TAILINGS AND PRODUCTION ROCK SITE
2006 ANNUAL REPORT

Kennecott Greens Creek Mining Company

April 2007
TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARY 1

2.0 TAILINGS AREA ... 3
 2.1 Introduction .. 3
 2.2 Placement Records ... 4
 2.3 Stability ... 5
 2.4 Hydrology ... 7
 2.5 Water Quality ... 8
 2.6 General Site Management .. 13
 2.7 Site as-built ... 14
 2.8 Reclamation/Closure Plan ... 14

3.0 SITE 23/D .. 17
 3.1 Introduction ... 17
 3.2 Placement Records ... 18
 3.3 Stability ... 18
 3.4 Hydrology .. 20
 3.5 Water Quality .. 21
 3.6 General Site Management ... 26
 3.7 Site as-built ... 26
 3.8 Reclamation/Closure Plan ... 27

4.0 REFERENCES ... 29

TABLES

Table 2.1 Tailings Placement Data .. 4
Table 2.2 Miscellaneous 2006 Materials Disposal Estimates .. 4
Table 2.3 Summary Statistics for 2006 Tailings Compaction Testing Data 5
Table 2.4 Monthly Summaries of Tailings Area Climate Data ... 8
Table 2.5 SRMP Cell Treatments ... 12
Table 3.1 Production Rock Placement Data ... 18
Table 3.2 Monthly Summaries of Mill Site Climate Data .. 21
Table 3.3 ABA Data Summary for Underground Rib Samples and Site 23 25
FIGURES
(Data Graphs see Appendix 3; Photographs see Appendix 4)

Figure 2.1 Water Level Data for Piezometer 41
Figure 2.2 Water Level Data for Piezometer 42
Figure 2.3 Water Level Data for Piezometer 44
Figure 2.4 Water Level Data for Piezometer 46
Figure 2.5 Water Level Data for Piezometer 47
Figure 2.6 Water Level Data for Piezometer 50
Figure 2.7 Water Level Data for Piezometer 51
Figure 2.8 Water Level Data for Piezometer 74
Figure 2.9 Water Level Data for Piezometer 75
Figure 2.10 Water Level Data for Piezometer 76
Figure 2.11 Water Level Data for Standpipe Piezometer PZ-T-00-01
Figure 2.12 Water Level Data for Standpipe Piezometer PZ-T-00-02
Figure 2.13 Water Level Data for Standpipe Piezometer PZ-T-00-03
Figure 2.14 Water Level Data for Well MW-T-00-05A
Figure 2.15 Water Level Data for Well MW-T-00-3A
Figure 2.16 Water Level Data for Well MW-T-00-3B
Figure 2.17 Water Level Data for Well MW-T-01-3A
Figure 2.18 Water Level Data for Well MW-T-01-3B
Figure 2.19 Tailings Area Wet Well Flow Data
Figure 2.20a Tailings Area IMP Sites: Wet Wells - pH Data
Figure 2.20b Tailings Area IMP Sites: Tailings Completions - pH Data
Figure 2.20c Tailings Area IMP Sites: Suction Lysimeters - pH Data
Figure 2.21a Tailings Area IMP Sites: Wet Wells – Alkalinity Data
Figure 2.21b Tailings Area IMP Sites: Tailings Completions – Alkalinity Data
Figure 2.21c Tailings Area IMP Sites: Suction Lysimeters - Alkalinity Data
Figure 2.22a Tailings Area IMP Sites: Wet Wells - Conductivity Data
Figure 2.22b Tailings Area IMP Sites: Tailings Completions - Conductivity Data
Figure 2.22c Tailings Area IMP Sites: Suction Lysimeters - Conductivity Data
Figure 2.23a Tailings Area IMP Sites: Wet Wells - Hardness Data
Figure 2.23b Tailings Area IMP Sites: Tailings Completions - Hardness Data
Figure 2.24a Tailings Area IMP Sites: Wet Wells - Sulfate
Figure 2.24b Tailings Area IMP Sites: Tailings Completions - Sulfate
Figure 2.24c Tailings Area IMP Sites: Suction Lysimeters - Sulfate
Figure 2.25a Tailings Area IMP Sites: Wet Wells - Arsenic Data
Figure 2.25b Tailings Area IMP Sites: Tailings Completions - Arsenic Data
Figure 2.25c Tailings Area IMP Sites: Suction Lysimeters - Arsenic Data
Figure 2.26a Tailings Area IMP Sites: Wet Wells - Zinc Data
Figure 2.26b Tailings Area IMP Sites: Tailings Completions - Zinc Data
Figure 2.26c Tailings Area IMP Sites: Suction Lysimeters - Zinc Data
Figure 2.27a Tailings Area IMP Sites: Wet Wells - Copper Data
Figure 2.27b Tailings Area IMP Sites: Tailings Completions - Copper Data
Figure 2.27c Tailings Area IMP Sites: Suction Lysimeters - Copper Data
Figure 2.28a Tailings Area IMP Sites: Wet Wells - Lead Data
Figure 2.28b Tailings Area IMP Sites: Tailings Completions - Lead Data
Figure 2.28c Tailings Area IMP Sites: Suction Lysimeters - Lead Data
Figure 2.29a Tailings Area IMP Sites: Wet Wells - Cadmium Data
Figure 2.29b Tailings Area IMP Sites: Tailings Completions - Cadmium Data
Figure 2.29c Tailings Area IMP Sites: Suction Lysimeters - Cadmium Data
Figure 2.30a Tailings Area IMP Sites: Wet Wells – Iron Data
Figure 2.30b Tailings Area IMP Sites: Tailings Completions - Iron Data
Figure 2.30c Tailings Area IMP Sites: Suction Lysimeters - Iron Data
Figure 2.31a Tailings Area IMP Sites: Wet Wells – Manganese Data
Figure 2.31b Tailings Area IMP Sites: Tailings Completions - Manganese Data
Figure 2.31c Tailings Area IMP Sites: Suction Lysimeters - Manganese Data
Figure 2.32 Tailings Monthly Composite Sample ABA
Figure 2.33 Tailings Facility Acid Base Accounting Data
Figure 2.34 Tailings Facility pH versus Net Neutralization Potential Data
Figure 2.35 Photograph of SE Tailings Expansion II Area
Figure 2.36 Photograph of Pond 7 and Tank 7
Figure 2.37 Photograph of Northwest Knob Topsoil Removal
Figure 2.38 Aerial Photograph Tailings Area August 20060
Figure 3.1 Pressure Data for Piezometer 52
Figure 3.2 Pressure Data for Piezometer 53
Figure 3.3 Pressure Data for Piezometer 54
Figure 3.4 Pressure Data for Piezometer 55
Figure 3.5 Water Level Data for Well MW-23/D-00-03
Figure 3.6 Water Level Data for Well MW-23-A2D
Figure 3.7 Water Level Data for Well MW-23-A2S
Figure 3.8 Water Level Data for Well MW-23-98-01
Figure 3.9 Water Level Data for Well MW-23-A4
Figure 3.10 Water Level Data for Well MW-23/D-00-01
Figure 3.11 Water Level Data for Well MW-D-94-D3
Figure 3.12 Water Level Data for Well MW-D-94-D4
Figure 3.13 Pond D Flow Data
Figure 3.14a Site 23/D IMP Sites: Finger Drains – pH Data
Figure 3.14b Site 23/D IMP Sites: Groundwater – pH Data
Figure 3.15a Site 23/D IMP Sites: Finger Drains – Alkalinity Data
Figure 3.15b Site 23/D IMP Sites: Groundwater – Alkalinity Data
Figure 3.16a Site 23/D IMP Sites: Finger Drains – Hardness Data
Figure 3.16b Site 23/D IMP Sites: Groundwater – Hardness Data
Figure 3.17a Site 23/D IMP Sites: Finger Drains – Conductivity Data
Figure 3.17b Site 23/D IMP Sites: Groundwater – Conductivity Data
Figure 3.18a Site 23/D IMP Sites: Finger Drains – Sulfate Data
Figure 3.18b Site 23/D IMP Sites: Groundwater – Sulfate Data
Figure 3.19a Site 23/D IMP Sites: Finger Drains – Arsenic Data
Figure 3.19b Site 23/D IMP Sites: Groundwater – Arsenic Data
Figure 3.20a Site 23/D IMP Sites: Finger Drains – Zinc Data
Figure 3.20b Site 23/D IMP Sites: Groundwater – Zinc Data
Figure 3.21a Site 23/D IMP Sites: Finger Drains – Cadmium Data
Figure 3.21b Site 23/D IMP Sites: Groundwater – Cadmium Data
Figure 3.22a Site 23/D IMP Sites: Finger Drains – Copper Data
Figure 3.22b Site 23/D IMP Sites: Groundwater – Copper Data
Figure 3.23a Site 23/D IMP Sites: Finger Drains – Lead Data
Figure 3.23b Site 23/D IMP Sites: Groundwater – Lead Data
Figure 3.24a Site 23/D IMP Sites: Finger Drains – Nickel Data
Figure 3.24b Site 23/D IMP Sites: Groundwater – Nickel Data
Figure 3.25a Site 23/D IMP Sites: Finger Drains – Iron Data
Figure 3.25b Site 23/D IMP Sites: Groundwater – Iron Data
Figure 3.26a Site 23/D IMP Sites: Finger Drains – Manganese Data
Figure 3.26b Site 23/D IMP Sites: Groundwater – Manganese Data
Figure 3.27 Site 23/D Internal Monitoring Plan Sites: Finger Drains – Flow Data
Figure 3.28 ABA Data from Underground Rib Samples
Figure 3.29 ABA Data from Site 23
Figure 3.30 Photograph of Site 23 Stockpile for Class 1
Figure 3.31 Photograph of Site 23 Backslope Area Spring Reroute
Figure 3.32 Photograph of Site 23 Drain Work

APPENDICES

Appendix 1 Tailings Facility 2006 As-built and Cross Sections
Appendix 2 Site 23/D 2006 As-built and Cross Sections
Appendix 3 Data Graphs
Appendix 4 Site Photographs
1.0 Executive Summary

This annual report has been prepared by Kennecott Greens Creek Mining Company in accordance with Alaska Waste Disposal Permit 0211-BA001 and the mine’s General Plan of Operations Appendices 3 and 11. The following itemized list summarizes key information and indicates where in this report the information outlined in Section 6.2 of Permit 0211-BA001 is presented:

<table>
<thead>
<tr>
<th>Permit Section</th>
<th>Report Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1 Closure plan summary</td>
<td>2.8</td>
</tr>
<tr>
<td>Precipitation</td>
<td>2.4, 3.4</td>
</tr>
<tr>
<td>Mill Site 71.34” Tailings 63.22”</td>
<td></td>
</tr>
<tr>
<td>Summary of internal monitoring and fresh water monitoring plans</td>
<td>2.5, 3.5</td>
</tr>
<tr>
<td>FWMP annual report separate for water year 2006 as per the ADEC request for full data presentation.</td>
<td></td>
</tr>
<tr>
<td>Internal monitoring water compositions at both sites dominated by Ca, Mg, (\text{SO}_4), neutral pH, high alkalinity, high zinc, low to moderate concentrations of other metals. Data are consistent with sulfide oxidation and carbonate mineral buffering. Sulfate reduction in saturated zone of tailings pile yields low concentrations of all metals. Concentration of As continues higher in some tailings wells due to migration of redox boundary. Seasonal compositional fluctuations continue evident in most wells/drains.</td>
<td></td>
</tr>
<tr>
<td>Stability</td>
<td>2.3, 3.3</td>
</tr>
<tr>
<td>No signs of instability at either the Tailings Facility or Site 23. Foundation heads consistently low at both sites except for short-lived spikes in one piezometer (north end of West Buttress). Target compaction densities achieved in all other than most November and December samples.</td>
<td></td>
</tr>
<tr>
<td>Cover performance</td>
<td>3.8</td>
</tr>
<tr>
<td>>85% saturation maintained, barrier layer not subject to freeze/thaw cycles. Net percolation up to 19%. No effect seen of HDPE cover placed above lysimeter.</td>
<td></td>
</tr>
<tr>
<td>Pond D flow and composition</td>
<td>3.4, 3.5</td>
</tr>
<tr>
<td>Average flow pumped from pond is about 60 gpm, similar composition to dilute Site 23 finger drains (e.g. 23FD-3 and 23FD-6).</td>
<td></td>
</tr>
<tr>
<td>Summary of inspections</td>
<td>2.3, 3.3</td>
</tr>
<tr>
<td>Inspections confirm compliance with WDP and GPO guidelines at both sites.</td>
<td></td>
</tr>
<tr>
<td>6.2.2 Summary of inspections</td>
<td>2.3, 3.3</td>
</tr>
<tr>
<td>Summarized above</td>
<td></td>
</tr>
<tr>
<td>Monitoring results</td>
<td>2.3, 3.3</td>
</tr>
<tr>
<td>Summarized above</td>
<td></td>
</tr>
<tr>
<td>6.2.3 Changes to GPO in 2006</td>
<td>2.5, 3.5</td>
</tr>
<tr>
<td>6.2.4 Location and volume of materials</td>
<td>2.2, 3.2, A1, A2</td>
</tr>
<tr>
<td>East and Southeast Tailings 368,422 total tons in 2006 (tailings 327,889 and other materials 40,713 tons) Site 23 127,007 total tons placed in 2006</td>
<td></td>
</tr>
<tr>
<td>Compaction</td>
<td>2.3, 3.3</td>
</tr>
<tr>
<td>Target compaction densities achieved in most nuclear density tests.</td>
<td></td>
</tr>
<tr>
<td>Acid Base Accounting</td>
<td>2.5, 3.5</td>
</tr>
</tbody>
</table>
Potentially acid generating Class 3 production rock
Neutralization potential values continue to demonstrate long lag time (buffering capacity)
Class 1 is significantly acid neutralizing (about 35% carbonate)
Possible water releases 2.5
Continue to monitor water compositions for effects related to 2002 remedial actions.
No new signs of possible release were identified in 2006.

6.2.5 Information regarding validity, variations and trends various
Full FWMP data assessment in separate report
Internal Monitoring Plan variations are seasonal, no deleterious trends identified

The report is separated such that all aspects of the tailings facility are discussed first in Section 2 followed by discussion of Site 23/D in Section 3. Information that is pertinent to both sections is generally not repeated but is discussed in the most relevant section and identified by reference in the other section.
2.0 Tailings Area

2.1 Introduction

Kennecott Greens Creek Mining Company (KGCMC) has prepared this section of the Annual Report in accordance with the mine’s General Plan of Operations (Appendix 3) and Alaska Waste Management Permit 0211-BA001. A summary of all operational and monitoring activities performed in 2006 is provided. Refer to GPO Appendix 3 and permit 0211-BA001 for a detailed description of the tailings facility and associated monitoring requirements.

