated throughout the report.

The organization of the multiple-volume Assessment encourages readers to form conclusions based on information in the Executive Summary alone. Information in the ES is presented differently than in the subsequent volume chapters and in the appendices. The stand alone ES includes photographs of landscape and fish from the Bristol Bay region that are not included in the Volume I Executive Summary. The stand alone ES also includes photographs of an open pit mine and washed out culverts from locations in Alaska outside of Bristol Bay. Whether intended or not, the stand-alone summary, with the potentially broadest audience, is inappropriately and selectively highlighting information. Additional discrepancies include:

- The data presentation from Assessment Volume I states that revenues from a hypothetical mine have been estimated to be between $300 billion
to $500 billion over the life of the mine. This information was not included in the ES which would provide contrast to the current economics of the Bristol Bay watershed.

- Data are presented on potential acid rock drainage in the Assessment, a known concern for long-term impacts from sulfide ore mining. The text in Chapter 4 (pages 4-4 through 4-7) discusses the Bingham mine results from Utah, but does not refer to site-specific information from the potential Pebble site included in Appendix H.

- Figures in Chapter 2 exaggerate the area of the Pebble deposit. Using Figure 2-2 as an example, it could be argued that this scale is too small to accurately show the area, but perceptions and opinions of impacts are based on these figures. The maximum mine disturbance from the map on Page ES-17 is approximately 30.8 square miles, while the map of Figure 2-2 shows 116.4 square miles, based on the scale of the map.

In closing, the State believes the Assessment, as a precursor to EPA’s decision on a pending Clean Water Act Section 404(c) petition, is too general and speculative. An assessment of environmental impacts of any proposed large mine or development project by the State and multiple federal agencies, including the Corps and EPA, would have much more scientific credibility within the context of an actual defined proposal.

Thank you for the opportunity to provide EPA with the State’s technical comments on the draft Assessment. Should you have any questions, or wish to schedule a meeting to discuss the State’s technical comments and concerns regarding the Assessment, please contact me at tom.crafford@alaska.gov or (907) 269-8629.

Sincerely,

[Signature]

Thomas Crafford, Director
DNR Office of Project Management and Permitting
Enclosure:
State of Alaska Technical Comments Docket EPA-HQ-ORD-2012-0276 (pp 89)

cc. Ed Fogels (Alaska Department of Natural Resources Deputy Commissioner)
Randy Bates (Alaska Department of Fish and Game Director of Habitat)
Lynn Kent (Alaska Department of Environmental Conservation Deputy Commissioner)
Curtis Thayer (Alaska Department of Commerce, Community, and Economic Development Deputy Commissioner)
Ruth Hamilton Heese (Alaska Department of Law Attorney General Office)
Kip Knudson (Director of State and Federal Relations/Office of Governor Sean Parnell)
State of Alaska Technical Comments

Environmental Protection Agency May 2012

External Review Draft

"An Assessment of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska"

Docket # EPA-HQ-ORD-2012-0276

Submitted July 23, 2012

(with a summary letter dated July 23, 2012 also submitted)
Report Section Identification: Abstract – and Elsewhere in the Document

Report Page Number: i

Comment: The document states that the hypothetical scenarios used would “result in the direct loss of 87.5 km to 141.4 km of streams and 10.3 and 17.3 km2 of wetlands.” This does not adequately put the projected impact in perspective because there is no attempt to relate this to a percentage of the entire watershed. An abstract should be an overview or big picture and in this case the big picture is the entire Bristol Bay Watershed.

Recommended Change: Express the hypothetical stream and wetlands loss as a percentage of the entire Watershed.

Report Section Identification: General

Report Page Number: Tables and Figures

Draft Comment:

Not all acronyms are defined that are used tables and figures.

Nontechnical readers will not be familiar with the chemical symbols used for the metals.

Sources of information contained within tables and figures are not provided in the footnotes.

Draft Recommended Change:

Define all acronyms used in tables and figures.

Include names of metals rather than their chemical symbols.

Provide sources of information presented in tables and figures.

Report Section Identification: General comment on risk estimates.

Report Page Number: General

Draft Comment:

Given the uncertainty in the mine plan, numerous data gaps in the assessment of current conditions, use of conservative risk screening criteria, uncertainty in measured concentrations or parameters, and consideration of potential risk mitigation measures, risk might be better discussed in a more qualitative manner or using probabilistic risk assessment techniques. Using probabilistic risk assessment the uncertainty and variability in the risk assessment estimates might be used to better predict the magnitude of expected impacts.

Report Section Identification: Executive Summary - Scope of Assessment – and Elsewhere in the Document

Report Page Number: ES-1

Comment: The document states that impacts to Alaska Native cultures are one of the endpoints. The document tends to view any impacts as negative and does not adequately address the potential positive impacts. It is not clear where the EPA has the authority to determine potential impacts to only one group of people while excluding the potential impacts and benefits to a larger group such as all residents of Alaska. Even local non-Native subsistence users are excluded from this assessment.

Recommended Change: The EPA should clarify its authority to limit its scope to only one group.
of people and describe its reasoning for excluding the potential beneficial impacts.

<table>
<thead>
<tr>
<th>Report Section Identification: All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: All</td>
</tr>
<tr>
<td>Comment: There is not a definition for “freshwater habitat” in the text or maps (e.g., Figure ES-5 on page ES-12). I am assuming this is the waterbody plus the wetlands, but I could not find any reference to this.</td>
</tr>
<tr>
<td>Recommended Change: Define what is meant by “freshwater habitat.”</td>
</tr>
<tr>
<td>Draft Comment Reference: N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification: Executive Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: Throughout the report</td>
</tr>
<tr>
<td>Comment: Although the report authors frequently state that the mine under analysis is hypothetical, the report has virtually no discussion on the local and regional geology and hydrogeology. However, the report often mentions field investigations and testing that have been performed as part of exploration programs. So, some data exist on the key aspects of the subsurface environment as they pertain to some of the major issues for this mine, namely, the direct hydrologic impacts and the related fish and habitat impacts. The report does not include discussion of ambient groundwater quality.</td>
</tr>
<tr>
<td>Recommended Change: The report should include new sections dedicated to describing the local and regional geologic and hydrogeologic conditions, and providing a framework for quantifying the primary subsurface conditions such as soil and rock types, hydraulic properties, degree of fracturing and fracture interconnectivity. The report should include hydrogeologic sections, soil and rock descriptions, summary of properties, groundwater levels and flow directions and gradients, and groundwater chemistry.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification: Executive Summary through Section 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: Many</td>
</tr>
<tr>
<td>Comment: There are hundreds of references to groundwater in the report and it is repeatedly listed as a key factor in fish habitat and other wildlife habitat functions. Specific text is repeated many times throughout Sections 5 and 6 reporting the value of groundwater to fish. In Figure 4-9, a groundwater diagram is presented including a very large cone of depression that is repeatedly referred to as likely to severely impact stream recharge. In Appendix H, the geology of porphyry copper deposits is presented and reference is made to nearly 1200 borings being made in the Pebble deposit. Yet, hydrogeology within the pit and Tailings Storage Facilities (TSFs) is not described in the Bristol Bay Watershed Assessment report. If the underlying geology is bedrock, then there is no large reservoir of groundwater as shown in Figure 4-9. Rather, there would only be shallow groundwater in the glacial deposits overlying the bedrock. Degree of fracturing in any bedrock would be critical to how much downward movement of groundwater there is and how much groundwater is actually present in the mine pit and TSF area.</td>
</tr>
</tbody>
</table>
This lack of any presentation of actual or likely groundwater conditions within the hypothetical mine scenario is a critical omission because of the repeatedly stated importance of groundwater.

Recommended Change: A thorough hydrogeological description needs to be incorporated into the risk assessment to determine the actual or selected hypothetical conditions incorporated into the risk assessment. This needs to be incorporated into a detailed water balance and consideration of how much water is available for discharge to streams throughout the year.

Report Section Identification: Executive Summary and Throughout

Report Page Number: Throughout

Comment: The Bristol Bay Watershed Assessment is has repeated influential statements that are not well linked with actual conditions. The repetition suggests a preferred conclusion.

Recommended Change: Provide data, describe the analysis of the data and summarize the conclusions in a scientifically neutral manner.

Report Section Identification: Executive Summary and Throughout Entire Document

Report Page Number: Many, including Appendices

Comment: Broad generalizations are made throughout the documents. Related to this are items such as Appendix A, Figure 2 that shows nearly the entire Nushagak River as spawning habitat for Sockeye, when it is likely there are portions of the river that are used considerably more than others. This may be due to a lack of documented evidence, but if it isn’t really the entire river, then it should not be marked as such.

Recommended Change: Text needs to be made more specific or better acknowledge lack of site-specific evidence/information and how it may affect conclusions.

Report Section Identification: Executive Summary and Throughout

Report Page Number: All

Comment: In regard to the impacts of the proposed mine on streams and fish, the Bristol Bay Watershed Assessment is too general to determine actual impacts of the proposed mine.

Recommended Change: A detailed and site-specific EPA review of the Pebble Limited Partnership (Pebble Limited Partnership) Environmental Baseline Document (Pebble Limited Partnership Environmental Baseline Data) and application of their considerable data to the issues raised by EPA in the Bristol Bay Watershed Assessment would have gone much further to understanding the actual impact.

Report Section Identification: Executive Summary and Throughout

Report Page Number: All

Comment: While there is an economic assessment of the current conditions in the Bristol Bay area (Bristol Bay Watershed Assessment Vol. 3), there is no economic analysis related to the potential fish impacts of the mine, nor of the potential recreational opportunities that develop due to the road,
and other economic issues. While such an evaluation may not be possible with the level of analysis provided by the EPA in the Bristol Bay Watershed Assessment, it would seem possible that a minimal mine-related economic impact on the fisheries could be off-set by mine-related economic benefit of greater proportion.

Recommended Change: Do an economic cost-benefit analysis.

Report Section Identification: Executive Summary and Throughout

Report Page Number: All

Comment: Overall, it is uncertain and unquantified what the actual impacts of the mine are likely to be. No reasonable maximum or average impact to fish and wildlife are provided. While it can be stated with certainty that the mine pit, waste rock piles, and tailing storage facilities (TSF)+ will cover fish and wildlife habitat, the percentage of that impact on localized and regional fish and wildlife populations and the economic impact it may have, are never quantified.

TSF dam construction and failure is the single most significant issue related to fish and wildlife impacts. Much more detailed information is needed on groundwater flow and its relation to overall water balance.

Recommended Change:

Report Section Identification: Executive Summary and Throughout

Report Page Number: All

Comment: The Bristol Bay Watershed Assessment should have incorporated the vast amount of information that is available in the Pebble Limited Partnership Environmental Baseline Data. The lack of site-specific data limits the Bristol Bay Watershed Assessment to conclusions based on assumptions that may be inaccurate to the site-specific conditions provided by the baseline data.

Recommended Change: Use site specific data as available, identify data gaps, fill data gaps, and do further analysis.

Report Section Identification: Executive Summary and Throughout

Report Page Number: All

Comment: Biological impacts of the proposed mine should be examined closely. But much of the decision making on this project will be socio-political decisions such as: should we disturb the current wilderness of the mine area, even if it is determined there is no “significant” ecological impact.

For example, much of the EPA Bristol Bay Watershed Assessment emanates an underlying ecological philosophy that any impact in the “pristine” Bristol Bay watershed is bad because, in and of itself, the impact reduces the “pristine” nature. That is, The Bristol Bay Watershed Assessment portrays a philosophy that there is no threshold for acceptable impacts, so any impact is unacceptable. This philosophy is contrary to the past ecological and toxicological “threshold” management approaches applied in this country through its existing political and legal structure.

Recommended Change:
Report Section Identification: Executive Summary and Throughout
Report Page Number: All

Comment: Many of the potential issues/impacts brought up within the Bristol Bay Watershed Assessment are important and should be considered in an evaluation of project permits and plans. But the results of the Bristol Bay Watershed Assessment are inadequate to determine the actual impacts.

For example, culverts can be a problem for stream function and fish passage. This is raised as an issue in the Bristol Bay Watershed Assessment. So, any project/roadway designs must assure culverts are properly designed and maintained, or bridges are used that span the active channel area. But stream crossings do not necessarily cause significant impacts to fish or stream function if managed and permitted correctly.

Recommended Change:

Report Section Identification: Executive Summary and Throughout
Report Page Number: All

Comment: No one can refute that some level of impacts to fish, wildlife, and their habitat(s) will result if the mine is built and operated for many years. The question is “what are the risks”. The Bristol Bay Watershed Assessment repeatedly emphasizes the “possible” effects, but other than the simple risk based screening of average leachate concentrations to water quality criteria, there is essentially no other site-specific assessment of the impacts to species and the quantification of lost habitat. The conclusions are oversimplified to the extent that it is not applicable to individual species or their populations.

Pre-emptive action by the EPA in an area designated by a state as a potential mining area is unprecedented.

Recommended Change: Pebble Limited Partnership has collected a massive amount of relevant site-specific data, made public in their Pebble Limited Partnership Environmental Baseline Data, that has not been incorporated into any ecological risk assessment of the potential mine impacts. Unless there is a pre-emptive political decision to disallow development of the mine because of the “pristine” nature of the Bristol Bay Watershed, then Pebble Limited Partnership should be allowed to use their data to develop a mine development and management plan, and a risk assessment/mitigation plan for the proposed mine. Then, agencies responsible for environmental impact and permitting review can better assess the degree of impact and either request further mitigation/assurances or deny the permit.

Or, if the EPA wants to continue engagement in this process, then they could do the site-specific study, but it would seem that any EPA work would then have to be subject to interaction and review by the permittee.
Comment: The Pebble Limited Partnership Environmental Baseline Data provides a substantial amount of site-specific data and detail, but the data have not been incorporated into a risk assessment type of document, as likely would be done through the permitting process. On the other hand, the Bristol Bay Watershed Assessment does a risk assessment with essentially no site-specific data. Neither the Pebble Limited Partnership Environmental Baseline Data nor the Bristol Bay Watershed Assessment allows a clear understanding of the potential risks to the environment, fish, wildlife, or Alaska Natives.

Recommended Change: The details provided in the Pebble Limited Partnership Environmental Baseline Data and other site-specific documents must be used to more accurately and more elaborately evaluate and predict risks.

Report Section Identification: Figures

Report Page Number: Figures

Comment: None of the Figures in the Bristol Bay Watershed Assessment show any of the existing roads. Nor is it provided in the Bristol Bay Watershed Assessment that 15% to 20% of the proposed road already exists, primarily between Cook Inlet and Iliamna Lake, and improvements likely could be made to the existing road. The lack of information on existing roads imparts some level of bias in that the environmental impact of potential mine development is greater than what already exists.

Recommended Change: Provide the reader with the existing miles of roadway in the proposed road corridor and discuss how these roads have impacted fish and subsistence life, and what improvements may be made to reduce the negative impacts.

Report Section Identification: Executive Summary and Throughout

Report Page Number: All

Comment: Throughout much of the document, the normal approach to technical reporting is reversed. Rather than starting a section or subsection with an understanding/discussion of the issues to be addressed then addressing/evaluating the issues before reporting results of the evaluation, the Bristol Bay Watershed Assessment provides conclusive statements in the introduction to many, if not all sections and subsections. In some cases these conclusions are completely unsubstantiated in the following subsections. In other cases, there are some simple to extremely incomplete analyses that appear designed solely to support the conclusions stated in the introductory paragraphs.

It is as if the report is written to convince people of the opinions of the authors, without the level of detail or evaluation necessary to support the conclusions. It is disconcerting to see this in a Technical Document from the USEPA.

Recommended Change: Do not rely on the Bristol Bay Watershed Assessment as a technical document. Rather, allow technical documentation to be developed by the applicants with good data and detailed analysis. Use the detailed analysis and evaluation to evaluate the likely impacts of the Pebble Mine.
Report Page Number: Pages ES 1 – ES 4 Scope of the Assessment

Comment: The scope of the assessment and methods for evaluating impacts on fisheries, considering the various scales of the impacted watersheds are not clearly defined. For instance, in the executive summary, the following three statements are made:

"This assessment reviews, analyzes, and synthesizes available information on the potential impacts of large-scale mining development on Bristol Bay fisheries and subsequent effects on the wildlife and Alaska Native cultures of the region."

and

"The geographic scope of the assessment is the Nushagak River and Kvichak River watersheds (Figure ES-1). These are the largest of the Bristol Bay watershed's six major river basins and compose about 50% of the total watershed area."

and

"The headwaters of three biologically productive tributaries originate in this region: the North Fork Koktuli River, located to the northwest of the Pebble deposit, which flows into the Nushagak River via the Mulchatna River; the South Fork Koktuli River, which drains the Pebble deposit area and converges with the North Fork west of the Pebble deposit; and Upper Talarik Creek, which drains the eastern portion of the Pebble deposit and flows into the Kvichak River via Iliamna Lake, the largest undeveloped lake in the United States (Figure ES-2)."

Recommended Change: Include an expanded discussion of methods and techniques used to evaluate the impacts of the project considering the various landscape scales involved in the project and the linkages between a site scale impact up to a watershed scale impact. These scales are generally: 1) site scale – direct impacts from mine development, 2) sub-basin scale impacts on streams directly downstream (and upstream) of the mine development such as the Koktuli and Talarik Creek systems, 3) basin scale impacts on the next order of streams, rivers, wetland systems such as the Nushagak and Kvichak Rivers, and 4) the watershed scale Bristol Bay watersheds. The methods should also refer to the conceptual models and how linkages between various site, sub-basin, basin and watershed scales are evaluated.

Report Page Number: ES-5

Comment: The text indicates that about half of the Bristol Bay sockeye salmon production is from the Nushagak – Kvichak and references Figure ES-4. The Kvichak commercial harvest reported in Figure ES-4 includes sockeye destined for the Naknek River watershed. Because of commercial fishery management and reporting, Kvichak and Naknek harvest data are not separated. Inclusion of Naknek River production overstates the amount of production from the “area of focus for this assessment.”

Recommended Change: Wherever commercial harvest data are referenced, EPA needs to identify that the Naknek River is not part of the assessment area and including these numbers may overstate the importance of production from the assessment area.

Report Section Identification: Executive Summary – Scope of Assessment and Elsewhere in the Document
Report Page Number: ES-5

Comment: The document states that other deposits in the region would present risks similar to those outlined in the assessment. It is presumptuous for the EPA to assume other deposits in the area would have similar risks as Pebble. Later in the document, a comparison of the chosen scenario for Pebble, would make it the largest mine in North America. As hypothetical and unlikely as that assumption is, it is even more unlikely that other deposits in the region would be of the same scale and present similar risks. The document does state elsewhere that the other deposits are not likely to be as large as Pebble but it is contradictory to state that they would have “similar impacts” in the executive summary.

Recommended Change: The executive summary should not state that other deposits will have similar impacts.

Report Section Identification: Executive Summary, Ecological Resources

Report Page Number: ES-5, paragraph 4, 2nd sentence

Comment: The Nushagak River Chinook run is referenced; use of the word “run” is unclear.

Recommended Change: Suggest using language that clearly describes what level of run is being discussed (i.e., total run, escapement, etc.)

Report Section Identification: Executive Summary, Ecological Resources, Figure ES-3

Report Page Number: ES-6

Comment: Information depicted in map is confusing (e.g., what is the difference between “no field evidence” and “undocumented”)

Recommended Change: Define categories and terms more clearly.

Draft Comment Reference: None

Report Section Identification: Executive Summary, Ecological Resources, Figure ES-4

Report Page Number: ES-7

Comment: Subtle contrast in pie chart colors makes figure difficult to read.

Recommended Change: Use more contrasting colors and/or arrange in order of size.

Draft Comment Reference: None

Report Section Identification: Executive Summary, Ecological Resources

Report Page Number: ES-8 (paragraph 1, last sentence)

Comment: Estimate cited is average annual catch, not the total estimated catch over five years 2003-2007. Estimates should use more recent data.

Recommended Change: “...between 2003 and 2007 for 2003 through 2007 an estimated annual average of 196,825 rainbow trout...”; in addition use catch estimates from 2008-2010 reported in recent Jennings et al. Statewide Harvest Survey reports available on the department webpage.

Report Section Identification: Executive Summary
An important clarification involves the claim that 80% of all protein in the region comes from subsistence foods. The Alaska Traditional Diet Project has a section on this topic that is dedicated to Bristol Bay. Salmon, moose, caribou, and other species accounted for 52% of food sources of protein in a nutritional survey of 132 participants for Bristol Bay Area Health Corporation (Table 9c. page 72). Salmon is at the top of this list (32%) and it is healthier than other sources of protein listed, but 52% is based on a survey of 132 people regarding food intake. ADF&G generally surveys harvest and may ask some consumption questions as additional information only and not part of a dietary survey.

There’s no effort made to quantify how many of the workers and how much of earnings are made by non-residents. According to Alaska Department of Labor and Workforce Development Research and Analysis Bristol Bay Region Fishing and Seafood Industry Data in 2009, 58.8% of total gross earnings earned by non-resident permit holders and 87.1% of wages were earned by non-residents. The characterization of the Bristol Bay Commercial Fishery is incomplete without a reflection of the profits gained from Alaska’s fisheries resources by non residents and how much of the gross earnings leave the state, is not spent in Alaska, or in the Bristol Bay region.

Similar data presented for the general public is also published the November 2009 issue of Alaska Economic Trends published by the Alaska Department of Labor and Workforce Development, including that in 2008:
- 46% of Alaska’s crew members lived outside the state
- 73% of seafood processing employees lived outside the state and they earned $187 million that year
- Seafood processing since at least the mid-1980s has been the sector with the highest percentage of nonresidents, both within the fishing industry and in all wage and salary employment in the state.

Report Section Identification: Executive Summary
Report Page Number: Page ES-9, Indigenous Cultures
Comment: The Executive Summary comments on the twenty-five indigenous cultures, and that fourteen are within the Nushagak and Kvichak watersheds.
Recommended Change: Include a map (or provide reference to map later in report) showing the Alaska Native village locations, or regions/territories that they generally occupy and use for subsistence living. The Native village may be those shown in Figure ES-1, but need to be labeled in the legend.

Report Section Identification: Volume 1 Geological Resources and Mine Scenario
Report Page Number: ES-10
Comment: While the assessment lays out a potential mine it does not make an attempt to assess the economic impact or number of workers employed by such a mine. While the assessment notes public sources for data used to determine the so called plausible mine scenario presented. The same attempt is not made concerning economic impacts or workforce, despite there being the publically available information posted by the Pebble Limited Partnership.

Report Section Identification: Executive Summary and elsewhere in the document
Report Page Number: ES-12, ES-17, 4-20, 5-15
Comment: It is not clear what “Freshwater Habitat” is on the map. These maps that appear in multiple location of the document are misleading and appear to show lakes and water bodies that don’t exist. The blue color generally denotes water bodies.
Recommended Change: Clarify what “Freshwater Habitat” is and use a different color or hatch pattern to not imply that they are lakes.

Report Section Identification: Executive Summary, Overall Risks to Salmon and Other Fish
Report Page Number: ES-14
Comment: The stated scope of the assessment identified on p. ES-1 is: "This assessment reviews, analyzes, and synthesizes available information on the potential impacts of large-scale mining development on Bristol Bay fisheries and subsequent effects on the wildlife and Alaska Native cultures of the region." It is not clear on this page or throughout the report how loss of length of streams or area of habitat was estimated, and relating these losses directly to effects on fish production (i.e., the stated scope of this assessment).
Recommended Change: Better describe how stream/habitat losses are estimated and specifically make the connections to the resulting potential impacts on fish production.

Report Section Identification: Executive Summary
Report Page Number: ES-14—ES-22
Comment: Although EPA attempts to describe the mine in terms of no-failure, they do not mention
this in terms of the probability that no failure will occur. Instead, EPA describes the impacts of a no failure operation, as well as the probabilities of failure and subsequent impacts from a catastrophic failure. EPA implies that failure is certain because tailings dams are “in place for hundreds to thousands of years.” EPA does not describe the probability of the mine operating and closing without a major failure. If there is a probability of the occurrence of an event, \(P_e \), then the probability of the event not occurring is \(1 - P_e \). Consequently, for any low probability event, there is a complementary high probability that the event will not occur. For example, if the probability of a “failure” is 0.0001 per year, the probability for “success” (no failure) is 0.9999 per year; in other words, each year there is a 99.99% chance that no failure will occur.

Report Section Identification: Main Report, Executive Summary, Overall Risks to Salmon and Other Fish

Report Page Number: ES-15 (Bullet 5)

Comment: Specifying that sockeye are “particularly at risk to impacts from the road” understates the impacts to all fish that utilize streams that would be crossed by a potential road. Most of the east side Lake Iliamna drainages support spawning coho salmon and the Iliamna River supports five species of Pacific salmon. Further, many other important anadromous and resident fish are found in area streams that would be crossed by a potential road. While the assessment focus appears to be on sockeye salmon, impacts to other fish from a potential road could be significant.

