HECLA GREENS CREEK MINING COMPANY

FRESH WATER MONITORING PROGRAM ANNUAL REPORT

WATER YEAR 2010

(October 1, 2009 through September 30, 2010)

EXECUTIVE SUMMARY	pg. 1
INTRODUCTION - Information, explanations, and clarifications not presented elsewhere	pg. 3
INTERVENTIONS - Procedural changes, natural phenomena, and mine operational changes that could affect data during Water Year 2010.	pg. 6
MID-YEAR MODIFICATIONS	pg. 7
SAMPLE LOG	pg. 8
SAMPLE SUITES	pg. 9
PERSONNEL INVOLVED - A list of HGCMC and USFS personnel involved with the FWMP during the Water Year 2010, and their function.	pg. 10
Proposed Program Modifications	pg. 11
BIBLIOGRAPHY	pg. 12
SITE 48 "UPPER GREENS CREEK" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend Analysis	SITE 48
SITE 6 "MIDDLE GREENS CREEK" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend Analysis Site 48 vs. Site 6 X-Y Plots Wilcoxon Signed-Ranks Tests	SITE 6

SITE 54 "LOWER GREENS CREEK" -	SITE 54
Interpretive Report	
Table of Results	
Qualified Data by QA Reviewer Report	
X-Y Plots Seasonal Kendall trend Analysis	
Site 6 vs. Site 54 X-Y Plots	
Wilcoxon Signed-Ranks Tests	
SITE 49 "UPPER BRUIN CREEK" -	SITE 49
Interpretive Report	511E 49
Table of Results	
Qualified Data by QA Reviewer Report	
X-Y Plots	
Seasonal Kendall trend Analysis	
SITE 46 "LOWER BRUIN CREEK" -	SITE 46
Interpretive Report	
Table of Results	
Qualified Data by QA Reviewer Report	
X-Y Plots	
Seasonal Kendall trend Analysis Site 49 vs. Site 46 X-Y Plots	
Wilcoxon Signed-Ranks Tests	
wheoxon signed-ranks rests	
SITE 57 "MONITORING WELL 23-00-03"-	SITE 57
Interpretive Report	SILS
Table of Results	
Qualified Data by QA Reviewer Report	
X-Y Plots	
Seasonal Kendall trend Analysis	
SITE 56 "MONITORING WELL D-00-01"-	SITE 56
Interpretive Report	
Table of Results	
Qualified Data by QA Reviewer Report	
X-Y Plots	
Seasonal Kendall trend Analysis	
Site 57 vs. Site 56 X-Y Plots Wilcoxon Signed-Ranks Tests	
wheeven signed-kanks rests	
SITE 13 "MINE ADIT DISCHARGE EAST" -	SITE 13
Interpretive Report	
Table of Results	
Qualified Data by QA Reviewer Report	
X-Y Plots	
Seasonal Kendall trend Analysis	

Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 27 X-Y Plots SITE 29 "MONITORING WELL 3S" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 29 X-Y Plots SITE 32 "MONITORING WELL 5S" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 32 X-Y Plots SITE 59 "MONITORING WELL T-00-01A" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 32 X-Y Plots SITE 59 "MONITORING WELL T-00-01A" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 who were Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis SITE 28 "MONITORING WELL 2D" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis	SITE 58 "MONITORING WELL T-00-01C" -	SITE 58
Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis SITE 27 "MONITORING WELL 2S" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 27 X-Y Plots SITE 29 "MONITORING WELL 3S" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 29 X-Y Plots SITE 32 "MONITORING WELL 5S" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 29 X-Y Plots SITE 32 "MONITORING WELL 5S" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 32 X-Y Plots SITE 59 "MONITORING WELL T-00-01A" - Table of Results Qualified Data by QA Reviewer Report	Interpretive Report	
X-Y Plots Seasonal Kendall trend analysis SITE 27 "MONITORING WELL 2S" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots SITE 29 "MONITORING WELL 3S" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 29 X-Y Plots SITE 32 "MONITORING WELL 5S" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots SITE 32 "MONITORING WELL 5S" - SITE 32 "MONITORING WELL 5S" - SITE 32 "MONITORING WELL 5S" - SITE 59 "MONITORING WELL T-00-01A" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots SITE 59 "MONITORING WELL T-00-01A" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots SITE 59 "MONITORING WELL 2D" - SITE 28 "MONIT		
Seasonal Kendall trend analysis SITE 27 "MONITORING WELL 2S" - SITE 27 Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 27 X-Y Plots SITE 29 "MONITORING WELL 3S" - SITE 29 Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots SITE 29 "MONITORING WELL 3S" - SITE 29 Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots SITE 32 "MONITORING WELL 5S" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 32 X-Y Plots SITE 32 SITE 59 "MONITORING WELL T-00-01A" - SITE 59 Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 32 X-Y Plots SITE 59 "MONITORING WELL T-00-01A" - SITE 59 Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots SETE 28 "MONITORING WE		
SITE 27 "MONITORING WELL 2S" - SITE 27 Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 27 X-Y Plots SITE 29 "MONITORING WELL 3S" - SITE 29 Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 29 X-Y Plots SITE 32 "MONITORING WELL 5S" - SITE 32 Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots SITE 32 "MONITORING WELL 5S" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report A.Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 32 X-Y Plots SITE 59 SITE 59 "MONITORING WELL T-00-01A" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis SITE 28 "MONITORING WELL 2D" - SITE 28 Interpretive Report Table of Results Qualified Data by QA Reviewer Report SITE 28 Interpretive Report <td< th=""><th></th><th></th></td<>		
Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 27 X-Y Plots SITE 29 "MONITORING WELL 3S" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 29 X-Y Plots SITE 32 "MONITORING WELL 5S" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 32 X-Y Plots SITE 59 "MONITORING WELL T-00-01A" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 32 X-Y Plots SITE 59 "MONITORING WELL T-00-01A" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 who were Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis SITE 28 "MONITORING WELL 2D" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis	Seasonal Kendan tiend analysis	
Table of Results Qualified Data by QA Reviewer Report X-Y PlotsSite 27 X-Y PlotsSITE 29 "MONITORING WELL 3S" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y PlotsSITE 29SITE 32 "MONITORING WELL 5S" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y PlotsSITE 32SITE 32 "MONITORING WELL 5S" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y PlotsSITE 32SITE 59 "MONITORING WELL 5S" - Interpretive Report X-Y PlotsSITE 59SITE 59 "MONITORING WELL T-00-01A" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y PlotsSITE 59SITE 59 "MONITORING WELL T-00-01A" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y PlotsSITE 59SITE 59 "MONITORING WELL 2D" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y PlotsSITE 28SITE 28 "MONITORING WELL 2D" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y PlotsSITE 28	SITE 27 "MONITORING WELL 2S" -	SITE 27
Table of Results Qualified Data by QA Reviewer Report X-Y PlotsSite 58 vs. Site 27 X-Y PlotsSITE 29 "MONITORING WELL 3S" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y PlotsSITE 29SITE 32 "MONITORING WELL 5S" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y PlotsSITE 32SITE 32 "MONITORING WELL 5S" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y PlotsSITE 32SITE 59 "MONITORING WELL 5S" - Interpretive Report X-Y PlotsSITE 59SITE 59 "MONITORING WELL T-00-01A" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y PlotsSITE 59SITE 59 "MONITORING WELL T-00-01A" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y PlotsSITE 59SITE 59 "MONITORING WELL 2D" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y PlotsSITE 28SITE 28 "MONITORING WELL 2D" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y PlotsSITE 28		
X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 27 X-Y Plots SITE 29 Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 29 X-Y Plots SITE 32 "MONITORING WELL 5S" - Interpretive Report SITE 32 Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots SITE 32 "MONITORING WELL 5S" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 32 X-Y Plots SITE 59 "MONITORING WELL T-00-01A" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots SITE 59 "MONITORING WELL 2D" - SITE 28 Interpretive Report Table of Results SITE 28 Interpretive Report		
Seasonal Kendall trend analysis Site 58 vs. Site 27 X-Y Plots SITE 29 "MONITORING WELL 3S" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots SITE 32 "MONITORING WELL 5S" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots SITE 59 "MONITORING WELL T-00-01A" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots SITE 59 "MONITORING WELL T-00-01A" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots SITE 59 "MONITORING WELL T-00-01A" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis SITE 59 "MONITORING WELL 2D" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots SITE 28 "MONITORING WELL 2D" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots SITE 28 "MONITORING WELL 2D" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots SITE 28 "MONITORING WELL 2D" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots SITE 28 "MONITORING WELL 2D" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots SITE 28 "MONITORING WELL 2D" - Interpretive Report Table of Results Cualified Data by QA Reviewer Report Cualified Da	Qualified Data by QA Reviewer Report	
Site 58 vs. Site 27 X-Y Plots SITE 29 SITE 29 "MONITORING WELL 3S" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 29 X-Y Plots SITE 32 SITE 32 "MONITORING WELL 5S" - SITE 32 Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots SITE 52 "MONITORING WELL 5S" - SITE 32 Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 32 X-Y Plots SITE 59 "MONITORING WELL T-00-01A" - SITE 59 Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis SITE 59 SITE 28 "MONITORING WELL 2D" - SITE 28 Interpretive Report Table of Results Qualified Data by QA Reviewer Report SITE 28 Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis SITE 28		
SITE 29 "MONITORING WELL 3S" - SITE 29 Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 29 X-Y Plots SITE 32 "MONITORING WELL 5S" - SITE 32 Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 32 X-Y Plots SITE 59 "MONITORING WELL T-00-01A" - SITE 59 Interpretive Report Table of Results Qualified Data by QA Reviewer Report SITE 59 SITE 59 "MONITORING WELL T-00-01A" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis SITE 59 "MONITORING WELL T-00-01A" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis SITE 28 "MONITORING WELL 2D" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Sufference Qualified Data by QA Reviewer Report SITE 28 Table of Res		
Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 29 X-Y Plots SITE 32 "MONITORING WELL 5S" - SITE 32 Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 32 X-Y Plots SITE 59 "MONITORING WELL T-00-01A" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis SITE 28 "MONITORING WELL 2D" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis	Site 58 vs. Site 27 X-Y Plots	
Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 29 X-Y Plots SITE 32 "MONITORING WELL 5S" - SITE 32 Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 32 X-Y Plots SITE 59 "MONITORING WELL T-00-01A" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis SITE 28 "MONITORING WELL 2D" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis	SITE 29 "MONITORING WELL 3S" -	SITE 29
Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 29 X-Y Plots SITE 32 "MONITORING WELL 5S" - Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 32 X-Y Plots SITE 59 "MONITORING WELL T-00-01A" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 32 X-Y Plots SITE 59 "MONITORING WELL T-00-01A" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis SITE 28 "MONITORING WELL 2D" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report Table of Results Qualified Data by QA Reviewer Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots		~
X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 29 X-Y Plots SITE 32 "MONITORING WELL 5S" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 32 X-Y Plots SITE 59 "MONITORING WELL T-00-01A" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis SITE 28 "MONITORING WELL 2D" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots SITE 28 "MONITORING WELL 2D" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots	1 1	
Seasonal Kendall trend analysis Site 58 vs. Site 29 X-Y Plots SITE 32 "MONITORING WELL 5S" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 32 X-Y Plots SITE 59 "MONITORING WELL T-00-01A" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis SITE 59 "MONITORING WELL T-00-01A" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis SITE 28 "MONITORING WELL 2D" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report Table of Results Qualified Data by QA Reviewer Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots	Qualified Data by QA Reviewer Report	
Site 58 vs. Site 29 X-Y Plots SITE 32 "MONITORING WELL 5S" - SITE 32 Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 32 X-Y Plots SITE 59 "MONITORING WELL T-00-01A" - SITE 59 Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis SITE 28 "MONITORING WELL 2D" - SITE 28 Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots SITE 28 "MONITORING WELL 2D" - SITE 28 Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots		
SITE 32 "MONITORING WELL 5S" - SITE 32 Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 32 X-Y Plots SITE 59 "MONITORING WELL T-00-01A" - SITE 59 Interpretive Report Table of Results Qualified Data by QA Reviewer Report SITE 59 SITE 59 "MONITORING WELL T-00-01A" - SITE 59 Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis SITE 28 "MONITORING WELL 2D" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report Table of Results Qualified Data by QA Reviewer Report Table of Results Qualified Data by QA Reviewer Report Table of Results Qualified Data by QA Reviewer Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots		
Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 32 X-Y Plots SITE 59 "MONITORING WELL T-00-01A" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis SITE 28 "MONITORING WELL 2D" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots SITE 28 "MONITORING WELL 2D" - SITE 20 "MONITO	Site 58 vs. Site 29 X-Y Plots	
Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 32 X-Y Plots SITE 59 "MONITORING WELL T-00-01A" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis SITE 28 "MONITORING WELL 2D" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots SITE 28 "MONITORING WELL 2D" - SITE 20 "MONITO	SITE 32 "MONITORING WELL 5S" -	SITE 32
Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 32 X-Y Plots SITE 59 "MONITORING WELL T-00-01A" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis SITE 28 "MONITORING WELL 2D" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis SITE 28 "MONITORING WELL 2D" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots		
X-Y Plots Seasonal Kendall trend analysis Site 58 vs. Site 32 X-Y Plots SITE 59 "MONITORING WELL T-00-01A" - SITE 59 Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis SITE 28 "MONITORING WELL 2D" - SITE 28 Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots		
Seasonal Kendall trend analysis Site 58 vs. Site 32 X-Y Plots SITE 59 "MONITORING WELL T-00-01A" - SITE 59 Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis SITE 28 "MONITORING WELL 2D" - SITE 28 Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots	Qualified Data by QA Reviewer Report	
Site 58 vs. Site 32 X-Y Plots SITE 59 "MONITORING WELL T-00-01A" - SITE 59 Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis SITE 28 "MONITORING WELL 2D" - SITE 28 Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots		
SITE 59 "MONITORING WELL T-00-01A" - SITE 59 Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis SITE 28 "MONITORING WELL 2D" - SITE 28 Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots		
Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis SITE 28 "MONITORING WELL 2D" - SITE 28 Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots	Site 58 vs. Site 32 X-Y Plots	
Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis SITE 28 "MONITORING WELL 2D" - SITE 28 Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots	SITE 59 "MONITORING WELL T-00-01A" -	SITE 59
Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend analysis SITE 28 "MONITORING WELL 2D" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots		5112 57
X-Y Plots Seasonal Kendall trend analysis SITE 28 "MONITORING WELL 2D" - SITE 28 Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots	1 1	
X-Y Plots Seasonal Kendall trend analysis SITE 28 "MONITORING WELL 2D" - SITE 28 Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots		
SITE 28 "MONITORING WELL 2D" - SITE 28 Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots		
Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots	Seasonal Kendall trend analysis	
Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots	SITE 28 "MONITORING WELL 2D"	SITE 28
Table of Results Qualified Data by QA Reviewer Report X-Y Plots		5112 20
Qualified Data by QA Reviewer Report X-Y Plots	· ·	
X-Y Plots		
Seasonal Kendall trend analysis		
Site 59 vs. Site 28 X-Y Plots		

SITE 9 "TRIBUTARY CREEK" -

Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Site 27 vs. Site 9 X-Y Plots

SITE 60 "ALTHEA CREEK LOWER" -

Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots

APPENDIX A -

Summary table of Alaska Water Quality Standards for WY2009

APPENDIX B -

Map – 920 Area FWMP Sites

Map – Tails Area FWMP Sites

Map – Site 60, Lower Althea Creek

SITE 9

SITE 60

EXECUTIVE SUMMARY

This annual report has been prepared by Hecla Greens Creek Mining Company (HGCMC) in accordance with the mine's General Plan of Operations Appendix 1: Fresh Water Monitoring Program (FWMP). Monitoring data interpretative reports are presented for eight surface water and eight groundwater monitoring sites.

Each site's interpretative report summarizes the annual dataset with respect to several goals and objectives outlined in the FWMP. Each report contains a list of any exceptions, omissions or errors that occurred during data collection. The report lists a comparison of each site's annual dataset to all appropriate applicable Alaska Water Quality Standards (AWQS). Finally, a series of summary tables and X-Y graphs have been generated to meet the specific statistical goals for each site.

During the Water Year 2010 a transition was made from the previous FWMP sampling schedule to the recently approved new FWMP sampling schedule. This changed occurred over the January and February 2009 sampling events, and because the water year started in October 2009 the overall sampling schedule for the Water Year 2010 was a hybrid of both schedules. With that in mind all required sampling was accomplished as specified in the monitoring schedule, except for the November sampling of Site 13 (inaccessible) , the February sampling of Site 56 and Site 57 (transitional period), and the May sampling of Site 60 (no flow). For each site the specified analytic suite (P or Q) was performed on the collected samples, however there was some confusion between Battelle Marine Science and HGCMC as to which suites to run during the transitional period. A few sites (6, 48, and 54) were run as Suite Q and not Suite P. Fortunately, Suite Q encompasses all of the same analytes as a Suite P and a few others. Applicable holding times were achieved for all analytes, except pH, which for one of the twelve sample events was not within the applicable hold time. Furthermore, no data points were qualified as outlying.

Several exceedances of Alaska Water Quality Standards (AWQS) occurred in the 920 Area at Site 13, Site 48, Site 54, and Site 6. The two exceedances at Site 13 were for total sulfate which had values of 265 mg/L and 271 mg/L. These values were slightly above the AWQS limit of 250 mg/L, and comparable to data seen in previous water years. It is HGCMC intention to remove approximately 20,000 cubic yards of waste rock from the 1350 area during the 2011 summer season. Though much material has already been removed from this site in the past it was not located in the drainage that affects Site 13. The other exceedances were recorded at Site 48, Site 6, and Site 54 for low pH values. Of these values only one was not a laboratory pH value. Frequently laboratory pH values differ from the field pH values. In general much consideration has not been give to this fact because both values are normally above the lower limit. However, as the overall pH of the stream decreases these small discrepancies can mean the difference between being in or out of compliance. HGCMC plans to investigate this discrepancy.

Exceedances in the tailings area were noted for low pH, low alkalinity, and elevated levels of arsenic, and lead. The shallow wells (sites 58, 27, 29, and 32) continued to display a long history of exceedances due to the low pH, low alkalinity water that characterize these sites. Four exceedances for dissolved lead occurred at two of the three down gradient shallow wells (sites 29

and 32). These exceedances continue the recent history of low to moderate levels of lead that may in part be due to minor amounts of tailings escaping the containment controls around the impoundment due to fugitive dust or tracking. The single deep, downgradient well, Site 28, had three exceedances for arsenic. This is a continuation of the trends established in prior years with elevated arsenic levels that are naturally associated with the marine unit that the well is completed in. Of the remaining two sites, Site 60 had exceedances for low alkalinity, low pH, and elevated mercury. This site's watershed was disturbed with the construction of Pond 7; as the area recovers the water is returning to the naturally low pH and low alkalinity characteristic of the area. It has been theorized that the disturbance resulted in the watershed going from being naturally acidic to alkaline. This change in fundamental chemistry is thought to have caused the naturally occurring, low level, dissolved mercury to adsorb onto soil particles. Now as the area reverts to the natural state of low pH and low alkalinity, this abundance of adsorbed mercury may be dissolving back into solution, resulting in the temporary mercury increase. After this disturbance mercury concentrations had continued to increase yearly until WY09, which had shown a decrease in concentration. Unfortunately, this trend did not continue in the current water year, with the highest measurement recorded occurring in September 2010. However, the first sampling (November 2010) of this site during the current water year (WY2011) had a measured value half of the AWQS. The next sampling is expected to occur in May 2011.

The final site, Site 9, had exceedances for low alkalinity and low pH. The alkalinity values appear to be characteristic of the site since monitoring restarted in WY2006, whereas the lower pH values have been recorded in the most recent two water years (WY2009 & WY2010). The low alkalinity values are expected given the naturally occurring acidic muskeg conditions in the headwaters near Site 27 and Site 28.

Graphical and non-parametric analyses for trends in the data were performed for all sites monitored. Statistically significant trends were identified for twelve sites: Site 48, downward trends in pH and total alkalinity, and an upward trend in dissolved zinc; Site 6, downward trends in pH and total alkalinity, and an upward trend in dissolved zinc; Site 54, a downward trend in total alkalinity, and an upward trend in dissolved zinc; Site 54, a downward trend in total alkalinity, and an upward trend in dissolved zinc; Site 49, downward trend in total alkalinity, and an upward trend in total sulfate; Site 46, a downward trend in total alkalinity; Site 57, downward trends in dissolved zinc, total alkalinity, total sulfate, and upward trends in conductivity and pH; Site 56, downward trend in total alkalinity; Site 13, downward trend in total sulfate; Site 29, a downward trend in total alkalinity; Site 59, an upward trend in conductivity and total sulfate; and Site 28, an upward trend in conductivity.

Site 48, Site 49, Site 57, Site 58, and Site 59 are considered upgradient control sites and thus the trends are likely due to natural variation. The decreasing trend in pH for Site 6 is not expected to be caused by our activities in the area. Site 54 is downstream from Site 6 and thus is expected to exhibit similar trends. Both the down gradient sites (6 and 54) had similar seasonal lower pH values such as the upgradient site 48. Also, all three Greens Creek sites show a similar low magnitude increasing trend in dissolved zinc. The magnitude of the alkalinity trend for Site 46 is low. The trend in pH for Site 13 was in a favorable decreasing direction; though total alkalinity is trending down. Changes in alkalinity at Site 29 continue a long-term trend of slowly decreasing alkalinity established since 1990. The increasing sulfate values measured at Sites 27 and 59 are

of low magnitude, along with the increasing trends in conductivity. The decreasing trends in total alkalinity and total sulfate at Site 60 were expected to occur as the site returned to predisturbance conditions.

A non-parametric comparison of medians was performed for all the appropriately paired surface (48-6, 6-54, and 49-46) and groundwater (57-56) sites around the 920 area. Significant differences were noted for the paired datasets from Greens Creek (48-6) for conductivity, pH, sulfate, and dissolved zinc. These differences have all been noted in previous annual reports and do not appear to be increasing in magnitude. Also, there were significant differences for the paired dataset (6-54) from Greens Creek for conductivity, and pH. The was no trend for the alkalinity and sulfate data. However the dissolved zinc values trended in a favorable direction, and may reflect the work that has been done in the area in recent years (*i.e.* B pond and C pond). The Bruin Creek sites (49 and 46) had significant differences in pH values. Though this is not in a favorable direction a comparison of the other analytes (alkalinity, conductivity, sulfate, and zinc) indicates that these sites are still relatively similar to each other. If HGCMC activities at the 920 Mill site and Site23/D were having a negative impact on the Bruin Creek watershed, trends would be expected in the other analytes as well.

INTRODUCTION

This annual report for Water Year 2010 (October 1, 2009 through September 30, 2010) provides the information required by the Fresh Water Monitoring Program (FWMP) for the Hecla Greens Creek Mining Company (HGCMC). It is separated into several sections, the first of which provides general information applicable to the entire program, followed by a comprehensive analysis of the data for each specific site.

To avoid confusion data values reported by the laboratory as being below the Method Detection Limit (MDL) are assigned a value of zero for plotting purposes. This is done so that the values below MDL are visually distinct and thus can be properly interpreted. On several of the graphs presented, changes have occurred in MDL over the period shown. This leads to the visual impression that an upward trend exists when in fact the older analysis had MDL greater than ambient background levels. For the current Water Year's data the actual MDLs for non-detect values are listed in each site's table of results in the interpretative discussion of this report. For prior Water Year's historic MDLs please refer to GPO Appendix 1, Table 8-2.

The monitoring schedule varies from site to site and a request for modification was made with the 2008 FWMP report. These modifications were approved and implemented during January and February of the Water Year 2010. Different sites are monitored for different analytes on different months of the year. Occasionally, sites scheduled for sampling may not be available due to weather or more rarely operational reasons. Copies of the Water Year 2010 sampling log are included on page 6 of this section and any variations from scheduled sampling events are noted on each site's table of results presented in the interpretive section.

		AWQS	Tre	nd	Calculate	Median
Site	Description	Comparison	Visual	Calc	Median	Comparison
48	Upper GC	х	х	+	х	
6	Middle GC	x	х	+	х	48 vs 6
54	Lower GC	x	х	+	х	6 vs 54
49	Upper Bruin Crk	х	х	+	х	
46	Lower Bruin Crk	x	х	+	х	49 vs 46
13	1350 Audit	х	х	+	Х	
57	MW-23-00-03	х	х	+	х	
56	MW-D-00-01	x	х	+	х	57 vs 56
58	MW-T-00-01C	х	х	+	Х	
27	MW-2S	х	х	+	х	**
29	MW-3S	x	х	+	х	**
32	MW-5S	x	х	+	х	**
59	MW-T-00-1A	х	х	+	х	
28	MW-2D	x	х	+	х	**
9	Tributary Crk	х				**
60	Althea Crk Lower	x				**

The adjacent table outlines the requested Statistical Information Goals (SIGs) for each site sampled during the Water Year 2010. A comparison to Alaska Water Quality Standards (AWQS)

+: Addional statitical trend analysis done for conductivity, pH, alkalinity, dissolved zinc.

**: Insufficient Data for a robust statistical evaluation

is required for all sites. In Appendix A the specific water quality criteria used for each comparison are summarized. Trend analysis is carried out by two different methods. The first method is a visual trend analysis for each analyte. For each site sampled a series of time-concentration graphs are constructed for the previous five years of data collected. The second method is a nonparametric statistical method, Kendall seasonal trend analysis that is

routinely done for conductivity, pH, alkalinity, and dissolved zinc. These are the key parameters along with sulfate that can be strongly affected by Acid Mine Drainage (AMD). Sulfate was added back into the required list of analytes in the 2002 Water Year. Median calculation is shown in the annual table of results for each site. Finally, for all down gradient sites that are paired with an upgradient reference site, which are monitored with a frequency greater than 4 times per year, a comparison of medians is presented for each specific site. These down gradient sites (upgradient site in parenthesis) include Site 6 (Site 48), Site 54 (Site 6), Site 46 (Site 49), and Site 56 (Site 57). For each of these sites, the statistical information goals requested a comparison of medians for total alkalinity, pH, conductivity, total sulfate and dissolved zinc. The statistical test utilized is a non-parametric, Wilcoxon signed-rank test. A brief summary of the two main statistical procedures, the Wilcoxon-Mann-Whitney rank sum test and the Mann-Kendall seasonal trend are given below.

Statistical Tests

The Mann-Kendall seasonal trend test is a non-parametric test for zero slope of a linear regression of time-ordered data verse time. Briefly the test consists of tabulating the Mann-Kendall statistic S_k (k=1 to 12, for each month) and its variance VAR(S) for data from each season (month). The S_k statistic is simply the sum of the number of positive differences minus the number of negative differences for time ordered data pairs. Any seasonal trend is removed by only considering data pairs taken within the same month. The individual monthly Mann-Kendall statistics (S_k) are tested for homogeneity of trend which is used to determine if it is reasonable to combine the monthly S_k statistics into an overall annual statistic (ΣS_k). If the test for monthly homogeneity is rejected the annualize statistic is not meaningful. However, the individual monthly Mann-Kendall statistics can still be tested for trend and a Sen's slope estimator can be calculated for each month (noted as Q_m in the interpretive section) with a significant trend.

The advantages of the Seasonal Kendall trend test is that it is a rank-based procedure especially suitable for non-normally distributed data, censored data, data containing outliers and non-linear trends. The null hypothesis (H₀) states that the data($x_1, .., x_n$) are a sample of n independent and identically distributed random variables. The trend test statistic Z is used as a measure of trend magnitude, or of its significance. A positive Z value indicates an upward trend while a negative value indicates a downward trend. However, the Z statistic is not a direct quantification of trend magnitude. For trend of significant magnitude a separate statistic, Sen's slope estimator, is calculated by computing the seasonally adjusted (monthly) median value for the slope. For datasets which fail the homogeneity test, individual monthly S_k statistics are compared to a theoretical probability distribution of S derived by Mann and Kendall (Table A18 in Gilbert, 1987). Further guidance and background on these statistical methods can be found in Gilbert (1987) or Helsel and Hirsch (1992).

The Wilcoxon signed-rank test is used to determine if the median difference between paired data points is equal to zero. In general terms the signed-rank is used to determine if a set of paired data observations, x's and y's, come from the same population (i.e. have the same median) or as the alternative hypothesis differ only in the location of the central value (median). If the data are from the same population then the differences of the paired data should be equally distributed around 0, or about half the differences should be greater than 0 and half should be less than 0. Computationally the test is straight forward. First the differences $D_i=x_i-y_i$, i=1...N are computed

for each pair. The absolute values of the differences $|D_i|$, i=1...N are ranked from smallest to largest and data pairs that are tied, thus having differences of zero, are ignored. The ranks of the absolute differences are assigned the sign of the actual differences. For example, negative differences have negative-signed ranks and positive differences have positive-signed ranks thus the term "signed-rank" in the method name. The test statistic W⁺ is the sum of all positively signed ranks. The statistic W⁺ is then compared to tabled values that vary based on N. The onetailed version of the signed-rank test has been applied to the key indicator analytes of conductivity, pH, total alkalinity, sulfate, and dissolved zinc as listed in the table below.

		median		
Analyte	Rationale	D	Tail	Reject H₀ if:
Specific Conductance	Conductivity, as a proxy for total dissolved solids, <u>increases</u> due to sulfide oxidation.	<0	X's < Y's	$W^{+}(calc) < W(table)_{\alpha,n}$
Lab-pH	pH <u>decreases</u> though the addition of H ⁺ generated by pyrite oxidation.	>0	X's > Y's	$W^{+}(calc)$ > $W(table)_{\alpha,n}$
Total Alkalinity	Total alkalinity $\underline{\text{decreases}}$ by consumption of buffing capacity due to H^+ produced by pyrite oxidation.	>0	X's > Y's	$W^{+}(calc)$ > $W(table)_{\alpha,n}$
Total Sulfate	Total sulfate increases due to oxidation of sulfides	<0	X's < Y's	$W^+(calc)$ < $W(table)_{\alpha,n}$
Dissolved Zinc	Dissolved zinc increases due to sulfide oxidation and is more readily soluble at neutral pH than other metals.	<0	X's < Y's	$W^+(calc) < W(table)_{\alpha,n}$

X: Upgradient Site

Y: Downgradient Site

Further guidance and background on the statistical methods utilized in this report can be found in one of the following references: Helsel and Hirsch (1992), Gilbert (1987), or Section 3.3.3.1 of the EPA document "Guidance for Data Quality Assessment" EPA/600/R-96/084.

<u>Qualified Data by QA Reviewer -</u> Reports provide a summary for each site section of data limitations found in the monthly QA reviews. They list all data for that site that was qualified by the QA Reviewer for Water Year 2010 along with the reason for qualification. These data are all included in the data analyses, unless also identified as an outlier in the Qualified Data Summary.

INTERVENTIONS

This section identifies below any procedural changes, natural phenomena, mine operational changes, or other interventions that could possibly have affected data during Water Year 2010. Results of any visual data analyses to detect evident effects of these interventions are so indicated.

Prior interventions (and negotiated mid-year program modifications such as changes to laboratories, methods, detection limits, and reporting limits), and anything else which may affect data comparability and quality which occurred during previous Water Years, are documented in the "General History" section of the FWMP and in previous annual reports.

There has been an error in the graphical labeling found in the 2004-2009 annual reports. It was recently noticed that on most of the graphs, the line indicating the AQWS is labeled as 'total'. Most of the analytes in this report are dissolved and HGCMC is held to the dissolved AQWS. All analyses have been dissolved during this timeframe, so the graphs were mislabeled and should read 'dissolved'. After reviewing the yearly files it appears that HGCMC was using total standards prior to 2003 when the change was made to using the dissolved standards. This change resulted in modifying the limits and also the graph labels, both of which were correctly done in 2003. Unfortunately, in 2004-2009 both of these modifications were not carried over. This error in the labeling has been corrected in the current 2010 FWMP report.

All required sampling was accomplished as specified in the monitoring schedule, except for the November sampling of Site 13 (inaccessible), the February sampling of Site 56 and Site 57 (transitional period), and the May sampling of Site 60 (no flow).

MID-YEAR MODIFICATIONS

Hecla Greens Creek Mining Company modified the Fresh Water Monitoring Program sample schedule during the months of January and February 2010. These changes were made in accordance with the changes proposed in the 2008 FWMP report: approval to implement these changes came in January 2010. As a result of the mid-year modification the sampling schedule for the 2009 FWMP was a hybrid of the previous schedule and the proposed new schedule. There were a few glitches during the transition and not all of the proposed sampling was carried out in February (Site 56 and Site 57 were not sampled). Furthermore, the January sampling events were sampled as Suite Q and not as Suite P. After this transitional period there were no more errors with the sampling events and the new schedule was fully in place by March 2011.

FWMP SAMPLE LOG

Water Year October 2009 Through September 20010 Annual Water Quality Monitoring Schedule-Laboratory Samples

	Aindal Water Quality Monitoring Cenedule Laboratory Campies												
Site	Site Name	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
6	Middle Greens Creek	10-20	11-17	12-08	01-12	02-16	03-16	04-06	05-11	06-15	07-13	08-03	09-14
0	Middle Greens Creek	Р	Р	Q	Q	Q	Р	Р	Р	Р	Р	Р	Р
9	Tributary Creek-Lower								05-11		07-13		09-14
Ŭ									Q		P,R		Q
13	Mine Adit Discharge East	10-20							05-11			08-03	
		Q	Q						Q			Q	
27	Monitoring Well 2S								05-11		07-15		09-21
	, , , , , , , , , , , , , , , , , , ,								Q		Q		Q
28	Monitoring Well 2D								05-11		07-15		09-21
	_								Q		Q		Q
29	Monitoring Well 3S								05-11		07-15		09-21
									Q 05-11		Q 07-15		Q 09-21
32	Monitoring Well 5S												
		10-20	11-17	12-08		02-16			Q 05-11		Q	08-03	Q
46	Lower Bruin Creek	P	P	12-00 Q		Q			P			00-03 P	
		F 10-20	г 11-17	12-08	01-12	02-16	03-16	04-06	05-11	06-15	07-13	г 08-03	09-14
48	Upper Greens Creek	P	н <i>п</i>	Q	Q	Q	P	P	P	P	P.R	P	P
		10-20	11-17	12-08	4	02-16	•	•	05-11	•	1,11	08-03	<u> </u>
49	Control Site Upper Bruin Creek	P	Р	Q		Q			P			P	
		10-20	11-17	12-08	01-12	02-16	03-16	04-06	05-11	06-15	07-13	08-03	09-14
54	Greens Creek below D-Pond	Р	Р	Q	Q	Q	Р	Р	Р	Р	P,R	Р	Р
		10-20	11-17						05-11		,	08-03	
56	Monitoring Well-D-00-01	Q	Q			Q			Q			Q	
-7	Manitarian Wall 22 00 02	10-20	11-17						05-11			08-03	
57	Monitoring Well-23-00-03	Q	Q			Q			Q			Q	
58	Monitoring Well-T-00-01C								05-11		07-13		09-21
90									Q		Q		Q
59	Monitoring Well-T-00-01A								05-11		07-13		09-21
59									Q		Q		Q
60	Althea Creek Lower								05-11		07-13		09-14
00	Altrica Orecik Lower								Q		Р		Р
	Field Blank @ Site	56	46	6	48	49	54	56	59	13	9	57	32

Date Suite Date Suite Date Suite

Regular monthly sample

No Sample taken due to ice

No Sample taken due to lack of access (snow).

No Sample taken due to lack of flow

Accidentally not sampled (transitional period)

Transitional period

Wrong Suite sampled

SAMPLE SUITES

Suite P

(Surface water only)

Conductivity pH Temperature Hardness Sulfate Total Alkalinity Dissolved Arsenic Dissolved Cadmium Dissolved Copper Dissolved Lead Dissolved Mercury Dissolved Zinc

Suite Q

(Groundwater and surface water)

Conductivity pН Temperature Hardness Sulfate **Total Alkalinity Dissolved Arsenic Dissolved Barium** Dissolved Cadmium Dissolved Chromium **Dissolved** Copper Dissolved Lead **Dissolved Mercury Dissolved Nickel** Dissolved Selenium **Dissolved Silver Dissolved** Zinc

PERSONNEL INVOLVED

<u>USFS</u>

Marti Marshall, Monument Manager & Chad Van Ormer USFS

Sarah Samuelson USFS

Chad Hood USFS

Biomonitoring

James Durst ADNR Laura Jacobs ADNR

Kate Kanouse F&G Katie Eaton F&G

HGCMC

Scott Hartman, General Manager HGCMC

Jennifer Saran, Environmental Manager HGCMC

Robin Jung, Environmental Technician HGCMC Ted Morales, Environmental Technician HGCMC Pete Condon, Geochemist

Christopher Wallace, Environmental Engineer HGCMC Sheri Williamson, Environmental Engineer HGCMC

Laboratory and Data Review

Suzan Huges, Project Coordinator Environmental Synectics, Inc. Evin McKinney, Senior Scientist Environmental Synectics, Inc. Leticia Sangalang, Senior Scientist Environmental Synectics, Inc.

Linda Moats, Project Coordinator Battelle Marine Sciences Laboratory

Sue Weber, Project Manager ACZ

Claire Toon Project Manager Analytica Alaska

PROPOSED PROGRAM MODIFICATIONS

Hecla Greens Creek Mining Company proposes to change the Fresh Water Monitoring Program sampling suite for Site 60 'Lower Althea'. It is common to have limited/no water flow at Site 60 throughout the sampling season. Currently, the May FWMP sampling event calls for a Suite Q and the rest of the sampling events are Suite P. Unfortunately, when there is no water flow in May the more extensive Suite Q is not collected, as happened during the 2010 FWMP program. To prevent this loss of data HGCMC is proposing to change the July and September samplings from Suite P to Suite Q. A review of the sampling schedule shows that the only other site (Site 13) at risk for being dry is already only sampled for Suite Q.

With the expansion of the tailings facility to the east of its current position, the two upgradient monitoring wells Site 58 and Site 59 are now within the new tailings boundary. During the 2010 summer drill program two new upgradient wells (MW-T-10-08A, MW-T-10-08B) were installed approximately 400 feet upslope and to the north. These wells were installed under consultation with EDE Consultants as replacements for Site 58 and Site 59. HGCMC proposes to develop these wells during the 2011 sampling season and sample them for Suite Q during the months of May, July, September, and November. Results of these sampling events will be presented in the following year's FWMP report. It is HGCMC's intention to monitor both the current wells and the new wells for the next two years. Next year, based on the sampling results, a proposal will be made to change the regulatory monitoring to these two new wells.

These proposed modifications will allow HGCMC to maintain their commitment to the continued success of the Fresh Water Monitoring Program. Once comments are received from the agencies on these proposed changes, HGCMC will initiate the formal process of requesting the changes as per GPO Appendix 1, FWMP, Section 13.

BIBLIOGRAPHY

Environmental Protection Agency (1998). *EPA Guidance for Data Quality Assessment*. EPA QA/G-9, EPA/600-R-96/084. U.S. Environmental Protection Agency, Office of Research and Development, Washington, D.C. 219 pp.

Gilbert, Richard O. (1987). *Statistical Methods for Environmental Pollution Monitoring*. Van Nostrand Reinhold, New York. 320 pp.

Helsel, D.R., and Hirsch, R.M. (1992). *Statistical methods in water resource*. Elsevier Publishers, Amsterdam. 510 pp.

INTERPRETIVE REPORT SITE 46 "LOWER BRUIN CREEK"

The data collected during the current water year are listed in the following "Table of Results for Water Year 2010" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the rightmost column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

All data collected at this site for the past six years are included in the data analyses. As shown in the table below, there were no data outliers.

Sample Date	Parameter	Value	Qualifier	Notes	
No outliers have	been identified by HG	CMC for the perio	od of October	r 2005 through September 20010.	

The data for Water Year 2010 have been compared to the strictest fresh water quality criterion for each applicable analyte. No results exceeding these criteria have been identified as listed in the table below.

Sample Date	Parameter	Value	Hardness (mg/L)	Standard	Standard Type
No e	xceedances have been iden	ntified by HO	GCMC for the period	of Oct-09 tho	ugh Sept-10.

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. These plots have been visually analyzed for the appearance of any trend in concentration. There was an identifiable trend in dissolved chromium. Between Water Year 2009 and Water Year 2010 there was roughly an order of magnitude increase in the dissolved chromium concentration. A similar increase was also noted for Site 6, Site 13, Site 46, Site 48, Site 49, and Site 54; all sites that are located in the 920 area.

A non-parametric statistical analysis for trend was performed for conductivity, pH, alkalinity, sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall

analyses are presented on the pages following this interpretive section. The following table summarizes the results on the data collected between Oct-04 and Sep-10 (WY2005-WY2010). Datasets with a statistically significant trend ($\alpha/2=2.5\%$) a

Site 46-WY2010, summary statistics for trend analysis.

M	ann-K	endall test	statistics	Sen's slope estimate		
Parameter	N(1)	p (2)	Trend	Q	Q(%)	
Conductivity, Lab	6	0.44	0			
pH, Lab	6	0.27	0			
Alkalinity, Total	6	0.01	-	-1.44	-2.4	
Sulfate, Total	6	0.78	0			
Zinc, Dissolved	6	0.91	0			
(1): Number of ye	ars	icance lev	/el			

Seasonal-Sen's Slope estimate statistic has also been calculated.

The dataset for total alkalinity has a statistically significant (p=0.01) negative trend with a slope estimate of -1.44 mg/L/yr or a -2.4% decrease over the period. This trend is similar in magnitude and direction as noted for the upgradient control Site 49 and therefore is interpreted as natural variation.

A comparison of median values for alkalinity, laboratory pH, laboratory conductivity, sulfate, and dissolved zinc between Site 49 and Site 46 has been conducted as specified in the Statistical Information Goals for Site 46. Additionally, X-Y plots have been generated for alkalinity, pH, conductance, sulfate, and dissolved zinc that co-plot data from Site 46 and Site 49, the upstream control site, to aid in the comparison between those sites. Calculation details of the non-parametric signed-rank tests are presented in detail on the pages following this interpretive section. The below table summarizes the results of the signed-rank test as performed on the Water Year 2010 data set. For all of the analytes, except pH, there were no statistically significant differences between the measured median values at a significance level of α =0.05 for a one-tailed test.

Sile 40 vs Sile 49	• W 12010, Summar	y statistics to	n meulan ana	iysis.
Parameter	Signed Ranks p-value	Site 49 median	Site 46 median	Median of Differences
Conductivity, Lab	0.16	152	154	-1.0
pH, Lab	0.97	7.74	7.58	0.21
Alkalinity, Total	0.00	59.8	61.4	-1.0
Sulfate, Total	1.00	12.9	12.6	0.3
Zinc, Dissolved	0.95	2.21	2.00	0.37

Site 46 vs Site 49 - WY2010, summary statistics for median analysis.

The median values for pH for Site 46 and Site 49 are 7.74 su and 7.58 su respectively and the median of differences, Site 49 minus Site 46, is 0.21 su. This pattern has occurred in 5 of the last 6 FWMP reports (WY 2004 – WY 2010) and has been consistent in the difference between the sites. Given the low magnitude of the difference and the yearly consistency in the difference, this variation is considered a part of the natural variation that can be expected for this type of monitoring.

Table of Results for Water Year 2010

	Site48 "Upper Greens Creek"												
Sample Date/Parameter	10/20/2009	11/17/2009	12/8/2009	1/12/2010	2/16/2010	3/16/2010	4/6/2010	5/11/2010	6/15/2010	7/13/2010	8/3/2010	9/14/2010	Median
Water Temp (°C)	3.6	0.9	0.2	0.7	1.6	0.6	0.9	4.1	4.6	6.7	9.7	6.8	2.6
Conductivity-Field(µmho)	129	111	146	93	124	141	127	107	85	92	100	125	118
Conductivity-Lab (µmho)	119	124 J	137	104	115	129	129	103	87	95	105	130	117
pH Lab (standard units)	7.82	7.52 J	7.64	7.54	6.87	7.14	6.83	7.95	6.87	6.45	7.70	6.72	7.33
pH Field (standard units)	7.41	7.24	7.17	6.63	7.20	7.29	7.01	7.67	7.08	6.95	7.08	6.72	7.13
Total Alkalinity (mg/L)	42.2	45.6 J	48.4	41.4	41.0	45.7	43.3	36.5	32.5	34.1	39.3	48.9	41.8
Total Sulfate (mg/L)	13.8	16.1	17.0	13.4	13.0 J	15.4	15.5 J	10.0	8.7	9.2 J	10.8 J	14.5	13.6
Hardness (mg/L)	61.8	60.8	65.5	51.1	58.5	63.7	63.1	47.4	40.6	46.7	50.8	62.9	59.7
Dissolved As (ug/L)	0.242	0.209	0.205	0.187	0.185	0.234	0.202	0.202	0.216	0.242	0.265	0.234	0.213
Dissolved Ba (ug/L)			28.7	22.2	24.6								24.6
Dissolved Cd (ug/L)	0.0412	0.0418	0.0397	0.0362	0.0340	0.0388	0.0367	0.0307	0.0323	0.0342	0.0356	0.0411	0.0365
Dissolved Cr (ug/L)			1.850	1.890	2.420								1.890
Dissolved Cu (ug/L)	0.418	0.451	0.403	0.536 U	0.652 U	0.601	0.570	0.322	0.215 U	0.272	0.275	0.328	0.411
Dissolved Pb (ug/L)	<0.0030	0.0032 U	0.0030 U	0.0070 U	0.0060 U	0.0040	0.0086 U	<0.0030	0.0071 U	0.0030 J	0.0169 U	<0.0060	0.0036
Dissolved Ni (ug/L)			1.060	0.685	1.090								1.060
Dissolved Ag (ug/L)			< 0.003	<0.003	< 0.003								0.002
Dissolved Zn (ug/L)	3.40	3.87 U	3.73	3.39 U	4.02 U	3.51	3.12	2.80	2.60 U	2.69	2.40 U	2.75	3.26
Dissolved Se (ug/L)			1.290	0.735	0.864 J								0.864
Dissolved Hg (ug/L)	0.000667	0.000669	0.000607	0.001210	0.001180	0.001000	0.001200 U	0.000761	0.001200 U	0.000797 U	0.000608 U	0.000586 U	0.000779

For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

Shaded data has been qualified as an outlier by HGCMC and removed from any further analysis and is not included into the calculation of the median

Qualified Data by QA Reviewer

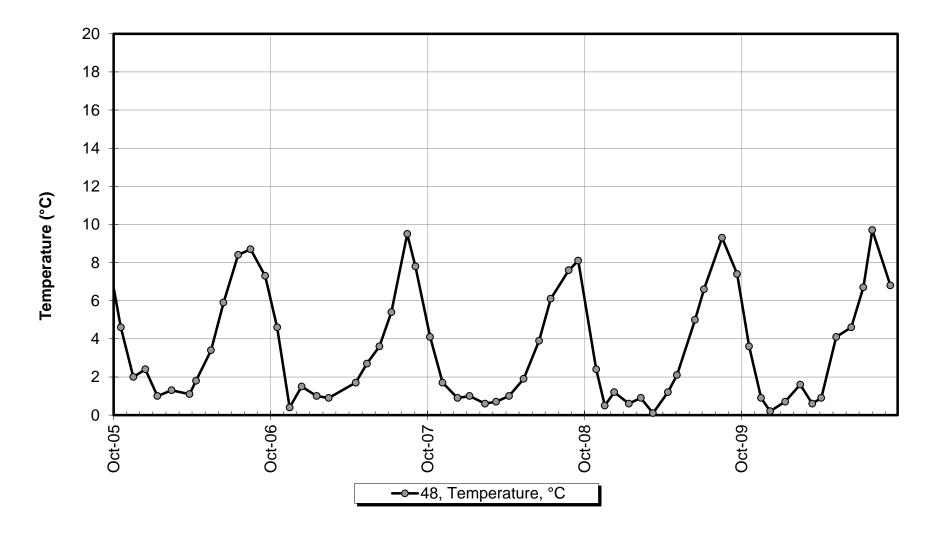
Date Range: 10/01/2009 to 09/30/2010

Site No.	Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier
48	11/17/2009	12:00 AM				
			Alk Tot,mg/l	45.6	J	Temperature Exceedance
			Cond, µs/cm	124	J	Temperature Exceedance
			Pb diss, µg/l	0.00323	U	Field Blank Contamination
			Zn diss, µg/l	3.87	U	Field Blank Contamination
			pH Lab, su	7.52	J	Hold Time Violation
8	12/8/2009	12:00 AM		-		
			Pb diss, µg/l	0.00302	U	Field Blank Contamination
8	1/12/2010	12:00 AM				
			Cu diss, µg/l	0.53	U	Field Blank Contamination
			Pb diss, µg/l	0.00695	U	Field Blank Contamination
			Zn diss, µg/l	3.39	U	Field Blank Contamination
8	2/16/2010	12:00 AM				
			Cu diss, µg/l	0.652	U	Field Blank Contamination
			Pb diss, µg/l	0.00595	U	Field Blank Contamination
			Se diss, µg/l	0.864	J	LCS Recovery
			Cu diss, µg/l	0.601	U	Field Blank Contamination
			Pb diss, µg/l	0.00396	U	Field Blank Contamination
			Zn diss, µg/l	3.51	U	Field Blank Contamination
			SO4 Tot, mg/l	15.4	J	Sample Receipt Temperature
8	4/6/2010	2:33 PM				
			Hg diss, µg/l	0.0012	U	Field Blank Contamination
			Pb diss, µg/l	0.00856	U	Field Blank Contamination
			Hg diss, µg/l	0.000761	U	Field Blank Contamination
			Pb diss, µg/l	-0.003	U	Field Blank Contamination
			SO4 Tot, mg/l	10	J	Sample Temperature
8	6/15/2010	12:00 AM		-		
			Cu diss, µg/l	0.215	U	Field Blank Contamination
			Hg diss, µg/l	0.0012	U	Field Blank Contamination
			Pb diss, µg/l	0.0071	U	Field Blank Contamination
			Zn diss, µg/l	2.6	U	Field Blank Contamination
8	7/13/2010	9:48 AM				
			Hg diss, µg/l	0.000797	U	Field Blank Contamination
			Pb diss, µg/l	0.00301	J	Below Quantitative Range
			SO4 Tot, mg/l	9.2	J	Sample Reciept Temperature

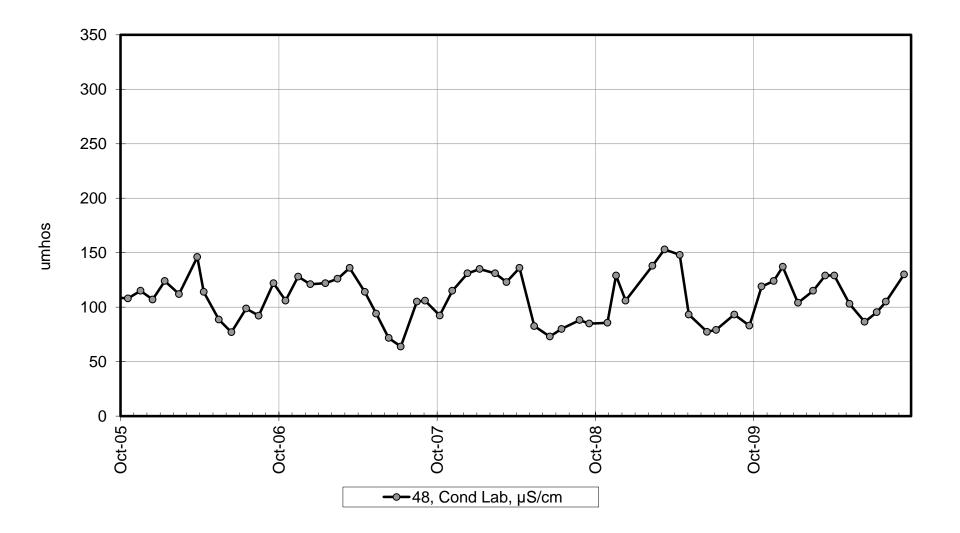
Qualifier

Description

- J Positively Identified Approximate Concentration
- N Presumptive Evidence For Tentative Identification
- NJ Tentatively Identified Approximate Concentration
- R Rejected Cannot be Verified
- U Not Detected Above Quantitation Limit
- UJ Not Detected Above Approximate Quantitation Limit

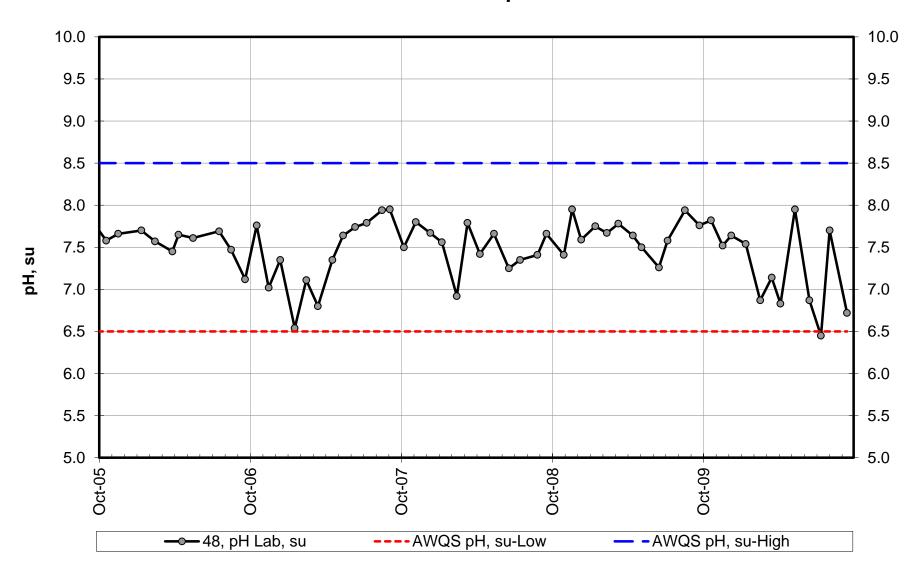

Qualified Data by QA Reviewer

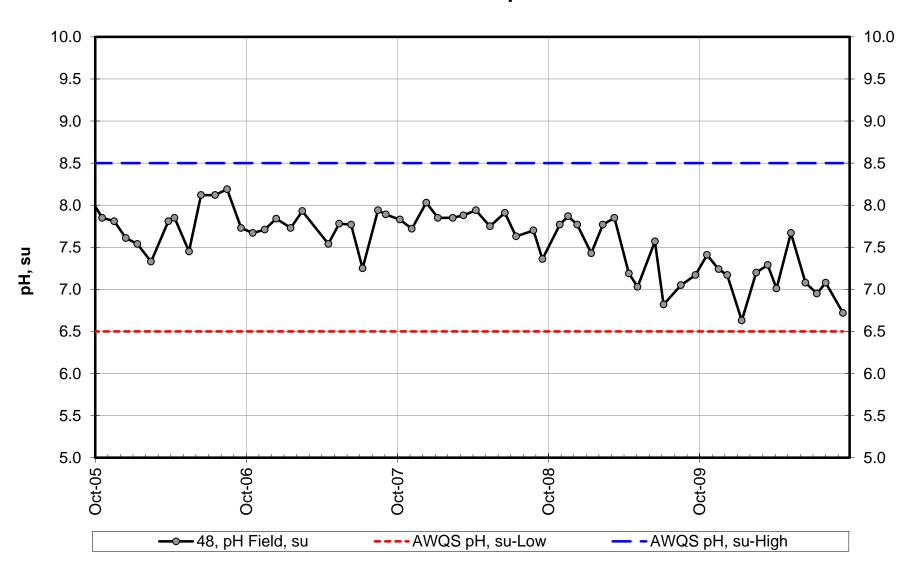
Date Range: 10/01/2009 to 09/30/2010

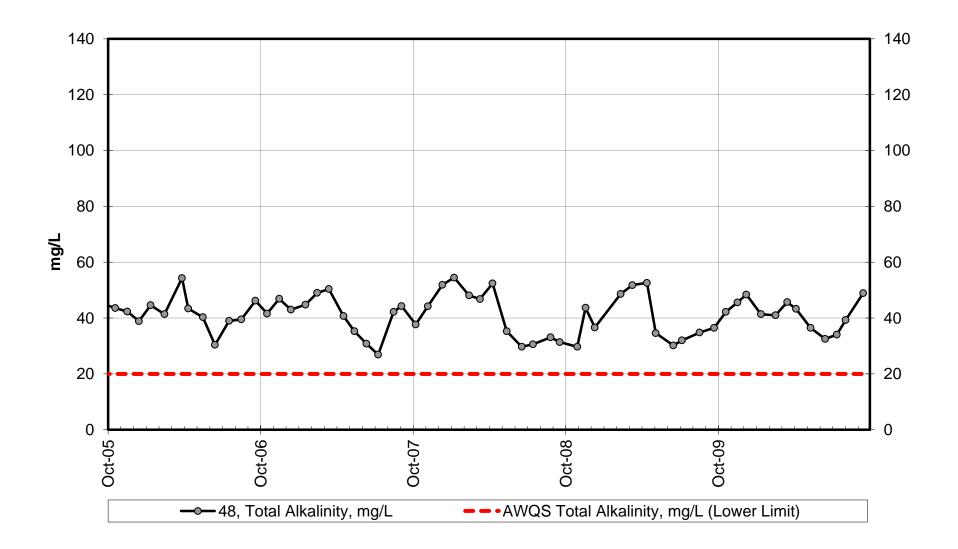

Site No.	Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier
48	8/3/2010	12:12 PM				
			Hg diss, µg/l	0.000608	U	Field Blank Contamination
			Pb diss, µg/l	0.0169	U	Field Blank Contamination
			Zn diss, µg/l	2.4	U	Field Blank Contamination
			SO4 Tot, mg/l	10.8	J	Sample Temperature
48	9/14/2010	12:00 AM				-
			Hg diss, µg/l	0.000586	U	Trip Blank Contamination