KGCMC operated its tailings facility continuously in 2006. Primary placement areas included the east and southeast areas (see Tailings Facility as-built in Appendix 1). KGCMC added 203,357 cubic yards of material to the Tailings Facility in 2006, bringing the total facility volume to approximately 2,432,907 cubic yards. These yardages convert to approximately 327,889 tons of tailings placed at the Tailings Facility during this report period with a total placement of all materials at the Tailings Facility totaling approximately 368,422 tons as calculated from KGCMC surveyed volumes and material densities.
2.2 Placement Records

Table 2.1 contains the monthly placement records for tailings, production rock and other materials (e.g. ditch sediments) at the tailings facility for 2006. Surveyed volumes (cubic yards) were converted to tons using a tonnage factor of 1.8117 tons per cubic yard (134.2 pcf for tailings). Production rock used for road access and erosion control contributed approximately 28,000 tons to the facility. 12,000 tons of materials such as sediments from ditch maintenance, other construction rock (crushed quarried rock) and a minor amount of treated sewage sludge were also placed at the facility in 2006. The calculated tonnage of tailings was derived by subtracting the tons of production rock and other material from the surveyed total. The pile currently contains approximately 4.41 million tons of material. Based on the survey data presented in Table 2.1 there is a remaining permitted capacity of approximately 5,094,419 tons in the facility. Estimates of other miscellaneous materials disposed in the facility are shown in Table 2.2.

Table 2.1 Tailings Placement Data

<table>
<thead>
<tr>
<th>Date</th>
<th>All Materials Monthly Total</th>
<th>All Materials Cumulative Total</th>
<th>All Materials Monthly Total</th>
<th>All Materials Cumulative Total</th>
<th>2006 Prod Rock from Site 23</th>
<th>2006 All Other Materials (Ditch Seds and Construction)</th>
<th>2006 Tailings Only</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>survey (yd³)</td>
<td>survey (yd³)</td>
<td>tons (calculated)</td>
<td>tons (calculated)</td>
<td>tons (truck count)</td>
<td>tons (truck count)</td>
<td>tons (calculated)</td>
</tr>
<tr>
<td>1/31/2006</td>
<td>13,512</td>
<td>2,243,061</td>
<td>24,479</td>
<td>4,063,754</td>
<td>0</td>
<td>0</td>
<td>24,479</td>
</tr>
<tr>
<td>2/28/2006</td>
<td>13,512</td>
<td>2,256,573</td>
<td>24,479</td>
<td>4,088,233</td>
<td>5013</td>
<td>0</td>
<td>19,466</td>
</tr>
<tr>
<td>4/4/2006</td>
<td>17,957</td>
<td>2,274,530</td>
<td>32,533</td>
<td>4,120,766</td>
<td>7968</td>
<td>0</td>
<td>24,565</td>
</tr>
<tr>
<td>5/1/2006</td>
<td>16,364</td>
<td>2,290,894</td>
<td>29,647</td>
<td>4,150,412</td>
<td>3501</td>
<td>0</td>
<td>26,146</td>
</tr>
<tr>
<td>5/30/2006</td>
<td>19,273</td>
<td>2,310,167</td>
<td>34,917</td>
<td>4,185,329</td>
<td>2690</td>
<td>890</td>
<td>31,337</td>
</tr>
<tr>
<td>6/30/2006</td>
<td>16,059</td>
<td>2,326,226</td>
<td>29,094</td>
<td>4,214,423</td>
<td>2480</td>
<td>82</td>
<td>26,532</td>
</tr>
<tr>
<td>7/31/2006</td>
<td>14,008</td>
<td>2,340,234</td>
<td>25,378</td>
<td>4,239,802</td>
<td>2099</td>
<td>0</td>
<td>23,279</td>
</tr>
<tr>
<td>8/31/2006</td>
<td>20,941</td>
<td>2,361,175</td>
<td>37,939</td>
<td>4,277,741</td>
<td>368</td>
<td>4826</td>
<td>32,745</td>
</tr>
<tr>
<td>10/2/2006</td>
<td>14,592</td>
<td>2,375,767</td>
<td>26,436</td>
<td>4,304,177</td>
<td>40</td>
<td>2606</td>
<td>23,790</td>
</tr>
<tr>
<td>10/31/2006</td>
<td>16,400</td>
<td>2,392,167</td>
<td>29,712</td>
<td>4,333,889</td>
<td>1421</td>
<td>2886</td>
<td>25,405</td>
</tr>
<tr>
<td>11/30/2006</td>
<td>19,850</td>
<td>2,412,017</td>
<td>35,962</td>
<td>4,369,851</td>
<td>778</td>
<td>181</td>
<td>35,003</td>
</tr>
<tr>
<td>Totals</td>
<td>203,357</td>
<td>2,432,907</td>
<td>368,422</td>
<td>4,407,697</td>
<td>28,358</td>
<td>12,175</td>
<td>327,889</td>
</tr>
</tbody>
</table>

Tons calculated at 134.2 pounds per cubic foot for tailings
Table 2.2 Miscellaneous 2006 Materials Disposal Estimates

<table>
<thead>
<tr>
<th>Surface Tailings</th>
<th>yds³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressed Sewage Solids</td>
<td>50</td>
</tr>
<tr>
<td>Pressed Water Treatment Plant Sludge</td>
<td>500</td>
</tr>
<tr>
<td>Incinerator Ash</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Underground</th>
<th>yds³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tires</td>
<td>550 ea</td>
</tr>
<tr>
<td>Sump Sediments</td>
<td>3640</td>
</tr>
<tr>
<td>Shop Refuse</td>
<td>730</td>
</tr>
<tr>
<td>Mill Refuse</td>
<td>310</td>
</tr>
<tr>
<td>Electrical Refuse</td>
<td>120</td>
</tr>
</tbody>
</table>

2.3 Stability

Tailings placement compaction was tested throughout the year to monitor the performance goal of achieving 90 percent or greater compaction relative to a standard Proctor density. KGCMC staff utilizes a Troxler Model 3430 nuclear moisture-density gauge to measure wet density and percent moisture content of placed tailings. Typically one or more sites per active placement cell are selected on a monthly basis and single of 4 minute measurement at a 12-inch depth is taken. Dry densities are calculated and compared to laboratory measured standard Proctors.

Compaction

Summary results for 2006 are shown in Table 2.3. Standard Proctor values were measured on one sample taken from the tailings-loadout facility at the 920 and submitted to an outside materials testing lab, which performed the test within the ASTM guidelines for method #D698. The standard Proctor value was 146 pcf (pounds per cubic foot). KGCMC instituted a program at its on-site lab to determine 1-point proctors at the end of 2005. The mean dry density for thirty samples taken throughout the year in 2006 was 143 pcf, and the average percent moisture was 11.8%. Results to date confirm proctor and moisture data received from the outside materials testing lab.

Field measurement results show a high degree of achieving greater than 90% compaction (with respect to an average Standard Proctor value of 140). Testing done in prior years has confirmed that density results obtained using the Troxler procedure average approximately 2 percent higher than the densities obtained via other methods.

Table 2.3 Summary Statistics for 2006 Tailings Compaction Testing Data

<table>
<thead>
<tr>
<th>Compaction Variable</th>
<th>Mean</th>
<th>Max</th>
<th>Min</th>
<th>Std. Dev.</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std. Proctor[ASTM #D698] (pcf)</td>
<td>146</td>
<td>12.4%</td>
<td>169</td>
<td>8.0</td>
<td>1</td>
</tr>
<tr>
<td>Opt. Moisture (%)</td>
<td></td>
<td></td>
<td>126</td>
<td>1.5%</td>
<td>30</td>
</tr>
<tr>
<td>1-pt Proctor (pcf)</td>
<td>143</td>
<td>14.3%</td>
<td>8.6%</td>
<td>9.45</td>
<td>19</td>
</tr>
<tr>
<td>As Received Moisture (%)</td>
<td>11.8%</td>
<td>16.0%</td>
<td>7.5%</td>
<td>2.9%</td>
<td></td>
</tr>
<tr>
<td>Measured Dry Density (pcf)</td>
<td>140</td>
<td>156</td>
<td>119</td>
<td>6.8%</td>
<td></td>
</tr>
<tr>
<td>Measured moisture (%)</td>
<td>11.5%</td>
<td>16.0%</td>
<td>7.5%</td>
<td>2.9%</td>
<td></td>
</tr>
<tr>
<td>Rel. Compaction % *</td>
<td>100.2%</td>
<td>111.5%</td>
<td>85.1%</td>
<td>6.8%</td>
<td></td>
</tr>
</tbody>
</table>

* Percent compaction calculated with respect to corresponding monthly proctor.
Inspections

Several independent inspections are carried out at the tailings area throughout the year. Operators working at the site carry out daily visual work place inspections. The Surface Civil Engineer and/or Surface Operations Manager carry out weekly visual inspections. The environmental department carries out a monthly checklist inspection of Pond 6, which has been expanded to include the new Pond 7 constructed in 2005. The ADEC and ADNR inspected the site on May 16, 2006. No visible signs of physical instability were observed at the tailings facility during this report period.

During 2006 the USFS inspected the facility 32 times (Site inspections #214-#246) to monitor for Best Management Practices effectiveness and compliance to the General Plan of Operations. No issues of non-compliance or poor operations practices of the surface tailings facility were noted during the inspections. The USFS typically noted that the facility is being developed and operated to required operations and maintenance specifications of GPO Appendix 3.

Well and Piezometer Water Level Data

Pneumatic piezometer and well water level data for the tailings site are presented in Figures 2.1 to 2.18. Well and piezometer locations and water level cross sections are shown on the tailing facility as-built (Appendix 1). Well MW-A3 was decommissioned in the summer of 2004, and MW-T-02-05 was decommissioned in 2005. However, a vibrating wire was installed in MW-T-02-05, and water levels can still be monitored at this location. Instruments in the south (PZ-T-00-01, PZ-T-00-02, PZ-T-00-03; Figures 2.11, 2.12 and 2.13) showed a 3 to 7 foot decrease in head in response to below average precipitation during the spring and summer months in 2003. Since this time, the water table elevation returned to historical levels, and varied within a two foot differential in 2004. These three instruments showed a 3 to 6 foot increase in head in 2005, likely due to problems with the pump at wet well 2. Monitoring well MW-T-00-05A showed unusual depth to water reading in 2002 and 2003 (Figure 2.14). Historical data indicate that this well’s depth to water is consistent and is not influenced by seasonal or other affects. KGCMC determined that the abnormal readings were a result of the method of depth to water measurements. A sonic indicator was used at this location until it was discovered that the small amount of water in the well’s casing causes problems with the reading. Beginning in June 2003, the depth to water measurements were again taken with a depth to water tape, and these head measurements again reflect historical values. The last two measurements taken in 2005 were slightly higher than historical levels. In 2007, a vibrating wire piezometer began capturing data for this well, as well as PZ-T-00-02 and is reported on Figure 2.14. Piezometer 76 (Figure 2.10), completed in the northern portion of the West Buttress, showed approximately 10 feet of saturation in this area in late 2002 and 2003. In 2004, anomalous readings were indicative of a broken instrument. The piezometer was replaced in the spring of 2005. Readings have been variable in 2005 and 2006, showing intermittent saturation. The 10 feet of saturation usually seen in this piezometer is consistent with the behavior of tailings elsewhere in the pile. Even when placed on an unsaturated blanket drain, the fine-grained tailings can develop and maintain 10 to 15 feet of saturation through capillary action. Head levels are expected to continue rising as the slope length and tailings thickness of the West Buttress increase.

Section AA of the tailings facility as-built shows the inferred water table in the tailings pile. The maximum saturated thickness (approximately 30 feet) occurs near the center of the main portion of the pile. However, that water table level does not extend close to the down-slope toes of the
pile. The foundation of the West Buttress and southern portion of the pile is well drained, as indicated by typically consistent unsaturated conditions in the blanket drains (MW-T-00-05A, Figure 2.14) and at the base of the West Buttress (piezometers 74 and 75 in Figures 2.8 and 2.9). Low head elevations near the pile toe maximize the pile’s geotechnical stability. The head increases observed in 2003 appear to be localized and of short duration and should not have an adverse effect on pile stability. KGCMC’s continuing close monitoring of these conditions has shown no return of these increased heads.

The data from standpipe piezometers completed above the blanket drain (PZ-T-00-01, PZ-T-00-02, PZ-T-00-03 in Figures 2.11, 2.12, 2.13) indicate that the water perches above the unsaturated underdrains to a thickness of approximately 12 feet. This is consistent with the low permeability of the tailings and the un-capped condition of the pile. Covering the pile will help minimize the saturated zone in the pile. This was demonstrated by the over 10 foot decrease in the water table that occurred from 1995 to 1997 when the pile was covered (see Figures 2.1 to 2.7). Water levels have rebounded to, and in some cases above, 1994 elevations in most areas. Areas where water levels exceed their 1994 values are areas where the pile is considerably thicker than it was in 1994.

Water levels for four wells completed east and west of the pile are shown for comparison in Figures 2.15 to 2.18. The eastern wells, MW-T-00-03A (Figure 2.15) and MW-T-00-03B (Figure 2.16), are completed in the shallow sands 12 and 17 feet, respectively, below ground surface. The figures for these wells show that the water elevation in shallow completions in native materials can be readily influenced by abnormal weather conditions. Wells MW-T-01-03A and MW-T-01-03B are installed west of the pile. Their water levels are shown in Figures 2.17 and 2.18, respectively. MW-T-01-03A is completed in bedrock to a depth of 20 feet and MW-T-01-03B is completed in clayey silt to a depth of 12 feet. These wells show similar water level fluctuations with weather conditions as the two eastern wells. However, the water level in MW-T-01-03B shows a larger differential than MW-T-01-03A because silts and clays hold more water in tension, so a small increase in water content causes a large change in head. The ground surface elevation is 134 feet in the proximity of these two wells.

2.4 Hydrology

A detailed review of the hydrology of the tailings facility was performed by Environmental Design Engineering (EDE) in 2001 (EDE 2002a). The report describes the hydrogeology of the site and presents calculations of anticipated post-closure hydrologic conditions. Water management at the facility consists of a complex network of drains under the pile, bentonite slurry walls around the perimeter of the site, and ditches to divert up-slope water and collect surface runoff. See the tailings facility as-built for locations of the site’s water management components. The site is underlain by a low permeability silt/clay till and other glacial/marine deposits or an engineered HDPE liner. These features minimize the potential for the downward migration of contact waters. An upward hydrologic gradient under the site further improves contact water collection. EDE initiated work on the update to the hydrology analysis in 2006, and the final report is expected in the second quarter of 2007.