Recommended Change: EPA needs to clarify that possible roadway effects would apply to all fish species present.

Report Section Identification: Vol 1 Executive summary

Report Page Number: Page ES-15 (Pg 37 of 339)

Comment: The third bullet says: “Water treatment and reduced passage through groundwater flow paths could increase summer water temperatures and decrease winter water temperatures, making streams less suitable for salmon, trout, and char.” The opposite could also occur, i.e. cooler dewatering ground water could reduce summer temperatures; it would also be warmer than surface waters in the winter so may increase winter river temperatures.

Report Section Identification: Vol 1 Executive summary

Report Page Number: Page ES-21 (Pg 43 of 339)

Comment: Says: “Pre-Tertiary waste rocks, which would be excavated to expose the ore body, are acid-forming with high copper concentrations in test leachates and would require 2,900 to 52,000-fold dilution to achieve water quality criteria.” These values need to be verified, see comment on page 5-49 through 5-55. For the biotic ligand model Pre-Tertiary waste rock leachates would require from 2,900- to 52,000-fold dilution. To meet State chronic water quality criterion the leachates would require from 280- to 580-fold dilution. The State has not conducted an evaluation as to whether the biotic ligand model is necessary to protect aquatic life nor has any state fully adopted this method for setting federally--required water quality standard statewide for copper. The biotic ligand model is particularly sensitive to low pH and low dissolved organic carbon values. Basing downstream risk solely on pre-Tertiary leachate does not consider the kinetics of acid generation and does not take into consideration the changes in pH and dissolved organic carbon that
occur with downstream mixing or scouring (i.e., during a catastrophic dam failure) in the creek and in the lake. These relationships are non-linear. The use of the biotic ligand model results may well overly exaggerate the calculation of needed dilution for copper.

Recommended Change: Verify accuracy of values based on comment for pages 5-49 through 5-55. This statement should identify the physical and chemical mechanism assumptions and should, at a minimum, reflect State of Alaska Water Quality Standards for copper. Reference to the biotic ligand model for copper should be disclosed along with its sensitivity to low pH and low dissolved organic carbon.

<table>
<thead>
<tr>
<th>Report Section Identification: Vol 1 Executive summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: Page ES-21 (Pg 43 of 339)</td>
</tr>
<tr>
<td>Comment: Says: “a potentially large mixing zone in the lake…” “Mixing zone” has a specific regulatory connotation that varies depending on whether it is permitted or unpermitted. As cited in the assessment on page 5-48, “Based on Alaskan Water Quality Standards (18 Alaska Administrative Code [AAC] 70), no mixing zones would be authorized for anadromous streams or spawning habitat for most game or subsistence fish species, so it is expected that effluents would be required to meet criteria (i.e., no exemptions would be granted).”</td>
</tr>
<tr>
<td>Recommended Change: To avoid having different readers reach different conclusions, suggest greater specificity as follows: “a potentially large, unpermitted mixing zone in the lake” or “a potentially large affected area mixing zone in the lake.”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification: Executive Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: Page ES-23, Fish-Mediated Risk to Indigenous Culture</td>
</tr>
<tr>
<td>Comment: The impacts to fisheries resources that consequently impact indigenous cultures, does not include assessment of secondary mine development and infrastructure (towns, roads, utilities, social-political impacts). These secondary mine development and infrastructure could have the potential to be as significant an impact on indigenous cultures as the mine-to-fish impacts on indigenous cultures.</td>
</tr>
<tr>
<td>Recommended Change: An expanded mine scenario should be included to include secondary mine development and infrastructure and associated impacts to understand the full scope of cumulative effects.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification: Executive Summary Fish-Mediated Risk to Wildlife</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: ES-23</td>
</tr>
<tr>
<td>Draft Comment: Aside from fish mediated risks to wildlife, it might also be pertinent to discuss other issues impacting wildlife including elimination or change in habitat due to avoidance or attractive nuisances of the mine.</td>
</tr>
<tr>
<td>Draft Recommended Change: Discuss elimination or change in wildlife habitat due to avoidance or attractive nuisances of the mine.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification: Executive Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: Page ES-26, Summaries of Uncertainties in the Assessment</td>
</tr>
</tbody>
</table>
Comment: A significant amount of uncertainty in the study is the lack of baseline data to perform the required studies.

Recommended Change: The study should outline data and study methods, available data and data needs required to fully understand the impacts of the single and multiple mine proposals in the Bristol Bay watershed(s).

Report Section Identification: Executive Summary, Summary of Uncertainties and Limitations in the Assessment
Report Page Number: ES-26, bullet 3, last sentence
Comment: Overly simplistic to believe that “Estimated effects of mining on habitat become the available surrogate for estimated effects on fish populations.” There are many examples showing fish habitat is not a good measure of fish abundance or population dynamics.
Recommended Change: Consider including ways to assess and/or gather insights into fish abundance and population dynamics that are less cumbersome than those stated in the report and better than habitat surrogate.

Report Section Identification: Volume 1 Chapter 1 Introduction
Report Page Number: 1-2
Comment: Given that it is reported in the assessment that revenues from the Pebble mine have been estimated at between $300 billion and $500 billion over the life of the mine, it is feasible to include additional economics regarding the impacts this type of development has already had in the region. The Alaska Mineral Industry Report includes the amount of money reportedly spent annually by the Pebble Limited Partnership (PLP) on the Pebble project for 2006–2010. (Information regarding the exploration began to be reported starting in the report for 2001, reporting for 2004 included the expenditures related to a contract awarded to an Alaskan company, and the 2005 report notes the amount spent on environmental studies and community outreach.)

The following information should be included in quantifying the ongoing financial, economic and other contributions made through the project in your economic assessment as you have done for the fishing industry. It should be noted that the money spent by PLP for 2009 and 2010 is not a 1:1 of what will be spent annually throughout the life of the mine. That detail has not been clarified in the economics presented for the fishery.

In 2010, “The Pebble copper–gold–molybdenum project remained the largest exploration project in Alaska. Northern Dynasty Minerals Ltd. reported that the Pebble Partnership spent $73 million on the Pebble project in 2010, with $21 million spent on engineering studies, $28 million on drilling, and $24 million on environmental and socioeconomic studies.” (Szumigala, 2011)

In 2009, “The Pebble copper–gold–molybdenum project remained the largest exploration project in Alaska, with an announced 2009 budget of $70 million. The budget, approximately 50 percent of the project’s 2008 budget, included $20 million for drilling, $14 million for environmental studies, and $36 million for engineering, cultural, community outreach, and other prefeasibility studies. Approximately $452 million has been spent on exploration at the Pebble project by Northern Dynasty Minerals Ltd., Anglo American Exploration (USA) Inc., and Pebble Limited Partnership
from 2000 through 2009.” (Szumigala, 2010)

Additionally, the Alaska Department of Labor and Workforce Development reported that nearly three-quarters of all wage and salary earnings from mining stay within the state due to Alaska residents making up about three quarters of all workers in the mining industry in their October 2010 issue of Alaska Economic Trends.

Draft Comment Reference:

<table>
<thead>
<tr>
<th>Report Section Identification</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number</td>
<td>1-2</td>
</tr>
<tr>
<td>Comment: Leaving out an economic cost/benefit analysis omits significant decision criteria.</td>
<td></td>
</tr>
<tr>
<td>Recommended Change: Conduct or take into account economic costs/benefits.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number</td>
<td>1-2</td>
</tr>
<tr>
<td>Comment: The page states that the revenues from the mine have been estimated to be between $300 billion to $500 billion over the life of the mine. This text should be included in the Executive Summary to provide contrast to the economics of the Bristol Bay watershed.</td>
<td></td>
</tr>
<tr>
<td>Recommended Change: Incorporate this text into the Economics section of the Executive Summary.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification</th>
<th>2.1 Introduction to Bristol Bay Region, Figure 2-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number</td>
<td>2-2</td>
</tr>
<tr>
<td>Comment: “Their” in figure caption should not be capitalized.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification</th>
<th>2.0 and Throughout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number</td>
<td>Multiple</td>
</tr>
<tr>
<td>Comment: No reference to, or consideration of, winter freezing or permafrost is provided in the risk assessment. Winter ice and permafrost both have potentially dramatic implications in seasonal groundwater flow, particularly shallow groundwater.</td>
<td></td>
</tr>
</tbody>
</table>
Recommended Change: Provide section of the report, or include in a new groundwater section, the potential/likely influence of winter freeze and/or permafrost on groundwater volume, flow, and stream recharge potential. Incorporate this information into estimations of stream recharge and groundwater flow into and through mining pit and Tailings Storage Facilities.

<table>
<thead>
<tr>
<th>Report Section Identification: 2.0, 4.0, and Executive Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: Multiple</td>
</tr>
<tr>
<td>Comment: The report is lacking information on regional hydrogeology, local hydrogeology, groundwater and surface water interaction. A mine of this size could greatly impact the water balance in the area. A more detailed understanding of the above area is needed.</td>
</tr>
<tr>
<td>Recommended Change: Provide a hydrogeological analysis on the watershed. The report should include regional and local geology and hydrogeology, and surface water and groundwater interaction as well. Provide cross-section, logs, lithologies, groundwater levels, and hydrographs of the aquifers. Provide estimation of hydraulic parameters for the aquifers.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification: 2.0 and 4.3.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: Multiple</td>
</tr>
<tr>
<td>Comment: High seasonal fluctuations exist in the mine area as shown in Figure 2-7, page 2-23. However, the seasonal effects were not adequately considered in the water balance estimation. Frozen conditions would have a major impact on flows in creeks and runoff. Peak seasonal precipitation and snow melt would also have a major impact on the water balance. Water balance estimated with averaged precipitation (as in Box 4-2, page 4-28) will not represent the seasonal field conditions.</td>
</tr>
<tr>
<td>Recommended Change: Provide temporal and seasonal fluctuation of rainfall, stream flow, and groundwater level. Evaluate the mining impact on water balance under long term average condition and high seasonal flow condition.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification: 2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: 2-1 through 2-26</td>
</tr>
<tr>
<td>Comment: While some description of the regional conditions is warranted, much of Chapter 2 is irrelevant to assessing impacts of a mine at the Pebble deposit.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification: Chapter 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: 2-1 through 2-26</td>
</tr>
<tr>
<td>Draft Comment: This chapter is lacking sufficient detail expectant of a discussion of current conditions, more appropriately referred to as background or baseline conditions. The area’s biodiversity instead is generalized in tables and figures. There is no discussion of current water quality for each of the 17 hydrogeologic areas nor any habitat mapping, biological survey information, and threatened or endangered information.</td>
</tr>
</tbody>
</table>
A more in-depth evaluation of wildlife is provided by U.S. Fish and Wildlife in Appendix C and should be referenced more prominently in this chapter.

Draft Recommended Change:
Include additional information describing current (baseline) conditions and reference Appendix C more prominently.

<table>
<thead>
<tr>
<th>Report Section Identification: Chapter 2.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: 2-1</td>
</tr>
<tr>
<td>Draft Comment:</td>
</tr>
<tr>
<td>In the context of risk assessment terminology, characterization of current condition is typically referred to as background or baseline conditions.</td>
</tr>
<tr>
<td>Draft Recommended Change: Change in chapter title</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification: 2.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: Page 2-2</td>
</tr>
<tr>
<td>Comment: This page shows that the Togiak, Naknek, Egegik and Ugashik watersheds are completely isolated from any of the mine drainages and could not be affected by the mine in any way yet nowhere in the text is this mentioned, especially when discussing the value of the fisheries, Native cultures, and direct impact to neighboring villages.</td>
</tr>
<tr>
<td>Recommended Change: The text in the executive Summary and in Chapter 2 should point out that these watersheds could not be affected by the mine and that they represent approximately xx% of the population of the Bristol Bay region and xx% of the economy.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification: 2.1 to 2.2.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: 2-2, 2-4, 2-5 and 2-12</td>
</tr>
<tr>
<td>Comment: The Figures on these pages exaggerate the area of the Pebble Deposit. The legend states that the area in red is the approximate area of the Pebble Deposit. A more accurate way to present this is the “Likely Maximum Disturbed Area of the Pebble Mine”. Using Figure 2-2 as an example of all of these figures. It could be argued that this scale is too small to accurately show the area, but perception of these figures is easily swayed and it is important as people form their opinions of the impacts. The maximum mine disturbance from the map of Page ES-17 is approximately 30.8 square miles, while the map of Figure 2-2 shows 116.4 square miles, based on the scale of the map.</td>
</tr>
<tr>
<td>Recommended Change: The figures above should be revised to show Likely Maximum Disturbed Area of the Pebble Mine, reflecting the smaller area. The actual area should be shown on each figure.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification: 2.1 Introduction to the Bristol Bay Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: 2-3</td>
</tr>
<tr>
<td>Comment: The document states that “the great majority obtain most of their food resources from subsistence, fishing, hunting, and gathering”. There are several studies that show this is not the</td>
</tr>
</tbody>
</table>

State of Alaska Comments Docket EPA-HQ-ORD-2012-0276 TECHNICAL COMMENTS
case. One report published by the International Journal of Circumpolar Health titled: The Dietary Intake of Alaska Native People, concluded 21% of calories, 46% of protein, and 3% of carbohydrates came from traditional Alaska Native foods. This study was limited to only two regions of rural Alaska but there are other studies that could be referenced that came to similar conclusions.

Recommended Change: The document should include scientific peer-reviewed facts for this statement.

Report Section Identification: Sections 2.2 and 6.6

Report Page Number: All pages within the identified sections

Comment: Sections 2.2 and 6.6 discuss Alaska Native Cultures and the Effects on Human Welfare and Alaska Native Cultures. According to the report "because the cultures are subsistence-based and reliant on salmon in particular, any negative impact on salmon quality and/or quantity resulting from failures or accidents should be assumed to cause a negative impact on human health and welfare, both directly from loss or change in food resources, and indirectly from disruption to an integral part of the culture." The report goes on to discuss how subsistence is important for Alaska Natives, especially salmon. According to the Alaska Department of Fish and Game Division of Subsistence update of subsistence economies in Alaska 2010, which is available to the public on the Department’s website, just over half of the harvest of wild foods in Bristol Bay is salmon. This important resource is used by the region’s diverse population (Alaska Natives and others). Although communities in Bristol Bay are dominantly Alaska Native, these communities do have a more complex demographic and all residents rely on wild resources, especially salmon. According to the U.S. Census in Dillingham, the region’s largest community, 68% of the population is Alaska Native.

Recommended Change: This report should take into account how subsistence, especially salmon, is important for all residents of the region. Many non-Alaska Native peoples in Bristol Bay have lived in the area for multiple generations.

Report Section Identification: Sections 2.2 and 6.6; Appendix D

Report Page Number: All pages within the identified sections

Comment: The watershed assessment report further says that “It is not possible to quantify the magnitude of subsistence resources that would be lost.” The ADF&G, Division of Subsistence has conducted extensive research in the Bristol Bay Watershed, and has conducted research specifically at quantifying the harvest of wild resources. Appendix D of this report does reference some of these reports including the Alaska Subsistence Salmon Fisheries 2005 Annual report (Fall, Caylor et al. 2007), An Overview of Subsistence Fisheries in the Bristol Bay Management Area (Fall, Krieg et al. 2009), the Kvichak Watershed Subsistence Salmon Fishery: An Ethnographic Study (Fall, Holen et al. 2010), and 2 of the 5 baseline studies that were conducted specifically for the Pebble Project (Fall, Holen et al. 2006; Krieg, Holen et al. 2009). Although the data from these studies were used in compiling Appendix D, staff at the Division of Subsistence were not consulted for this assessment; it appears as a result that the authors failed to consult several important recent publications including both technical papers and articles that are also necessary for understanding the complexity of subsistence and the intersection of subsistence and culture in the Bristol Bay region (Holen, Krieg et al. 2005; Krieg, Clythlook et al. 2005; Fall, Brown et al. 2009; Fall, Brown...
et al. 2009; Holen 2009; Holen 2009; Holen and Lemons 2010; Fall, Brown et al. 2011; Holen 2011; Holen 2011; Fall, Braem et al. 2012; Holen 2012). Consultation with Division of Subsistence staff would also have alerted the authors to a key source of local and traditional knowledge (LTK) about salmon in the Bristol Bay Area: From Neqa to Tepa, Łuq'a to Chuqilin: A Database with Traditional Knowledge about the Fish of Bristol Bay and the Northern Alaska Peninsula, which is available on CD from the division.

Recommended Change: Authors of these sections of the watershed assessment should consult with the ADF&G, Division of Subsistence to ensure an accurate and complete depiction of the complexity of subsistence and the intersection of subsistence and culture in the Bristol Bay region.

Report Section Identification: Table 2-2
Report Page Number: 2-7
Comment: The table title “...as a Percentage of Entire Watershed Area” is misleading, as the rows (which sum to 100 percent) are for sub-areas of the two watersheds (Nushagak and Kvichak).
Recommended Change: Recommend revising the table title.

Report Section Identification: 2.2
Report Page Number: 2-8
Comment: The Figure shows pictures of various rivers and lakes in the Bristol Bay region, many of which would not be affected by the mine in any way according to the maps provided throughout the Bristol Bay Watershed Assessment however, the actual stream sections that would be blocked or eliminated are not included.
Recommended Change: The figure above should be revised (or a new figure added) to show the actual stream sections that would be blocked or eliminated by the mine.
Report Page Number: 2-9
Comment: Only resident, non-anadromous Dolly Varden are considered in the assessment but there are significant anadromous Dolly Varden populations in the Kvichak and Nushagak watersheds.
Recommended Change: Consider incorporating anadromous Dolly Varden of the Kvichak and Nushagak watersheds in the assessment.

Report Section Identification: 2.2
Report Page Number: 2-10
Comment: The Table 2-3 on this page shows the surveyed stream lengths occupied by each major fish species. Nothing is mentioned about the lengths that would be blocked or eliminated by the two mine scenarios.
Recommended Change: The Table should be revised to include additional columns of the actual stream lengths occupied that would be affected by the two mine scenarios, and the % of the total.

Report Section Identification: 2.2.1 Pacific Salmon Populations
Report Page Number: Page 2-12, Figure 2-5 (and ES-3, Figure ES-1) The Nushagak and Kvichak Watersheds of Bristol Bay
Comment: The black dots represented as Native villages are not shown in legend.
Recommended Change: The figure should include in the legend the black dots representing the villages (Native communities).

Report Section Identification: 2.2.1 Pacific Salmon Populations
Report Page Number: Pages 2-13, Figure 2-6 - Average Annual Relative Fish Abundance
Comment: The figure 2-6b (and ES-4b) shows relative average annual fish abundance in the Bristol Bay Watershed. The figure does not show each of the six separate watersheds, and combines Nushagak, Kvichak, Naknek watersheds.
Recommended Change: Show each of the six Bristol Bay watersheds including the Togiak, (splitting out the Nushagak, Kvichak, Naknek), Egegik, and Ugashik Rivers. Also, highlight which watersheds (Nushagak, Kvichak) will be directly impacted by the mine scenario.

Report Section Identification: Sections 2.2.2 and 2.2.3
Report Page Number: 2-15 through 2-17
Draft Comment:
Consideration of threatened or endangered species is an important aspect of the ecological risk assessment, but yet they are not are not discussed in these sections.
Draft Recommended Change:
List known of suspected threatened species within the study area.
| Report Section Identification: 2.2.2 Resident Fish Populations, Table 2-5 |
| Report Page Number: 2-15 |
| **Comment:** Table 2-5 needs to be updated with the latest published information. The table characterizes sport catch and harvest from 2003-2007, but there are more recent published data that should be used (through 2010). |
| **Recommended Change:** Update Table 2-5 to most recent catch and harvest data per the reference below. |
| **Draft Comment Reference:** Updated data are available from Jennings, G. R., K. Sundet, and A.E. Bingham. 2011. Estimates of participation, catch, and harvest in Alaska sport fisheries during 2010. Alaska Department of Fish and Game, Fishery Data Series No. 11-60, Anchorage. |

| Report Section Identification: 2.2.3 Wildlife Populations |
| Report Page Number: 2-15 |
| **Comment:** Wildlife populations are described as generally “large.” ADF&G does not know what that is supposed to mean. Moose densities are often low, and caribou numbers are low compared to the 1990s. |
| **Recommended Change:** Describe what is meant by “large” |

| Report Section Identification: 2.2.3 Wildlife Populations |
| Report Page Number: 2-16 |
| **Comment:** The 2008 caribou estimate is listed as 30,000. It should be 30,000-40,000. |
| **Recommended Change:** Include the estimate range. |

| Report Section Identification: Section 2.2.3 |
| Report Page Number: 2-16 |
| **Draft Comment:** Text states that the Mulchatna caribou herd spends a considerable amount of time in other watersheds. Approximately how much does the Mulchatna caribou herd spend in the Nushagak and Kvichak River watersheds? |
| **Draft Recommended Change:** Specify how much time the Mulchatna caribou herd spends in the Nushagak and Kvichak River watersheds as compared to other watersheds in the Bristol Bay watershed. This information might be presented as a fractional use estimate. |

| Report Section Identification: 2.2.4 |
| Report Page Number: 2-17 |
| **Comment:** If the total estimated annual salmon ecosystem direct expenditures is $479.6 million that should be put in context with the value of the mineral resources in the same area. |
Comment: If Bristol Bay has 90,000 km of streams and Nushagak and Kivichak have 58,000 km of streams, those numbers should be compared with the km of streams that would be impacted by the mine to give perspective on the percentage of the area that could be impacted by mining. Table 5-3 in chapter 5 lists 61.4 km streams eliminated by footprint for minimum mine size, and 125.1 km for maximum mine size. 125.1/90,000 = 0.1 percent.

Report Section Identification: Main Report, Section 2.3.2, Groundwater Exchange and Flow Stability, 1st paragraph
Report Page Number: 2-21
Comment: While the statement “Densities of salmon-supporting streams tend to be lower in regions with lower permeability and less extensive exchange between groundwater and surface water” may be true, the references used (Johnson and Blanche 2011, ADFG, 2012) don’t support that assertion.
Recommended Change: EPA needs to use appropriate references to support the assertion.

Report Section Identification: 2.3.2 Groundwater Exchange and Flow Stability
Report Page Number: 2-21
Comment: The second part of the first sentence in the second paragraph is not supported in the document by any hydrogeologic data or information. As it stands, the reader must accept the premise that these glacial soils actually exist and have high permeabilities.
Recommended Change: The report should contain at least a minimal amount of hydrogeologic data to support this statement. These could include geologic and hydrogeologic cross-sections, and hydraulic conductivity results.

Report Section Identification: 2.3.2 Groundwater Exchange and Flow Stability
Report Page Number: 2-21
Comment: The use of the word “tight” in paragraph 2 of this section is potentially misleading, and is not technically used for describing the hydraulic connection between surface and ground waters. In hydrogeology, the word “tight” is more commonly used to describe the permeability (hydraulic conductivity) of a soil or rock. A “tight” soil would not normally result in a good hydraulic connection between a river and aquifer, which is the apparent intent of the sentence.
Recommended Change: Recommend replacing the word with an appropriate hydrogeologic descriptive term.

Report Section Identification: 2.3.2 Groundwater Exchange and Flow Stability
Report Page Number: 2-21; 2-23 (Figure 2-7)
Comment: The third paragraph discusses the relative stability of the Pebble area streams and baseflow, and Figure 2-7 charts data for several rivers and streams using gage data. The chart y-axes show “runoff in mm”. The relationship between this metric and groundwater contribution to
the river/stream is not adequately described, and the baseflow component (versus other sources) of the hydrographs is not defined. Also, "high baseflows" is a relative term that can only be put in context if compared to flows in other similar systems.

Recommended Change: Recommend revising the figures to more clearly illustrate the relationship between the gage data and the baseflow component. Also, some discussion of the time periods used and any statistical bias between data sets of different durations is warranted.

Report Section Identification: 2.3.5 Ecosystem Integrity
Report Page Number: 2-25

Comment: The document states "the primary human manipulation of the Bristol Bay ecosystem is the marine harvest of approximately 70% of salmon returning to spawn" This level of harvest of a salmon resource suggests there is substantial opportunity to mitigate minor or temporary impacts from other human activities. The document goes into lengthy details of a perceived impact from a hypothetical mine using numerous assumptions but ignores the current impact to the salmon resource from the excessive by-catch by the marine commercial fishing industry. The document fails to adequately address the already significant impact to the salmon resource by human activities and that the marine harvest could be manipulated to increase uses for subsistence users.