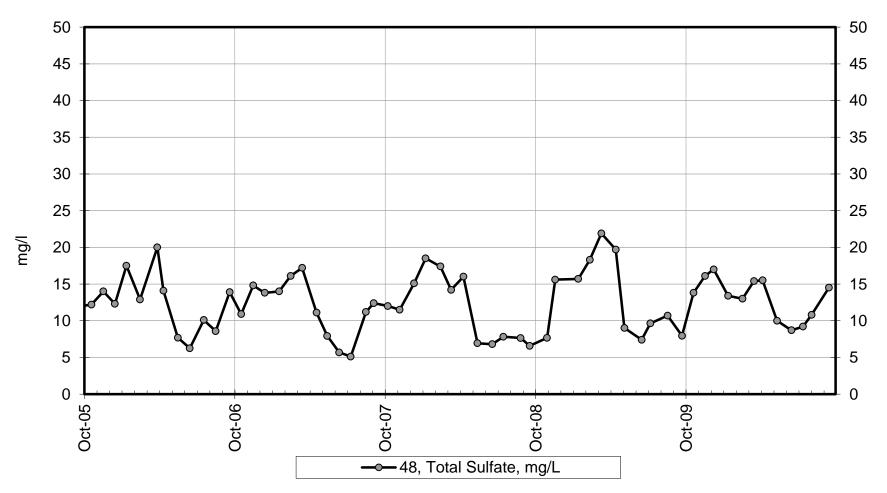
Qualifier	Description
J	Positively Identified - Approximate Concentration
Ν	Presumptive Evidence For Tentative Identification
NJ	Tentatively Identified - Approximate Concentration
R	Rejected - Cannot be Verified
U	Not Detected Above Quantitation Limit
UJ	Not Detected Above Approximate Quantitation Limit

Site 48 -Water Temperature

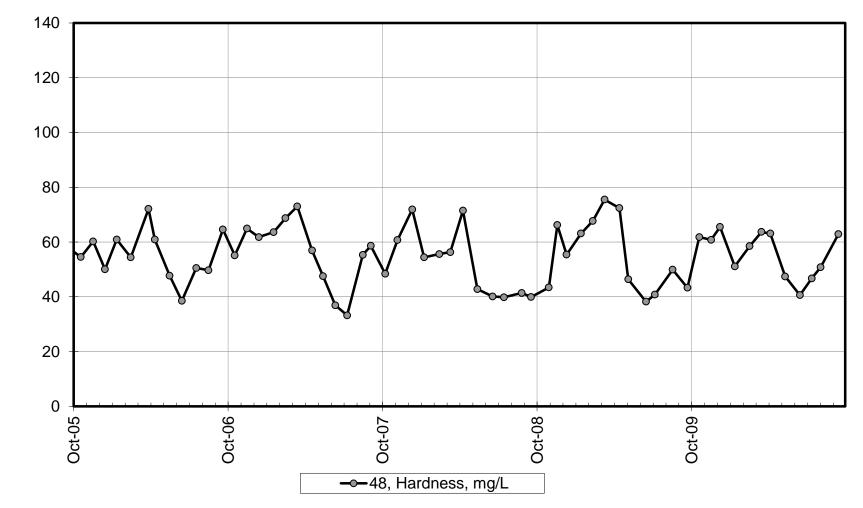

Site 48 - Conductivity-Lab


Site 48 - Conductivity-Field

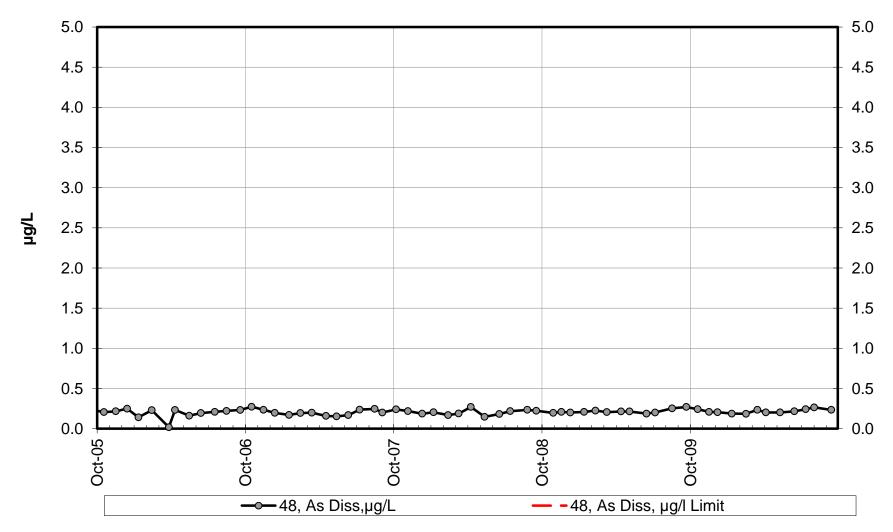

Site 48 - Lab pH


Site 48 - Field pH

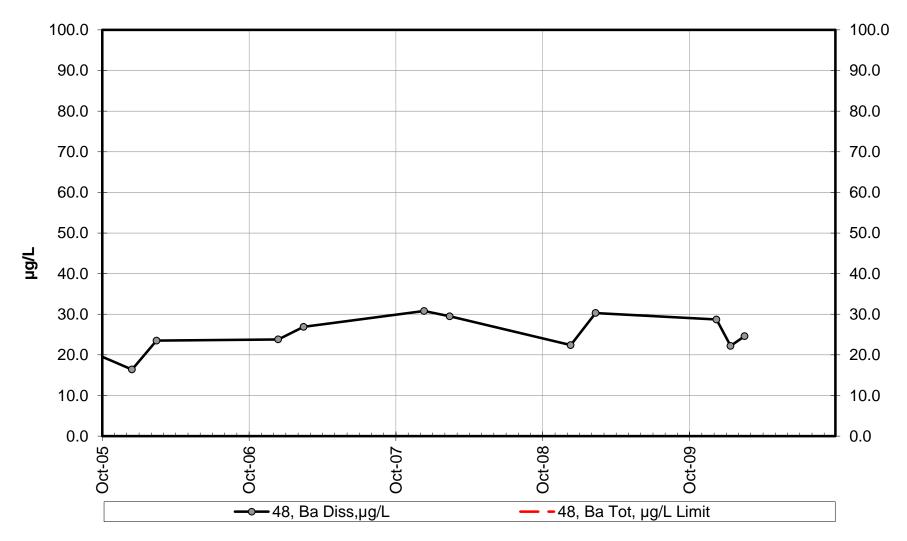
Site 48 - Total Alkalinity



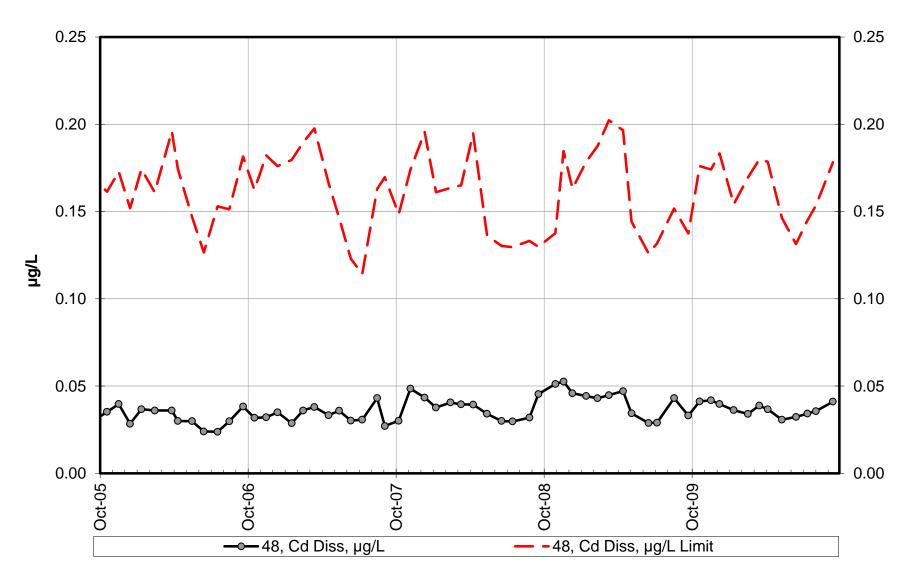
Site 48 - Total Sulfate


Note: The AWQS for Total Sulfate is 250 mg/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination.

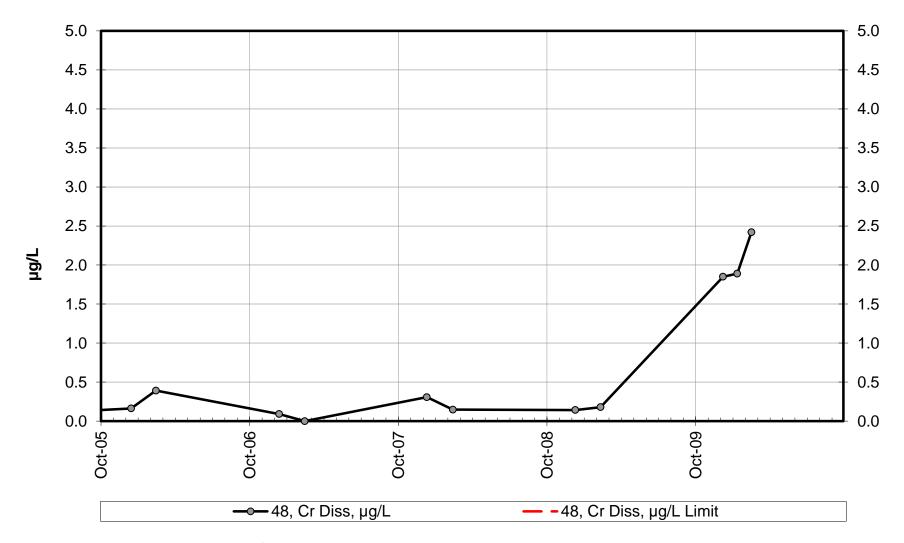
Site 48 - Hardness


mg/L

Site 48 - Dissolved Arsenic

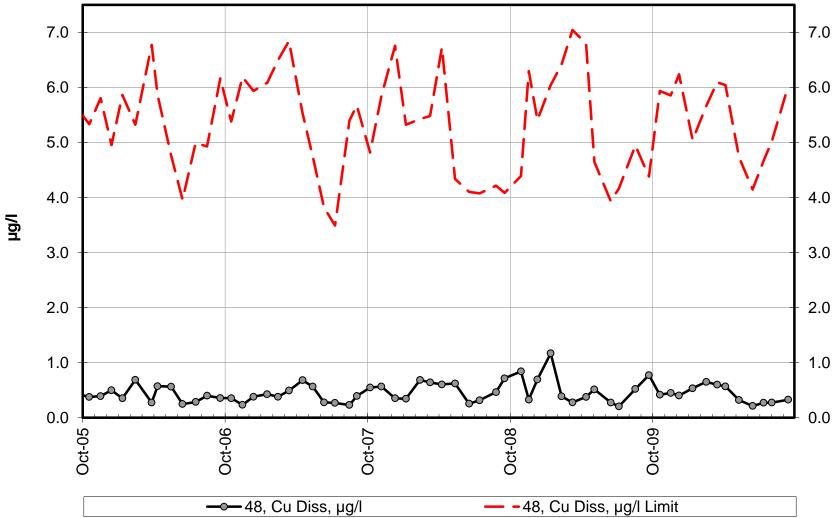

Note: The AWQS for total arsenic is 10 ug/L and thus may not be shown on this graph in order to allow greater visual detail of plotted values for trend determination

Site 48 - Dissolved Barium

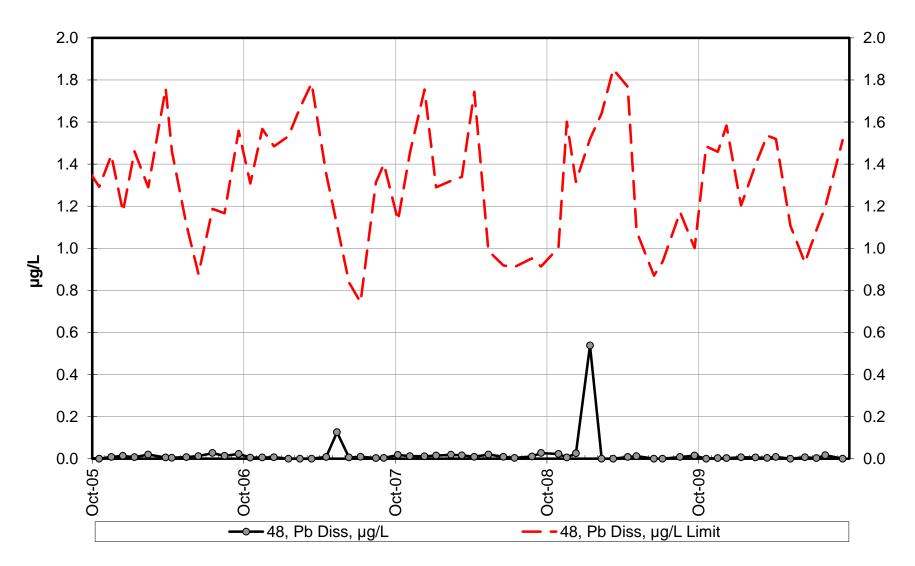


Note: the AWQS for Total Barium is 1000 ug/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination

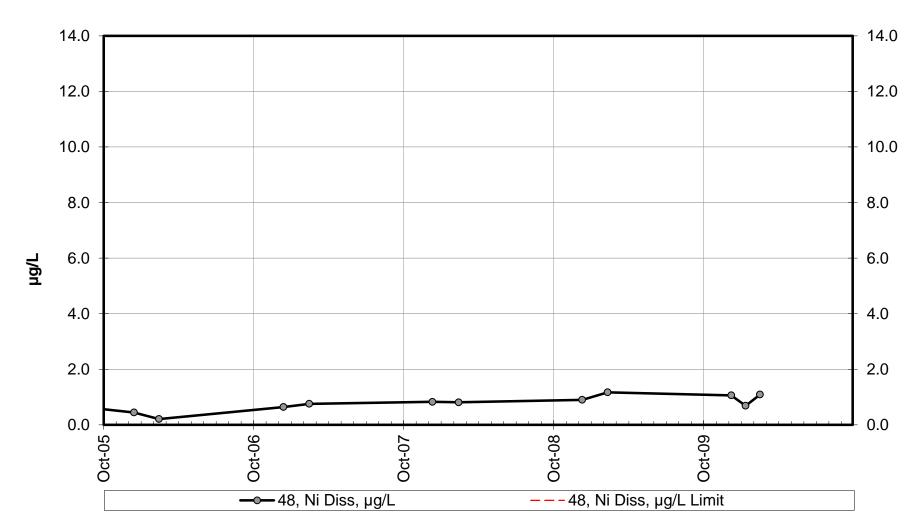
Site 48 - Dissolved Cadmium



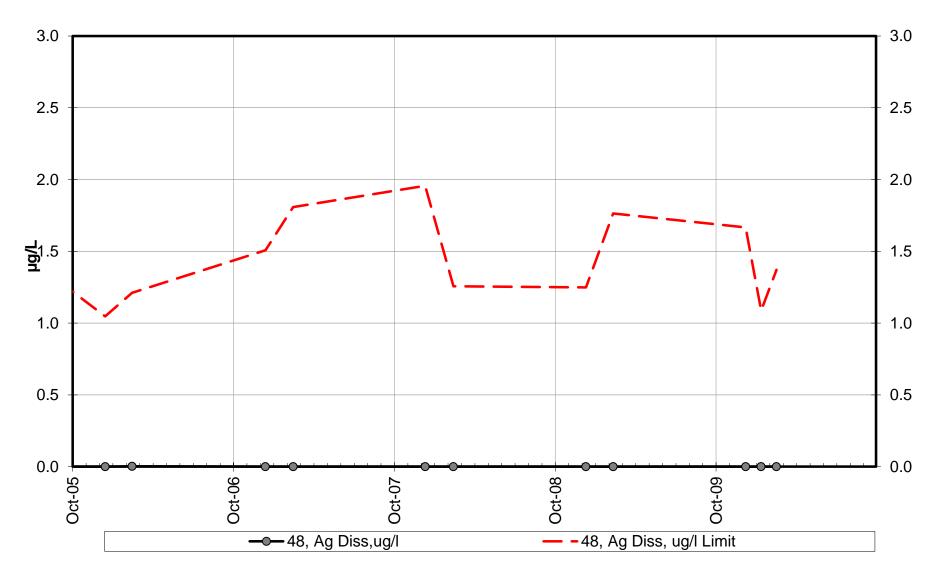
Site 48 - Dissolved Chromium



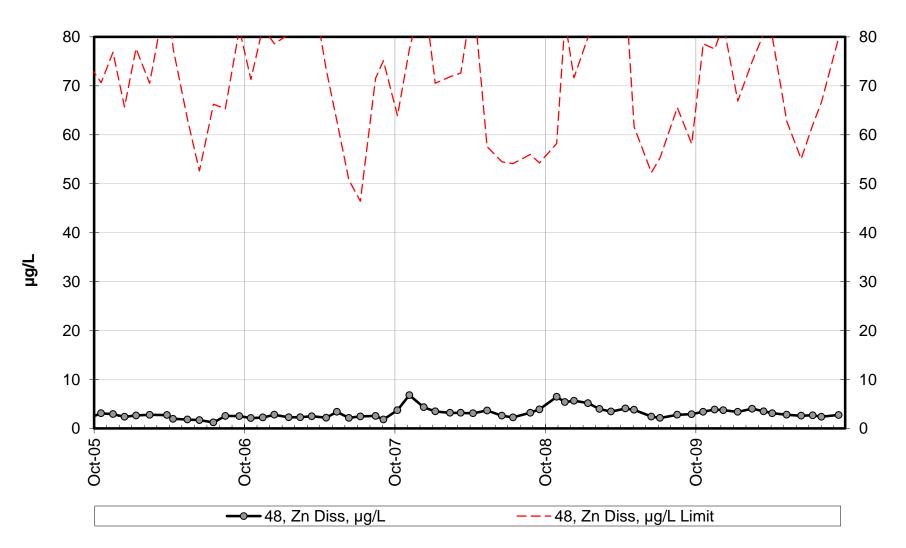
Note: the AWQS for Dissolved Chromium is 11 µg/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination


Site 48 - Dissolved Copper

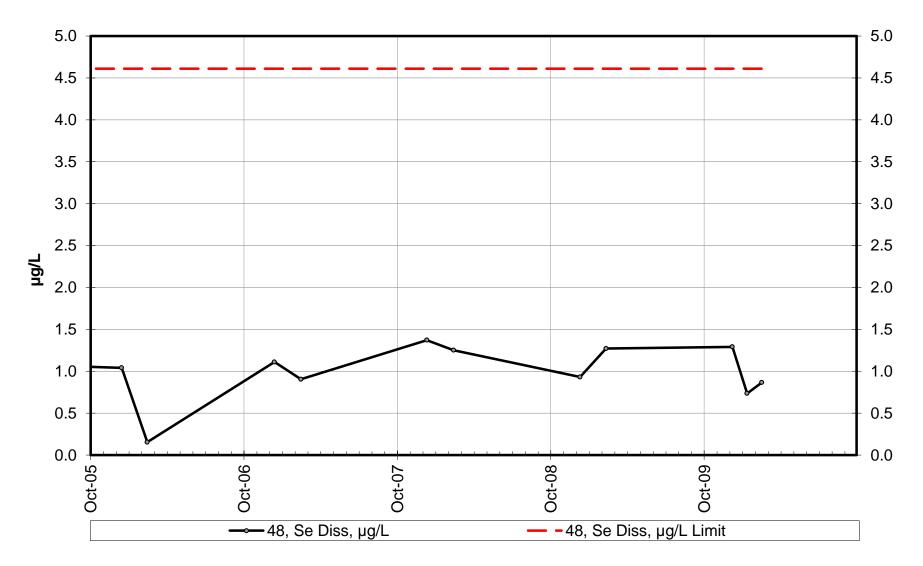
Site 48 - Dissolved Lead

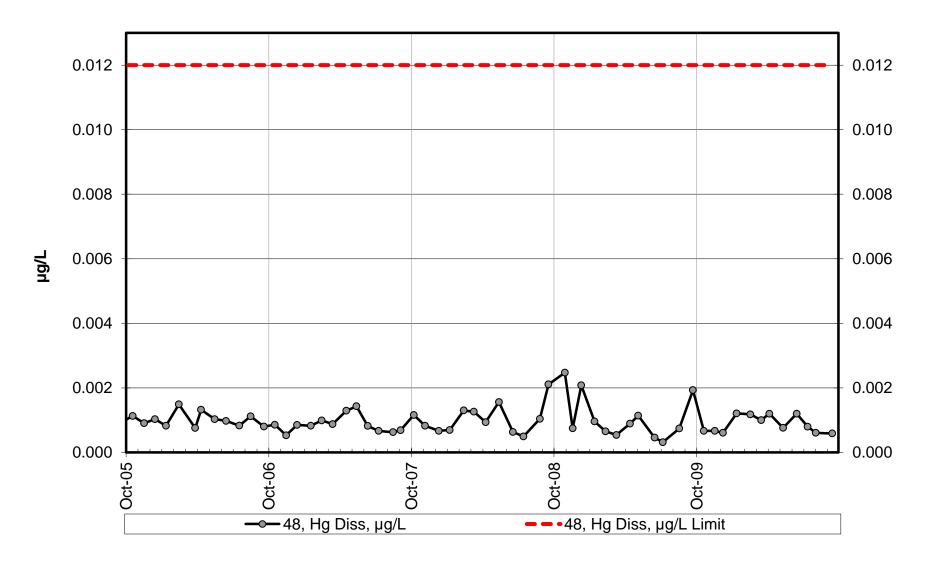


Site 48 - Dissolved Nickel

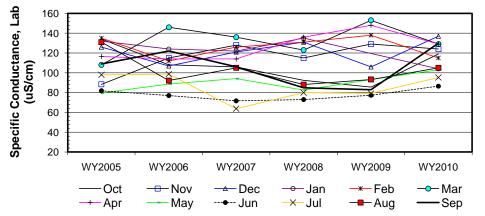


Note: The AWQS for dissolved nickel is hardness dependant and varies between 16 ug/L and 128 ug/L for waters with hardness values of 25 mg/L and 400 mg/L respectively. The AWQS, which would plot above the upper value on the Y-axis, are not shown on this graph to allow for greater visual detail of the plotted values.


Site 48 - Dissolved Silver


Site 48 - Dissolved Zinc

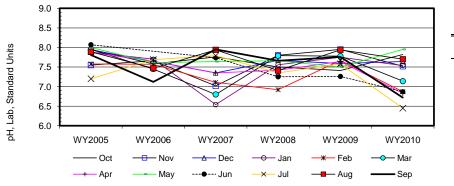
Site 48 - Dissolved Selenium



Site 48 - Dissolved Mercury

Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2005	134	88.4	126	132	135	108	116.4	79.6	81.9	98	131	109
b	WY2006	108	115	107	124	112	146	114	88.6	77	98.7	92.2	122
С	WY2007	106	128	121	122	126	136	114	94.1	71.7	63.8	105	106
d	WY2008	92.3	115	131	135	131	123	136	82.6	73	80	88.1	84.9
е	WY2009	85.6	129	106		138	153	148	93.2	77.3	79.1	93.2	83
f	WY2010	119	124	137	104	115	129	129	103	86.5	95.3	105	130
	n	6	6	6	5	6	6	6	6	6	6	6	6
1	t1	5	3	5	5	5	5	3	5	5	5	3	5
	t ₂	0	1	0	0	0	0	1	0	0	0	1	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t ₄	0	0	0	0	0	0	0	0	0	0	0	0
	t ₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a	-1	1	-1	-1	-1	1	-1	1	-1	1	-1	1
	c-a	-1	1	-1	-1	-1	1	-1	1	-1	-1	-1	-1
	d-a	-1	1	1	1	-1	1	1	1	-1	-1	-1	-1
	e-a	-1	1	-1		1	1	1	1	-1	-1	-1	-1
	f-a	-1	1	1	-1	-1	1	1	1	1	-1	-1	1
	c-b	-1	1	1	-1	1	-1	0	1	-1	-1	1	-1
	d-b	-1	0	1	1	1	-1	1	-1	-1	-1	-1	-1
	e-b	-1	1	-1		1	1	1	1	1	-1	1	-1
	f-b	1	1	1	-1	1	-1	1	1	1	-1	1	1
	d-c	-1	-1	1	1	1	-1	1	-1	1	1	-1	-1
	e-c	-1	1	-1		1	1	1	-1	1	1	-1	-1
	f-c	1	-1	1	-1	-1	-1	1	1	1	1	0	1
	e-d	-1	1	-1		1	1	1	1	1	-1 1	1	-1
	f-d f-e	1	-1	1	-1	-1 -1	-1	-1 -1	1	1	1	1	1
	S _k	-7	8	3	-4	1	3	6	9	3	-3	-2	-3
σ	² s=	28.33	21.67	28.33	16.67	28.33	28.33	27.33	28.33	28.33	28.33	27.33	28.33
	S _k /σ _s	-1.32	1.72	0.56	-0.98	0.19	0.56	1.15	1.69	0.56	-0.56	-0.38	-0.56
	$\frac{Z^2}{k}$	1.73	2.95	0.32	0.96	0.04	0.32	1.32	2.86	0.32	0.32	0.15	0.32
	$\Sigma Z_k =$	2.63	Г	Tie Extent	t ₁	t ₂	t ₃	t₄	t ₅			Σn	71
	$\Sigma Z_k^2 =$	11.59		Count	54	3	0	0	0			ΣS_k	14

$\chi^2_{h} = \Sigma Z^2_{k} - K(Z-bar)^2 = 11.01$			@α=5% χ ² _(K-1) =	19.68	Test for station homogeneity	
	р	0.442			$\chi^{2}h < \chi^{2}(K-1)$	ACCEPT
$\Sigma VAR(S_k)$	\mathbf{Z}_{calc}	0.73	@α/2=2.5% Z =	1.96	H ₀ (No trend)	ACCEPT
319.67	р	0.766			H _A (± trend)	REJECT



Seasonal-Kendall Slope Confidence Intervals									
α	Lower Limit	Sen's Slope	Upper Limit						
0.010	-2.00		3.64						
0.050	-1.23	0.75	2.83						
0.100	-0.84	0.75	2.37						
0.200	-0.01		2.00						

Site	#48			Sea	isonal K	endall a	nalysis fo	or pH, La	ab, Stand	dard Unit	S		
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
а	WY2005	8.0	7.6	7.9	7.9	7.6	8.0	7.9	8.0	8.1	7.2	7.9	7.
b	WY2006	7.6	7.7		7.7	7.6	7.5	7.7	7.6		7.7	7.5	7.
С	WY2007	7.8	7.0	7.4	6.5	7.1	6.8	7.4	7.6	7.7	7.8	7.9	8
d	WY2008	7.5	7.8	7.7	7.6	6.9	7.8	7.4	7.7	7.3	7.4	7.4	7
е	WY2009	7.4	8.0	7.6	7.8	7.7	7.8	7.6	7.5	7.3	7.6	7.9	7
f	WY2010	7.8	7.5	7.6	7.5	6.9	7.1	6.8	8.0	6.9	6.5	7.7	6
	n	6	6	5	6	6	6	6	6	5	6	6	
-	t,	5	5	5	5	5	5	5	5	5	5	3	
	t ₂	0	0	0	0	0	0	0	0	0	0	1	
	t ₃	0	0	0	0	0	0	0	0	0	0	0	
	t₄	0	0	0	0	0	0	0	0	0	0	0	
	t₅	0	0	0	0	0	0	0	0	0	0	0	
•	b-a	-1	1		-1	-1	-1	-1	-1		1	-1	
	c-a	-1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	
	d-a	-1	1	-1	-1	-1	-1	-1	-1	-1	1	-1	
	e-a	-1	1	-1	-1	1	-1	-1	-1	-1	1	1	
	f-a	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	
	c-b	1	-1		-1	-1	-1	-1	1		1	1	
	d-b	-1	1		-1	-1	1	-1	1		-1	-1	
	e-b	-1	1		1	1	1	-1	-1		-1	1	
	f-b	1	-1		-1	-1	-1	-1	1		-1	1	
	d-c	-1	1	1	1	-1	1	1	1	-1	-1	-1	
	e-c	-1	1	1	1	1	1	1	-1	-1	-1	0	
	f-c	1	1	1	1	-1	1	-1	1	-1	-1	-1	
	e-d	-1	1	-1	1	1	-1	1	-1	1	1	1	
	f-d	1	-1	-1	-1	-1	-1	-1	1	-1	-1	1	
=	f-e S _k	1 -5	-1 3	-2	-1 -5	-1 -7	-1 -5	-1 -9	1 -1	-1 -8	-1 -3	-1 0	
		5	0	2	0	,	5	5		0	5	0	
	²s=	28.33	23.33	16.67	28.33	28.33	28.33	28.33	28.33	16.67	28.33	27.33	28.
	S_k/σ_S	-0.94	0.62	-0.49	-0.94	-1.32	-0.94	-1.69	-0.19	-1.96	-0.56	0.00	-0.
Z	² - k	0.88	0.39	0.24	0.88	1.73	0.88	2.86	0.04	3.84	0.32	0.00	0.
	$\Sigma Z_k =$	-9.34]	Tie Extent	t,	t ₂	t ₃	t₄	t _s			Σn	70
	ΣZ_{k}^{2}	-9.94 12.94		Count	58	2 1	0	-4 0				ΣS _k	-47
	-bar=ΣΖ./K=	-0.78	L	Count	00	I	U	U	0			20_k	-47

Z-bar= $\Sigma Z_k/K$ = -0.78

$\chi^2_{h} = \Sigma Z^2_{k} - K(Z-bar)^2 = 5.66$			@α=5% χ ² _(K-1) =	19.68	Test for station homo	geneity
	р	0.895			$\chi^{2}_{h} < \chi^{2}_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	Z_{calc}	-2.61	@α/2=2.5% Z=	1.96	H ₀ (No trend)	REJECT
310.67	р	0.005			H _A (± trend)	ACCEPT

Seasona	Seasonal-Kendall Slope Confidence Intervals										
	Lower	Sen's	Upper								
α	Limit	Slope	Limit								
0.010	-0.14		-0.01								
0.050	-0.11	-0.06	-0.03								
0.100	-0.10	-0.06	-0.03								
0.200	-0.08		-0.04								

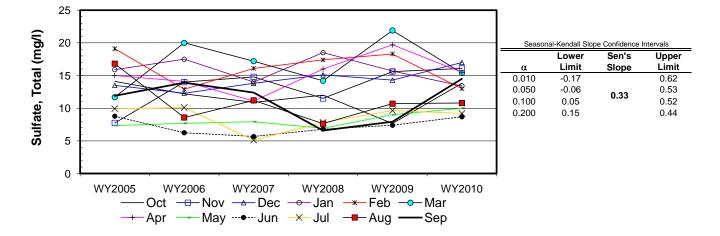
-0.8%

Site #4

—+— Apr

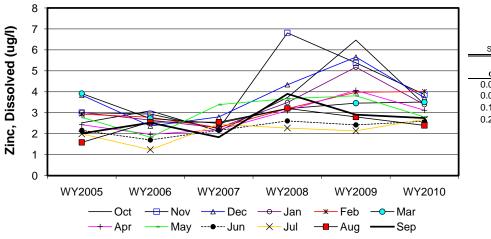
- May

---• Jun


Seasonal Kendall analysis for Total Alk, (mg/l)

Sile	#40				Season	aintenua	all allalys		lai Aik,	(mg/i)			
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2005	55.2	39.7	51.3	57.2	61.2	50.1	53.8	39.8	37.8	42.2	50.4	45.3
b	WY2006	43.6	42.3	38.9	44.6	41.4	54.3	43.4	40.3	30.4	39.0	39.5	46.2
с	WY2007	41.6	46.9	43.0	44.8	49.0	50.4	40.7	35.3	30.8	26.9	42.2	44.3
d	WY2008	37.7	44.2	51.9	54.5	48.1	46.8	52.4	35.3	29.7	30.6	33.1	31.4
е	WY2009	29.7	43.7	36.6		48.6	51.8	52.6	34.6	30.2	32.0	34.8	36.5
f	WY2010	42.2	45.6	48.4	41.4	41.0	45.7	43.3	36.5	32.5	34.1	39.3	48.9
	n	6	6	6	5	6	6	6	6	6	6	6	6
	t ₁	5	5	5	5	5	5	5	3	5	5	5	5
	t ₂	0	0	0	0	0	0	0	1	0	0	0	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t₄ t₅	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
1	L 5	0	0	0	0	0	0	0	0	0	0	0	0
	b-a	-1	1	-1	-1	-1	1	-1	1	-1	-1	-1	1
	c-a	-1	1	-1	-1	-1	1	-1	-1	-1	-1	-1	-1
	d-a	-1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1
	e-a	-1	1	-1		-1	1	-1	-1	-1	-1	-1	-1
	f-a	-1	1	-1 1	-1	-1	-1	-1	-1	-1	-1	-1	1
	c-b d-b	-1 -1	1	1	1 1	1 1	-1 -1	-1 1	-1 -1	1 -1	-1 -1	1 -1	-1 -1
	d-b e-b	-1 -1	1	1 -1	I	1	-1 -1	1	-1 -1	-1 -1	-1 -1	-1 -1	-1 -1
	е-b f-b	-1 -1	1	-1	-1	-1	-1 -1	-1	-1 -1	-1	-1 -1	-1 -1	-1
	d-c	-1	-1	1	-1	-1	-1	-1	0	-1	-1	-1	-1
	e-c	-1	-1	-1		-1	-1	1	-1	-1	1	-1	-1
	f-c	1	-1	1	-1	-1	-1	1	1	1	1	-1	1
	e-d	-1	-1	-1		1	1	1	-1	1	1	1	1
	f-d	1	1	-1	-1	-1	-1	-1	1	1	1	1	1
	f-e	1	1	1		-1	-1	-1	1	1	1	1	1
	S _k	-9	7	-1	-4	-7	-5	-3	-6	-3	-3	-7	-1
σ	² s=	28.33	23.33	28.33	16.67	28.33	28.33	28.33	27.33	28.33	28.33	28.33	28.33
	S _k /σ _s	-1.69	1.45	-0.19	-0.98	-1.32	-0.94	-0.56	-1.15	-0.56	-0.56	-1.32	-0.19
2	2 ² k	2.86	2.10	0.04	0.96	1.73	0.88	0.32	1.32	0.32	0.32	1.73	0.04
	$\Sigma Z_k =$	-8.01	Γ	Tie Extent	t,	t ₂	t ₃	t ₄	t ₅			Σn	71
	ΣZ_{k}^{2}	12.60		Count	58	1	0	0	0			ΣS_k	-42
7	-bar=∑Z _k /K=	-0.67	L	ooun	00	•	•	Ū	Ũ			20k	.2
2	501-22 _k /10-	-0.07											
	$\chi^2_h = \Sigma Z^2_k - I$	K(Z-bar) ² =	7.26		@α=5%	⁄ω χ ² _(K-1) =	19.68			ion homog	eneity		
		р	0.778					2	$\chi^{2}_{h} < \chi^{2}_{(K-1)}$		ACCEPT		
	$\Sigma VAR(S_k)$	Z_{calc}	-2.28		@α/2=	2.5% Z=	1.96		H₀ (No	trend)	REJECT		
	322.33	р	0.011						H _A (± t	rend)	ACCEPT		
·0													
70													
50 	- <u>*</u>												
			•	_			-			Seasona	I-Kendall Slope	e Confidence l	ntervals
50 Ғ				\rightarrow	*	\rightarrow	\leq				Lower	Sen's	Upper
			Q							α	Limit	Slope	Limit
10 								$ \ge $		0.010	-2.04		-0.02
E	•									0.050	-1.61	-0.83	-0.30
οĘ										0.100	-1.50	-0.05	-0.35
	-		•	X			•			0.200	-1.10		-0.50
o [-2.0%	
	-												
10 +	WY2005	\ <i>\\\</i> V	2006	WY2007	WY2	008	WY2009	WY2	2010				
				¥¥12007	VV I Z		vv 12009	VV I 2					
	——Oc		– Nov	— <u> </u>	-0-	Jan	— * – Feb		- Mar				
	<u> </u>	r	- May	e lun	~	- Iul		·	- Son				

Site	#48			S	easonal	Kendall	analysis	for Sulf	ate, Tota	ıl (mg/l)			
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
а	WY2005	14.1	7.8	13.5	15.9	19.1	11.7	15.0	7.4	8.8	9.9	16.8	11.9
b	WY2006	12.2	14.0	12.3	17.5	12.9	20.0	14.1	7.7	6.3	10.1	8.6	13.9
С	WY2007	10.9	14.8	13.8	14.0	16.1	17.2	11.1	7.9	5.7	5.1	11.2	12.4
d	WY2008	12.0	11.5	15.1	18.5	17.4	14.2	16.0	6.9	6.8	7.8	7.6	6.6
е	WY2009	7.7	15.6	14.3	15.7	18.3	21.9	19.7	9.0	7.4	9.6	10.7	8.0
f	WY2010	13.8	16.1	17.0	13.4	13.0	15.4	15.5	10.0	8.7	9.2	10.8	14.5
	n	6	6	6	6	6	6	6	6	6	6	6	6
	t,	5	5	5	5	5	5	5	5	5	5	5	5
	t ₂	0	0	0	0	0	0	0	0	0	0	0	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t ₄	0	0	0	0	0	0	0	0	0	0	0	0
	t ₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1
	c-a	-1	1	1	-1	-1	1	-1	1	-1	-1	-1	1
	d-a	-1	1	1	1	-1	1	1	-1	-1	-1	-1	-1
	e-a	-1	1	1	-1	-1	1	1	1	-1	-1	-1	-1
	f-a	-1	1	1	-1	-1	1	1	1	-1	-1	-1	1
	c-b	-1	1	1	-1	1	-1	-1	1	-1	-1	1	-1
	d-b	-1	-1	1	1	1	-1	1	-1	1	-1	-1	-1
	e-b	-1	1	1	-1	1	1	1	1	1	-1	1	-1
	f-b	1	1	1	-1	1	-1	1	1	1	-1	1	1
	d-c	1	-1	1	1	1	-1	1	-1	1	1	-1	-1
	e-c	-1	1	1	1	1	1	1	1	1	1	-1	-1
	f-c	1	1	1	-1	-1	-1	1	1	1	1	-1	1
	e-d	-1	1	-1	-1	1	1	1	1	1	1	1	1
	f-d	1	1	1	-1	-1	1	-1	1	1	1	1	1
	f-e S _k	1	1	1	-1	-1	-1	-1	1	1	-1		1
	Sk	-5	11	11	-5	-1	3	5	9	3	-3	-3	1
σ	5 ² s=	28.33	23.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33
Z _k =	s S _k /σ _s	-0.94	2.28	2.07	-0.94	-0.19	0.56	0.94	1.69	0.56	-0.56	-0.56	0.19
	Z ² _k	0.88	5.19	4.27	0.88	0.04	0.32	0.88	2.86	0.32	0.32	0.32	0.04
	$\Sigma Z_k =$	5.10	J	Tie Extent	t ₁	t ₂	t ₃	t4	t ₅			Σn	72
	$\Sigma Z_{k}^{2} =$	16.30		Count	60	0	0	0	0			ΣS_k	26
7	$Z = \frac{1}{2} = \frac{1}{2}$	0.42		Count	00	U	U	U	U			20 _K	20


Z-bar= $\Sigma Z_k/K$ = 0.42

$\chi^2_h = \Sigma Z^2_k - K(Z-bar)^2 = 14.14$			@α=5% χ ² _(K-1) =	19.68	Test for station home	ogeneity
	р	0.225			$\chi^2_h < \chi^2_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	Z_{calc}	1.37	@α=5% Z=	1.64	H ₀ (No trend)	ACCEPT
335.00	р	0.914			H _A (± trend)	REJECT

Site	#48			Se	easonal	Kendall	analysis	for Zinc	Dissolv	ed (ug/l)			
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
а	WY2005	2.5	3.0	3.8	3.0	2.9	3.9	2.4	2.8	2.2	2.0	1.6	2.
b	WY2006	3.1	2.9	2.4	2.7	2.8	2.7	2.0	1.8	1.7	1.2	2.6	2.
С	WY2007	2.1	2.2	2.8	2.3	2.3	2.5	2.2	3.4	2.2	2.5	2.6	1.
d	WY2008	3.7	6.8	4.3	3.5	3.2	3.2	3.1	3.7	2.6	2.3	3.2	3.
е	WY2009	6.5	5.4	5.7	5.2	4.0	3.5	4.1	3.8	2.4	2.1	2.8	2.
f	WY2010	3.4	3.9	3.7	3.4	4.0	3.5	3.1	2.8	2.6	2.7	2.4	2.
	n	6	6	6	6	6	6	6	6	6	6	6	
	t,	5	5	5	5	5	5	5	5	3	5	5	
	t ₂	0	0	0	0	0	0	0	0	1	0	0	
	t ₃	0	0	0	0	0	0	0	0	0	0	0	
	t ₄	0	0	0	0	0	0	0	0	0	0	0	
	t ₅	0	0	0	0	0	0	0	0	0	0	0	
	b-a	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	1	
	c-a	-1	-1	-1	-1	-1	-1	-1	1	0	1	1	-
	d-a	1	1	1	1	1	-1	1	1	1	1	1	
	e-a	1	1	1	1	1	-1	1	1	1	1	1	
	f-a	1	1	-1	1	1	-1	1	1	1	1	1	
	c-b	-1	-1	1	-1	-1	-1	1	1	1	1	-1	-
	d-b	1	1	1	1	1	1	1	1	1	1	1	
	e-b	1	1	1	1	1	1	1	1	1	1	1	
	f-b	1	1	1	1	1	1	1	1	1	1	-1	
	d-c	1	1	1	1	1	1	1 1	1	1	-1 -1	1 1	
	e-c f-c	1	1	1	1	1	1	1	-1	1	-1	-1	
	e-d	1	-1	1	1	1	1	1	-1	-1	-1	-1 -1	-
	f-d	-1	-1	-1	-1	1	1	1	-1	-1	-1	-1	-
	f-e	-1	-1	-1	-1	1	1	-1	-1	1	1	-1	-
	S _k	7	3	5	5	9	3	9	7	8	7	3	
σ	² s=	28.33	23.33	28.33	28.33	28.33	28.33	28.33	28.33	27.33	28.33	28.33	28.3
	s s _k /σ _s	1.32	0.62	0.94	0.94	1.69	0.56	1.69	1.32	1.53	1.32	0.56	0.9
Z	<mark>7² k</mark>	1.73	0.39	0.88	0.88	2.86	0.32	2.86	1.73	2.34	1.73	0.32	0.8
	$\Sigma Z_k =$	13.42	1	Tie Extent	t,	t ₂	t ₃	t ₄	t ₅			Σn	72
	ΣZ_{k}^{2}	16.92		Count	58	1	0	0	0			ΣS_k	71
Z	-bar=ΣZ _k /K=	1.12	L										

$\chi^2_h = \Sigma Z^2_k$ -	K(Z-bar) ² =	1.90	@α=5% χ ² _(K-1) =	19.68	Test for station homog	geneity
р 0.999					$\chi^{2}_{h} < \chi^{2}_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	Z_{calc}	3.83	@α/2=2.5% Z=	1.96	H ₀ (No trend)	REJECT
334.00	р	1.000			H _A (± trend)	ACCEPT

Seasonal-Kendall Slope Confidence Intervals							
	Lower	Sen's	Upper				
α	Limit	Slope	Limit				
0.010	0.09		0.31				
0.050	0.14	0.21	0.28				
0.100	0.15	0.21	0.25				
0.200	0.17		0.24				

7.6%

INTERPRETIVE REPORT SITE 6 "MIDDLE GREENS CREEK"

The data collected during the current water year are listed in the following "Table of Results for Water Year 2010" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the rightmost column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

All data collected at this site for the past six years are included in the data analyses with the exception of one outlier shown on the table below. During the current year no new data points were flagged as outliers after review by HGCMC.

Sample Date	Parameter	Value	Qualifier	Notes
12/14/2005	pH Lab, su	8.23	RR	Holding time violation

The data for Water Year 2010 have been compared to the strictest fresh water quality criterion for each applicable analyte. Five results exceeding these criteria have been identified as listed in the table below. All of the exceedances were for pH values less than the lower limit of 6.5 su. Four laboratory pH values all had acceptable field pH values ranging from 6.92 su to 7.61 su. One field pH value was less than the 6.5 su limit; however, the corresponding laboratory value was within range.

Sample Date	Parameter	Value	Hardness (mg/L)	Standard	Standard Type
12-Jan-10	pH Field, su	6.46		6.5	Aquatic Life, chronic
16-Feb-10	pH Lab, su	6.4		6.5	Aquatic Life, chronic
6-Apr-10	pH Lab, su	6.48		6.5	Aquatic Life, chronic
13-Jul-10	pH Lab, su	6.32		6.5	Aquatic Life, chronic
14-Sep-10	pH Lab, su	6.37		6.5	Aquatic Life, chronic

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. These plots have been visually analyzed for the appearance of any trend in concentration. There was an identifiable trend in dissolved chromium. Between Water Year 2009 and Water Year 2010 there was roughly an order of magnitude increase in the dissolved chromium concentration. A similar increase was also noted for Site 6, Site 13, Site 46, Site 48, Site 49, and Site 54; all sites that are located in the 920 area.

A non-parametric statistical analysis for trend was preformed for conductivity, pH, alkalinity, sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall analyses are presented in detail on the pages following this interpretive section. The following table summarizes the results of the data collected between Oct-04 and Sep-10 (WY2005-WY2010). Two of the analytes had statistically significant negative slopes.

Ma	ann-Ke	endall test	<u>Sen's slop</u>	e estimate	
Parameter	n(1)	p (2)	Trend	Q	Q(%)
Conductivity, Lab	6	0.57	0		
pH, Lab	6	<0.01	-	-0.07	-0.9
Alkalinity, Total	6	<0.01	-	-1.05	-2.4
Sulfate, Total	6	0.79	0		
Zinc, Dissolved	6	1.00	+	0.39	6.2
(1): Number of yea	ars	(2):Signif	icance lev	/el	

Laboratory pH had a slope estimate of -0.07 su/yr, and total alkalinity had a slope estimate of -1.05 mg/L/yr. Given the low magnitude, HGCMC does not feel that these decreasing trends are a significant indication of changes in water chemistry at Site 6.. Dissolved zinc has a

statistically significant positive slope of 0.39 μ g/L/yr. This trend appears driven by the water years 2009 and 2008 in which there was an increase in the March, April, and May values; along with an increase in the August, September, and October values. Though these values are increasing they are still approximately 1/8th of the AWQS for dissolved zinc. Currently, HGCMC does not feel that this increasing trend is a significant indication of changes in water chemistry.

A comparison of median values for alkalinity, laboratory pH, lab conductivity, sulfate, and dissolved zinc between Site 6 and Site 48 has been conducted as specified in the Statistical Information Goals for Site 6. Additionally, X-Y plots have been generated for alkalinity, pH (field and laboratory), conductance, sulfate, and dissolved zinc that co-plot data from Site 6 and Site 48, the upstream control site, to aid in the comparison between those sites. Calculation details of the non-parametric signed-rank tests are presented in detail on the pages following this interpretive section. The table below summarizes the results of the signed-rank test as performed on the Water Year 2010 data set.

	Signed Ranks	Site 48	Site 6	Median of
Parameter	p-value	median	median	Differences
Conductivity, Lab	<0.01	117	126	-6.0
pH, Lab	1.00	7.33	6.92	0.22
Alkalinity, Total	0.04	41.8	44.5	-0.9
Sulfate, Total	<0.01	13.6	15.7	-1.6
Zinc, Dissolved	<0.01	3.26	6.18	-2.79

Site 6 vs Site 48 - WY2010, summary statistics for median analysis.

Alkalinity does not show a statistically significant difference between the measured median values at a significance level of α =0.05 for a one-tailed test. The laboratory conductivity, laboratory pH, total sulfate, and dissolved zinc concentrations are statistically different. The median values for laboratory conductivity for Site 48 and Site 6 are 117 µS/cm and 126 µS/cm respectively and the median of differences, Site 48 minus Site 6, is -6.0 µS/cm. The median values for laboratory pH for Site 48 and Site 6 are 7.33 su and 6.92 su respectively and the median of the differences, Site 48 minus Site 6, is 0.22 su. A comparison of the X-Y co-plots for laboratory and field pH shows that there is a general trend for Site 6 field pH to be less. Currently, HGCMC interprets the lower pH at Site 6 as due to natural variation. The median values for total sulfate for Site 48 and Site 48 and Site 6 are 13.6 mg/L and 15.7 mg/L respectively and the median of the differences, Site 48 minus Site 6, is -1.6 mg/L total sulfate. Prior Water Year's datasets from 2003-2009 have yielded similar differences ranging for -1.7 mg/L to -2.5 mg/L.

Dissolved zinc results follow along in a similar manner where the median values for Site 48 and Site 6 are $3.26 \ \mu g/L$ and $6.18 \ \mu g/L$ respectively while the median difference is - $2.79 \ \mu g/L$. Similar signed-rank test results for prior datasets for Water Years 2000 - 2009 show similar statistically significant differences with a median difference ranging from $-1.7 \ \mu g/L$ to $-4.17 \ \mu g/L$ dissolved zinc. The magnitudes of these differences appear to have been relatively consistent over the past several years and do not appear to be increasing. Also, the magnitude of the relative differences is small with respect to laboratory conductivity and well below the applicable AWQS in the case of sulfate and dissolved zinc. HGCMC believes that no additional monitoring is warranted at this time due to the consistent differences in the measured analytes between the two sites. Taking into consideration the small magnitude of the differences that are measurable between the two sites, the current FWMP program is sufficient to monitor any future increases at Site 6. Thus, if an upward trend in conductivity, total sulfate, or dissolved zinc at Site 6 is occurring, the current program is sufficient for identifying the change before any water quality values are impaired.