The 2003 Environmental Impact Statement (USFS 2003) process analyzed the incremental expansion of the tailings facility storage capacity, a continuation of which is planned between 2004 and 2007 to accommodate the projected tailings storage requirements for the mine. As part of the expansion work, Tank 6 and Pond 6 areas will be used for tailings storage. To accommodate these expansion plans and a change in the regulatory requirements for storm water retention, KGCMC constructed a new 30 acre-foot storm water pond (Pond 7) in 2005, and will
reroute collection and distribution facilities to include the new Pond 7. For background and design information for Pond 7, see Klohn Crippen’s 2005 report, and EDE’s 2005 Pond 7 Hydrology Report.

Precipitation and temperature data are presented in Table 2.4. Total precipitation for the year was 63.22 inches at the tailings area. Monthly total precipitation was highest in 2006 in September (9.99) and December (10.97 in). March was the driest month with only 0.92 inches of precipitation. June, July and August were the warmest months. Flow data from Wet Wells 2 and 3 for 2005 are presented with the precipitation data in Figure 2.19. The wet well flows respond relatively quickly to precipitation events, demonstrating a significant contribution of surface water. The use of the wet well flow meters has been discontinued since 2005 as part of the tailings expansion activities. KGCMC anticipates that once the final routing of pipelines associated with these wet wells and the new Pond 7 construction is complete that flow monitoring will resume.

<table>
<thead>
<tr>
<th>Month</th>
<th>Avg. Temp (°C)</th>
<th>Precipitation (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>-0.73</td>
<td>3.85</td>
</tr>
<tr>
<td>February</td>
<td>-0.61</td>
<td>1.57</td>
</tr>
<tr>
<td>March</td>
<td>-1.68</td>
<td>0.92</td>
</tr>
<tr>
<td>April</td>
<td>3.76</td>
<td>3.45</td>
</tr>
<tr>
<td>May</td>
<td>7.96</td>
<td>3.81</td>
</tr>
<tr>
<td>June</td>
<td>11.61</td>
<td>5.27</td>
</tr>
<tr>
<td>July</td>
<td>13.36</td>
<td>3.45</td>
</tr>
<tr>
<td>August</td>
<td>11.82</td>
<td>7.74</td>
</tr>
<tr>
<td>September</td>
<td>10.27</td>
<td>9.46</td>
</tr>
<tr>
<td>October</td>
<td>5.87</td>
<td>9.99</td>
</tr>
<tr>
<td>November</td>
<td>-4.99</td>
<td>2.74</td>
</tr>
<tr>
<td>December</td>
<td>1.31</td>
<td>10.97</td>
</tr>
<tr>
<td>2006</td>
<td>4.83</td>
<td>63.22</td>
</tr>
</tbody>
</table>

2.5 Water Quality

Compliance Monitoring

Water sites around the surface tailings storage facility have been monitored continuously since 1988. This sampling pre-dates the placement of tailings at this facility. The FWMP Annual Report for water year 2006 is being prepared separately and will be submitted to the Forest Service and ADEC upon completion.

Internal Monitoring

As described in Waste Management Permit Number 0211-BA001 Section 2.8.3.1, the internal plan addressed monitoring at both the surface tailings facility and the surface production rock storage areas covered by the permit. The Internal Monitoring Plan describes monitoring within the pile areas, in contrast to the compliance monitoring (under the Fresh Water Monitoring Plan).
at peripheral facility boundary sites. As such, data generated by the Internal Monitoring Plan effort are “… not for compliance purposes…” as noted in the above referenced permit Section 2.8.3.1, but provide a continuing perspective on in-pile geochemical processes.

While the Internal Monitoring Plan sets minimal monitoring standards, KGCMC generally conducts additional monitoring over and above those requirements. As the opportunity arises, or the need is seen, such additional sampling may include sampling of different media, more frequent samples from the monitoring plan-specified locations, or perhaps analyses of samples for additional constituents. Instances also arise where sampling of different locations/sites is conducted. While not required to present these additional data, KGCMC has chosen to generally include much of such extra data in this report to help better understand conditions at the permitted areas. Collection of these extra data may or may not continue, based upon changing conditions and/or needs of KGCMC.

The analytical results of KGCMC’s internal site monitoring plan are summarized in Figures 2.20 to 2.31. Sites were distinguished between foundation wet wells (Wet Well 2 and Wet Well 3), wells completed in tailings (PZ-T-00-01, PZ-T-00-02, PZ-T-00-03, MW-T-02-5 and MW-T-02-6) and suction lysimeters (SL-T-02-4, SL-T-02-5, SL-T-02-6, and SL-T-02-7). These lysimeters are installed at various depths within the pile’s vadose zone. These groups are separated on Figures 2.20 through 2.31 with the suffix a, b or c. For example, a figure number such as 2.20a would show the data for the wet wells group, 2.20b would show the data for the tailings completion wells, and 2.20c would show the data for the suction lysimeters.

An in-depth evaluation of the hydrology and geochemistry of the tailings facility was performed by Environmental Design Engineering (EDE) and KGCMC in late 2001 (EDE 2002a, EDE 2002b, KGCMC 2002a) and the Tailings Expansion EIS (USFS 2003). The observations made under the 2006 internal monitoring plan are consistent with the findings of the EDE, KGCMC and USFS reports.

All internal monitoring waters are captured and treated prior to discharge to the ocean floor under KGCMC’s National Pollutant Discharge Elimination System Permit (AK 004320-6) from EPA.

Values of pH remained between 6 and 8.5 for all internal monitoring site samples in 2006 (Figure 2.20a, b and c), except for suction lysimeter SL-T-02-06, which showed a pH of 8.87. PZ-T-00-01, PZ-T-00-2 and PZ-T-00-3, which screen the lower ten feet of tailings pile, have the highest pH of the internal monitoring sites. This is likely a result of microbial sulfate reduction and equilibration with carbonate in the saturated zone of the pile. The wet wells produce water with slightly lower pH (generally between 6.5 and 7), reflecting minor influences from groundwater (organic acids) and oxidized surface waters (acidity from thiosalt, sulfide and iron oxidation). The suction lysimeters all have pH values between 6.87 and 8.87.

Alkalinity data are presented in Figure 2.21a, b and c. Alkalinity generally ranges between 200 and 600 mg/l CaCO₃ within the tailings pile, consistent with buffering from carbonate minerals and the products of microbial sulfate reduction. The fact that these internal waters are near-neutral to alkaline and have substantial alkalinity indicates that the buffering capacity of the tailings is sufficient to prevent acidification of site drainage in the near-term (at least tens of years).

The conductivity results from internal monitoring site waters are presented in Figure 2.22a, b, and c. 2005 conductivity measurement were between 1742 (wet wells) and 7460 (suction lysimeters) µS/cm. The higher conductivity of the site contact waters reflects a larger dissolved load caused
by weathering of the tailings. Pyrite oxidation and carbonate dissolution contribute dissolved ions such as sulfate, bicarbonate, calcium and magnesium to the contact waters, increasing their conductivity. Wet Well 3 has a different capture area than Wet Well 2 and shows a different pattern with respect to conductivity. The changes in conductivity observed in Wet Well 3 suggest changes in the relative contributions from runoff, addition of the Northwest Diversion Ditch flow, infiltration and groundwater as the West Buttress was constructed. The increase in conductivity seen in Wet Well 2 over the past several years likely reflects an increasing contribution from contact water in the drain system and an increase in the dissolved load from migration/remobilization of oxidation products in the pile. The suction lysimeters have 2006 conductivity values ranging from 5000 to 7460 µS/cm. Suction lysimeter samples are drawn from the smallest pore spaces of the unsaturated zone. Water held in these pores is often isolated from flow paths and thus has higher dissolved constituent concentrations than water from the saturated zone and foundation drains.

Hardness and sulfate concentrations are consistent with the conductivity results. Calcium and magnesium are the primary contributors to hardness (Figure 2.23a and b) and reflect dissolution of carbonate minerals, such as calcite and dolomite. Carbonate dissolution neutralizes acidity formed by sulfide oxidation, which is also the source of sulfate shown in Figure 2.24a, b, and c. Sulfate concentrations range between 500 and 3200 mg/l in the tailings pile waters. The increase in sulfate and other constituents seen in PZ-T-00-03 likely reflects the replacement of interstitial process water with infiltrating surface water, which carries a higher dissolved load.

Arsenic data are presented in Figures 2.25a, b and c. The arsenic in MW-T-02-06 doubled from 2005 to 2006 (164 µg/l in 2005 to 325 µg/l in 2006) and the data for Wet Well 2 also shows a distinct increasing trend. As arsenic-bearing minerals such as tetrahedrite/tennantite (and to a lesser extent pyrite) weather, the arsenic that is released is typically co-precipitated with iron oxy-hydroxides. As the pile grows, reducing conditions overtake areas that were once oxidizing. This was particularly true as the water table rose following removal of the temporary PVC cover that was placed on the pile in 1995 (removal began in 1997). Dissolution of oxyhydroxides (and possibly sulfates) is expected as the waters respond to the changing redox conditions. This will contribute arsenic and iron (Figures 2.30a, b and c) to the drainage water. Arsenic concentrations in the drainage will therefore decrease when redox conditions in the pile stabilize (e.g. with closure and capping of the pile). Sulfate reduction may also lower arsenic concentrations. This is apparent in the composition of waters from the saturated zone and in some of the SRMP test cells, which are discussed in more detail below.

Figure 2.26a, b and c shows the concentration of zinc from the monitoring sites. Zinc levels from the saturated zone of the pile continue to remain low (Figure 2.26b), a result of sulfate reduction, which promotes zinc sulfide precipitation. The zinc concentration in MW-T-02-06 in 2003 and 2004, along with the lower alkalinity, suggest that sulfate reduction may not yet have been occurring in this portion of the west buttress. However, the April 2005 data showed a significant decrease in the concentration of zinc (from an average of 1,000 µg/l to less than 10 µg/l), and the zinc remained low in 2006 (5.55 µg/l). Placement of argillite on the outer slopes of the West Buttress has also led to higher zinc concentrations in Wet Well 3 from surface runoff flushing of this material when it was initially placed. In 2003, the zinc concentration in this wet well returned to within historical limits, and has remained between 500 - 3500 µg/l from 2004 - 2006. The two 20 foot suction lysimeters showed zinc concentrations between 900 – 2,500 µg/l (SL-02-05, SL-02-07), and the two 40 foot lysimeters (SL-02-04, SL-02-06) had zinc concentrations less that 150 µg/l (Figure 2.26c).
The concentrations of copper and lead are considerably lower than that of zinc. Both of these metals’ concentrations were generally less than 5 µg/l in water from each site in 2006 (Figures 2.27a, b and c and 2.28a, b and c), with the exception of Wet Well 3. Previous observations have shown that copper and lead mobility are greatest when the tailings are first placed, then decrease with time.

Cadmium data are shown in Figure 2.29a, b and c. With the exception of Wet Well 3, cadmium concentrations are very low (less than 0.5 µg/l). Cadmium in Wet Well 3 had a maximum value of 27 µg/l in 2002 and showed seasonal fluctuation similar that of zinc, albeit at significantly lower concentrations. Well MW-T-02-06 showed a cadmium concentration of 4.5 µg/l in June 2003; however, samples since then have all been less than the detection limit of 0.5 µg/l.

Iron and manganese data are presented in Figures 2.30 a, b and c and 2.31 a, b and c, respectively. Concentrations of iron and manganese are high in the wet wells, groundwater and most of the suction lysimeters due to oxidation/reduction and buffering reactions. Lower concentrations of iron and other metals in PZ-T-00-01, PZ-T-00-02 and PZ-T-00-03 likely indicates sulfide precipitation resulting from sulfate reduction in these waters.

Acid Base Accounting Analyses

ABA analyses of monthly composite samples were taken of tailings at the Mill filter press. These samples are representative of Mill feed and not necessarily tailings area placement. Figure 2.32 shows the monthly composite sample ABA results for 2001 through 2006. The average NNP results for the past six years have been -281, -197, -194, -200, -134 and -123 tons CaCO$_3$/1000t, respectively.

The results of ABA analyses on 10 grid samples taken from the tailing facility in 2005 are presented in Figures 2.33 and 2.34. The grid included portions of the pile that had exposures of tailings, argillite slope armoring, road rock, and ditch sediment. Of the 10 samples, 5 were relatively pure tailings. Figure 2.33 shows the acid generation potential (AP) versus neutralization potential (NP) of all the 2005 grid samples. The pure tailings samples plot in the upper half of the figure. The average neutralization potential (NP) of the 5 tailings samples from 2005 was 326 tons CaCO$_3$/1000t, which indicates a significant carbonate content in the tailings. The acid potential (AP) was determined by iron assay (assuming all iron is in the form of pyrite) and yielded an average of 440 tons CaCO$_3$/1000t. The resulting average net neutralization potential (NNP) was -114 tons CaCO$_3$/1000t, which indicates that the tailings are potentially acid generating. These results remain consistent with previous studies of the mine’s tailings. Samples of weathered tailings (after approximately 12 years of exposure) have been shown to still retain a considerable amount of neutralization potential, equivalent to approximately 20% calcium carbonate (KGCMC, 2002b). This suggests that the potential lag time to acid generation of exposed tailings is on the order of decades. This long lag time allows time for construction and adequate closure of the site (including covering the pile with a composite soil cover that minimizes oxygen ingress).

Figure 2.34 shows the relationship of rinse pH to Net Neutralization Potential for the same suite of 2005 samples shown in Figure 2.33. Rinse pH is a measure of the pH of a one-to-one mixture of “as received” fines and water. The rinse pH of all of the tailings samples are above 6.0, indicating that the exposed surfaces of the pile are well buffered.
Sulfate Reduction Monitoring Program (SRMP)

Following the 2003 Record of Decision for expansion of the tailings pile, KGCMC began a mandated 30 month study to determine the feasibility of promoting long term sulfate reduction at the facility. KGCMC assembled a team comprised of personnel from the University of Waterloo, KGCMC and independent consultants to develop and implement the investigation. The primary objective of the sulfate reduction monitoring program (SRMP) is to determine the feasibility of meeting closure objectives related to water quality by promoting in-situ microbial processes that increase alkalinity and reduce the concentration of constituents of concern.

A summary report was distributed to regulatory agencies on October 19, 2006. The report and submittal provided an update schedule for completion of the study which extends beyond the originally envisioned 30 month time period. Project completion is expected by the end of 2008, however addition monitoring of the field test cells beyond that time may be warranted. A follow-up report is expected in July 2007.