Recommended Change: The document could address the substantial opportunity to manage and mitigate minor or temporary losses in salmon resources by actively managing the marine harvest to increase the availability of the resources to subsistence users as is already being done to account for excessive by-catch and other impacts.

Report Section Identification: 2.4 Bristol Bay and Salmon Stocks at a Global Scale
Report Page Number: Page 2-25

Comment: Last paragraph states "The status of Pacific salmon throughout the United States highlights the value of the Bristol Bay watershed as a salmon sanctuary or refuge." Use of the term sanctuary or refuge infers a designated legally protected status of the watershed and bay.

Recommended Change: This comment likely warrants additional consideration, investigation, and reporting on legalities and/or financially feasible option for a conservation area or refuge for the region.

Report Section Identification: 3.3
Report Page Number: 3-2

Comment: The endpoints 2, 3, and 4 are essentially glossed over, while endpoint 1 is not well related or scaled to represent the likely site-specific impacts of the Pebble mine. The conclusions of this document is used to directly assess impacts of the mine without an in depth consideration and quantification of site-specific actions and impacts.

Report Section Identification: 3.0
Report Page Number: 3-2

Comment: Omitting mine worker housing and other related mine operation infrastructure is significant. This could be the biggest city in the entire Bristol Bay region with 2000 or more
Residents.

Recommended Change: Incorporate the development of a mine personnel living quarters should be considered into the risk assessment.

Report Section Identification: 3.0

Report Page Number: Entire section, including the conceptual model

Comment: This section does not serve the normal purpose of a typical problem formulation. The primary purpose of problem formulation is to focus the risk assessment. This lack of focus is exemplified by the conceptual models on pages 3-7 through 3-11 that seem to present every conceivable issue, rather than just what is to be the focus of the risk assessment.

Recommended Change: Problem formulation should start with a discussion of the array of issues, and then through site-specific knowledge provide logical winnowing of issues to those that are most important. It would be okay to put the existing conceptual models at the beginning of the section as the universe of issues. Then through problem formulation discuss what is important and will be addressed in the risk assessment. The conceptual models at the end of the section should then reflect the most important issues and aspects of each issue. This elimination of some issues is particularly important for the Bristol Bay Watershed Assessment, which actually glosses over many smaller issues to focus on those that are most significant. Yet the provided conceptual model is not representative what could or should be investigated.

Report Section Identification: 3.1 Type of Development and 7.4.5 Effects of Secondary Development

Report Page Number: Page 3-1; Page 3-8, Figure 3-2b; and Page 7-15

Comment: Report Section 3.1, mine type of development states **“Certain activities associated with mining, but not directly related to mine operations, are not considered in this assessment. These include support activities such as housing workers and disposing of their wastes, power generation and transmission, construction and operation of a deepwater port at Cook Inlet, and secondary development (i.e., development that is not part of the mine project, but for which the mine project provides the impetus or opportunity, such as rural recreation or residential and commercial growth resulting from improved access). Exclusion of an activity from this assessment does not imply that it would be benign or have no effect on the environment, and many of these activities could have significant repercussions for the Bristol Bay ecosystem. The assessment focuses on activities directly associated with mine development, operation, and maintenance, which are most likely to have significant effects on the region’s fish populations (Section 3.3).”**

Report Section 3.6, Conceptual Models (Figure 3-2b) shows secondary development, housing and construction activities.

Report Section 7.4.5 Effects of Secondary Development discusses the less significant effects of secondary development (on fish resources).

The report study approach focuses on impact potential to the regions fisheries, and inferring impacts to the Native and indigenous cultures. The approach likely understates or underestimates the social-political and Native community effects secondary development may have beyond the...
direct fish to cultural impacts on Native and indigenous cultures.

Recommended Change: In order to evaluate cumulative impacts, a detailed analysis and cumulative effects analysis of additional proposed mine claims, as well as secondary mine development for mine towns, energy, utilities, road/transportation, ports and ore transport route risks, will need to be addressed to understand watershed and fisheries impacts and indigenous culture impacts. Secondary mine development impacts, especially social-political and economic impacts on Native, and indigenous, subsistence living cultures could be significant. For example, while grants and loans can be obtained to support building local infrastructure projects, the economic health of the community to maintain the infrastructure is often the limiting factor in many Alaska Native and rural communities. An overall improvement in the local economy would allow for drinking water and sanitation projects that are currently uneconomic for local communities to maintain. Need to understand the entirety of long term mine development proposals and their cumulative effects.

Report Section Identification: 3.1 Type of Development

Report Page Number: Pages 3-1 and 3-2

Comment: The report states that the study focuses on mine operation activities only, as they pose the greatest potential for impacting salmon habitat. Multiple mines and secondary developments (including residential/commercial development, power, water/wastewater, roads, goods and services) likely have significant potential to impact both salmon habitat and Native indigenous cultures than is assumed in the report, especially in a near “pristine” watershed.

Recommended Change: Mine scenario should include evaluation of watershed development as a result of mine construction for all likely proposed mines to adequately address cumulative impacts to salmon fisheries and Native indigenous cultures.

Report Section Identification: 3.3 Endpoints

Report Page Number: Pages 3-4

Comment: This page states that the study limits the scope of the watershed assessment to the Nushagak and Kvichak River watersheds. This approach is acceptable in limiting the extents of the study, and then relating the impacts to the overall Bristol Bay Watershed. The report should refer to Bristol Bay watershed impacts, but not attempt to evaluate the baseline and impacts to the entire watershed.

Recommended Change: This discussion should be highlighted and brought forward in the introduction and executive summary. The sheer size/scale of the watershed cannot be fully studied. Therefore an expanded discussion of how a study would be performed by evaluating critical basins, namely focusing on the Nushagak and Kvichak River watersheds, and then relating the linkages and impacts to the larger Bristol Bay Watershed.

Report Section Identification: 3.5 Types of Evidence and Inference

Report Page Number: Page 3-5

Comment: The risk assessment approach using types of evidence and inference, conceptual modeling and characterization of risks by the lines (or multiple lines) of evidence is appropriate for generally understanding and scoping the watershed risk assessment. Higher risk (probability)
failure or impact effects will likely require additional studies and numerical modeling to refine and better understand and quantify project risks and uncertainties.

Recommended Change: The study should outline what additional data, studies and numerical models would be appropriate to evaluate higher risk mine elements (i.e. tailings facilities failures), that would be appropriate to support a comprehensive watershed assessment and risk analysis, and will prepare agencies and lay the groundwork for future mine permit studies.

<table>
<thead>
<tr>
<th>Report Section Identification</th>
<th>Main Report, Section 3.5, Types of Evidence and Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number</td>
<td>3-5</td>
</tr>
<tr>
<td>Comment</td>
<td>In the first paragraph, EPA suggests “potential mitigation measures” were considered. Aside from the efficacy of mitigation discussion in Appendix G, we found little evidence of mitigation measures being considered and incorporated into the assessment. Recommended Change: EPA needs to be clear how potential mitigation measures were considered in the watershed assessment.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification</th>
<th>3.6 Conceptual Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number</td>
<td>Page(s) 3-6 through 3-11, Figures 3-2A through 3-2E</td>
</tr>
<tr>
<td>Comment</td>
<td>The conceptual models attempt to evaluate the entirety of potential mine impacts on fisheries habitat by phase (mine development and operation, and then during closure). The models are complex and difficult to interpret, and they do not demonstrate the potential scales of risks (i.e. high probability and small impact area or high probability and large impact area) nor the spatial aspects of the risks, or scale of impacts, all of which are related to fish habitat impacts. Recommended Change: Recommend breaking out the conceptual models by major impact types as described in the No-Failure and Failure scenarios, and evaluating spatial distribution of impacts on fisheries habitat by showing the impacted stream habitat using GIS maps and spatial analyst techniques. Breaking these out will help understand the risks, and allow for overlaying the various risks and impacts in a spatial context. This type of presentation will allow for meaningful communication of the potential impacts to both a broad public audience, as well as a highly technical audience and reviewers.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification</th>
<th>Vol 1 Section 3.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number</td>
<td>Page 3-7</td>
</tr>
<tr>
<td>Comment</td>
<td>There should be a box for waste rock under the Underground Mining and Open Pit Mining boxes.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification</th>
<th>Figure 3-2A: Conceptual Model Illustrating Potential Habitat Effects Associated with Mine Construction and Operation; Figure 3-2B and 3-2C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number</td>
<td>3-7, 3-8, 3-9</td>
</tr>
<tr>
<td>Comment</td>
<td>Every possible impact is provided, but no relative judgment is provided as to what is most important, and to be assessed in the Bristol Bay Watershed Assessment. Authors are suggesting everything is just “bad” and it is all going to occur regardless of the degree of potential impact, frequency and possible mitigation methods.</td>
</tr>
</tbody>
</table>

State of Alaska Comments Docket EPA-HQ-ORD-2012-0276 TECHNICAL COMMENTS Page 27
Recommended Change: Provide more specific conceptual models that show how/why certain items are more important than others and are to be included for assessment in the Bristol Bay Watershed Assessment.

Report Section Identification: Vol 1 Section 3.6
Report Page Number: Page 3-9
Comment: There should be a box in the figure that depicts filling the pit with water and the lack of dewatering water to maintain river flows.

Report Section Identification: Vol 1 Section 3.6
Report Page Number: Page 3-10 (Pg 88 of 339)
Comment: Change “slurry transport” to “slurry and return water transport”

Report Section Identification: Vol 1 Section 3.6
Report Page Number: Page 3-10
Comment: Maybe add a box in figure for “waste rock” which could leach metals and change other parameters, becoming more acid generating than predicted.

Report Section Identification: Volume 1 Chapter 4 Mining Background and Scenario and 4.3.3 Mine Operations, and 4.3.9.1 Transportation Corridor Roads
Report Page Number: 4-1, 4-19 and 4-34, respectively
Comment: “Described mining practices and our mine scenario reflect the current practice for porphyry copper mining around the world, and represent current good, but not necessarily best, mining practices. “

“Based on standard mining practices, we assume that drill and blast methods would be used to excavate the rock, at a processing rate of approximately 200,000 metric tons/day for both the minimum and maximum mine sizes (Table 4-3).”

“Material sources for road embankment fill, road topping, and riprap would be available at regular intervals along the road route, and we assume standard practices for design, construction, and operation of the road infrastructure, including design of bridges and culverts for fish passage.”

Why are standard but not best practices assumed in the scenario? It is reasonable to assert that practices better than current best practices will be in place for any mine development in the region given the advances in technology and engineering that are likely between now and the date of construction and actual mining.

Report Section Identification: Chapter 4
Report Page Number: 4-1
Comment: EPA uses basic concepts of engineering features in general descriptions of a broad
assortment of technical issues related to tailings dams and mining. For example, tailings dams are described as being upstream, centerline, or downstream fill. Such elementary level descriptions defy technical review because of the lack of specific information. There are no conceptual designs, site investigation reports, engineering plans or specifications. EPA then describes impacts of such features in terms of their physical presence (e.g. footprint) and in terms of hypothetical, catastrophic failures. In fact, there is a probability that any engineering feature will fail, including buildings, bridges, jet engines, etc.; however, the simple probability of failure does not ensure its failure, and the benefits of those features provide incentive to take the risk that the failure does not occur because of mitigation measures engineered into the design. For example, Figure 5 in Silva, et al., 2008 shows tolerable risk based on annual probably of failure compared to people and dollars lost for various industrial features including mine pit slopes, dams, commercial aviation, and super tankers. This paper also includes an in-depth review of risk management at an actual operating mine with tailings dams.

<table>
<thead>
<tr>
<th>Report Section Identification: 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: p. 4-1</td>
</tr>
<tr>
<td>Comment: EPA states that the mine scenarios described in the Assessment reflect “current good, but not necessarily best, mining practices” for porphyry copper mining. Therefore, the assumptions made by the EPA based on “good practice” may not reflect the “best practices” that may be used by an actual mining company. This approach seems unfair and unrealistic considering the amount of scrutiny expected from the public and the regulatory agencies issuing permits and approvals for mines in Alaska.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification: Chapter 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number:</td>
</tr>
<tr>
<td>Comment: EPA mine scenarios consider minimum and maximum sized mines. In terms of mined ore/tailings disposal volumes those boundaries are 2 billion metric tons (tonnes) and 6.5 billion tonnes, respectively. At 2 billion tonnes, the minimum mine scenario would be considered a very large mine on a global scale, and exaggerates the respective potential impacts under normal operations and failure scenarios. There are probably less than 10 mines in the world with estimates of 2 billion tonnes or more of tailings. The Andina Mine in Chile is the only mine known to be studying the concept of storing 5.8 billion tonnes of tailings. There are currently no metal mines with tailings storage facilities of this magnitude.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification: Chapter 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: 4-1</td>
</tr>
<tr>
<td>Comment: EPA mentions the Pebble Limited Partnership (PLP) and states, “Although the Pebble deposit is used as an example of mining in the region, the assessment does not predict what the PLP may eventually propose.” In Section 4.3, EPA states “Although we borrow details from Ghaffari, et.al (2011), our mine scenario is not based on a specific mine permit application...” In Section 4.3.5, EPA mentions the 2006 water rights application to ADNR by Northern Dynasty, but that application, and the Initial Application Report submitted to ADNR Dam Safety and Construction</td>
</tr>
</tbody>
</table>

State of Alaska Comments Docket EPA-HQ-ORD-2012-0276 TECHNICAL COMMENTS
Unit which included the tailings dam concepts, are not included in Chapter 9, Cited References. The Tailings Storage Facility (TSF) 1 and other features in the EPA mine scenario are virtually identical to the conceptual location of Tailings Impoundment G and other features in the Northern Dynasty application. The dam illustrated in Figure 4-8 is based on Northern Dynasty’s concept for dams at Tailings Impoundment A. It is notable that the 2006 water rights application was submitted prior to the significant volume of baseline information released by the Pebble proponents in 2011. The Assessment relies heavily on concepts developed by Northern Dynasty who are party to the Pebble Limited Partnership but do not necessary represent PLP, the prospective Pebble proponent.

Report Section Identification: Chapter 4
Report Page Number:
Comment: It is difficult to make technical observations regarding the mine development model used in the Assessment because the basis of the model is comprised of a number of assumptions and not real data. While the proposed mine and scenarios that were assumed by the EPA may appear to be realistic in a sense, based on a given set of conditions, they by no means represent the only options and outcomes that could apply to a mine located in the Bristol Bay area, or any mine that is in the planning, development, operational or closure stages.

Report Section Identification: 4
Report Page Number: 4-2
Comment: Table 4-1 shows significantly lower grades of ore than that reported in the 2011 Report done for Dynasty Minerals by Wardrop. For example, copper % grade is reported as 0.34% in the Bristol Bay Watershed Assessment while the Waldrop states it is from 0.38% for the small mine and 0.46% for the full mine. This is significant since it relates to the economics of the project. Gold is also reported in the Bristol Bay Watershed Assessment as 0.31 grams per ton while the Waldrop report has it as 0.36 grams per ton.
Recommended Change: The potential range of grades for the deposit should be reported in this table.

Report Section Identification: Chapter 4.1.2
Report Page Number: 4-4
Comment: EPA states, “...there are limitations in our ability to make predictions with a high level of certainty because of the inherent complexity of natural materials and their environment.” EPA then goes on to compare the Pebble deposit to the Bingham Canyon deposit in Utah, and unilaterally make significant and substantial assumptions and predictions about physical settings, features and impacts of mining in the Bristol Bay region.
Report Section Identification: 4.1.2 Environmental Chemistry
Report Page Number: 4.4

Comment: It is inappropriate to start the Environmental Chemistry section with a statement that mining can pose a risk. This approach is repeated throughout the document, putting a conclusive statement in the introduction to a section, and then only discussing generally how the stated impact occurs. Because of this, the Bristol Bay Watershed Assessment seems to be trying to influence readers without any substantiation.

The limitations on the ability to quantify releases to the environment should be discussed in detail in the Uncertainty Assessment if not elsewhere.

Recommended Change: Change structure of sections with an introduction to the issues, present data that is available and that is not, conclude what can be surmised from the data, and describe what the data gaps exist and what can and can’t be concluded.

Report Section Identification: 4
Report Page Number: 4-4 through 4-7

Comment: Considerable narrative is presented on the hypothetical chemistry of the porphyry copper deposits, discussing how the acid generation potential (AP), the net neutralization potential (NP) and the neutralizing potential ratio (NPP) are calculated and what they mean. On page 4-5, it is stated that "In general, the rocks associated with porphyry copper deposits tend to straddle the boundary between being net acidic and net alkaline, as illustrated by Borden (2003) for the Bingham Canyon, Utah porphyry copper deposit (Figures 4-2 and 4-3). This is good information but the specific AP, NP and NPP of the Pebble Deposit are not discussed here. This is crucial information since it has bearing on potential environmental impacts during the mine and after the mine life in perpetuity. Good information on the humidity cell tests of the Tertiary and Pre-Tertiary waste rocks are included in Table 4 on page 15 of Appendix H. This information is more valuable than the extensive hypothetical discussion and should be incorporated into pages 4-4 through 4-7.

Recommended Change: Place the information from Appendix H (in summary form) on pages 4-4 through 4-7.

Report Section Identification: Chapter 4.2
Report Page Number: 4-5

Comment: EPA states that the Bristol Bay watershed encompasses 23,539 square miles, and loosely describes existing infrastructure in the region. EPA fails to compare the area of the mine scenarios as a percentage of the total area. Based on the surface areas for the minimum and maximum mine scenarios listed in Table 4-3 (and assuming the total transportation corridor is 0.25 kilometers wide), the areas of development are approximately 0.1% and 0.2% of the total area of the watershed, respectively. Note that the minimum mine size would be a very large mine on a global scale.

Report Section Identification: 4.3 Mine Scenario: No Failure
Report Page Number: 4-6; Table 4-4
Comment: To help place these data in context, the authors should add a column that shows the equivalent information for the hypothetical Pebble mine. Also, the table does not provide information on the local/regional geology or hydrogeology that would also help the comparison.

Report Section Identification: 4
Report Page Number: 4-8 through 4-11.

Comment: The following comment is an example of how possible mitigation methods could reduce the level of environmental concern and significantly alter the conclusions of impact if the mine plan used in the assessment had been vetted through the environmental and permitting review processes.

The referenced pages discuss the processing operation, but only in brief detail. The Northern Dynasty Minerals, Ltd. Report of 2011 was used to supplement this information. The accuracy of this report in representing PLP current plans is unknown, but this report does provide details and specifics that would be expected from a submitted mining project proposal. From pages 4-8 through 4-11 and pages 164 through 174 in the Northern Dynasty Minerals, Ltd. Report of 2011, a prospective plan is to grind the ore to 80% passing 200 μmeters and produce rougher tailings which are basically inert and are approximately 85% of the total ore feed. The remaining 15% goes to another grinding circuit where the material will be ground to 80% passing 30 μmeters. There will then be various recovery flotation units for copper, molybdenum, etc. Gold will also be recovered. Of the 15% that is reground, 14% will be pyritic tailings that will be over 50% to 80% pure pyrite. This material will be encapsulated in the TSFs to prevent (or retard) oxidation and thus the production of sulfuric acid and dissolution of metals.

As a potential mitigation measure, PLP should consider modifying the processing mill to get full recovery of the pyrite and place none of it in the TSFs. It is fully recognized that this major change would require a full evaluation but it is based on the following reasons: 1) Page 173 of the Northern Dynasty Minerals, Ltd. report shows that considerable gold is locked up in solid solution with the pyrite and additional grinding of the pyrite produces significantly better recoveries of gold; 2) the pyrite could potentially be oxidized by bio-leaching, roasting and other methods; 3) if the site produces nearly 1 billion tons of pyritic tailings over the life of the mine, a reasonable estimate of iron content of these tailings is 25%. This is 250 million tons of iron. When this project was first evaluated, iron’s value was $50 per ton. It is now $160 per ton and has no sign of easing, due to the growth in China and India. This value is $4 billion and although the cost of this recovery is expensive, this value would help offset it; 4) substantial savings in the design of liners in the TSFs could be realized since all of the material in the TSFs would be inert and there is no compelling reason to spend large sums in stopping seepage for water quality reasons; 5) large sums could also be saved in water treatment for decades and possibly centuries since treatment may not be needed of the seepage water. Pumping costs from seepage ponds could also be saved; 6) since the iron would be sold, the overall size of the TSFs could be reduced by approximately 10-12%, saving additional sums of money in dam construction; and 7) offering this change could help in easing permitting costs and addressing a major concern of water quality from the TSFs would be eliminated.

This is not to say that this must be done; it may not be economically possible in spite of the benefits cited above. However, it is certainly worth some evaluation and discussion. Included is a reference paper done by the University of Capetown in South Africa on “Mitigating the Generation of Acid
Mine Drainage from Copper Sulfide tailings impoundments in perpetuity: “A Case Study for an Integrated Management Strategy” by Hesketh, Broadhurst and Harrison in 2009. This study showed successful separation of nearly 100% of the pyrite from a copper porphyry tailing.

Recommended Change: Evaluate this item in more detail in conjunction with the Pebble Limited Partnership. Make changes to the document in many places.

Comment Reference: Northern Dynasty Minerals “Preliminary Assessment of the Pebble Project Southwest Alaska” issued on February 17, 2011, by Wardrop, a Tetra Tech Company, pages 164-174.

Report Section Identification: 4

Report Page Number: 4-9

Comment: The following comment is an example of how possible mitigation methods could reduce the level of environmental concern and significantly alter the conclusions of impact if the mine plan used in the assessment had been vetted through the environmental and permitting review processes.

The Simplified Schematic of Mined Material Processing does not separate the waste rock into PAG waste rock and NAG waste rock. This is important since the PAG waste rock can have impacts on the environment if not placed properly and if considerable acid formation occurs. The Northern Dynasty Minerals, Ltd. 2011 report states that the PAG waste rock will be piled on the west side of the pit and will be processed at the end of the mining operations and the tailings will be placed in the mine pit. If the price of copper drops, it may not be economically feasible to run this material through the mill at that time (it is low grade ore). This possibility must be addressed for long term post-closure, particularly with regard to water capture and treatment. If the material is strongly PAG, it should not be allowed to place this material in the mine pit since it will potentially affect groundwater in the area for a very long time if not treated. Also, full capture and treatment could be difficult in the long term. Table 4 of Appendix H shows that the Pebble East Pre-Tertiary waste rock humidity cell tests result is an average pH of 4.8.

Recommended Change: Revise the Schematic to include PAG and NAG waste rock. According to Northern Dynasty Minerals, Ltd., the 25 year plan would produce 2.4 billion tons of NAG and 0.6 billion tons of PAG. Include more discussion on possible impacts of leaving the PAG waste in permanent piles and in the mine pit, assuming that no future processing is undertaken.

Comment Reference: Northern Dynasty Minerals “Preliminary Assessment of the Pebble Project Southwest Alaska” issued on February 17, 2011, by Wardrop, a Tetra Tech Company, page 49.

Report Section Identification: Chapter 4.2.2

Report Page Number: 4-10

Comment: EPA points out that mill processes can affect tailings properties and reduce the acid-generating potential of tailings by producing pyrite concentrate. Cyanide processes for gold recovery are briefly described. Mitigation measures are discounted because of secondary handling requirements.
Report Section Identification: 4
Report Page Number: 4-11 and 4-12

Comment: The following comment is an example of how possible mitigation methods could reduce the level of environmental concern and significantly alter the conclusions of impact if the mine plan used in the assessment had been vetted through the environmental and permitting review processes.

The illustration and narrative on these pages is identical to the narrative in the Northern Dynasty Minerals, Ltd. report with regard to the type of dam construction (i.e., initial dam will be the downstream type which is the most stable, which will be approximately 50% of the total dam height). The upper 50% will be centerline construction. Given the magnitude of this dam and the potential for serious earthquakes, this design must be evaluated in minute detail for stability. The long term strength parameters of the tailings behind the dam must be evaluated since this could affect the stability of the upstream portion of the dam, in particular, the upper portion.

Recommended Change: Use a seasoned dam expert with experience in extremely cold conditions and high risk of earthquake to provide a full evaluation of the dam design with respect to slope stability.

Report Section Identification: 4
Report Page Number: 4-11 and 4-21

Comment: The following comment is an example of how possible mitigation methods could reduce the level of environmental concern and significantly alter the conclusions of impact if the mine plan used in the assessment had been vetted through the environmental and permitting review processes.