Table of Results for Water Year 2010

Site 6 "Middle Greens Creek"													
Sample Date/Parameter	10/20/2009	11/17/2009	12/8/2009	1/12/2010	2/16/2010	3/16/2010	4/6/2010	5/11/2010	6/15/2010	7/13/2010	8/3/2010	9/14/2010	Median
Water Temp (°C)	3.6	1.0	0.2	0.7	1.7	0.6	0.8	3.9	4.6	6.7	9.0	6.8	2.7
Conductivity-Field(µmho)	133.8	117.1	154.8	98.4	136.6	151.2	139.8	110.1	87.8	94.8	103.8	128.2	122.7
Conductivity-Lab (µmho)	125	131 J	146	109	126	141	140	106	87	99	109	136	126
pH Lab (standard units)	7.46	7.65 J	7.51	7.56	6.40	6.95	6.48	7.69	6.88	6.32	6.56	6.37	6.92
pH Field (standard units)	7.68	7.12	7.55	6.46	7.38	7.48	6.92	7.61	7.02	6.99	7.02	7.59	7.25
Total Alkalinity (mg/L)	45.0	46.4 J	52.2	39.7	45.6	46.7	44.0	36.2	32.9	35.9	41.1	46.5	44.5
Total Sulfate (mg/L)	15.3	18.7	19.9	15.0	16.4	19.0 J	19.4	10.7	9.4	9.9 J	11.8 J	16.0	15.7
Hardness (mg/L)	63.9	62.4	69.8	52.9	64.0	68.5	68.4	48.1	42.1	48.9	52.3	63.5	63.0
Dissolved As (ug/L)	0.232	0.198	0.185	0.190	0.199	0.214	0.192	0.200	0.226	0.210	0.237	0.209	0.205
Dissolved Ba (ug/L)			28.5	22.9	25.0								25.0
Dissolved Cd (ug/L)	0.0514	0.0665	0.0574	0.0435	0.0538	0.0536	0.0695	0.0362	0.0339	0.0361	0.0382	0.0459	0.0487
Dissolved Cr (ug/L)			1.080	2.560	2.710								2.560
Dissolved Cu (ug/L)	0.463	0.540	0.462	0.582 U	0.692 U	0.692 U	0.631	0.364	0.242 U	0.298	0.315	0.375	0.463
Dissolved Pb (ug/L)	0.0091 U	0.0240 U	0.0273	0.0186 U	0.0467 U	0.0320 U	0.0458 U	0.0089 U	0.0100 U	0.0095	0.0089 U	0.0100 J	0.0143
Dissolved Ni (ug/L)			1.130	0.747	1.120								1.120
Dissolved Ag (ug/L)			<0.003	<0.003	<0.003								0.002
Dissolved Zn (ug/L)	6.36	9.97	8.98	6.00 U	8.38	9.36 U	11.70	4.25	3.95 U	3.61	3.45	4.42	6.18
Dissolved Se (ug/L)			1.390	1.010	1.070 J								1.070
Dissolved Hg (ug/L)	0.000649	0.000763	0.000654	0.001240	0.001180	0.000999	0.001190 U	0.000670 U	0.001190 U	0.000552	0.000571 U	0.000764	0.000764

For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

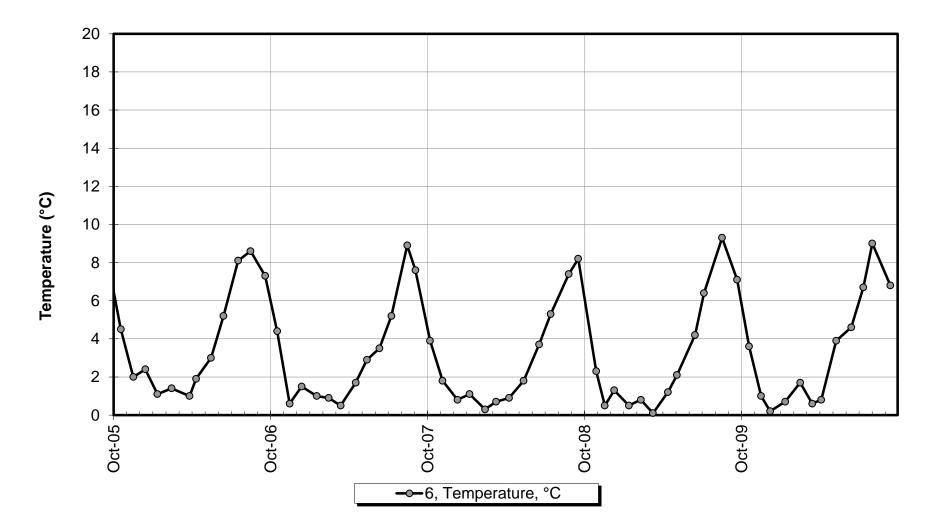
Shaded data has been qualified as an outlier by HGCMC and removed from any further analysis and is not included into the calculation of the median

Qualified Data by QA Reviewer

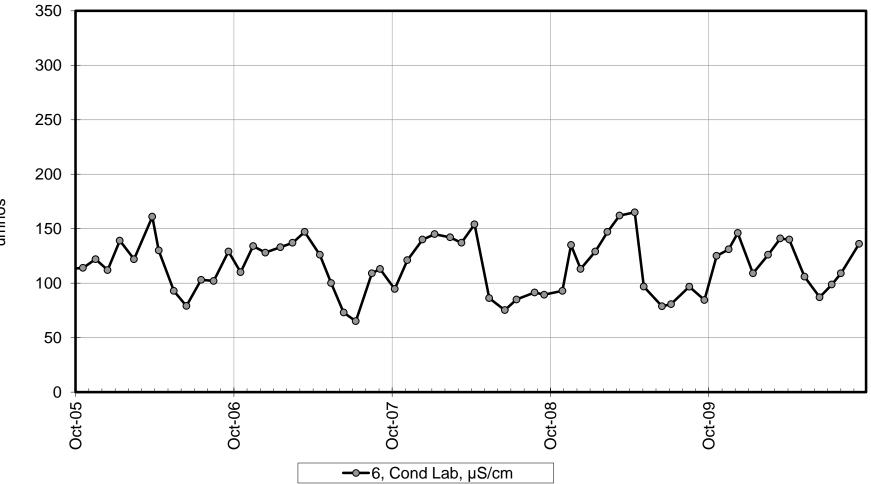
Date Range: 10/01/2009 to 09/30/2010

Site No	o. Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier
3	10/20/2009	12:00 AM				•
			Pb diss, µg/l	0.00912	U	Field Blank Contamination
	11/17/2009	12:00 AM				
			Alk Tot,mg/l	46.4	J	Temperature Exceedance
			Cond, µs/cm	131	J	Temperature Exceedance
			Pb diss, µg/l	0.02	U	Field Blank Contamination
			pH Lab, su	7.65	J	Hold Time Violation
	1/12/2010	12:00 AM				
			Cu diss, µg/l	0.58	U	Field Blank Contamination
			Pb diss, µg/l	0.01	U	Field Blank Contamination
			Zn diss, µg/l	6	U	Field Blank Contamination
i	2/16/2010	12:00 AM				-
			Cu diss, µg/l	0.692	U	Field Blank Contamination
			Pb diss, µg/l	0.0467	U	Field Blank Contamination
			Se diss, µg/l	1.07	J	LCS Recovery
i	3/16/2010	12:00 AM				
			Cu diss, µg/l	0.692	U	Field Blank Contamination
			Pb diss, µg/l	0.032	U	Field Blank Contamination
			Zn diss, µg/l	9.36	U	Field Blank Contamination
			SO4 Tot, mg/l	19	J	Sample Receipt Temperature
i	4/6/2010	12:00 AM				
			Hg diss, µg/l	0.00119	U	Field Blank Contamination
			Pb diss, µg/l	0.0458	U	Field Blank Contamination
5	5/11/2010	12:00 AM				
			Hg diss, µg/l	0.00067	U	Field Blank Contamination
			Pb diss, µg/l	0.00893	U	Field Blank Contamination
			SO4 Tot, mg/l	10.7	V	Sample Temperature
	6/15/2010	12:00 AM				
			Cu diss, µg/l	0.242	U	Field Blank Contamination
			Hg diss, µg/l	0.00119	U	Field Blank Contamination
			Pb diss, µg/l	0.01	U	Field Blank Contamination
			Zn diss, µg/l	3.95	U	Field Blank Contamination

Qualifier	Description
J	Positively Identified - Approximate Concentration
Ν	Presumptive Evidence For Tentative Identification
NJ	Tentatively Identified - Approximate Concentration
R	Rejected - Cannot be Verified
U	Not Detected Above Quantitation Limit
UJ	Not Detected Above Approximate Quantitation Limit

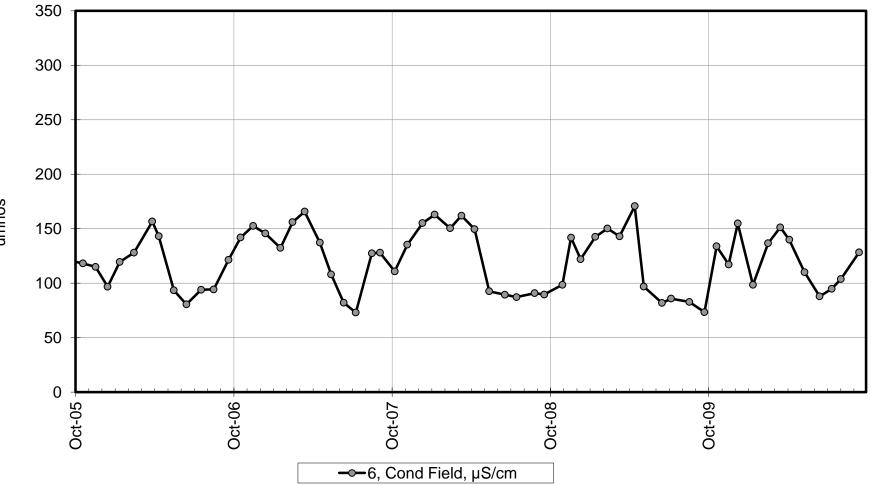

Qualified Data by QA Reviewer

Date Range: 10/01/2009 to 09/30/2010

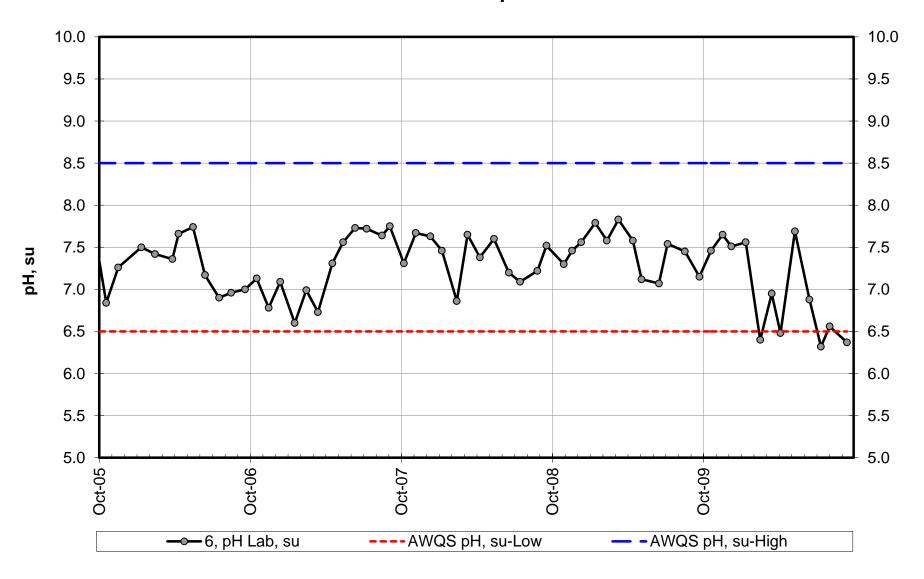

Site No.	Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier
6	7/13/2010	9:03 AM	Hg diss, µg/l	0.000552	U	Field Blank Contamination
			SO4 Tot, mg/l	9.9	J	Sample Reciept Temperature
6	8/3/2010	12:00 AM				
			Hg diss, µg/l	0.000571	U	Field Blank Contamination
			Pb diss, µg/l	0.00893	U	Field Blank Contamination
			SO4 Tot, mg/l	11.8	J	Sample Temperature
5	9/14/2010	12:00 AM				
			Pb diss, µg/l	0.01	J	Below Quantitative Range

Qualifier	Description
J	Positively Identified - Approximate Concentration
Ν	Presumptive Evidence For Tentative Identification
NJ	Tentatively Identified - Approximate Concentration
R	Rejected - Cannot be Verified
U	Not Detected Above Quantitation Limit
UJ	Not Detected Above Approximate Quantitation Limit

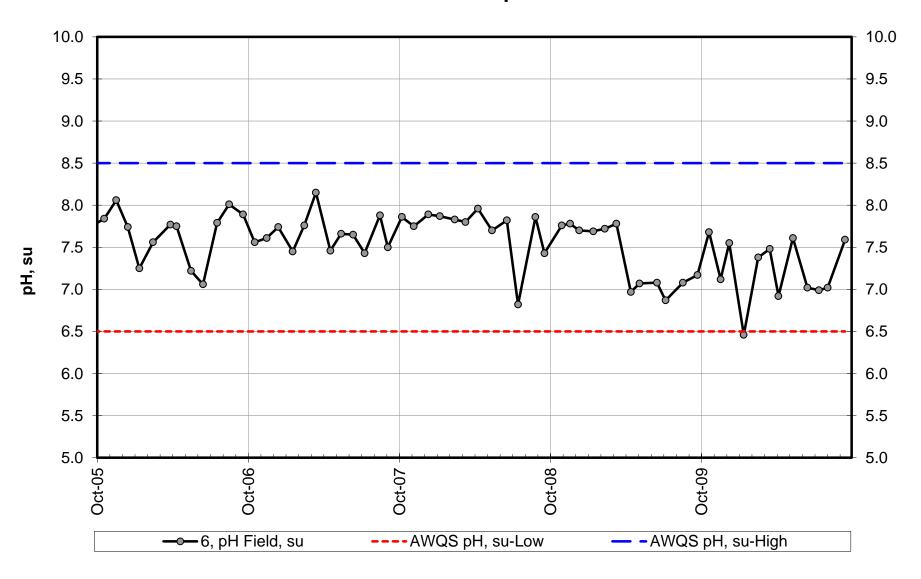
Site 6 -Water Temperature



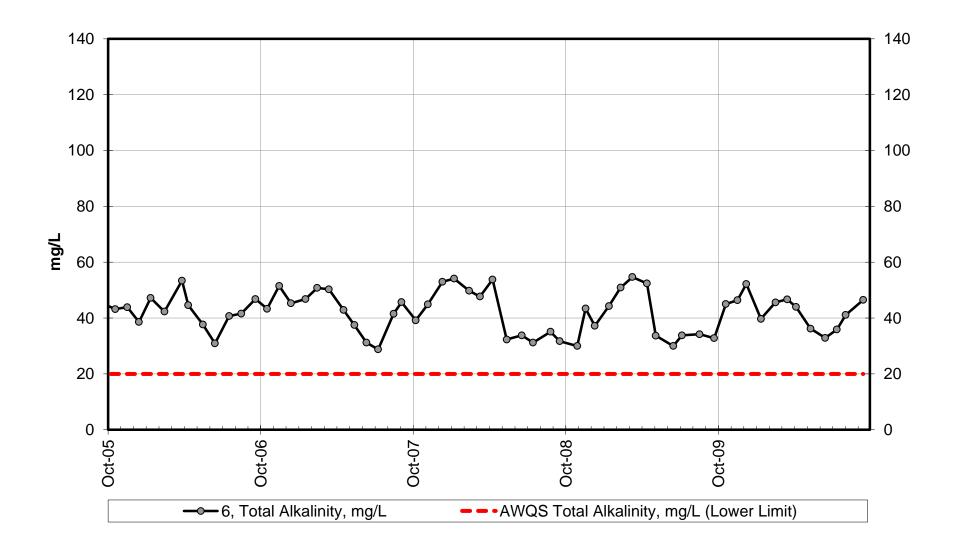
Site 6 - Conductivity-Lab

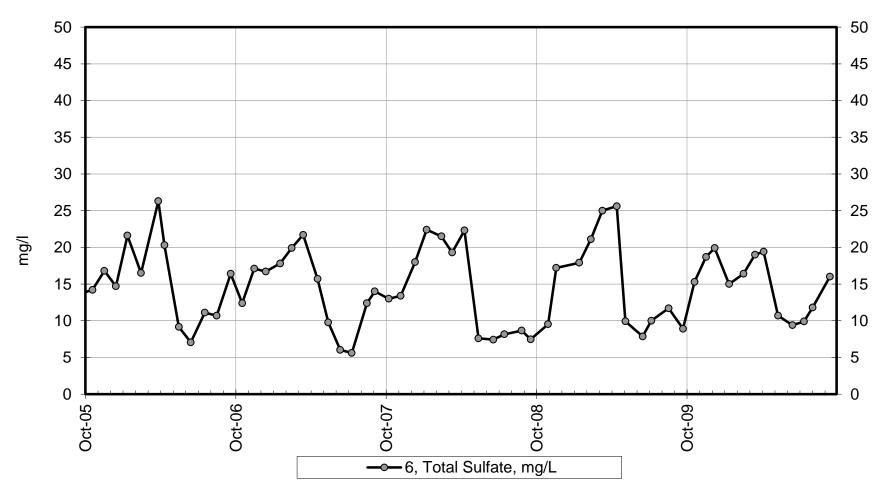

nmhos

Site 6 - Conductivity-Field

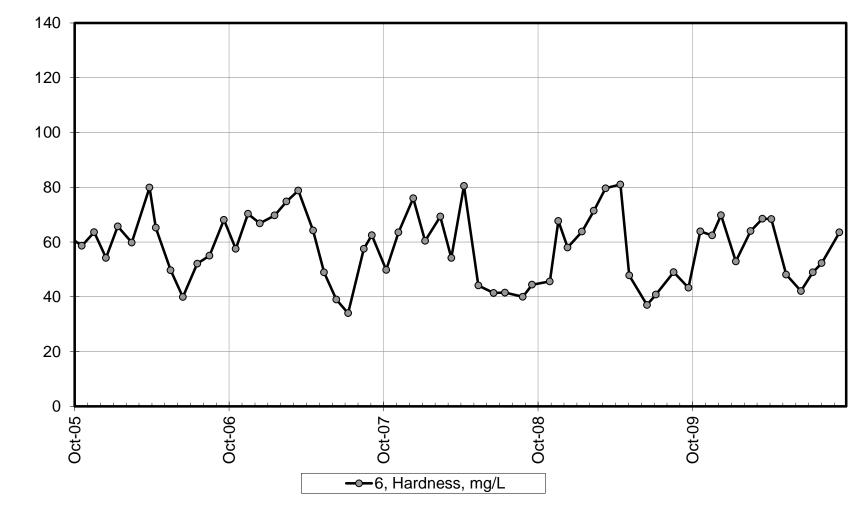


soyun

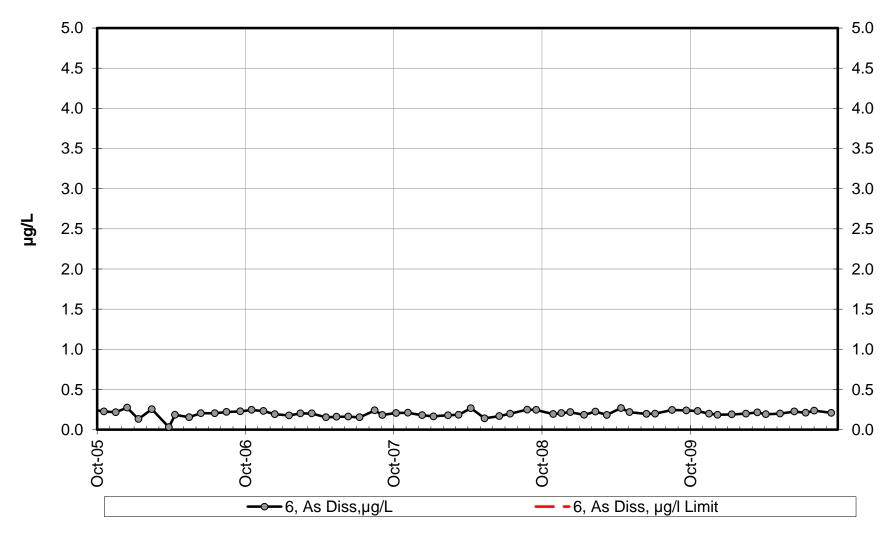

Site 6 - Lab pH


Site 6 - Field pH

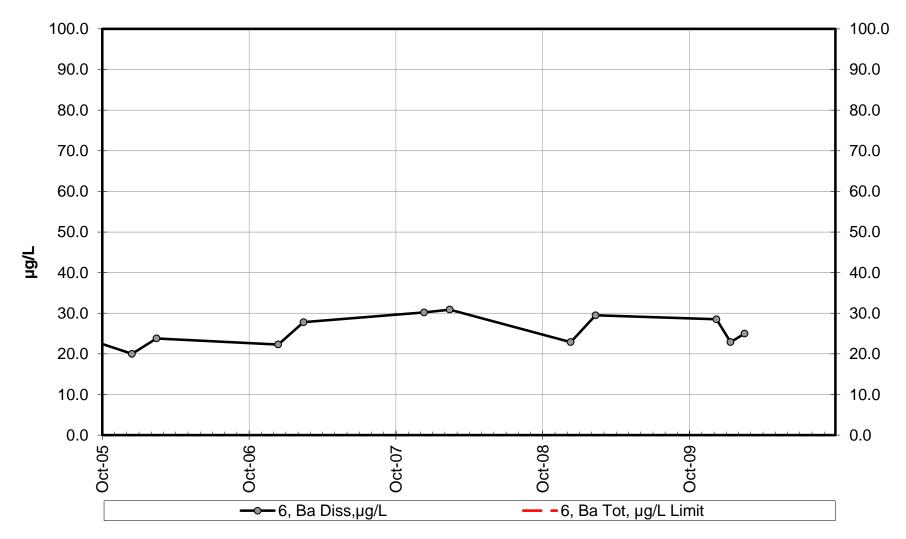
Site 6 - Total Alkalinity



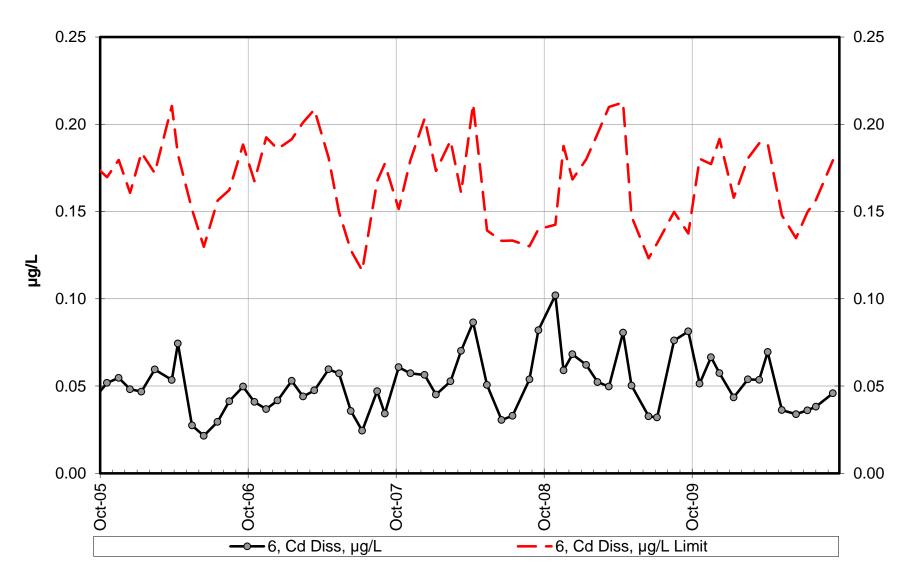
Site 6 - Total Sulfate


Note: The AWQS for Total Sulfate is 250 mg/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination.

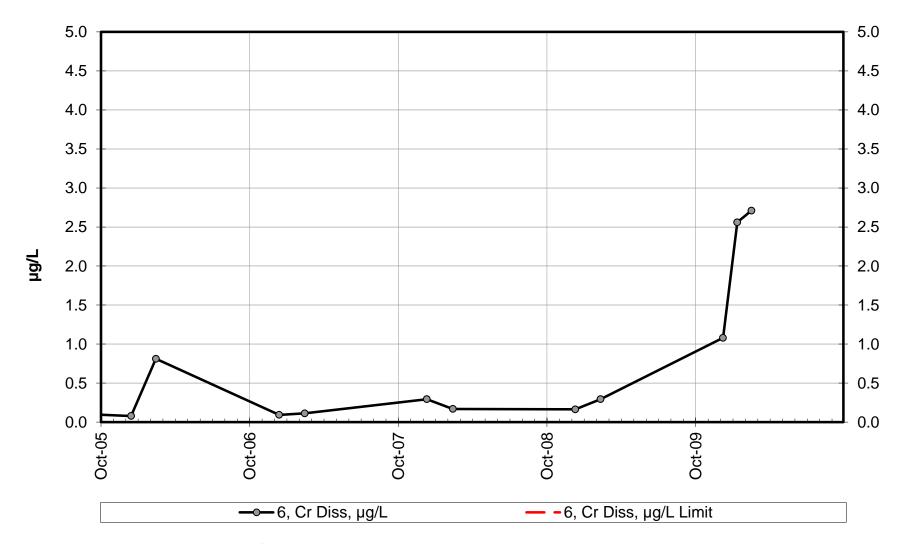
Site 6 - Hardness


mg/L

Site 6 - Dissolved Arsenic

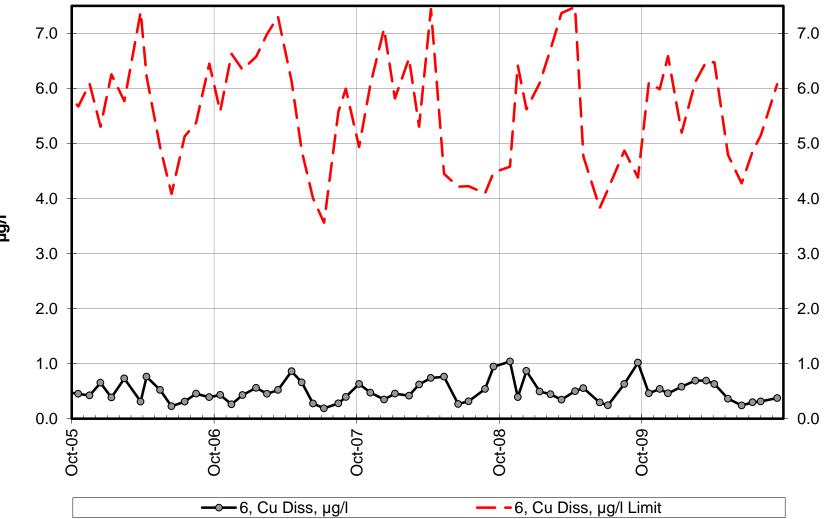

Note: The AWQS for total arsenic is 10 ug/L and thus may not be shown on this graph in order to allow greater visual detail of plotted values for trend determination

Site 6 - Dissolved Barium

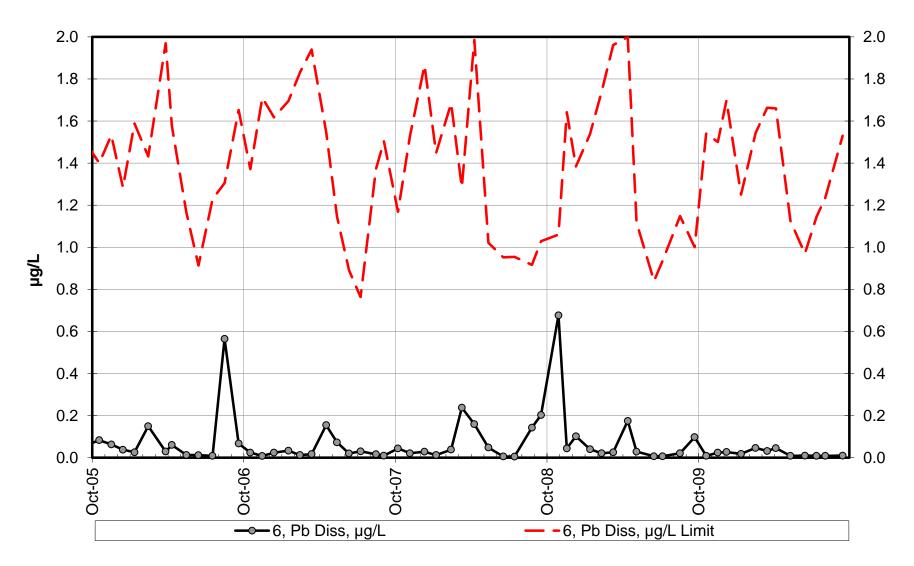


Note: the AWQS for Total Barium is 1000 ug/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination

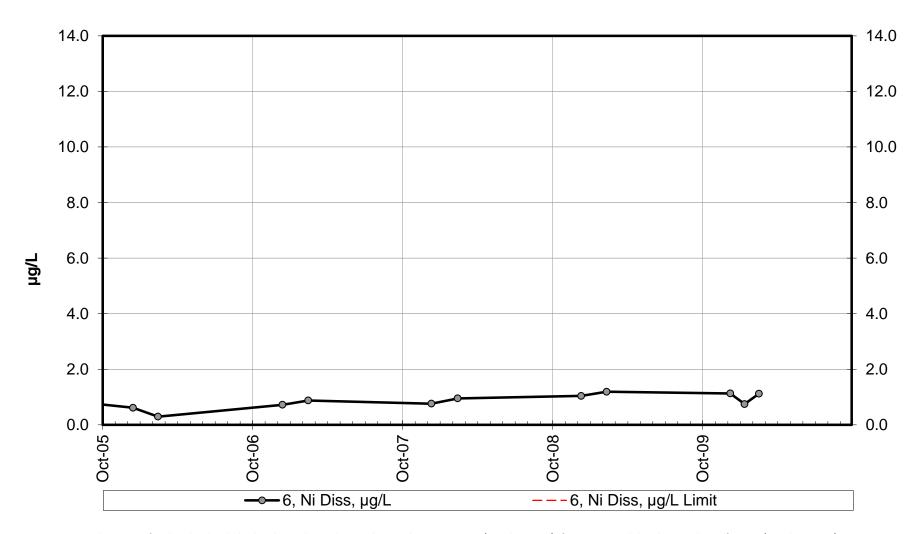
Site 6 - Dissolved Cadmium



Site 6 - Dissolved Chromium

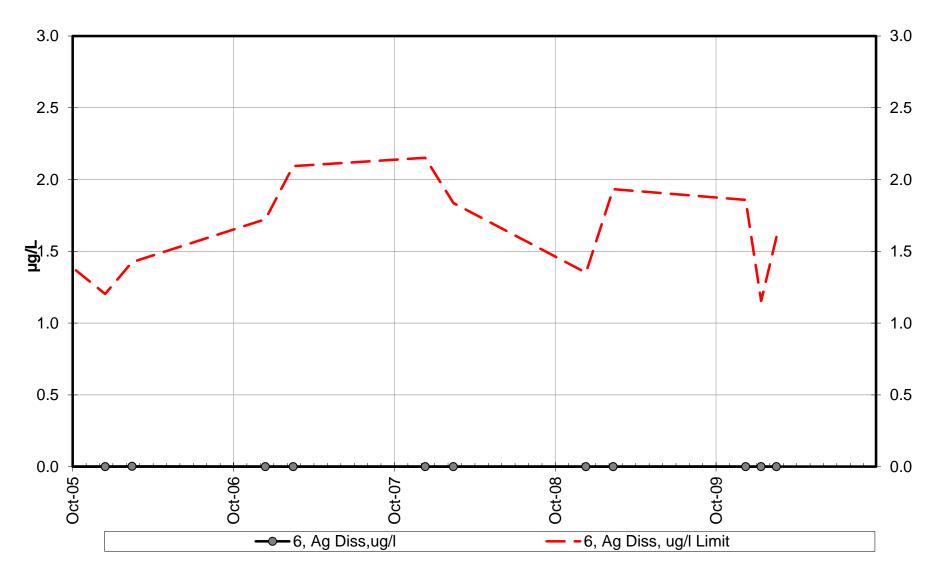

Note: the AWQS for Dissolved Chromium is 11 µg/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination

Site 6 - Dissolved Copper

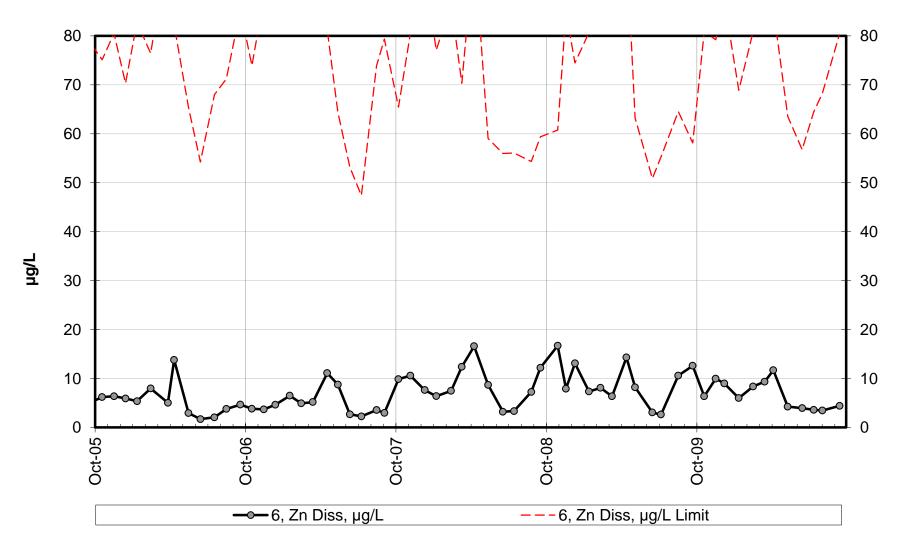


l/brl

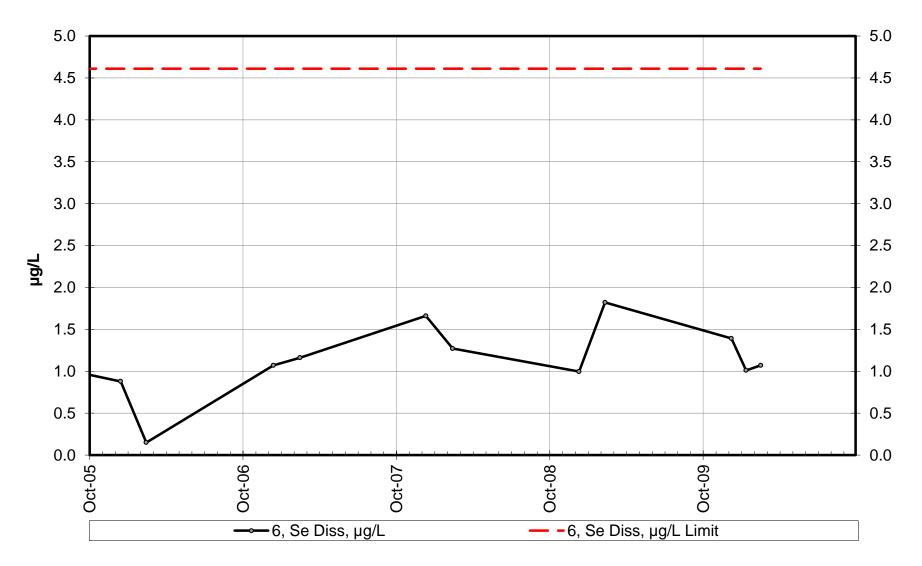
Site 6 - Dissolved Lead

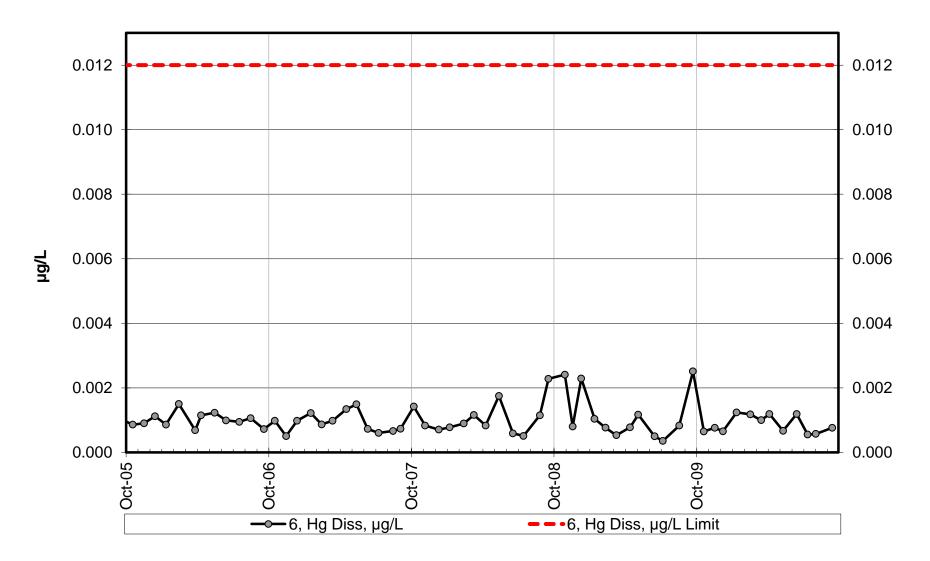


Site 6 - Dissolved Nickel

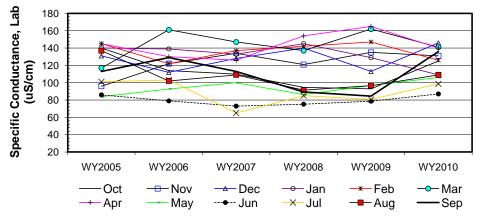


Note: The AWQS for dissolved nickel is hardness dependant and varies between 16 ug/L and 128 ug/L for waters with hardness values of 25 mg/L and 400 mg/L respectively. The AWQS, which would plot above the upper value on the Y-axis, are not shown on this graph to allow for greater visual detail of the plotted values.


Site 6 - Dissolved Silver


Site 6 - Dissolved Zinc

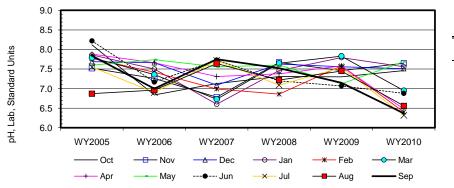
Site 6 - Dissolved Selenium



Site 6 - Dissolved Mercury

a b c d e f	WY2005 WY2006 WY2007 WY2008	140 114	95.9			Feb	Mar	Apr	May				Sep
c d	WY2007	114		131	140	145	117	145	83.9	85.9	101	137	113
d			122	112	139	122	161	130	92.8	79	103	102	129
	WY2008	110	134	128	133	137	147	126	100	73	65.1	109	113
e f		94.6	121	140	145	142	137	154	86.2	75.2	85	91.4	89.4
f	WY2009	92.9	135	113	129	147	162	165	96.8	78.7	80.7	96.7	84.5
-	WY2010	125	131	146	109	126	141	140	106	87	98.7	109	136
-	n	6	6	6	6	6	6	6	6	6	6	6	6
	t1	5	5	5	5	5	5	5	5	5	5	3	3
	t ₂	0	0	0	0	0	0	0	0	0	0	1	1
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t ₄	0	0	0	0	0	0	0	0	0	0	0	0
-	t₅	0	0	0	0	0	0	0	0	0	0	0	0
-	b-a	-1	1	-1	-1	-1	1	-1	1	-1	1	-1	1
	c-a	-1	1	-1	-1	-1	1	-1	1	-1	-1	-1	0
	d-a	-1	1	1	1	-1	1	1	1	-1	-1	-1	-1
	e-a	-1	1	-1	-1	1	1	1	1	-1	-1	-1	-1
	f-a	-1	1	1	-1	-1	1	-1	1	1	-1	-1	1
	c-b	-1	1	1	-1	1	-1	-1	1	-1	-1	1	-1
	d-b	-1	-1	1	1	1	-1	1	-1	-1	-1	-1	-1
	e-b	-1	1	1	-1	1	1	1	1	-1	-1	-1	-1
	f-b	1	1	1	-1	1	-1	1	1	1	-1	1	1
	d-c	-1	-1	1	1	1	-1	1	-1	1	1	-1	-1
	e-c	-1	1	-1	-1	1	1	1	-1	1	1	-1	-1
	f-c	1	-1	1	-1	-1	-1	1	1	1	1	0	1
	e-d	-1	1	-1	-1	1 -1	1	1 -1	1	1	-1 1	1	-1 1
	f-d f-e	1	-1	1	-1 -1	-1 -1	-1	-1	1	1	1	1	1
, ,	S _k	-7	7	5	-9	1	3	3	9	1	-3	-4	-2
σ^2	s=	28.33	23.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	27.33	27.33
Z _k = S		-1.32	1.45	0.94	-1.69	0.19	0.56	0.56	1.69	0.19	-0.56	-0.77	-0.38
Z		1.73	2.10	0.88	2.86	0.04	0.32	0.32	2.86	0.04	0.32	0.59	0.15
	$\Sigma Z_k =$	0.87		Tie Extent	t,	t ₂	t ₃	t₄	t₅			Σn	72
	ΣZ_{k}^{2}	12.18		Count	56	2	0	0	0			ΣS _k	4

$\chi^2_{h} = \Sigma Z^2_{k} - K(Z-bar)^2 = 12.12$			@α=5% χ ² _(K-1) =	19.68	Test for station homogeneity	
	р	0.355			χ ² h<χ ² (K-1)	ACCEPT
$\Sigma VAR(S_k)$	\mathbf{Z}_{calc}	0.16	@α/2=2.5% Z=	1.96	H ₀ (No trend)	ACCEPT
333.00	р	0.565			H _A (± trend)	REJECT



Seasona	al-Kendall Slop	e Confidence	Intervals
	Lower	Sen's	Upper
α	Limit	Slope	Limit
0.010	-3.31		3.00
0.050	-1.80	0.28	2.20
0.100	-1.57	0.20	2.00
0.200	-1.00		1.56

Site	#6			Sea	isonal K	endall ai	nalysis fo	or pH, La	ab, Stand	dard Unit	s		
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
а	WY2005	8.1	7.5	7.7	7.9	7.8	7.8	7.9	7.6	8.2	7.6	6.9	7.
b	WY2006	6.8	7.3	7.7	7.5	7.4	7.4	7.7	7.7	7.2	6.9	7.0	7.
С	WY2007	7.1	6.8	7.1	6.6	7.0	6.7	7.3	7.6	7.7	7.7	7.6	7.
d	WY2008	7.3	7.7	7.6	7.5	6.9	7.7	7.4	7.6	7.2	7.1	7.2	7.
е	WY2009	7.3	7.5	7.6	7.8	7.6	7.8	7.6	7.1	7.1	7.5	7.5	7.
f	WY2010	7.5	7.7	7.5	7.6	6.4	7.0	6.5	7.7	6.9	6.3	6.6	6.
	n	6	6	6	6	6	6	6	6	6	6	6	
	t,	5	5	5	5	5	5	5	3	5	5	5	
	t ₂	0	0	0	0	0	0	0	1	0	0	0	
	t ₃	0	0	0	0	0	0	0	0	0	0	0	
	t₄	0	0	0	0	0	0	0	0	0	0	0	
	t _s	0	0	0	0	0	0	0	0	0	0	0	
	b-a	-1	-1	-1	-1	-1	-1	-1	1	-1	-1	1	
	c-a	-1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	
	d-a	-1	1	-1	-1	-1	-1	-1	0	-1	-1	1	
	e-a	-1	-1	-1	-1	-1	1	-1	-1	-1	-1	1	
	f-a	-1	1	-1	-1	-1	-1	-1	1	-1	-1	-1	
	c-b	1	-1	-1	-1	-1	-1	-1	-1	1	1	1	
	d-b	1	1	-1	-1	-1	1	-1	-1	1	1	1	
	e-b	1	1	-1	1	1	1	-1	-1	-1	1	1	
	f-b	1	1	-1	1	-1	-1	-1	-1	-1	-1	-1	
	d-c	1	1	1	1	-1	1	1	1	-1	-1	-1	
	e-c	1	1	1	1	1	1	1	-1	-1	-1	-1	
	f-c	1	1	1	1	-1	1	-1	1	-1	-1	-1	
	e-d	-1	-1	-1	1	1	1	1	-1	-1	1	1	
	f-d	1	-1	-1	1	-1	-1	-1	1	-1	-1	-1	
•	f-e S _k	1	1	-1 -9	-1 -1	-1 -9	-1 -1	-1 -9	-2	-1 -11	-1 -5	-1 1	
	- K	0	0	5		5		5	2		5		
	²s=	28.33	23.33	28.33	28.33	28.33	28.33	28.33	27.33	28.33	28.33	28.33	28.
	S_k / σ_S	0.56	0.62	-1.69	-0.19	-1.69	-0.19	-1.69	-0.38	-2.07	-0.94	0.19	-1.6
Z	<u>z</u> ² _k	0.32	0.39	2.86	0.04	2.86	0.04	2.86	0.15	4.27	0.88	0.04	2.8
	$\Sigma Z_k =$	-9.15]	Tie Extent	t,	t ₂	t ₃	t₄	t _s			Σn	72
	ΣZ_{k}^{2}	- <u>9.13</u> 17.54			58	1	0	-₄ 0	0			ΣS _k	-49
_	k= -bar=ΣΖ./K=	-0.76	L	Count	00	1	U	U	U			20_k	-49

Z-bar= $\Sigma Z_k/K$ = -0.76

$\chi^2_h = \Sigma Z^2_k$ -	K(Z-bar) ² = 10.56		@α=5% χ ² _(K-1) =	19.68	Test for station home	ogeneity
	р	0.481			χ ² h<χ ² (K-1)	ACCEPT
$\Sigma VAR(S_k)$	Z_{calc}	-2.63	@α/2=2.5% Z=	1.96	H₀ (No trend)	REJECT
334.00	р	0.004			H _A (± trend)	ACCEPT

	Lower	Sen's	Upper
α	Limit	Slope	Limit
0.010	-0.17		-0.01
0.050	-0.15	-0.07	-0.02
0.100	-0.13	-0.07	-0.03
0.200	-0.11		-0.04

-0.9%

Site #6

Seasonal Kendall analysis for Total Alk, (mg/l)

Site	#0				Season	ai Kenua	an analys		lai Aik,	(mg/i)			
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
а	WY2005	54.8	40.4		59.1	62.1	51.1	76.7	39.4	36.5	42.5	50.0	45.5
b	WY2006	43.2	43.9		47.2	42.3	53.4	44.6	37.7	30.9	40.7	41.6	46.8
С	WY2007	43.3	51.5		46.8	50.8	50.3	42.9	37.5	31.2	28.8	41.5	45.7
d	WY2008	39.2	44.9	53.0	54.1	49.8	47.7	53.8	32.3	33.8	31.2	35.1	31.7
е	WY2009	30.0	43.4		44.3	50.9	54.7	52.4	33.7	30.0	33.8	34.2	32.8
f	WY2010	45.0	46.4		39.7	45.6	46.7	44.0	36.2	32.9	35.9	41.1	46.5
	n	6	6	6	6	6	6	6	6	6	6	6	6
	t,	5	5		5	5	5	5	5	5	5	5	5
	t ₂	0 0	0 0		0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
	t₃ t₄	0	0		0	0	0	0	0	0	0	0	0
	t _s	0	0		0	0	0	0	0	0	0	0	0
	b-a	-1	1	-1	-1	-1	1	-1	-1	-1	-1	-1	1
	c-a	-1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	1
	d-a	-1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
	e-a	-1	1	-1	-1	-1	1	-1	-1	-1	-1	-1	-1
	f-a	-1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	1
	c-b	1	1	1	-1	1	-1	-1	-1	1	-1	-1	-1
	d-b	-1	1	1	1	1	-1	1	-1	1	-1	-1	-1
	e-b	-1	-1	-1	-1	1	1	1	-1	-1	-1	-1	-1
	f-b	1	1	1	-1	1	-1	-1	-1	1	-1	-1	-1
	d-c	-1	-1	1	1	-1	-1	1	-1	1	1	-1	-1
	e-c	-1	-1	-1	-1	1	1	1	-1	-1	1	-1	-1
	f-c	1 -1	-1 -1	1 -1	-1 -1	-1 1	-1 1	1 -1	-1 1	1 -1	1 1	-1 -1	1
	e-d f-d	-1	-1	- I -1	-1 -1	-1	-1	-1 -1	1	-1	1	-1	1 1
	f-e	1	1	-1	-1	-1	-1	-1	1	-1	1	1	1
	Sk	-5	5		-11	-3	-5	-5	-9	-3	-3	-11	-1
		5	0	0		0	5	5	5	0	0		I
	² s=	28.33	23.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33
	S_k/σ_S	-0.94	1.04	-0.56	-2.07	-0.56	-0.94	-0.94	-1.69	-0.56	-0.56	-2.07	-0.19
2	Z ² _k	0.88	1.07	0.32	4.27	0.32	0.88	0.88	2.86	0.32	0.32	4.27	0.04
	$\Sigma Z_k =$	-10.05		Tie Extent	t,	t ₂	t ₃	t ₄	t ₅			Σn	72
	$\Sigma Z_k^2 =$			Count	60	0	0	0	0			ΣS_k	-54
Z	κ -bar=ΣZ _k /K=	-0.84		ooun		•	•		ů			K	01
1	0.0	0		-		Ō	1				T		
	$\chi^2_h = \Sigma Z^2_k$ -	K(Z-bar) ² =	8.01		@α=59	% χ ² _(K-1) =	19.68			ion homog			
		р	0.712					χ	² _h <χ ² (K-1)		ACCEPT		
	$\Sigma VAR(S_k)$	\mathbf{Z}_{calc}	-2.90		@α/2=	2.5% Z=	1.96		H₀ (No		REJECT		
	335.00	р	0.002						H _A (± t	rena)	ACCEPT		
⁹⁰ T	-												
80 -	- - +												
70													
	- -	\backslash							=	Seasona		e Confidence I	
5 60	. *	$\overline{}$									Lower	Sen's	Upper
Ĕ			0		-				-	α	Limit	Slope	Limit
ے 50 ا	/		2							0.010	-1.97 -1.70		-0.16 -0.40
a 40	× –									0.050		-1.05	
a	•							X		0.100 0.200	-1.67 -1.42		-0.45 -0.66
ö 30 -			•							0.200	-1.42		-0.00
·	-											-2.4%	
20 -	-											2.770	
10 -					I			I					
	WY2005	5 WY	2006	WY2007	WY2	8008	WY2009	WY2	010				
	—— Oc	t – –	– Nov	<u>⊸</u> Dec		-Jan	 Feb)	Mar				
	—+— Ap		- May	• Jun					Sep				

Site	#6
------	----

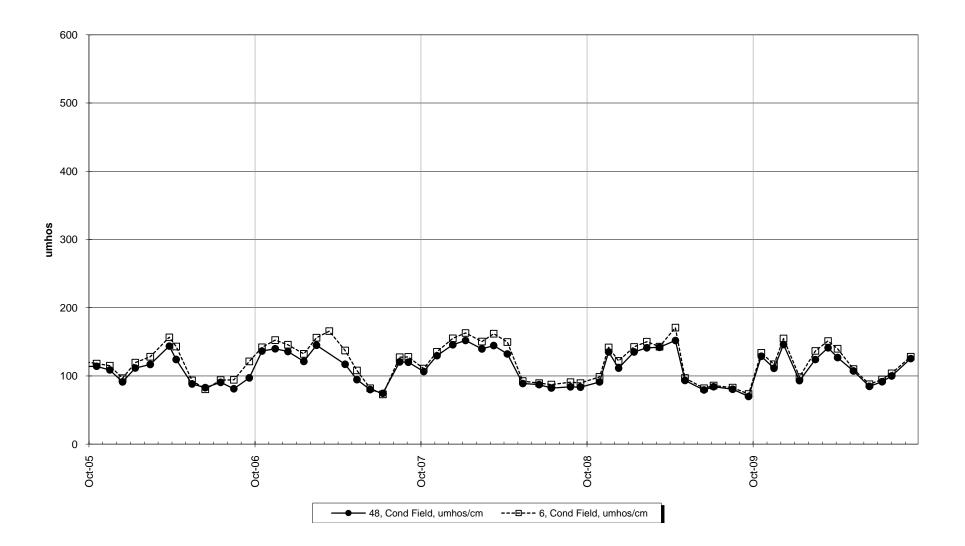
Seasonal Kendall analysis for Sulfate, Total (mg/l)

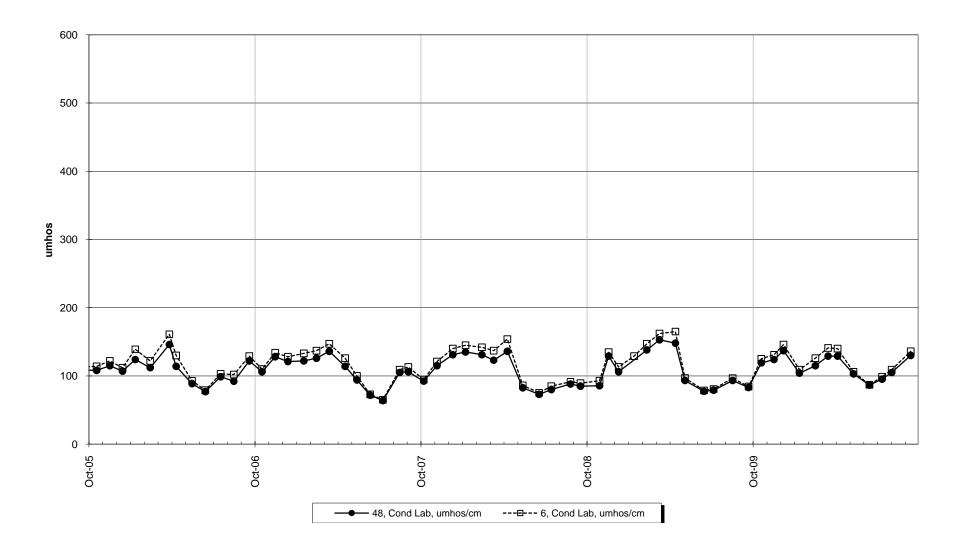
0110				-			,, ,		,	(
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2005	16.5	10.1	16.1	19.5	23.6	14.9	12.5	7.9	9.5	11.0	18.9	13.6
b	WY2006	14.2	16.8	14.7	21.6	16.5	26.3	20.3	9.2	7.1	11.1	10.7	16.4
С	WY2007	12.4	17.1	16.7	17.8	19.9	21.7	15.7	9.8	6.0	5.6	12.4	14.0
d	WY2008	13.0	13.4	18.0	22.4	21.5	19.3	22.3	7.6	7.4	8.2	8.7	7.5
е	WY2009	9.5	17.2	16.5	17.9	21.1	25.0	25.6	9.9	7.9	10.0	11.7	8.9
f	WY2010	15.3	18.7	19.9	15.0	16.4	19.0	19.4	10.7	9.4	9.9	11.8	16.0
	n	6	6	6	6	6	6	6	6	6	6	6	6
	t ₁	5	5	5	5	5	5	5	5	5	5	5	5
	t ₂	0	0	0	0	0	0	0	0	0	0	0	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t₄	0	0	0	0	0	0	0	0	0	0	0	0
	t ₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a	-1	1	-1	1	-1	1	1	1	-1	1	-1	1
	c-a	-1	1	1	-1	-1	1	1	1	-1	-1	-1	1
	d-a	-1	1	1	1	-1	1	1	-1	-1	-1	-1	-1
	e-a	-1	1	1	-1	-1	1	1	1	-1	-1	-1	-1
	f-a	-1	1	1	-1	-1	1	1	1	-1	-1	-1	1
	c-b	-1	1	1	-1	1	-1	-1	1	-1	-1	1	-1
	d-b	-1	-1	1	1	1	-1	1	-1	1	-1	-1	-1
	e-b	-1	1	1	-1	1	-1	1	1	1	-1	1	-1
	f-b	1	1	1	-1	-1	-1	-1	1	1	-1	1	-1
	d-c	1	-1	1	1	1	-1	1	-1	1	1	-1	-1
	e-c	-1	1	-1	1	1	1	1	1	1	1	-1	-1
	f-c	1	1	1	-1	-1	-1	1	1	1	1	-1	1
	e-d	-1	1	-1	-1	-1	1	1	1	1	1	1	1
	f-d	1	1	1	-1	-1	-1	-1	1	1	1	1	1
	f-e S _k	-5	11	9	-1 -5	-1 -5	-1 -1	-1 7	9	3	-1 -3	-3	-1
		0		5	5	5		,	5	5	0	5	
	5 ² s=	28.33	23.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33
Z _k =	S _k /σ _S	-0.94	2.28	1.69	-0.94	-0.94	-0.19	1.32	1.69	0.56	-0.56	-0.56	-0.19
	Z ² _k	0.88	5.19	2.86	0.88	0.88	0.04	1.73	2.86	0.32	0.32	0.32	0.04
	$\Sigma Z_{k}=$	3.22	Г	Tie Extent	t ₁	t ₂	t ₃	t₄	t₅			Σn	72
	ΣZ_k^2												
-			L	Count	60	0	0	0	0			ΣS_k	16
Z	Z -bar= $\Sigma Z_{\nu}/K$ =	0.27											

Z-bar= $\Sigma Z_k/K=$ 0.27

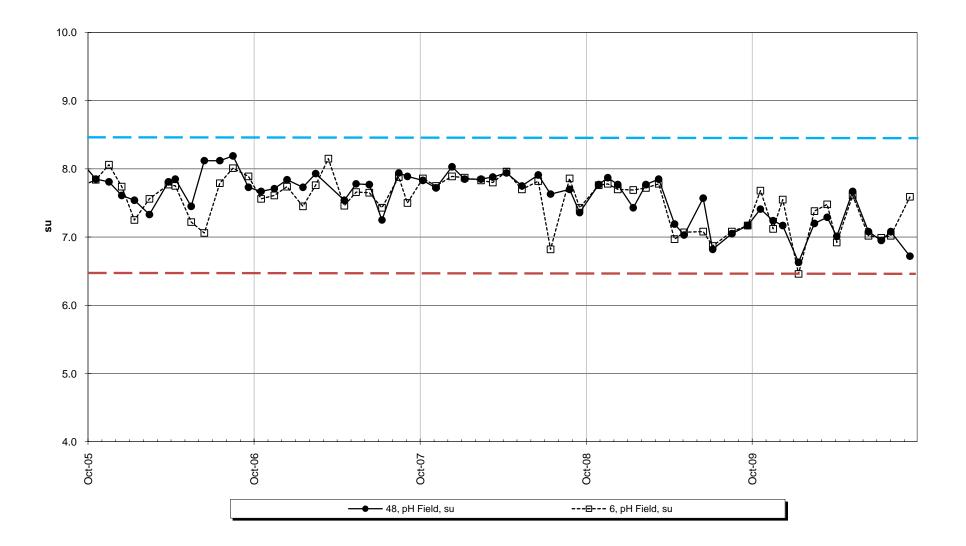
$\chi^2_h = \Sigma Z^2_k$	-K(Z-bar) ² =	15.44	@α=5% χ ² _(K-1) =	19.68	Test for station homo	geneity
	р	0.163			$\chi^2_h < \chi^2_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	Z_{calc}	0.82	@α=5% Z=	1.64	H₀ (No trend)	ACCEPT
335.00	р	0.794			H _A (± trend)	REJECT