Field test program

Seven field test cells were constructed and instrumented in the Fall of 2004 to monitor the effects of adding different carbon sources to an unsaturated portion of the pile. Cell treatments are summarized in Table 2.5. The cells are 10 feet square and 13 feet deep. A synthetic liner was installed around the vertical sides of the excavations (Cells 2-7) to isolate the cells from lateral flow while allowing vertical flow through the cells. Pore water and core samples are taken annually from multiple depths through each cell and soil suction, moisture content and temperature profiles are also collected.

<table>
<thead>
<tr>
<th>Cell</th>
<th>Tailings (volume %)</th>
<th>Peat (volume %)</th>
<th>Brewery Waste (volume %)</th>
<th>Sewage Sludge (volume %)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell 1</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Unexcavated</td>
</tr>
<tr>
<td>Cell 2</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Excavated</td>
</tr>
<tr>
<td>Cell 3</td>
<td>95</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>Amended</td>
</tr>
<tr>
<td>Cell 4</td>
<td>95</td>
<td>2.5</td>
<td>2.5</td>
<td>0</td>
<td>Amended</td>
</tr>
<tr>
<td>Cell 5</td>
<td>95</td>
<td>2.5</td>
<td>0</td>
<td>2.5</td>
<td>Amended</td>
</tr>
<tr>
<td>Cell 6</td>
<td>95</td>
<td>2.5</td>
<td>1.25</td>
<td>1.25</td>
<td>Amended</td>
</tr>
<tr>
<td>Cell 7</td>
<td>90</td>
<td>5</td>
<td>2.5</td>
<td>2.5</td>
<td>Amended</td>
</tr>
</tbody>
</table>

The field test program results as reported in the draft performance report for 2006 (University of Waterloo, in prep) are summarized as follows:

Addition of organic carbon has initiated microbially mediated sulfate reduction in Cells 4 through 7. Decreases in dissolved sulfate concentrations in Cells 4 through 7 generally correspond to increases in alkalinity, depletion of 13C in dissolved inorganic carbon, and enrichment of 34S in pore water sulfate. Evidence for sulfate reduction was not observed in the control cells or the cell amended only with peat. Precipitation of metal-sulfide minerals is likely contributing to decreases in sulfate and metals concentrations in cells exhibiting sulfate reduction. Carbonate precipitation may also decrease the concentration of lead and manganese in some test cells. Decreased in arsenic concentrations were also observed in sulfate reduction zones. Sulfate concentrations in Cells 1, 2, 3, and 5 appear to be controlled by gypsum solubility rather than
sulfate reduction. Barium concentrations are controlled by barite solubility and have increased in cells exhibiting sulfate reduction.

Carbon amendment also resulted in increased iron reducing bacteria populations. Reductive dissolution of iron oxyhydroxides and mobilization of associated oxyanions led to corresponding increases in iron, chromium, and molybdenum concentrations. Mobilization of these elements was observed in all test cells, however higher concentrations generally correspond to cells with larger iron reducing bacteria populations.

Geochemical and microbial data suggest that ingress of oxygen is limited to the upper two feet of the test cells. Elevated populations of sulfate reducing bacteria (obligate anaerobes) and the presence of ferrous iron within 1.6 feet of the surface indicate that oxygen consumption is occurring. Sulfide oxidation is likely the dominant oxygen consuming mechanism.

Sulfate reduction and calcite precipitation appear to control the chemical composition of pore waters in Cells 4 through 7, while sulfide oxidation and gypsum precipitation control the compositions of pore waters in Cell 1 through 3.

Laboratory test program

Laboratory batch tests on samples of amended tailings will be conclude in May 2007. The batch tests include the carbon sources used in the field tests plus fish/wood compost and phosphate amended peat and brewery waste. Solid-phase samples will be collected from the batch experiments for microbial enumerations, geochemical extractions and mineralogical evaluations. Laboratory column tests are planned to commence in June 2007 to help define the rates of nutrient consumption and determine the relative effectiveness of different carbon amendments. The results from the laboratory tests will augment the findings from the field test cells.

Pile characterization

Five sites were sampled to characterize the tailings pile geochemistry and microbiology in 2005. The results of the sampling indicate that the pile is generally uniform in composition and has a diverse microbial population that shows no distinct vertical or horizontal trends in distribution. Despite the lack of apparent zoning of microbial groups, water compositions suggest that three geochemical zones exist in the pile. Oxidizing conditions are present close to the surface and decrease rapidly with depth. A thick reduced zone that does not appear to promote robust sulfate reduction is present above the water table. The bulk of the unsaturated zone lacks oxygen but may not have redox values low enough to support a large population of sulfate reducing bacteria. Below the water table where redox conditions are even lower, hydrogen sulfide, high alkalinity and low metals concentrations are evidence of significant sulfate reduction. The distribution of organic carbon is also relatively uniform and may not be the limiting factor for promoting sulfate reduction. Pore-water compositions suggest that competition for nutrients by other microbial groups such as iron reducers may also limit SRB populations.

Hydrology

A component of the SRMP is to define how pore-water passes through the tailings pile. This is necessary to determine retention times and if there is the potential for pore-water to bypass zones of effective sulfate reduction.

Measurements of moisture content, pore-water pressure, and soil suction indicate that a dynamic flow regime exists in the tailings pile. The main saturated zone in the pile exhibits a mounded shape that is thickest (about 35 feet) in the north/central part of the pile, where foundation drains
do not appear to effectively dissipate buildup of pore pressures between the foundation and the pile. The mound thins to 15 feet or less toward the edges of the pile and over areas with more robust foundation drains. Tensiometer and vibrating wire piezometer data show that suction gradients fluctuate between upward during dry periods and downward during wet periods in the top 15 feet of the pile and that saturation fronts appear to migrate through the pile profile. Most of the pile profile is nearly saturated.

Remaining work

- Performance monitoring of the field test cells will continue through at least 2007.
- Results of recently completed batch tests will be summarized in a future program update (2007).
- Laboratory column tests of select nutrient mixtures will begin in June 2007.
- The project team will continue to refine the hydrologic model for the site, including analysis of current conditions and predicted post-closure behavior.
- Analyses to determine the geotechnical effects of carbon amendment on the tailings are planned for 2007, pending successful field and laboratory geochemical testing of the various amendments.

2.6 General Site Management

Tailings Operation and Management

The General Plan of Operations (GPO) Appendix 3 includes the general operating and management goals to achieve site stability and satisfy regulatory requirements for the KGCMC Tailings Facility. In Appendix 3, Section 2.1.4, KGCMC Operations place tailings within the impoundment using specific criteria established by Klohn Crippen Engineering in 1999 for the placement of tailings in cellular configurations with compaction standards. KGCMC continued to place tailings in this manner through 2006.

KGCMC continues the use of off-highway lidded trailered trucks to transport the tailings to the surface placement area. The material is end dumped, spread and compacted using a bulldozer, followed by a smooth-drum vibratory compactor. Regular compaction checks using a Troxler density and moisture gauge confirm the resultant performance in the placement area, as per the GPO Appendix 3. See Section 2.3 for a discussion of compaction results.

KGCMC does not expect any changes to the placement methodology in 2007 and will continue placement according to the established criteria in GPO Appendix 3. Continued development of placement areas for the remaining mine life are a part of the Stage 2 Expansion Project, approved in January 2004. The Stage II Tailings Expansion Environmental Impact Statement (EIS) is summarized in KGCMC Tailing and Production Rock Site 2004 Annual Report (KGCMC, 2005). In 2005, 87 percent of the tailings were placed in the East Tails area, and the remaining 13 percent were placed at the West Buttress area.

Major tailings facility expansion project accomplishments in 2005 included the construction of a 32.5 ac-ft retention pond (Pond 7), the extension of the existing liner to the south for the southeast expansion-phase II, and the removal of the old truck wash and Tank 6. Pond 7 was
commissioned in 2006. Also commissioned in 2007 was Tank 7, a head tank which will improve discharge capacity of the NPDES outfall line.

Excavation in the Northwest tailings area commenced in the spring of 2006, but unseasonably wet conditions hindered progress. The purpose of the excavation is to allow liner placement over two bedrock outcrops and to install a drainage corridor between the North Retention Pond to the West Buttress Ditch. Approximately 40,000 cubic yards of tailings were relocated from the northwest corner of the pile to Southeast II area. Data from geotechnical drilling, geophysical testing and test pitting helped delineate the location of bedrock and glacio-marine sediments beneath the excavation area. KGCMC estimates an additional 60,000 yards of tailings will need to be removed in 2007 to facilitate liner tie in and drain installation.

Contractors cleared the Northwest expansion area and began blasting for foundation preparation. Approximately 35,000 cubic yards of organics were hauled to Pit 7 from the Northwest Expansion area.

Co-Disposal Studies
KGCMC compared the relative costs of recontouring and covering the pile versus consolidating it with one of the other surface facilities, and found that relocating the material to the surface tailings facility is the most economical and environmentally protective solution. The geotechnical feasibility of blending production rock with tailings was studied in 2005 (Klohn Crippen, 2005). Laboratory tests conducted in a large scale permeameter cell measured the hydraulic and strength properties of tailings only, production rock only, and various blends of production rock and tailings. Based on the results, the following main conclusions were drawn:

- The difference in permeability between compacted production rock and compacted saturated tailings is at least 33 times. Blend ratios of 2:3 (production rock to tailings by volume) and 3:2 resulted in lower values of permeability as compared to the tailings only sample. The 2:3 blend exhibited the lowest value of permeability. This behavior is mainly attributed to the elongated length of the seepage path (and reduced seepage flow area) through the tailings dominated soil matrix and around the larger rock fragments.
- Friction angle of the 2:3 blend was similar to that of the tailings only sample showing that the tailings were dominant in the blend. As expected, the friction angle improved with the addition of more production rock in the 3:2 blend. Addition of production rock generally increased the overall strength of the compacted tailings.
- Relatively uniform mixing of the tailings and production rock was very easily obtained in the laboratory in all cases.

A production rock to tailings ratio of 3:2 (60% production rock by volume) with a permeability of 5×10^{-6} cm/s and a friction angle of 43° is recommended by Klohen Crippen as the limiting blend for blended codisposal of production rock and filter pressed tailings at Greens Creek.

These conclusions are based on geotechnical observations. The long term performance of the production rock and tailings blend will also depend on the geochemical performance of the blend. Therefore, geochemical studies will test the recommended blend ratios for chemical stability, metal leaching, and acid generation potential.

The tailings and waste rock co-disposal evaluation continued through 2006. The laboratory geotechnical assessment findings were positive. Field trials demonstrated that the waste rock and
tailings mixed well when pushed with a bulldozer. This is consistent with the findings of the laboratory mixing experiments. Field weathering column construction began in 2006, but winter conditions prevented completion of the project. The columns setup will be finished in the spring of 2007 and water sampling will begin shortly thereafter.

7,100 cubic yards of waste rock from Site E was hauled to the tailings facility to create a stabilizing berm in the Southeast II area. A portion (1 acre) of the Site E pile was covered in the Fall of 2006 to reduce the moisture content of the waste rock in preparation for removal in 2007 and 2008. Unusually wet weather during most of 2006 delayed expansion efforts at the tailings facility, which in turn has delayed large scale removal of Site E waste rock. Surface water and groundwater monitoring at the site continues.

2.7 Site as-built

As-built drawings for the tailings facility are presented in Appendix 1. The as-built shows the 2005 year-end topography, water management features, monitoring device locations and other significant features of the site. The as-built also includes cross sections that show the following information:

- existing topographic surface
- prepared ground upon which the pile was constructed
- water levels
- projected locations of piezometers from Figures 2.1 – 2.18

Photographs taken during routine site inspections in 2006 are presented in Figures 2.35 to 2.37 (Appendix 4). Figure 2.35 shows the southeast II expansion area. This photo was taken on October 2, 2006. Figure 2.36 shows Pond 7 and Tank 7 on the same date. Topsoil removal activities in June on the northwest knob are shown in Figure 2.37. Figure 2.38 shows an aerial view of tailings area taken in August 2006.
2.8 Reclamation/Closure Plan

Reclamation Plan

In November 2001, as part of the ADEC Waste Disposal Permit requirements, KGCMC submitted a “Detail Reclamation Plan with Cost Estimates” as an attachment to the GPO Appendix 14. A Federal/State/Municipal inter-agency team approved this attachment to Appendix 14, as the basis of current site reclamation bonding levels. Bonding levels were set for $24,400,000 in conjunction with the approved site reclamation plan. The Detail Reclamation Plan includes all estimated costs (labor, materials, equipment, consumables, administration, monitoring and long term maintenance) for task specific work associated with the final closure of the property under a default scenario. KGCMC detailed a scope of work to accommodate the physical reclamation projects and the reclamation monitoring and maintenance of all site facilities by segmenting the overall project work at the mine into 7 elements:

- Roads
- Production Rock Sites
- Tailings Area
- Site General
- Water Systems
- Maintenance and Monitoring
- Administration

Each of the above elements of the Detail Reclamation Plan include narrative and cost estimates to define the closure of the property by discipline (type of work) and area. The elements of the plan encompass the entire mine site, and also include reclamation performance monitoring and facility maintenance after final closure according to the Waste Disposal Permit standards.

The Stage 2 Tailings Expansion EIS process triggered a National Environmental Policy Act (NEPA) review through an Environmental Impact Statement (EIS) to analyze the potential environmental effects of the project. As part of the tailings expansion, a reclamation review was requested to update the current General Plan of Operations (GPO) Appendix 14 – Reclamation Plan (the Plan) and the costs associated with the tailings expansion area and to revise the Plan’s cost estimates to year 2003 values. The request was made in a joint letter dated October 16, 2003 from the Alaska Department of Natural Resources (ADNR), USFS, and ADEC. KGCMC submitted a cost estimate revision as Attachment A.1 to the Plan on October 22, 2003. The estimated reclamation cost detailed in this document, including the anticipated first, 5-year Tailings area expansion development phase, was approximately $26,200,000, a difference of approximately $1,800,000 from the 2001 estimate. As noted above, the Regulatory Agencies accepted this bond revision amount and KGCMC deposited the necessary funds in the Forest Service administered Federal Reserve account.