The narrative on Page 4-11 discusses some general dam design criteria and page 4-21 has a very brief discussion about the lining of the dam. The Northern Dynasty Minerals, Ltd. Report of 2011 has a detailed cross section in Figure 18.3.1 on Page 355. This design shows a 100 mil HPDE liner over a geosynthetic clay liner, surrounded by some fine material above and below to protect the liner. The Northern Dynasty Minerals, Ltd. report also states that the lack of fine material has required the use of these linings. In other words, the rest of the dam will be built out of waste rock from the mine that may be permeable. For most situations, this design would be perfectly suitable, however, given the possibility of earthquakes, the sheer volume of the tailings and the sensitivity of the fisheries downstream, the risk is very high and additional layers of protection on the dams should be evaluated, such as a secondary HDPE liner with a second GCL layer.

Recommended Change: Use a dam expert with experience in extremely cold conditions and high risk of earthquake to provide a full evaluation of the dam design and lining requirements.

<table>
<thead>
<tr>
<th>Report Section Identification:</th>
<th>Chapter 4.2.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number:</td>
<td>4-12</td>
</tr>
<tr>
<td>Comment:</td>
<td>EPA describes basic concepts of tailings dams as shown in Figure 4-5. This is an elementary level drawing with no technical merit.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification:</th>
<th>Chapter 4.2.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number:</td>
<td>4-11</td>
</tr>
<tr>
<td>Comment:</td>
<td>EPA states, “...geomembrane technology has not been available long enough to know their service life...” and generally discounts the potential mitigation value of the product. In fact, the advent of geomembranes began in 1839 when Charles Goodyear vulcanized natural rubber with sulfur which led to the development of thermostet polymers. Polyvinyl chloride resin production began in 1939 and mass production of polyethylene compounds began in 1943. The U.S. Bureau of Reclamation began using geomembranes in the 1960s. The geosynthetics industry broadly shifted to thermoplastic polymers in the 1980s. HDPE and other formulations of polyethylene are routinely approved by EPA and other international regulatory agencies for use in solid and hazardous waste landfills around the world (which have indefinite design lives, also). (Reference: Designing with Geosynthetics, 5th Edition. Koerner, 2005 ISBN-10: 0131454153)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification:</th>
<th>Chapter 4.2.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number:</td>
<td>4-11</td>
</tr>
<tr>
<td>Comment:</td>
<td>The EPA states, “…geomembranes are generally estimated by manufacturers to last 20 to 30 years when covered by tailings (North pers. comm.)[sic]". The statement appears to be referenced based on personal communication. While this may be the approximate service life of some geomembranes exposed to ultraviolet rays (sun), it is more typical of product warranties issued by manufacturers. The lifetime of buried geomembranes has been estimated as much as 400 years or more for a high density polyethylene (HDPE) by noted experts such as Robert M. Koerner.(see citation in comment above).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification:</th>
<th>Chapter 4.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number:</td>
<td>4-13</td>
</tr>
<tr>
<td>Comment:</td>
<td>The mine scenarios assessed by the EPA are representative of a very, large scale mining with a particular set of mine development elements that are not representative of a large percentage of porphyry copper deposit mines. For example, an open pit mine is selected while there are a number of large scale mines of such deposits that mine by bulk underground methods such as block caving, sub-level caving, vertical crater retreat and other underground methods. The volume of waste rock created by such underground mining methods is several orders of magnitude less than that assumed in the EPA mine scenarios.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification:</th>
<th>Chapter 4.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number:</td>
<td>4-13</td>
</tr>
</tbody>
</table>
| Comment: | The tailings disposal method by hydraulically placed, slurry tailings is one of a number
of methods that can be considered. While it is the most favored of the disposal methods for cost, there is an increasing tendency to adopt alternative methods such as paste and filtered, dry stacked tailings that effectively address water management issues and environmental protection. Paste tailings technology is being applied at large scale porphyry copper mines such as the Esperanza mine in Chile. These alternative tailings disposal methods permit greater freedom for the selection of disposal facilities and can be used to address specific environmental concerns. For example, with a smaller footprint, the need to build a cross valley dam can be eliminated, along with impacts to stream flow and salmon habitat. By selecting a tailings disposal method that requires the tailings storage facility in a location where the stream impact is maximized, the Assessment results in environmental impacts greater than can be achieved by alternative methods.

| Report Section Identification: Chapter 4.3 |
| Report Page Number: 4-16 |
| Comment: In Table 4-4, EPA lists other mines and prospects in Alaska using Levit and Chambers, 2012 as the source. Fort Knox and Red Dog are the largest operating mines listed with tailings volumes of 200 and 100 million tonnes, respectively. The Donlin prospect is also included at 472 million tonnes. No mines outside of Alaska are listed. The basis for the ore volumes is not mentioned. |

| Report Section Identification: Chapter 4.3.2 |
| Report Page Number: 4-17 |
| Comment: EPA mentions two other mines outside of Alaska: “the largest porphyry copper mine in the United States (based on 2008 data) is the Safford Mine in Arizona, at 7.3 billion metric tons of ore [and] the largest in the world (based on 2008 data) is the Chuquicamata Mine in Chile, at 21.3 billion metric tons of ore.” However, the source of the data is not clear. The 2011 annual report for Freeport-McMoRan Copper & Gold Inc. lists 206 million metric tons of ore at the Safford Mine. The basis for the discrepancy is not clear. EPA lists the potential mined ore at Pebble at 11 billion metric tons but fails to indicate the terms of these estimates (e.g. measured, indicated and inferred; proven and probable, etc.). |

| Report Section Identification: 4.3.1 Mine Location |
| Report Page Number: 4-17 |
| Comment: While many of the hypothetical mine features may be transferable to other part of the region, the geologic and hydrogeologic conditions at the Pebble site area are likely to be unique. For example, the flow and seepage of groundwater into an 800 meter deep pit would very likely differ between site locations within the region due to different surficial soils and bedrock/aquifer permeability and connection with surface water bodies. This is a significant issue for the mine design. |
| Recommended Change: Recommend revising this paragraph/sentence to acknowledge that the geologic and hydrogeologic conditions are not as readily transferable as other features. |

| Report Section Identification: 4.3 Mine Failure Scenario |
Report Page Number: Page 4-17

Comment: The No Failure impact and effects scenario is likely overly conservative. Full containment and failure-free mining are not likely mine scenarios. Also, combining cumulative risks from the Failure scenario is not likely either. The risk analysis method used in the assessment describes the conceptual model framework identifying an envelope of potential risks, but does not quantify the risks to any degree of certainty. The risk assessment should seek to evaluate risks (and quantify where feasible) and identify the mostly likely mine development and failure scenarios to understand likely impacts, while stating the range of knowable risks.

Recommended Change: Risk should be quantified, and estimated, where feasible (i.e. mine site footprint impacts, hydrologic impacts, dam failure) on elements of the study where this is feasible, and for items where calculation of risks and effects are unfeasible, scale of risk should be assigned (i.e. high probability and small area or low impact). A probabilistic risk based analysis of a likely mine operation and failure scenario would reduce uncertainties leading to underestimates and overestimates of stated risks and impacts.

Report Section Identification: 4.3 Mine Scenario, No Failure
Report Page Number: Page 4-17

Comment: The report in the first paragraph on this page states “Our mine scenario represents current good, but not necessarily best, mining practices”. This is stated differently in the Executive Summary Pages ES-14 where the report states “No failure, or routine operation, is a mode of operation defined as using the highest design standards and day-to-day practices, with all equipment and management systems operated in accordance with applicable specifications and requirements practices.

Recommended Change: Reconcile the statements.

Report Section Identification: 4.3.2 Mine Size
Report Page Number: Pages 4-17 and 4-19

Comment: On page 4-17, the report states that “If fully mined, the Pebble deposit may exceed 11 billion metric tons of ore...” On page 4-19, the report states that “In our mine scenario, we have defined a minimum and a maximum mine size of 2 billion metric tons and 6.5 billion metric tons of ore, respectively.”

Recommended Change: Include justification for why the 6.5 billion metric tons of ore scenario is the “most likely” mine size versus the estimated maximum potential of 11 billion metric tons of ore.

Report Section Identification: 2.3.2 Groundwater Exchange and Flow Stability
Report Page Number: 4-20; Figure 4-7

Comment: Whereas the maximum mine size figure appears to show a dam for the TSF1, there is no indication of the dam location for TSF2 or TSF3.

Recommended Change: Recommend adding the dams to this figure.
Report Section Identification: Chapter 4.3.5
Report Page Number: 4-21
Comment: The dam size, location and retaining volume are estimated and described, but there is no discussion as to how the quantities were estimated.

Report Section Identification: 4.3.5 Tailings Storage Facilities
Report Page Number: 4-21
Comment: In the first sentence in the first paragraph, the report discusses a 2006 water right application submitted by Northern Dynasty Mine. These quantities should be compared to the volumes/rates discussed later in the water balance part of Section 4.

Report Section Identification: 4
Report Page Number: 4-21
Comment: The following comment is an example of how possible mitigation methods could reduce the level of environmental concern and significantly alter the conclusions of impact if the mine plan used in the assessment had been vetted through the environmental and permitting review processes.

The narrative is identical to the narrative in the Northern Dynasty Minerals, Ltd report with regard to the percent of pyritic tailings versus bulk tailings. The Northern Dynasty Minerals, Ltd. report defines these tailings as inert or non-acid producing. They are the rougher tails from the first flotation circuit. The Bristol Bay Watershed Assessment says that the pyritic tailings would be discharged below the water surface of the tailings pond and encapsulated in NAG tailings to retard the rate of pyrite oxidation. Given the fact that nearly 1 billion tons of pyritic tailings would be produced for the full mine, it is important to evaluate in greater detail the potential for this material to oxidize. Variables that are not immediately clear are a) what will be the percolation rate of water through the tails?; b) there is approximately 65 feet of gravel in many areas of the TSFs and they will not be lined. What will be done to prevent seepage in these gravels?; c) how will the TSF dams be constructed to greatly reduce seepage under the dam?; d) how will rainwater and snowmelt (which is relatively high in dissolved oxygen), affect the oxidation rate?; and e) how will normal seepage through the dam affect water movement and hence oxidation, through the pyritic tails?
Recommended Change: Get more detailed information on this topic and include it in Section 4.3.5 of the Bristol Bay Watershed Assessment.

Report Section Identification: Chapter 4.3.5
Report Page Number: 4-22
Comment: In Figure 4-8, EPA includes other landmarks such as the Washington Monument and the Transamerica Building in comparison to the conceptual height of the tailings dam. Such comparisons have no technical value.

Report Section Identification: Chapter 4.3.6
Report Page Number: 4-23
Comment: In Section 4.3.6, waste rock disposal areas are described without a specific description of the basis for the estimated size or footprint, apart from stating “these piles will be constructed with a geometry designed to reduce the amount of runoff requiring treatment.”

Report Section Identification: 4.3.5 Tailings Storage Facilities

Report Page Number: 4-23

Comment: The second paragraph discusses a well field to monitor groundwater flowing down the valley. However, no specific details are provided for these wells.

Recommended Change: Recommend including estimates of the number of wells that might be needed to monitor groundwater quality and intercept seepage, well depths, spacings, diameters, construction materials and possible drilling challenges based on the local hydrogeology. Also recommend discussing the well maintenance program options that would ensure the wells are kept operational.

Report Section Identification: 4.3.6 Waste Rock

Report Page Number: 4-25; Figure 4-9

Comment: This schematic figure gives a misleading sense of the depth of the open pit relative to the groundwater conditions (as they appear to be understood). Although this figure is not to scale, if the intended pit depth is 800 meters, the base of the pit should be far deeper than shown. Also, one would expect a local groundwater mound to develop beneath the Waste Rock area in the lower figure (Post-Closure), with groundwater moving towards the pit and the stream.

Recommended Change: Revise the figure to better reflect the pit depth and groundwater flow pattern.

Report Section Identification: 4.3.6 Waste Rock

Report Page Number: Page 4-25, Figure 4-9

Comment: The figure shows a simplified schematic of the dewatering and water management system at the mine. What are the potential groundwater seepage and contaminant pathways? Pathways that come to mind are the shallow groundwater seepage through the bottom (unlined) portions of the TSF and fracture zones in the weathered bedrock layers.

Recommended Change: Recommend adding geology and soils information regarding the glacial deposits, with underlying weathered and competent bed-rock to the figure and discussion. Identify potential contaminant pathways on the schematic which should be consistent with the conceptual modeling schematics in Section 3.

Report Section Identification: Section 4.3.7

Report Page Number: 4-26

Comment: The river diversion plan assumes that the blocked creeks/rivers will eventually find a way to flow around the mine site and TSF, however, it might not be the case in many areas, particularly during the high flow season (either caused by heavy rainfall and snow melt). During the high flow season, surface water runoff might cause flooding, top the TSF, and/or move the potential contaminants into downstream water bodies if PAG waste rock is encountered.
Recommended Change: Provide more detailed info on the river diversion plan, including the topographic information for the areas where the streams will be blocked by the mine pit or waste rock piles. Provide high seasonal flow information in the affected area and its impact on the mine site and safety of the TSF dam.

Report Section Identification: 4.3.7 Water Management
Report Page Number: 4-26
Comment: The document points out impacts that would “reduce or eliminate stream flows”. While these statements may be correctly applied to the local streams near the potential mine site, the impact to the larger stream systems is negligible, especially to the Bristol Bay Watershed. The document fails to put this in proper perspective.
Recommended Change: The document should demonstrate the potential impact to a larger stream system and overall potential impact to the Bristol Bay Watershed.

Report Section Identification: 4.3.7 Water Management
Report Page Number: 4-27; Box 4-2
Comment: The report notes that a range of hydraulic conductivities have been measured in the area. However, the seepage calculation assumes a single value for each of the upper 200 meters and deeper materials. This range is not provided to enable the reader to put the selected values into context. Also, the selection of a relatively low hydraulic conductivity (10^{-7} m/s) for the deeper materials should be discussed in terms of primary or secondary porosity, and the likelihood that a mine of such dimensions would encounter water-bearing fracture zones and what the inflow contribution might be.
Recommended Change: Revise the seepage calculations and discussions to include a range of hydraulic conductivity values and the potential for water-bearing fracture flow contributions.

Report Section Identification: 4
Report Page Number: 4-27
Comment: This page states that the mining operation would always consume some water and there would always be less water available in streams during active mining than there was before the mine was present. This contradicts Section 5.3.1 which states that “During the start-up phase, all water from the site would be collected and used in operations. However, during the minimum and maximum mine operations, 5 million to 48 million cubic meters of water available on the site per annum would exceed operational needs, and treated water would be discharged. (Section 4.3.7)”. This contradiction is important to rectify since it has implications to the health of the streams and fisheries below the mine.
Recommended Change: Evaluate this item in detail and provide narrative on it. Make any changes to the water balance.

Report Section Identification: 4.3.7 Waste Management
Report Page Number: 4-27
Comment: The report assumes that the mine would be located on a water divide; therefore, there
will be little groundwater contribution into the area defined by the cone of depression. This assumption is not well supported due to two reasons:

1. The surface water divide does not necessarily match the groundwater divide. Regional groundwater flow is not presented in the report to determine the location of groundwater divide.

2. Dewatering and mining activities in the mine site will change the local, and possibly the regional, groundwater flow field, which will change the water balance.

Recommended Change: Provide regional hydrogeological information such as cross-sections, logs, lithologies, groundwater levels, and groundwater contour maps.

Report Section Identification: 4.3.7 Water Management

Report Page Number: Page(s) 4-27 and 4-28

Comment: The water budget section of the report indicates how the estimation of water budgets was conducted by stating "Developing a water balance for these stages is important to the assessment, because it determines the amount of water available at the site that could still contribute to downstream flows (Box 4-2). However, water balance development is challenging and requires a number of assumptions. It depends upon the amount of water needed to support mining operations, the amount of water delivered to the site via precipitation, the amount of water lost due to evapotranspiration, and the net balance of water to and from groundwater sources. Information exists to estimate precipitation and evapotranspiration, and estimates of water needed for mining operations are available based on typical mining practices (Ghaffari et al. 2011). More challenging, and potentially the largest source of uncertainty, is determining the net balance of water from groundwater sources.". The water budget estimating methods described in Box 4-2 do not specify the type of calculation or model used to evaluate the water budget. It is assumed that a deterministic, spreadsheet, model was used to grossly estimate the mine water budgets for the various mine development and closure phases.

Recommended Change: Provide an expanded discussion of the type of water budget model used, assumptions made, data sources, uncertainties and limitations in modeling estimates. The use and application of a more robust modeling system that can integrate surface and groundwater hydrology and mining industrial water operations is needed to more accurately represent water management and water budget conditions.

Report Section Identification: 4

Report Page Number: 4-28

Comment: This page describes the water balance calculations expected for the mine. The mine inflow assumptions seem reasonable and are calculated to be 1.06 cubic meters per second for the maximum mine. However, this number has such an important bearing on the overall water balance that it must be checked in detail. If the number is actually much lower, then the mine may not discharge during the mine life, since considerable water will be consumed in the tailings deposition. This could affect fish habitat for some distance downstream. If it is much higher, the flows in the streams could be increased downstream of the mine, resulting in increased erosion of the banks for some distance downstream.

Recommended Change: Use a seasoned groundwater expert with experience in evaluating mine
inflows from large pits to provide a full evaluation of the mine inflow predictions. Make any changes to the water balance, if necessary.

Report Section Identification: Box 4-2
Report Page Number: 4-28
Comment: The report assumes that groundwater is limited to the top 100 meters, only. Is there any evidence that a deeper aquifer does not exist at the mine site? As stated in Table 4-3, page 4-15, the mine pit will extend to 800 meters and 1,200 meters for the minimum and maximum mine, respectively. The potential to encounter a deeper aquifer under the mine will change the water balance significantly due to potential for a large amount of water from fracture flows in the deeper portion of the mine pit.
Recommended Change: A detailed hydrogeological description in the mining area is needed to determine if a deeper aquifer(s) exists to a depth of 1,200 meters.

Report Section Identification: Chapter 4.3.7
Report Page Number: 4-28
Comment: Box 4-2. Water Balance Calculations: The fundamental definition of a water balance is not adhered to in the discussion, thus making the results of the analysis worthless. Although the authors purportedly seem to be able to design AND comment on the negative effects of a yet to be designed and permitted facility, the water balance cannot be finalized until an understanding of water use within the facility itself is complete. The hypothetical inflows and outflows of a speculative design do not in itself, constitute a water balance.

Report Section Identification: 4.3.7 Water Management
Report Page Number: 4-30; Table 4-5
Comment: The geographical basis for the water balance provided in Table 4-5 excludes the area outside the immediate vicinity of the mine site. Typically, project-area water balances take into account flows for individual surface water bodies, water-bearing units/aquifers, and areal variability of precipitation and runoff components. In short, this water balance appears to lack acknowledgement of the key natural systems at and near the mine site. Also, water balances consider seasonality aspects (for example, monthly) and the effect of wetter- and drier-than-average years.
Recommended Change: The water balance should be fully reconsidered taking into account the comments above, and represented in a concise way with supporting figures, charts and tables.

Report Section Identification: Table 4-5
Report Page Number: 4-30
Comment: Table 4-5 indicates that water captured at the mine site is the same for the maximum mine condition and for the Post-Closure condition (both 41.2E6 cubic meter/year). The amount of water captured should not be the same under these two conditions due to the change in groundwater/surface water interaction. As mining progresses, the mine pit has the potential to intersect more groundwater from fracture flow. After the mine is closed, as the water level
increases in the mine pit, less groundwater could flow into the mine.

Recommended Change: Provide explanation for the same amount of water being captured for the maximum mine and post-closure conditions.

Report Section Identification: Table 4-5
Report Page Number: 4-30
Comment: Table 4-5 indicates that the “stored in TSFs as pore water” for the Start-up condition is 25.5E6 m³/year. The amount of the water as shown in the table indicates the same amount of water “stored in TSFs as pore water” for each year for minimum mine operation period. There should be a minimum amount of material in TSFs, if any, during the Start-Up phase.

Report Section Identification: 4
Report Page Number: 4-30
Comment: This page summarizes the water balance calculations expected for the mine. Although the water that will be captured by blocked streams is not actually part of the mine, it is an important part of the water balance and therefore, should be addressed. It is understood that diversions will be placed in the blocked drainages to divert what amount is feasible downstream through diversions, but there is no discussion of what blocked stream segment water will be backed up against the embankments that cannot be conveyed through diversions due to elevation. Pass through pipes underneath the TSFs will probably not work in perpetuity.

Recommended Change: Evaluate this item in detail and provide narrative on it. Make any changes to the water balance, if necessary.

Report Section Identification: 4
Report Page Number: 4-30
Comment: Using retention of 30% water by weight, calculations of the amount of pore water that will remain in the tailings each year after settlement and recapture of clean water using the floating barge in the TSFs can be estimated. The amount of 26.5 million cubic meters per year shown in the Table is reasonable. The post-closure column also correctly shows that no new water will be stored in the TSFs as pore water. What is not mentioned is that approximately 735 million cubic meters of permanent water will remain in the tailings as pore water over the life of the mine that will not be recaptured by the floating barge. This water would primarily come from precipitation and water inflow from the mine pit. This may be acceptable over 78 years time, but it is an extremely large amount of water that will essentially be taken from groundwater (in the mine pit) and placed in the TSFs. This should be discussed in the water balance. A more detailed evaluation of the water balance is needed.

Recommended Change: Describe the consumptive use of the pore water in the tailings over the life of the mine and its possible effects downstream on the groundwater and surface water systems.
Comment: Much of what the Pebble Limited Partnership can do for environmental protection is based on the economics for the mine. This is not discussed in the Bristol Bay Watershed Assessment. It would be helpful to know the long term economics of the mine, which are described in detail in the Northern Dynasty Minerals, Ltd. Report of 2011, and whether they are based on conservative metal prices. The following list shows prices used in the economics calculated for the Northern Dynasty Minerals, Ltd. Report of 2011 compared to current prices.

Copper $2.50/lb Current $3.33/lb
Gold $1050/ounce Current $1610/ounce
Molybdenum $13.50/lb Current $14.90/lb
Silver $15.00/ounce Current $28.00/ounce
Rhenium $3000/lb Current $2900/lb
Palladium $490/ounce Current $618/ounce

Recommended Change: None

Comment Reference: Northern Dynasty Minerals “Preliminary Assessment of the Pebble Project Southwest Alaska” issued on February 17, 2011, by Wardrop, a Tetra Tech Company, pages 12

Report Section Identification: 4.3.8 Post Closure Site Management
Report Page Number: 4-31

Comment: The document states an assumption that the mine would close “when all currently identified economically profitable ore is removed”. PLP has not demonstrated that there is any “economically profitable ore” at this time. Final feasibility studies, mine plans and numerous other studies would have to be complete before PLP could report a reserve or “profitable ore”.

Recommended Change: Drop “currently identified” from the text

Report Section Identification: 4.3.8.3 Waste Rock
Report Page Number: 4-32

Comment: The document uses an assumption that a stable angle for waste rock slopes would be less than 15%. There is no basis for this and our experience has shown that most reclaimed waste rock dumps are stable at 33% and depending on the material, may be stable at steeper slopes. A steeper slope could reduce the overall footprint.

Recommended Change: Eliminate the 15% reference.

Report Section Identification: 4.3.8.5 Premature Closure
Report Page Number: Page(s) 4-33

Comment: Premature mine closure is discussed. There are two sentences that need additional discussion. First “In one study of international mine closures between 1981 and 2009, 75% of the mines considered were closed before the mine plan was fully implemented (Laurence 2011).” Second, later in the section states “Because premature closure is an unanticipated event, water treatment systems would likely be insufficient to treat the excessive and persistent volume of low pH water containing high metal concentrations.” If the premise of a high rate of premature closure
is true as presented in the assessment, it would be reasonable for the authors to assume premature closure as a likely scenario and the study should include this consideration in the No-Fail scenario or likely scenario analyses.

Recommended Change: Include an expanded discussion of premature closure, the uncertainty, and the potential impacts on fisheries and indigenous cultures as this condition is likely to occur.

<table>
<thead>
<tr>
<th>Report Section Identification: 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: 4-33 and 4-39</td>
</tr>
</tbody>
</table>
| **Comment:** Page 4-33 states that the water from the leachate collection systems would be treated until necessary. Page 4-39 discusses water collection and treatment failure but focuses on a prediction of seepage flows through the TSFs, which would be untreated. This section goes on to state that if a treatment failure occurs, the expected discharge rate is 0.00115 m³/sec. This is not a large flow and it is probably not the biggest risk with this type of failure. If a large treatment plant is in place, it may be possible that a large surge of untreated water would be discharged and this is not addressed in detail. The extreme weather conditions of this site combined with the fact that water treatment would go on for a very long time after closure, point to a significant possibility of “incidents” with the water treatment system which could produce much larger quantities than the expected seepage, albeit for a short time. Nevertheless, a surge like this could have a significant impact downstream. The treatment plant designs must have significant backup systems and safety factors to account for these possibilities.