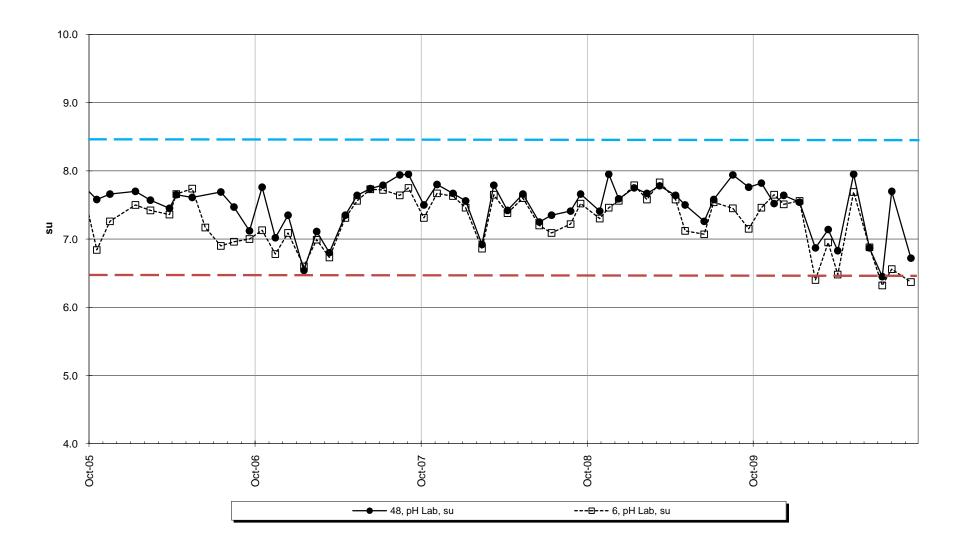
Daniela kart	14/ X	Oct	Nov	Dec	Jan	Feb	Mar	for Zinc,	May	Jun	Jul	Aug	Sep
Row label	Water Year WY2005	4.9	9.4	7.9	Jan 5.7	6.7	10.6	Apr 1.6	2.5	2.8	2.3	Aug 2.6	Sep 4.9
a	WY2005 WY2006	4.9 6.2	9.4 6.4	7.9 5.9	5.7 5.4	6.7 8.0	10.6 5.0	1.6	2.5 2.9	2.8 1.7	2.3 2.1	2.6 3.8	
b	WY2006 WY2007	6.2 3.8	6.4 3.7	5.9 4.7	5.4 6.5	8.0 4.9	5.0 5.2	13.8	2.9 8.8	2.7	2.1	3.8 3.6	4.7 3.0
c d	WY2008	3.8 9.9	3.7 10.6	7.6	6.4	4.9 7.5	12.4	16.6	8.7	3.2	2.3	3.0 7.3	12.2
e	WY2009	16.7	7.9	13.1	7.3	8.1	6.4	14.3	8.2	3.1	2.6	10.6	12.2
f	WY2010	6.4	10.0	9.0	6.0	8.4	9.4	14.3	4.3	4.0	3.6	3.5	4.4
	n	6	6	6	6	6	6	6	6	6	6	6	6
	t,	5	5	5	5	5	5	5	5	5	5	5	5
	t ₂	0	0	0	0	0	0	0	0	0	0	0	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t4	0	0	0	0	0	0	0	0	0	0	0	0
	t ₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a	1	-1	-1	-1	1	-1	1	1	-1	-1	1	-1
	c-a	-1	-1	-1	1	-1	-1	1	1	-1	-1	1	-1
	d-a	1	1	-1	1	1	1	1	1	1	1	1	1
	e-a	1	-1	1	1	1	-1	1	1	1	1	1	1
	f-a	1	1	1	1	1	-1	1	1	1	1	1	-1
	c-b	-1	-1	-1	1	-1	1	-1	1	1	1	-1	-1
	d-b	1	1	1	1	-1	1	1	1	1	1	1	1
	e-b	1	1	1	1	1	1	1	1	1	1	1	1
	f-b	1	1	1	1 -1	1 1	1	-1 1	1 -1	1	1	-1 1	-1 1
	d-c e-c	1	1	1	-1	1	1	1	-1 -1	1	1	1	1
	f-c	1	1	1	-1	1	1	1	-1	1	1	-1	1
	e-d	1	-1	1	-1	1	-1	-1	-1 -1	-1	-1	-1	1
	f-d	-1	-1	1	-1	1	-1	-1	-1	-1	-1	-1	-1
	f-e	-1	1	-1	-1	1	1	-1	-1	1	1	-1	-1
	S _k	7	3	5	5	9	3	5	3	9	9	5	1
σ	²s=	28.33	23.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33
	S _k /σ _s	1.32	0.62	0.94	0.94	1.69	0.56	0.94	0.56	1.69	1.69	0.94	0.19
	$\frac{2}{k}^{2}$	1.73	0.39	0.88	0.88	2.86	0.32	0.88	0.32	2.86	2.86	0.88	0.04
											0		
	$\Sigma Z_k =$	12.08	-	Tie Extent	t,	t ₂	t ₃	t4	t ₅			Σn	72
	ΣZ_{k}^{2}	14.89		Count	60	0	0	0	0			ΣS_k	64

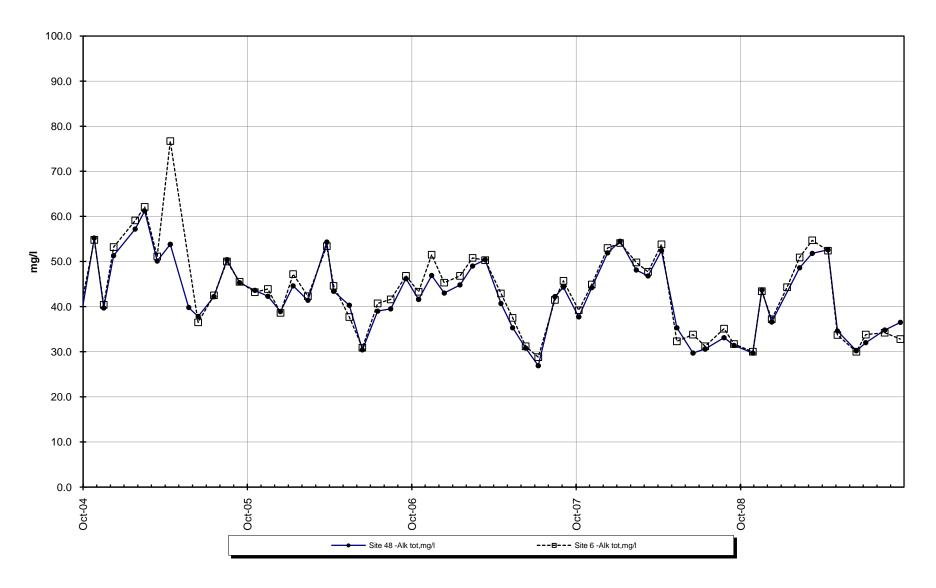

$\chi^2_h = \Sigma Z^2_k - k$	$\chi^{2}_{h} = \Sigma Z^{2}_{k} - K(Z-bar)^{2} = 2.73$			@α=5% χ ² _(K-1) =	19.68	Test for station homoge	neity
	р 0.994					$\chi^2_h < \chi^2_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	Z_{calc}	3.44		@α/2=2.5% Z=	1.96	H ₀ (No trend)	REJECT
335.00	335.00 p 1.000					H _A (± trend)	ACCEPT

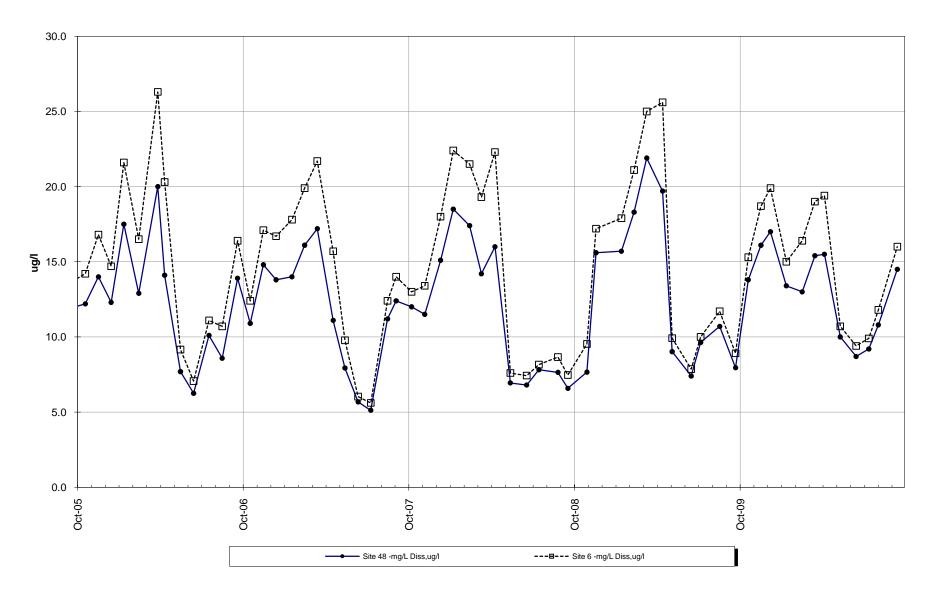

36450116	Lower	e Confidence Sen's	Upper
α	Limit	Slope	Limit
0.010	0.16		0.64
0.050	0.20	0.20	0.52
0.100	0.24	0.39	0.48
0.200	0.29		0.44

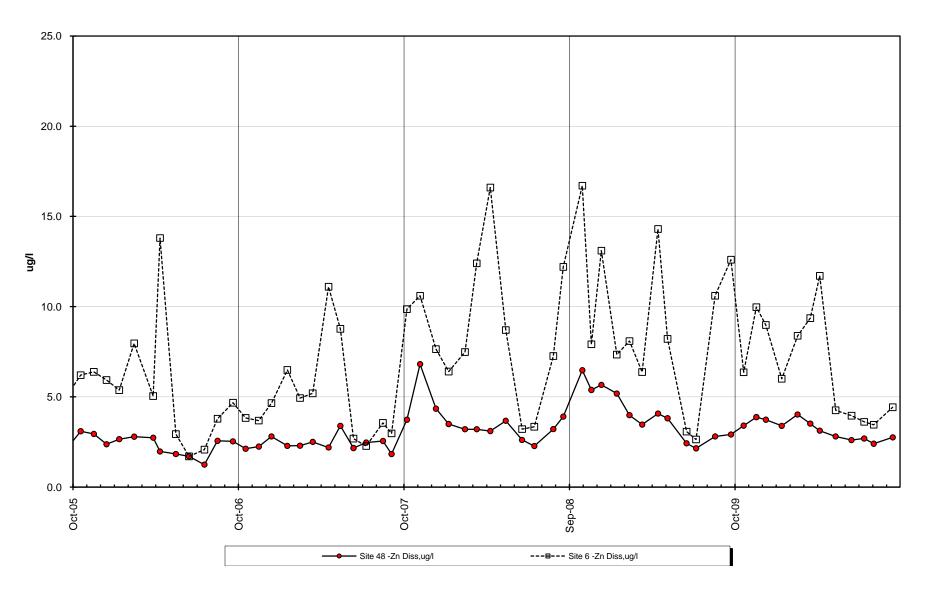
6.2%


Site 48 vs Site 6 -Conductivity-Field


Site 48 vs Site 6 -Conductivity


Site 48 vs Site 6 -Field pH


Site 48 vs Site 6 -Lab pH


Site 48 vs. Site 6 -Total Alkalinity

Site 48 vs. Site 6 -Total Sulfate

Site 48 vs. Site 6 -Dissolved Zinc

Wild			test		Wilcoxon-signed-ranks test Exact Form								
Variable: Specific Conductance, Lab (uS/cm)													
	X	Υ	, ,	,									
Site	#48	#6	Differe	ences									
Year	WY2010	WY2010	D	D	Rank								
Oct	119.0	125.0	-6.0	6.0	-6.5								
Nov	124.0	131.0	-7.0	7.0	-8								
Dec	137.0	146.0	-9.0	9.0	-9								
Jan	104.0	109.0	-5.0	5.0	-5								
Feb	115.0	126.0	-11.0	11.0	-10.5								
Mar	129.0	141.0	-12.0	12.0	-12								
Apr	129.0	140.0	-11.0	11.0	-10.5								
May	103.0	106.0	-3.0	3.0	-2								
Jun	86.5	87.0	-0.5	0.5	-1								
Jul	95.3	98.7	-3.4	3.4	-3								
Aug	105.0	109.0	-4.0	4.0	-4								
Sep	130.0	136.0	-6.0	6.0	-6.5								
Median	117.0	125.5	-6.0	6.0									
	n	m		N=	12								
-	12	12		$\Sigma R =$	-78								
]	α]	1	W+=	1								
	5.0%			0									
	W' α,n			p-test									
	17			0.000									
L		J	L	0.000	1								
H ₀	median [D]	=0	REJECT										
H ₁	median [D]	<0	ACCEPT										

Wild		ned-ranks t	test						
Exact Form Variable: pH, Lab, Standard Units									
X Y									
Site	#48	#6	Differe	ences					
Year	WY2010	WY2010	D	D	Rank				
Oct	7.82	7.46	0.36	0.36	10				
Nov	7.52	7.65	-0.13	0.13	-5				
Dec	7.64	7.51	0.13	0.13	3.5				
Jan	7.54	7.56	-0.02	0.02	-2				
Feb	6.87	6.40	0.47	0.47	11				
Mar	7.14	6.95	0.19	0.19	6				
Apr	6.83	6.48	0.35	0.35	8.5				
May	7.95	7.69	0.26	0.26	7				
Jun	6.87	6.88	-0.01	0.01	-1				
Jul	6.45	6.32	0.13	0.13	3.5				
Aug	7.70	6.56	1.14	1.14	12				
Sep	6.72	6.37	0.35	0.35	8.5				
Median	7.33	6.92	0.22	0.22					
	n	m		N=	12				
-	12	12		$\Sigma R =$	62				
Γ	α	1	Г	W+=	1				
	95.0%			70					
	W' α,n			p-test					
	59			0.995					
L	00	J	L	0.000					
H ₀	median [D]	=0	REJECT						
H ₁	median [D]	\ 0	ACCEPT						

Wild	Wilcoxon-signed-ranks test Exact Form									
Variable:	Total Al									
	Χ	Y								
Site	#48	#6	Diffe	rences						
Year	WY2010	WY2010	D	D	Rank					
Oct	42.2	45.0	-2.8	2.8	-10					
Nov	45.6	46.4	-0.8	0.8	-4					
Dec	48.4	52.2	-3.8	3.8	-11					
Jan	41.4	39.7	1.7	1.7	6					
Feb	41.0	45.6	-4.6	4.6	-12					
Mar	45.7	46.7	-1.0	1.0	-5					
Apr	43.3	44.0	-0.7	0.7	-3					
May	36.5	36.2	0.3	0.3	1					
Jun	32.5	32.9	-0.4	0.4	-2					
Jul	34.1	35.9	-1.8	1.8	-7.5					
Aug	39.3	41.1	-1.8	1.8	-7.5					
Sep	48.9	46.5	2.4	2.4	9					
Median	41.8	44.5	-0.9	1.8						
	n	m		N=	12					
-	12	12		$\Sigma R=$	-46					
[α			W+=						
	95.0%			16						
	W' α,n			p-test						
	59			0.039						
L										
H ₀	median [D]=	=0	ACCEPT							
H ₁	median [D]>	>0								

Wilcoxon-signed-ranks test Exact Form								
Variable:		rorm , Total (mg	/1)					
vanabie.	X	Y Y	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Site	#48	#6	Differe	ences				
Year	WY2010	WY2010	D	D	Rank			
Oct	13.8	15.3	-1.5	1.5	-5.5			
Nov	16.1	18.7	-2.6	2.6	-8			
Dec	17.0	19.9	-2.9	2.9	-9			
Jan	13.4	15.0	-1.6	1.6	-7			
Feb	13.0	16.4	-3.4	3.4	-10			
Mar	15.4	19.0	-3.6	3.6	-11			
Apr	15.5	19.4	-3.9	3.9	-12			
May	10.0	10.7	-0.7	0.7	-1			
Jun	8.7	9.4	-0.7	0.7	-2.5			
Jul	9.2	9.9	-0.7	0.7	-2.5			
Aug	10.8	11.8	-1.0	1.0	-4			
Sep	14.5	16.0	-1.5	1.5	-5.5			
Median	13.6	15.7	-1.6	1.6				
	n	m		N=	12			
-	12	12		$\Sigma R=$	-78			
ſ	α	1	Г	W+=	1			
	5.0%			0				
	W' α,n			p-test				
	17			0.000				
L	17	J	L	0.000	I			
H ₀	median [D]	=0	REJECT					
H ₁	median [D]	<0	ACCEPT					

Wilcoxon-signed-ranks test Exact Form								
Variable:		ssolved (u	g/l)					
	Χ	Ŷ	•					
Site	#48	#6	Differ	ences				
Year	WY2010	WY2010	D	D	Rank			
Oct	3.40	6.36	-2.96	2.96	-7			
Nov	3.87	9.97	-6.10	6.10	-11			
Dec	3.73	8.98	-5.25	5.25	-9			
Jan	3.39	6.00	-2.61	2.61	-6			
Feb	4.02	8.38	-4.36	4.36	-8			
Mar	3.51	9.36	-5.85	5.85	-10			
Apr	3.12	11.70	-8.58	8.58	-12			
May	2.80	4.25	-1.45	1.45	-4			
Jun	2.60	3.95	-1.35	1.35	-3			
Jul	2.69	3.61	-0.92	0.92	-1			
Aug	2.40	3.45	-1.05	1.05	-2			
Sep	2.75	4.42	-1.67	1.67	-5			
Median	3.26	6.18	-2.79	2.79				
	n	m		N=	12			
	12	12		$\Sigma R =$	-78			
				1 1 1 1	1			
	α			W+=				
	5.0%			0				
	W' α,n			p-test				
	17			0.000				
H ₀	median [D]=	=0	REJECT					
H ₁	median [D]-	-0	ACCEPT					

INTERPRETIVE REPORT SITE 54 "LOWER GREENS CREEK"

The data collected during the current water year are listed in the following "Table of Results for Water Year 2010" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the rightmost column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

All data collected at this site for the past six years are included in the data analyses with the exception of one outlier shown on the table below. During the current year no new data points were flagged as outliers, after review by HGCMC.

Sample Date	Parameter	Value	Qualifier	Notes
12/14/2005	pH Lab, su	8.23	RR	Holding time exceeded, field-lab not comparable

The data for Water Year 2010 have been compared to the strictest fresh water quality criterion for each applicable analyte. Five results exceeding these criteria have been identified as listed in the table below. All of the exceedances were for laboratory pH values less than the lower limit of 6.5 su. Each of these laboratory pH values had a corresponding field pH value that was above this lower limit. These are similar to the values measured for Site 6, which is immediately up stream.

Sample Date	Parameter	Value	Hardness (mg/L)	Standard	Standard Type
16-Feb-10	pH Lab, su	5.94		6.5	Aquatic Life, chronic
6-Apr-10	pH Lab, su	6.23		6.5	Aquatic Life, chronic
13-Jul-10	pH Lab, su	5.51		6.5	Aquatic Life, chronic
3-Aug-10	pH Lab, su	6.25		6.5	Aquatic Life, chronic
14-Sep-10	pH Lab, su	6.05		6.5	Aquatic Life, chronic

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. These plots have been visually analyzed for the appearance of any trend in concentration. There are identifiable trends in dissolved chromium and field pH. Between Water Year 2009 and Water Year 2010 there was an order of magnitude increase in the dissolved chromium concentration. A similar increase was also noted for Site 6, Site 13, Site 46, Site 48, Site 49, and Site 54; all sites that are located in the 920 area. The other trend noticed is a decrease in the mean field pH starting in the winter/spring of 2009.

A non-parametric statistical analysis for trend was preformed for conductivity, pH, alkalinity, sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall analyses are presented in detail on the pages following this interpretive section. The table below summarizes the results on the data collected between Oct-04 and Sep-10

(WY2005-WY2010). Dissolved zinc has a statistically significant (p=1.00) trend with a slope estimate of 0.32 μ g/L/yr or a 5.5% increase. Furthermore, total alkalinity has a statistically significant (p<0.01) trend with a slope

Site 54-WY2010, summary statistics for trend analysis.

Ma	ann-Ke	endall test	<u>statistics</u>	Sen's slop	<u>be estimate</u>
Parameter	n (1)	p (2)	Trend	Q	Q(%)
Conductivity, Lab	6	0.67	0		
pH, Lab	6	0.20	0		
Alkalinity, Total	6	<0.01	-	-0.91	-2
Sulfate, Total	6	0.71	0		
Zinc, Dissolved	6	1.00	+	0.32	5.5
(1): Number of yea	ars	(2):Signif	icance lev	rel	

estimate of -0.91 μ g/L/yr or 2.0% decrease. Given the low magnitude and similar trend noted at Site 6, HGCMC does not feel that this decreasing trend is a significant indication of changes in water chemistry at Site 54.

A comparison of median values for alkalinity, laboratory pH, laboratory conductivity, sulfate, and dissolved zinc between Site 54 and Site 6 has been conducted as specified in the Statistical Information Goals for Site 54. Additionally, X-Y plots have been generated for alkalinity, pH, conductance, sulfate, and dissolved zinc that co-plot data from Site 54 and Site 6, the upstream control site, to aid in the comparison between those sites. Calculation details of the non-parametric signed-rank tests are presented in detail on the signed-rank test as performed on the Water Year 2010 data set.

Site 54 vs Site 6 - WY2010, summary statistics for median analysis.

Parameter	Signed Ranks p-value	Site 6 median	Site 54 median	Median of Differences
Conductivity, Lab	<0.01	125.5	128	-1.2
pH, Lab	1.00	6.92	6.67	0.28
Alkalinity, Total	0.31	44.5	44.3	-0.4
Sulfate, Total	0.95	15.7	15.6	0
Zinc, Dissolved	1.00	6.18	6.06	0.28

The median values for pH for Site 6 and Site 54 are 6.92 su and 6.67 su respectively and the median of differences, Site 6 minus Site 54, is 0.28 su. Site 54 has intermittently (5 out of 7) shown statistically significantly lower pH reading for the prior seven water years (WY2002 and WY2009). This difference may in part be due to inflow of Bruin Creek which typically has a slightly lower pH than Greens Creek. The median values for alkalinity are 44.5 mg/L and 44.3 mg/L. The median values for total sulfate for Site 6 and Site 54 are 0.95 mg/L and 15.7 mg/L respectively. The median of the differences, Site 6 minus Site 54, is 0.0 mg/L total sulfate. Again similar results are obtained using the signed-rank test on the WY2004 - WY2009 total sulfate datasets. The median values for dissolved zinc for Site 6 and Site 54 are 6.18 μ g/L and 6.06 μ g/L, respectively.

Laboratory conductivity showed a statistically significant difference between the measured median values at a significance level of α =0.05 for a one-tailed test. The median values for conductivity for Site 6 and Site 54 are 125.5 µS/cm and 128 µS/cm respectively and the median of the differences, Site 6 minus Site 54, is -1.2 µS/cm. Datasets from WY2002 – WY2009 yield similar significant results with similar

magnitudes. In general, the trend in conductivity is similar to differences measured between Site 48 and Site 6, although of a smaller magnitude. HGCMC feels that given the small magnitude of the differences and the consistency of the variations over the past several years, that the current FWMP program is adequate to measure and quantify any future changes that may occur due to the influence of Waste Rock Site 23/D that occur between Site 6 and Site 54.

Table of Results for Water Year 2010

			S	ite 54 "Lo	ower Gree	ens Creel	۲"						
Sample Date/Parameter	10/20/2009	11/17/2009	12/8/2009	1/12/2010	2/16/2010	3/16/2010	4/6/2010	5/11/2010	6/15/2010	7/13/2010	8/3/2010	9/14/2010	Median
Water Temp (°C)	3.6	1.0	0.2	0.6	1.7	0.6	0.7	3.7	4.6	6.6	8.9	6.8	2.7
Conductivity-Field(µmho)	136	119	157	100	140	153	142	111	88	96	105	131	125
Conductivity-Lab (µmho)	129	132 J	148	110	127	142	143	107	91	100	110	138	128
pH Lab (standard units)	7.49	7.58 J	7.17	7.58	5.94	6.81	6.23	7.67	6.52	5.51	6.25	6.05	6.67
pH Field (standard units)	7.68	7.11	7.24	6.71	7.34	7.75	6.95	7.58	7.01	7.00	7.02	7.54	7.18
Total Alkalinity (mg/L)	45.9	45.7 J	52.0	41.3	43.1	47.2	45.5	37.8	33.2	34.7	39.1	49.2	44.3
Total Sulfate (mg/L)	15.2	18.7	19.9	15.0	16.4	19.1 J	19.7	10.7	9.6	10.1 J	11.9 J	16.0	15.6
Hardness (mg/L)	64.6	64.8	70.6	53.8	63.3	70.6	69.3	49.9	42.0	47.8	52.9	64.8	64.0
Dissolved As (ug/L)	0.241	0.198	0.186	0.204	0.225	0.200	0.180	0.205	0.213	0.220	0.266	0.245	0.209
Dissolved Ba (ug/L)			28.4	22.1	25.5								25.5
Dissolved Cd (ug/L)	0.052	0.057	0.055	0.041	0.047	0.056	0.062	0.036	0.033	0.038	0.041	0.048	0.047
Dissolved Cr (ug/L)			0.635	2.950	3.780								2.950
Dissolved Cu (ug/L)	0.461	0.522	0.474	0.632 U	0.744 U	0.676 U	0.664	0.368	0.233 U	0.295	0.304	0.364	0.468
Dissolved Pb (ug/L)	0.0134 U	0.0309 U	0.0299	0.0182 U	0.0302 U	0.0207 U	0.0276 U	0.0200 U	0.0552 U	0.0043 J	0.0154 U	0.0159 J	0.0204
Dissolved Ni (ug/L)			1.140	0.723	1.140								1.140
Dissolved Ag (ug/L)			< 0.003	<0.003	<0.003								0.002
Dissolved Zn (ug/L)	6.24	9.20	8.40	5.88 U	7.87	8.54 U	10.60	4.13	3.55 U	3.96	3.56	4.27	6.06
Dissolved Se (ug/L)			1.230	1.020	1.040 J								1.040
Dissolved Hg (ug/L)	0.000643	0.000758	0.000632	0.001280	0.001170	0.001020	0.001850 U	0.000868	0.000916 U	0.000597 U	0.000605 U	0.000790	0.000829

For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

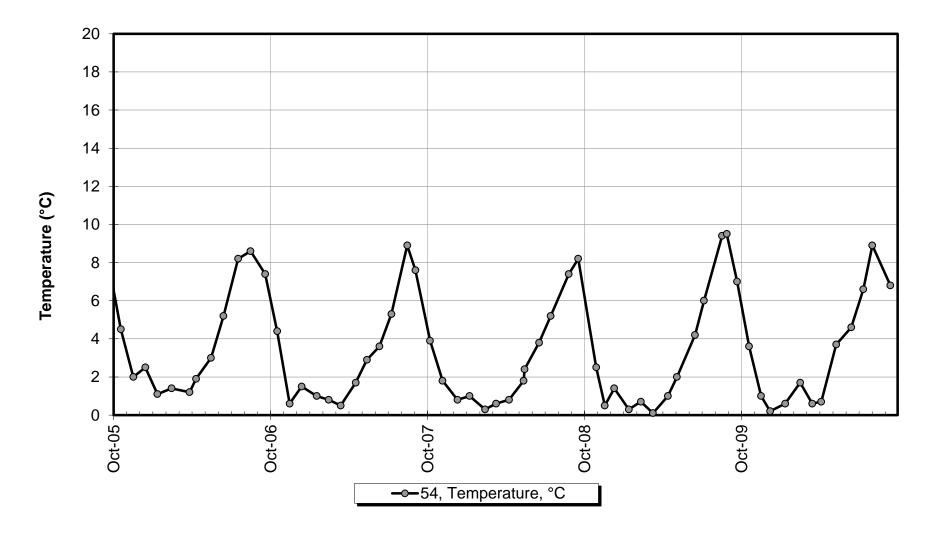
Shaded data has been qualified as an outlier by HGCMC and removed from any further analysis and is not included into the calculation of the median

Qualified Data by QA Reviewer

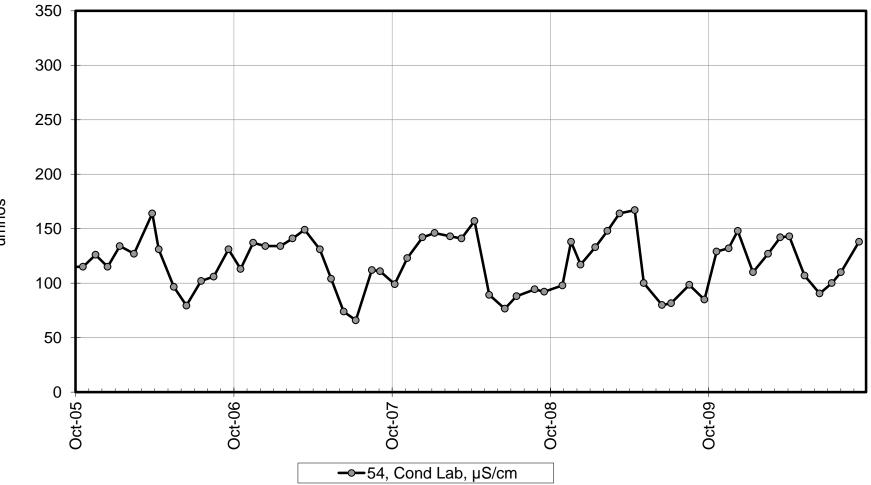
Date Range: 10/01/2009 to 09/30/2010

Site No.	Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier
54	10/20/2009	12:00 AM				
			Pb diss, µg/l	0.01	U	Field Blank Contamination
4	11/17/2009	12:00 AM				
			Alk Tot,mg/l	45.7	J	Temperature Exceedance
			Cond, µs/cm	132	J	Temperature Exceedance
			Pb diss, µg/l	0.03	U	Field Blank Contamination
			pH Lab, su	7.58	J	Hold Time Violation
4	1/12/2010	12:00 AM				-
			Cu diss, µg/l	0.63	U	Field Blank Contamination
			Pb diss, µg/l	0.01	U	Field Blank Contamination
			Zn diss, µg/l	5.88	U	Field Blank Contamination
54	2/16/2010	12:00 AM				·
			Cu diss, µg/l	0.744	U	Field Blank Contamination
			Pb diss, µg/l	0.0302	U	Field Blank Contamination
			Se diss, µg/l	1.04	J	LCS Recovery
4	3/16/2010	12:00 AM				
			Cu diss, µg/l	0.676	U	Field Blank Contamination
			Pb diss, µg/l	0.0207	U	Field Blank Contamination
			Zn diss, µg/l	8.54	U	Field Blank Contamination
			SO4 Tot, mg/l	19.1	J	Sample Receipt Temperature
4	4/6/2010	12:00 AM				
			Hg diss, µg/l	0.00185	U	Field Blank Contamination
			Pb diss, µg/l	0.0276	U	Field Blank Contamination
4	5/11/2010	11:26 AM				
			Pb diss, µg/l	0.02	U	Field Blank Contamination
			SO4 Tot, mg/l	10.7	J	Sample Temperature
4	6/15/2010	12:00 AM				
			Cu diss, µg/l	0.233	U	Field Blank Contamination
			Hg diss, µg/l	0.000916	U	Field Blank Contamination
			Pb diss, µg/l	0.0552	U	Field Blank Contamination
			Zn diss, µg/l	3.55	U	Field Blank Contamination

Qualifier	Description
J	Positively Identified - Approximate Concentration
Ν	Presumptive Evidence For Tentative Identification
NJ	Tentatively Identified - Approximate Concentration
R	Rejected - Cannot be Verified
U	Not Detected Above Quantitation Limit

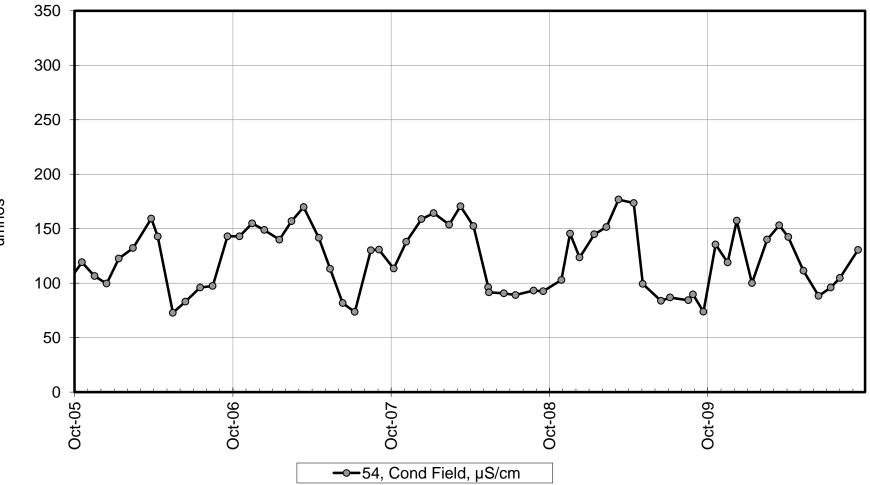

Qualified Data by QA Reviewer

Date Range: 10/01/2009 to 09/30/2010

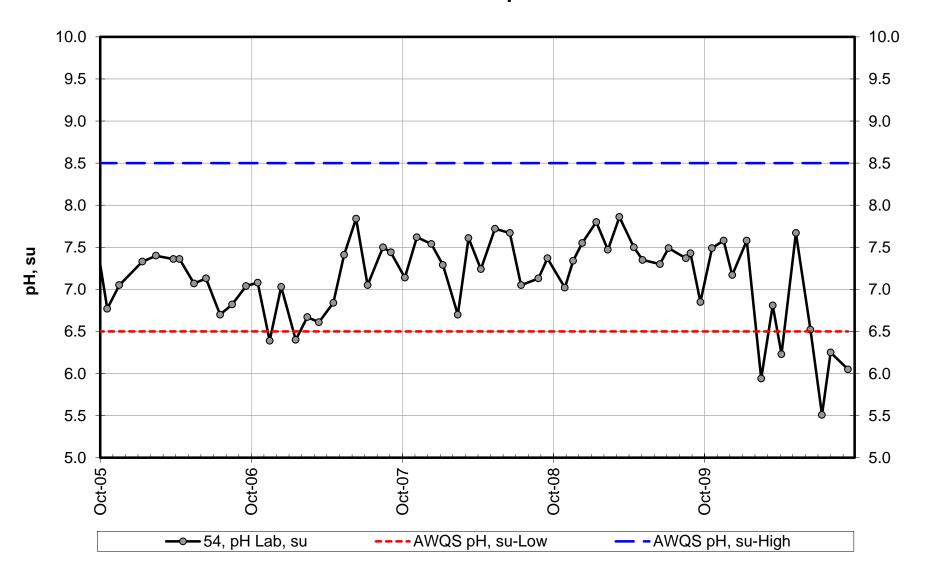

Site No.	Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier	
UJ	Not Detected Above Approximate Quantitation Limit						
54	7/13/2010	8:38 AM					
			Hg diss, µg/l	0.000597	U	Field Blank Contamination	
			Pb diss, µg/l	0.00433	J	Below Quantitative Range	
			SO4 Tot, mg/l	10.1	J	Sample Reciept Temperature	
54	8/3/2010	10:05 AM					
			Hg diss, µg/l	0.000605	U	Field Blank Contamination	
			Pb diss, µg/l	0.0154	U	Field Blank Contamination	
			SO4 Tot, mg/l	11.9	J	Sample Temperature	
54	9/14/2010	12:00 AM					
			Pb diss, µg/l	0.0159	J	Below Quantitative Range	

Qualifier	Description
J	Positively Identified - Approximate Concentration
Ν	Presumptive Evidence For Tentative Identification
NJ	Tentatively Identified - Approximate Concentration
R	Rejected - Cannot be Verified
U	Not Detected Above Quantitation Limit
UJ	Not Detected Above Approximate Quantitation Limit

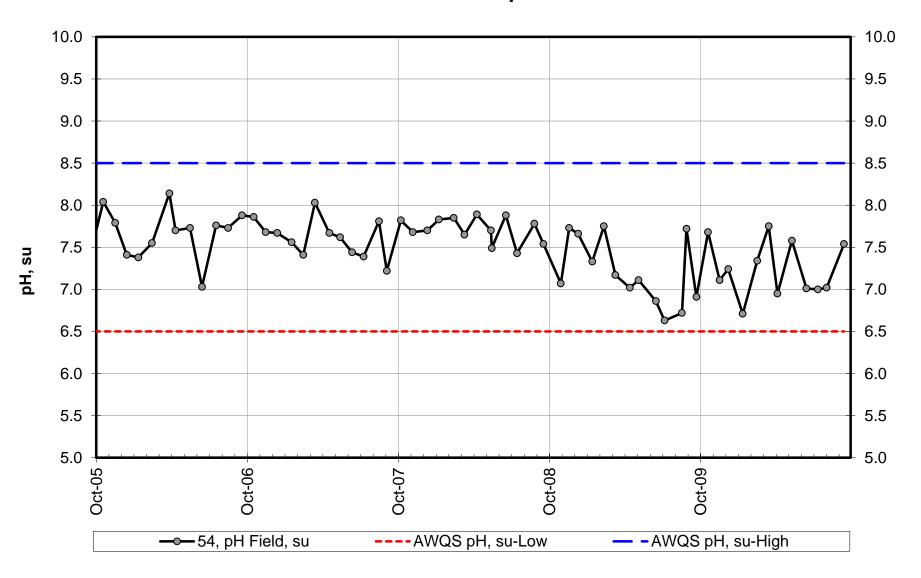
Site 54 -Water Temperature



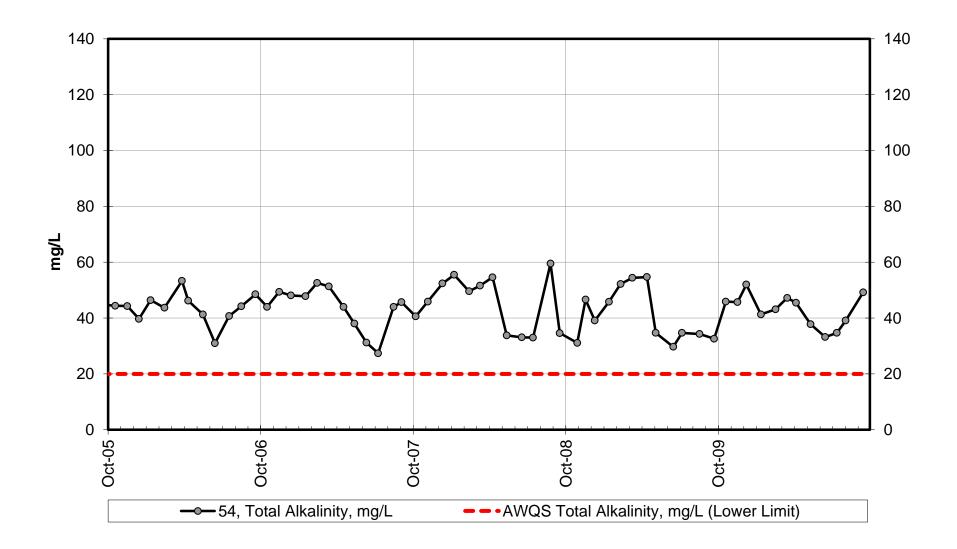
Site 54 - Conductivity-Lab

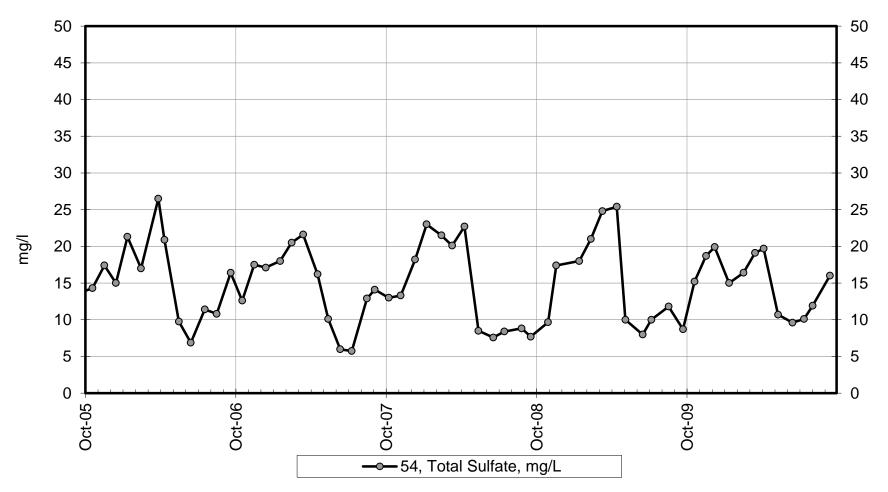

nmhos

Site 54 - Conductivity-Field

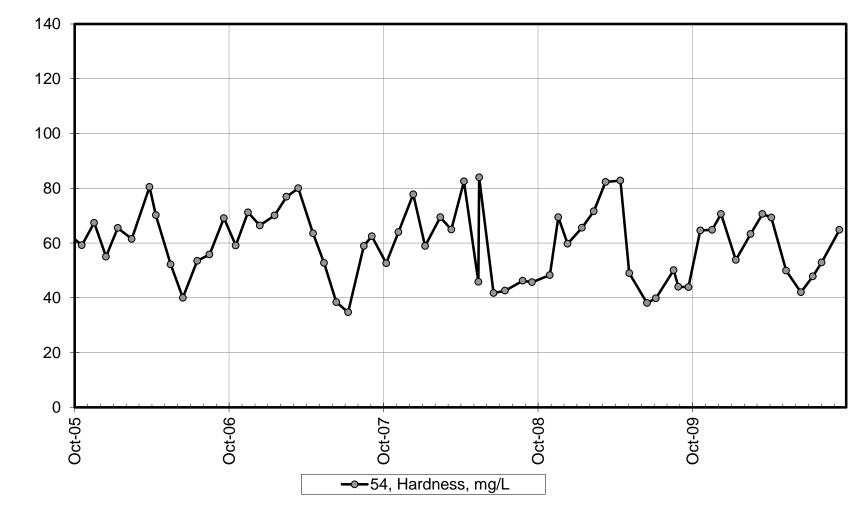


soyun

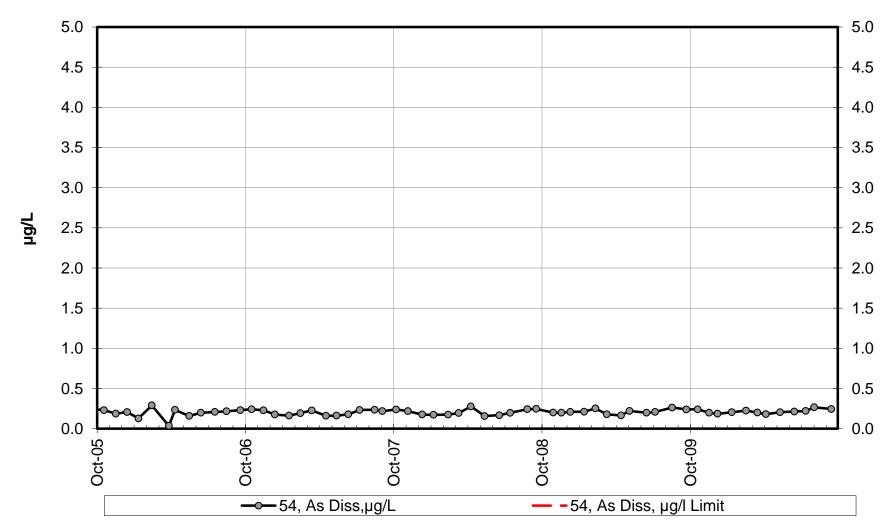

Site 54 - Lab pH


Site 54 - Field pH

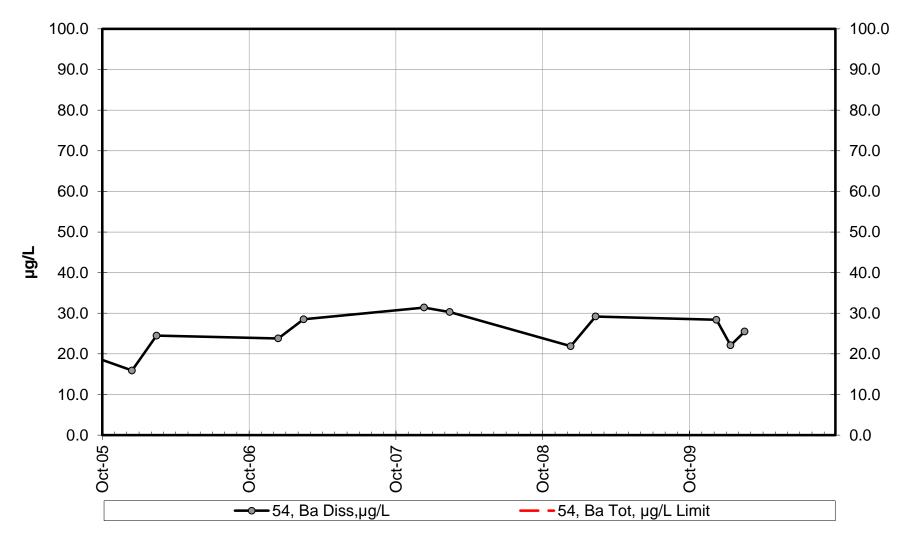
Site 54 - Total Alkalinity



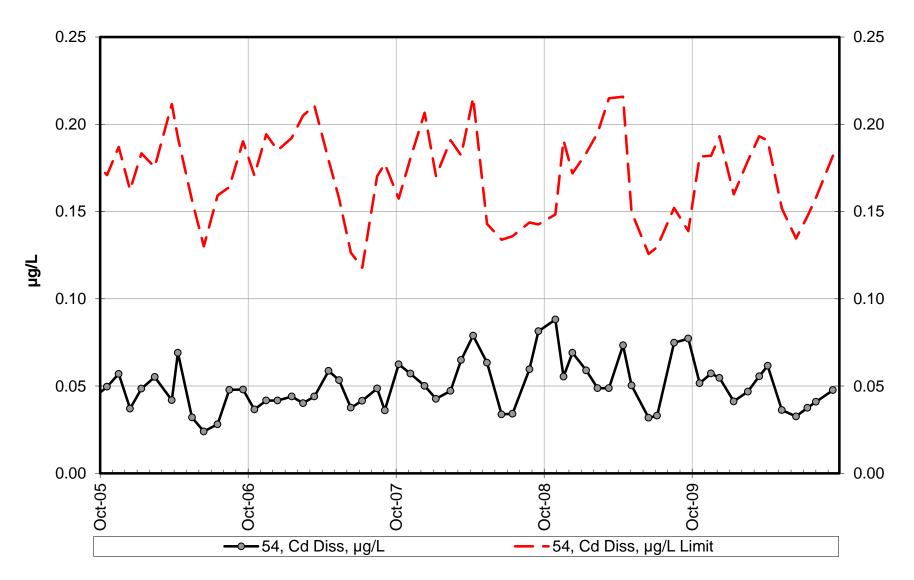
Site 54 - Total Sulfate


Note: The AWQS for Total Sulfate is 250 mg/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination.

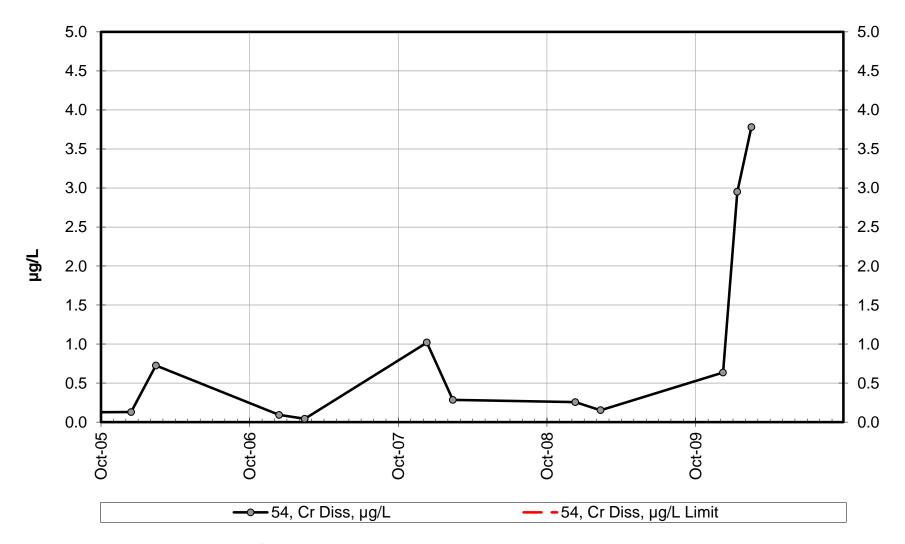
Site 54 - Hardness


mg/L

Site 54 - Dissolved Arsenic

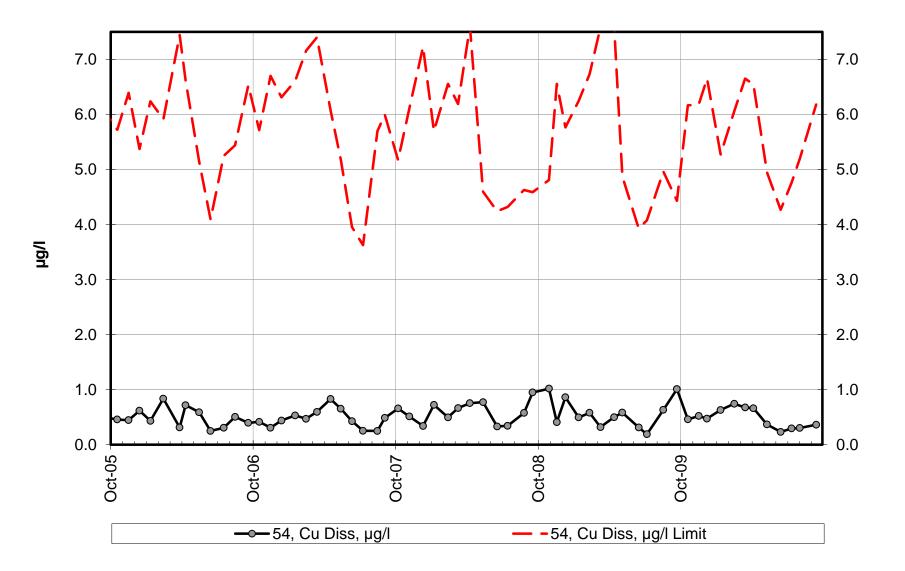

Note: The AWQS for total arsenic is 10 ug/L and thus may not be shown on this graph in order to allow greater visual detail of plotted values for trend determination

Site 54 - Dissolved Barium

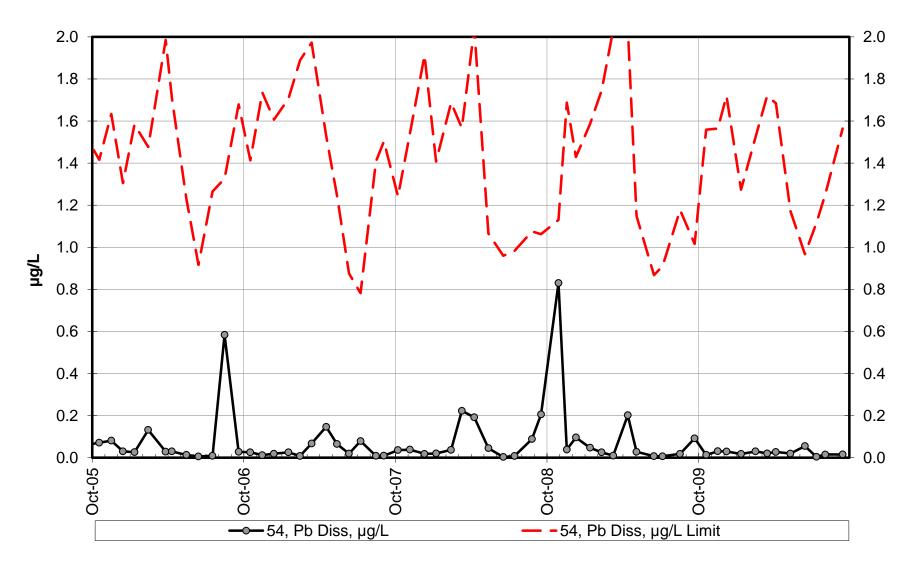


Note: the AWQS for Total Barium is 1000 ug/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination

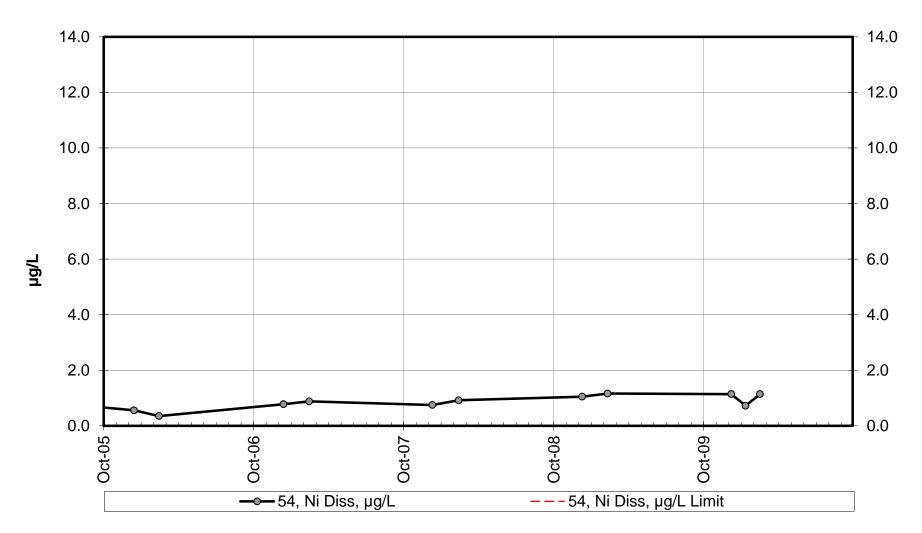
Site 54 - Dissolved Cadmium



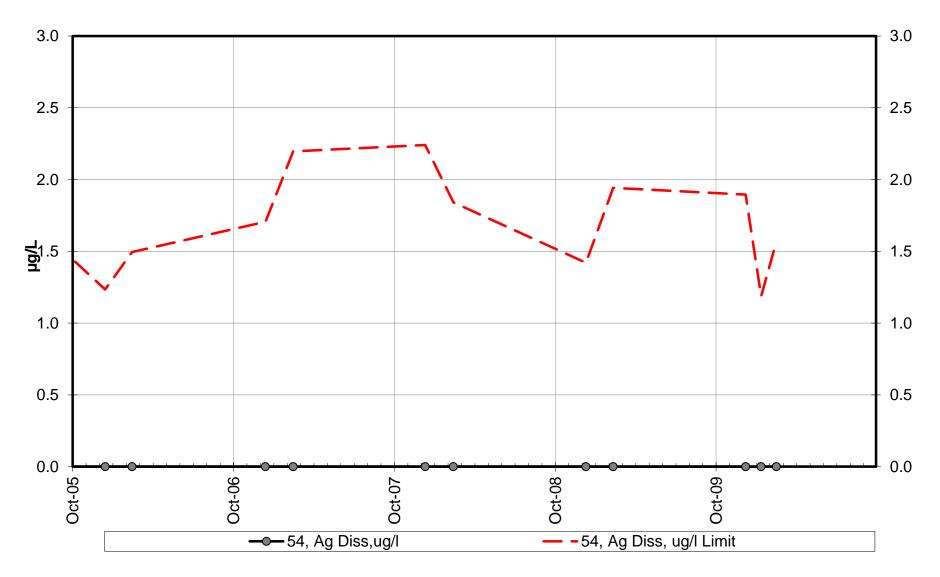
Site 54 - Dissolved Chromium



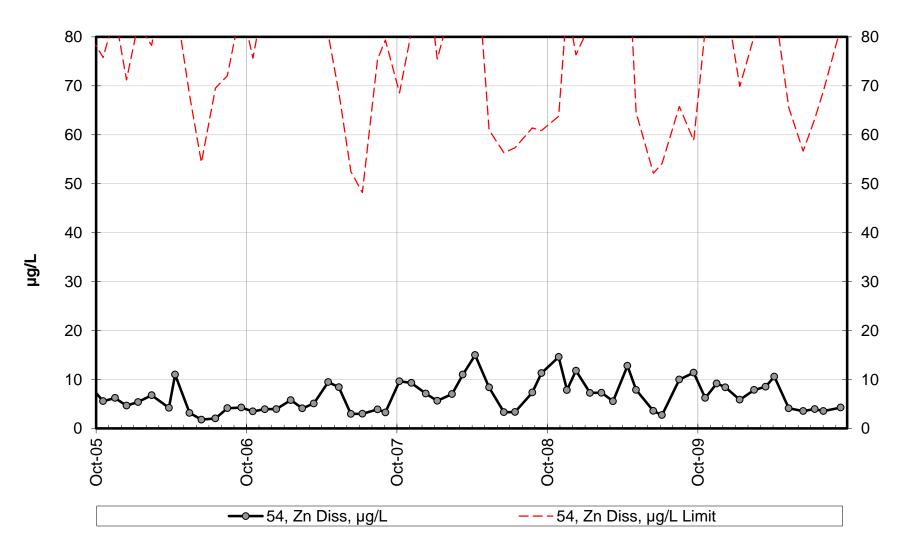
Note: the AWQS for Dissolved Chromium is 11 µg/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination


Site 54 - Dissolved Copper

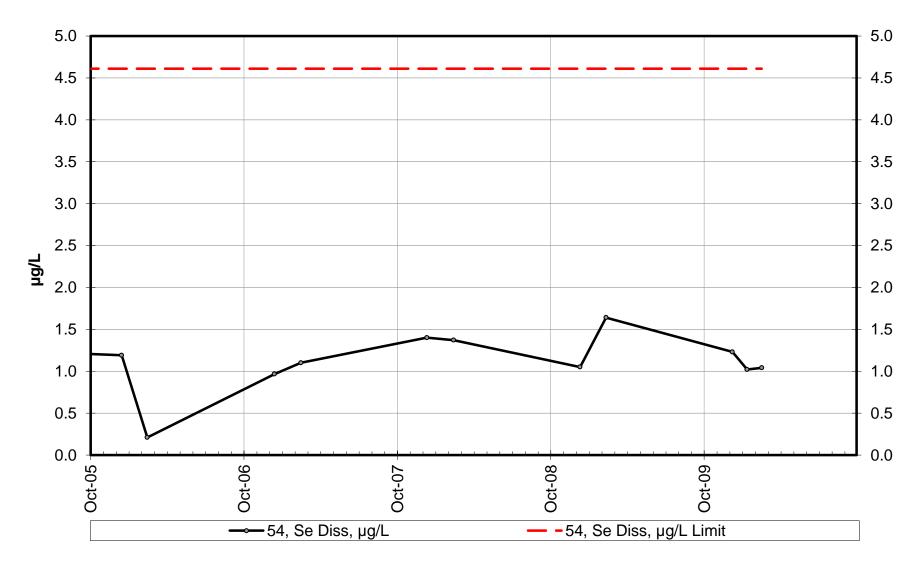
Site 54 - Dissolved Lead

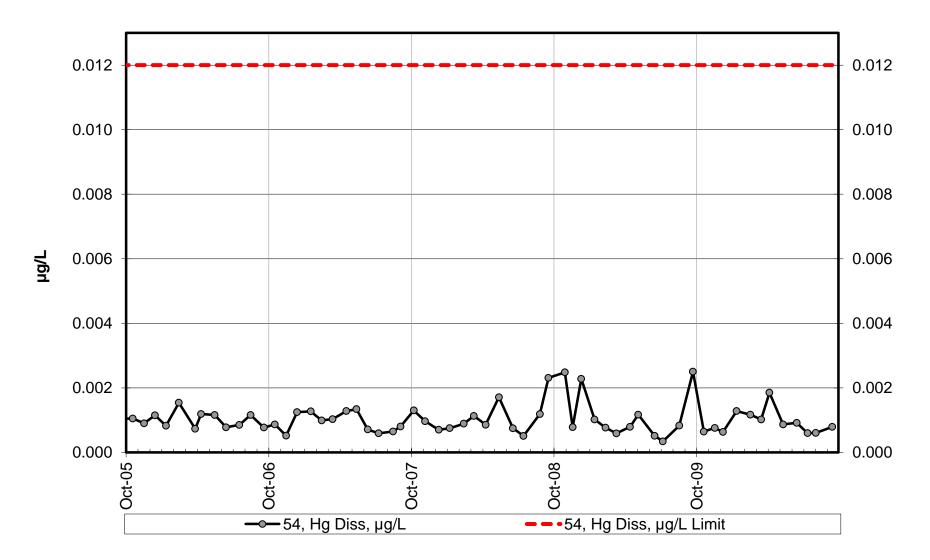


Site 54 - Dissolved Nickel

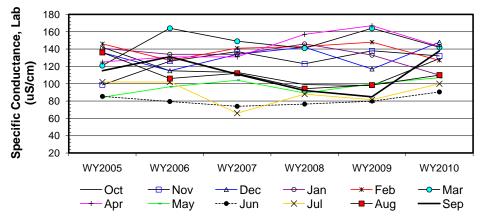


Note: The AWQS for dissolved nickel is hardness dependant and varies between 16 ug/L and 128 ug/L for waters with hardness values of 25 mg/L and 400 mg/L respectively. The AWQS, which would plot above the upper value on the Y-axis, are not shown on this graph to allow for greater visual detail of the plotted values.