The value of the reclamation bonding fund was recalculated in 2005 for a Rio Tinto closure review. Based on this new estimate, KGCMC proposed an adjustment increase of $2,765,371 in the fund level from the then current $26,200,000 to $29,000,000 as discussed in the 2006 Annual Presentation Meeting and then presented in a 17 August 2006 letter to the Regulatory Agencies. The Regulatory Agencies provided their review response to KGCMC on 19 January 2007, raising 21 points for consideration and further elaboration. KGCMC fully responded to these issues with a 25 February 2007 letter. KGCMC anticipates further discussion of the Regulatory Agency’s positions at the Annual Presentation meeting in June 2007.
Reclamation Projects

KGCMC continued using past interim reclamation measures, such as hydroseeding and various erosion controls at the tailings facility, to improve and maintain established site controls. A growth media (six inches to one foot) of native soils was placed on selected slopes of the tailings pile to promote the hydroseed growth. KGCMC also continued the use of other sediment control measures such as silt fencing, straw bales, polymer addition, course-rock slope armoring and slope contouring throughout the site. KGCMC is committed to the continued use of site controls as the operation has consistently demonstrated the benefits of these interim reclamation programs to reduce impacts during the operational period.

For year 2002, concurrent reclamation project assessments included investigation for closure methodology, cost estimating, technical analysis and performance monitoring. Subsurface investigations at Site 23/D and the Tailings Facility are significant parts of the assessment process. In late October 2002 a geotechnical drilling program was completed. See Section 3.3 of this document for a discussion of the hydrology and stability results from this study. Ongoing, additional geotechnical assessment programs were conducted in late 2004 into 2005. The site geotechnical analysis report will again be updated with data from these studies.

The waste disposal permit allows time to gather cover performance information for further analysis, prior to installing the covers en mass. Continued evaluation of the cover performance remains ongoing since its installation in 2000 to justify and improve closure capping technology. Extensive reviews in 2002 of the cap performance have also taken place during the KGCMC Stage 2 Tailings Expansion project work with the USFS (O’Kane 2001). KGCMC recognizes that the soil covers represent a significant part of the site reclamation plan. Therefore, KGCMC has continued to commit resources to develop and monitor the performance of the cover at Site 23.

Site 23 has limited area available for continued cap installation, because the available space on the lower western slope continues to be affected by ramp development above the area. As the access ramp is raised past this area, KGCMC will have approximately an acre of available final outside slope for cap installation. This project area may become available in 2006 - 2007.

Approximately 5,000 cubic yards of material was excavated from the backslope of Site 23 during the 2005 construction season. The material was used as fill in the 960 road base and the Mill backslope road. Additional material that was removed is stored at 4.9-mile on the B road for future site reclamation activities. A spring was uncovered during the removal activities. Its flow of approximately 5 – 50 gpm was diverted into two of the existing finger drain collection system pipes (Sites 313 and 315). Flow differences between the inlet and outlet of the drains indicates a discontinuity in the piping. Though not ideal, discontinuities in perforated piping will not alter the primary function of the drains, which is to prevent water table mounding at the base of the pile. A new drain to convey water from this spring to the eastern margin of the pile was built in 2006. KGCMC plans to terminate the existing fingerdrains at their present locations and install a lateral drain system higher on the slope if conditions warrant. In 2006, approximately 2,500 – 5,000 cubic yards are planned to be removed from this Site 23 backslope development area. KGCMC is cautious not to over-excavate the Site 23 backslope because of highwall safety issues due to the unconsolidated nature of the material. Any future removals are dependent on several factors, such as production rock availability for Site 23 excavation fill, weather and potential reclamation sites being ready for soil capping. At this time, the concurrent reclamation plan has a flexible schedule and is addressed in the Detail Reclamation Plan - Cost Estimates document in Section 5.
In 2003, EDE performed mass loading calculations to test hypotheses about flow regimes at Site 23/D and to predict possible post-closure water compositions (EDE, 2004). The results compare favorably with the TDS analysis, the hydrologic analysis as well as past and present flow and water compositional data. The model was used to compare 12 potential post-closure scenarios, including removal of Site D, a range of cover percolation values and a range of annual precipitation rates. The results showed flows at Pond D ranged from 70 gpm to 176 gpm while sulfate values ranged from 24 to 233 mg/l. Cadmium appears to be the metal of greatest concern for this site with respect to meeting water quality standards at Pond D after closure. Cover percolation rates of 20% or less may be required to meet the dissolved freshwater chronic zinc standard, and rates as low as 2% may be required to meet the recently lowered cadmium standard. These predictions do not consider natural attenuation processes, such as microbial or abiotic oxidation/reduction and sorption that could occur in the system following closure of the facility. These predictions will likely require refinement as more information about the site and its final configuration becomes available.

Replacement of Pond D berm is planned but is contingent upon underground backfill capacity and progress at higher priority sites (i.e., 1350 site). The pumps at Pond D create a gradient from the berm toward the caisson, which minimizes the effects of the pyritic berm material on the surrounding area.
3.0 Site 23/D

3.1 Introduction

Kennecott Greens Creek Mining Company (KGCMC) has prepared this report in accordance with the mine’s General Plan of Operations (Appendix 11) and Alaska Department of Environmental Conservation Waste Management Permit 0211-BA001. A summary of all operational and monitoring activities performed in 2006 is provided. Refer to GPO Appendix 11 and Permit 0211-BA001 for a detailed description of Site 23, Site D and associated monitoring requirements.

Operation of Site 23 (KGCMC’s only active production rock disposal facility) continued in 2006. See the Site 23 as-built in Appendix 2 for facility layout. Approximately 127,007 tons of production rock were placed at Site 23 during this report period. KGCMC estimates the projected remaining permitted capacity at Site 23 at approximately 621,300 tons.
3.2 Placement records

Site 23 production data and truck count haulage information are presented in Table 3.1. Site 23 received approximately 20,706 tons of production rock in 2006 as calculated from KGCMC surveyed volumes. A tonnage factor of 1.693 tons/yd^3 was used to convert surveyed volume to tonnage. The small (less than 3 percent) difference between truck count totals and calculated totals based on survey data reflects variations in tonnage factors, small differences in load capacities and double handling of materials. The surveyed volume reported in cubic yards has the least uncertainty relative to other quantities reported in Table 3.1. The acid base accounting data presented in Section 3.5 indicate that KGCMC continues to conservatively classify its production rock. Some of the phyllite that is visually classified as Class 3 is actually chemically Class 2 (i.e. laboratory testing demonstrates a NNP between 100 and –100 tons CaCO_3/1000t).

Table 3.1 Production Rock Placement Data

<table>
<thead>
<tr>
<th>Date</th>
<th>Monthly Surveyed (cy)</th>
<th>Monthly Surveyed (tons)</th>
<th>Monthly Hauled To Tails From Site 23 (tons)</th>
<th>Monthly Cumulative</th>
<th>From UG Truck Counts (tons)</th>
<th>Class 1</th>
<th>Class 2</th>
<th>Class 3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/31/2006</td>
<td>0</td>
<td>477,053</td>
<td>2,490</td>
<td>2,643</td>
<td>6,349</td>
<td>11,482</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/28/2006</td>
<td>8,765</td>
<td>485,818</td>
<td>2,310</td>
<td>6,600</td>
<td>725</td>
<td>9,635</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/3/2006</td>
<td>7,101</td>
<td>492,919</td>
<td>6,597</td>
<td>2,963</td>
<td>17,541</td>
<td>27,101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/1/2006</td>
<td>6,724</td>
<td>499,643</td>
<td>8,389</td>
<td>4,160</td>
<td>14,532</td>
<td>27,081</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/31/2006</td>
<td>3,716</td>
<td>503,359</td>
<td>3,094</td>
<td>1,487</td>
<td>6,189</td>
<td>10,770</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/30/2006</td>
<td>7,979</td>
<td>511,338</td>
<td>570</td>
<td>2,370</td>
<td>19,469</td>
<td>22,409</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/31/2006</td>
<td>8,340</td>
<td>519,678</td>
<td>2,278</td>
<td>119,518</td>
<td>19,469</td>
<td>22,409</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/30/2006</td>
<td>8,248</td>
<td>527,926</td>
<td>2,490</td>
<td>570</td>
<td>20,664</td>
<td>23,011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/28/2006</td>
<td>7,101</td>
<td>535,027</td>
<td>1,821</td>
<td>235</td>
<td>18,919</td>
<td>20,975</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/31/2006</td>
<td>4,620</td>
<td>539,647</td>
<td>1,280</td>
<td>222</td>
<td>14,671</td>
<td>16,942</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/30/2006</td>
<td>0</td>
<td>539,647</td>
<td>3,090</td>
<td>4,188</td>
<td>8,854</td>
<td>16,132</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/3/2007</td>
<td>12,434</td>
<td>552,081</td>
<td>4,064</td>
<td>2,325</td>
<td>11,032</td>
<td>17,421</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>75,028</td>
<td>127,007</td>
<td>32,916</td>
<td>36,002</td>
<td>152,689</td>
<td>218,326</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.3 Stability

Klohn Crippen conducted a stability assessment of Site 23 and Site D in 2003. The stratigraphy and geology were reassessed using the results from drilling programs by KGCMC and Klohn Crippen, historical drill hole data, seismic refraction data, geological mapping and piezometer data. This assessment enabled the previous stratigraphic interpretations to be revised as follows (from top to bottom): a layer of colluvium and blocky rubble about 80 feet thick; a layer of glacial till and sediment about 120 feet thick; a comparatively thin layer of weathered bedrock about 10 to 20 feet thick; and unweathered bedrock (Klohn Crippen, 2004). The blocky colluvium is interpreted to be historical (likely ancient) landslide debris.

Limit-equilibrium stability analyses and the liquefaction potential of the foundation materials were evaluated for Site 23 and Site D, using the reinterpreted geological model. Site 23 has
calculated static Factors of Safety greater than 1.6 for the existing configuration, and 1.7 for the proposed final build-out geometry at 1,120 feet with 3H:1V exterior slopes. The static calculated Factor of Safety of the backslope above Site 23 ranges from 1.0 for shallow surficial slips to 1.3 for deeper surfaces.

The excavation of the soil from the slope behind Site 23 (temporary construction condition) reduces the calculated Factor of Safety for those sections of the backslope, but this temporary reduction is not expected to cause serious backslope instability. Placement of rock fill within the excavation and construction of the final build-out geometry for the production rock site increases the calculated Factor of Safety to slightly above those for the pre-excavation condition.

Approximately 20 feet of saturated fill material identified at the base of Drill Holes DH-00-03 (north-central) and DH-02-14 (east end) at Site D was found to be potentially liquefiable under DBE and MDE loading. Liquefaction of this fill material will impact the stability of Site D, but will not reduce the stability of Site 23 to unacceptable levels.

Site D is projected to fail under a significant earthquake. In its current configuration, Site D will fail under the 1/475-year magnitude design earthquake. This represents an approximate probability of failure of about 0.21% annually, or about 2% during the mine’s current projected period of about 10 years.

Inspections

Several independent inspections are carried out at Site 23 throughout the year. Operators working at the site carry out daily visual workplace inspections. The Surface Civil Engineer and or Surface Operations Manager carry out weekly visual inspections. The environmental department carries out a monthly checklist inspection. No visible signs of physical instability were observed at Site 23 during this report period.

During 2006 the USFS inspected Site 23 approximately 32 times (Site inspections #214/#246) monitoring for Best Management Practices effectiveness and compliance to the General Plan of Operations (GPO). No issues of non-compliance or poor operations practices were noted in the inspections. In fact, the USFS inspections typically noted that Site 23 was being developed and operated to required operations and maintenance specifications of GPO Appendix 11. Also, the ADEC and ADNR inspected the site on May 16, 2006.

Slope Monitoring

Slope monitoring at Site 23/D consisted of GPS monitoring of 14 survey hubs distributed across the sites. See the Site 23 as-built for hub locations. The resolution was sufficient to identify large potential movement and no such movements were identified. An inclinometer was installed at Site 23 at the end of 2005 to aid with stability monitoring. Baseline measurements were taken in October of 2006. Follow up measurements were taken in the first quarter of 2007 and showed no measurable movement.

Well and Piezometer Water Level Data

Well and piezometer water level data are provided in Figures 3.1 to 3.12. The lack of significant pressure in piezometers installed close to the base of Site 23 (piezometers 52-55, Figures 3.1 to 3.4) demonstrates that the pile remains free draining. This is consistent with the construction of a
network of finger drains under the pile and a blanket drain at the pile toe. Comparison of historic versus modeled flow from the finger drains and the curtain drain indicated they are performing as designed and as necessary (EDE, 2004). See Appendix 2 for piezometer and finger drain locations. The lack of pore pressure at the toe indicates that pile stability has been maximized. Water levels from several monitoring locations are shown in Appendix 2. The inferred water table is 30 to 60 feet below the base of the production rock pile material up-slope of the Site 23 active placement area and 5 to 20 feet below the base of material placed in Site D and the toe of Site 23, respectively (see also Figures 3.5 to 3.12). Observations from wells completed in the colluvium below the sites indicate that perched water tables and braided flow paths exist beneath the site (e.g. compare Figure 3.6 and 3.7). This unit also shows large (up to 10 feet) fluctuations in head levels, which are consistent with perched, confined conditions and channel-like flow. There is a distinct seasonal pattern to the water level fluctuations beneath Site 23/D, particularly in the alluvial sands (Figures 3.9 and 3.11).

The silty/clay till that underlies the colluvial unit impedes downward flow and has an upward hydrologic gradient caused by confining the more permeable bedrock below it. MW-23-98-01 (Figure 3.8) is completed in the till unit and indicates a water table near the top of the till, which is approximately 100 feet below the existing topographic surface. Alluvial sands occur between the colluvial unit and the silt/clay till near the toe of Site 23 and under Site D. Data from MW-23-A4 and MW-D-94-D3 (Figures 3.9 and 3.11) indicate that the sands are saturated. A curtain drain installed between Site D and Site 23 in 1994 collects water that flows at the base of the colluvial unit and the top of the alluvial sands (see as-built and Section CC for locations). This drain helps reduce pore pressures in the foundation of Site D, as well as capturing infiltration waters from Site 23.

3.4 Hydrology

Surface and groundwater are managed using a network of drains, ditches and sediment ponds at both Site D and Site 23. See the Site 23 as-built for locations of these features. Water that is collected in the finger drains beneath Site 23 is routed to Pond 23 along with Site 23 runoff via a lined ditch. Pond 23 also periodically receives stormwater via pipeline from the 920 area. A curtain drain below the toe of Site 23 captures groundwater from the colluvial unit beneath the site and reports to the Pond D wet well via pipelines. Pond D also captures surface water and drainage from seeps near the toe of Site D. Pond D water is returned to the Pond 23 pump station where it is either sent to the mill or down to the Pit 5 water treatment facility.

Monthly temperature and precipitation data are provided in Table 3.2. A total of 71.34 inches of precipitation fell in 2006. The driest month was March (1.06 in). The wettest months were September and October with 10.51 and 11.37 inches of precipitation, respectively. The production rock and colluvium units respond rapidly to hydrologic events such as snowmelt and rainfall, indicating very local recharge and discharge (EDE, 2004).