Recommended Change: Describe the potential impacts of temporary failures of the water treatment system and the effects of possible surges of poor quality water on the downstream fish habitat.

Comment Reference:

<table>
<thead>
<tr>
<th>Report Section Identification: 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: 4-35 and Appendix G.</td>
</tr>
</tbody>
</table>
| **Comment:** These pages show the road and pipeline corridor on maps. The maps fail to point out that a portion of the road is already built, which is from Williamsport to Pile Bay, as shown on Figure 18.2.5 of the Northern Dynasty Minerals, Ltd. Report of 2011. Another smaller section near Pedro Bay is also in place.

Recommended Change: Revise these pages and maps to show those sections of road that are already built and describe the widths and stream crossings that are in place and may need upgrading.

<table>
<thead>
<tr>
<th>Report Section Identification: 4.4.1 Water Collection and Treatment Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: 4-39</td>
</tr>
</tbody>
</table>
| **Comment:** In the first paragraph, the report discusses failure of the collection and treatment facility, and assumes a hydraulic conductivity for the permeable substrate for the upper 30 meters by using a value from the Pebble Limited Partnership’s 2011 report. This value is two orders of
magnitude lower than the value used in the mine pit seepage calculation (Box 4-2) despite representing a shallower layer of material that one would expect to have a similar (or even higher) hydraulic conductivity.

Recommended Change: The report should provide some clarification regarding the selected parameter value, and even consider providing flows based on a range of values given the apparent uncertainty regarding the actual site location and specific hydrogeologic conditions.

Report Section Identification: Chapter 4.4.2
Report Page Number: 4-39
Comment: EPA states, “A tailings dam failures occurs when a tailings dam loses its structural integrity and releases tailings material from the impoundment. The released tailings flow under the force of gravity as a fast-moving flood containing a dense mixture of solids and liquids, often with catastrophic results.” EPA lists examples of such catastrophic failures in Box 4-4. EPA then describes failure mechanisms such as overtopping and slope instability and then discusses failure statistics. However, EPA fails to point out that the failure statistics as presented do not distinguish catastrophic failures from relatively inconsequential incidents, thus implying that the failure probabilities are applicable to the uncontrolled release of tailings or otherwise catastrophic failures.

Report Section Identification: Chapter 4.4.2
Report Page Number: 4-40
Comment: EPA implies that because the tailings dam heights used in the mine scenario are very large, the impacts of a failure would be much greater than the historical failure record from much smaller dam failures. Box 4-4 lists four examples of tailings dam failures, including the 2008 flyash pond failure at the Kingston Power Plant in Tennessee. All of the dams described are less than 30 meters high, and all have questionable design and operational histories. EPA fails to acknowledge that tailings dam failure statistics are biased by the failure incidents of such small dams, because there have been no catastrophic failure of large dams approaching the scale of the mine scenarios used in the Assessment.

Report Section Identification: Chapter 4.4.2.1
Report Page Number: 4-40
Comment: EPA describes causes of tailings dams failure such as overtopping, slope instability, earthquakes and foundation failures. However, such failures are highly dependent on a number of site and project specific factors such as available construction materials, foundation type, (bedrock vs. depositional soil) and hydrology and hydraulics design.

Report Section Identification: Chapter 4.4.2.1
Report Page Number: 4-44
Comment: The Assessment indicates that overtopping is one of the leading causes of inactive tailings dam failures. However, this data is biased because the sample population includes a number of failures of dams with inadequate spillway designs. Any large or very large tailings dam in Alaska must be designed to accommodate the Probable Maximum Flood (PMF) during
operations, and safely pass the PMF through a properly designed spillway in closure. Note that the PMF is a misnomer, in that there is no specific probability associated with the event since it represents the result of the most severe meteorological and hydrologic event that is reasonably possible at a given site. The argument that a large or very large tailings dam built in Alaska would be particularly susceptible to failure due to overtopping based on historical evidence of international tailings dam failure incidents is systematically flawed.

Report Section Identification: Chapter 4.4.2.1
Report Page Number: 4-44
Comment: In Table 4-7, EPA lists examples of earthquakes in Alaska ranging from a magnitude 3.0, located 122 km from the project, to the Great Alaska Earthquake of 1964, a magnitude 9.2 located 469 km from the project. The nearest earthquake listed is a magnitude 4.3, located 30 km from the project. A note on the table states, "...earthquakes in the range of magnitudes 2.5 to 3.6 occur regularly in the Lake Clark area...". The earthquakes listed by EPA in relation to the Pebble deposit are technically insignificant. National guidelines for incident reporting for dams do not require reporting for earthquakes less than 5.0 within 24 km of the project site, or for earthquakes greater than 8.5 more than 102 km from the site.
Comment Reference: Section 9 of "Guidelines for Reporting the Performance of Dams", National Performance of Dams Program, Stanford University, 1994.

Report Section Identification: Chapter 4.4.2.2
Report Page Number: 4-45
Comment: EPA references Chambers and Higman (2011) for tailings dam failure statistics. Reviewers question the use of this reference as it is a literature summary drawing conclusions that do not appear to have been peer reviewed and is written by a non-profit advocacy organization. See:

Report Section Identification: Chapter 4.4.2.2
Report Page Number: 4-45
Comment: EPA states, "Low failure frequencies and incomplete datasets also make any meaningful correlations between the probability of failure and dam height or other characteristics questionable. Very few existing rockfill dams approach the size of the structures in our mine scenario, and none of these large dams have failed." Nevertheless, EPA continues in their conjecture to presume that the tailings dam fail during both the operation and post-closure phases of the mine.
Comment: The EPA presents statistics on dam failures and gives an upper bound of one failure per approximately 2,000 mine years. However, the EPA fails to describe whether the respective failures had any adverse impact on the environment. For example, a slope stability type dam failure may be reported, but not necessarily have resulted in any adverse impact on the environment downstream of the dam.

Report Section Identification: Chapter 4.4.2.2
Report Page Number: 4-46
Comment: EPA states, “This analysis considers the effects of earthquakes based on a site-specific evaluation of seismicity in the area. Box 4-6 describes the selection of earthquake characteristics for design criteria.” In fact, Box 4-6 describes earthquake design criteria in general terms such as the Operating Basis Earthquake (OBE) and the Maximum Design Earthquake (MDE), but cites Northern Dynasty for specific, proposed ground motions (NDM, 2006). This reference is not included in Chapter 9, Cited References. While Figure 4-11 shows a seismic activity map for southwestern Alaska, EPA has not conducted a presented a technically defensible, probabilistic or deterministic seismic study for the region.

Report Section Identification: Chapter 4.4.2.2
Report Page Number: 4-46
Comment: EPA cites ADNR Guidelines for Cooperation with the Alaska Dam Safety Program (June, 2005) (ADNR Dam Safety Guidelines) and references therein to U.S. Army Corps of Engineers, U.S. Bureau of Reclamation, and Federal Energy Regulatory Commission guidelines for designing water retaining dams to safety factors of 1.5 (for slope stability). Box 4-6, Selecting Earthquake Characteristics for Design Criteria, includes general descriptions of earthquake design criteria, and criticizes the ADNR dam safety guidelines as ‘inconsistent with the expected conditions for a large porphyry copper mine developed in the Bristol Bay…” Section 13.2.2, Tailings Storage Facilities, of the ADNR Dam Safety Guidelines specifically states, “Complete guidance on tailings dam design and closure is beyond the scope of this document…tailings dams represents certain challenges that require professionals with significant relevant experience.” EPA leans heavily on the 1.5 safety factor for estimating failure probabilities and references (Silva, et al., 2008). However, unlike the Assessment, Silva presents a balanced discussion on risk for a mine project, and other engineering features such as dams.

Report Section Identification: Chapter 4.4.2.2
Report Page Number: 4-47
Comment: EPA uses curves from Figure 1 of Silva et al, 2008 to convert the factor of safety associated with the mine scenario tailings dam to an annual probability of failure. The scope of Silva’s paper is broad and is intended for a wide range of potential geotechnical applications. The four categories of “Level of engineering” included in the Assessment are abbreviations of the more detailed Table 1 included in the referenced paper. A review of Table 1 indicates that the Class II (Above Average) category is reserved for “above average” geotechnical works in a general sense. For example, Class II structures do not require an investigation of site geologic history, design peer review, full time supervision by a qualified engineer during construction or implementation of a
performance program during operation, all of which would be required for any new tailings dam constructed in Alaska. The EPA assumes that the mine scenario tailings dam will be between a Class II and Class I structure and chooses to use the annual probability of failure associated with Class II structures \(10^{-4}\) with a FOS of 1.5 for comparison with high historical tailings dam failure rates. Based on Silva’s definition, a new large or very large tailings dam constructed in Alaska would almost certainly fall into category 1 (Best). The corresponding annual probability of failure of a Class I structure with a FOS of 1.5 is \(10^{-6}\).

Report Section Identification: Chapter 4.4.2.2
Report Page Number: 4-47

Comment: The likelihood has been estimated, substantially, from the historic records of dam failures that have been recorded in the years 1960 to 2010. Many of the dams that are included in this failure record were constructed in periods prior to current engineering and oversight.

The ability to perform effective analyses must precede the practice of performing such analyses and if we look to when a) the capability and b) the practice of analyses of very important aspects of dam design were developed, we can see that many dams that have failed were not designed with adequate design methods. The flowing times are when the technology and practice became common for critical elements of tailings dam design in North America:

- Slope stability analyses 1960’s
- Seepage and drainage analyses 1970’s
- Seismicity, foundation soils and tailings liquefaction, and dynamic analyses 1970’s and 80’s
- Modeling tools for deformation (FLAC, PLAXIS) Post 1980’s
- Design for Closure and Closure management (not just abandonment) has only been a substantive requirement since the 1990’s.

In areas other than North America, these technologies and the regulatory oversight and corporate governance that today control the security of dam construction were not applied till substantially later.

Thus many of the dams, indeed the vast majority, included in the failure statistics did not include the design, specifications and construction and operation supervision that would be required today for a major tailings dam constructed in Bristol Bay.

The site investigation, construction material characterization, design effort and construction supervision that is applied to smaller, lower hazard dams are vastly less than are applied to very large high hazard dams. The engineering man-hours that would be devoted to the investigation, design and construction supervision for the ‘very large dam’ that has been assumed for the MS would be many times (orders of magnitude) greater than that applied to the smaller dams of several decades ago.

The likelihood of failure of a large dam constructed with the current technology, regulatory control and corporate governance, that would be applicable at Bristol Bay, would be grossly overestimated by the likelihood ranges derived from historic failures.
Report Section Identification: 4.4.2.2 Probability of Tailings Dams Failures
Report Page Number: Page(s) 4-47
Comment: Dam failure probabilities based on existing and anecdotal information shows a wide range (several orders of magnitude) difference in probability of failure.
Recommended Change: Considering the potential risks involved, the dam failure study should include a site specific dam failure analysis. A stochastic, risk based modeling approach is needed to address risk and uncertainty and incorporating sensitivity analyses of seismicity, soil strength and hydraulic conductivity properties, inflow hydrology, dam breach sizes, hydraulic and sediment transport downstream modeling. The analysis will refine probabilities and estimates of dam failure scenarios and reduce the uncertainty in dam failure orders of magnitude difference in estimated failure probabilities.

Report Section Identification: 4.4.2.2 Probability of Tailings Dams Failures
Report Page Number: Page(s) 4-47
Comment: Hydraulic modeling of downstream areas from dam failure and overtopping was performed as described in Box 4-8. The approach analyzes a probable maximum flood (PMF) inflow using Hydrologic Engineering Center’s (HEC) -1for hydrologic modeling. Downstream rivers and streams were modeled using HEC-River Analysis System (HEC-RAS). The methods section does not describe specifically how dam breach size estimates were determined, and how the downstream sediment transport analyses were performed.
Recommended Change: The report should include information about what methods were used to analyze the dam breach size and flow conditions, and the associated sediment transport analyses. Empirical methods applied should be specified, such as those outlined in *Prediction of Dam Breach Parameters, USBR 1998*, and/or use of dam-break software to estimate breach sizes. This is important as the breach size; reservoir and tailings stages will highly influence the flood hydrograph. The sediment transport data collection and modeling work should be expanded in support of the study (both spatially and identifying / specifying the type of model being used). If not already being used, a mobile bed sediment transport and sediment routing model will likely be necessary to understand dam breach, sediment transport conditions and spatial extents of tailings deposition extents to any degree of certainty. Once the sediment deposition areas have been established, then downstream water quality impact assessments could be updated and refined. Dam break sedimentation impact areas could also be directly overlaid with existing fish habitat areas using GIS. The use of this type of model was likely beyond the scope and means of the initial assessment. However, it will be important to understand, characterize and quantify impacts (sediment and water quality), as well as to communicate risks and impacts to a broad audience regarding the potential catastrophic impacts to fisheries resources from a tailings dam break scenario.
Comment Reference: *Prediction of Dam Breach Parameters, USBR 1998*

Report Section Identification: Chapter 4.4.2.2
Report Page Number: 4-48
Comment: In Box 4-6, EPA suggests that an earthquake return period of 2500 years may be too...
short for a tailings dam that could have a life expectancy of 10,000 years after operations cease. The design earthquakes that Northern Dynasty proposed seems reasonable, based on the information presented, but the accelerations used for design must be coupled with details for the structures setting. For earthquakes return periods greater than 2500 years, the design earthquake can be set so high that, should it occur, rivers and streams may be naturally destroyed while the dam itself would be unaffected.

Report Section Identification: 4
Report Page Number: 4-48
Comment: This page states that the maximum credible earthquake (MCE) of 7.8 was used to determine a maximum ground acceleration of 0.44g to 0.48g, which was used in the stability calculations of the dam. The Knight Piesold Report in 2006 titled “Pebble Project Tailings Impoundment A – Initial Application Report” shows an MCE of 7.8 producing a maximum bedrock acceleration of 0.30.
Recommended Change: Correct or explain the rationale for the discrepancy.

Report Section Identification: 4.4.4 Road and Culvert Failures
Report Page Number: 4/63
Comment: The narrative does not recognize BMP of culvert designs, particularly in anadromous stream crossings. Besides the discussion regarding bridges versus culvert crossings, any culvert crossing would be designed to accommodate fish passage except at times of extreme flooding when fish passage through ordinary stream channels may be impeded as well. The evolution of culvert design has greatly advanced in the last 20 years or more.

Report Section Identification: Chapter 5, 6 and 7
Report Page Number:
Comment: EPA discusses impacts on fisheries from normal operations and the probability of tailings dam failures and potential negative impacts from single and multiple mines, but fails to compare those statistics with probabilities of other potential negative impacts such as disease, blights, drought, or over-fishing. Consequently, there is no frame of reference for understanding the magnitude of the risk.

Report Section Identification: Chapter 5, 6, 7 and 8
Report Page Number:
Comment: EPA fails to consider reclamation and closure scenarios where mines have successfully operated and closed without major, adverse environmental impacts. No potentials of success for wildlife/mining coexistence, wildlife habitat enhancement, or adaptable species such as sheep and fish incursions into active mining areas. For example, the Fort Knox Mine and the Red Dog Mine are the locations of the two of the most productive grayling habitats in the state. A Dall sheep ram
has taken up residence on the organic stockpile from the Walter Creek Heap Leach Pad
construction at the Fort Knox Mine. Exploration operations at the Pebble prospect were recently
delayed because of migratory song bird nesting in a drill rig.

Report Section Identification: Chapters 5 through 9
Report Page Number: 5.0 to 9.0

Draft Comment:
Quantitative chemical risk estimates are presented without an initial discussion of the basic risk assessment
process of data collection and evaluation, exposure assessment, toxicity assessment, and risk
characterization. Of particular importance, the hazard quotient (HQ) method used to describe chemical risks
is not clearly defined. Without such introduction, the concept to significant chemical risk may not be easily
determined by the nontechnical reader. For instance when presenting hazard quotients of 0.11 versus 1.3 or
190, the reader may deduce that the HQ of 190 presents the greatest risk, but they may not have a clear
understanding of the bright line defining risk.

Draft Recommended Change:
Provide a summary discussion of the chemical risk assessment process to include defining key terms such as
hazard quotient (HQ) and how to interpret such risk estimates.

Report Section Identification: 5.1 Fish Distribution
Report Page Number: 5-1

Comment: In regard to standard risk assessment format, descriptive sections such as 5.1 Fish
Distribution are usually part of Problem Formulation. As commented above, and again related to
risk assessment format, the actual Problem Formulation section is too general and sections 2, 3, and
portions of 4, 5, and 6 provide more specific analysis that could be made part of problem
formulation. The purpose being to focus the conceptual models and risk assessment on critical
issues. This does get done to some extent, but just not in the problem formulation. The Bristol Bay
Watershed Assessment as a whole does not follow a typical risk assessment format. Rather,
individual sections are each generally formatted each as their own risk assessments.

Recommended Change: Section 5-1 applies to multiple sections of the report and should be
moved to the Problem Formulation section of the report, to augment the very general information
currently provided. Alternatively, make a specific problem formulation part of each of Sections 5
and 6, keeping a general conceptual model in Section 3 related to potential impacts, and then refine
that broad conceptual model with a conceptual exposure model that better fits the scenarios in each
of Sections. Problem Formulation is supposed to focus the assessment on the most important
endpoints requiring assessment or investigation. As it is written there is this long laundry list of
potential endpoints scattered throughout Sections 2, 3, and 4. The Risk Assessment portions need
focus.

Report Section Identification: 5.2 Fish Distribution
Report Page Number: 5.2

Comment: Blanket statements are provided for fish with priority habitats (spawning, rearing, etc.)
under the proposed footprint of the storage facilities, but for chum the habitat area under the storage
facility is not shown, and for other salmon the relatively small area of the impacted priority habitat is not mentioned...rather a blanket statement is made that the habitat will be impacted. Making this statement without qualification or reference to further analysis, leads the reader to an initial conclusion of “impact” without understanding extent of that impact.

TSF 2 and TSF 3 are often referenced, but are not included on Figures 5-1 through 5-7.

Frying Pan Lake and Koktuli Mountain are referenced for, but not included on, Figure 5-6.

Recommended Change: A qualifier or some reference to further analysis in Section 5.2 should be added to provide readers with an understanding of the general size of the impact. It doesn’t have to be really specific, or the reader should be referenced to Section 5.2 for further insight to the level of impact. Add TSF 2 and 3 to Figures 5-1 through 5-7. Add Frying Pan Lake and Koktuli Mountain to Figure 5-6.

Report Section Identification: 5.1

Report Page Number: 5.2

Comment: The assessment refers the reader back to Figure ES-3. This figure should be provided in the appropriate section.

Recommended Change: Figure ES-3 should be presented as part of Section 5.1.

Report Section Identification: 5.1.1 Fish Distribution

Report Page Number: Pages 5-2 through 5-7, Figures 5-1 through 5-5 (and ES-4, Figure ES-2)

Reported Salmon in the North Fork, South Fork Koktuli and Upper Talarik Creeks.

Comment: The figure comment states that life-stage-specific reach designations are likely underestimated, given the logistical constraints on the ability to accurately capture all streams that may support life-stage use at various times of the year. The limitations in collecting data on fish populations in an expansive in a remote setting. Are there other methods or techniques that could be used to estimate fish habitat populations for areas with higher uncertainty, or less available data?

Recommended Change: Recommend considering a method (or model) for estimating fish habitat (possibly using template reaches, geomorphologic river and stream characteristics) and projecting population based on habitat type for all drainages in the Bristol Bay Watersheds. Understanding impacts of the overall fish population impacts will be needed if assessing the entire Bristol Bay watershed fisheries.

Report Section Identification: 5

Report Page Number: 5-3 through 5-7

Comment: When reading the text in the Executive Summary, Chapter 2, Chapter 5, Appendices A through F, much discussion is based on the entire Bristol Bay region. However, unless there is a water quality issue downstream or a dam break, the effects to the entire Bristol Bay region would be minimal. The Figure on page 5-3 shows that there is no rearing or spawning area of pink salmon anywhere near the mine disturbance. The Figure on page 5-4 shows that there is no rearing or spawning area of chum salmon near the mine disturbance. The Figure on page 5-5 shows that there is no rearing or spawning area of sockeye salmon in the mine disturbance (although it is close).
The Figure on page 5-6 shows that there is minor rearing or spawning area of Chinook Salmon in the mine disturbance, and the Figure on page 5-7 shows that there is definite rearing or spawning area of coho salmon in the mine disturbance, but it is small in extent and at the head of the watersheds compared to the rest of the entire Bristol Bay region. The Figure on page 5-8 shows significant use by Dolly Varden fish, but this fish does not appear to be of great value in the Bristol Bay region. It appears that the Bristol Bay Watershed Assessment is constantly citing the overall value of Bristol Bay region fisheries but downplays the actual amount of these stream lengths (that have the valuable fish) which would be affected by the mine.

Recommended Change: Depict more accurately the amount of stream segments that are rearing and spawning areas for the valuable fish and which could be affected by the mine and compare them to the total length of rearing and spawning lengths for the Bristol Bay region. It will be seen that the amount of blocked and eliminated segments are a very small percentage of the total for the region.

<table>
<thead>
<tr>
<th>Report Section Identification: 5.1.2 Spawning Salmon Abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: 5-10</td>
</tr>
<tr>
<td>Comment: The repetition of the fact that fish numbers were underestimated, similar to the report-wide repetition of the importance of groundwater-to-surface water interactions, seems to be an attempt to influence the reader, without adequate supporting data. In the last sentence of the first paragraph of this section it says true spawner abundance is underestimated by a "...large and unknown factor." It is unclear that this is true for the Pebble Mine area where a large number of headwater streams are present.</td>
</tr>
<tr>
<td>Recommended Change: Use site-specific data instead of broad generalizations. Provide the data, summarize, and move on. Remove repetition. Address in uncertainty section if needed.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification: 5.1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: 5-10</td>
</tr>
<tr>
<td>Comment: It is stated that the abundance counts "...underestimate true abundance by a large and unknown factor" and "...true spawner abundance is probably substantially higher than the values presented..." However, by using the "highest" index counts, it is likely to be representative, or possibly an overestimate of average, and applying this "highest" index count across an entire stream system, or even across large areas (i.e., reaches) of the stream where spawning may or may not occur (because spawning is generally restricted to particular reaches or habitat conditions that do not exist everywhere in the stream), could very well overestimate impacted numbers of fish.</td>
</tr>
</tbody>
</table>

In addition, the values presented in Table 5-1 seem to be consistent with the reported numbers of sockeye and Chinook by the ADFG counts since 1955. With over 30 years of data, apparently consistent with the 4 years of data collected for the Pebble Limited Partnership Environmental Baseline Data, using the highest index count may result in an overestimate of the number of impacted salmon.

Further, the Northern Dynasty Tailings Impoundment A Initial Application Report by Knight Piesold (September 2006) clearly states that TSF areas were selected because of a measured lack of significant populations of anadromous fish. Some level of verification between the EPA estimated
direct fish impact and the Northern Dynasty fish data would seem to be needed.

Recommended Change: Provide discussion on similarity/differences between Pebble Limited Partnership Environmental Baseline Data (2004-2008) data and ADFG (1955 on) data, and be clear and correct on likelihood of over or under estimation of numbers, particularly across stream reaches/areas. It would be prudent to more clearly separate out discussion of effects into those caused by habitat lost under/upstream of the mine and TSF areas (e.g., direct), and those downstream from the mine area (e.g., indirect). Edit language to refrain from broad statements of significance of impact without site-specific data analysis to show it.

Report Section Identification: 5.1.2 and 5.1.3
Report Page Number: 5-10 and 5-11

Comment: Pebble Limited Partnership Environmental Baseline Available reports on spawning and juvenile numbers counted by biologists on and near the proposed mine site. However, the assessment does not present the numbers, locations, or “reaches” where the counts were made. The actual location of the counts is not provided, thus impacts within particular reaches of the streams cannot be calculated/estimated from data provided in the assessment.

Recommended Change: Provide a figure or table that documents where fish count data was collected and where peak counts were located. Provide a better understanding of where the fish are using the habitat and would be directly or indirectly impacted by mine development and operation.

Report Section Identification: 5.2 Habitat Modification
Report Page Number: 5-12

Comment: As an example of the influential tone of the report, in the first sentence of this section tells the reader what “would” happen as a result of ongoing mine operation before any data or rationale is provided. This happens again in 5.2.1. This approach is common in the Bristol Bay Watershed Assessment and is contrary to technical writing where the evidence is provided first to support any conclusions made.

Recommended Change: Start with what is possible or “may” happen to habitat, present the data, then draw conclusions/make rationale using data.