Site 54 - Dissolved Silver


Site 54 - Dissolved Zinc

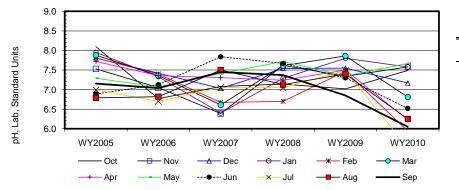
Site 54 - Dissolved Selenium



Site 54 - Dissolved Mercury

Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2005	142	98.7	136	141	146	121	125	84.4	85.4	102	136	115
b	WY2006	115	126	115	134	127	164	131	96.5	79.4	102	106	131
С	WY2007	113	137	134	134	141	149	131	104	73.9	65.9	112	111
d	WY2008	99.1	123	142	146	143	141	157	89.2	76.5	88	94.3	92.1
е	WY2009	97.9	138	117	133	148	164	167	100	79.9	81.5	98.4	84.9
f	WY2010	129	132	148	110	127	142	143	107	90.5	100	110	138
	n	6	6	6	6	6	6	6	6	6	6	6	6
	t1	5	5	5	3	3	3	3	5	5	3	5	5
	t ₂	0	0	0	1	1	1	1	0	0	1	0	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t ₄	0	0	0	0	0	0	0	0	0	0	0	0
	t ₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a	-1	1	-1	-1	-1	1	1	1	-1	0	-1	1
	c-a	-1	1	-1	-1	-1	1	1	1	-1	-1	-1	-1
	d-a	-1	1	1	1	-1	1	1	1	-1	-1	-1	-1
	e-a	-1	1	-1	-1	1	1	1	1	-1	-1	-1	-1
	f-a	-1	1	1	-1	-1	1	1	1	1	-1	-1	1
	c-b	-1	1	1	0	1	-1	0	1	-1	-1	1	-1
	d-b	-1 -1	-1	1	1 -1	1	-1 0	1	-1	-1 1	-1 -1	-1 -1	-1
	e-b f-b	-1	1	1	-1	0	-1	1	1	1	-1 -1	-1	-1 1
	d-c	-1	-1	1	-1	1	-1	1	-1	1	-1	-1	-1
	e-c	-1	1	-1	-1	1	1	1	-1	1	1	-1	-1
	f-c	1	-1	1	-1	-1	-1	1	1	1	1	-1	1
	e-d	-1	1	-1	-1	1	1	1	1	1	-1	1	-1
	f-d	1	1	1	-1	-1	1	-1	1	1	1	1	1
	f-e	1	-1	1	-1	-1	-1	-1	1	1	1	1	1
	S _k	-7	7	5	-8	0	2	10	9	3	-4	-5	-3
σ	² s=	28.33	23.33	28.33	27.33	27.33	27.33	27.33	28.33	28.33	27.33	28.33	28.33
	S _k /\sigmas	-1.32	1.45	0.94	-1.53	0.00	0.38	1.91	1.69	0.56	-0.77	-0.94	-0.56
	Z ² _k	1.73	2.10	0.88	2.34	0.00	0.15	3.66	2.86	0.32	0.59	0.88	0.32
	$\Sigma Z_{k} =$	1.82		Tie Extent	t ₁	t ₂	t ₃	t₄	t₅			Σn	72
	$\Sigma Z_k^2 =$	15.82		Count	50	5	0	0	0			ΣS_k	9
	Z-bar= $\Sigma Z_k/K=$	0.15	L	Count	50	0	U	U	U			$\Delta \mathbf{o}_{k}$	э

 $\chi^2_h = \Sigma Z^2_k - K(Z-bar)^2 =$ @α=5% χ²_(K-1)= 15.54 19.68 Test for station homogeneity $\chi^2_h < \chi^2_{(K-1)}$ р 0.159 ACCEPT ΣVAR(S_k) 330.00 H_0 (No trend) H_A (± trend) ACCEPT Z_{calc} 0.44 @ $\alpha/2=2.5\%$ Z= 1.96 REJECT 0.670 р



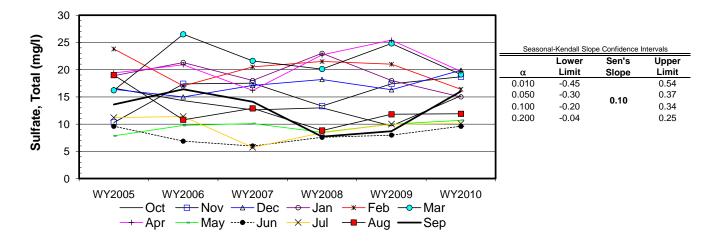
Seasona	al-Kendall Slop	e Confidence	Intervals
	Lower	Sen's	Upper
α	Limit	Slope	Limit
0.010	-2.00		3.05
0.050	-1.36	0.50	2.59
0.100	-0.88	0.50	1.91
0.200	-0.38		1.38

Site	#54			Sea	asonal K	endall a	nalysis fo	or pH, La	ab, Stand	dard Unit	ts		
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
а	WY2005	8.1	7.5	7.8	8.0	7.8	7.9	7.7	7.3	6.9	7.0	6.8	7.
b	WY2006	6.8	7.1		7.3	7.4	7.4	7.4	7.1	7.1	6.7	6.8	7.
С	WY2007	7.1	6.4	7.0	6.4	6.7	6.6	7.3	7.4	7.8	7.1	7.5	7
d	WY2008	7.1	7.6	7.5	7.3	6.7	7.6	7.2	7.7	7.7	7.1	7.1	7.
е	WY2009	7.0	7.3	7.6	7.8	7.5	7.9	7.5	7.4	7.3	7.5	7.4	6
f	WY2010	7.5	7.6	7.2	7.6	5.9	6.8	6.2	7.7	6.5	5.5	6.3	6
	n	6	6	5	6	6	6	6	6	6	6	6	
	t,	5	5	5	5	5	5	5	5	5	3	5	
	t ₂	0	0	0	0	0	0	0	0	0	1	0	
	t ₃	0	0	0	0	0	0	0	0	0	0	0	
	t4	0	0	0	0	0	0	0	0	0	0	0	
	t ₅	0	0	0	0	0	0	0	0	0	0	0	
	b-a	-1	-1		-1	-1	-1	-1	-1	1	-1	1	
	c-a	-1	-1	-1	-1	-1	-1	-1	1	1	1	1	
	d-a	-1	1	-1	-1	-1	-1	-1	1	1	1	1	
	e-a	-1	-1	-1	-1	-1	-1	-1	1	1	1	1	
	f-a	-1	1	-1	-1	-1	-1	-1	1	-1	-1	-1	
	c-b	1	-1		-1	-1	-1	-1	1	1	1	1	
	d-b	1	1		-1	-1	1	-1	1	1	1	1	
	e-b	1	1		1	1	1	1	1	1	1	1	
	f-b	1	1		1	-1	-1	-1	1	-1	-1	-1	
	d-c	1	1	1	1	1	1	-1	1	-1	0	-1	
	e-c	-1	1	1	1	1	1	1	-1	-1	1	-1	
	f-c	1	1	1	1	-1	1	-1	1	-1	-1	-1	
	e-d	-1	-1	1	1	1 -1	1	1	-1	-1	1	1	
	f-d f-e	1	-1 1	-1 -1	-1	-1 -1	-1 -1	-1 -1	-1 1	-1 -1	-1 -1	-1 -1	
	S _k	1	3	-2	-1	-7	-3	-9	7	-1	2	1	
	² s=	28.33	23.33	16.67	28.33	28.33	28.33	28.33	28.33	28.33	27.33	28.33	28.3
	s- S _k /σ _s	0.19	0.62	-0.49	-0.19	-1.32	-0.56	-1.69	1.32	-0.19	0.38	0.19	-1.3
2	Z ² _k	0.04	0.39	0.24	0.04	1.73	0.32	2.86	1.73	0.04	0.15	0.04	1.
	$\Sigma Z_{k}=$	-3.06	[Tie Extent	t,	t ₂	t ₃	t ₄	t₅			Σn	71
	ΣZ_{k}^{2}	9.28		Count	58	1	0	0	0			ΣS_k	-16
-	2 κ 2-bar=ΣΖ./K=	-0.25	L	200		•	÷	÷	÷			N	

 $\text{Z-bar}{=}\Sigma Z_{\text{k}}/\text{K}{=} -0.25$

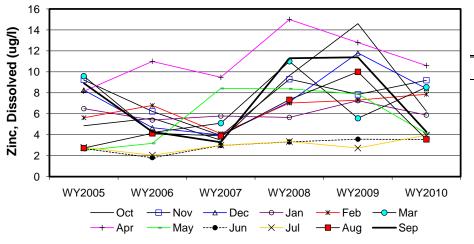
$\chi^2_h = \Sigma Z^2_k$ -	K(Z-bar) ² =	8.50	@α=5% χ ² _(K-1) =	19.68	Test for station home	ogeneity
	р	0.668			χ ² h<χ ² (K-1)	ACCEPT
$\Sigma VAR(S_k)$	Z_{calc}	-0.84	@α/2=2.5% Z=	1.96	H ₀ (No trend)	ACCEPT
322.33	р	0.202			H _A (± trend)	REJECT

Seasona	al-Kendall Slop	e Confidence	Intervals
	Lower	Sen's	Upper
α	Limit	Slope	Limit
0.010	-0.15		0.06
0.050	-0.11	-0.05	0.03
0.100	-0.09	-0.05	0.02
0.200	-0.07		0.00


Site #54

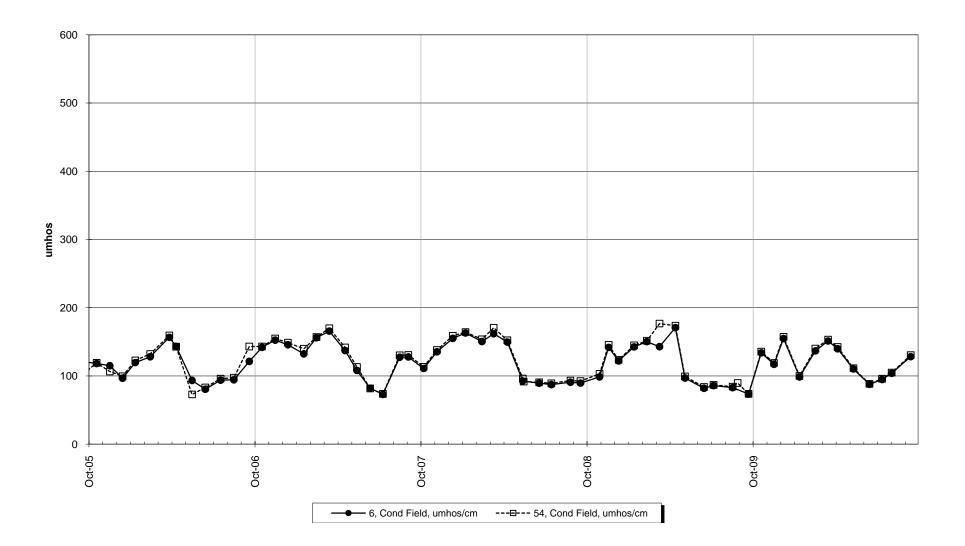
Seasonal Kendall analysis for Total Alk, (mg/l)

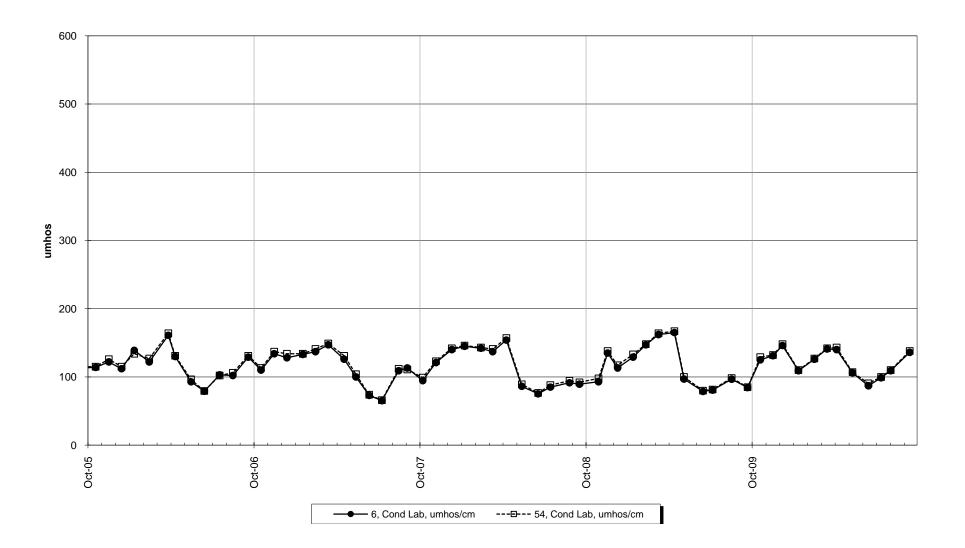
Site	#54				Season	ai kenua	an analys		nai Aik,	(mg/i)			
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
а	WY2005	58.9	42.4	54.2	59.2	64.1	51.8	56.7	40.3	39.5	41.4	51.0	44.
b	WY2006	44.4	44.3	39.7	46.4	43.7	53.3	46.2	41.3	31.0	40.7	44.2	48.
С	WY2007	44.0	49.4	48.1	47.8	52.6	51.3	44.0	38.0	31.2	27.4	44.0	45.
d	WY2008	40.6	45.9	52.4	55.5	49.6	51.6	54.6	33.8	33.1	33.0	59.5	34.
е	WY2009	31.1	46.6	39.1	45.8	52.2	54.4	54.7	34.7	29.7	34.7	34.3	32.
f	WY2010	45.9	45.7	52.0	41.3	43.1	47.2	45.5	37.8	33.2	34.7	39.1	49.
	n	6	6	6	6	6	6	6	6	6	6	6	
•	t,	5 0	5	5 0	5 0	5	5 0	5 0	5 0	5 0	3 1	5 0	
	t ₂		0			0							
	t ₃	0	0	0	0	0	0	0	0	0	0	0	
	t₄ t₅	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	
-	b-a	-1	1	-1	-1	-1	1	-1	1	-1	-1	-1	
	c-a	-1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	
	d-a	-1	1	-1	-1	-1	-1	-1	-1	-1	-1	1	-
	e-a	-1	1	-1	-1	-1	1	-1	-1	-1	-1	-1	-
	f-a	-1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	
	c-b	-1	1	1	1	1	-1	-1	-1	1	-1	-1	
	d-b	-1	1	1	1	1	-1	1	-1	1	-1	1	
	e-b	-1	1	-1	-1	1	1	1	-1	-1	-1	-1	
	f-b	1	1	1	-1	-1	-1	-1	-1	1	-1	-1	
	d-c	-1	-1	1	1	-1	1	1	-1	1	1	1	
	e-c	-1	-1	-1	-1	-1	1	1	-1	-1	1	-1	
	f-c	1	-1	1	-1	-1	-1	1	-1	1	1	-1	
	e-d	-1	1	-1	-1	1	1	1	1	-1	1	-1	
	f-d	1	-1	-1	-1	-1	-1	-1	1	1	1	-1	
	f-e	1	-1	1	-1	-1	-1	-1	1	1	0	1	
-	S _k	-7	5	-3	-9	-7	-3	-3	-7	-1	-4	-7	
<u>σ</u>	²s=	28.33	23.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	27.33	28.33	28.3
	s– S _k /σ _S	-1.32	1.04	-0.56	-1.69	-1.32	-0.56	-0.56	-1.32	-0.19	-0.77	-1.32	-0.1
Ζ	<mark>7² k</mark>	1.73	1.07	0.32	2.86	1.73	0.32	0.32	1.73	0.04	0.59	1.73	0.0
	$\Sigma Z_k =$	-8.75	Γ	Tie Extent	t,	t ₂	t ₃	t ₄	t ₅			Σn	72
	ΣZ_{k}^{2} =	12.46		Count	58	1	0	0	0			ΣS_k	-47
Z·	-bar=∑Z _k /K=	-0.73											
[$\chi^2_h = \Sigma Z^2_k - I$	K(Z-bar) ² =	6.08		@α=5%	6 χ ² _(K-1) =	19.68	Т	est for stat	ion homoge	eneity		
		р	0.868					2	$\chi^{2}_{h} < \chi^{2}_{(K-1)}$		ACCEPT		
	$\Sigma VAR(S_k)$	Z_{calc}	-2.52		@α/2=	2.5% Z=	1.96		H₀ (No	trend) I	REJECT		
ļ	334.00	р	0.006						H _A (± t	rend) <mark>/</mark>	ACCEPT		
70 60	*		<u></u>				-			Grannel		Orafidarea	
- 50 +		A.				H	*			Seasonal	•	Confidence Ir	
		\rightarrow				1	<u> </u>	$\rightarrow \rightarrow$			Lower	Sen's	Upper
	×	<u> </u>					\sim	$ \rightarrow $	š -	α.	Limit	Slope	Limit
40		7								0.010	-2.14		-0.09
										0.050	-1.65	-0.91	-0.20
30 -			•	•			<u> </u>			0.100	-1.47		-0.41
2 7				X						0.200	-1.32		-0.53
20 -												2.09/	
20												-2.0%	
10 [‡]								1					
	WY2005	WY2	2006	WY2007	WY2	008	WY2009	WY2	2010				
	—— Oc		– Nov	<u> </u>					- Mar				
	—+— Ap	r —	- May	• Jun	-X-	Jul	–– Aug	g —	-Sep				


Site	#54			S	easonal	Kendall	analysis	for Sulfa	ate, Tota	l (mg/l)			
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
а	WY2005	16.6	10.3	16.4	18.9	23.8	16.2	19.4	7.9	9.6	11.2	19.0	13.6
b	WY2006	14.3	17.4	15.0	21.3	17.0	26.5	20.9	9.8	6.9	11.4	10.8	16.4
С	WY2007	12.6	17.5	17.1	18.0	20.5	21.6	16.2	10.1	6.0	5.7	12.9	14.1
d	WY2008	13.0	13.3	18.2	23.0	21.5	20.1	22.7	8.5	7.6	8.4	8.8	7.7
е	WY2009	9.7	17.4	16.3	18.0	21.0	24.8	25.4	10.0	8.0	10.0	11.8	8.7
f	WY2010	15.2	18.7	19.9	15.0	16.4	19.1	19.7	10.7	9.6	10.1	11.9	16.0
	n	6	6	6	6	6	6	6	6	6	6	6	6
	t,	5	3	5	3	5	5	5	5	3	5	5	5
	t ₂	0	1	0	1	0	0	0	0	1	0	0	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t4	0	0	0	0	0	0	0	0	0	0	0	0
	t ₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a	-1	1	-1	1	-1	1	1	1	-1	1	-1	1
	c-a	-1	1	1	-1	-1	1	-1	1	-1	-1	-1	1
	d-a	-1	1	1	1	-1	1	1	1	-1	-1	-1	-1
	e-a	-1	1	-1	-1	-1	1	1	1	-1	-1	-1	-1
	f-a	-1	1	1	-1	-1	1	1	1	0	-1	-1	1
	c-b	-1	1	1	-1	1	-1	-1	1	-1	-1	1	-1
	d-b	-1	-1	1	1	1	-1	1	-1	1	-1	-1	-1
	e-b	-1	0	1	-1	1	-1	1	1	1	-1	1	-1
	f-b	1	1	1	-1	-1	-1	-1	1	1	-1	1	-1
	d-c	1	-1	1	1	1	-1	1	-1	1	1	-1	-1
	e-c	-1 1	-1	-1	0 -1	-1	1 -1	1	-1	1	1	-1 -1	-1
	f-c e-d	-1	1	-1	-1	-1	-1	1	1	1	1	-1	1
	f-d	-1	1	-1	-1	-1	-1	-1	1	1	1	1	1
	f-e	1	1	1	-1	-1	-1	-1	1	1	1	1	1
	S _k	-5	8	7	-6	-5	-1	5	9	4	-1	-3	-1
	² s=	28.33	21.67	28.33	27.33	28.33	28.33	28.33	28.33	27.33	28.33	28.33	28.33
	S_k/σ_S	-0.94	1.72	1.32	-1.15	-0.94	-0.19	0.94	1.69	0.77	-0.19	-0.56	-0.19
Z	Z ² _k	0.88	2.95	1.73	1.32	0.88	0.04	0.88	2.86	0.59	0.04	0.32	0.04
	$\Sigma Z_k =$	2.28	Г	Tie Extent	t,	t ₂	t ₃	t ₄	t ₅			Σn	72
	$\Sigma Z_k^2 =$	12.52		Count	54	3	0	0	0			ΣS_k	11
Z	-bar=∑Z _k /K=	0.19	L										

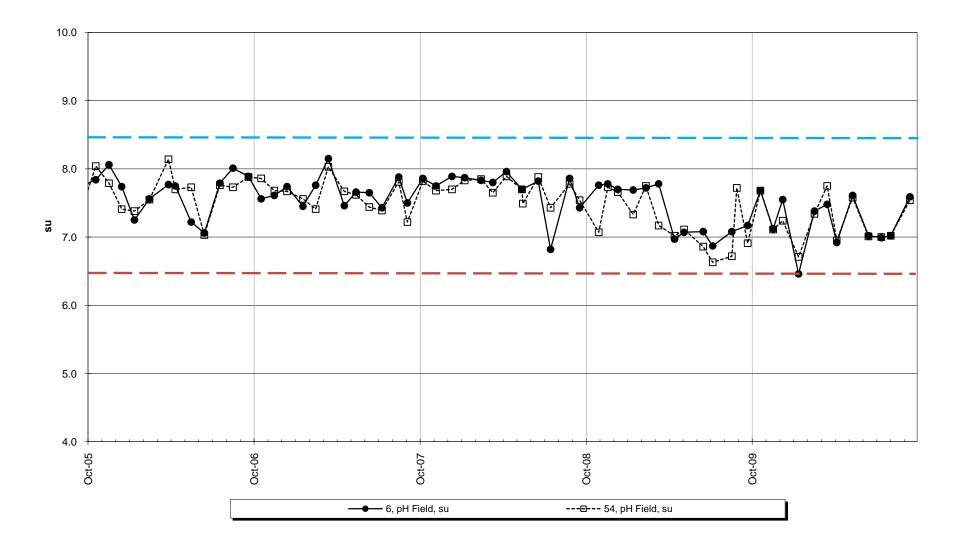
$\chi^2_h = \Sigma Z^2_k$	-K(Z-bar) ² =	12.08	@α=5% χ ² _(K-1) =	19.68	Test for station home	ogeneity
	р	0.357			$\chi^2_h < \chi^2_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	Z _{calc}	0.55	@α=5% Z=	1.64	H₀ (No trend)	ACCEPT
331.33	р	0.709			H _A (± trend)	REJECT

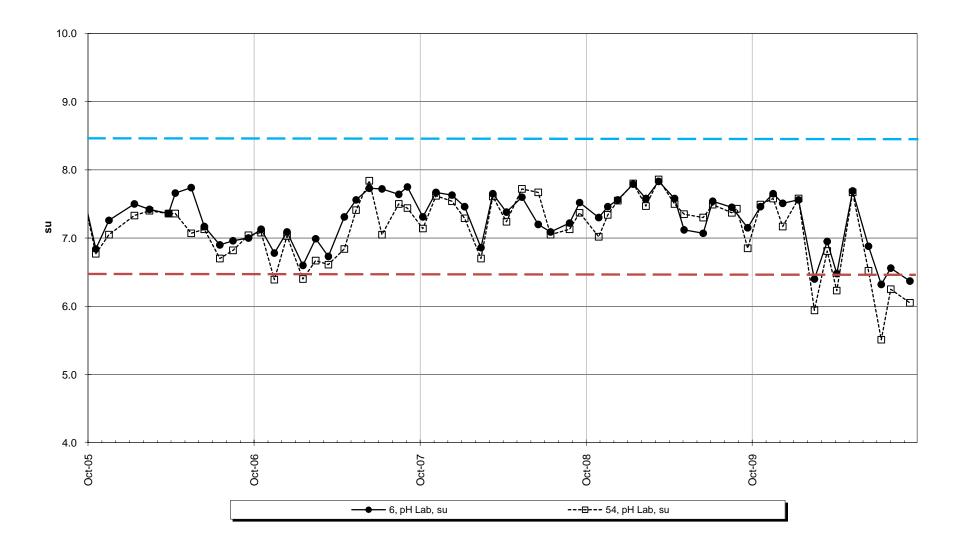
Site	#54			Se	easonal	Kendall	analysis	for Zinc	, Dissolv	ed (ug/l)			
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
а	WY2005	4.9	9.2	8.3	6.5	5.6	9.6	8.2	2.5	2.7	2.8	2.7	8.
b	WY2006	5.6	6.2	4.7	5.4	6.8	4.2	11.0	3.2	1.8	2.1	4.1	4.3
С	WY2007	3.5	3.9	4.0	5.8	4.1	5.1	9.5	8.4	3.0	3.0	3.9	3.
d	WY2008	9.7	9.3	7.1	5.7	7.0	11.0	15.0	8.4	3.3	3.4	7.3	11.
e	WY2009	14.6	7.9	11.8	7.3	7.3	5.6	12.8	7.9	3.6	2.7	10.0	11.
f	WY2010	6.2	9.2	8.4	5.9	7.9	8.5	10.6	4.1	3.6	4.0	3.6	4.
	n	6	6	6	6	6	6	6	6	6	6	6	
	t,	5	5	5	5	5	5	5	5	5	5	5	
	t ₂	0	0	0	0	0	0	0	0	0	0	0	
	t ₃	0	0	0	0	0	0	0	0	0	0	0	
	t₄	0	0	0	0	0	0	0	0	0	0	0	
	t ₅	0	0	0	0	0	0	0	0	0	0	0	
	b-a	1	-1	-1	-1	1	-1	1	1	-1	-1	1	-
	c-a	-1	-1	-1	-1	-1	-1	1	1	1	1	1	
	d-a	1	1	-1	-1	1	1	1	1	1	1	1	
	e-a	1	-1	1	1	1	-1	1	1	1	-1	1	
	f-a	1	-1	1	-1	1	-1	1	1	1	1	1	-
	c-b	-1	-1	-1	1	-1	1	-1	1	1	1	-1	-
	d-b	1	1	1	1	1	1	1	1	1	1	1	
	e-b	1	1	1	1	1	1	1	1	1	1	1	
	f-b	1	1	1	1 -1	1 1	1	-1	1	1	1	-1	
	d-c	1	1	1	-1	1	1	1 1	-1 -1	1	1 -1	1	
	e-c f-c	1	1	1	1	1	1	1	-1 -1	1	-1	-1	
	e-d	1	-1	1	1	1	-1	-1	-1 -1	1	-1	-1	
	f-d	-1	-1	1	1	1	-1	-1	-1	1	-1	-1	-
	f-e	-1	1	-1	-1	1	1	-1	-1	-1	1	-1	
	S _k	7	1	5	3	11	3	5	3	11	7	5	
σ	² s=	28.33	23.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	27.3
	s- S _k /σ _s	1.32	0.21	0.94	0.56	2.07	0.56	0.94	0.56	2.07	1.32	0.94	0.3
	$\frac{2}{k}$	1.73	0.21	0.88	0.30	4.27	0.30	0.88	0.30	4.27	1.73	0.88	0.1
	n			0.00	0.02	/	0.02	0.00	0.02	/			5.1
	$\Sigma Z_k =$	11.86	[Tie Extent	t,	t ₂	t ₃	t ₄	t ₅			Σ n	72
	ΣZ_{k}^{2}	15.79		Count	58	1	0	0	0			ΣS_k	63

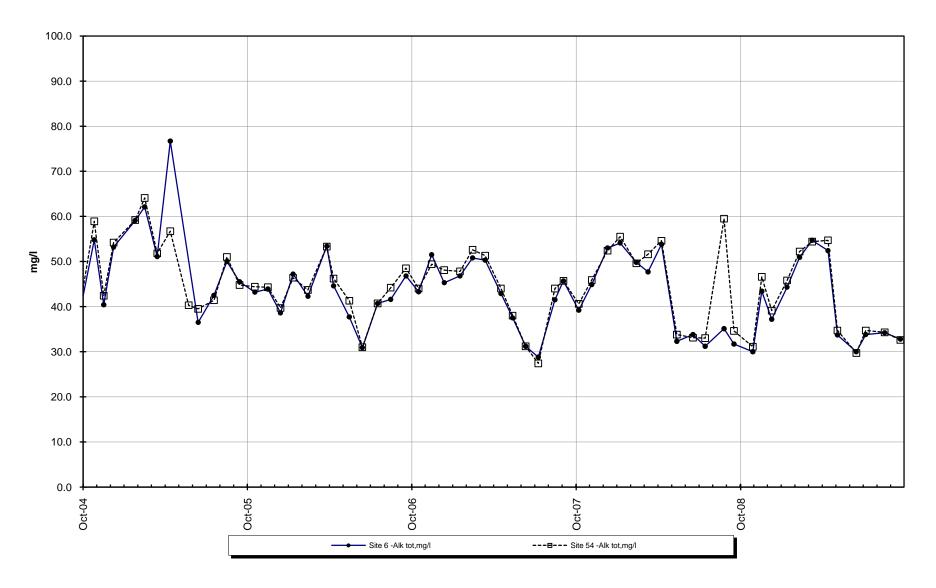

$\chi^2_h = \Sigma Z^2_k$	K(Z-bar) ² =	4.06	@α=5% χ ² _(K-1) =	19.68	Test for station homog	geneity
	р	0.968			$\chi^{2}_{h} < \chi^{2}_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	Z_{calc}	3.39	@α/2=2.5% Z=	1.96	H ₀ (No trend)	REJECT
334.00	р	1.000			H _A (± trend)	ACCEPT

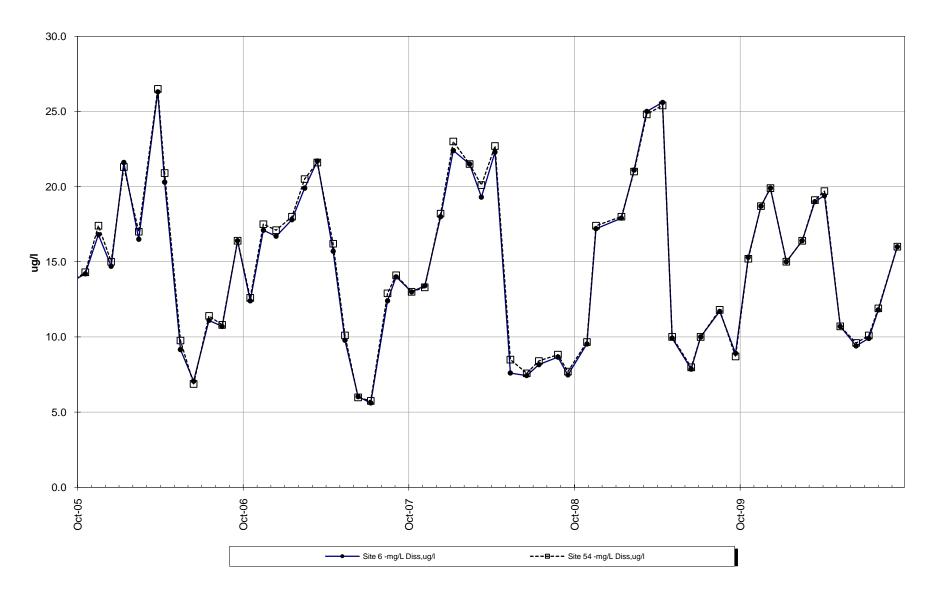

Seasona	al-Kendall Slop	e Confidence	Intervals
	Lower	Sen's	Upper
α	Limit	Slope	Limit
0.010	0.12		0.62
0.050	0.18	0.32	0.49
0.100	0.21	0.32	0.46
0.200	0.24		0.42

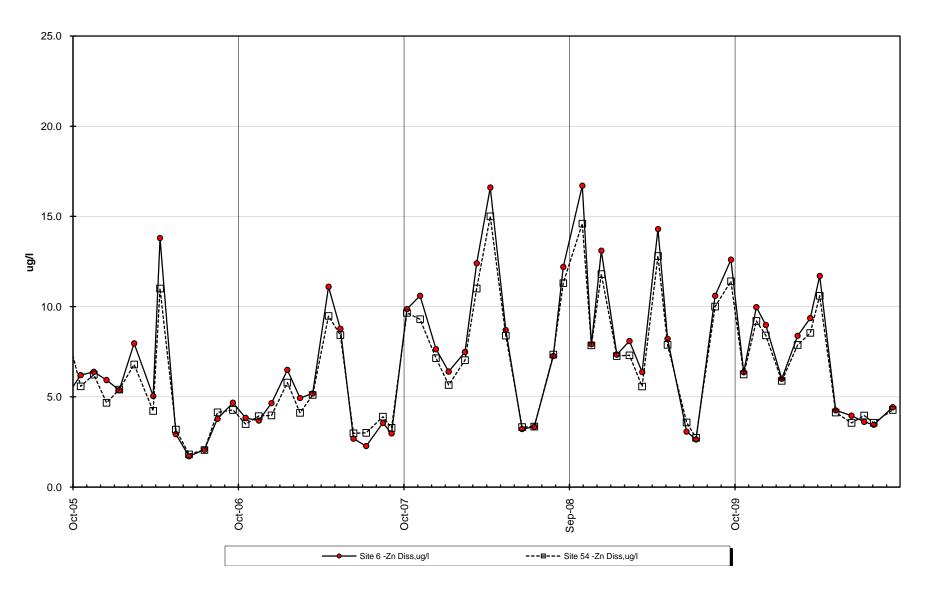
5.5%


Site 6 vs Site 54 -Conductivity-Field


Site 6 vs Site 54 -Conductivity


Site 6 vs Site 54 -Field pH


Site 6 vs Site 54 -Lab pH


Site 6 vs. Site 54 -Total Alkalinity

Site 6 vs. Site 54 -Total Sulfate

Site 6 vs. Site 54 -Dissolved Zinc

Wile	coxon-sigr		test		
		Form	nna lah (i	(Clam)	
Variable:	-	r Conducta Y	ance, Lab (ι	15/cm)	
Site	X #6	∎ #54	Differe	ences	
Year	WY2010	WY2010	D	D	Rank
Oct	125.0	129.0	-4.0	4.0	-12
Nov	131.0	132.0	-1.0	1.0	-3.5
Dec	146.0	148.0	-2.0	2.0	-8.5
Jan	109.0	110.0	-1.0	1.0	-3.5
Feb	126.0	127.0	-1.0	1.0	-3.5
Mar	141.0	142.0	-1.0	1.0	-3.5
Apr	140.0	143.0	-3.0	3.0	-10
May	106.0	107.0	-1.0	1.0	-3.5
Jun	87.0	90.5	-3.5	3.5	-11
Jul	98.7	100.0	-1.3	1.3	-7
Aug	109.0	110.0	-1.0	1.0	-3.5
Sep	136.0	138.0	-2.0	2.0	-8.5
Median	125.5	128.0	-1.2	1.2	
	n	m		N=	12
-	12	12		$\Sigma R =$	
					_
	α			W+=	
	5.0%			0	
	W' α,n			p-test	
	17			0.000	
		0	DELEOT		1
	median [D]		REJECT		
H ₁	median [D]	<0	ACCEPT		

Wild	coxon-sigr Exact		test						
Variable:		, Standard	l Units						
vanabio.	X	Υ							
Site #6 #54 Differences									
Year	WY2010	WY2010	D	D	Rank				
Oct	7.46	7.49	-0.03	0.03	-3				
Nov	7.65	7.58	0.07	0.07	4				
Dec	7.51	7.17	0.34	0.34	9				
Jan	7.56	7.58	-0.02	0.02	-2				
Feb	6.40	5.94	0.46	0.46	11				
Mar	6.95	6.81	0.14	0.14	5				
Apr	6.48	6.23	0.25	0.25	6				
May	7.69	7.67	0.02	0.02	1				
Jun	6.88	6.52	0.36	0.36	10				
Jul	6.32	5.51	0.81	0.81	12				
Aug	6.56	6.25	0.31	0.31	7				
Sep	6.37	6.05	0.32	0.32	8				
Median	6.92	6.67	0.28	0.28					
	n	m		N=	12				
-	12	12		$\Sigma R=$	68				
1	α	1	I	W+=	1				
	95.0%			73					
	W' α,n			p-test					
	59			0.998					
L	00	J	L	0.000					
H ₀	median [D]	=0	REJECT						
H₁	median [D]	. 0	ACCEPT						

Wile	coxon-sign Exact		test		
Variable:	Total All				
Site	#6	# 54	Differ	ences	
Year	WY2010	WY2010	D	D	Rank
Oct	45.0	45.9	-0.9	0.9	-5
Nov	46.4	45.7	0.7	0.7	4
Dec	52.2	52.0	0.2	0.2	1
Jan	39.7	41.3	-1.6	1.6	-8.5
Feb	45.6	43.1	2.5	2.5	11
Mar	46.7	47.2	-0.5	0.5	-3
Apr	44.0	45.5	-1.5	1.5	-7
May	36.2	37.8	-1.6	1.6	-8.5
Jun	32.9	33.2	-0.3	0.3	-2
Jul	35.9	34.7	1.2	1.2	6
Aug	41.1	39.1	2.0	2.0	10
Sep	46.5	49.2	-2.7	2.7	-12
Median	44.5	44.3	-0.4	1.4	
	n	m		N=	12
•	12	12		$\Sigma R=$	-14
	α			W+=	
	95.0%			32	
	W' α,n			p-test	
	59			-	
l	59			0.311	
H ₀	median [D]=	=0	ACCEPT		
H₁	median [D]>	>0			

Wile	coxon-sigr Exact	ned-ranks Form	test		
Variable:		, Total (mg	/I)		
	Χ	Ŷ			
Site	#6	#54	Differe	ences	
Year	WY2010	WY2010	D	D	Rank
Oct	15.3	15.2	0.1	0.1	1.5
Nov	18.7	18.7	0.0		
Dec	19.9	19.9	0.0		
Jan	15.0	15.0	0.0		
Feb	16.4	16.4	0.0		
Mar	19.0	19.1	-0.1	0.1	-3
Apr	19.4	19.7	-0.3	0.3	-6
May	10.7	10.7	0.0		
Jun	9.4	9.6	-0.2	0.2	-4.5
Jul	9.9	10.1	-0.2	0.2	-4.5
Aug	11.8	11.9	-0.1	0.1	-1.5
Sep	16.0	16.0	0.0		
Median	15.7	15.6	0.0	0.2	
	n	m		N=	6
•	12	6		$\Sigma R=$	-18
]	α	1]	W+=	1
	5.0%			1.5	
	W' α,n			p-test	
	2			0.031	
· · · ·					1
	median [D]	=0	REJECT		
H ₁	median [D]	<0	ACCEPT		

Wile	coxon-sign Exact l		test		
Variable:		ssolved (u	ig/l)		
_	X	Y			
Site	#6	#54		ences	
Year	WY2010	WY2010	D	D	Rank
Oct	6.36	6.24	0.12	0.12	3
Nov	9.97	9.20	0.77	0.77	10
Dec	8.98	8.40	0.58	0.58	9
Jan	6.00	5.88	0.12	0.12	3
Feb	8.38	7.87	0.51	0.51	8
Mar	9.36	8.54	0.82	0.82	11
Apr	11.70	10.60	1.10	1.10	12
May	4.25	4.13	0.12	0.12	3
Jun	3.95	3.55	0.40	0.40	7
Jul	3.61	3.96	-0.35	0.35	-6
Aug	3.45	3.56	-0.11	0.11	-1
Sep	4.42	4.27	0.15	0.15	5
Median	6.18	6.06	0.28	0.38	
	n	m		N=	12
•	12	12		$\Sigma R =$	64
	α 5.0% W' α,n 17			W ⁺ = 71 p-test 0.997	
H _o	median [D]=	=0	ACCEPT		
H ₁	median [D]<				

INTERPRETIVE REPORT SITE 49 "UPPER BRUIN CREEK"

The data collected during the current water year are listed in the following "Table of Results for Water Year 2010" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the rightmost column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

All data collected at this site for the past six years are included in the data analyses. As shown in the table below, there were no data outliers.

Sample Date	Parameter	Value	Qualifier	Notes	
No outliers have	been identified by HG	CMC for the perio	od of October	r 2005 through September 2010	0.

The data for Water Year 2010 have been compared to the strictest fresh water quality criterion for each applicable analyte. No results exceeding these criteria have been identified as listed in the table below.

Sample Date Parameter		Value	Hardness (mg/L)	Standard	Standard Type
No exc	eedances have been ide	entified by HO	GCMC for the period	of Oct-09 tho	ough Sept-10.

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. These plots have been visually analyzed for the appearance of any trend in concentration. There was an identifiable trend in dissolved chromium. Between Water Year 2009 and Water Year 2010 there was roughly an order of magnitude increase in the dissolved chromium concentration. A similar increase was also noted for Site 6, Site 13, Site 46, Site 48, Site 49, and Site 54; all sites that are located in the 920 area.

A non-parametric statistical analysis for trend was preformed for conductivity, pH, alkalinity, sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall

analyses are presented in detail on the pages following this interpretive section. The adjacent table summarizes the results on the data collected between Oct-04 and Sep-10 (WY2005-WY2010). For datasets with a statistically significant trend ($\alpha/2=2.5\%$) a Seasonal-Sen's Slope estimate

Site 49-WY2010, summary statistics for trend analysis.								
Ma	Mann-Kendall test statistics Sen's slope estimate							
Parameter	N (1)	p (2)	Trend	Q	Q(%)			
Conductivity, Lab	6	0.71	0					
pH, Lab	6	0.18	0					
Alkalinity, Total	6	<0.01	-	-2.07	-3.5			
Sulfate, Total	6	0.99	+	0.42	3.6			
Zinc, Dissolved	6	0.93	0					
(1): Number of years (2):Significance level								

statistic has also been calculated. The dataset for total alkalinity has a statistically

significant (p<0.01) negative trend with a slope estimate of -2.07 mg/L/yr or a -3.5% decrease over the period. Also, there is a statistically significant increasing trend in total sulfate, with a slope estimate of 0.42 mg/L/yr or a 3.6% increase over the period. Given the low magnitude of the change, the fact that Site 49 is an upgradient background site, these variations are considered a part of the natural variation that can be expected for this type of monitoring.

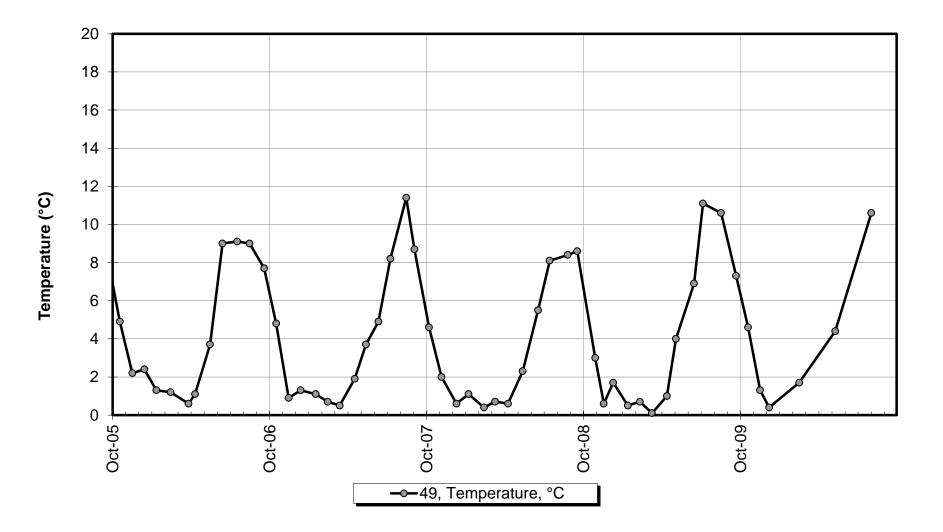
Site 49 "Opper Bruin Creek"													
Sample Date/Parameter	10/20/2009	11/17/2009	12/8/2009	1/12/2010	2/16/2010	3/16/2010	4/6/2010	5/11/2010	6/15/2010	7/13/2010	8/3/2010	9/14/2010	Median
Water Temp (°C)	4.6	1.3	0.4	(')	1.7	Ċ		4.4	ť)	10.6	O	3.1
Conductivity-Field(µmho)	154	113	176	9NG	179	ING		122			147	UC NC	151
Conductivity-Lab (µmho)	145	148 J	167		165			119	_]	156		152
pH Lab (standard units)	7.82	7.57 J	7.76	AMPI	7.54	AMPLI		7.91		-	7.72	AMPL	7.74
pH Field (standard units)	7.97	7.43	7.65	N	7.61	N		7.76	N		7.38	N	7.63
Total Alkalinity (mg/L)	58.4	61.6 J	71.5	S	56.9	ZS S		46.6	รับ	5	61.1	3	59.8
Total Sulfate (mg/L)	11.7	13.3	14.7		16.2			7.8 J	Ō		12.4 J	Ř	12.9
Hardness (mg/L)	77.7	75.7	82.4	OR	89.2	FOR		57.1	Č	5	81.8	ō	79.8
Dissolved As (ug/L)	0.207	0.172	0.186	й.	0.165	й		0.147	Ù	-	0.207	Ū.	0.179
Dissolved Ba (ug/L)			10.5	B	11.1	Δ			C	ב		Δ	10.8
Dissolved Cd (ug/L)	0.033	0.031	0.029	Щ	0.022	SCHEDULED		0.025	Ū	4	0.027	Щ	0.028
Dissolved Cr (ug/L)			0.798	5	2.400	5			Ξ	5		В	1.599
Dissolved Cu (ug/L)	0.546	0.501	0.440	Δ	0.553 U	ā		0.347	C	2	0.527	Δ	0.514
Dissolved Pb (ug/L)	0.0035 U	0.0042 U	0.0076 U	HEDUI	0.0767 U	Щ		0.0033 U	SCHED SCHED	4	0.0042 U	Ш	0.0042
Dissolved Ni (ug/L)			1.250	さ	1.430	5			ć	5		さ	1.340
Dissolved Ag (ug/L)			<0.003	õ	<0.003	Š			บั	5		Š	0.002
Dissolved Zn (ug/L)	2.20 U	2.57 U	2.22	H	2.53	–		2.02	ŀ	-	1.79 U	.	2.21
Dissolved Se (ug/L)			0.791	NO	1.090 J	NOT			FON	2		Q	0.941
Dissolved Hg (ug/L)	0.001280	0.001290	0.001000	Z	0.001320	Z		0.001160	2	-	0.001520	Z	0.001285

Site 49 "Upper Bruin Creek"

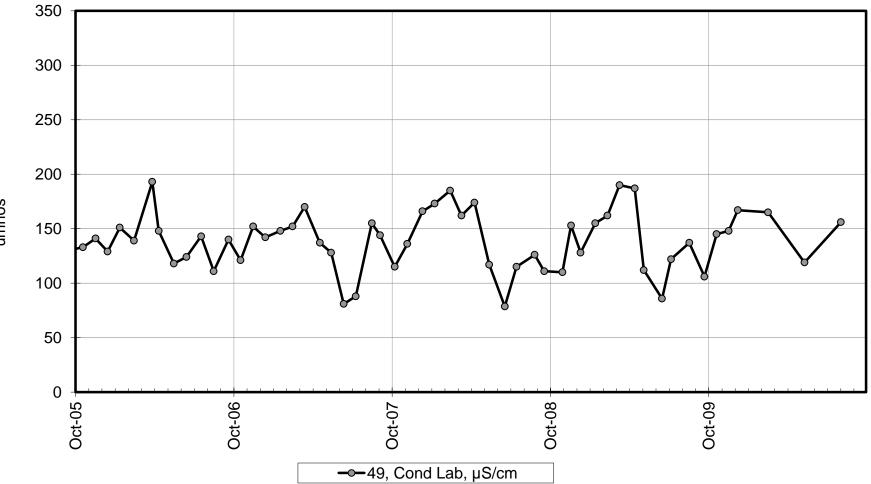
For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

Shaded data has been qualified as an outlier by HGCMC and removed from any further analysis and is not included into the calculation of the median

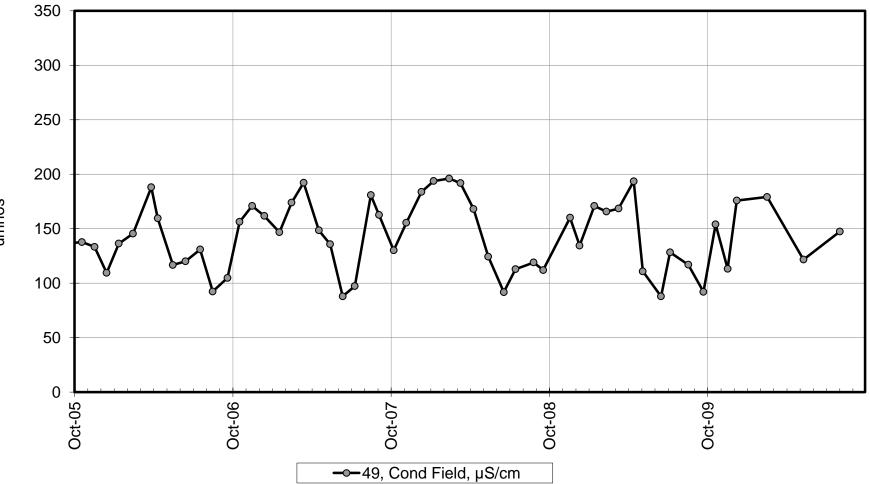

Qualified Data by QA Reviewer

Date Range: 10/01/2009 to 09/30/2010

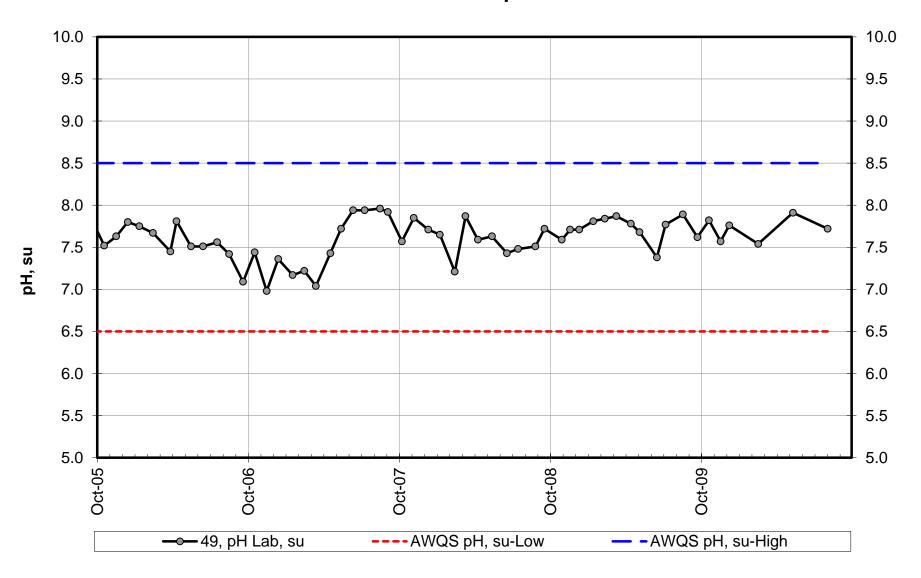

Site No.	Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier
9	10/20/2009	12:00 AM		l		
			Pb diss, µg/l	0.00346	U	Field Blank Contamination
			Zn diss, µg/l	2.2	U	Field Blank Contamination
)	11/17/2009	12:00 AM				
			Alk Tot,mg/l	61.6	J	Temperature Exceedance
			Cond, µs/cm	148	J	Temperature Exceedance
			Pb diss, µg/l	0.00419	U	Field Blank Contamination
			Zn diss, µg/l	2.57	U	Field Blank Contamination
			pH Lab, su	7.57	J	Hold Time Violation
9	12/8/2009	12:00 AM				
			Pb diss, µg/l	0.00763	U	Field Blank Contamination
9	2/16/2010	12:00 AM				
			Cu diss, µg/l	0.553	U	Field Blank Contamination
			Pb diss, µg/l	0.0767	U	Field Blank Contamination
			Se diss, µg/l	1.09	J	LCS Recovery
Ð	5/11/2010	3:47 PM				
			Pb diss, µg/l	0.0033	U	Field Blank Contamination
			SO4 Tot, mg/l	7.8	J	Sample Temperature
9	8/3/2010	12:48 PM				
			Pb diss, µg/l	0.00422	U	Field Blank Contamination
			Zn diss, µg/l	1.79	U	Field Blank Contamination
			SO4 Tot, mg/l	12.4	J	Sample Temperature