Flow data for Pond D are shown with precipitation in Figure 3.13. A review of curtain drain and Pond D flow measurements suggest that the current Pond D flow meter readings are approximately 40% low (EDE, 2004). Piping and flow meter modifications may be required to obtain more accurate readings.
Table 3.2 Monthly Summaries of Mill Site Climate Data

<table>
<thead>
<tr>
<th>Month</th>
<th>Avg Temp (°C)</th>
<th>Precipitation (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>-2.19</td>
<td>3.75</td>
</tr>
<tr>
<td>February</td>
<td>-2.63</td>
<td>2.60</td>
</tr>
<tr>
<td>March</td>
<td>-3.34</td>
<td>1.06</td>
</tr>
<tr>
<td>April</td>
<td>2.20</td>
<td>4.10</td>
</tr>
<tr>
<td>May</td>
<td>6.73</td>
<td>5.10</td>
</tr>
<tr>
<td>June</td>
<td>10.67</td>
<td>6.55</td>
</tr>
<tr>
<td>July</td>
<td>12.19</td>
<td>4.48</td>
</tr>
<tr>
<td>August</td>
<td>10.68</td>
<td>9.07</td>
</tr>
<tr>
<td>September</td>
<td>9.02</td>
<td>10.51</td>
</tr>
<tr>
<td>October</td>
<td>4.20</td>
<td>11.37</td>
</tr>
<tr>
<td>November</td>
<td>-6.99</td>
<td>2.52</td>
</tr>
<tr>
<td>December</td>
<td>-0.128</td>
<td>10.23</td>
</tr>
<tr>
<td>2006</td>
<td>3.37</td>
<td>71.34</td>
</tr>
</tbody>
</table>

3.5 Water Quality

An in-depth re-evaluation of the geochemistry and hydrology of Site 23 and Site D was performed in 2003 by Environmental Design Engineering (EDE) and KGCMC in accordance with the ADEC Waste Management Permit Section 4.1.1. In general, metal concentrations in the production rock are above crustal averages and are higher than those of the underlying till, colluvium, and alluvium units. Site contact water, therefore, has a generally higher dissolved load than background surface water and groundwater. Bruin Creek and Greens Creek have specific conductivities that range seasonally from 50 to 225 µS/cm. The lack of significant differences between upgradient and downgradient sites on these two creeks demonstrates that effects from Site 23/D are negligible.

Groundwater upgradient and downgradient of Site 23/D also varies between sites and seasonally, with specific conductivity ranging from 200 to 800 µS/cm. Compositional differences between upgradient and downgradient wells demonstrate that the slide unit hosts a series of disconnected, perched water tables.

Monitoring data from surface water and groundwater sites indicate that the combination of finger drains, curtain drain, ditches and ponds is effectively collecting contact waters and that downgradient effects from Site 23/D are negligible.

Data collected from basal drains, the curtain drain and Pond D show a progressive, down-slope increase in the groundwater component of the flow. This is consistent with the hydrologic interpretation that water infiltrates through the slide material and daylights as springs near the toe of this unit. As Site 23 expands, the proportion of contact water in the flow increases, as demonstrated by the increase in the curtain drain dissolved load since 1995. While the volume of contact water has increased, the dissolved load of the contact water has not increased over time. This is a positive result because it demonstrates that acid generation is not imminent.

A dissolved load analysis based on calculated TDS was performed to determine the relative proportions of various source waters in downgradient waters. Based on this analysis, Pond D
contains 12% contact water, and approximately 80% of the D Pond flow is contributed by the curtain drain.

Representative water quality analyses for the major water types are consistent with the conductivity and TDS results and help to further define the geochemical processes occurring at the site. Alkalinity and pH values from all site waters support the conclusion that carbonate minerals are effectively neutralizing acids formed by oxidation of pyrite in the production rock. Zinc, cadmium, manganese, nickel and arsenic are more mobile than other metals of interest in the drainage. Precipitation of iron oxy-hydroxides and manganese oxides controls the concentrations of iron, manganese, and arsenic. Zinc, cadmium and nickel are controlled by mixing and sorption mechanisms. Gypsum is controlling the concentration of calcium in the drainage and will slowly be removed from the system after the pile is covered.

Compliance Monitoring

Water sites around the Site 23/D production rock storage area have been monitored for various periods. Sites have been added and deleted over time as rock storage area development required. Monitoring under the revised FWMP schedule and sites began with October 2002 sampling, the first month of water year 2003. The full FWMP Annual Report for water year 2006 is being prepared separately and will be submitted to the Forest Service and ADEC upon completion.

Internal Monitoring

In May 2001 Kennecott Greens Creek Mining Company (KGCMC) submitted an Internal Monitoring Plan to the Alaska Department of Environmental Conservation – Solid Waste Management Program. This submittal satisfied Section 2.8.3.1 of the KGCMC Waste Disposal Permit Number 0111-BA001. The provision was retained within Waste Management Permit 0211-BA001 with its issuance in November 2003.

As described in Section 2.8.3.1 of both permits, the internal plan addressed monitoring at both the surface tailings facility and the surface production rock storage areas covered by the permit. The Internal Monitoring Plan describes monitoring within the pile areas, in contrast to the compliance monitoring (under the Fresh Water Monitoring Plan) at peripheral facility boundary sites. As such, data generated by the Internal Monitoring Plan effort are “… not for compliance purposes…” as noted in the above referenced permit Section 2.8.3.1.

Waters represented by the internal monitoring sites are captured, routed to the mill or Tailings Facility and treated prior to discharge to the ocean floor under KGCMC’s National Pollutant Discharge Elimination System Permit (AK 004320-6) from EPA.

Operationally for KGCMC, the production rock Site 23 and the adjacent production rock Site D are treated as a single entity, primarily due to their conterminous positions making isolation from one another impractical. Consequently, they are operated and referred to as Site 23/D in this report.

The results of KGCMC’s Site 23/D internal site monitoring plan are summarized in Figures 3.14 to 3.26. Sites were distinguished between finger drains and groundwater. These groups are separated on the Figures 3.14 through 3.26 with the suffix a or h respectively. For example, a figure number such as 3.14a would show the pH data for the finger drains, and 3.14b would show the pH data for the groundwater sites. Sample collection from the Site 23 finger drains is dependent upon their flow. Flow from several of these finger drains is very irregular, responding
directly to precipitation-induced infiltration and groundwater fluctuations (Figure 3.27). Monthly sampling of the flowing drains has identified the typical range of concentrations of constituents in the drain waters. KGCMC reduced the frequency of sampling to quarterly for all internal monitoring sites starting in 2003.

Figure 3.14a shows the pH of waters collected from Site 23 Finger Drains 2 through 8, and Figure 3.14b shows the pH of monitoring wells MW-23-A2D, MW-23-A4, MW-D3 and Pond D (see as-built in Appendix 2 for locations). Values of pH were between 6 and 8.5 for all internal monitoring site samples in 2006. The lower pH values (generally pH 6.0 to 7.0) were recorded in MW-23-A4 and MW-D3, both of which are completed in alluvial sands beneath Site 23 and Site D, respectively. MW-23-A2D, which screens colluvium up-gradient of Site 23 typically has the highest pH (generally pH 7.0 to 8.5). The Site 23 finger drains fluctuate at values between those of the monitoring wells. Figure 3.14a and b suggest that waters from different foundation units have different pH values and that Site 23 and Site D contact waters and the materials with which they are in contact exhibit sufficient buffering capacity to prevent acidification of site drainage in the near term. Seasonal fluctuations are apparent in the finger drains with highest pH values occurring in winter months and lower pH in mid to late summer.

As with pH, high alkalinity values (Figure 3.15a and b) indicate that the waters are well buffered. Fluctuations in alkalinity correlate with those of other parameters, such as hardness (Figure 3.16a and b) and conductivity (Figure 3.17a and b), and appear to be seasonal. Carbonate minerals in the production rock contribute to the high alkalinity of the drainage from the finger drains. Alkalinity is lowest in samples with the highest groundwater component (e.g. the monitoring wells, D Pond, 23FD-5 and 23FD-7). Calcium and magnesium are the primary contributors to hardness (Figure 3.16a) and reflect dissolution of carbonate minerals, such as calcite and dolomite. Carbonate dissolution neutralizes acidity formed by sulfide oxidation, which is also the source of sulfate shown in Figure 3.18a.

Conductivity results from internal monitoring site waters are presented in Figure 3.17a and b. 2005 conductivity measurements range up to 4,610 µS/cm. MW-23-A2D and MW-D3 have the lowest conductivity. MW-D3 is completed in alluvial sands below the fill placed at Site D. The finger drains with the highest flow (e.g. 23FD-5, which directly drains an excavated spring) generally have lower conductivities than the drains with lower flow. This reflects a larger contribution from groundwater to the high-flow drains relative to a higher proportion of site contact water in the other finger drains. The significant decrease in conductivity in 23FD-7 that occurred in 2000 is probably the result of incorporation of groundwater collected in the upper portion of the drain above the active placement area. The presence of contact water in the alluvial sand below Site 23 (as seen in MW-23-A4) is not surprising given the permeable nature of the colluvium that lies immediately beneath the site. A clay till layer underlies the colluvium and alluvial sands beneath the site. The clay till serves as a barrier to downward flow; however, as discussed earlier, it occurs well below the base of both piles.

The fact that MW-D3 does not show signs of a contribution from contact water suggests that an upward hydrologic gradient may exist beneath Site D. Finger Drain 23FD-2 has the highest productivity but consistently low flow, suggesting no significant influence from groundwater. This drain may also be influenced by runoff that infiltrates along the access ramp to the site. The higher conductivity of the site contact waters reflects a larger dissolved load caused by weathering of the production rock. As with tailings, pyrite oxidation and carbonate dissolution contribute dissolved ions such as sulfate, bicarbonate, calcium and magnesium to the contact waters, increasing their conductivity. Sulfate concentrations for the finger drains and
groundwater wells are plotted in Figures 3.18a and 3.18b and match closely the relative value patterns of conductivity.

Arsenic data are presented in Figure 3.19a and b and are generally quite low. All finger drains and MW-23-A4 experienced increases in their arsenic concentrations in September 2003, with subsequent decreases to historical levels in October. The flows in the finger drains positively correlate with these changes. Fluctuations in arsenic values in 23FD-2 can be attributed to changes in redox conditions. Low arsenic and iron (Figures 3.25 a and b) concentrations indicate that these metals are precipitating as oxyhydroxides on rock surfaces inside the pile.

Figure 3.20a and b shows the concentration of zinc in the internal monitoring locations at Site 23/D. Zinc levels appear to be controlled by seasonal conditions. The changes in zinc concentrations mimic those for conductivity and sulfate. 23FD-2 had a zinc concentration of approximately 70 mg/l in June 2002. In 2003, the zinc concentration averaged 20 mg/l, and this average further decreased to approximately 14 mg/l in 2004 and 2005. However, in 2006, the average zinc concentration had increased to 17 mg/l. Zinc concentrations in the range of 20 to 70 mg/l are consistent with laboratory kinetic weathering tests performed on samples of argillite and serpentinite (Vos, 1993). The zinc concentrations recorded for Pond D are generally below 0.7 mg/l and reflect contributions from several source waters. Pond D receives water from Site D surface runoff, seeps on the slope and at the toe of the site and the effluent from the curtain drain that KGCMC installed between Site D and Site 23. MW-D3 showed elevated zinc concentrations in both 2005 samples: zinc levels rose from an average of 10 µg/l in 1998-2004 to an average of 177 µg/l in 2005. Average sulfate also increased by approximately 30 mg/l in 2005 compared to average values from 2002-2004. The zinc and sulfate returned to within historical limits in 2006. The cause for the increases in 2005 is not immediately apparent; however, if it was the arrival of a contact water front, a significant increase in conductivity, sulfate, calcium and magnesium should have preceded an increase in metals such as lead and zinc.

Cadmium concentrations (Figure 3.21a and b) correlate well with those of zinc for the internal monitoring sites although at much lower values (0 to 35 µg/l).

The concentrations of copper and lead (Figures 3.22a and b and 3.23a and b) are considerably lower than that of zinc in the Site 23/D internal monitoring sites. Both of these metals show the same general trends as zinc with the exception of one anomalous lead result in a sample from 23FD-2 in 1999. The nickel concentrations presented in Figure 3.24a and b support the observation that the drainage from 23FD-2 is different than that of other drainages. It is possible that the material that supplies water to this drain has a greater proportion of serpentinite, which was shown to produce higher zinc and nickel concentrations than other rock types such as argillite and phyllite (Vos, 1993). What appeared to be a linear increase in nickel concentrations in 23FD-2 prior to 2002 now appears to be decreasing or at least cyclical. The December 2005 sample from MW-23-A2D showed elevated metal concentrations; however, the 2006 metal concentrations for this site are within historical data values. Monitoring will continue to determine trends.

An overall increase in arsenic cadmium, copper and zinc concentrations was apparent in the majority of fingerdrain samples between 2005 and 2006, though the elevated levels remained within historical limits. This may be the result of capturing the flow from a spring along the site’s backslope.

Manganese concentrations (Figures 3.26a and b) are generally less than 50 µg/l for MW23-A2D, MW23-A4, and three of the finger drains (23FD-3, 23FD-5 and 23FD-8). The other three finger
drains (23FD-2, 23FD-6 and 23FD-7) and MW-D3 and Pond D have elevated manganese concentrations, indicative of the different redox conditions. Precipitation/dissolution of iron oxyhydroxides and manganese oxides controls the concentrations of iron and manganese in these waters.

Acid Base Accounting Data

Acid base accounting (ABA) results from 183 underground rib composites collected in 2006 are presented in Table 3.3 and Figure 3.28. Class 1 rib samples had an average neutralization potential (NP) of 530 tons CaCO$_3$/1000t, which is equivalent to 53% carbonate. The Class 1 samples had an average acid potential (AP) of 99 tons CaCO$_3$/1000t, which produced an average net neutralization potential (NNP) of 431 tons CaCO$_3$/1000t. Class 1 production rock does not have the potential to generate acid rock drainage, however KGCMC recognizes the potential for metal mobility (primarily zinc) from argillite. KGCMC recognizes this characteristic of Class 1 production rock and handles the material accordingly by placing it in controlled facilities, such as Site 23 and the tailings area.