Report Section Identification: 5.1.3 and Table 5-2
Report Page Number: 5-12

Comment: Text as written is that highest reported density of spawners as 25,000 arctic grayling and 16,000 coho, but Table 5-2 reports these as 2,500 and 1,600, a factor of 10 lower. The Pebble Limited Partnership Environmental Baseline Data figures used as sources are consistent with Table 5-2, not with the written text values. Table 5-2 also reports sources for the fish densities as “Tables” when in fact they are “Figures”.

Also, there is no information provided in the Bristol Bay Watershed Assessment in regard to where these “maximum” fish densities were recorded. The implication being that these numbers are found throughout the potentially impacted area, when in fact, particularly for the North Fork Koktuli, many of the stream reaches within the area of the mine pit and TSF have much lower densities, or no anadromous fish at all, as clearly shown in other tables, figures, and text of the
Recommended Change: Correct text to match table numbers. Correct table Source column from "Table" to "Figure". Clearly state that the North Fork Koktuli numbers come from the main stem of the North Fork Koktuli, not within the pit or TSF footprint.

Report Section Identification: 5.2. Habitat Modification
Report Page Number: Page(s) 5-12 through 5-45
Comment: Section 5.2 Habitat Modification begins to elaborate on the complexities of interrelated impacts and effects on fisheries that were first presented in problem formulation, Section 3.6 Conceptual Models.
Recommended Change: Include a broken out schematic of (or at least refer to) the Conceptual Models originally presented in Section 3, to trace the linkages, effects and impacts to fish in Sections 5.0 and 6.0.

Report Section Identification: Main Report, Section 5.1.3, Juvenile Salmon and Resident Fish Abundance
Report Page Number: 5-12
Comment: The data reported in the text and Table 5.2 differ for Arctic grayling and coho salmon for Upper Talarik Creek.
Recommended Change: EPA needs to report the correct relative abundance numbers in both the text and the table.

Report Section Identification: 5.2.1.1
Report Page Number: 5-12 through 5-162
Comment: The Bristol Bay Watershed Assessment predicts about 10 to 17 square kilometers of wetland losses and 88 to 107 km of stream losses under the direct footprint. The Pebble Limited Partnership Environmental Baseline Data measured wetlands and streams and determined approximately 10 square kilometers of both wetlands and streams are present within and downstream of the minimum mine/TSF footprint. Thus, the general scale of the wetland/stream impact under the minimum mine/TSF footprint is similar between the two documents, but the Pebble Limited Partnership Environmental Baseline Data area of potential impact would be less than the EPA predicted impact area.

The 88 to 107 km of stream losses predicted in the Bristol Bay Watershed Assessment cannot be compared directly to Pebble Limited Partnership Environmental Baseline Data data because the Pebble Limited Partnership Environmental Baseline Data reports watershed areas, not km of stream.
Recommended Change: If possible, incorporate actual wetland acreages measured in Pebble Limited Partnership Environmental Baseline Data

Report Section Identification: 5.2.1
Report Page Number: 5-13
Comment: This section provides a discussion about TSF 2 and 3 but these facilities are not on the map within this section.

Recommended Change: Put TSF 2 and 3 on Figure 5-8.

Report Section Identification: Box 5.1
Report Page Number: 5-13

Comment: NWI wetland mapping is based on aerial photo interpretation that is large scale and is not accurate at the scale being used here, particularly for road impacts. Also, NWI data is often 20 to 30 years old. Therefore, while it is appropriate for a large scale screening, it is not acceptable for predicting site-specific impacts without a large potential for error.

It is a bit confusing, but it seems 100 meters along rivers and 200 meters along NWI wetlands were set aside as buffers. If the roadway in the mine site passed within these buffers, a hydrological impact was tallied. In addition the road impacts were based on a 200 ft wide road corridor, while “direct fill” was based on a 9.1 m wide roadway. These buffers are quite large and likely overestimate the hydrological impact. This overestimation offsets at least a portion of the purported “conservative” estimate resulting from inaccurate stream and fish presence maps.

Recommended Change: Most regulatory wetland and river buffers are equal to or less than 150 feet. Reducing the buffer to this more accurate area of “impact” would produce a more accurate estimate of impacts to wetlands and rivers along the road corridor.

Report Section Identification: 5
Report Page Number: 5-15 and 5-18

Comment: The two maps on this page show many very minor stream segments which, according to the maps on pages 5-3 through 5-7, simply do not contain the rearing and spawning areas of the fish. It is interesting to note that all the stream segments shown on Page 5-15 are not shown on the maps on pages 5-3 through 5-7.

Recommended Change: Either remove all these smaller segments from the maps on page 5-15 or add the segments to the maps on pages 5-3 through 5-7. Revise Table 5-4 on page 5-18 to include a new column showing the total kilometers of each stream blocked or eliminated by the mine.

Report Section Identification: 5.2.1.2
Report Page Number: 5-16

Comment: The claims of spawning habitat are very broad and undefined. Pebble Limited Partnership Environmental Baseline Data quantifies at least some of this information. Very few sockeye occur in these upper stream reaches. Mostly resident grayling and Dolly Varden. The assessment cannot define or quantify the level impact from this information.

In addition, most of the stream reaches within the mine/tailings/TSF are ephemeral/intermittent, reducing anadromous and resident fish use of the streams, possibly making permanent ponds important in the area.

Recommended Change: Incorporate site-specific data. Provide consideration of the intermittent
flow regimes.

| Report Section Identification: 5.2.1.1 |
| Report Page Number: 5-16 |
| Draft Comment: Text states that loss of headwater habitats will have indirect impacts on fishes and their habitats in downstream mainstream reaches of each watershed. However, it is not prefaced that this assumption does not take into consideration any risk mitigation measures such as stream diversions. |
| Draft Recommended Change: Preface that this assumption is based on no mitigations measures implemented to reduce potential impacts. |

| Report Section Identification: Main Report, Section 5.2.1.2, Implications of Headwater Stream and Wetland Loss for Fish |
| Report Page Number: 5-16 |
| Comment: At the bottom of the page, EPA uses the Anadromous Waters Catalog (Johnson and Blanche, in press) as a reference to the presence of resident fish. The catalog lists anadromous fish only. |
| Recommended Change: Throughout the entire watershed assessment, EPA needs to use references appropriately. In particular, the Anadromous Waters Catalog (Johnson and Blanche, in press) should not be used to support the presence of resident fish. |

| Report Section Identification: 5.2.1.2 |
| Report Page Number: 5-19 and 5-20 |
| Comment: This subsection has almost nothing specific to hypothetical mine impacts. Rather it is a general discussion of potential fish/stream impacts due to various habitat changes. |
| Recommended Change: Make discussions/claims of impact specific to the mine scenario. |

| Report Section Identification: 5.2.1.2; Table 5-3 and 5-4 |
| Report Page Number: 5-17 and 5-18 |
| Comment: Based on available data, many of the stream kilometers within the footprint of the mine/waste rock/TSF do not have anadromous fish, and some do not have any fish. Providing the complete list of streams in a table with the column of species present is a drastic oversimplification of any decent measure of actual impact. For example, while sockeye have been found in the mine footprint, there are very few present. This nuance is lost in the assessment analysis. Also, there is no analysis of what percentage of the river kilometers is spawning areas versus rearing, nor of what percentage of the sub-basin and entire basin these river reaches represent. There is no way for reviewers to translate the EPA information into an actual impact on fish nor on the economy of Bristol Bay. |
| Recommended Change: Provide site-specific analysis and detail of the estimated number of each species (spawners and juveniles) of importance that would be lost, and relate that to total number of |
fish returning and escapement in the basin.

Report Section Identification: 5.2.2.1
Report Page Number: 5-21 to 5-27
Comment: There is no discussion of the fact that much of the South Fork Koktuli is dry in summer under current natural conditions, and as described in the Pebble Limited Partnership Environmental Baseline Data, that much of the lost water in the mid South Koktuli flows underground to the Upper Talarik in the vicinity of UT100B.

Basically, the actual dynamics of surface water and groundwater flow and water needs for the mine are so potentially variable that it is currently not reasonable to estimate the actual stream dewatering downstream of the mine pit/waste rock/TSF.

Regardless, even under EPA essentially worst case dewatering, the North Fork Koktuli and Upper Talarik are within about 8% of their natural capacity before they reach a major confluence. The South Fork Koktuli is more impacted, but it is also naturally dry (a losing stream) in many portions of its upper reaches so the impacts to fish may not be as dramatic.

The Pebble Limited Partnership Environmental Baseline Data stream flow data shows that best fish conditions are below high flows. Thus, a slight reduction in flow along some reaches may actually increase favorable spawning and rearing conditions during some portion of the year.

And finally, there is inadequate accounting for water that is “upstream” of the TSFs or the mine pit.

Recommended Change: A better grasp on groundwater flow dynamics and water provided into the mine pit, get better design information on TSF and TSF dam to determine potential flow through/under tailings and dam. Use site-specific information on fish presence and stream flow to calculate likely potential impacts to fish, and then relate these impacts to the watershed fish population.

Report Section Identification: 5.2.2 Effects of Downstream Flow Changes
Report Page Number: Page(s) 5-21 through 5-27
Comment: Section 5.2.2.1 Streamflow (Loss or Reduction) section estimates percent loss in stream flow and qualitatively discusses impacts on stream, floodplain and wetland habitat as a result of reductions in streamflow. Page 5-31, Section 5.2.2.3 discusses flow alteration thresholds for assessing fish habitat impacts.

Recommended Change: Include flow alteration thresholds, or refer to streamflow alteration thresholds, as part of streamflow loss discussion in Section 5.2.2.1, rather than in 5.2.2.3 (or cross reference).

Report Section Identification: 5.2.2.1
Report Page Number: 5-25
Comment: The “start-up” assumption that all precipitation is “consumed” by the mine seems very conservative. Even if they used it all, a significant portion would seem to be discharged.
somewhere. If into the TSF, then groundwater will either flow out of the TSF or have to be captured, treated, and released.

Also on this page under the "minimum mine size" paragraph, 1% to 15% of the water is assumed to be returned to the streams. Yet, the most impacted stations have a higher effect than under the start-up conditions. There is no explanation of this increased impact at some stations when water is being returned to the streams.

In addition, all of the predicted stream dewatering is dependent on water balance for the mine, which is critically dependant on how much water actually is removed from the mine pit. No information is provided related to this critical groundwater flow through the subsurface to the mine pit, or through the subsurface underlying the TSFs. If not enough water coming into pit, then where will water come from? If too much water coming into pit, then there may be treatment and discharge into streams.

Recommended Change: If using a worst-case or "Reasonable Maximum" scenario, clearly state such, and provide some description of the conservative nature of the estimates of water extraction from the stream systems. Provide better summary understanding of the assumptions related to where water is coming from and going to.

Report Section Identification: 5.2.2 Effects of Downstream Flow Changes

Report Page Number: Starting on 5-21

Comment: There has obviously been some thought put into the potential changes in flow around any potential mine site. At this point, this examination can only be theoretical, but putting it in the assessment document makes it seem like the worst possible outcome. The interactions of the ground and surface water hydrology in that area are extremely complex. The uncertainty of the impacts from any disturbance should be emphasized. The importance of the surface and subsurface flow to spawning and rearing salmon cannot be understated. The theoretical treatment of this in the assessment suggests it can predict a possible outcome that in actuality cannot be predicted.

Recommended Change: Explicitly state the theoretical nature of these possible outcomes and emphasize the uncertainty.

Report Section Identification: 5.2.2.3 Table 5-13

Report Page Number: 5.41

Comment: The concepts behind this table provide some evidence of the potential for stream flow changes as a result of the proposed mine. However, the distance between stream stations used makes accurate predictions are problematic, and the text provides repeated warnings about the variability likely to be involved in the predictions. Thus, without better definition of site conditions, and incorporation of the site-specific stream flow data collected and reported for the Pebble Limited Partnership Environmental Baseline Data, the EPA analysis presented in Table 5-13 is inaccurate. In addition, there is no direct correlation made between the predicted reduced stream flows and actual impacts to fish, rendering the stream flow analysis ineffective.

The most that can be said under the assumptions provided is that some level of stream flow reduction would be realized, and this would have some an unquantified impact on fish populations.
Recommended Change: Incorporate better site-specific mine and stream flow conditions and relate directly to measured fish/salmon presence and impact.

Report Section Identification: 5.2.3
Report Page Number: 5-45

Comment: Thirty five pages of text, tables, and figures leads to the statement that the volume of water needed to maintain reasonable stream flows is unknown. And no relationship is provided between stream flow and fish impact. This is not really a risk characterization because there is no actual quantification of risk to stream flow or fish.

Recommended Change: At a minimum provide some risk summation for stream flow. Ideally, get more site-specific information to reduce uncertainties and then relate stream flow alteration to a quantified fish impact so it can be compared to overall fish population numbers in the sub-basins, basins, and overall watershed.

Report Section Identification: 5.2.3 Risk Characterization
Report Page Number: Page 5-45

Comment: Section 5.2.3 discusses hydrologic flow regime and water quality mitigation (avoidance) requirements for maintaining downstream flow rates and timing, water quality and temperature for fish. The section generally refers to a water storage and release system for maintaining downstream flow conditions. The section implies that this may be technologically significant, costly and possibly infeasible. Unless the discussion is expanded, the validity of this statement is unknown. The discussion should expand on what this structure is, the likely size and components (i.e. a water storage dam and pipe release system). There are risks associated with operation of this structure that could impact downstream fisheries resources that need to be discussed. Also, mitigation alternatives to the water storage system, i.e. stream and wetland mitigation, are not discussed but should be referred to as mitigation alternatives.

Recommended Change: Expand discussion of what type of structure would be necessary for on-site water storage flow mitigation, the risks associated with this structure, and potential alternative off-site stream and wetland mitigation. Also tie the flow regulation discussion to regulatory requirements under the Clean Water Act, Alaska Pollutant Discharge Elimination System (APDES) permits, Corps 404 permits and other State of Alaska permits.

Report Section Identification: 5.3.1
Report Page Number: 5-48

Comment: It is reported that between 5 million and 48 million cubic meters of water exceed mine needs. Why isn’t this brought into the analysis or risk characterization of stream flow reductions in the previous section? It seems likely this amount is adequate to keep impacted stream flows at levels protective of fish in the reaches downstream of the mine pit/waste rock piles/TSFs.

Recommended Change: Incorporate potential water returns to the streams in Section 5.2

Report Section Identification: 5.3.1
Report Page Number: 5-48 to 5-52
Comment: While this section does discuss some preliminary "Exposure" issues, it doesn't examine and/or exclude exposure pathways for particular species or stream reaches, nor does it quantify exposure. The discussion is solely limited to aquatic life.

Recommended Change: Incorporate discussion of exposures of resident versus anadromous species. Elaborate on concern for anadromous egg and juvenile fish survival.

Report Section Identification: Vol 1 Section 5.3.1
Report Page Number: Page 5-49 through 5-55

Comment: The biotic ligand model is used to derive criteria on page 5-49 despite not being introduced until page 5-53. The values for copper derived from the biotic ligand model in Table 5-14 and 5-15 do not match the values in Table 5-19. East and West Pre-Tertiary values are swapped.

Table 5-19 shows the acute criterion for the biotic ligand model for Pebble West Pre-Tertiary to be 0.43 μg/L. Table 5-15 on Page 5-50 shows it as 0.043 μg/L. All the biotic ligand values derived for copper need to be verified and accurately labeled in Tables 5-14 through 5-16 and Table 5-19. These values are used to derive dilution calculations highlighted on page ES-21.

Furthermore, the chronic criteria are 10 and 90 times more stringent for the biotic ligand model than the state's water quality standards for the West and East Pre-Tertiary waste rock respectively. This is a significant difference. The lead in sentence to Table 5-19 should provide table references for the mean chemistries of the waste rock leachates. See comment for pages 5-53 to 5-37.

Recommended Change: Move Tables 5-14 through 5-16 to after Table 5-19 or remove the biotic ligand model derived criteria from Tables 5-14 though 5-16. Provide a footnote for the column header "Average Value" indicating number of leachate tests performed. Review inputs and outputs from the biotic ligand model and correct errors in values and references to East and West Pre-Tertiary waste rock in Tables 5-14, 5-15, 5-16, and 5-19.

Report Section Identification: 5.3.2
Report Page Number: 5-53

Comment: This section is a simple risk-based screening comparing average untreated waste rock leachate metals concentrations to water quality criteria. This assumes 100% exposure of all aquatic species in all streams. The results were a predicted potential for risks due to aluminum, copper, and zinc, with the greatest indicated concern being copper. Using the biotic ligand model significantly increases the predicted risks for copper.

The screening concentrations predicted by the biotic ligand model are strongly related to the amount of organic material in the water. The assessment set dissolved organic carbon to 1 mg/L but provided no specific reasoning as to why, other than that dissolved organic carbon is expected to be low and 1 mg/L was the lowest possible in the model calculations. Background levels of dissolved organic carbon were measured in the Pebble Limited Partnership Environmental Baseline Data to be approximately 1.5 mg/L.

Regardless, the screening suggests the potential for effects to aquatic life if untreated waste rock...
Leachate were discharged to streams.

Recommended Change: Clearly justify use of 1.0 mg/L dissolved organic carbon. Discuss or provide evidence of how toxicity may change downstream as concentrations of metals decrease and organic matter concentration likely increases. May be able to use data from Pebble Limited Partnership Environmental Baseline Data as dissolved organic carbon was measured, and in the North Fork Kuktuli ranged from 0.5 to 4.55 mg/L.

Report Section Identification: 5.3.2.2
Report Page Number: 5-53 to 5-57

Comment: This analysis of copper toxicity shows that the biotic ligand model provides a “protective” risk-based screening concentration. This method is likely overprotective as calculated because of the sensitivity of stream invertebrates used to develop the model/criteria. A site-specific investigation could provide a more accurate and meaningful evaluation of water quality criteria that would be protective of aquatic life.

Report Section Identification: Vol 1 Section 5.3.2.2
Report Page Number: Page 5-57 (Pg 210 of 339)

Comment: Third line states “bioconcentration factor of 2,000 L/kg”. Bioconcentration factors are unitless. 2000 also seems very high, so is it what it says it is?

Report Section Identification: 5.3.2.2
Report Page Number: 5-57

Comment: The section on “analogous” sites is too general to be of use in risk determination. It raises the issue of the adequacy of current water quality criteria, but there is not enough information provided on conditional differences between analogous sites and the Pebble Mine site to make any inferences. Water quality, leachate parameters, acidity, water flow, stream substrate, stream invertebrate assemblages, among other conditions all may be different.

The research cited in this section also suggests that there may be impacts to stream macroinvertebrates at concentrations below the water quality criteria, but essentially there is no quantification of the potential impact or the level below the criteria that is unacceptable. One article suggests a factor of 10 below the criteria provided acceptable protection. This argument would seem to be more appropriate in setting new criteria, and until such criteria are provided, there doesn’t seem to be any basis for requiring concentrations below EPA approved Alaska Water Quality Criteria, apart from an APDES permitting process that takes into account site-specific conditions.

No discussion is provided on any “acceptable” level of impacts to stream invertebrate populations while maintaining healthy fish populations.

Siltation of the streams with contaminated sediment should be a principal concern in any mine development/permitting and effects determination.

Recommended Change: Further examination of site-specific mine conditions and potential
impacts should include stream invertebrate sampling, enumeration, and analysis to establish baseline conditions.

Report Section Identification: 5.3.2.2
Report Page Number: 5-57 to 5-58

Comment: The “uncertainties” section just states that the existing criterion may not be protective. It does not state that it also may be overly protective, depending on stream conditions at the mine. Invertebrates in many of the streams may already be impacted by naturally high metals concentrations….or the natural intermittent flow regimes of many of the streams and minor tributaries. Sensitive invertebrate species may not be present.

Consideration of only the possible non-protective nature of water quality criteria, without discussion of many, many other uncertainties biases the report.

Overall, Section 5.3.2.2 is a very simplified assessment of potential impact. Hence the need for site-specific analysis.

Report Section Identification: 5.4
Report Page Number: 5-59

Comment: Essentially, the opening paragraph for this section says “Roads are nearly always bad for streams” supported by a 40 year old citation. Whether intentional or not, the authors portray a biased approach to the Bristol Bay Watershed Assessment.

Roads CAN be bad for fish and streams, especially lots of roads. One well-designed and managed road/bridge/culvert across/near a stream would seem to be unlikely to result in significant biological impacts to fish and wildlife populations, but traffic levels, traffic timing, road design, and other factors all play into the impacts. Management of these factors may be necessary. One road may lead to other roads and more human presence. This should be a consideration in approving/denying road/mine permits.

Recommended Change: Move first two paragraphs to an appropriate subsection on impacts. Move third paragraph up to be the introductory paragraph.

Report Section Identification: 5.4 Roads and Stream Crossings
Report Page Number: Page 5-59

Comment: The opening section has several general and broad sweeping statements regarding roads impacts on stream and river conditions. In particular, the statements are phrased such that it implies roadway impacts are broad and can propagate significant distances upstream and downstream. The following statement needs some sideboards “The physical effects of roads on streams and rivers often propagate long distances from the site of a direct road incursion, as a result of the energy associated with moving water (Richardson et al. 1975).” For instance, a culvert located on a steep stream (say greater than 6% slope) will not likely have extensive (several kilometer) upstream and downstream effects on the stream and floodplain due primarily to the steep valley slope.

Recommended Change: Rephrase sentence to emphasize that improperly designed road crossings
and road crossings on flat, alluvial channels and floodplains could potentially affect and impact streams for significant distances upstream and downstream.

<table>
<thead>
<tr>
<th>Report Section Identification: 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: 5-59, 5-65 and 5-74</td>
</tr>
<tr>
<td>Comment: The pages state that the transportation corridor crosses 34 streams and rivers. As stated in the Executive Summary “The most likely serious failure associated with the transportation corridor would be blockage or failure of culverts”. This is readily avoided through either small bridges or very large culverts or a series of culverts designed to handle extremely large events. Given the sensitivity of the rivers and streams to the fisheries, the company should be required to build long lasting crossings that would not plug up. It will cost additional money to build these crossings but they would avoid the type of plugging impacts discussed on these pages.</td>
</tr>
<tr>
<td>Recommended Change: Add language that these impacts would most likely be avoided in the permit process by requiring significant long lasting crossing designs.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification: 5.4.1 through 5.4.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: 5-59 to 5-64</td>
</tr>
<tr>
<td>Comment: These subsections are not risk assessment. There are no set conditions defined that, if met, would constitute risk or no risk. There is no comparison of likely conditions to acceptable conditions. Thus, there is no assessment of risks. Rather, there is just a litany of potential effects listed. Essentially, the risk characterization for these subsections reiterates that any and all of the bad things related to roads “could” happen. It does not provide that any specific risks would, or are likely to, occur. Without this, the section is just saying, “there is a risk of these things happening”, without any likelihood estimation. Without some form of likelihood or some thresholds, any decision making or conclusions become based on individual interpretation and not a shared basis of understanding.</td>
</tr>
<tr>
<td>Recommended Change: Conditions or design thresholds, or a range of such, must be described that, if not met, could/would result in ecologically unacceptable conditions.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification: Vol 1 Section 5.3.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: Page 5-59 (Pg 212 of 339)</td>
</tr>
<tr>
<td>Comment: The first bullet says “Some leachate and process water constituents have no water quality criteria (e.g., sulfate), or the criteria and standards are based on old literature.” There is an Alaska water quality standard for sulfate; it may not exceed 250 mg/L (see 18 AAC 70.020) What is the definition of “old”? Would it be better to say that for some criteria new information supersedes the current standard (if that is the case?).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification: Main Report, Section 5.4, Roads and Stream Crossings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: 5-59</td>
</tr>
</tbody>
</table>
Comment: The assumptions regarding the number of culverts and bridges may be inaccurate. On numerous occasions, ADF&G has communicated to the Pebble Limited Partnership the desire for bridges at all stream crossing locations. Bridge designs, not culverts, will be the starting point for each considered road crossing.

Recommended Change: The watershed assessment should reflect ADF&G's preference for bridges instead of culverts and the roadway risks/impacts discussion should focus on possible effects of bridges on stream habitat and fish resources.

Report Section Identification: 5.4 Road and Culvert Failures, Stormwater Runoff

Report Page Number: 5/59

Comment: The narrative implies that only roads can have negative effects on stream passage. Flood events can have substantive changes in the natural stream environment in regards to 'modification of drainage networks, acceleration of erosion processes, which, in turn, can lead to changes in streamflow regimes, sediment transport and storage, channel bank and bed configurations, substrate composition, and the stability of slopes adjacent to streams.' The assumption that roadway salts would be used for general winter maintenance is a considerable jump. BMPs for roadway maintenance in winter climates depend largely on the temperatures, existing road surface, type and rate of vehicle travel, and other considerations. In colder climatic conditions, salts are not utilized for winter maintenance. If salts/brines are used for winter maintenance they are typically used on paved roadways. Given the heavy vehicle traffic this road would carry, this writer assumes a non-paved surface for the major roadways.