Qualifier	Description
J	Positively Identified - Approximate Concentration
Ν	Presumptive Evidence For Tentative Identification
NJ	Tentatively Identified - Approximate Concentration
R	Rejected - Cannot be Verified
U	Not Detected Above Quantitation Limit
UJ	Not Detected Above Approximate Quantitation Limit

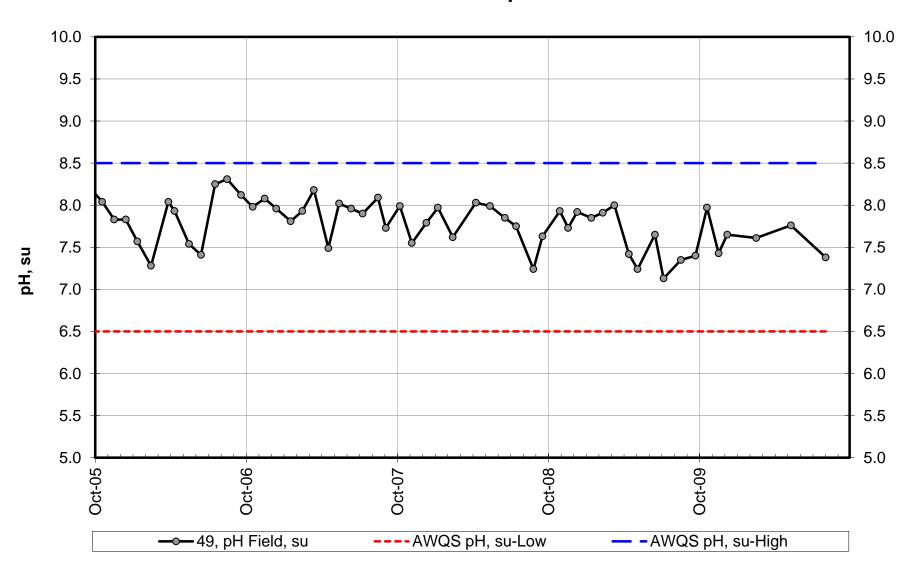
Site 49 -Water Temperature



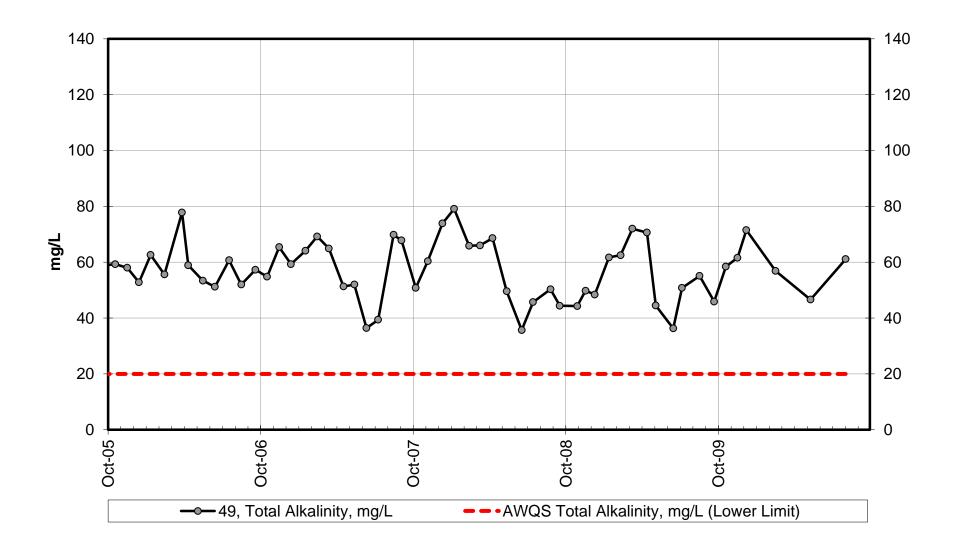
Site 49 - Conductivity-Lab

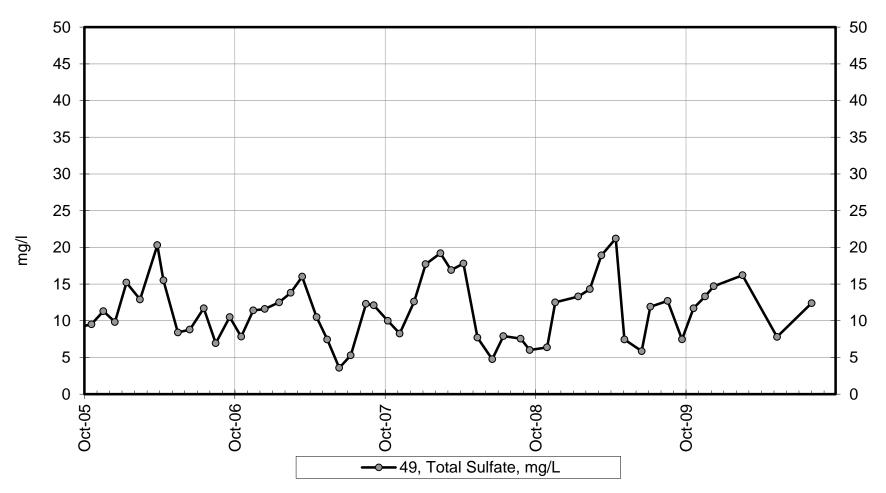

soyun

Site 49 - Conductivity-Field

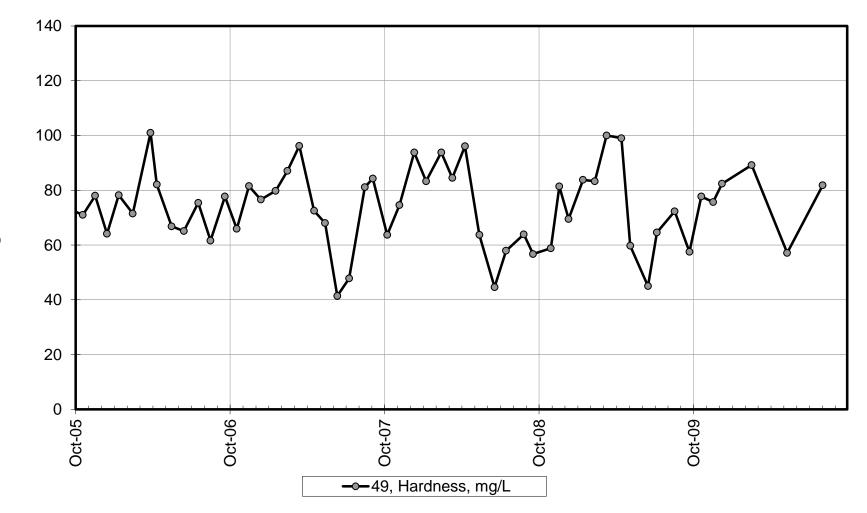


soyun

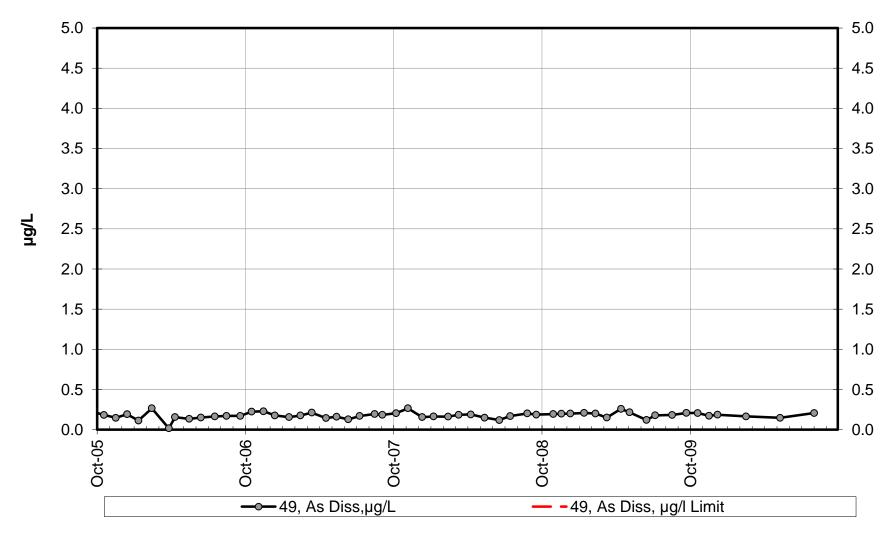

Site 49 - Lab pH


Site 49 - Field pH

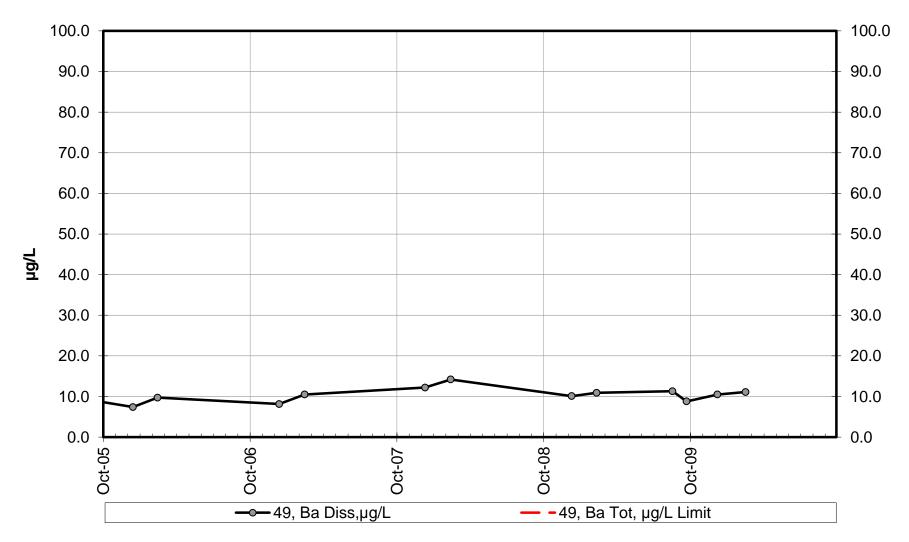
Site 49 - Total Alkalinity



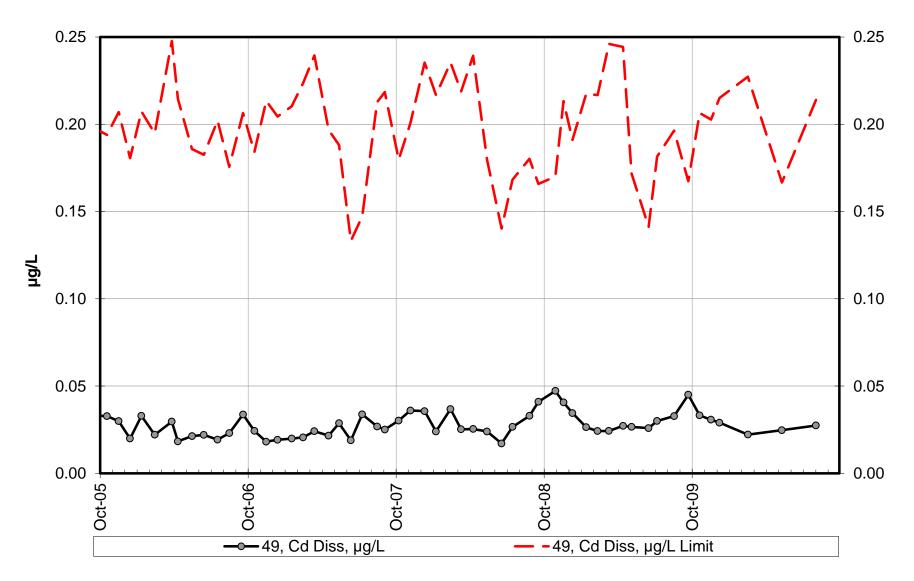
Site 49 - Total Sulfate


Note: The AWQS for Total Sulfate is 250 mg/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination.

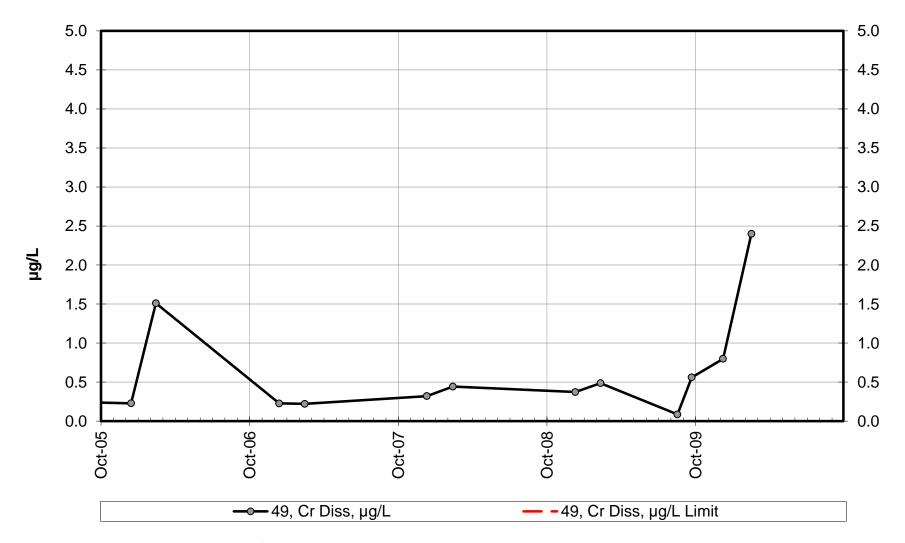
Site 49 - Hardness


mg/L

Site 49 - Dissolved Arsenic

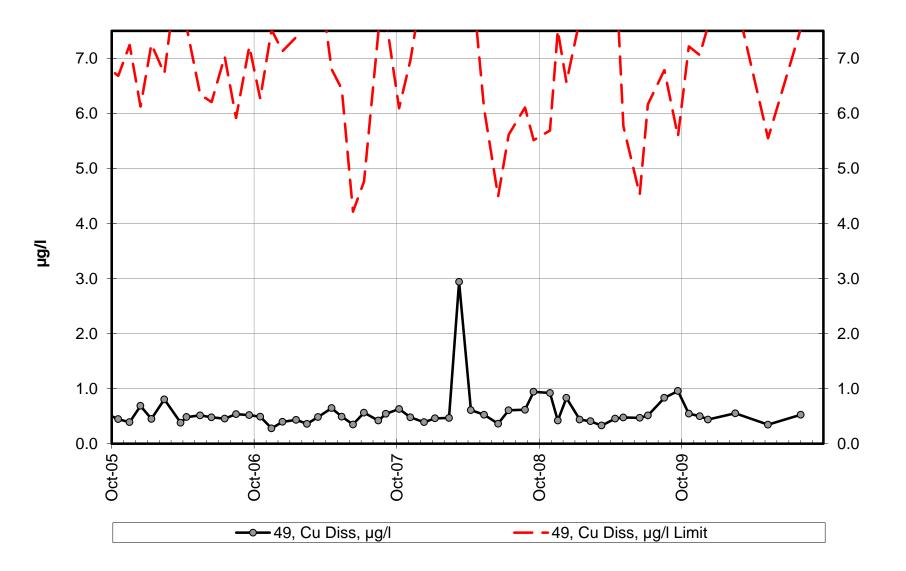

Note: The AWQS for total arsenic is 10 ug/L and thus may not be shown on this graph in order to allow greater visual detail of plotted values for trend determination

Site 49 - Dissolved Barium

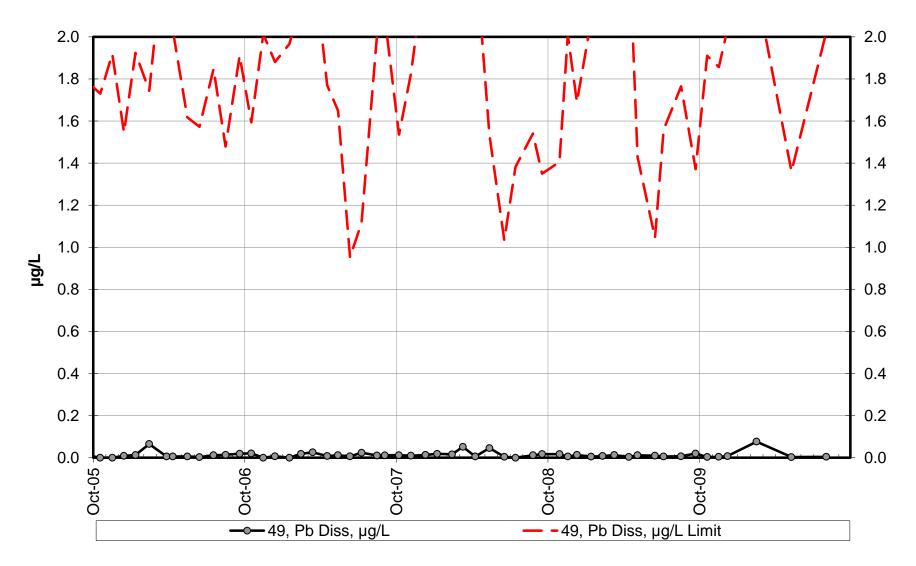


Note: the AWQS for Total Barium is 1000 ug/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination

Site 49 - Dissolved Cadmium



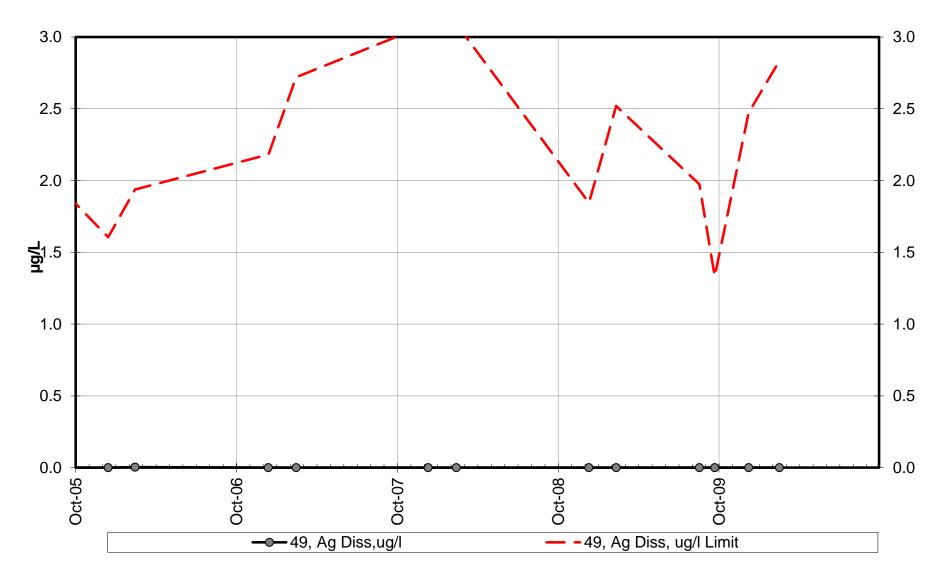
Site 49 - Dissolved Chromium



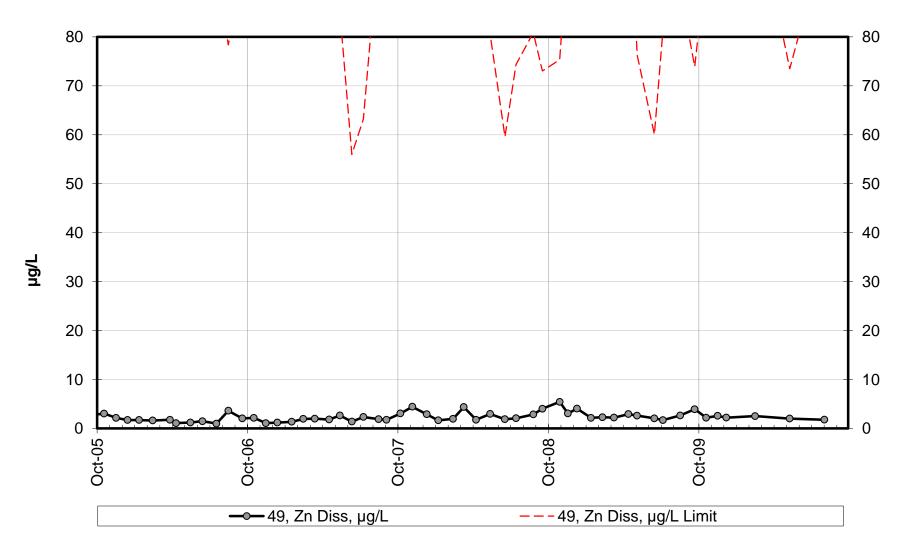
Note: the AWQS for Dissolved Chromium is 11 µg/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination

Site 49 - Dissolved Copper

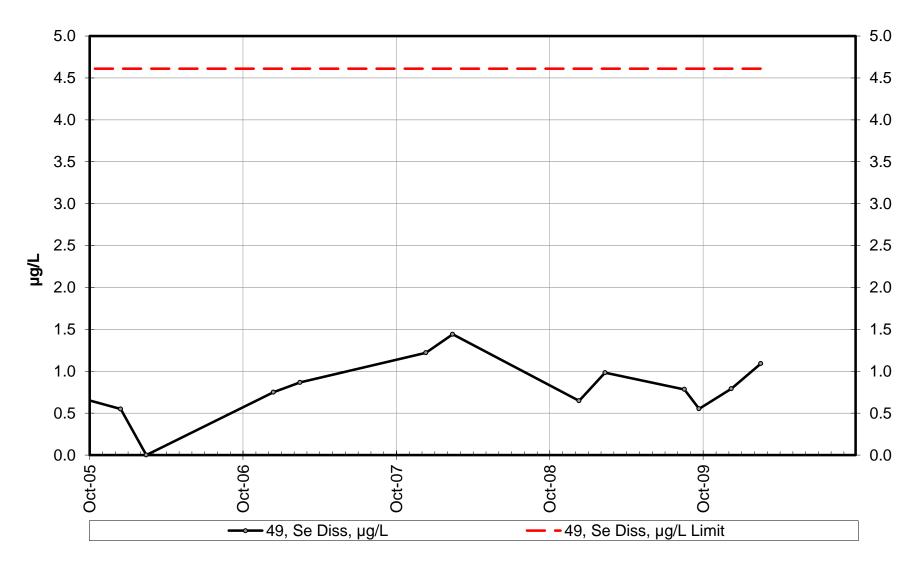
Site 49 - Dissolved Lead

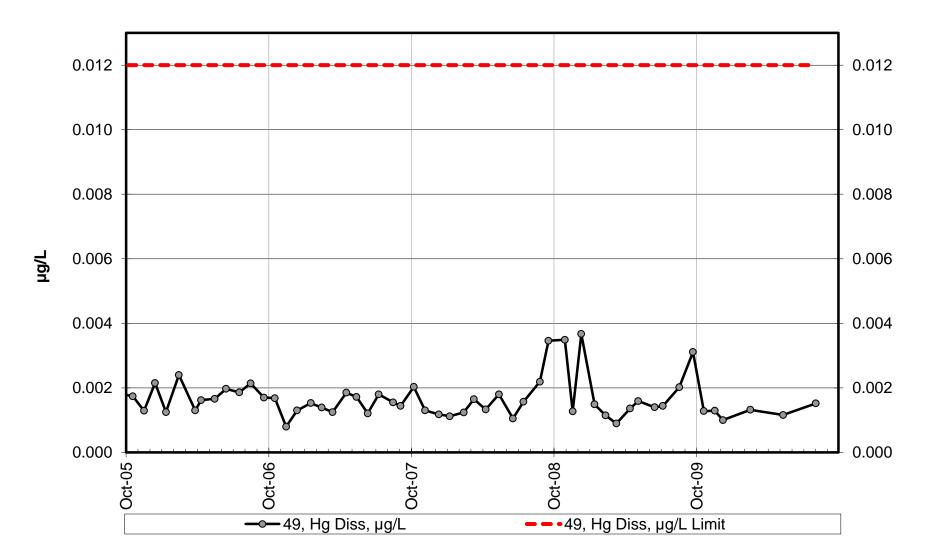


Site 49 - Dissolved Nickel

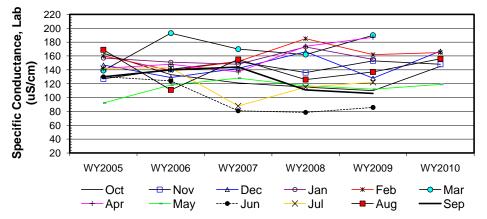


Note: The AWQS for dissolved nickel is hardness dependant and varies between 16 ug/L and 128 ug/L for waters with hardness values of 25 mg/L and 400 mg/L respectively. The AWQS, which would plot above the upper value on the Y-axis, are not shown on this graph to allow for greater visual detail of the plotted values.


Site 49 - Dissolved Silver

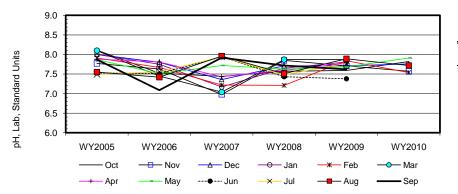

Site 49 - Dissolved Zinc

Site 49 - Dissolved Selenium



Site 49 - Dissolved Mercury

Site	#49	Seasonal Kendall analysis for Specific Conductance, Lab (uS/cm)											
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2005	164	127	147	157	160	139	142	92.2	130	142	169	130
b	WY2006	133	141	129	151	139	193	148	118	124	143	111	140
С	WY2007	121	152	142	148	152	170	137	128	80.9	87.9	155	144
d	WY2008	115	136	166	173	185	162	174	117	78.6	115	126	111
e	WY2009	110	153	128	155	162	190	187	112	85.8	122	137	106
f	WY2010	145	148	167		165		-	119			156	
	n	6	6	6	5	6	5	5	6	5	5	6	5
•	t,	5	5	5	5	5	5	5	5	5	5	5	5
	t ₂	0	0	0	0	0	0	0	0	0	0	0	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t ₄	0	0	0	0	0	0	0	0	0	0	0	0
	t ₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a	-1	1	-1	-1	-1	1	1	1	-1	1	-1	1
	c-a	-1	1	-1	-1	-1	1	-1	1	-1	-1	-1	1
	d-a	-1	1	1	1	1	1	1	1	-1	-1	-1	-1
	e-a	-1	1	-1	-1	1	1	1	1	-1	-1	-1	-1
	f-a	-1	1	1		1			1			-1	
	c-b	-1	1	1	-1	1	-1	-1	1	-1	-1	1	1
	d-b	-1	-1	1	1	1	-1	1	-1	-1	-1	1	-1
	e-b	-1	1	-1	1	1	-1	1	-1	-1	-1	1	-1
	f-b	1	1	1	1	1		1	1	4		1	
	d-c	-1 -1	-1	-1	1	1	-1 1	1	-1 -1	-1 1	1	-1 -1	-1 -1
	e-c f-c	-1	-1	-1	1	1		1	-1		1	-1	-1
	e-d	-1	-1	-1	-1	-1	1	1	-1	1	1	1	-1
	f-d	1	1	1		-1			1			1	
-	f-e	1	-1	1		1			1			1	
	S _k	-7	7	3	0	7	2	6	3	-6	-2	1	-4
σ	² s=	28.33	23.33	28.33	16.67	28.33	16.67	16.67	28.33	16.67	16.67	28.33	16.67
	s– S _k /σ _s	-1.32	1.45	0.56	0.00	1.32	0.49	1.47	0.56	-1.47	-0.49	0.19	-0.98
2	Z ² k	1.73	2.10	0.32	0.00	1.73	0.24	2.16	0.32	2.16	0.24	0.04	0.96
	$\Sigma Z_k =$	1.78	[Tie Extent	t1	t ₂	t ₃	t4	t ₅			Σn	66
	$\Sigma Z_k^2 =$	11.99		Count	60	0	0	0	0			ΣS_k	10
Z	 Z-bar=∑Z _k /K=	0.15	L										


$\chi^2_h = \Sigma Z^2_k$	$\chi^2_{h} = \Sigma Z^2_{k} - K(Z-bar)^2 = 11.72$		@ $\alpha = 5\% \chi^2_{(K-1)} = 19.68$	Test for station homogeneity
	р	0.385		$\chi^2_{h} < \chi^2_{(K-1)}$ ACCEPT
$\Sigma VAR(S_k)$	\mathbf{Z}_{calc}	0.55	@α/2=2.5% Z = 1.96	H ₀ (No trend) ACCEPT
265.00	р	0.710		H _A (± trend) REJECT

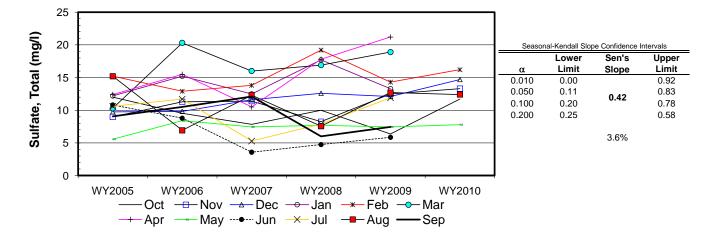
Seasonal-Kendall Slope Confidence Intervals										
Lower Sen's Upper α Limit Slope Limit										
Limit	Slope	Limit								
-3.99		5.36								
-2.50	0.75	4.08								
-2.13	0.75	3.72								
-0.50		2.92								
	Lower Limit -3.99 -2.50 -2.13	Lower Sen's Limit Slope -3.99 -2.50 -2.13 0.75								

Site	#49	_					•			dard Unit			-
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
a	WY2005	8.1	7.8	8.0	8.0	7.9	8.1	7.9	7.9	7.5	7.5	7.6	7.9
b	WY2006	7.5	7.6	7.8	7.8	7.7	7.5	7.8	7.5	7.5	7.6	7.4	7.1
C	WY2007	7.4	7.0	7.4	7.2	7.2	7.0	7.4	7.7	7.9	7.9	8.0	7.9
d	WY2008	7.6	7.9	7.7	7.7	7.2	7.9	7.6	7.6	7.4	7.5	7.5	7.7
e f	WY2009 WY2010	7.6 7.8	7.7 7.6	7.7 7.8	7.8	7.8 7.5	7.9	7.8	7.7 7.9	7.4	7.8	7.9 7.7	7.6
1	n	6	6	6	5	6	5	5	6	5	5	6	5
	4	5	5	3	5	5	3	5	5	5	5	5	5
	t₁ +	0	0	3 1	0	0	3 1	0	0	0	0	0	(
	t ₂ t ₃	0	0	0	0	0	0	0	0	0	0	0	C
	t _a	0	0	0	0	0	0	0	0	0	0	0	0
	t _s	0	0	0	0	0	0	0	0	0	0	0	C
	b-a	-1	-1	-1	-1	-1	-1	-1	-1	-1	1	-1	-1
	c-a	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1
	d-a	-1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
	e-a	-1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	-1
	f-a	-1	-1	-1		-1			1			1	
	c-b	-1	-1	-1	-1	-1	-1	-1	1	1	1	1	1
	d-b	1	1	-1	-1	-1	1	-1	1	-1	-1	1	1
	e-b	1	1	-1	1	1	1	-1	1	-1	1	1	1
	f-b	1	-1	-1		-1			1			1	
	d-c	1	1	1	1	-1	1	1	-1	-1	-1	-1	-1
	e-c	1	1	1	1	1	1	1	-1	-1	-1	-1	-1
	f-c	1	1	1		1			1			-1	
	e-d	1	-1	0	1	1	0	1	1	-1	1	1	-1
	f-d f-e	1 1	-1 -1	1		1 -1			1			1 -1	
•	S _k	3	-3	-4	-2	-5	-1	-4	3	-6	2	3	-2
σ	² _s =	28.33	23.33	27.33	16.67	28.33	15.67	16.67	28.33	16.67	16.67	28.33	16.67
	s– S _k /σ _s	0.56	-0.62	-0.77	-0.49	-0.94	-0.25	-0.98	0.56	-1.47	0.49	0.56	-0.49
Z	2 - k	0.32	0.39	0.59	0.24	0.88	0.06	0.96	0.32	2.16	0.24	0.32	0.24
	$\Sigma Z_k =$	-3.83	[]	Tie Extent	t,	t ₂	t ₃	t4	t ₅			Σn	66
	$\Sigma Z_k^2 =$	6.71		Count	56	2	0	0	0			ΣS_k	-16
7	-bar=∑Z₂/K=	-0.32	L										

 $\chi^2_{h=\Sigma}Z^2_{k}-K(Z-bar)^2=$ @ $\alpha = 5 \% \chi^2_{(K-1)} =$ 19.68 Test for station homogeneity 5.49 р 0.905 χ²h<χ²(K-1) ACCEPT $\Sigma VAR(S_k)$ Z_{calc} -0.92 @ $\alpha/2=2.5\%$ Z= 1.96 H₀ (No trend) ACCEPT 263.00 0.177 H_A (± trend) REJECT р

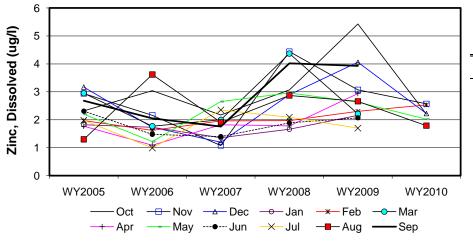
Seasona	Seasonal-Kendall Slope Confidence Intervals										
Lower Sen's U											
α	Limit	Slope	Limit								
0.010	-0.05		0.03								
0.050	-0.05	-0.02	0.02								
0.100	-0.04	-0.02	0.01								
0.200	-0.03		0.00								

Site #49


Seasonal Kendall analysis for Total Alk, (mg/l)

Sile	#49				Season	aintenua	all allalys		lai Air,	(mg/i)			
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2005	77.5	60.6	70.4	78.3	83.7	70.4	74.4	48.8	63.8	64.6	74.2	58.7
b	WY2006	59.3	58.0	52.8	62.6	55.6	77.8	58.9	53.4	51.2	60.7	52.0	57.3
С	WY2007	54.8	65.4	59.3	64.1	69.2	64.9	51.3	52.0	36.4	39.4	69.8	67.8
d	WY2008	50.8	60.4	73.9	79.1	65.9	66.0	68.6	49.6	35.7	45.7	50.3	44.4
е	WY2009	44.3	49.8	48.4	61.7	62.5	72.0	70.6	44.5	36.3	50.8	55.1	45.9
f	WY2010	58.4	61.6	71.5		56.9			46.6			61.1	
	n	6	6	6	5	6	5	5	6	5	5	6	5
	t₁ t	5 0	5 0	5 0	5 0	5 0	5 0	5 0	5 0	5 0	5 0	5 0	5 0
	t₂ t₃	0	0		0	0	0	0	0	0	0	0	0
	t₄	0	0		0	0	0	0	0	0	0	0	0
	t₅	0	0		0	0	0	0	0	0	0	0	0
	b-a	-1	-1	-1	-1	-1	1	-1	1	-1	-1	-1	-1
	c-a	-1	1	-1	-1	-1	-1	-1	1	-1	-1	-1	1
	d-a	-1	-1	1	1	-1	-1	-1	1	-1	-1	-1	-1
	e-a	-1	-1	-1	-1	-1	1	-1	-1	-1	-1	-1	-1
	f-a	-1	1	1		-1			-1			-1	
	c-b	-1	1	1	1	1	-1	-1	-1	-1	-1	1	1
	d-b	-1	1	1	1	1	-1	1	-1	-1	-1	-1	-1
	e-b	-1	-1	-1	-1	1	-1	1	-1	-1	-1	1	-1
	f-b	-1	1	1		1			-1			1	
	d-c	-1	-1	1	1	-1	1	1	-1	-1	1	-1	-1
	e-c	-1	-1	-1	-1	-1	1	1	-1	-1	1	-1	-1
	f-c	1	-1	1		-1			-1			-1	
	e-d	-1	-1	-1	-1	-1	1	1	-1	1	1	1	1
	f-d	1	1	-1		-1			-1			1	
	f-e	1	1	1		-1			1			1	
	S _k	-9	-1	1	-2	-7	0	0	-7	-8	-4	-3	-4
σ	2 _s =	28.33	23.33	28.33	16.67	28.33	16.67	16.67	28.33	16.67	16.67	28.33	16.67
	s– S _k /σ _s	-1.69	-0.21	0.19	-0.49	-1.32	0.00	0.00	-1.32	-1.96	-0.98	-0.56	-0.98
	Z ² _k	2.86	0.04	0.04	0.24	1.73	0.00	0.00	1.73	3.84	0.96	0.32	0.96
	$\Sigma Z_k =$	-9.31		Tie Extent	t,	t ₂	t ₃	t ₄	t ₅			Σn	66
	$\Sigma Z_k^2 =$	12.71		Count	60	0	0	0	0			ΣS_k	-44
Z	-bar=∑Z _k /K=	-0.78											
1	2 572	<u>//7 \2</u>	= 10		- 50		10.00						
	$\chi_{h}=\Sigma Z_{k}^{-1}$	K(Z-bar) ² =	5.49	L L	@α=5%	% χ ² _(K-1) =	19.68			ion homoge			
		р	0.905					χ	² _h <χ ² _(K-1)		ACCEPT		
	$\Sigma VAR(S_k)$	\mathbf{Z}_{calc}	-2.64		@α/2=	2.5% Z=	1.96		H ₀ (No		REJECT		
	265.00	р	0.004						H _A (± t	rend) <mark>/</mark>	ACCEPT		
90 т													
80 -	*												
70						\searrow	P	A					
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										Seasonal	Kendall Slope	Confidence I	ntervals
S 60					\times		*				Lower	Sen's	Upper
- Bu				\leq						α	Limit	Slope	Limit
こ ₅₀										0.010	-3.99		-0.31
≚ I	-				X				,	0.050	-3.42	-2.07	-1.15
₹ 40				·····			-			0.100	-3.30	-2.07	-1.34
ta				•••••••	•		•••••			0.200	-2.88		-1.47
Total Alk, (mg/l) 05 09 09 09 09 09 09 09 00 00 00 00 00 00	-												
20 -												-3.5%	
10					1			1					
	WY2005	WY	2006	WY2007	WY2	800	WY2009	WY2	010				
		+	– Nov			lan	Eah		Mar				
	—— Oc —— Ap		– Nov – May	— <u> </u>			— × — Feb —■— Aug		- Mar - Sep				
	, (p			Carr			,	,	P				

Site	#49			S	easonal	Kendall	analysis	for Sulf	ate, Tota	al (mg/l)			
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
а	WY2005	12.0	9.0	9.8	12.2	15.2	10.3	12.4	5.6	10.8	10.6	15.2	9.1
b	WY2006	9.5	11.3	9.8	15.2	12.9	20.3	15.5	8.4	8.8	11.7	6.9	10.5
С	WY2007	7.8	11.4	11.6	12.5	13.8	16.0	10.5	7.5	3.6	5.3	12.3	12.1
d	WY2008	10.0	8.3	12.6	17.7	19.2	16.9	17.8	7.7	4.8	7.9	7.6	6.0
е	WY2009	6.4	12.5	12.1	13.3	14.3	18.9	21.2	7.5	5.9	11.9	12.7	7.5
f	WY2010	11.7	13.3	14.7		16.2			7.8			12.4	
	n	6	6	6	5	6	5	5	6	5	5	6	5
	t,	5	5	5	5	5	5	5	3	5	5	5	5
	t ₂	0	0	0	0	0	0	0	1	0	0	0	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t ₄	0	0	0	0	0	0	0	0	0	0	0	0
	t₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a	-1	1	1	1	-1	1	1	1	-1	1	-1	1
	c-a	-1	1	1	1	-1	1	-1	1	-1	-1	-1	1
	d-a	-1	-1	1	1	1	1	1	1	-1	-1	-1	-1
	e-a	-1	1	1	1	-1	1	1	1	-1	1	-1	-1
	f-a	-1	1	1		1			1			-1	
	c-b	-1	1	1	-1	1	-1	-1	-1	-1	-1	1	1
	d-b	1	-1	1	1	1	-1	1	-1	-1	-1	1	-1
	e-b	-1	1	1	-1	1	-1	1	-1	-1	1	1	-1
	f-b	1	1	1		1			-1			1	
	d-c	1	-1	1	1	1	1	1	1	1	1	-1	-1
	e-c	-1	1	1	1	1	1	1	0	1	1	1	-1
	f-c	1	1	1		1			1			1	
	e-d	-1	1	-1	-1	-1	1	1	-1	1	1	1	1
	f-d f-e	1 1	1	1		-1 1			1			1 -1	
	S _k	-3	9	13	4	5	4	6	4	-4	2	1	-2
	σ ² s=	28.33	23.33	28.33	16.67	28.33	16.67	16.67	27.33	16.67	16.67	28.33	16.67
	s_ S _k /σ _s	-0.56	1.86	2.44	0.98	0.94	0.98	1.47	0.77	-0.98	0.49	0.19	-0.49
	Z ² _k	0.32	3.47	5.96	0.96	0.88	0.96	2.16	0.59	0.96	0.24	0.04	0.24
	$\Sigma Z_k =$	8.08	I	Tie Extent	t ₁	t ₂	t ₃	t4	t ₅			Σn	66
	ΣZ_{k}^{2}	16.78		Count	58	1	0	0	0			ΣS_k	39
7	Z-bar=ΣZ _ν /K=	0.67	L				-	-	-			- K	2.0


Z-bar= $\Sigma Z_k/K$ = 0.67

$\chi^{2}_{h} = \Sigma Z^{2}_{k} - K(Z-bar)^{2} = 11.33$			@α=5% χ ² _(K-1) = 19.68		Test for station home	ogeneity	
	р	0.416	_			$\chi^2_h < \chi^2_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	Z_{calc}	2.34		@α=5% Z=	1.64	H₀ (No trend)	REJECT
264.00	р	0.990	-			H _A (± trend)	ACCEPT

Site	#49			Se	easonal	Kendall	analysis	for Zinc	, Dissolv	ed (ug/l)			
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
а	WY2005	2.3	2.9	3.2	1.8	2.0	3.0	1.8	2.2	2.3	2.0	1.3	2.
b	WY2006	3.0	2.2	1.7	1.7	1.6	1.8	1.1	1.2	1.5	1.0	3.6	2.
C	WY2007	2.2	1.1	1.2	1.4	2.0	2.0	1.8	2.7	1.4	2.4	1.9	1.8
d	WY2008	3.1	4.4	2.9	1.7	2.0	4.4	1.8	3.0	1.9	2.1	2.9	4.0
e	WY2009	5.4	3.1	4.1	2.2	2.3	2.2	2.9	2.6	2.1	1.7	2.7	3.9
f	WY2010	2.2	2.6	2.2		2.5			2.0			1.8	
	n	6	6	6	5	6	5	5	6	5	5	6	:
	t,	5	5	5	5	3	5	5	5	5	5	5	:
	t ₂	0	0	0	0	1	0	0	0	0	0	0	(
	t ₃	0	0	0	0	0	0	0	0	0	0	0	(
	t ₄	0	0	0	0	0	0	0	0	0	0	0	(
	t _s	0	0	0	0	0	0	0	0	0	0	0	(
	b-a	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	1	-*
	c-a	-1	-1	-1	-1	-1	-1	1	1	-1	1	1	-1
	d-a	1	1	-1	-1	0	1	1	1	-1	1	1	
	e-a	1	1	1	1	1	-1	1	1	-1	-1	1	
	f-a	-1	-1	-1		1			-1			1	
	c-b	-1	-1	-1	-1	1	1	1	1	-1	1	-1	-1
	d-b	1	1	1	-1	1	1	1	1	1	1	-1	1
	e-b	1	1	1	1	1	1	1	1	1	1	-1	1
	f-b	-1	1	1		1			1			-1	
	d-c	1	1 1	1	1	1	1 1	-1	1 -1	1	-1 -1	1	
	e-c	1	1	1	1	1	I	1	-1	I	-1	1 -1	1
	f-c e-d	1	-1	1	1	1	-1	1	-1	1	-1	-1 -1	-^
	f-d	-1	-1	-1	1	1	-1	I	-1		-1	-1 -1	-
	f-e	-1	-1	-1		1			-1			-1	
·	S _k	3	1	1	0	10	2	6	1	0	0	-1	2
σ	² s=	28.33	23.33	28.33	16.67	27.33	16.67	16.67	28.33	16.67	16.67	28.33	16.67
	S _k /σ _s	0.56	0.21	0.19	0.00	1.91	0.49	1.47	0.19	0.00	0.00	-0.19	0.49
Z	<mark>7² k</mark>	0.32	0.04	0.04	0.00	3.66	0.24	2.16	0.04	0.00	0.00	0.04	0.24
	$\Sigma Z_k =$	5.32	1	Tie Extent	t,	t ₂	t ₃	t ₄	t ₅			Σn	66
	ΣZ_{k}^{2}	6.76		Count	58	1	0	0	0			ΣS_k	25
-		0.44	L			-	-	-	-			— - K	_0

$\chi^2_{h}=\Sigma Z^2_{k}-K(Z-bar)^2=4.41$		@α=5% χ ² _(K-1) = 19.68		Test for station home	ogeneity	
	р	0.957			χ ² h<χ ² (K-1)	ACCEPT
$\Sigma VAR(S_k)$	Z_{calc}	1.48	@α/2=2.5% Z=	1.96	H ₀ (No trend)	ACCEPT
264.00	р	0.930			H _A (± trend)	REJECT

Seasona	al-Kendall Slop	e Confidence	Intervals
	Lower	Sen's	Upper
α	Limit	Slope	Limit
0.010	-0.04		0.23
0.050	-0.01	0.11	0.21
0.100	0.01	0.11	0.19
0.200	0.03		0.17
0.200	0.05		0.17

INTERPRETIVE REPORT SITE 46 "LOWER BRUIN CREEK"

The data collected during the current water year are listed in the following "Table of Results for Water Year 2010" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the rightmost column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

All data collected at this site for the past six years are included in the data analyses. As shown in the table below, there were no data outliers.

Sample Date	Parameter	Value	Qualifier	Notes	
No outliers have	been identified by HG	CMC for the perio	od of October	r 2005 through September 20010.	

The data for Water Year 2010 have been compared to the strictest fresh water quality criterion for each applicable analyte. No results exceeding these criteria have been identified as listed in the table below.

Sample Date	Parameter	Value	Hardness (mg/L)	Standard	Standard Type
No exceedances have been identified by HGCMC for the period of Oct-09 though Sept-10.					

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. These plots have been visually analyzed for the appearance of any trend in concentration. There was an identifiable trend in dissolved chromium. Between Water Year 2009 and Water Year 2010 there was roughly an order of magnitude increase in the dissolved chromium concentration. A similar increase was also noted for Site 6, Site 13, Site 46, Site 48, Site 49, and Site 54; all sites that are located in the 920 area.

A non-parametric statistical analysis for trend was performed for conductivity, pH, alkalinity, sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall

analyses are presented on the pages following this interpretive section. The following table summarizes the results on the data collected between Oct-04 and Sep-10 (WY2005-WY2010). Datasets with a statistically significant trend ($\alpha/2=2.5\%$) a

Site 46-WY2010, summary statistics for trend analysis.

M	ann-K	endall test	Sen's slope estimate		
Parameter	N(1)	1) p(2) Tren		Q	Q(%)
Conductivity, Lab	6	0.44	0		
pH, Lab	6	0.27	0		
Alkalinity, Total	6	0.01	-	-1.44	-2.4
Sulfate, Total	6	0.78	0		
Zinc, Dissolved	6	0.91	0		
(1): Number of ye	(2):Signif	icance lev	/el		

Seasonal-Sen's Slope estimate statistic has also been calculated.

The dataset for total alkalinity has a statistically significant (p=0.01) negative trend with a slope estimate of -1.44 mg/L/yr or a -2.4% decrease over the period. This trend is similar in magnitude and direction as noted for the upgradient control Site 49 and therefore is interpreted as natural variation.

A comparison of median values for alkalinity, laboratory pH, laboratory conductivity, sulfate, and dissolved zinc between Site 49 and Site 46 has been conducted as specified in the Statistical Information Goals for Site 46. Additionally, X-Y plots have been generated for alkalinity, pH, conductance, sulfate, and dissolved zinc that co-plot data from Site 46 and Site 49, the upstream control site, to aid in the comparison between those sites. Calculation details of the non-parametric signed-rank tests are presented in detail on the pages following this interpretive section. The below table summarizes the results of the signed-rank test as performed on the Water Year 2010 data set. For all of the analytes, except pH, there were no statistically significant differences between the measured median values at a significance level of α =0.05 for a one-tailed test.

Site 40 vs Site 49 - W12010, summary statistics for median analysis.							
Parameter	Signed Ranks p-value	Site 49 median	Site 46 median	Median of Differences			
Conductivity, Lab	0.16	152	154	-1.0			
pH, Lab	0.97	7.74	7.58	0.21			
Alkalinity, Total	0.00	59.8	61.4	-1.0			
Sulfate, Total	1.00	12.9	12.6	0.3			
Zinc, Dissolved	0.95	2.21	2.00	0.37			

Site 46 vs Site 49 - WY2010, summary statistics for median analysis.

The median values for pH for Site 46 and Site 49 are 7.74 su and 7.58 su respectively and the median of differences, Site 49 minus Site 46, is 0.21 su. This pattern has occurred in 5 of the last 6 FWMP reports (WY 2004 – WY 2010) and has been consistent in the difference between the sites. Given the low magnitude of the difference and the yearly consistency in the difference, this variation is considered a part of the natural variation that can be expected for this type of monitoring.