Class 2 production rock rib samples had a moderate average NP value (190 tons CaCO$_3$/1000t) and an average AP of 215 tons CaCO$_3$/1000t. The resulting average NNP for the Class 2 rib samples was -25. Class 3 rib samples had an average NP, AP and NNP of 125, 303 and -176 tons CaCO$_3$/1000t, respectively. Negative values for NNP indicate that the materials are potentially acid generating, thus requiring appropriate ARD control measures. Carbonate in the Class 2 and Class 3 production rock prevents ARD formation in the short term, allowing time for placement of a composite soil cover to be constructed during reclamation. The soil cover is designed to inhibit ARD formation by minimizing oxygen and water infiltration into the underlying production rock. Class 4 rib samples produced an average NNP of -398 tons CaCO$_3$/1000t. Class 4 material is retained underground.

Figure 3.28 compares actual class designation based on ABA analyses to the results of visual designation use underground to classify the production rock. Of the 183 composites, visual classification assigned 5 sample (3%) to a lower, less conservative class. 111 (39%) of the composites were assigned to the appropriate class and 67 (58%) to a higher, more conservative class. These data represent a 97% success rate for the visual classification program.

Table 3.3 Acid Base Accounting Data Summary for Underground Rib Samples and Site 23

<table>
<thead>
<tr>
<th>Class 1</th>
<th>Class 2</th>
<th>Class 3</th>
<th>Class 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site 23 Rib Sample</td>
<td>Site 23 Rib Sample</td>
<td>Site 23 Rib Sample</td>
<td>Site 23 Rib Sample</td>
</tr>
<tr>
<td>NP 474</td>
<td>530</td>
<td>225</td>
<td>190</td>
</tr>
<tr>
<td>AP 67</td>
<td>99</td>
<td>270</td>
<td>215</td>
</tr>
<tr>
<td>NNP 407</td>
<td>431</td>
<td>-45</td>
<td>-25</td>
</tr>
</tbody>
</table>

Notes:
- Values are averages from 183 samples for rib samples and 11 samples for Site 23
- ABA units are tons CaCO$_3$/1000t
- NP determined by standard Sobek method
- AP determined from iron assay (converted to pyrite equivalent)
Table 3.3 and Figure 3.29 shows the ABA data from surface sampling at Site 23 in 2006. The AP to NP distribution in the Site 23 samples is similar to the underground rib samples. Many of the samples at Site 23 were taken near the boundaries of the classification areas, and may be more representative of a mixture of classes. Therefore some of the data points may not fall neatly into the classification areas on the graph. Currently drainage from the Site 23/D area is collected and pumped to the Pit 5 water treatment facility.

3.6 General Site Management

The construction method used at Site 23 (bottom-up construction) limits the site’s complexity. Designated placement zones are marked on the active lift of the site and production rock is placed according to class. No activities other than routine monitoring occurred at Site D in 2006.

Unusually wet conditions during 2006 presented drainage and accessibility challenges at Site 23. In 2005 KGCMC modified placement methods to minimize the formation of permeable areas, or chimneys, between placement zones. The homogenous, planar placement surface that resulted from the new method created surface drainage challenges. KGCMC experimented with a ridge and swale pattern that appeared to improve drainage during the rainy season but was susceptible to drifting snow in the winter months. Fine tuning of methods to improve drainage and accessibility will continue in 2007.

Approximately 5,000 cubic yards of material was excavated from the backslope of Site 23 during the 2005 construction season. The material was used as fill in the 960 road base and the Mill backslope road. Additional material that was removed is stored at 4.9 on the B road for future site reclamation activities. In 2006, approximately 2,500 – 5,000 cubic yards are planned to be removed from this area.

3.7 Site as-built

As-built drawings for Site 23/D are presented in Appendix 2. Three drawings from the Site 23/D Hydrogeology and Geochemistry Analysis Report (EDE 2004) (Site 23/D conceptual model, Site 23/D colluvium potentiometric surface and Site 23/D cross section) are also included in Appendix 2. The drawings show the year-end topography, water management features, monitoring device locations, and other significant features of the site. The as-built also includes cross sections that show the following information:

- existing topographic surface
- prepared ground upon which the pile was constructed
- original unprepared ground
- fill design level

Figures 3.30 through 3.32 show photographs of Site 23. Figure 3.30 shows the designated storage area on Site 23 for Class 1 production rock. The rerouting of the backslope spring around the site is shown in Figure 2.31. Figure 3.32 shows the work in August on one of the drain areas along the backslope.
3.8 Reclamation

KGCMC has monitored the performance of a one-acre composite soil cover plot on Site 23 since September 2000 (see Site 23 as-built in Appendix 2 for plot location). Key performance aspects of the cover system through 2006 include:

- The total precipitation recorded during 2005 and 2006 was 73.5 inches and 76.4 inches respectively, which is similar to the precipitation recorded for the four previous monitoring years.

- The recorded precipitation not take into account the processes of snow sublimation and wind drift. To address these factors it is recommended that a simple snow survey be conducted on a monthly basis to determine the snow water equivalent.

- Actual evapotranspiration (AET) was estimated from the meteorological data collected at the weather station. AET was estimated to be 9.8 and 9.9 inches for 2005 and 2006 respectively.

- The degree of saturation in the barrier layer was greater than 85% for the entire monitoring period. In fact, saturation appears to have stabilized at about 95 percent. This is a positive cover performance aspect and implies that the oxygen diffusion coefficient of the barrier material was minimized, thus minimizing the ingress of atmospheric oxygen with respect to diffusion through the pore-air space.

- Neutron moisture probe measurements were completed over the two monitoring years. Analysis of the results showed that there has been little change in the volumetric water content of the soil profiles over the two year period.

- Approximately 12.8 inches of net percolation were recorded at the lysimeter during the 2005 monitoring period and 14.3 inches of percolation were measured over the 2006 monitoring period after a correction was made to the tipping bucket data. These values equate to 17.4% and 18.7% of total precipitation for 2005 and 2006, respectively.

- The lysimeter output seems to be correlated to changes in barometric pressure and less obviously temperature effects based on an analysis of 2006 data. Further analysis on historical data should be completed to quantify the amount of net percolation which results from these mechanisms.

- Late in 2002 a lined cutoff trench was installed above the cover plot and bentonite was applied around the access tube to the lysimeter. Data collected in 2003 suggest that these maintenance activities had little effect on amount of water draining from the lysimeter. On September 23, 2004, a circular, 6 feet diameter HDPE cover was placed directly over the lysimeter. The covered area was increased with the addition of a rectangular HDPE cover that extended approximately 18 feet up-slope on November 16th.

- The high net percolation rate recorded for the monitoring period suggests that the HDPE covers have not reduced the amount of moisture reaching the lysimeter. This suggests that the net percolation being recorded is from a source outside of the covered area (e.g. not direct vertical percolation through the cover profile).
• A water balance was utilized to back-calculate the combined runoff and lateral percolation occurring within the sloped cover system for the two monitoring years. The estimated runoff and lateral percolation was 50.9 and 52.2 inches for 2005 and 2006, respectively.

• The recorded temperatures within the growth medium layer and the compacted barrier layers have been similar for the five years of monitoring. The data shows that freezing conditions have not been encountered in the compacted barrier layer, suggesting that freeze/thaw cycling is not occurring.

• The data capture rate was 96% for the monitoring period.

• Vegetative cover continues dominated by the hydroseeded grass and clover plant species. However natural invasion, primarily by spruce seedlings, is evident, particularly on the western-most portion of the cover area.

• The cover showed no signs of erosion or slope instability, and thus no repair costs were incurred. The reclamation plan however does allow for cover maintenance, which to date has not been required. This is a positive result with respect to the structural integrity of the cover, which currently does not have a buttressed toe. Full-scale cover placement will include toe support.

In December 2006 KGCMC began collaborating with Oregon State University and M.A. O’Kane Consultants Inc. to further characterize the hydrology of the cover plot and evaluate how evolution of native forest vegetation (spruce-hemlock forest) may affect cover system performance. Field experiments and numerical modeling are planned for 2007 through 2009.

Reclamation Plan

The KGCMC Reclamation Plan, as well as its implementation is discussed above in Section 2.8 Tailings of this report. Please refer to that discussion for aspects relevant to Site 23/D area reclamation.
4.0 References

Environmental Design Engineering (EDE), 2002a, Kennecott Greens Creek Mining Company Stage II Tailings Expansion Hydrologic Analysis, February 5, 2002.

Environmental Design Engineering (EDE), 2002b, Kennecott Greens Creek Mining Company Stage II Tailings Expansion Geochemistry Report, February 5, 2002.

Kennecott Greens Creek Mining Company (KGCMC), Tailings and Production Rock Site 2002 Annual Report, April 2002b.

Kennecott Greens Creek Mining Company (KGCMC), Tailings and Production Rock Site 2004 Annual Report, August 2005.

APPENDIX 1

Tailings Facility 2006 As-built and Cross Sections
APPENDIX 2

Site 23/D 2006 As-built and Cross Section
APPENDIX 3

Data Figures
Figure 2.1 Water Level Data for Piezometer 41

KGCMC PIEZOMETER 41

Transducer Elevation 176.0'
Figure 2.2 Water Level Data for Piezometer 42

KGCMC TAILINGS PIEZOMETER 42

Transducer Elevation 202.5'
Figure 2.3 Water Level Data for Piezometer 44

KGCMC TAILINGS PIEZOMETER 44

Transducer Elevation 177.3'
Figure 2.4 Water Level Data for Piezometer 46

KGCMC TAILINGS PIEZOMETER 46

Transducer Elevation 140.9'
Figure 2.5 Water Level Data for Piezometer 47

KGCMC TAILINGS PIEZOMETER 47

WATER ELEVATION (FT-MSL)

DATE

140.0 145.0 150.0 155.0 160.0 165.0 170.0 175.0 180.0

Transducer Elevation 144.7'

115.0 120.0 125.0 130.0 135.0 140.0 145.0 150.0 155.0 160.0 165.0 170.0 175.0 180.0

WATER ELEVATION (FT-MSL)

DATE

140.0 145.0 150.0 155.0 160.0 165.0 170.0 175.0 180.0

Transducer Elevation 144.7'
Figure 2.6 Water Level Data for Piezometer 50

KGCMC TAILINGS PIEZOMETER 50

Transducer Elevation 164.9'

WATER ELEVATION (FT-MSL)

DATE

Figure 2.7 Water Level Data for Piezometer 51

KGCMC TAILINGS PIEZOMETER 51

Transducer Elevation 176.9'
Figure 2.8 Water Level Data for Piezometer 74

KGCMC PIEZOMETER 74

Date:
- 1/1/1999
- 1/1/2000
- 12/31/2000
- 1/1/2002
- 1/1/2003
- 1/2/2004
- 1/1/2005
- 1/1/2006
- 1/2/2007
- 1/2/2008

Water Elevation (FT-MSL):
- Transducer Elevation 141.1’
Figure 2.9 Water Level Data for Piezometer 75

KGCMC PIEZOMETER 75

Transducer Elevation 141.3'

Instrument broken/abandoned April 2005
Figure 2.10 Water Level Data for Piezometer 76

KGCMC PIEZOMETER 76

Transducer Elevation 142.7'
Figure 2.11 Water Level Data for Standpipe Piezometer PZ-T-00-01

PZ-T-00-01

DATE

WATER ELEVATION (FT-MSL)
Figure 2.12 Water Level Data for Standpipe Piezometer PZ-T-00-02
Figure 2.13 Water Level Data for Standpipe Piezometer PZ-T-00-03

PZ-T-00-03

DATE

WATER ELEVATION (FT-MSL)
Figure 2.14 Water Level Data for Standpipe Piezometer MW-T-00-05A

NOTE: Water level reading taken with a sonic indicator caused these erratic data points in 2002 and 2003.
Figure 2.15 Water Level Data for Well MW-T-00-3A

MW-T-00-03A

DATE

WATER ELEVATION (FT-MSL)
Figure 2.16 Water Level Data for Well MW-T-00-3B
Figure 2.17 Water Level Data for Well MW-T-01-03A
Figure 2.18 Water Level Data for Well MW-T-01-03B
Figure 2.19 Tailings Area Wet Well Flow Data

FIGURE 2.19 TAILINGS AREA WET WELL FLOW
FIGURE 2.20a GREENS CREEK TAILINGS AREA INTERNAL MONITORING SITES: WET WELLS - pH DATA

- Wet Well 2
- Wet Well 3
FIGURE 2.20b GREENS CREEK TAILINGS INTERNAL MONITORING SITES:
TAILINGS COMPLETIONS - pH DATA

<table>
<thead>
<tr>
<th>Date</th>
<th>pH (s.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1/02</td>
<td>6</td>
</tr>
<tr>
<td>1/1/03</td>
<td>6.5</td>
</tr>
<tr>
<td>1/1/04</td>
<td>7</td>
</tr>
<tr>
<td>12/31/04</td>
<td>7.5</td>
</tr>
<tr>
<td>1/1/06</td>
<td>8</td>
</tr>
<tr>
<td>1/1/07</td>
<td>8.5</td>
</tr>
</tbody>
</table>

- PZ-T-00-01
- PZ-T-00-02
- PZ-T-00-03
- MW-T-02-05
- MW-T-02-06
FIGURE 2.21a GREENS CREEK TAILINGS INTERNAL MONITORING SITES:
WET WELLS - ALKALINITY
(Non-detectable analyses plotted as zero)
FIGURE 2.21b GREENS CREEK TAILINGS INTERNAL MONITORING SITES:
TAILINGS COMPLETIONS - ALKALINITY DATA
(Non-detectable analyses plotted as zero)
FIGURE 2.21c GREENS CREEK TAILINGS INTERNAL MONITORING SITES: SUCTION LYSIMETERS - FIELD ALKALINITY

mg/L CaCO3

0 100 200 300 400 500 600

1/1/01 1/1/02 1/1/03 1/1/04 1/1/05 1/1/06 1/1/07

SL-T-02-04
SL-T-02-05
SL-T-02-06
SL-T-02-07
FIGURE 2.22a GREENS CREEK TAILINGS INTERNAL MONITORING SITES: WET WELLS - CONDUCTIVITY DATA

The graph shows the conductivity data for Wet Wells 2 and 3 from 1/1/98 to 1/1/07. The conductivity values range from 0 to 4000 uS/cm. Wet Well 2 is represented by blue diamonds, and Wet Well 3 by pink squares. The data points show fluctuations over time, indicating changes in conductivity levels at these monitoring sites.
FIGURE 2.22b GREENS CREEK TAILINGS INTERNAL MONITORING SITES:
TAILINGS COMPLETIONS - CONDUCTIVITY DATA