Report Section Identification: 5.4 Road and Culvert Failures, Stormwater Runoff

Report Page Number: 5/59

Comment: The narrative implies that only roads can have negative effects on stream passage. Flood events can have substantive changes in the natural stream environment in regards to 'modification of drainage networks, acceleration of erosion processes, which, in turn, can lead to changes in streamflow regimes, sediment transport and storage, channel bank and bed configurations, substrate composition, and the stability of slopes adjacent to streams.' The assumption that roadway salts would be used for general winter maintenance is a considerable jump. BMPs for roadway maintenance in winter climates depend largely on the temperatures, existing road surface, type and rate of vehicle travel, and other considerations. In colder climatic conditions, salts are not utilized for winter maintenance. If salts/brines are used for winter maintenance they are typically used on paved roadways. Given the heavy vehicle traffic this road would carry, this writer assumes a non-paved surface for the major roadways.

Report Section Identification: 5.4.2

Report Page Number: Page 5-60 (Pg 213 of 339)

Comment: “During runoff events, traffic residues produce a contaminant “soup” of metals (especially lead, zinc, copper, chromium, and cadmium), oil, and grease, which can run off road surfaces, enter streams, and accumulate in sediments (Van Hassel et al. 1980) or disperse into...
groundwater (Van Bohemen and Van de Laak 2003)."

There is no mention of whether this report related metals to runoff from highway traffic roads or traffic similar to that expected at the Pebble project. The source of metals in the sediments may be from other sources than traffic if the findings of two other studies are considered; see information at the links: http://www.sciencedirect.com/science/article/pii/S0043135498003960 and http://www.sciencedirect.com/science/article/pii/S0160412096000803.

Report Section Identification: 5.4.1 Roads and Stream Crossings

Report Page Number: Page 5-60

Comment: The following statement needs revision. "This can lead to increased channel scouring and down-cutting, streambank erosion, and undermining of the stream crossing structure and fill."

Recommended Change: Revise statement "This can lead to localized increases in channel scouring and down-cutting, streambank erosion, and undermining of the stream crossing structure and fill."

Report Section Identification: 5.4.4 Road Crossings as Barriers to Fish Movement

Report Page Number: Page 5-60 & 5-61

Comment: The risks and impacts to fish passage may be overstated using new culvert design standards that are designed to accommodate fish passage. Also, many of the culvert impacts described (such as erosion and floodplain connectivity) are very localized.

Last sentence of the section states "These potential reductions in downstream habitat quality and inhibited fish passage could occur in the 14 culverted streams that support salmonids." Previously in the section on Page 5-60, it states that there are 17 culverted streams supporting salmonids.

The report then again refers to 14 culverted streams on page 5-74.

Recommended Change: The culvert and impacts should attempt to estimate aerial and spatial extent of fish impacts using current fish passage design standards for culvert design. The reason for this is that if fish passage is provided a majority of the time (with the exception of flood peak periods, washouts and blockages), then secondary effects of culverts including erosion and floodplain connectivity will be minor in the grand scheme and can likely be mitigated for.

Reconcile the difference in the number of culverted streams supporting salmonids.

Report Section Identification: 5.4.2

Report Page Number: Page 5-61 (Pg 214 of 339)

Comment: "Fish mortality in streams has been related to high concentrations of aluminum, manganese, copper, iron, or zinc, with effects on populations recorded as far as 8 km downstream (Forman and Alexander 1998)."

This report can be found at

Why this is quoted is not obvious when the Assessment continues with "Although this is an important issue for streams near highways, it is unlikely that a mine access road would have sufficient traffic to significantly contaminate runoff with metals or oil."

Recommended Change: Just state realistic issues, as the sentence in 5.4.2 says: "the salts or other materials used for winter treatment of roads could present a significant issue". If this was done it would remove any perception that a bias is being presented in the report, which is to provide information on possible impacts, not impossible or improbable impacts. Even this statement about salts is brought into question when in Section 5.4.6.1 it says "Roads are treated with salts and other materials to reduce dust and improve winter traction. In Alaska, calcium chloride is commonly used for dust control and is mixed with sand for winter application. During periods of rain and snowmelt, these materials are washed off roads and into streams, rivers, and wetlands, where fish and their invertebrate prey can be directly exposed. We found no relevant data for chloride levels in streams treated in this way."

Report Page Number: 5-61

Comment: EPA references the Memorandum of Understanding (MOU) between ADF&G and ADOT&PF as a statewide standard for culvert installation on fish-bearing streams. This MOU is not a statewide standard for all entities; rather, it simply serves as an agreement between the two agencies that establishes a tiered approach to culvert installation and some minimum design requirements.

Recommended Change: The watershed assessment should make it clear that statewide standards for culvert design and installation currently do not exist. ADF&G evaluates each proposed culvert installation on a case by case basis.

Report Section Identification: 5.4.6.3

Report Page Number: 5-63 (Pg 216 of 339)

Comment: Says "Additionally, 19.4 km of roadway would intersect wetlands within and beyond those mapped by the National Wetlands Inventory (NWI). Runoff from these segments of roadway could have a significant impact on these wetlands."

Are there any examples or studies that can back up this statement?

Report Section Identification: 5.4.8.2 Stream Length Upstream and Downstream from Crossings

Report Page Number: Page 5-65

Comment: Last sentence states "The length of stream upstream of the transportation corridor..."
likely to support fish, based on a stream gradient higher than 10%, is 240 km.” The sentence should state “gradient less than 10%...”

Recommended Change: Reconcile sentence and Table 5-22.

Report Section Identification: 5.4.7.3
Report Page Number: 5-65
Comment: Filling of wetlands would definitely impact wetlands, but it would not necessarily eliminate habitat for salmonids unless the wetland was directly connected to a salmonid-bearing stream, or was a salmonid-bearing wetland. Placement of roads and stream crossings is, no doubt, critical in any such impacts. But, there are already rules for mitigation requirements related to wetland impacts. Thus, any such impacts would require mitigation for lost area, functions, and values, according to federal rules/regulations.

The level of mitigated impact cannot be assessed from information provided within the Bristol Bay Watershed Assessment.

Recommended Change: Use site-specific road alignment data to predict level of impact, required mitigation, and any remaining impact/risk.

Report Section Identification: 5.4.8.1
Report Page Number: 5-65
Comment: The first sentence of this subsection is overstated.

In the third sentence, should this be rephrased to “potential” high impact areas?

According to Pebble Limited Partnership Environmental Baseline Data, there is already a road along Chinkelyes Creek from the coast to the Iliamna. If so, Pebble Limited Partnership actions may improve current road conditions.

Recommended Change: Edit text to eliminate overstatements and acknowledge there is no current impact and changes might be able to be made to alleviate some/all of the purported impacts.

Note where there is any existing roadway along or near the proposed road, and what the impacts have been. Existing roads provide empirical evidence of direct impacts. They do not account for increased use-related potential impacts.

Report Section Identification: 5.4.8.2
Report Page Number: 5-65
Comment: Similar to section 5.4.8.1, total potential worst-case impact is implied and assumed. The assumption that significant impacts occur on every crossed stream both upstream to non-fish bearing conditions, and downstream to an outlet, grossly overstates and misrepresents likely impacts.

It is not clearly stated how upstream portions of streams will be impacted. In earlier portions of the Bristol Bay Assessment it is stated impacts MAY extend to 200 meters away from the road.
However, later in the assessment, it implies the impact can be measured miles downstream and upstream. The mileage represented in Tables must be qualified such that is does not imply impacts to the entire mileages listed.

Recommended Change: Provide discussion about the level of impacts close to the road and account for the distance downstream where impacts are ameliorated, particularly for those streams that are crossed only once and/or do not have any fish in them near the road crossing.

Report Section Identification: Figure 5-15
Report Page Number: Page 5-67 (Pg 220 of 339)
Comment: Question: Why is the road shown going into and out of lakes?

Report Section Identification: 2.2.3 Salmon-Mediated Effects on Wildlife
Report Page Number: 5-74
Comment: Salmon reductions caused by mining are speculated to “cause roughly proportionate declines in bears, wolves and bald eagles”. The amount of decline would not likely be proportionate as salmon only constitute a portion of these species’ diet. In the case of wolves, salmon may be a rather small component of the diet. The effects of reduced salmon would depend on the amount of the reduction of salmon in the diet and the relationship between salmon intake and vital rates. In addition, predators and scavengers utilizing salmon resources may interfere with each other resulting in imbalanced effects on different populations.
Recommended Change: Quantify the salmon-mediated effects better.

Report Section Identification: 5.4.10
Report Page Number: 5-74
Comment: Because a stream by stream assessment has not been done and actual stream crossings have not been designed or located, it is impossible to determine the actual impacts. The purported “likely” diminished production on 510 km of 30 streams is likely a significant overestimate of potential impacts.
Recommended Change: Examine width of stream versus width of flood plain and determine whether culverts would be adequate to maintain stream function and fish passage and where bridges are required to do the same. Given use of appropriate culverts, bridges, and road construction practices, estimate damages downstream, within the most likely length of impact, (200 meters?).

Report Section Identification: 5.4.10 Overall Risks to Transportation Corridor to Salmon Populations
Report Page Number: Page 5-74
Comment: Section states that magnitude of changes in fish populations cannot be estimated at this time. Estimates of effects and impacts on physical habitat (such as length of stream, areas of wetland loss, and percent time of fish passage barriers) could be summarized, similar to other sections where physical habitat effects are reported rather than estimated effects on fish populations.
Recommended Change: Recommend summarizing physical habitat effects, where feasible.

Report Section Identification: 5.5
Report Page Number: 5-75
Comment: Without some quantification of impacts to fish, it is impossible to quantify impacts to salmon-mediated effects on wildlife. It is not clear that impacts on wildlife would be proportional to impacts on salmon caused by the road because much wildlife can move long distances...as stated in the early sections of the Assessment.

No analysis is made of roadway corridor effects on wildlife. This is purposeful, keeping impacts related to salmon, but may underestimate actual risks to wildlife. This could be stated in this section of the Assessment.

Recommended Change: Rewrite the Assessment with site specific information, or allow Pebble Limited Partnership to provide detailed permitting documents, then review/estimate likely impacts to fish and wildlife.

Report Section Identification: 5.6
Report Page Number: 5-75
Comment: The text states that any negative impact on fish could lead to negative impact on the health and welfare of Alaska Natives. Yet, of the 40,000,000 (high range) fish returning to the Bristol Bay region, it was stated earlier that approximately 150,000 are taken for subsistence. The assessment assumes that “any” impact to fish populations would necessarily result in a proportional impact to Alaska Native subsistence fish use although the relative taking of subsistence fish is small relative to the taking of commercial fish.

Recommended Change: Present a more detailed or at least report more precisely the numbers of salmon used for subsistence versus the total number of fish, and discuss the balance that could be adjusted between escapement, commercial, and subsistence fish harvest, particularly if a more detailed economic analysis shows the mine is more economically valuable than slight losses to the commercial fish industry.

Report Section Identification: 5.6
Report Page Number: 5-76
Comment: The statement that “some” residents use the area of the road corridor, and “some” negative effects on salmon habitat “would” result in displacement of subsistence users is unfounded. As presented in the next sentence, the road may actually bring more subsistence users to easily accessible streams, resulting in a bigger impact than the road itself. If 500 salmon return each year to a stream, and subsistence users only collect 50, then a 2% decrease in salmon populations returning to the river will not have any impact on subsistence use. In fact, it may go unnoticed. The road itself may have a positive impact to subsistence culture by increasing access in contrast to the direct negative impact to fish and wildlife of the road corridor.

Recommended Change: Provide quantification of salmon impact, use subsistence road use information to determine if it preferentially brings more subsistence users to the easier accessed rivers. Discuss whether Native Alaskans use roads and the positive and negative impacts roads
may have on subsistence culture. Overall, this section is poorly substantiated. Need to define what is likely, and then provide a range of variation around what is likely.

Report Section Identification: Chapter 6
Report Page Number: 6-1

Comment: Current practice across a broad spectrum of engineering and industry for risk management is to conduct a form of risk evaluation referred to as a Failure Modes and Effects Analysis (FMEA). The FMEA process is used to identify and focus in on aspects of the design with the highest relative probability of failure and the greatest consequences. An integral part of an FMEA is the identification of mitigation measures that must be implemented to ensure that any failure modes for which there is a significant consequence and risk are mitigated to the extent necessary to reduce risk to tolerable limits. These aspects are then reviewed in additional detail and measures to mitigate the risk by reducing the probability of failure are designed into the feature. For significant projects, the risk evaluation may be advance to a formal engineering risk assessment that quantifies the risk in more detail. The Assessment fails to recognize these basic risk management tools.

Report Section Identification: Chapter 6
Report Page Number:

Comment: Since the performance of Failure Mode and Effects Analyses (FMEAs) and the requirement to implement risk mitigation measures to reduce risks is the practice in Alaska, and therefore Bristol Bay, the risk to salmon ecosystems should be included in the FMEA for any dam on a mine of any size or nature. If appropriately applied the risk to salmon ecosystem habitat should be addressed on a mine by mine and/or cumulative mines basis (for actual cases) and should ensure that only mines which meet the test of acceptable risk are permitted to be developed. If the mitigation measures required to render tolerable risks result in unfavorable project economics, then development of the mine would need considerable re-evaluation.

Report Section Identification: Chapter 6.1
Report Page Number: 6-1

Comment: The dam failure analysis assumes an extreme event while the probable maximum flood (PMF) is occurring, and that the dam failure is the worst possible (a full breach of the dam), and the breach results in loss of the maximum reasonably anticipated amount of tailings (20%). This is at the extreme limit of possible concurrent consequences, and the absolute worst for salmon impacts.

The likelihood of the PMF is extremely low. High hazard dams are all equipped to contain or pass the PMF. Hence there is also an extremely low probability that the dam will fail if the PMF did occur. There are also a number of failure consequences other than the extreme consequence of a breach and 20% tailings discharge, should 'a failure' occur. Thus the combination of a failure of this particular type with this particularly severe consequence is a very special case of failure with a probability much, much less than the failure probability derived from historic dam failure records.

No examples of a failure of a tailings dam constructed by the downstream method with a height of
over 150 meter under any circumstances are in recent literature.

Report Section Identification: Chapter 6
Report Page Number: 6-1
Comment: The EPA assessment appears not to recognize the FMEA process or the benefits and consequences of applying the FMEA process and subsequent requirement for the implementation of the risk reduction measures to reduce risks to acceptable levels. Certainly the generic treatment of a ‘mining scenario’ which has not been thoroughly tested and optimized through the application of the FMEA and risk mitigation, together with the extreme size and extreme consequences assumed in the assessment results in a biased and unrealistic characterization of the true risk.

Report Section Identification: Vol 1 Chapter 6, Introductory paragraph
Report Page Number: Page 6-1 (Pg 231 of 339)
Comment: Why would the failure of a tailings slurry pipeline not be considered a significant risk to fish?

Report Section Identification: 6.1
Report Page Number: 6-1
Comment: What evidence is there regarding the 20% volume of tailings that would mobilize during a failure?
Recommended Change: Provide justification for the 20% or whatever percentage is most likely.

Report Section Identification: 6.1.1 Overview of a Tailings Dam Failure
Report Page Number: Page 6-1 through 6-2
Comment: The tailings dam failure scenarios evaluate the partial and full, breach, flood and sediment transport scenarios. Reading further into the report, such as Box 6-2, Page 6-15 the Nixon Fork Mine release highlights the variability in scale and types of failures that could occur with the tailings facilities. In order to have a comprehensive understanding of risks, a failure mode analysis should be performed on each of the major structures. For instance, the TSF facilities may have failures such as minor overtopping (as compared with the full breach scenario) on fairly frequent basis that cause chronic aqueous and sediment transport related contaminant exposure events that over the long term cumulatively have significant impacts to the downstream reaches. There are likely several other “failure” modes that are much more probable to occur (such as dam drainage and treatment equipment failures), and would have fairly significant impacts to downstream ecosystems. The assessment does not provide relative quantification of impacts, which will eventually be needed to fully evaluate the project or any proposed development in the Bristol Bay watershed.
Recommended Change: Sections 4.3, 4.4 and Section 6.1 should expand the mine failure modes to understand the more common and more likely failure mechanisms and potential impacts, in addition to the bookend No Failure and Failure. Recommend using probabilistic risk and failure assessment methods to identify Likely Failures.
<table>
<thead>
<tr>
<th>Report Section Identification: 6.1.1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: 6-2</td>
<td></td>
</tr>
<tr>
<td>Comment: A tailings storage facility dam failure is the single most significant potential impact of the dam. Yet no site-specific sediment volumes are estimated or calculated and no site-specific sediment transport study was completed. The generalized discussion provided in these “failure” sections may provide some good description, but there is no substantiating evidence provided to support the hypotheses provided.</td>
<td></td>
</tr>
<tr>
<td>Recommended Change: Calculate likely site-specific sediment volumes that would be mobilized during dam failure and do a site- and stream-specific sediment transport study.</td>
<td></td>
</tr>
<tr>
<td>Comment Reference:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification: 6.1.1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: 6-3</td>
<td></td>
</tr>
<tr>
<td>Comment: Here the “long winter season” would not allow access, but the long winter and freezing conditions are not mentioned or evaluated in the water balance or fish use discussions.</td>
<td></td>
</tr>
<tr>
<td>Recommended Change: Incorporate effect of freezing conditions during the long winter season on water balance and fish use of small shallow streams and lakes.</td>
<td></td>
</tr>
<tr>
<td>Comment Reference:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification: 6.1.2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: 6-2</td>
<td></td>
</tr>
<tr>
<td>Comment: Lower dam height is listed as 107 meters here but is 98 meters in the introduction to this section.</td>
<td></td>
</tr>
<tr>
<td>Recommended Change: Use consistent facts and figures.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification: 6.1.2.1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: 6-4</td>
<td></td>
</tr>
<tr>
<td>Comment: The use of Mt. St. Helens as an example is incomplete. There is no discussion of the presence, impact, or return of fish to the streams. In addition, the discussion of transport of fine sediment into the main stem Kottuli, Mulchatna, and Nushagak is inadequate.</td>
<td></td>
</tr>
<tr>
<td>Recommended Change: Provide a more detailed analysis of the short-term and long-term impacts of Mt. St. Helens on fish and wildlife resources and a full analysis of sediment transport downstream to the larger tributaries. This analysis should then be applied to the area of study of the assessment.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification: 6.1.2.3 Risk Characterization</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: 6-8</td>
<td></td>
</tr>
<tr>
<td>Comment: The personal communication reference is incorrect. River-rearing sockeye salmon can</td>
<td></td>
</tr>
</tbody>
</table>
contribute 20% or more of the total sockeye return to the Nushagak district; these fish are not “sea-type” sockeye as the report indicates. In the Nushagak River, there is a significant contribution of sockeye that are not associated with a lake but may be rearing in side channels, sloughs, or oxbows.

Recommended Change: Edit the personal communication reference to accurately reflect the conversation.

<table>
<thead>
<tr>
<th>Report Section Identification: 6.1.2.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: 6-8 through 6-10</td>
</tr>
<tr>
<td>Comment: Chinook effects are discussed on a Koktuli River-wide effect, but the primary impact areas are in the North Fork Koktuli. No discussion or analysis is provided of North Fork Koktuli Chinook effects versus overall Koktuli River effects.</td>
</tr>
<tr>
<td>Effects are unquantified for sockeye, the primary economy-driving species.</td>
</tr>
<tr>
<td>The conclusions that 28% of Chinook salmon would be impacted are not well supported. It is not necessarily “likely” given the limited level of evaluation provided. It may be possible, but is not presented as just “possible”. The further statement that over 50% of Chinook population could be impacted in the Mulchatna/Nushagak Rivers is completely unsupported in the Exposure/Response and Risk Characterization sections as the extent of primary sediment transport is discussed only for the North Fork Koktuli. There is a disconnect between the broader conclusions based on limited areal analysis and limited level of the analysis.</td>
</tr>
<tr>
<td>The level of such effect is what is unclear because of the limited analysis/evaluation provided within the Assessment.</td>
</tr>
<tr>
<td>Recommended Change: Do not rely on this Assessment for decision making, unless it is expanded significantly to provide significantly more detail on the actual or likely extent of physical and chemical impacts. However, as noted, Assessment can be used to identify areas of concern that require further analysis during the permitting process.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification: 6.1.2.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: 6-9</td>
</tr>
<tr>
<td>Comment: The first sentence of this section sums up everything provided in the Assessment on dam failure. After nine pages of analysis, no new information is provided.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification: 6.1.2.3 Risk Characterization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: 6-10</td>
</tr>
<tr>
<td>Comment: The proportion of spawning Chinook salmon in the Koktuli River is likely skewed high because of difficulties counting Chinook salmon in other systems and the relatively good counting conditions in the Koktuli River.</td>
</tr>
<tr>
<td>Recommended Change: Add sentence describing the identified bias.</td>
</tr>
</tbody>
</table>
Report Page Number: 6-10

Comment: Section 6.1.2.4, Uncertainties, indicates that while it is "certain" that a tailings dam failure would have "devastating effects", the "timeframe for geomorphic recovery" could be "decades". However, given that EPA has assumed that because of the infinite life of the project that the dam has failed, a consistent perspective would be to assume that several decades for recovery from a very low probability event is a relatively short period of time over infinity.

Report Section Identification: 6.1.3.1
Report Page Number: 6-11
Draft Comment:
It is questionable as to whether deposition of volcanic ash from Mount St. Helens is representative of tailings.
Draft Recommended Change:
Provide rationale as to how ash deposition is comparable to that of tailings (e.g. particle size, constituents, etc.).

Report Section Identification: 6.1.3
Report Page Number: 6-11 to 6-12
Comment: This section provides thresholds for suspended sediment, and thus, is closer to a risk assessment than many other sections of the Bristol Bay Watershed Assessment, comparing site conditions to threshold effect conditions. However, while this Assessment does some modeling of sediment transport, there are no actual modeled suspended sediment concentrations predicted. So, the Assessment lists the threshold values, and then qualitatively estimates that site-specific suspended sediment concentrations would exceed the thresholds. The lack of site-specific values renders the any derived conclusion to be a qualitative comparison that is subject to uncertainty and opinion.

Recommended Change: Calculate estimated suspended sediment loads over time. Provide an analysis of how long and/or how often site-specific suspended sediment loads would be greater than the threshold.

Report Section Identification: Chapter 6.1.4.1
Report Page Number: 6-13
Comment: Section 6.1.4.1 mentions the 2012 overtopping incident at the Nixon Fork Mine as an example of a winter failure, incidental to their example of an overtopping event during seasonally high flows. Box 6-2 (p. 6-15) is an inaccurate description of the 2012 overtopping incident at the Nixon Fork Mine, as reported to the “State Mine Safety Engineer” by the mine operator. EPA fails to note the huge disparity in size between the Nixon Fork tailings dam and the very large tailings dam used in their hypothesis. EPA also fails to mention that there were no impacts to the environment as a result of the discharge from the Nixon Fork incident.

Report Section Identification: Chapter 6.1.4.1
Report Page Number: 6-14
Comment: Box 6-1 uses case histories to extrapolate the impacts of tailings to the current study.
However, all three examples are historical mines initially developed in the 1800s that are now Superfund sites. None of the examples would have had tailings dams or mill processes based on current geotechnical, metallurgical and environmental engineering principles or current regulatory standards. EPA states, “These brief descriptions provide background information and support the use of evidence from these cases in analyzing risks from a hypothetical tailings dam failure in the Bristol Bay watershed”. The descriptions of three sites which had typical/historic operations which occurred decades ago does not support an “analogous” relationship with what “may” occur at the Pebble site. For instance it is hard to compare mining in the Coeur d’Alene River where “tailings were dumped into gullies, streams, and the river until dams and tailings impoundments were built beginning in 1901”, with a modern mining facility designed and permitted under much more stringent regulations than existed over a decade ago. Similarly, analysis of a tailings dam failure in 1950 at Soda Butte Creek in Montana and Wyoming is hardly an analogous situation to what may occur in the Bristol Bay region.

Report Section Identification: Box 6.2
Report Page Number: 6-14
Comment: The examples provided in the assessment, such as Soda Butte Creek should be noted that much of the damage is the result of mining practices of the late 1800 and early 1900s, and related to acid mine drainage mobilization of metals. These issues may not apply as directly to the Pebble Mine under currently regulatory permitting and oversight conditions.
Recommended Change: Provide an analysis of the examples, comparing them with the proposed mine, identifying conditions that are most relevant to the Pebble Mine.