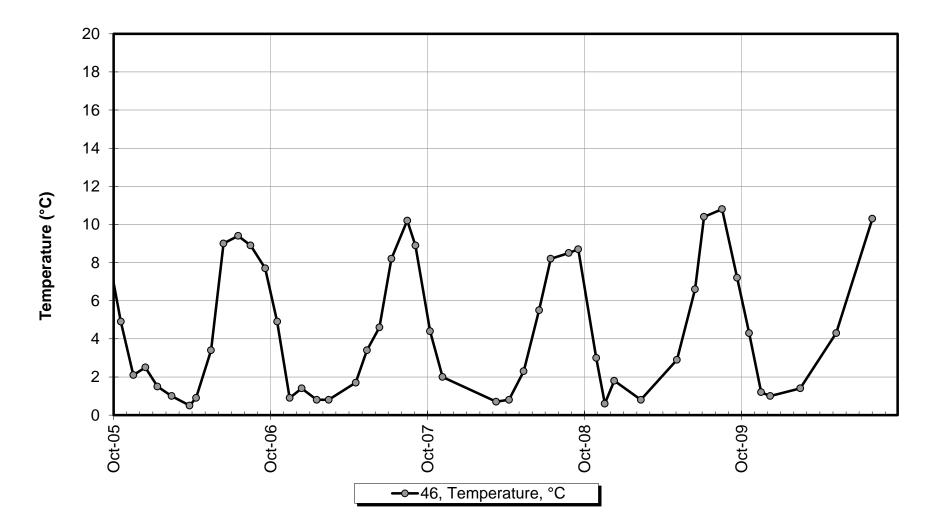
Site 46 "Lower Bruin Greek"													
Sample Date/Parameter	10/20/2009	11/17/2009	12/8/2009	1/12/2010	2/16/2010	3/16/2010	4/6/2010	5/11/2010	6/15/2010	7/13/2010	8/3/2010	9/14/2010	Median
Water Temp (°C)	4.3	1.2	1.0	(7)	1.4	(7)		4.3	c)		10.3	C	2.9
Conductivity-Field(µmho)	157	134	174	UNG.	176	NG		124	5 N		147	D N	152
Conductivity-Lab (µmho)	148	150 J	167		163	Ξ		120	3		157		154
pH Lab (standard units)	7.66	7.71 J	7.50	<u>0</u>	6.51	ᅀ		7.80	MPL		7.03	ב	7.58
pH Field (standard units)	7.89	7.37	7.22	AMPL	6.99	AMPLI		7.74	NN		6.87	AMPL	7.30
Total Alkalinity (mg/L)	59.5	62.7 J	68.7	S	61.4	S		47.4	SA		61.3	S	61.4
Total Sulfate (mg/L)	11.6	13.0	14.1	8	15.1			7.8 J	<u>م</u>		12.2 J	Ŕ	12.6
Hardness (mg/L)	78.9	77.9	83.1	ō	87.5	FOR		57.7	ō		78.9	ō	78.9
Dissolved As (ug/L)	0.263	0.299	0.164	Ĭ.	0.128	ш		0.190	Ŭ		0.198	Ū.	0.194
Dissolved Ba (ug/L)			11.7	8	13.0	Δ			Δ			Δ	12.4
Dissolved Cd (ug/L)	0.025	0.025	0.022	Щ	0.029	Щ		0.020	Щ		0.033	Щ	0.025
Dissolved Cr (ug/L)			0.993	5	4.070	5			F			3	2.532
Dissolved Cu (ug/L)	0.547	0.538	0.493	Δ	0.486 U	ā		0.382	ā		1.560	Δ	0.516
Dissolved Pb (ug/L)	0.0098 U	0.0401	0.0033 U	HED	0.0314 U	SCHEDULED		0.0093 U	SCHED		0.0488		0.0206
Dissolved Ni (ug/L)			1.150	さ	1.230	ち			さ			さ	1.190
Dissolved Ag (ug/L)			<0.003	S	<0.003	ŭ.			S			С	0.002
Dissolved Zn (ug/L)	2.29 U	2.16 U	1.83	.	2.18	 		1.61	<u> </u>		1.83 U	.	2.00
Dissolved Se (ug/L)			0.931	Q	0.932 J	NOT			NOT			ON NO	0.932
Dissolved Hg (ug/L)	0.001360	0.001300	0.001220	Z	0.001130	Z		0.001230	Z		0.001590	Z	0.001265

Site 46 "Lower Bruin Creek"

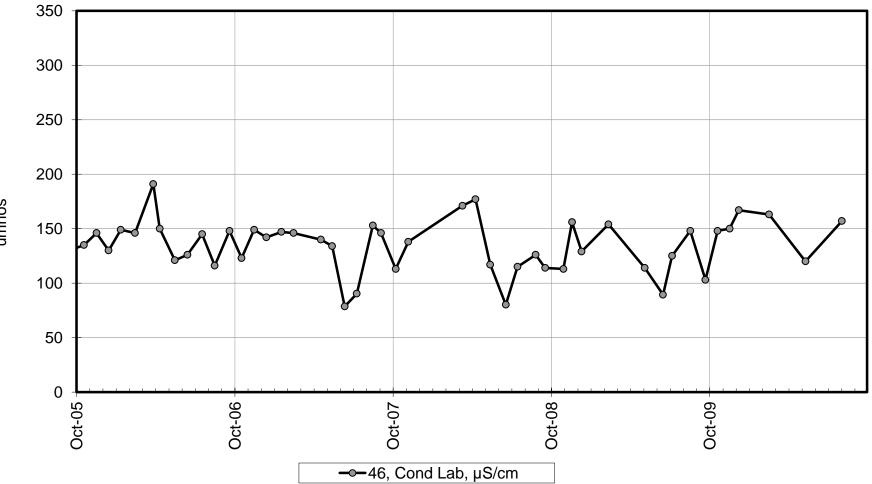
For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

Shaded data has been qualified as an outlier by HGCMC and removed from any further analysis and is not included into the calculation of the median

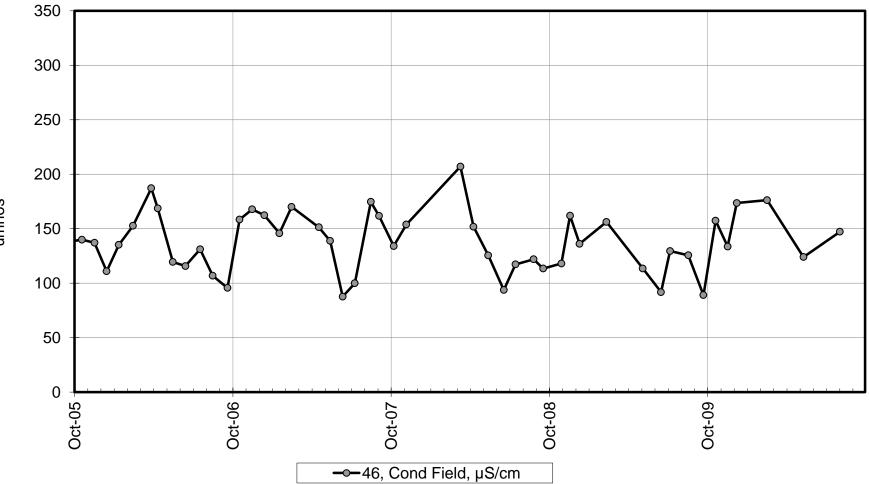

Qualified Data by QA Reviewer

Date Range: 10/01/2009 to 09/30/2010

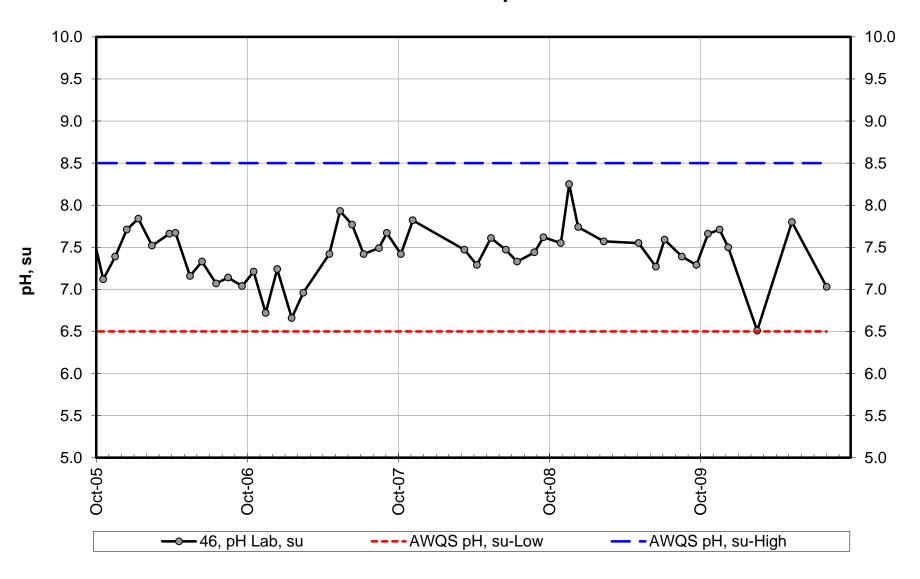

Site No.	Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier
46	10/20/2009	12:00 AM				
			Pb diss, µg/l	0.0098	U	Field Blank Contamination
			Zn diss, µg/l	2.29	U	Field Blank Contamination
16	11/17/2009	12:00 AM				
			Alk Tot,mg/l	62.7	J	Temperature Exceedance
			Cond, µs/cm	150	J	Temperature Exceedance
			Zn diss, µg/l	2.16	U	Field Blank Contamination
			pH Lab, su	7.71	J	Hold Time Violation
16	12/8/2009	12:00 AM				
			Pb diss, µg/l	0.00333	U	Field Blank Contamination
46	2/16/2010	12:00 AM				
			Cu diss, µg/l	0.486	U	Field Blank Contamination
			Pb diss, µg/l	0.0314	U	Field Blank Contamination
			Se diss, µg/l	0.932	J	LCS Recovery
46	5/11/2010	12:27 PM				
			Pb diss, µg/l	0.00934	U	Field Blank Contamination
			SO4 Tot, mg/l	7.8	J	Sample Temperature
46	8/3/2010	10:40 AM				
			Zn diss, µg/l	1.83	U	Field Blank Contamination
			SO4 Tot, mg/l	12.2	J	Sample Temperature

Qualifier	Description
J	Positively Identified - Approximate Concentration
Ν	Presumptive Evidence For Tentative Identification
NJ	Tentatively Identified - Approximate Concentration
R	Rejected - Cannot be Verified
U	Not Detected Above Quantitation Limit
UJ	Not Detected Above Approximate Quantitation Limit

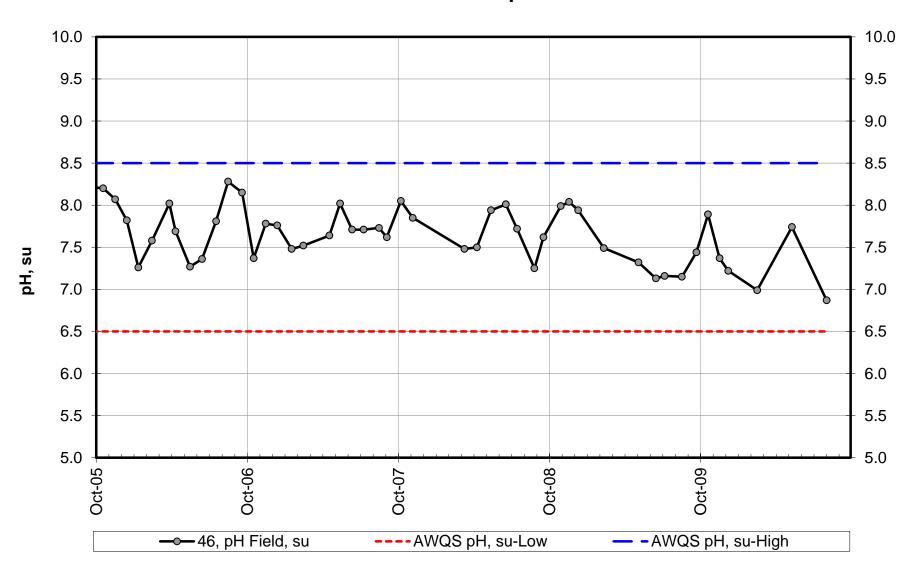
Site 46 -Water Temperature



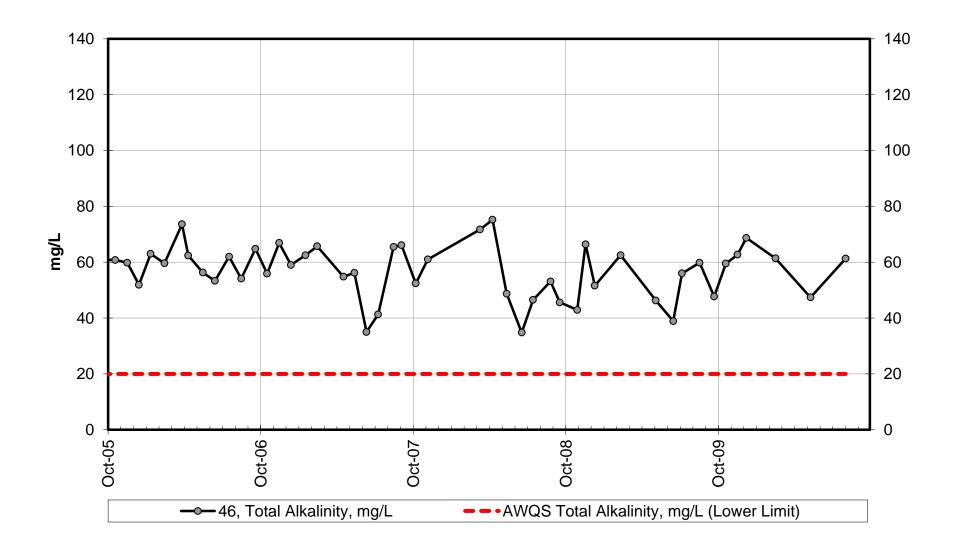
Site 46 - Conductivity-Lab

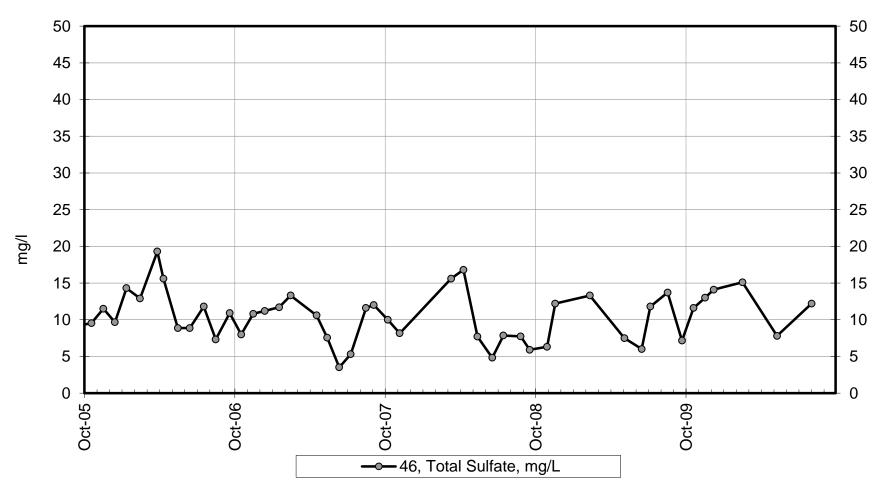

soyun

Site 46 - Conductivity-Field

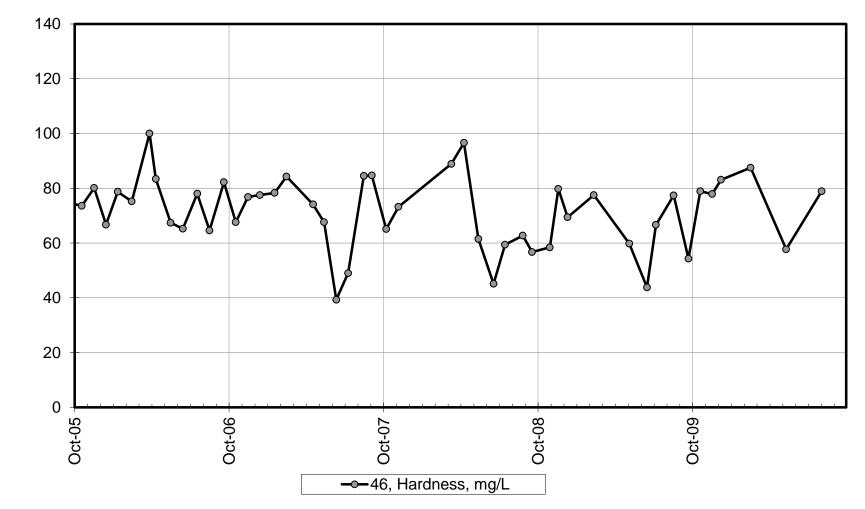


soyun

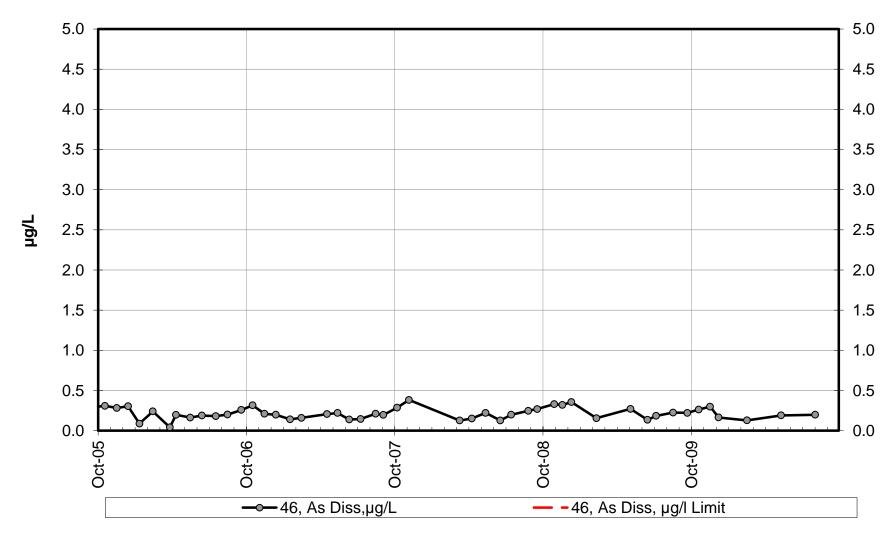

Site 46 - Lab pH


Site 46 - Field pH

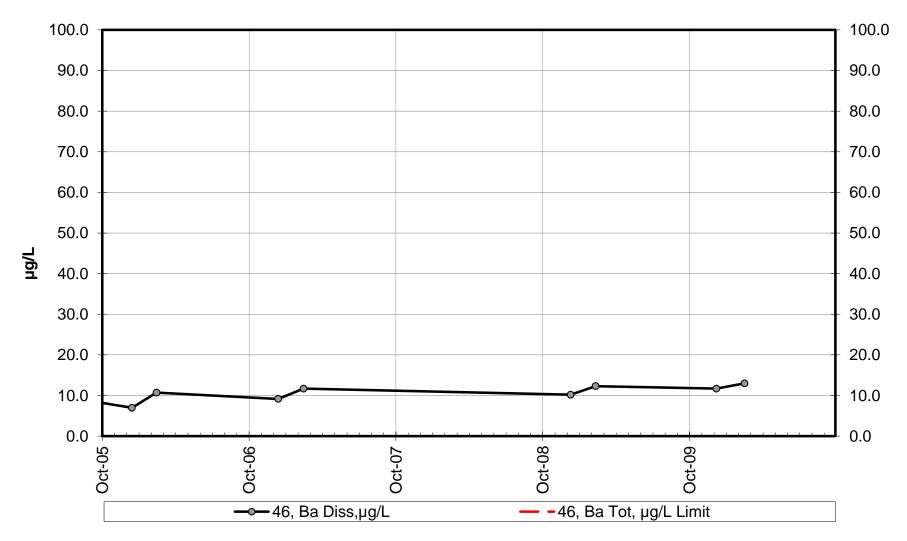
Site 46 - Total Alkalinity



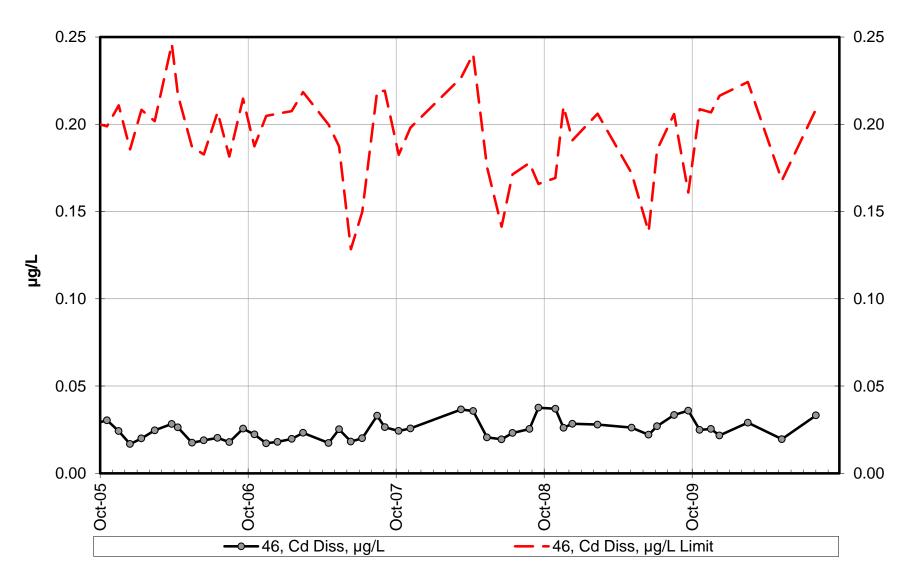
Site 46 - Total Sulfate


Note: The AWQS for Total Sulfate is 250 mg/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination.

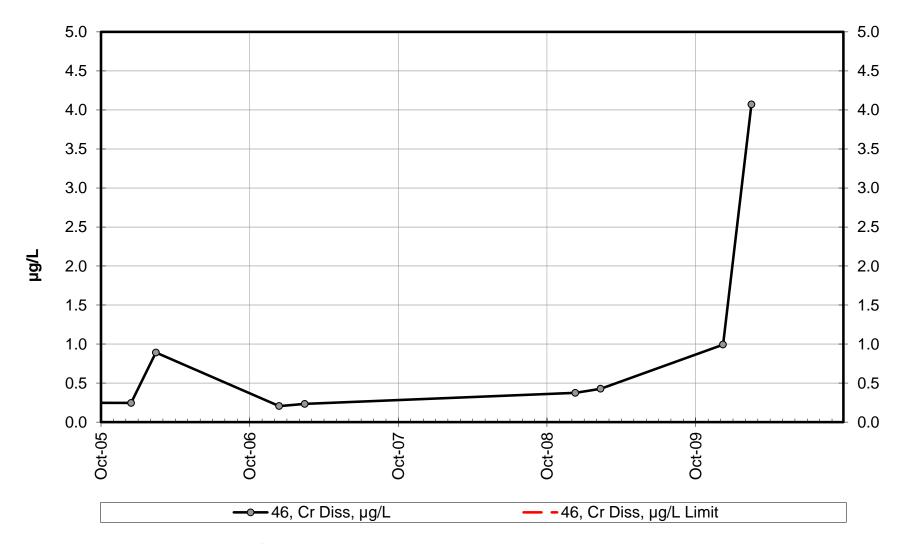
Site 46 - Hardness


mg/L

Site 46 - Dissolved Arsenic

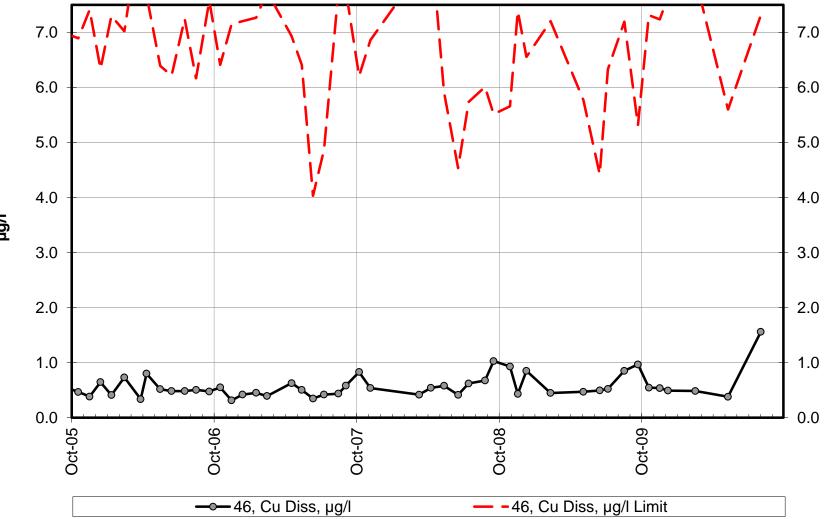

Note: The AWQS for total arsenic is 10 ug/L and thus may not be shown on this graph in order to allow greater visual detail of plotted values for trend determination

Site 46 - Dissolved Barium

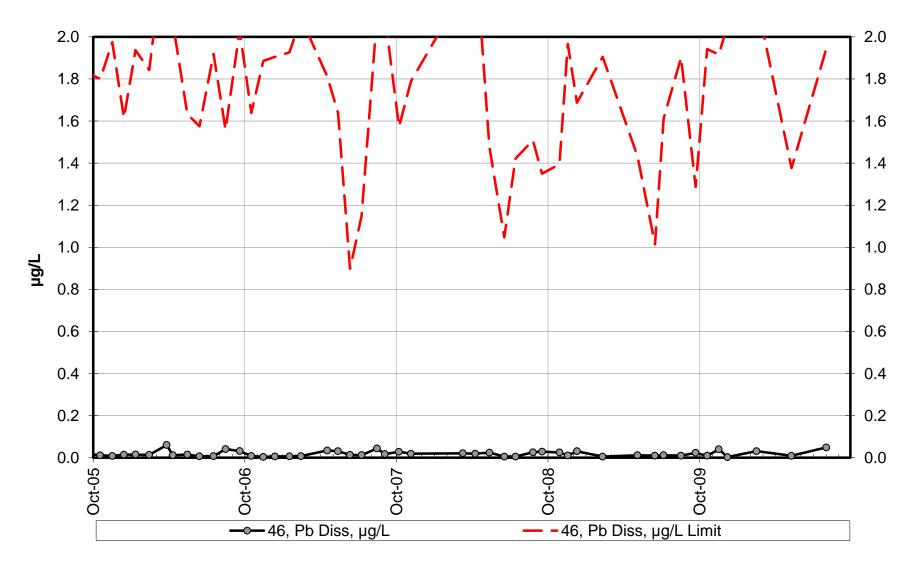


Note: the AWQS for Total Barium is 1000 ug/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination

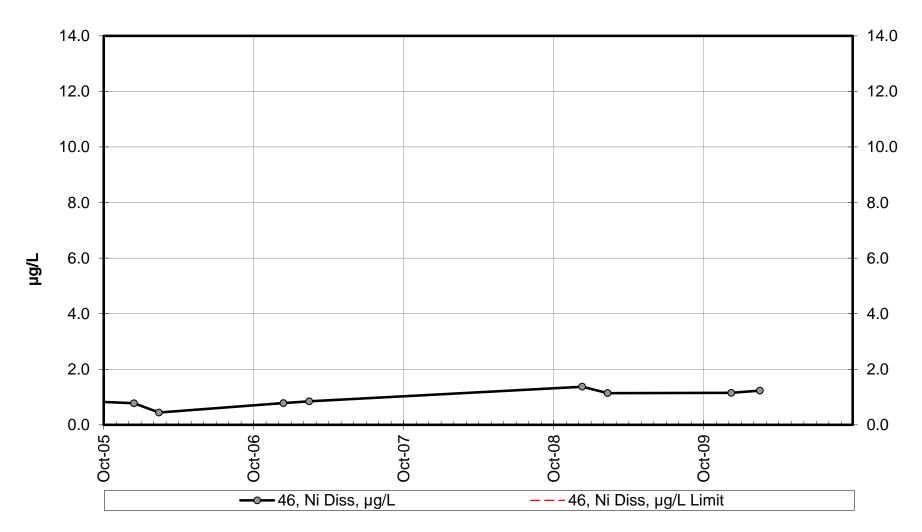
Site 46 - Dissolved Cadmium



Site 46 - Dissolved Chromium

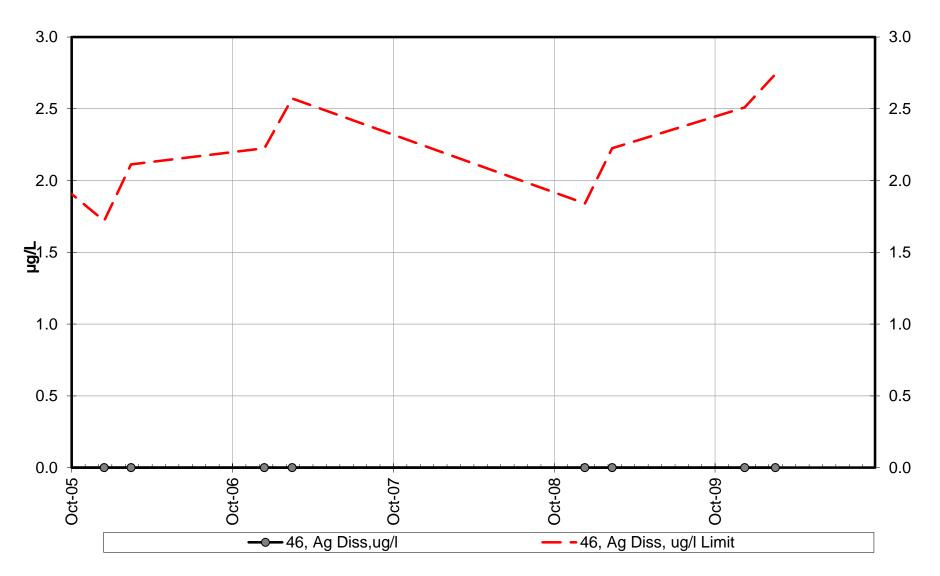

Note: the AWQS for Dissolved Chromium is 11 µg/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination

Site 46 - Dissolved Copper

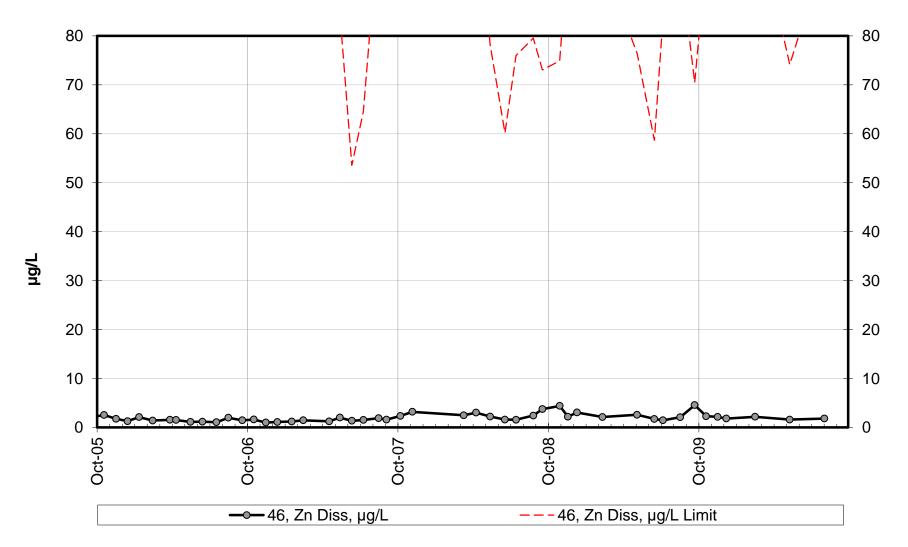


l/brl

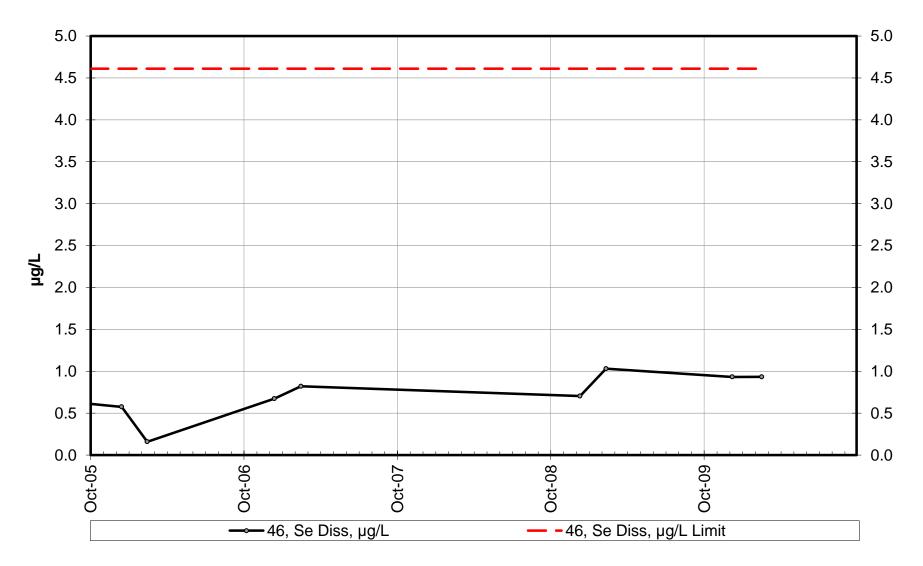
Site 46 - Dissolved Lead

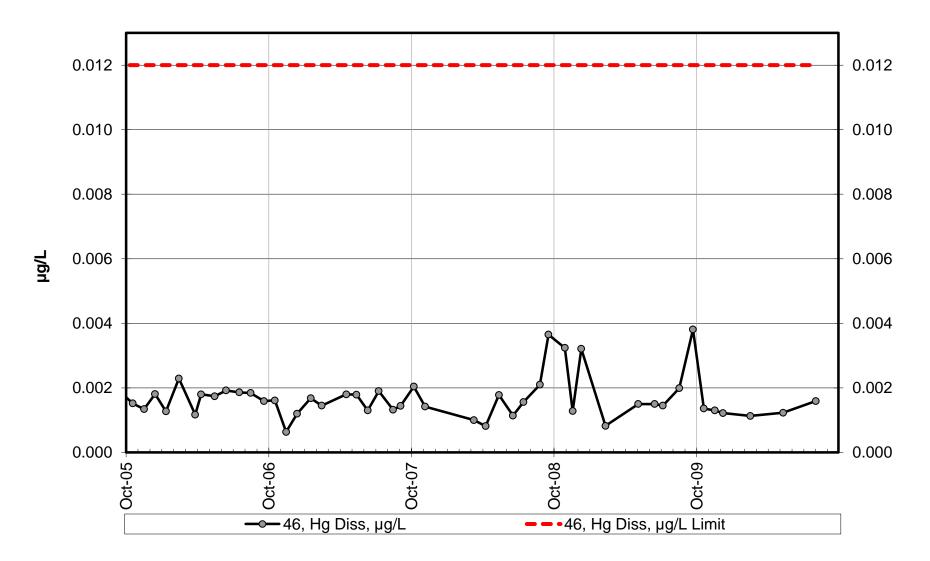


Site 46 - Dissolved Nickel

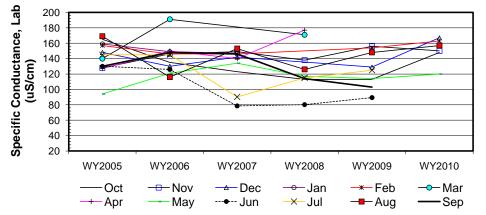


Note: The AWQS for dissolved nickel is hardness dependant and varies between 16 ug/L and 128 ug/L for waters with hardness values of 25 mg/L and 400 mg/L respectively. The AWQS, which would plot above the upper value on the Y-axis, are not shown on this graph to allow for greater visual detail of the plotted values.


Site 46 - Dissolved Silver

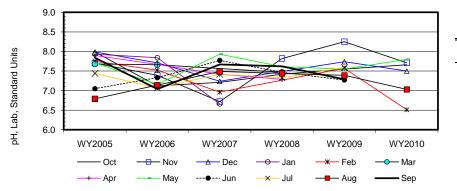

Site 46 - Dissolved Zinc

Site 46 - Dissolved Selenium



Site 46 - Dissolved Mercury

Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2005	165	128	148	159	157	140	127	94.1	130	145	169	130
b	WY2006	135	146	130	149	146	191	150	121	126	145	116	148
С	WY2007	123	149	142	147	146		140	134	78.6	90.3	153	146
d	WY2008	113	138				171	177	117	80.2	115	126	114
е	WY2009	113	156	129		154			114	89.4	125	148	103
f	WY2010	148	150	167		163			120			157	
	n	6	6	5	3	5	3	4	6	5	5	6	5
	t,	3	5	5	5	3	5	5	5	5	3	5	5
	t ₂	1	0	0	0	1	0	0	0	0	1	0	C
	t ₃	0	0	0	0	0	0	0	0	0	0	0	C
	t ₄	0	0	0	0	0	0	0	0	0	0	0	C
	t₅	0	0	0	0	0	0	0	0	0	0	0	C
1	b-a	-1	1	-1	-1	-1	1	1	1	-1	0	-1	1
	c-a	-1	1	-1	-1	-1		1	1	-1	-1	-1	1
	d-a	-1	1				1	1	1	-1	-1	-1	-1
	e-a	-1	1	-1		-1			1	-1	-1	-1	-1
	f-a	-1	1	1		1			1			-1	
	c-b	-1	1	1	-1	0		-1 1	1	-1	-1	1	-1
	d-b	-1	-1				-1	1	-1	-1 -1	-1	1	-1
	e-b f-b	-1 1	1	-1 1		1			-1	-1	-1	1	-1
	d-c	-1	-1	1		1		1	-1	1	1	-1	-1
	e-c	-1	-1	-1		1		'	-1	1	1	-1	-1
	f-c	1	1	1		1			-1		1	1	
	e-d	0	1	·		•			-1	1	1	1	-1
	f-d	1	1						1			1	
	f-e	1	-1	1		1			1			1	
1	S _k	-6	9	0	-3	3	1	4	1	-4	-3	1	-6
σ	² s=	27.33	23.33	16.67	3.67	15.67	3.67	8.67	28.33	16.67	15.67	28.33	16.67
	S _k /σ _s	-1.15	1.86	0.00	-1.57	0.76	0.52	1.36	0.19	-0.98	-0.76	0.19	-1.47
2	z ² k	1.32	3.47	0.00	2.45	0.57	0.27	1.85	0.04	0.96	0.57	0.04	2.16
	$\Sigma Z_k =$	-1.04	Г	Tie Extent	t,	t ₂	t ₃	t₄	t₅			Σn	59
	$\Sigma Z_k^2 =$	13.70		Count	54	3	0	0	0			ΣS _k	-3

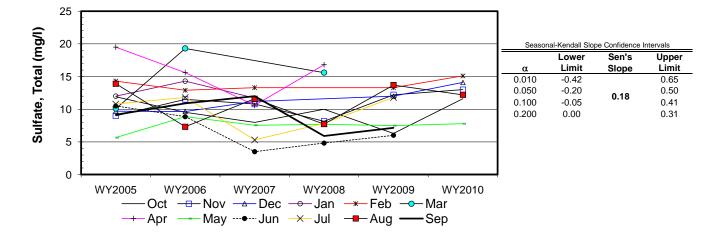

	$\chi_{h}^2 = \Sigma Z_k^2$	K(Z-bar) ² =	13.61	@α=5% χ ² (t	<-1)=	19.68	Test for station homogeneity	
		р	0.255				$\chi^2 h < \chi^2 (K-1)$	ACCEPT
2	EVAR(S _k)	\mathbf{Z}_{calc}	-0.14	@α/2=2.5%	Z=	1.96	H ₀ (No trend)	ACCEPT
	204.67	р	0.444				H _A (± trend)	REJECT

Seasona	al-Kendall Slop	e Confidence	Intervals
	Lower	Sen's	Upper
α	Limit	Slope	Limit
0.010	-5.00		3.93
0.050	-3.86	-0.13	3.19
0.100	-3.00	-0.13	1.78
0.200	-2.33		1.20

Site	#46												
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
а	WY2005	8.0	7.7	8.0	7.9	7.8	7.7	7.9	7.7	7.1	7.4	6.8	7.8
b	WY2006	7.1	7.4	7.7	7.8	7.5	7.7	7.7	7.2	7.3	7.1	7.1	7.0
С	WY2007	7.2	6.7	7.2	6.7	7.0		7.4	7.9	7.8	7.4	7.5	7.7
d	WY2008	7.4	7.8				7.5	7.3	7.6	7.5	7.3	7.4	7.6
e	WY2009	7.6	8.3	7.7		7.6			7.6	7.3	7.6	7.4	7.3
f	WY2010	7.7	7.7	7.5		6.5			7.8			7.0	
	n	6	6	5	3	5	3	4	6	5	5	6	5
1	t,	5	5	5	5	5	5	5	5	5	5	5	5
	t ₂	0	0	0	0	0	0	0	0	0	0	0	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t4	0 0	0 0	0	0	0	0	0 0	0 0	0	0	0 0	0
	t ₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a	-1	-1	-1	-1	-1	-1	-1	-1	1	-1	1	-1
	c-a	-1	-1	-1	-1	-1		-1	1	1	-1	1	-1
	d-a	-1	1				-1	-1	-1	1	-1	1	-1
	e-a	-1	1	-1		-1			-1	1	1	1	-1
	f-a	-1	1	-1 -1	4	-1		4	1	4	4	1	4
	c-b d-b	1	-1	-1	-1	-1	-1	-1 -1	1	1	1 1	1	1
	а-b e-b	1	1	1		1	-1	-1	1	-1	1	1	1
	f-b	1	1	-1		-1			1	-1		-1	
	d-c	1	1					-1	-1	-1	-1	-1	-1
	e-c	1	1	1		1		•	-1	-1	1	-1	-1
	f-c	1	1	1		-1			-1			-1	
	e-d	1	1						-1	-1	1	-1	-1
	f-d	1	-1						1			-1	
	f-e	1	-1	-1		-1			1			-1	
	S _k	5	5	-4	-3	-6	-3	-6	1	2	2	1	-4
σ	² s=	28.33	23.33	16.67	3.67	16.67	3.67	8.67	28.33	16.67	16.67	28.33	16.67
	s– S _k /σ _s	0.94	1.04	-0.98	-1.57	-1.47	-1.57	-2.04	0.19	0.49	0.49	0.19	-0.98
4	Z ² k	0.88	1.07	0.96	2.45	2.16	2.45	4.15	0.04	0.24	0.24	0.04	0.96
	$\Sigma Z_k =$	-5.27	[-	Tie Extent	t,	t ₂	t ₃	t ₄	t ₅			Σn	59
	ΣZ_{k}^{2}	15.65		Count	60	0	0	0	0			ΣS_k	-10
7	-bar=ΣZ _k /K=	-0.44	L			-	-	-	-				

 $\chi^2_{h=\Sigma}Z^2_{k}-K(Z-bar)^2=$ 13.33 19.68 Test for station homogeneity @α=5% χ²_(K-1)= $\chi^2_h < \chi^2_{(K-1)}$ р 0.272 ACCEPT $\Sigma VAR(S_k)$ Z_{calc} @ $\alpha/2=2.5\%$ Z= 1.96 H_0 (No trend) ACCEPT -0.62 207.67 0.266 H_A (± trend) REJECT р

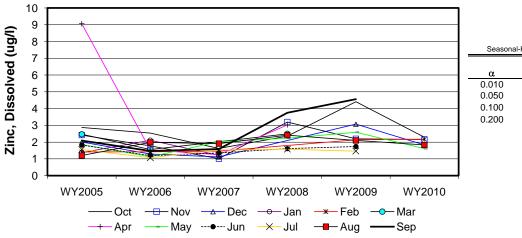
Seasona	al-Kendall Slop	e Confidence	Intervals
	Lower	Sen's	Upper
α	Limit	Slope	Limit
0.010	-0.09		0.08
0.050	-0.07	-0.04	0.05
0.100	-0.06	-0.04	0.02
0.200	-0.05		0.00


Seasonal Kendall analysis for Total Alk, (mg/l)

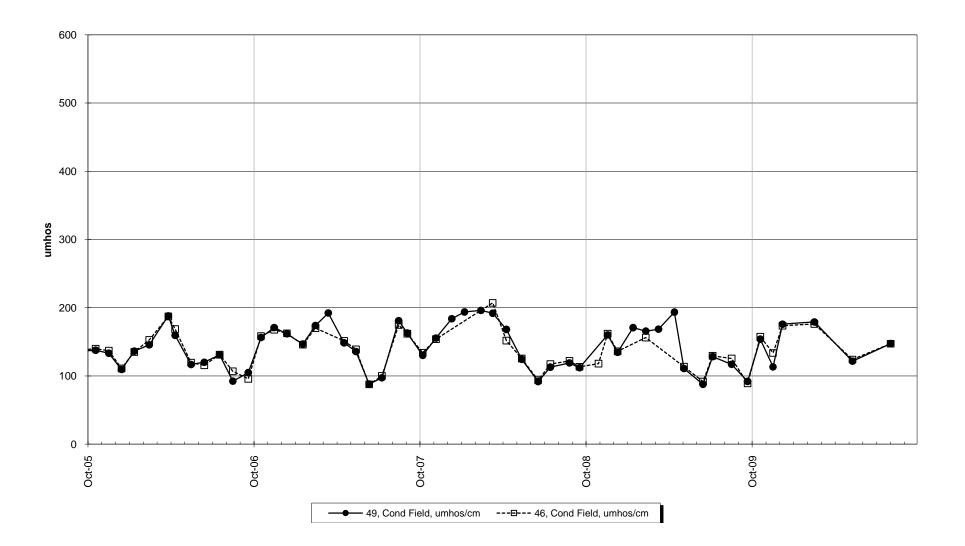
Sile	#40				00000		an anaiyo	13 101 10	iai Aik,	(iiig/i)			
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2005	79.4	63.5	70.2	78.6	81.1	71.6	. 57.7	51.4	64.2		73.6	60.
b	WY2006	60.8	59.8	51.9	63.0	59.6	73.6	62.4	56.3	53.3		54.1	64
c	WY2007	55.9	66.9	59.0	62.5	65.7	10.0	54.8	56.2	35.0	41.3	65.5	66
d	WY2008	52.4	61.0	55.0	02.5	05.7	71.7	75.2	48.7	34.8	46.5	53.1	45
	WY2009	42.9	66.4	51.6		62.5	/1./	75.2	46.3	34.8			43
e										30.9	56.0	59.8	47
f	WY2010 n	59.5 6	62.7 6	68.7 5	3	61.4 5	3	4	47.4	5	5	61.3 6	
	t, t	5 0	5 0	5 0	5 0	5 0	5 0	5 0	5 0	5 0		5 0	
	t ₂	0	0	0	0	0	0	0	0	0			
	t ₃											0	
	t₄ +	0	0	0	0	0	0	0	0	0	0	0	
•	t ₅	0	0	0	0	0	0	0	0	0	0	0	
	b-a	-1	-1	-1	-1	-1	1	1	1	-1	-1	-1	
	c-a	-1	1	-1	-1	-1		-1	1	-1	-1	-1	
	d-a	-1	-1				1	1	-1	-1	-1	-1	-
	e-a	-1	1	-1		-1			-1	-1	-1	-1	-
	f-a	-1	-1	-1		-1			-1			-1	
	c-b	-1	1	1	-1	1		-1	-1	-1	-1	1	
	d-b	-1	1				-1	1	-1	-1	-1	-1	-
	e-b	-1	1	-1		1			-1	-1	-1	1	-
	f-b	-1	1	1		1			-1	•		1	
	d-c	-1	-1					1	-1	-1	1	-1	-
		-1	-1	1		1		i	-1	-1	1	-1	-
	e-c			-1		-1				1	I		-
	f-c	1	-1	1		-1			-1			-1	
	e-d	-1	1						-1	1	1	1	
	f-d	1	1						-1			1	
	f-e	1	-1	1		-1			1			1	
	S _k	-9	1	-2	-3	-4	1	2	-9	-6	-4	-3	-
~	²s=	28.33	23.33	16.67	3.67	16.67	3.67	8.67	28.33	16.67	16.67	28.33	16.6
	s- S _k /σ _s	-1.69	0.21	-0.49	-1.57	-0.98	0.52	0.68	-1.69	-1.47		-0.56	-0.4
	z ² k												
2	- k	2.86	0.04	0.24	2.45	0.96	0.27	0.46	2.86	2.16	0.96	0.32	0.2
	$\Sigma Z_k =$	-8.51		Tie Extent	t ₁	t ₂	t ₃	t ₄	t ₅			Σn	59
	ΣZ_{k}^{2} =	13.83		Count	60	0	0	0	0			ΣS_k	-38
Z·	-bar=∑Z _k /K=	-0.71		ooun		0	•		0			K	00
	$\chi^2_{h} = \Sigma Z^2_{k}$ -I	K(Z-bar) ² =	7.79		@α = 5%	6 χ ² _(K-1) =	19.68			ion homog	geneity		
		р	0.732					χ	² _h <χ ² _(K-1)		ACCEPT		
	$\Sigma VAR(S_k)$	\mathbf{Z}_{calc}	-2.57		@α/2=	2.5% Z=	1.96		H₀ (No	trend)	REJECT		
	207.67	р	0.005						H _A (± t	rend)	ACCEPT		
90 -	-												
80 -	*												
F			o										
70 -					\swarrow					Seasona	al-Kendall Slope		ntervals
lotal Alk, (mg/l) 00 10 10 10 10 10 10 10 10 10 10 10 10 1											Lower	Sen's	Upper
ê i	+						_ X /		_	α	Limit	Slope	Limit
5 ₅₀ ‡			8							0.010	-3.91		-0.17
¥ l					×					0.050	-3.49	4 4 4	-0.50
₹ 40 ⋕				X						0.100	-3.31	-1.44	-0.76
				` `	•••••					0.200	-2.85		-0.95
5 30 +	-				-					0.200	-2.05		-0.90
- F												2 40/	
20 -												-2.4%	
10					1			1					
	WY2005	WY	2006	WY2007	WY2	008	WY2009	WY2	010				
	——Oc	·t	– Nov	— <u>→</u> Dec	-0-	- Ian	—* Feb		- Mar				
	—+— Ар		- May	• Jun	_×-		Aug		•Sep				
	— Ар		iviay	- Juli	~	Jui	-Aug		Seh				

Site	#46			S	easonal	Kendall	analysis	for Sulf	ate, Tota	ıl (mg/l)			
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
а	WY2005	11.9	9.0	9.7	12.0	14.3	10.1	19.5	5.7	10.5	10.8	13.9	9.2
b	WY2006	9.5	11.5	9.7	14.3	12.9	19.3	15.6	8.9	8.9	11.8	7.3	10.9
С	WY2007	8.0	10.8	11.2	11.7	13.3		10.6	7.6	3.5	5.3	11.6	12.0
d	WY2008	10.0	8.2				15.6	16.8	7.7	4.8	7.9	7.7	5.9
е	WY2009	6.3	12.2	12.0		13.3			7.5	6.0	11.8	13.7	7.2
f	WY2010	11.6	13.0	14.1		15.1			7.8			12.2	
	n	6	6	5	3	5	3	4	6	5	5	6	5
	t,	5	5	5	5	3	5	5	5	5	3	5	5
	t ₂	0	0	0	0	1	0	0	0	0	1	0	C
	t ₃	0	0	0	0	0	0	0	0	0	0	0	C
	t4	0	0	0	0	0	0	0	0	0	0	0	C
	t _s	0	0	0	0	0	0	0	0	0	0	0	C
	b-a	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1
	c-a	-1	1	1	-1	-1	•	-1	1	-1	-1	-1	1
	d-a	-1	-1	-			1	-1	1	-1	-1	-1	-1
	e-a	-1	1	1		-1			1	-1	1	-1	-1
	f-a	-1	1	1		1			1			-1	
	c-b	-1	-1	1	-1	1		-1	-1	-1	-1	1	1
	d-b	1	-1				-1	1	-1	-1	-1	1	-1
	e-b	-1	1	1		1			-1	-1	0	1	-1
	f-b	1	1	1		1			-1			1	
	d-c	1	-1					1	1	1	1	-1	-1
	e-c	-1	1	1		0			-1	1	1	1	-1
	f-c	1	1	1		1			1			1	
	e-d	-1	1						-1	1	1	1	1
	f-d	1	1						1			1	
	f-e	1	1	1		1			1			-1	
	S _k	-3	7	8	-1	3	1	-2	3	-4	1	1	-2
σ	² s=	28.33	23.33	16.67	3.67	15.67	3.67	8.67	28.33	16.67	15.67	28.33	16.67
	S _k /σ _s	-0.56	1.45	1.96	-0.52	0.76	0.52	-0.68	0.56	-0.98	0.25	0.19	-0.49
	Z^{2}_{k}	0.32	2.10	3.84	0.27	0.57	0.27	0.46	0.32	0.96	0.06	0.04	0.24
	$\Sigma Z_k =$	2.46		Tie Extent	t ₁	t ₂	t ₃	t ₄	t _s			Σn	59
	ΣZ_{k}^{2}	2.40 9.46										ΣS _k	
_	-bar=Σ Ζ./K =	9.46	L	Count	56	2	0	0	0			∠o _k	12

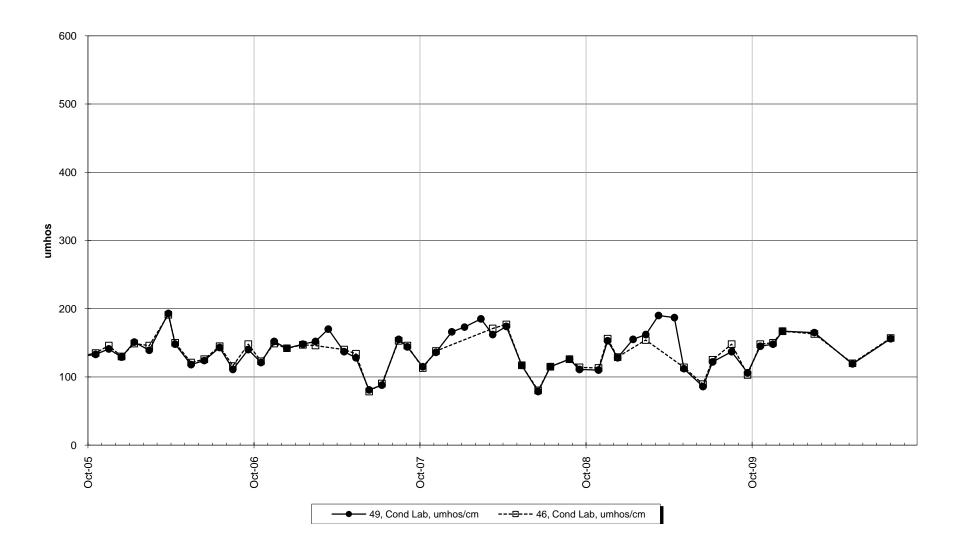
 $Z-bar=\Sigma Z_k/K= 0.20$


$\chi^2_h = \Sigma Z^2_k$	K(Z-bar) ² =	8.95	@α=5% χ ² _(K-1) =	@α=5% χ ² _(K-1) = 19.68			
	р	0.626			$\chi^{2}_{h} < \chi^{2}_{(K-1)}$ A	CCEPT	
$\Sigma VAR(S_k)$	Z_{calc}	0.77	@α=5% Z=	1.64	H ₀ (No trend)	CCEPT	
205.67	р	0.778			H _A (± trend) F	REJECT	

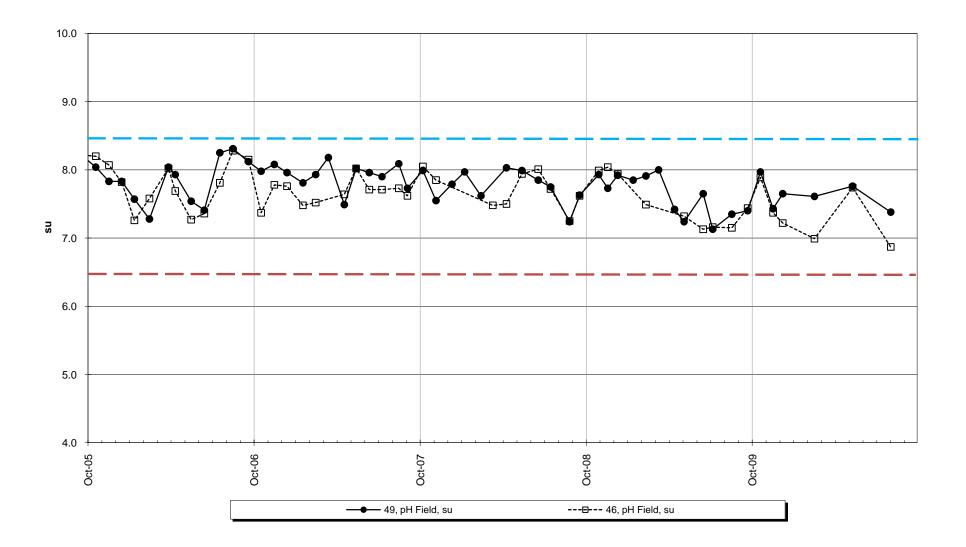
Site #46 Seasonal Kendall analysis for Zinc, Dissolved (ug/l)													
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2005	2.9	2.4	2.0	1.4	1.4	2.5	9.1	1.9	1.8	1.6	1.2	2.
b	WY2006	2.5	1.8	1.3	2.1	1.4	1.6	1.5	1.1	1.2	1.1	2.0	1.
C	WY2007	1.6	1.0	1.1	1.2	1.5		1.3	2.0	1.4	1.5	1.9	1.
d	WY2008	2.4	3.2				2.5	3.0	2.2	1.6	1.6	2.4	3.
e	WY2009	4.4	2.2	3.1		2.1			2.6	1.7	1.5	2.1	4.
f	WY2010	2.3	2.2	1.8		2.2			1.6			1.8	
	n	6	6	5	3	5	3	4	6	5	5	6	
	t,	5	5	5	5	5	5	5	5	5	5	5	
	t ₂	0	0	0	0	0	0	0	0	0	0	0	
	t ₃	0	0	0	0	0	0	0	0	0	0	0	
	t4	0	0	0	0	0	0	0	0	0	0	0	
	t _s	0	0	0	0	0	0	0	0	0	0	0	
	b-a	-1	-1	-1	1	1	-1	-1	-1	-1	-1	1	
	c-a	-1	-1	-1	-1	1		-1	1	-1	-1	1	-
	d-a	-1	1				1	-1	1	-1	1	1	
	e-a	1	-1	1		1			1	-1	-1	1	
	f-a	-1	-1	-1		1			-1			1	
	c-b	-1	-1	-1	-1	1		-1	1	1	1	-1	
	d-b	-1	1				1	1	1	1	1	1	
	e-b	1	1	1		1			1	1	1	1	
	f-b	-1	1	1		1			1			-1	
	d-c	1	1					1	1	1	1	1	
	e-c	1	1	1		1			1	1	-1	1	
	f-c	1	1	1		1			-1			-1	
	e-d	1	-1						1	1	-1	-1	
	f-d f-e	-1 -1	-1 -1	-1		1			-1 -1			-1 -1	
	S _k	-3	-1	0	-1	10	1	-2	5	2	0	3	
	² _s =	20.22	22.22	10.07	2.67	10.07	2.67	0.67	20.22	46.67	10.07	20.22	10.0
		28.33	23.33	16.67	3.67	16.67	3.67	8.67	28.33	16.67	16.67	28.33	16.6
	$s_{k}\!/\!\sigma_{s}$	-0.56	-0.21	0.00	-0.52	2.45	0.52	-0.68	0.94	0.49	0.00	0.56	1.4
2	<u>Z</u> ² _k	0.32	0.04	0.00	0.27	6.00	0.27	0.46	0.88	0.24	0.00	0.32	2.1
	$\Sigma Z_k =$	4.46	Г	Tie Extent	t,	t ₂	t ₃	t ₄	t _s			Σn	59
	$\Sigma Z_{k}^{2} =$	10.97		Count	60	0	0	0	0			ΣS_k	20
	$Z = k^{-}$ -bar= $\Sigma Z_k/K=$	0.37		Jount	00	U	U	U	U			20 _K	20

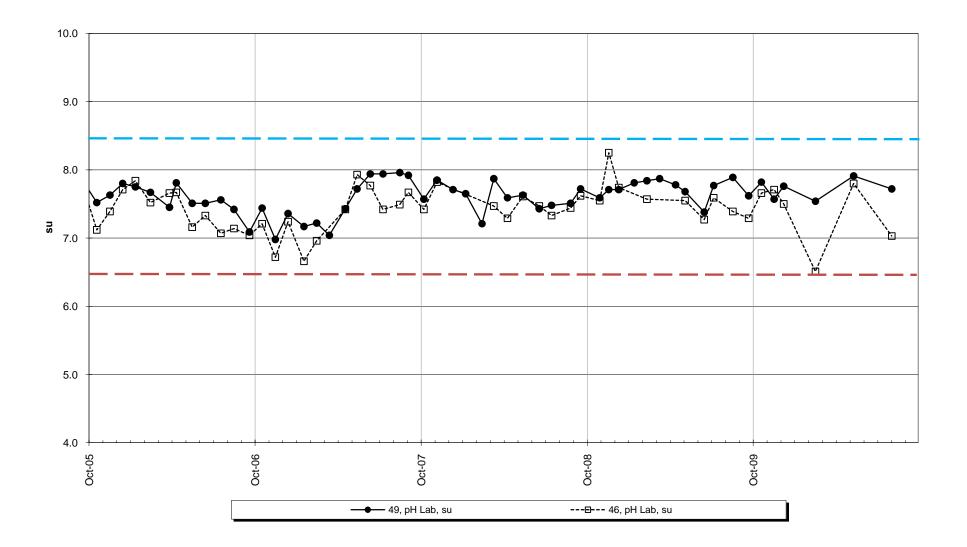

		Seasonal	Kendall	analysis	for Zinc,	Dissolved (ug/l)	
--	--	----------	---------	----------	-----------	------------------	--