![Graph showing conductivity data for various sites over time.](image)
FIGURE 2.22c GREENS CREEK TAILINGS INTERNAL MONITORING SITES: SUCTION LYSIMETERS - CONDUCTIVITY
FIGURE 2.23a GREENS CREEK TAILINGS INTERNAL MONITORING SITES:
WET WELLS - HARDNESS DATA
(Non-detectable analyses plotted as zero)
FIGURE 2.24a GREENS CREEK TAILINGS INTERNAL MONITORING SITES:
WET WELLS - SULFATE DATA
(Non-detectable analyses plotted as zero)
FIGURE 2.24b GREENS CREEK TAILINGS INTERNAL MONITORING SITES:
TAILINGS COMPLETIONS - SULFATE DATA
(Non-detectable analyses plotted as zero)
FIGURE 2.24c GREENS CREEK TAILINGS INTERNAL MONITORING SITES:
SUCTION LYSIMETERS- SULFATE DATA
(Non-detectable analyses plotted as zero)
FIGURE 2.25a GREENS CREEK TAILINGS INTERNAL MONITORING SITES:
WET WELLS- ARSENIC DATA
(Non-detectable analyses plotted as zero)
FIGURE 2.25b GREENS CREEK TAILINGS INTERNAL MONITORING SITES:
TAILINGS COMPLETIONS - ARSENIC DATA
(Non-detectable analyses plotted as zero)
FIGURE 2.25c GREENS CREEK TAILINGS INTERNAL MONITORING SITES:
SUCTION LYSIMETERS - ARSENIC DATA
(Non-detectable analyses plotted as zero)

(6/16/03, 213)
FIGURE 2.26a GREENS CREEK TAILINGS INTERNAL MONITORING SITES:
WET WELLS - ZINC DATA
(Non-detectable analyses plotted as zero)

(12/29/99, 13000)
FIGURE 2.26b GREENS CREEK TAILINGS INTERNAL MONITORING SITES:
TAILINGS COMPLETIONS - ZINC DATA
(Non-detectable analyses plotted as zero)
FIGURE 2.26c GREENS CREEK TAILINGS INTERNAL MONITORING SITES:
SUCTION LYSIMETERS - ZINC DATA
(Primary and secondary y axis: Non-detectable analyses plotted as zero)
FIGURE 2.27a GREENS CREEK TAILINGS INTERNAL MONITORING SITES: WET WELLS - COPPER DATA
(Non-detectable analyses plotted as zero)
FIGURE 2.27b GREENS CREEK TAILINGS INTERNAL MONITORING SITES:
TAILINGS COMPLETIONS - COPPER DATA
(Non-detectable analyses plotted as zero)
FIGURE 2.27c GREENS CREEK TAILINGS INTERNAL MONITORING SITES:
SUCTION LYSIMETERS - COPPER DATA
(Non-detectable analyses plotted as zero)
FIGURE 2.28a GREENS CREEK TAILINGS INTERNAL MONITORING SITES:
WET WELLS - LEAD DATA
(Non-detectable analyses plotted as zero)
FIGURE 2.28b GREENS CREEK TAILINGS INTERNAL MONITORING SITES:
TAILINGS COMPLETIONS - LEAD DATA
(Non-detectable analyses plotted as zero)
FIGURE 2.28c GREENS CREEK TAILINGS INTERNAL MONITORING SITES:
SUCTION LYSIMETERS - LEAD DATA
(Non-detectable analyses plotted as zero)
FIGURE 2.29a GREENS CREEK TAILINGS INTERNAL MONITORING SITES:
WET WELLS - CADMIUM DATA
(Non-detectable analyses plotted as zero)
FIGURE 2.29b GREENS CREEK TAILINGS INTERNAL MONITORING SITES:
TAILINGS COMPLETIONS - CADMIUM DATA
(Non-detectable analyses plotted as zero)
FIGURE 2.29c GREENS CREEK TAILINGS INTERNAL MONITORING SITES: SUCTION LYSIMETERS - CADMIUM DATA
(Non-detectable analyses plotted as zero)
FIGURE 2.30a GREENS CREEK TAILINGS INTERNAL MONITORING SITES: WET WELLS - IRON DATA
(Non-detectable analyses plotted as zero)
FIGURE 2.30b GREENS CREEK TAILINGS INTERNAL MONITORING SITES:
TAILINGS COMPLETIONS - IRON DATA
(Non-detectable analyses plotted as zero)

(4/29/04, 2200) (8/02/06, 3400)
FIGURE 2.30c GREENS CREEK TAILINGS INTERNAL MONITORING SITES:
SUCTION LYSIMETERS - IRON DATA
(Non-detectable analyses plotted as zero)
FIGURE 2.31a GREENS CREEK TAILINGS INTERNAL MONITORING SITES:
WET WELLS - MANGANESE DATA
(Non-detectable analyses plotted as zero)
FIGURE 2.31b GREENS CREEK TAILINGS INTERNAL MONITORING SITES: TAILINGS COMPLETIONS - MANGANESE DATA
(Non-detectable analyses plotted as zero)
FIGURE 2.31c GREENS CREEK TAILINGS INTERNAL MONITORING SITES: SUCTION LYSIMETERS - MANGANESE DATA
(Non-detectable analyses plotted as zero)
FIGURE 2.32 TAILINGS MONTHLY COMPOSITE ABA RESULTS

Neutralization Potential and Acid Potential (tons CaCO₃/kt)

Date

1/15/01 3/15/01 5/15/01 7/15/01 9/15/01 11/15/01 1/15/02 3/15/02 5/15/02 8/15/02 10/15/02 12/15/02 2/15/03 4/15/03 7/15/03 9/15/03 11/15/03 1/15/04 3/15/04 5/15/04 7/15/04 9/15/04 11/15/04 1/15/05 3/15/05 5/15/05 7/15/05 9/15/05 11/15/05

Net Neutralization Potential (tons CaCO₃/kt)
FIGURE 2.33 TAILINGS FACILITY 2005 ACID BASE ACCOUNTING DATA

NEUTRALIZATION POTENTIAL (tCaCO3/kt)

ACID POTENTIAL (tCaCO3/kt)

Tailings
Tailings and waste rock
Tailings and road rock

NNP = 0
FIGURE 2.34 TAILINGS FACILITY PH VERSUS NET NEUTRALIZATION POTENTIAL
Figure 3.1 Pressure Data for Piezometer 52

KGCMC PIEZOMETER 52

Date

0.0
0.1
0.2
0.3
0.4
0.5

01/01/96
01/02/96
01/03/96
12/31/96
12/31/97
01/01/98
01/02/98
01/01/99
01/02/99
01/01/00
01/02/00
01/01/01
01/02/01
01/01/02
01/02/02
01/01/03
01/02/03
01/01/04
01/02/04
01/01/05
01/02/05
01/01/06
01/02/06
01/01/07
01/02/07

Pressure (psi)
Figure 3.2 Pressure Data for Piezometer 53

KGCMC PIEZOMETER 53

DATE

PRESSURE (psi)
Figure 3.3 Pressure Data for Piezometer 54

KGCMC PIEZOMETER 54

DATE

PRESSURE (psi)
Figure 3.4 Pressure Data for Piezometer 55

KGCMC PIEZOMETER 55

DATE

PRESSURE (psi)
Figure 3.5 Water Level Data for Well MW-23/D-00-03

MW-23-00-03

DATE

WATER ELEVATION (FT-MSL)
Figure 3.6 Water Level Data for Well MW-23-A2D

MW-23-A2D

DATE

WATER ELEVATION (FT-MSL)
Figure 3.7 Water Level Data for Well MW-23-A2S

MW-23-A2S

DATE

WATER ELEVATION (FT-MSL)
Figure 3.8 Water Level Data for Well MW-23-98-01

MW-23-98-01

DATE

WATER ELEVATION (FT-MSL)

894.0 895.0 896.0 897.0 898.0 899.0 900.0
Figure 3.9 Water Level Data for Well MW-23-A4
Figure 3.10 Water Level Data for Well MW-23/D-00-01
Figure 3.11 Water Level Data for Well MW-D-94-D3
Figure 3.12 Water Level Data for Well MW-D-94-D4

MW-94-D4

DATE

WATER ELEVATION (FT-MSL)
Figure 3.13 Pond D Flow Data

FIGURE 3.13 POND D FLOW DATA

Date

Daily Flow (gallons)

Pond D
Precipitation (in)
FIGURE 3.14a GREENS CREEK SITE 23/D INTERNAL MONITORING SITES: FINGER DRAINS - pH DATA
FIGURE 3.14b GREENS CREEK SITE 23/D INTERNAL MONITORING SITES:
GROUND WATER - pH DATA
FIGURE 3.15a GREENS CREEK SITE 23/D INTERNAL MONITORING SITES:
FINGER DRAINS - ALKALINITY DATA
(Non-detectable analyses plotted as zero)
FIGURE 3.15b GREENS CREEK SITE 23/D INTERNAL MONITORING SITES:
GROUND WATER - ALKALINITY DATA
(Non-detectable analyses plotted as zero)
FIGURE 3.16a GREENS CREEK SITE 23/D INTERNAL MONITORING SITES: FINGER DRAINS - HARDNESS DATA
(Non-detectable analyses plotted as zero)

Hardness (mg/L)

FD2 (310)
FD3 (311)
FD5 (313)
FD6 (314)
FD7 (315)
FD8 (316)
FIGURE 3.16b GREENS CREEK SITE 23/D INTERNAL MONITORING SITES:
GROUND WATER - HARDNESS DATA
(Non-detectable analyses plotted as zero)
FIGURE 3.17a GREENS CREEK SITE 23/D INTERNAL MONITORING SITES: FINGER DRAINS - CONDUCTIVITY DATA

- FD2 (310)
- FD3 (311)
- FD4 (312)
- FD5 (313)
- FD6 (314)
- FD7 (315)
- FD8 (316)
Figure 3.17b Greens Creek Site 23/D Internal Monitoring Sites: Ground Water - Conductivity Data

<table>
<thead>
<tr>
<th>Date</th>
<th>MW23-A2D (50)</th>
<th>MW23-A4 (51)</th>
<th>MW-D3 (53)</th>
<th>Pond D (331)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1/98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/1/99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/1/00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/31/00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/1/02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/1/03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/1/04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/31/04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/1/06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/1/07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 3.18a GREENS CREEK SITE 23/D INTERNAL MONITORING SITES:
FINGER DRAINS - SULFATE DATA
(Non-detectable analyses plotted as zero)
FIGURE 3.18b GREENS CREEK SITE 23/D INTERNAL MONITORING SITES:
GROUND WATER - SULFATE
(Non-detectable analyses plotted as zero)
FIGURE 3.19a GREENS CREEK SITE 23/D INTERNAL MONITORING SITES:
FINGER DRAINS - ARSENIC DATA
(Non-detectable analyses plotted as zero)
FIGURE 3.19b GREENS CREEK SITE 23/D INTERNAL MONITORING SITES: GROUND WATER - ARSENIC DATA
(Non-detectable analyses plotted as zero)
FIGURE 3.20a GREENS CREEK SITE 23/D INTERNAL MONITORING SITES:
FINGER DRAINS - ZINC DATA
(Non-detectable analyses plotted as zero)
FIGURE 3.20b GREENS CREEK SITE 23/D INTERNAL MONITORING SITES:
GROUND WATER - ZINC DATA
(Non-detectable analyses plotted as zero)
FIGURE 3.21a GREENS CREEK SITE 23/D INTERNAL MONITORING SITES:
FINGER DRAINS - CADMIUM DATA
(Non-detectable analyses plotted as zero)
FIGURE 3.22a GREENS CREEK SITE 23/D INTERNAL MONITORING SITES:
FINGER DRAINS - COPPER DATA
(Non-detectable analyses plotted as zero)
FIGURE 3.22b GREENS CREEK SITE 23/D INTERNAL MONITORING SITES:
GROUND WATER - COPPER DATA
(Non-detectable analyses plotted as zero)
FIGURE 3.23a GREENS CREEK SITE 23/D INTERNAL MONITORING SITES:
FINGER DRAINS - LEAD DATA
(Non-detectable analyses plotted as zero)
FIGURE 3.23b GREGS CREEK SITE 23/D INTERNAL MONITORING SITES: GROUND WATER - LEAD DATA
(Non-detectable analyses plotted as zero)
FIGURE 3.24a GREENS CREEK SITE 23/D INTERNAL MONITORING SITES: FINGER DRAINS - NICKEL DATA
(Non-detectable analyses plotted as zero)
FIGURE 3.24b GREENS CREEK SITE 23/D INTERNAL MONITORING SITES:
GROUND WATER - NICKEL DATA
(Non-detectable analyses plotted as zero)
FIGURE 3.25a GREENS CREEK SITE 23/D INTERNAL MONITORING SITES: FINGER DRAINS - IRON DATA
(Non-detectable analyses plotted as zero)
FIGURE 3.25b GREENS CREEK SITE 23/D INTERNAL MONITORING SITES: GROUND WATER - IRON DATA
(Non-detectable analyses plotted as zero)
FIGURE 3.26a GREENS CREEK SITE 23/D INTERNAL MONITORING SITES:
FINGER DRAINS - MANGANESE DATA
(Non-detectable analyses plotted as zero)
FIGURE 3.26b GREENS CREEK SITE 23/D INTERNAL MONITORING SITES:
GROUND WATER - MANGANESE DATA
(Non-detectable analyses plotted as zero)
FIGURE 3.27 GREENS CREEK SITE 23/D INTERNAL MONITORING SITES: FINGER DRAINS - FLOW

(8/24/04, 37.85)
FIGURE 3.29 ACID-BASE ACCOUNTING DATA FOR SURFACE SITE 23

The diagram illustrates the acid-base accounting data for Surface Site 23. The axes represent the neutralization potential (tCaCO3/kt) on the x-axis and the acid potential (tCaCO3/kt) on the y-axis. The lines and markers indicate different classes of data:
- Class 1
- Class 2
- Class 3
- Class 4
- Site 23 Class 1
- Site 23 Class 2
- Site 23 Class 3
- Surface Grid

The NNP (Neutralization Number Potential) = 0 line is also shown, dividing the potential space into neutral zones. The data points are color-coded and symbolized to correspond with the classes.

The data points are spread across the graph, showing the distribution of neutralization and acid potential for different sites and classes.
APPENDIX 4

Site Photographs
FIGURE 2.37 Northwest Knob Area Topsoil Removal: June 15, 2006

FIGURE 2.38 Aerial Photograph of Tailings Area: August 2006
FIGURE 3.30 Photograph of Site 23 Stockpile for Class 1: April 20, 2006
FIGURE 3.31 Photograph of Site 23 Backslope Area Spring Reroute: September 21, 2006
FIGURE 3.32 Photograph of Site 23 Drainage Work: September 21, 2006