Report Section Identification: 6.1.4
Report Page Number: 6-18
Comment: It is uncertain that higher flows would increase leaching rates. While higher flows bring more “uncontaminated” water across the contaminated substrate, the water is moving much faster, and thus has less contact time with contaminated sediments. Then, if flow is high enough to suspend particulates, then contact could increase. The relationship between high flow, sediment contact, and chemical concentrations is not linear.
Recommended Change: Remove or provide conditions for this statement regarding higher flows increasing leaching rates.

Report Section Identification: Table 6-4
Report Page Number: 6-19
Draft Comment:
First use of TEC and PEC not previously discussed in the text.
Draft Recommended Change:
Define these terms in the context in which they are used in the text prior to presentation in the table.
Draft Comment:

Note that in the absence of a bioaccumulation factor (BAF) in the peer reviewed literature, a default value of 1 is used. The referenced studies therefore reinforce the use of this default BAF.

However, an inverse relationship between BAF and media concentrations has been demonstrated in the majority of test species as reported by David K. DeForest et al.

Draft Recommended Change:
Include more recent studies of BAFs.

Draft Comment Reference:
Assessing metal bioaccumulation in aquatic environments: The inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration, David K. DeForest,, Kevin V. Brix, and William J. Adams Aquatic Toxicology 84(2007) 236-246

Report Section Identification: 6.1.4.2
Report Page Number: 6-22

Draft Comment:
Terms probable effect concentration (PEC) and threshold effect concentration (TEC) are not defined in the context in which they are discussed.

Draft Recommended Change:
Define these terms.

Report Section Identification: 6.1.4.2
Report Page Number: 6-22

Draft Comment:
Biotic ligand model is not defined in the context in which it is discussed.

Draft Recommended Change:
Define this term and its relevance to the discussion.

Report Section Identification: 6.1.4.2
Report Page Number: 6-23

Draft Comment:
The text states that the “consensus TECs and PECs are used to evaluate tailings as potential sediments because they are the best supported values”. However, it may be unclear to the nontechnical reader what is meant by consensus values and whom and what basis of evaluation makes these values the best supported for use.

Draft Recommended Change:
Describe what is meant by consensus values and why these values are deemed the best supported values. According to what/whom?
Also discuss the level of conservatism the use of these values implies.

Report Section Identification: 6.1.4.3
Report Page Number: 6-24

Draft Comment:
This is the first instance in the report in which an attempt is made to define the hazard quotient. The text
defines the hazard quotient as "the relative degree of toxicity of leachate constituent or as an indication of the degree of dilution required to avoid significant toxic effects". This interpretation is somewhat simplistic and does not provide insight into what the value means.

Draft Recommended Change:
Provide EPA's definition EPA defines the HQ as the ratio of estimated site-specific exposure to a single chemical from a site over a specified period to the estimated daily exposure level, at which no adverse effects are likely to occur.
Provide an interpretation of the HQ as HQs < 1.0 indicate acceptable risks, while HQs ≥ 1.0 indicate unacceptable risks while also taking into consideration the inherent uncertainty in the estimate.

Draft Comment Reference:

Report Section Identification: 6.1.4.3
Report Page Number: 6-25
Draft Comment:
Contrary to the statement in the text, a quotient of 1.1 does not explicitly imply that the undiluted tailings would produce toxic prey for fish given the inherent uncertainty in the estimate.

Draft Recommended Change:
Discuss the interpretation of the hazard quotient recognizing the inherent uncertainty in the estimate.

Report Section Identification: 6.1.4
Report Page Number: Entire section
Comment: This section is relatively well written and has a different tone from much of the rest of the document. It provides available evidence, compares possible site data with effect thresholds, discusses the uncertainties and provides a summary based on the data and analysis. In summary, sediment/tailings exposure is the media/pathway of most concern. However, the quality/availability of input data is low as presented in Table 6-6.

Recommended Change: More site-specific data and/or analysis are needed to define site conditions and likely results of various failure scenarios.

Report Section Identification: Table 6-6
Report Page Number: 6-28
Comment: Showing a "+" for the quality of exposure-response is misleading. The toxicity data, without exposure, has little meaning in regard to the potential effects at the site. The table is very confusing.

Recommended Change: Find a better way to portray information related to the weight of evidence.

Report Section Identification: 6.1.6
Report Page Number: 6-29
Comment: A catastrophic TSF dam failure would seem to be the most significant impact to the
environment. However, given the lack of definition of the probability and likely actual size of a potential spill under the hypothetical mine scenario, the conclusions stated in this section are likely overstated.

Recommended Change: Some understanding of the assumptions should be summarized here in summary form to give readers. The text should reflect that under the hypothetical assumptions it seems the described result would occur but under different conditions, a different level of impact would occur.

Report Section Identification: 6.2
Report Page Number: 6-30

Comment: The last paragraph on this page makes statements about what “would” happen. The implication here is that contaminated sediment would reach Iliamna Lake at concentrations that would impact fish, fish food, and/or fish habitat. While it is possible that smaller sediment particles will travel downstream, a vast majority could become entrained in stream sediment and permanently buried in depositional areas. And, there is a strong potential for dispersion along the stream. Thus, depending primarily on distance downstream to the lake and stream gradient, the amount/density of spilled “sediment” would vary greatly and would be attenuated with distance from the spill site.

Recommended Change: The dispersion/streambed entrainment should be mentioned here, and some further discussion of this issue should be added to the next paragraph (Page 6-32) regarding the probabilities of spills in rivers/wetlands.

Report Section Identification: 6
Report Page Number: 6-30 through 6-35

Comment: These pages address the potential effects of a concentrate spill in the transportation corridor, with its many stream crossings. Page 6-30 states that a concentrate spill would be limited to 475 cubic meters due to automatic shutoff, and it states that all or part of this mass could enter the stream. If the concentrate slurry volume is 475 cubic meters, the concentrate itself is probably 50% of that amount. It is stated that a concentrate spill into a stream or wetland would result in acute exposure of fish and invertebrates to toxic water. This is very doubtful for a few reasons: 1) the slurry concentrate consists of approximately 50% water (at a pH of likely greater than 7.0), and sulfides of copper as chalcopryite, some pyrite and bornite. These minerals take a significant time, probably years, to fully oxidize and produce acid. The assessment does not consider that there will be time to clean up the concentrate spill before any major oxidation would take place. There may still be some stream damage or wetland damage but it is not likely that toxic water would be present, 2) There is also no mention that the vast majority of the length of the pipelines is on land and may never reach a stream and 3) the concentrate is very valuable and the Company will have a major economic incentive (as well as permit requirements) to clean up any spills to the best extent possible.

Recommended Change: Present a more unbiased view of the likelihood of a concentrate spill entering a stream and discuss that the oxidation of the sulfides occurs at a potentially very slow rate, thus lessening the impacts to water quality over time. Also, these impacts could be mitigated by requiring a detailed Spill Mitigation Plan in the permit process.
Report Section Identification: Table 6-7
Report Page Number: Page 6-31 (Pg 261 of 339)
Comment: There is no discussion of the value for dissolved organic carbon used to calculate the biotic ligand values for copper. Given the inaccuracies in reporting other biotic ligand values (see comment on pages 5-49 through 5-55), the inputs and outputs for these values should be verified.

Report Section Identification: 6.2.1.1
Report Page Number: Page 6-32 (Pg 262 of 339)
Comment: Says that 2,567 L/s of product concentrate would be spilled. This is 308,040 L in 2 minutes. This is 308 m³. On Page 6-30 it says 475 m³ would be spilled. It also says 1,767 L/s of leachate would be spilled; this is 212,040 L in two minutes. In Section 6.2.1.3 on Page 6-34 it says 366,000 L of leachate would be spilled.

Report Section Identification: 6.2.1.1
Report Page Number: 6-33
Comment: The last paragraph of this section, just below Table 6-8 is likely incorrect. Not all invertebrates will die at the probable effect concentration (PEC), and only predicted concentrations of copper notably exceed the PECs. Invertebrates would colonize the fine-grained sediment resulting from a pipeline spill, just not those sensitive to the metals contained within the pipeline slurry.
Recommended Change: More accurately represent what is likely to occur.

Report Section Identification: 6.2.1.2
Report Page Number: 6-33
Comment: The biotic ligand -based criteria sensitive to particular water quality parameters (i.e., pH, hardness, and dissolved organic carbon).
Recommended Change: Provide a brief statement of how water quality parameters impact biotic ligand-based criteria and whether the impacts result in an overestimation or underestimation of predicted risks and how those risk determinations are influenced by kinetics and downstream mixing.

Report Section Identification: 6.2.1.3
Report Page Number: 6-34
Comment: Why are Liters used in this section? 366,000 Liters sounds like a very large amount number, but is about 100,000 gallons or 366 cubic meters which is a relatively small volume. Also it is unclear whether this is liters of water entrained in the slurry or total volume of slurry, in which case, the water volume would be significantly less.

The statement that “None of the river or streams …could provide enough dilution to avoid the acute criterion” is misleading. Acute criteria are generally based on 48 hour or 96 hr LC50 or similar
endpoints.
As soon as the two-minute spill ended, the water within the slurry would begin to be diluted by clean stream water. Similarly, but more slowly, the pore water within the slurry would be infiltrated and diluted by clean stream water. Over some relatively short period of time the water concentrations outside of the slurry would likely rapidly decrease below acute criteria. This could be minutes to hours. Thus, it is unlikely flowing water would have metals concentrations raised to the criteria for more than a few minutes or hours. It is also likely that within days, the pore water within the spilled slurry would be notably diluted. Longer term high concentrations could be possible in a small pond or wetland where there is no significant flow.

A very small 5-liter per second stream provides 18,000 L per hour and 432,000 L per day. So in one day 5 L/s stream could provide clean water volume of 100% of the total spill volume.

Recommended Change: Provide a more accurate description/understanding of the dynamics of a slurry spill entering moving water.

Report Section Identification: 6.2.1.3
Report Page Number: 6-34
Comment: It was calculated that only one pipeline spill was likely into a stream over the 78 years of mine operation and such a spill would be in one location. This information is not provided until after all the discussion of impacts. Similar to much of the document, this discussion of potential impacts is provided before assumptions and conditions giving readers the impression effects are definite, or imminent, when in fact they may be severely limited in impact and extent.

Recommended Change: Move the summary of spill potential to the start this section, add in a discussion of the fact that a stream spill would only occur in one location or stream, and add a caveat to the beginning of the effects discussion that..."IF" a pipeline spill occurred in a waterbody, then these effects were predicted to occur under the assumptions provided above.

Report Section Identification: 6.2.1.3
Report Page Number: 6-35
Comment: It is concluded that a slurry spill “...would certainly cause long-term local loss of fish and invertebrates”...”...for many years...”. The provided assumptions and the myriad of potential stream crossings in the transportation corridor do not necessarily indicate that this is as certain as stated here. In fact, such a statement could only be made under some quite specific receiving water body conditions, and as calculated, only in one water body throughout the entire life of the mine.

Recommended Change: Adjust the conclusions to reflect either a broader range of potential effects, or define specific conditions under which these conclusions may occur.

Report Section Identification: 6.3
Report Page Number: 6-36 to 6-41
Comment: The topic of this section is unclear whether the assumptions provided are adequate and/or provide reasonable estimates of potential risk for very long term effects.

Recommended Change: A more site specific analysis of water balance and treatment/collection failure needs to be completed for likely mine conditions and operations.
<table>
<thead>
<tr>
<th>Report Section Identification: 6.3.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: Page 6-37 (Pg 267 of 339)</td>
</tr>
<tr>
<td>Comment: States “At mine closure, it is expected that acid-generating rock would be disposed of in the TSF or the mine pit. However, premature closure could leave waste rock piles in place.”</td>
</tr>
<tr>
<td>Comment: A bond would be available to put this rock back into the pit if there was sufficient room in the pit for this rock.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification: 6.3.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: Page 6-38 (Pg 268 of 339)</td>
</tr>
<tr>
<td>Comment: There is an incorrect reference to Table 5-12. The correct reference is Table 5-14. “Failure of collection and treatment of leachate from Tertiary waste rock could cause acute lethality in sensitive invertebrates and chronic toxicity to invertebrates at up to two times dilution.” Add after “up to two times dilution” based on the biotic ligand model”.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification: 6.3.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draft Comment: Invalid reference to Table 5-12 for water quality criteria. The document does not provide a comprehensive list of water quality criteria for all mining chemical constituents of concern.</td>
</tr>
<tr>
<td>Draft Recommended Change: Provide a table that includes applicable water quality criteria for all mining chemical constituents of concern.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification: 6.3.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: Page 6-39 (Pg 269 of 339), Page 8-7 (Pg 300 of 339)</td>
</tr>
<tr>
<td>Comment: Need to verify the 2,900 to 52,000-fold dilution required as determined by the biotic ligand model.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification: 6.3.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: Page 6-39 (Pg 269 of 339)</td>
</tr>
<tr>
<td>Comment: For the biotic ligand model Pre-Tertiary waste rock leachates would require from 2,900- to 52,000-fold dilution. To meet state chronic water quality criterion the leachates would require from 280- to 580-fold dilution. See comment for pages 5-53 to 5-37.</td>
</tr>
</tbody>
</table>
Comment: Says “Oxygen levels are expected to be lower in the pit than in the tests, but oxygen would be provided in the pit by atmospheric diffusion from the surface, precipitation, shallow groundwater, and vertical mixing of water in the pit during turnover.”

Comment: It should be noted that some deep mine pits can be meromictic, i.e. they do not turn over to the very bottom where there may be a layer of dense mineral-rich water.

Report Section Identification: 6.4 Road and Culvert Failure

Report Page Number: 6/42

Comment: The definition of culvert failure is excessively broad and the citations of the literature need further clarification. Well designed culvert installations allow for fingerling fish passage during most annual high water events, are oversized, and are typically submerged to allow for water presence during low flow periods.

Only having time to review one literature citation (Langill and Zamora, 2002), the risk assessment approach to culvert installation used by Nova Scotia (identified in the study) is not applicable to Alaska’s standards for culvert installations. Within the Nova Scotia program, the majority of culverts are installed without design and without involvement or approval authority by the Canadian equivalency of ADFG. The large majority of the culverts that are observed to not allow fish passage are perched. Rudimentary implementation of culvert design BMPs would alleviate this problem and is already addressed at Alaska projects.

Report Section Identification: 6.4

Report Page Number: 6-42 through 6-44

Comment: Simply using bridges over smaller streams would essentially eliminate the potential for culvert failures. Proper culvert design and conservative over-sizing, would significantly reduce potential for culvert failure.

Recommended Change: Provide more detailed analysis on culvert failure rates for well designed or oversized culverts for the size of streams most likely to be culverted along the corridor.

Report Section Identification: 6.6

Report Page Number: 6-45

Draft Comment: Effects in human welfare and Alaska Native culture will be evaluated in the Health Impact Assessment (HIA) process.

Draft Recommended Change: Acknowledge that the effects in human welfare and Alaska Native culture will be evaluated in more depth in the Health Impact Assessment (HIA) process.
Report Section Identification: 7.0
Report Page Number: 7-1 through 7-16
Comment: Cumulative impacts are a potential concern, and the development of infrastructure for the Pebble Mine does make it more likely for other roads and infrastructure. However, assessing the impacts of these extremely hypothetical mines is even more difficult than for the Pebble Mine deposit. It would seem to be important to better predict the risks from the Pebble Mine before cumulative effects are examined.

Report Section Identification: 8.1.1 Routine Operations
Report Page Number: Various
Comment: Here and throughout the document when referring to the risk due to routine operations, there is a general lack of assessment of risk of loss of fish habitat relative to the total amount of available habitat in the two drainages. For example, on page 8-1 the document states that 21.7 to 33.8 km of fish habitat will be lost due to the footprint of the mine, but there is no comparison made to the total amount of available fish habitat against which to measure the level of risk. Similar statements are made relative to loss of wetlands (page 8-2) and fishless headwaters (page 8-2) with no corresponding estimate of the total amount of available wetlands or fishless headwaters in the two drainages from which to measure risk.
Recommended Change: Quantify the percent of available fish habitat, wetlands, and fishless headwaters potentially lost relative to the total available amounts of these quantities so that relative risk can be estimated.

Report Section Identification: 8.1.1 Routine Operations
Report Page Number: 8-1
Comment: Bullet number 2 of the list at the bottom of page 8-1 and continuing to the top of page 8-2 characterizes a loss of streamflows and then alludes to a reduction in production of salmon and resident species. This allusion is a mischaracterization of the overall assessment of risk, in that loss of fish production was not directly quantified, but the loss was indirectly quantified through potential losses in fish habitat (see section 8.5 concerning uncertainties and use of fish habitat loss as a surrogate for loss of fish production). This mischaracterization needs to be checked throughout the document for consistency.
Recommended Change: Throughout the document, remove all statements that characterize the risk in terms of loss of fish production and ensure all statements of risk are in terms of potential loss of fish habitat in keeping with the uncertainties presented in Section 8.5 – bullet 5.

Report Section Identification: 9.2 Chapter 2: Characterization of Current Condition
Report Page Number: Various
Comment:
Section 9.2. Incorrect author citations of “ADFG” that should be “ADF&G.”
Recommended Change: The citations in section 9.2 with “ADFG” as the author should be changed to “ADF&G.”
Comment: Snowpack is predominant source of water and there is a water surplus in the Nushagak Big River Hills physiographic region, which is a "wet" climate class. Thus, downstream "dewatering" is less likely to be an issue. If permafrost moves up into stored waste rock, then less groundwater flow through it. Handling of snowpack and snow melt is important to impact assessment.

Recommended Change: Add the Nushagak-Mulchatna Coho Salmon Management Plan (see 5 AAC 06.368), which is not included here. Additionally, although it is used as a guiding tool, the Southwest Alaska Rainbow Trout Management Plan is not adopted as regulation.

Comment: Stating sport fishing is "banned" is not a good descriptor. Recommended Change: Use closed rather than "banned". In addition, in the Kvichak drainage upstream from the outlet of Iliamna Lake, lake waters further than ½ mile from inlet or outlet streams, remain open to sport fishing during April 10 - June 7.

Comment: Estimates of run size for Canadian Yukon Chinook salmon are incorrect. The numbers for this stock might be escapements, but are not run sizes. Recommended Change: Check and correct the run sizes for Canadian Yukon Chinook salmon per the cited reference. Perhaps these are escapements and the catch needs to be added in to estimate the run size. Draft Comment Reference: Run sizes for Canadian Yukon Chinook salmon can be estimated from data available in Howard, et al. 2009 as per the Appendix A, Table 6 citations.

Comment: This section does not seem relevant to the stated scope of this assessment. There are no endangered species of salmon in Alaska, including Bristol Bay. Policies in regulation (e.g., 5 AAC
39.222, 5 AAC 39.223) and philosophy of assessing and managing the State’s salmon stocks as dictated in statutes and the State Constitution provide mechanisms to detect and be proactive to address dramatic declines in salmon abundance.

Recommended Change: Delete Pages

<table>
<thead>
<tr>
<th>Report Section Identification: Volume 3 Appendix E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: 15, 16, 81 and 82</td>
</tr>
<tr>
<td>Comment: These pages discuss the value of the fishing, subsistence fishing, hunting and recreation industries for Bristol Bay and list the part and full time jobs that are provided by these industries. By the nature of the weather, most of these jobs are part time. Also, no discussion of the high paying full time jobs is provided for the mine operation. A reader of the Bristol Bay Watershed Assessment Executive Summary and Appendix E versus one reading the Northern Dynasty Minerals, Ltd. report of 2011 will arrive at two different conclusions. The Northern Dynasty Minerals, Ltd. report states that the area has significantly dropped in population (16% since 1997) due to lack of jobs and that the price of sockeye salmon has dropped from an inflation adjusted peak of $3.75 in 1988 to $0.60 after the year 2000. Data presented in the Assessment on pages 81 and 82 of Volume 3 Appendix E show that prices are on the rise again although the graphs show fluctuations over time. However, none of this valuable information seems to have been included in the Executive Summary. The Executive Summary fails to state that the price has not recovered to what it was in the 1980’s. The Northern Dynasty Minerals, Ltd. report fails to state that the price has made somewhat of a comeback since 2006.</td>
</tr>
<tr>
<td>Recommended Change: Include some of the fisheries statistical data that is in Appendix E in the Executive Summary. Also, it should be stated in the Assessment that the mine would provide 2500 jobs during a 4 year construction period and 1100 full time jobs over the life of the mine. All of these jobs are full time and high paying.</td>
</tr>
<tr>
<td>Comment Reference: Northern Dynasty Minerals “Preliminary Assessment of the Pebble Project Southwest Alaska” issued on February 17, 2011, by Wardrop, a Tetra Tech Company, page 419.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification: Volume 3 Appendix E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: Appendix E Volume 3 All Pages</td>
</tr>
<tr>
<td>Comment: The entire Appendix E provides statistics on the entire Bristol Bay region, where many drainages have no contact whatsoever with the mine. An example of this is on page 58 where the annual harvest in millions of fish is shown for various drainages. The Ugashik, Egegik and Togiak drainages are completely unaffected by anything that could happen at the mine.</td>
</tr>
<tr>
<td>Recommended Change: To be fair and unbiased, either revise Appendix E to remove drainages that could in no way be affected or very openly state in Appendix E and the executive Summary that these drainages could not be affected by the mine.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Section Identification: Vol 3 Appendix H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Page Number: 10 / 11</td>
</tr>
<tr>
<td>Comment: The range in which there is uncertainty of AMD is between 1 and 3, and non-PAG material has an NNP > 3. Note: Page 2 of Appendix I suggests the range of uncertainty would be</td>
</tr>
</tbody>
</table>
between 1 and 4.

Report Section Identification: Appendix H
Report Page Number: Page 19, 20 and 21

Comment: The following comment is an example of how could significantly alter the conclusions of impact if the mine plan used in the assessment had been vetted through the environmental and permitting review processes.

There are actual humidity cell test results for the Pebble tailings, which were started in 2005 and 2008; however, it appears that these tailings are the rougher tails (85% of the total) and not the pyritic tails (14% of the total). Table 7 on page 21 shows pH average of 7.8 for the rougher tails. No specific data is presented for the pyritic tails. It is likely that these tails are extremely acidic due to: a) a fine size of 80% passing 30 μmeters, and b) the pyrite content will range from 50% to 80% of these tails. This information came from the Northern Dynasty Minerals, Ltd. 2011 Waldrop report. The applicant may state that the acid producing potential of the pyritic tails are irrelevant since they plan to encapsulate them in the TSFs with inert rougher tails and the combination of these tails and a large water height will prevent the pyritic tails from oxidizing. It is still important to know what the potential is of the pyritic tails to produce acid, since the worst case is that these tails may oxidize.

Recommended Change: Get SPLP and/or humidity cell tests on the pyritic tails and evaluate the results.

Report Section Identification: Appendix I, Volume 3
Report Page Number:

Comment: Appendix I in Volume 3, Conventional Water Quality Mitigation Practices for Mine Design, Construction, Operation, and Closure by Barbara A. Butler, Ph.D. is a primer on mine waste written at a very basic level. It is heavily weighted towards the review of waste rock and tailings storage at hard rock mines (Section 1 and 2), and quickly loses detail and consistency as it discusses other mine features and waste streams such as pits, underground mines, dust, stormwater, chemicals, pipelines, and sanitary wastes. (Sections 3 through 9). In general, the report describes the feature or waste stream, the potential mechanisms or pathways for impacts to the environment, and mitigation measures presented as standard engineering and regulatory practices related to those aspects. For example, waste rock that may be potentially acid generating would be mitigated through a characterization plan, and encapsulated in storage. The body of the report is heavily referenced to a variety of publications including controversial references such as ICOLD, 2001 (Tailings Dams, Risk of Dangerous Occurrences) to potentially stale references such as Piteau Associates Engineering, 1991 (Mined Rock and Overburden Piles—investigation and design manual: Interim guidelines) to recent non-scientific publications such as Chambers and Highman, 2011 (Long term risks of tailings dam failures), as well as some government publications such as the States of Alaska (ADNR, 2005) and Idaho, USEPA, and Commonwealth of Australia. The
The final section on compensatory mitigation is abbreviated, and introduces the only references to legal issues, related to U.S. Corps of Engineers regulatory jurisdiction for wetlands. The cover page is dated May 2012 and marked "External Review Draft". The cover page includes the following two caveats: "DRAFT...DO NOT CITE OR QUOTE" and "NOTICE... THIS DOCUMENT IS A PRELIMINARY DRAFT. It has not been formally released by the U.S. Environmental Protection Agency and should not be construed to represent Agency policy. It is being circulated for comment on its technical accuracy and policy implications" [SIC]. The subsequent pages are marked "***internal deliberative materials – do not cite, quote, or distribute***" [SIC].