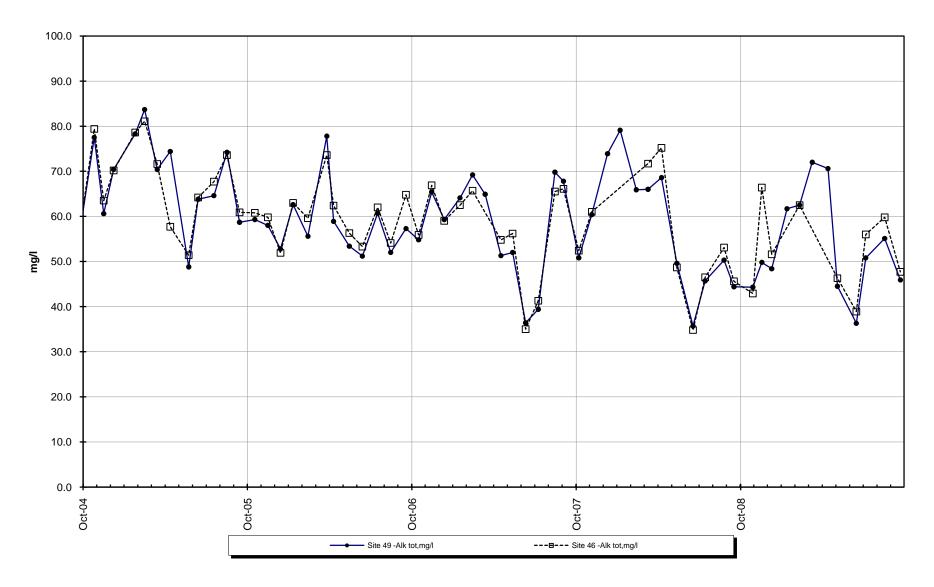
$\chi^{2}_{h} = \Sigma Z^{2}_{k} - K(Z-bar)^{2} = 9.31$			@α=5% χ ² _(K-1) =	19.68	Test for station homo	geneity
	р	0.593			$\chi^{2}_{h} < \chi^{2}_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	Z_{calc}	1.32	@α/2=2.5% Z=	1.96	H ₀ (No trend)	ACCEPT
207.67	р	0.906			H _A (± trend)	REJECT

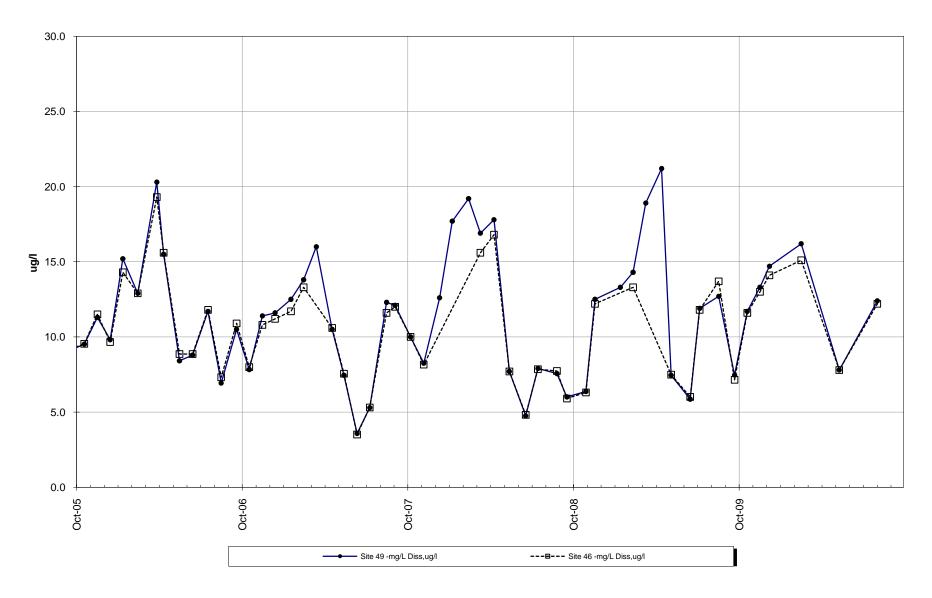


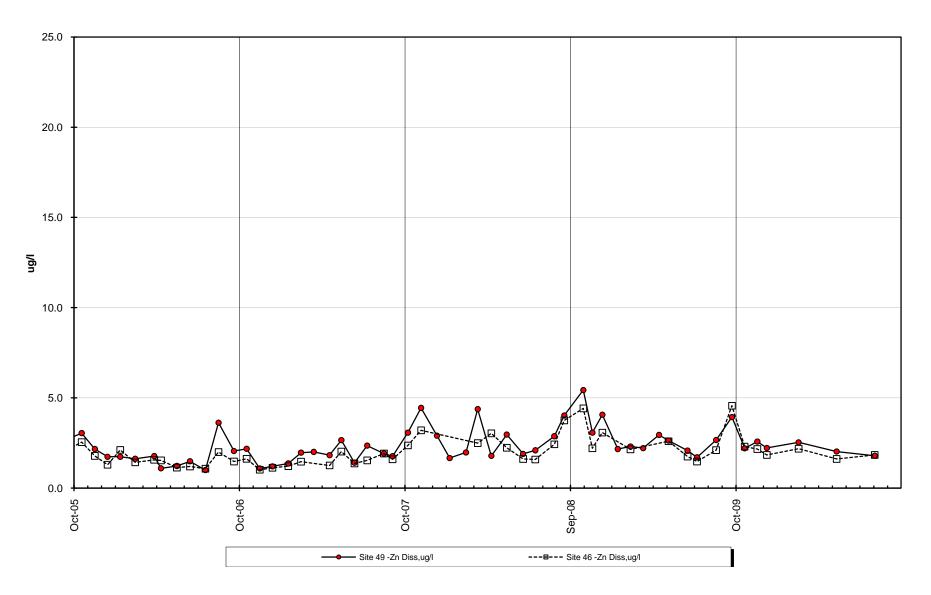
Seasona	Seasonal-Kendall Slope Confidence Intervals										
	Lower	Sen's	Upper								
α	Limit	Slope	Limit								
0.010	-0.04		0.21								
0.050	-0.02	0.10	0.18								
0.100	0.00	0.10	0.14								
0.200	0.02		0.13								


Site 49 vs Site 46 -Conductivity-Field


Site 49 vs Site 46 -Conductivity


Site 49 vs Site 46 -Field pH


Site 49 vs Site 46 -Lab pH


Site 49 vs. Site 46 -Total Alkalinity

Site 49 vs. Site 46 -Total Sulfate

Site 49 vs. Site 46 -Dissolved Zinc

Wil	coxon-sigr Exact	ned-ranks Form	test		
Variable:			ance, Lab (ι	ıS/cm)	
	X	Υ	, ,		
Site	#49	#46	Differe	ences	
Year	WY2010	WY2010	D	D	Rank
Oct	145.0	148.0	-3.0	3.0	-5
Nov	148.0	150.0	-2.0	2.0	-3.5
Dec	167.0	167.0	0.0		
Jan					
Feb	165.0	163.0	2.0	2.0	3.5
Mar					
Apr					
May	119.0	120.0	-1.0	1.0	-1.5
Jun					
Jul					
Aug	156.0	157.0	-1.0	1.0	-1.5
Sep					
Median	152.0	153.5	-1.0	2.0	
	n	m		N=	5
•	6	5		$\Sigma R =$	
	0	5		211-	-0
	α		Г	W+=]
	5.0%			3.5	
	W' α,n			p-test	
	#N/A			0.156	
H _o	median [D]	=0	ACCEPT]
H ₁	median [D]	<0			1

Wilcoxon-signed-ranks test										
Exact Form Variable: pH, Lab, Standard Units										
Variable:	-		Units							
Site	X #49	Y #46	Differe	nces						
Year	WY2010	WY2010	Dillere		Rank					
Oct	7.82	7.66	0.16	0.16	3					
Nov	7.57	7.71	-0.14	0.14	-2					
Dec	7.76	7.50	0.26	0.26	4					
Jan										
Feb	7.54	6.51	1.03	1.03	6					
Mar										
Apr										
May	7.91	7.80	0.11	0.11	1					
Jun										
Jul										
Aug	7.72	7.03	0.69	0.69	5					
Sep										
Median	7.74	7.58	0.21	0.21						
	n	m		N=	6					
	6	6		$\Sigma R =$						
	0	0		21(-	17					
	α	1	ſ	W+=						
	95.0%			19						
	W' α,n			p-test						
	17			0.969						
		1	L	0.303						
H ₀	median [D]	=0	REJECT							
H ₁	median [D]	>0	ACCEPT							

Wil	coxon-sign Exact		test		
Variable:	Total All				
Site	#49	#46	Differ	ences	
Year	WY2010	WY2010	D	D	Rank
Oct	58.4	59.5	-1.1	1.1	-3.5
Nov	61.6	62.7	-1.1	1.1	-3.5
Dec	71.5	68.7	2.8	2.8	5
Jan					
Feb	56.9	61.4	-4.5	4.5	-6
Mar					
Apr					
May	46.6	47.4	-0.8	0.8	-2
Jun					
Jul					
Aug	61.1	61.3	-0.2	0.2	-1
Sep					
Median	59.8	61.4	-1.0	1.1	
	n	m		N=	6
	6	6		$\Sigma R =$	-11
	α			W+=]
	95.0%			5	
	W' α,n			p-test	
	#N/A			0.000	
					•
H ₀	median [D]=	=0	ACCEPT		
H ₁	median [D]>	0			

Wile	coxon-sigr Exact	ned-ranks ⁻ Form	test		
Variable:	Sulfate,	, Total (mg	/I)		
0.1	X	Y			
Site	#49	#46	Differe		
Year	WY2010	WY2010	D		Rank
Oct	11.7	11.6	0.1	0.1	1
Nov	13.3	13.0	0.3	0.3	3
Dec	14.7	14.1	0.6	0.6	4
Jan					_
Feb	16.2	15.1	1.1	1.1	5
Mar					
Apr					
May	7.8	7.8	0.0		
Jun					
Jul	40.4	40.0			
Aug	12.4	12.2	0.2	0.2	2
Sep					
Median	12.9	12.6	0.3	0.3	
	n	m		N=	5
	6	5		$\Sigma R=$	15
	α		Γ	W+=]
	5.0%			15	
	W' α,n			p-test	
	#N/A			1.000	
		1	L	1.000	J
H ₀	median [D]	=0	ACCEPT]
H ₁	median [D]	-0			

Wil	coxon-sign Exact l		test		
Variable:		solved (u	ıg/l)		
	Χ	Y			
Site	#49	#46	Differe	ences	
Year	WY2010	WY2010	D	D	Rank
Oct	2.20	2.29	-0.09	0.09	-2
Nov	2.57	2.16	0.41	0.41	5.5
Dec	2.22	1.83	0.39	0.39	4
Jan					
Feb	2.53	2.18	0.35	0.35	3
Mar					
Apr					
May	2.02	1.61	0.41	0.41	5.5
Jun					
Jul					
Aug	1.79	1.83	-0.04	0.04	-1
Sep					
Median	2.21	2.00	0.37	0.37	
	n	m		N=	6
	6	6		$\Sigma R=$	15
	α]	W+=	1
	5.0%			18	
	W' α,n			p-test	
	2			0.953	
	2		L	0.900	J
H ₀	median [D]=	=0	ACCEPT]
H ₁	median [D]<	.0			

INTERPRETIVE REPORT SITE 57 "MONITORING WELL 23-00-03"

The data collected during the current water year are listed in the following "Table of Results for Water Year 2010" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the rightmost column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

All data collected at this site for the past six years are included in the data analyses. As shown in the table below, there were no data outliers.

Sample Date	Parameter	Value	Qualifier	Notes	
No outliers have	been identified by HG	CMC for the peri	od of October	r 2005 through September 20	010.

The data for Water Year 2010 have been compared to the strictest fresh water quality criterion for each applicable analyte. No results exceeding these criteria have been identified as listed in the table below.

Sample Date	Parameter	Value	Hardness (mg/L)	Standard	Standard Type
No exceedances	have been identified by	HGCMC for the	e period of October 20	09 through Sep	ptember 2010.

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. These plots have been visually analyzed for the appearance of any trend in concentration. Though values for dissolved cadmium, lead, and dissolved zinc had shown large variation in the past, the current water year's data continues the trend from WY2009 of these analytes leveling out. Also,

as with the increase in chromium seen at the other sites (site 48, site 6, site 54, site 49, site 46, and site 13), chromium was seen to increase at this site. However, the increased values were similar to those recorded in WY 2006 and WY 2007. The dataset for total alkalinity shows

M	ann-Ke	endall test	Sen's slop	oe estimate	
Parameter	N(1)	p (2)	Trend	Q	Q(%)
Conductivity, Lab	6	0.98	+	5	1.3
pH, Lab	6	0.99	+	0.06	0.8
Alkalinity, Total	6	<0.01	-	-4.88	-3.5
Sulfate, Total	6	0.04	-	-1.61	-3
Zinc, Dissolved	6	<0.01	-	-2.27	-23.5
(1): Number of ye	ars	(2):Signif	icance lev	/el	

a statistically significant (p<0.01) trend with a slope estimate of -4.88mg/L/yr or a -3.5%, similar to the value obtained in WY2009 of -4.17 mg/L/yr. Dissolved zinc has a statistically significant (p<0.01) trend with a slope estimate of -2.27 mg/L/yr or a -23.5%. Total sulfate was statistically significant with a decreasing slope of -1.61 mg/L/yr. Both laboratory conductivity and laboratory pH had increasing statistically significant trends,

with estimated slopes of 5 μ s/yr and 0.06 su/yr respectively. Given that Site 57 is an upgradient reference site, these trends are interpreted by HGCMC to be part of the natural variation that characterizes this site.

Table of Results for Water Year 2010

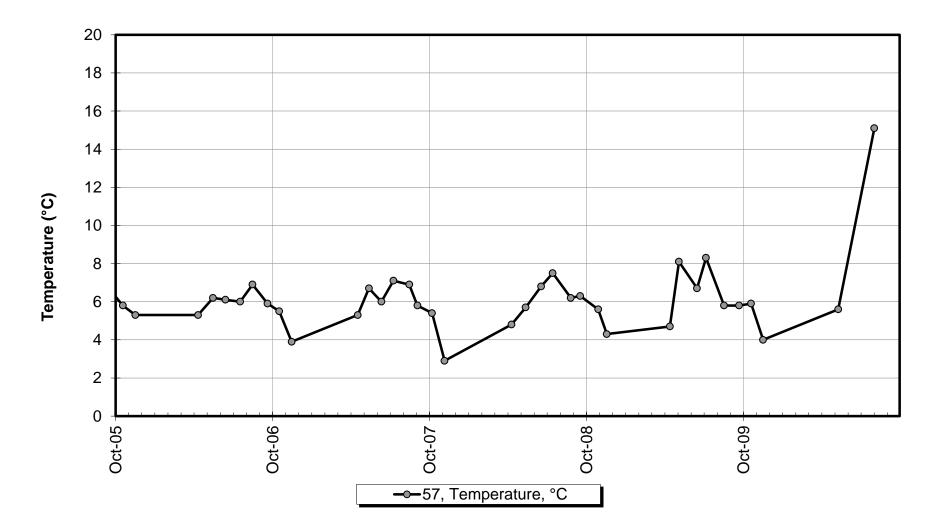
	Site 57 "MW-23-00-03"												
Sample Date/Parameter	10/20/2009	11/17/2009	Dec-09	Jan-10	Feb-10	Mar-10	4/6/2010	5/11/2010	6/15/2010	7/13/2010	8/3/2010	9/14/2010	Median
Water Temp (°C)	5.9	4.0	G			Ľ)	5.6	Ľ)	15.1	U	5.8
Conductivity-Field(µmho)	440	423	ž			Ň		431	Ň		475	Ň	436
Conductivity-Lab (µmho)	386	385 J	Ξ				j	393		Ī	421		390
pH Lab (standard units)	7.69	7.55 J	ደ			۵ ک		7.57			7.44	MP	7.56
pH Field (standard units)	7.55	7.34	N			N		7.47	N		7.18	N	7.41
Total Alkalinity (mg/L)	137.0	140.0 J	SP		pç	4 U	5	133.0	A S		143.0	SA	138.5
Total Sulfate (mg/L)	51.7	57.5	2 2		Period	Ω		44.3 J	Ω		60.5 J	Ř	54.6
Hardness (mg/L)	201.0	207.0	ö		e	Ċ	5	193.0	Ċ	5	217.0	Ö	204.0
Dissolved As (ug/L)	0.574	0.483	Ĩ			ũ		0.464	ŭ	-	0.526	Ĩ	0.505
Dissolved Ba (ug/L)	27.3	28.9	Δ		2	C)	28.4	C	2	30.9	Δ	28.7
Dissolved Cd (ug/L)	0.172	0.166	Щ		Transitio	Ш		0.178	Ц		0.218	Щ	0.175
Dissolved Cr (ug/L)	1.700	0.508	5		SI	=	5	3.920	-	5	4.590	5	2.810
Dissolved Cu (ug/L)	0.730	0.537	ā		ar	Ē	Ì	0.896	Ē	Š .	0.679	Δ	0.705
Dissolved Pb (ug/L)	0.22	0.17	Щ		Ě			0.23			0.38	CHE	0.23
Dissolved Ni (ug/L)	2.58	2.27	5		-	Ċ		2.90	さ	5	2.53	t.	2.56
Dissolved Ag (ug/L)	<0.003	<0.003	Š			Ŭ,		<0.004	U.	5	<0.004	Š	0.002
Dissolved Zn (ug/L)	4.92	5.81 U	ļ			ļ-	-	23.50	ŀ		6.87	 	6.34
Dissolved Se (ug/L)	1.120 J	0.937	<u>o</u>			C)	0.883	c)	1.220	<u>o</u>	1.029
Dissolved Hg (ug/L)	0.000204 U	0.000162 J	Z			Z	-	0.000991	Ź	-	0.000277 U	Ż	0.000241

0:1

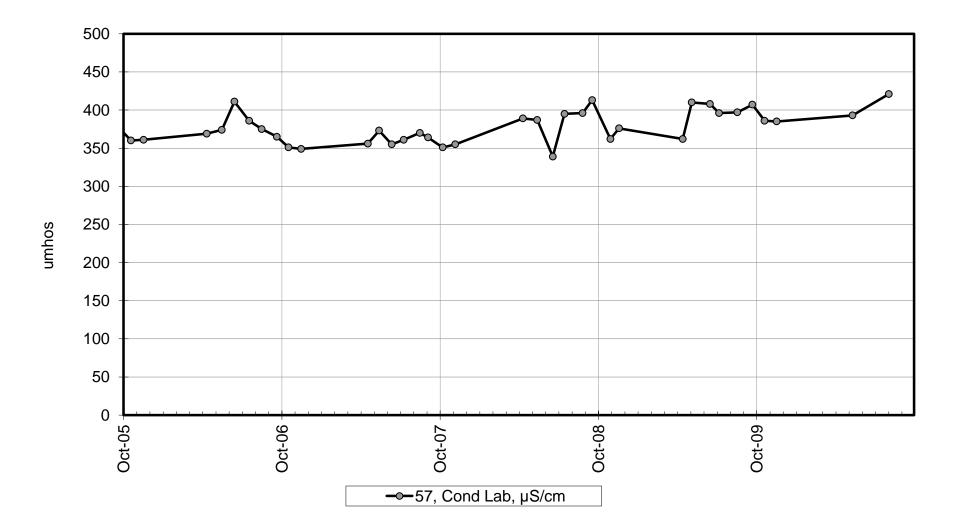
For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

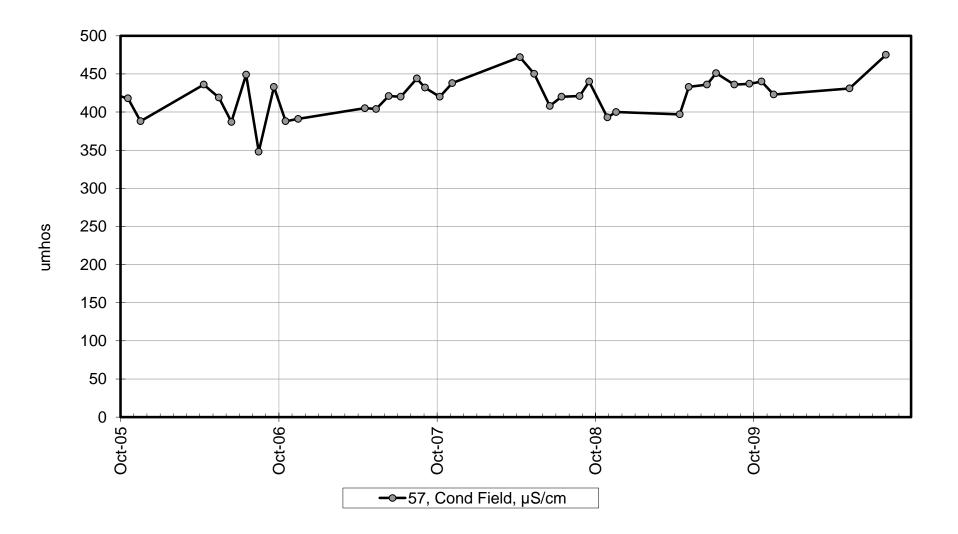
Shaded data has been qualified as an outlier by HGCMC and removed from any further analysis and is not included into the calculation of the median

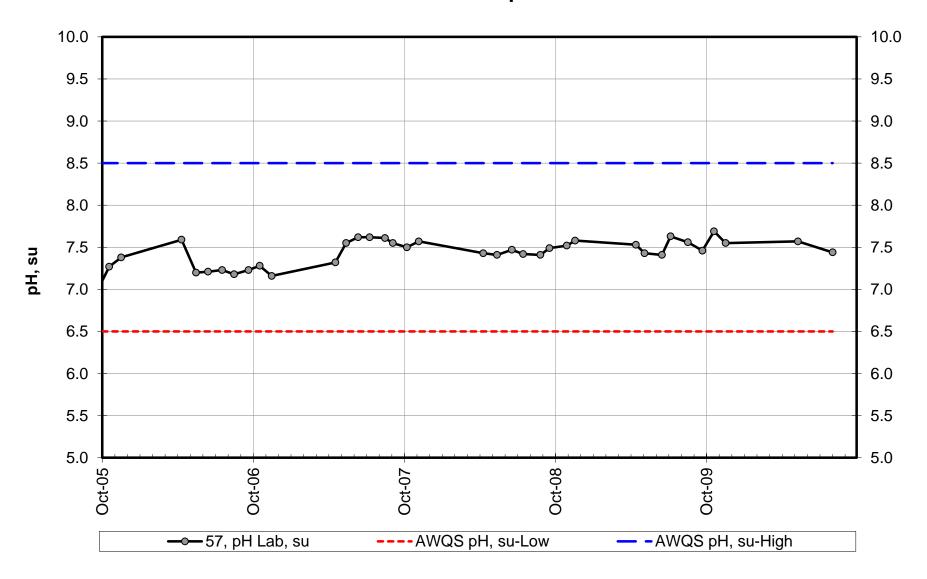

Qualified Data by QA Reviewer

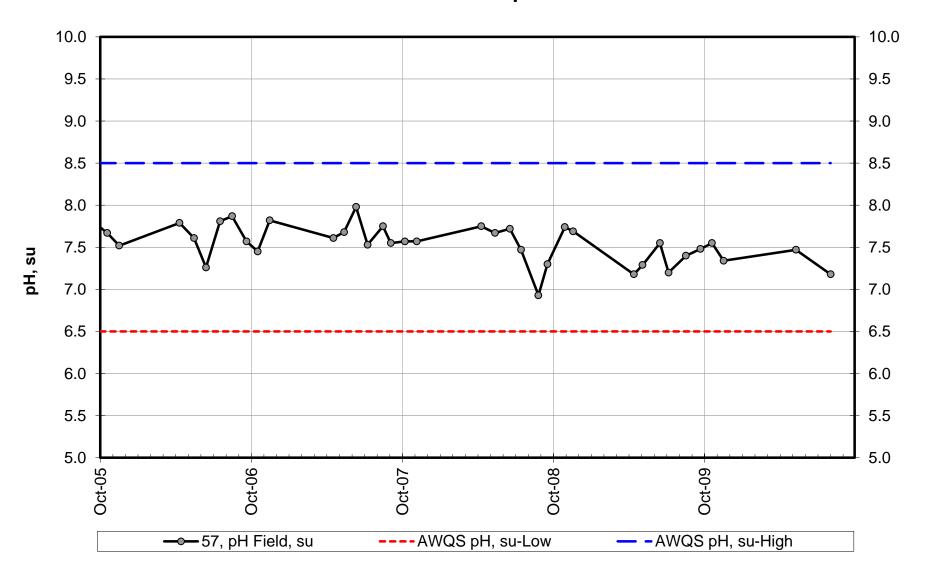
Date Range: 10/01/2009 to 09/30/2010

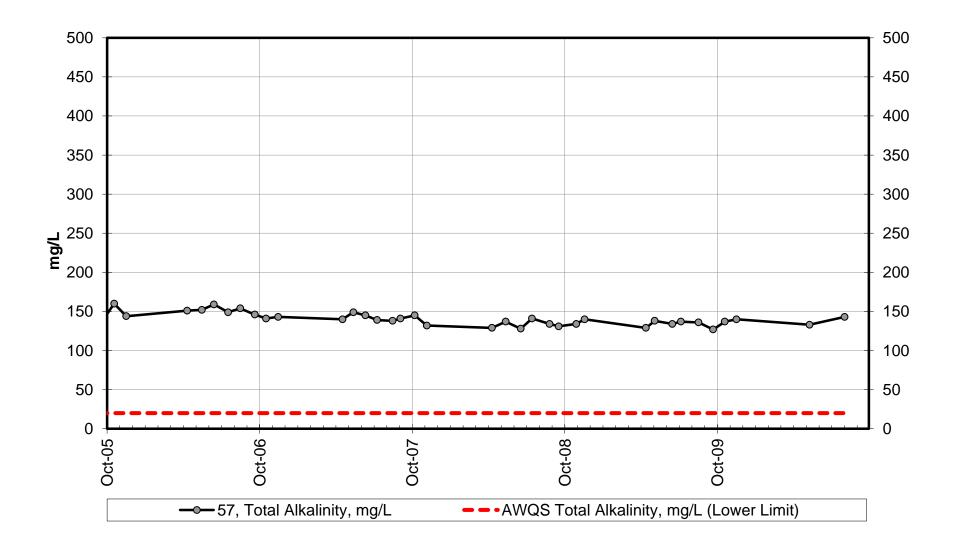

Site No.	Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier
7	10/20/2009	12:00 AM				
			Hg diss, µg/l	0.000204	U	Field Blank Contamination
			Se diss, µg/l	1.12	J	Matrix Spike Recovery
7	11/17/2009	12:00 AM				
			Alk Tot,mg/l	140	J	Temperature Exceedance
			Cond, µs/cm	385	J	Temperature Exceedance
			Hg diss, µg/l	0.000162	J	Below Quantitative Range
			Zn diss, µg/l	5.81	U	Field Blank Contamination
			pH Lab, su	7.55	J	Hold Time Violation
7	5/11/2010	3:24 PM				
			SO4 Tot, mg/l	44.3	J	Sample Temperature
7	8/3/2010	2:05 PM				
			Hg diss, µg/l	0.000277	U	Field Blank Contamination
			SO4 Tot, mg/l	60.5	J	Sample Temperature

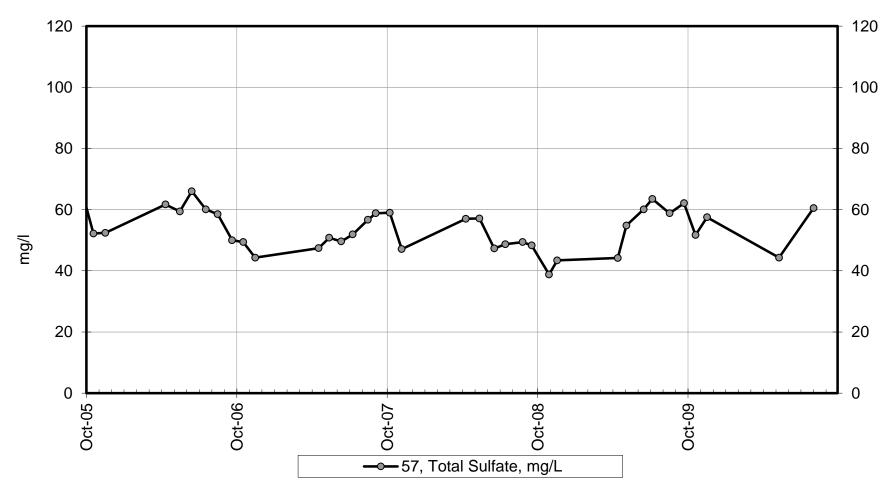
Qualifier	Description
J	Positively Identified - Approximate Concentration
Ν	Presumptive Evidence For Tentative Identification
NJ	Tentatively Identified - Approximate Concentration
R	Rejected - Cannot be Verified
U	Not Detected Above Quantitation Limit
UJ	Not Detected Above Approximate Quantitation Limit


Site 57 -Water Temperature

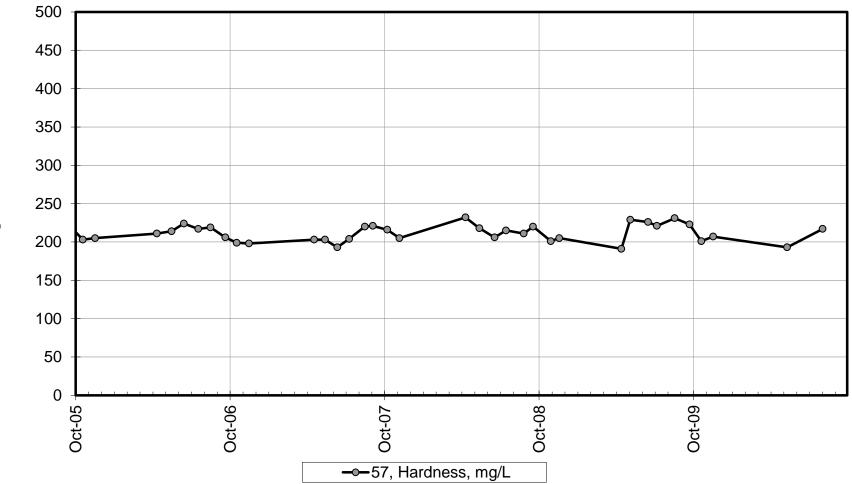

Site 57 - Conductivity-Lab


Site 57 - Conductivity-Field

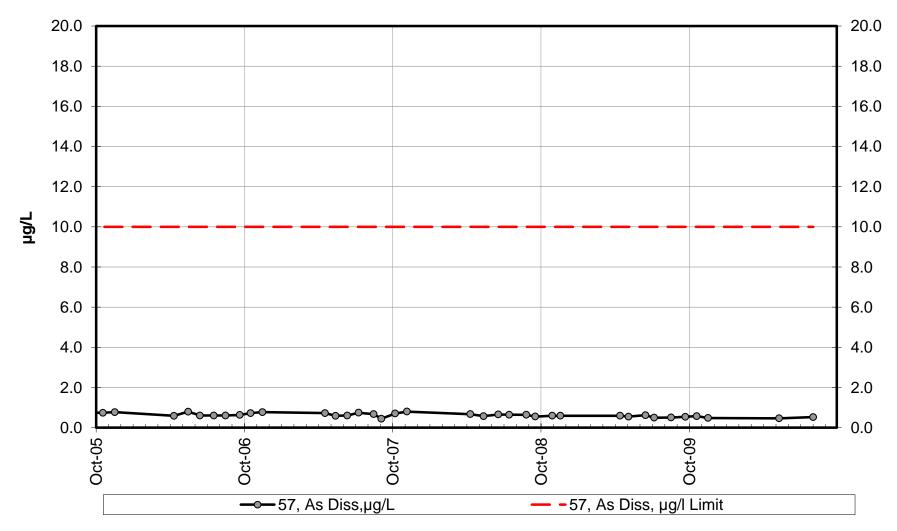

Site 57 - Lab pH


Site 57 - Field pH

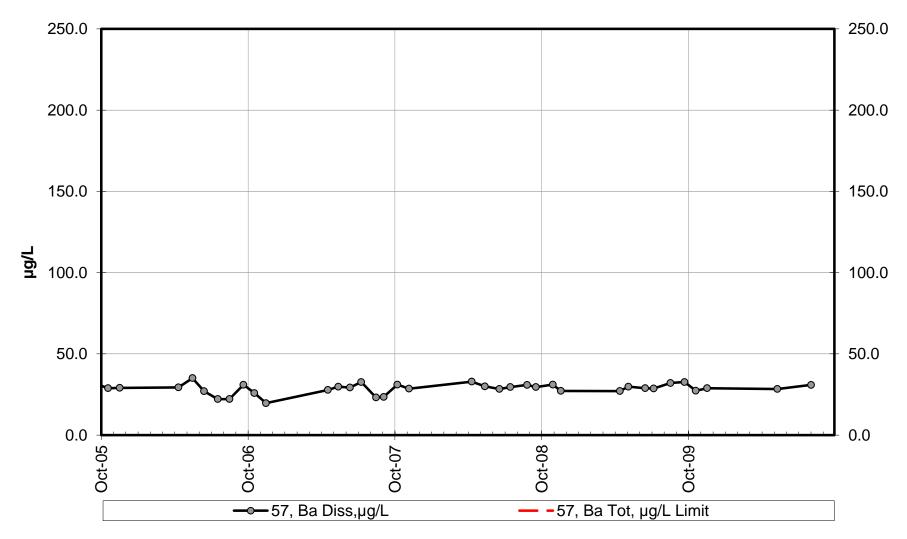
Site 57 - Total Alkalinity



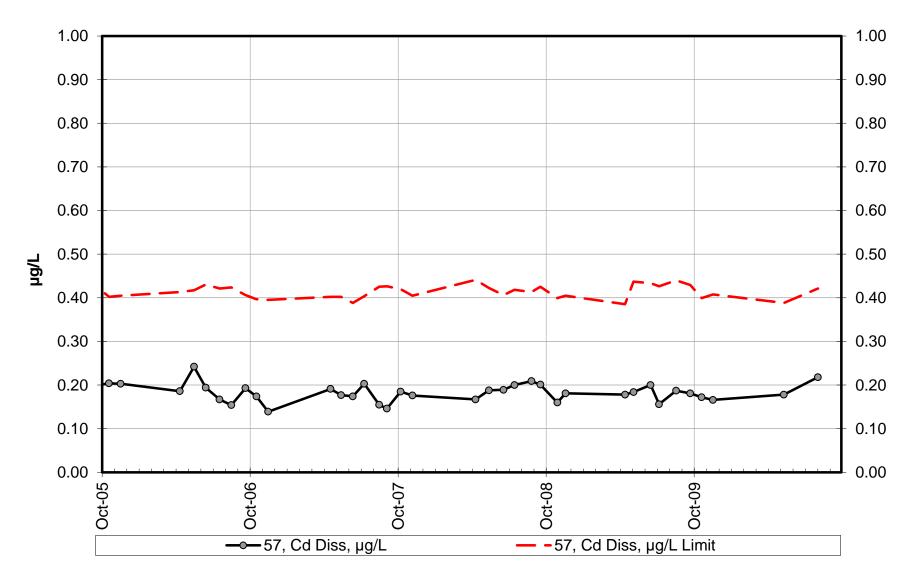
Site 57 - Total Sulfate


Note: The AWQS for Total Sulfate is 250 mg/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination.

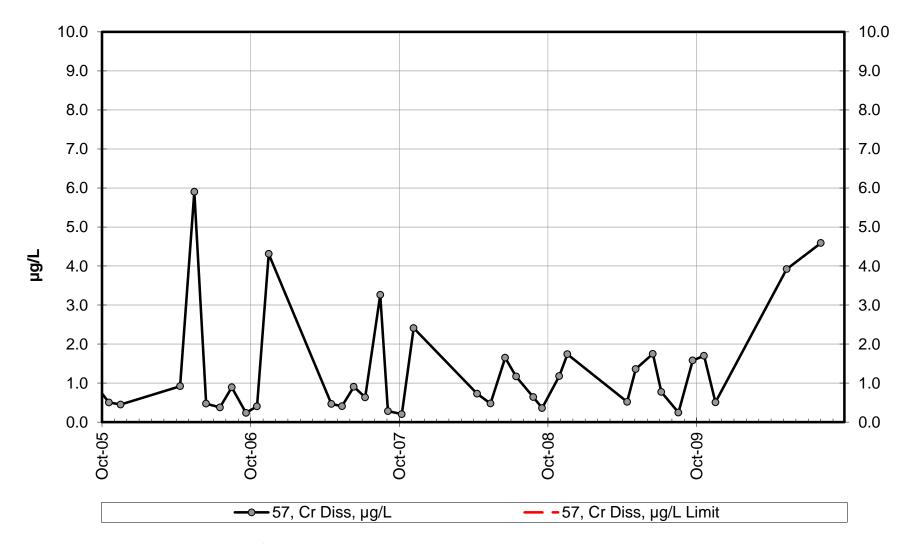
Site 57 - Hardness


mg/L

Site 57 - Dissolved Arsenic

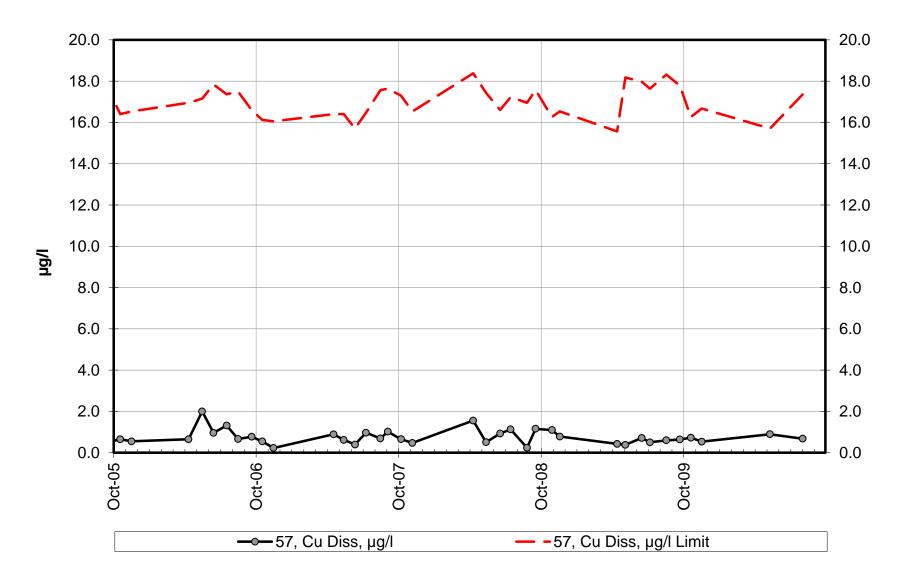

Note: The AWQS for total arsenic is 10 ug/L and thus may not be shown on this graph in order to allow greater visual detail of plotted values for trend determination

Site 57 - Dissolved Barium

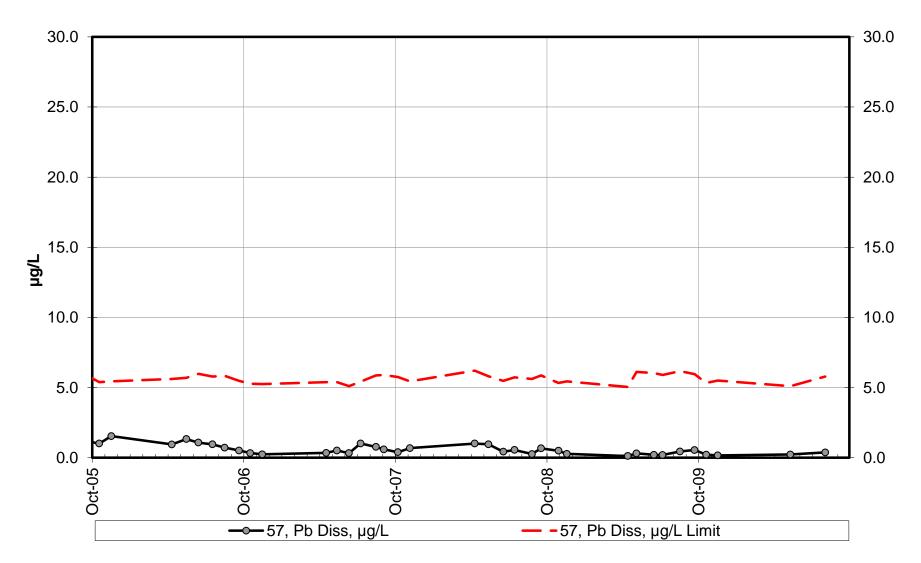


Note: the AWQS for Total Barium is 1000 ug/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination

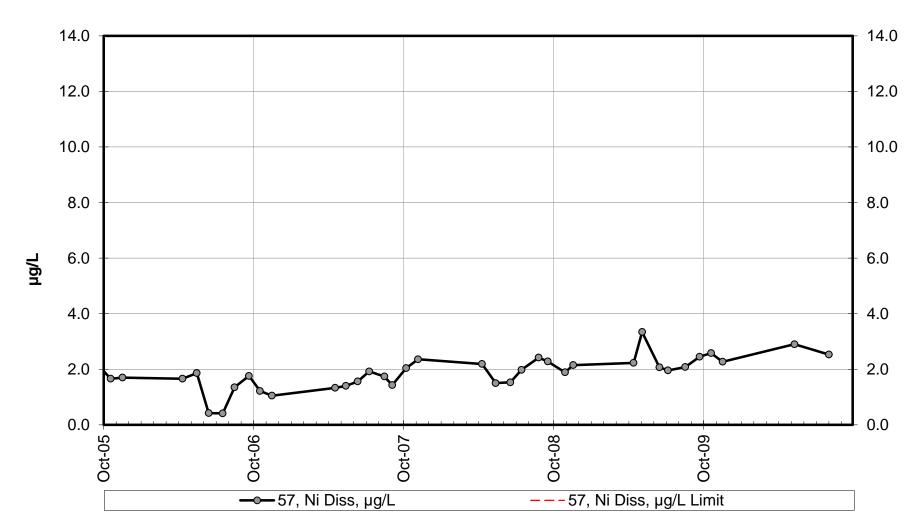
Site 57 - Dissolved Cadmium



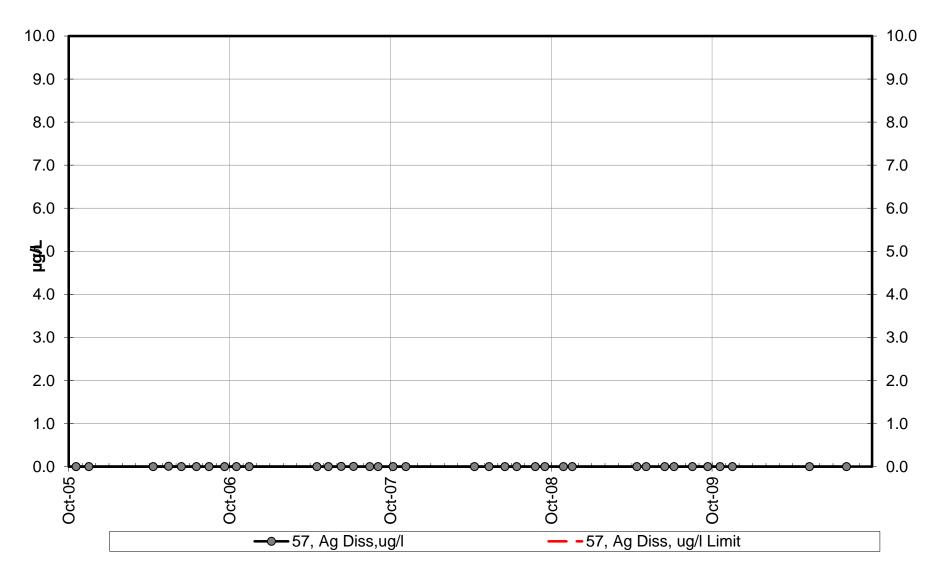
Site 57 - Dissolved Chromium



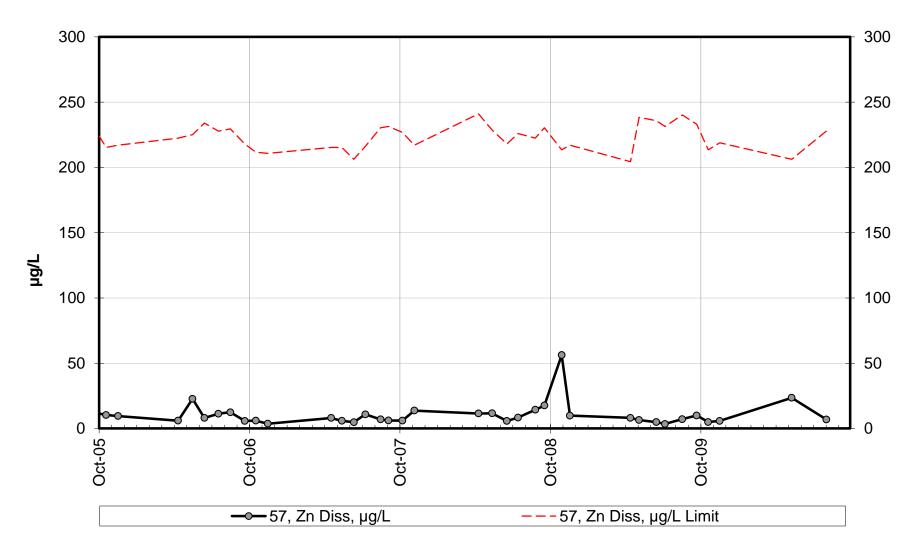
Note: the AWQS for Dissolved Chromium is 11 µg/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination


Site 57 - Dissolved Copper

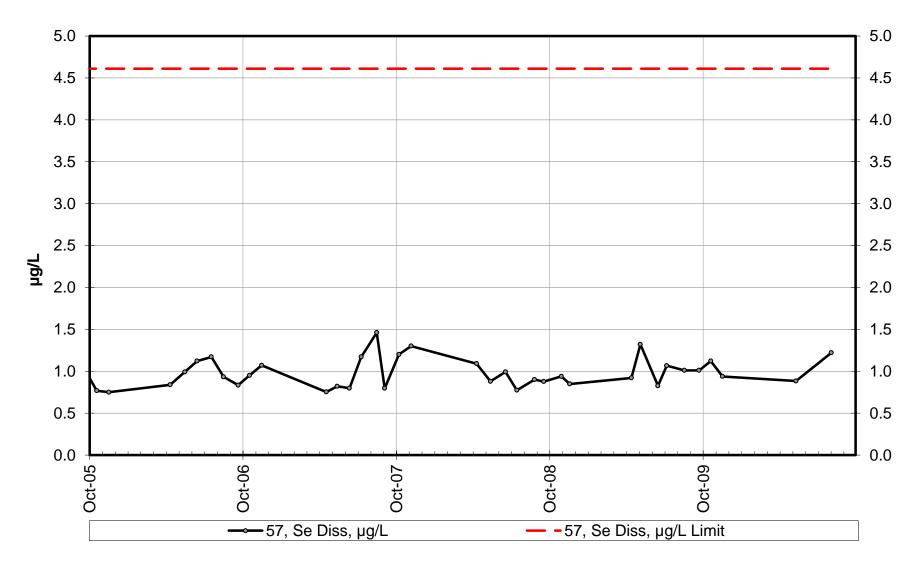
Site 57 - Dissolved Lead

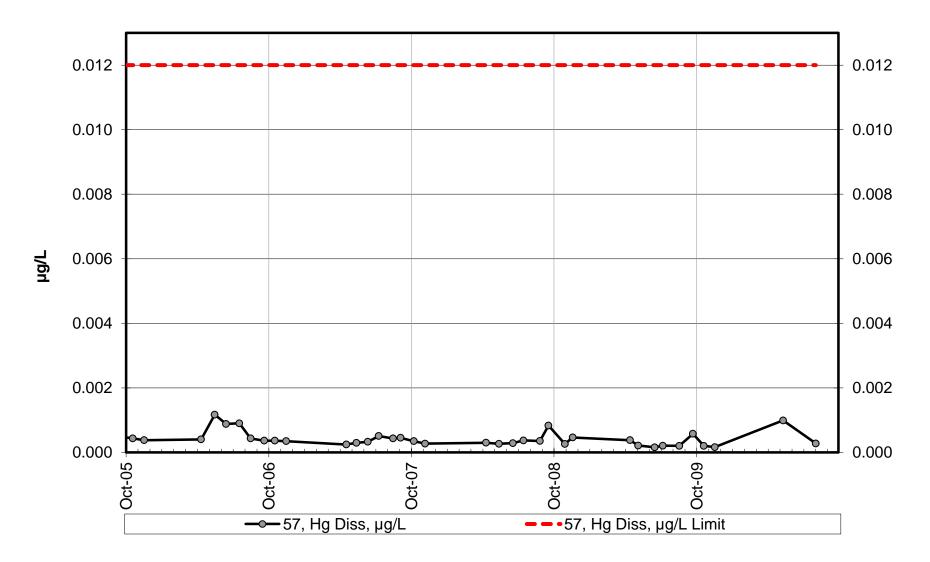


Site 57 - Dissolved Nickel

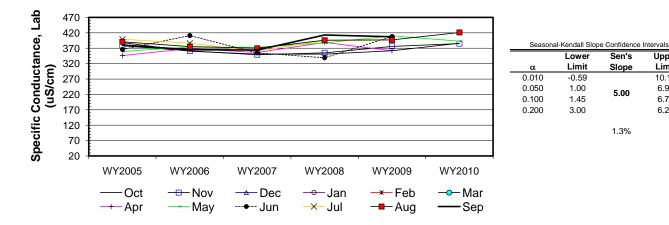


Note: The AWQS for dissolved nickel is hardness dependant and varies between 16 ug/L and 128 ug/L for waters with hardness values of 25 mg/L and 400 mg/L respectively. The AWQS, which would plot above the upper value on the Y-axis, are not shown on this graph to allow for greater visual detail of the plotted values.


Site 57 - Dissolved Silver


Site 57 - Dissolved Zinc

Site 57 - Dissolved Selenium



Site 57 - Dissolved Mercury

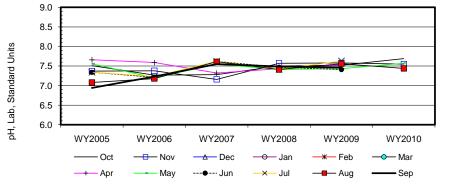
Site	#57			Seasona	l Kendal	l analysi	s for Spe	ecific Con	ductance, L	.ab (uS/c	:m)		
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
а	WY2005	388	378					346	359	366	399	391	380
b	WY2006	360	361					369	374	411	386	375	36
С	WY2007	351	349					356	373	355	361	370	364
d	WY2008	351	355					389	387	339	395	396	413
е	WY2009	362	376					362	410	408	396	397	407
f	WY2010	386	385						393			421	
	n	6	6	0	0	0	0	5	6	5	5	6	5
-	t,	3	5	5	5	5	5	5	5	5	5	5	5
	t ₂	1	0	0	0	0	0	0	0	0	0	0	(
	t ₃	0	0	0	0	0	0	0	0	0	0	0	(
	t4	0	0	0	0	0	0	0	0	0	0	0	(
-	t ₅	0	0	0	0	0	0	0	0	0	0	0	(
•	b-a	-1	-1					1	1	1	-1	-1	-1
	c-a	-1	-1					1	1	-1	-1	-1	-1
	d-a	-1	-1					1	1	-1	-1	1	1
	e-a	-1	-1					1	1	1	-1	1	1
	f-a	-1	1						1			1	
	c-b	-1	-1					-1	-1	-1	-1	-1	-1
	d-b	-1	-1					1	1	-1	1	1	1
	e-b	1	1					-1	1	-1	1	1	1
	f-b	1	1						1			1	
	d-c	0	1					1	1	-1	1	1	1
	e-c	1	1					1	1	1	1	1	1
	f-c	1	1						1			1	
	e-d	1	1					-1	1	1	1	1	-1
	f-d f-e	1	1						-1			1	
=	S _k	0	3	0	0	0	0	4	-1	-2	0	9	2
-		-	-	-	-		-			_	-	-	
	²s=	27.33	23.33					16.67	28.33	16.67	16.67	28.33	16.67
	S _k /\sigma _S	0.00	0.62					0.98	2.07	-0.49	0.00	1.69	0.49
Z	2 k	0.00	0.39					0.96	4.27	0.24	0.00	2.86	0.24
	$\Sigma Z_k =$	5.36	Г	Tie Extent	t,	t ₂	t ₃	t ₄	t _s			Σn	44
	ΣZ_{k}^{2}	8.96		Count	58	1	0	0	0			ΣS _k	27
_			L	Count	00	I	U	U	U			20_k	21
Z	-bar=∑Z _k /K=	0.67											

$\chi^2_{h} = \Sigma Z^2_{k} - K(Z-bar)^2 = 5.37$		5.37	@α=5% χ ² _(K-1) =	14.07	Test for station homogeneity	
	р	0.615			χ ² h<χ ² (K-1)	ACCEPT
$\Sigma VAR(S_k)$	\mathbf{Z}_{calc}	1.97	@α/2=2.5% Z =	1.96	H ₀ (No trend)	REJECT
174.00	р	0.976			H _A (± trend)	ACCEPT

Upper Limit

10.17

6.97


6.70

6.28

Site	#57			Sea	isonal k	Cendall a	nalysis f	or pH, La	ab, Stand	ard Unit	S		
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2005	7.5	7.4					7.7	7.6	7.3	7.3	7.1	6.
b	WY2006	7.3	7.4					7.6	7.2	7.2	7.2	7.2	7.
С	WY2007	7.3	7.2					7.3	7.6	7.6	7.6	7.6	7.
d	WY2008	7.5	7.6					7.4	7.4	7.5	7.4	7.4	7.
е	WY2009	7.5	7.6					7.5	7.4	7.4	7.6	7.6	7.
f	WY2010	7.7	7.6						7.6			7.4	
	n	6	6	0	0	0	0	5	6	5	5	6	
	t,	5	5	5	5	5	5	5	5	5	5	5	
	t ₂	0	0	0	0	0	0	0	0	0	0	0	
	t ₃	0	0	0	0	0	0	0	0	0	0	0	
	t ₄	0	0	0	0	0	0	0	0	0	0	0	
	t ₅	0	0	0	0	0	0	0	0	0	0	0	
	b-a	-1	1					-1	-1	-1	-1	1	
	c-a	-1	-1					-1	-1	1	1	1	
	d-a	-1	1					-1	-1	1	1	1	
	e-a	1	1					-1	-1	1	1	1	
	f-a	1	1						1			1	
	c-b	1	-1					-1	1	1	1	1	
	d-b	1	1					-1	1	1	1	1	
	e-b	1	1					-1	1	1	1	1	
	f-b	1	1						1			1	
	d-c	1	1					1	-1	-1	-1	-1	-
	e-c	1	1					1	-1	-1	1	-1	-
	f-c	1	1						1			-1	
	e-d f-d	1	-1					1	1	-1	1	1 1	-
	f-e	1	-1 -1						1			-1	
	S _k	9	7	0	0	0	0	-4	3	2	6	7	
σ	² s=	28.33	23.33					16.67	28.33	16.67	16.67	28.33	16.6
	s- S _k /σ _s	1.69	1.45					-0.98	0.56	0.49	1.47	1.32	0.9
2	Z ² _k	2.86	2.10					0.96	0.32	0.24	2.16	1.73	0.9
	$\Sigma Z_k =$	6.98	F	Tie Extent	t ₁	t ₂	t ₃	t ₄	t ₅			Σn	44
	ΣZ_{k}^{2}	11.33		Count	60	0	0	0	0			ΣS_k	34
7		0.87	L			-	-	-	-			— - N	

Seasonal	Kendall	analy	vsis for	pH.	Lab.	Standard	Units

$\chi^2_h = \Sigma Z^2_k$	-K(Z-bar) ² =	5.24	@α=5% χ ²	K-1)=	14.07	Test for station homog	geneity
	р	0.631				$\chi^2 h < \chi^2 (K-1)$	ACCEPT
$\Sigma VAR(S_k)$	Z_{calc}	2.49	@α/2=2.5%	Z=	1.96	H ₀ (No trend)	REJECT
175.00	р	0.994				H _A (± trend)	ACCEPT

	Lower	Sen's	Upper
α	Limit	Slope	Limit
0.010	0.00		0.10
0.050	0.01	0.06	0.09
0.100	0.02	0.06	0.08
0.200	0.02		0.07

0.8%

Site	#57				Season	al Kenda	all analys	sis for To	tal Alk,	(mg/l)			
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
а	WY2005	166.0	33.9					153.0	156.0	161.0	159.0	158.0	134.0
b	WY2006	160.0	144.0					151.0	152.0	159.0	149.0	154.0	146.0
С	WY2007	141.0	143.0					140.0	149.0	145.0	139.0	138.0	141.0
d	WY2008	145.0	132.0					129.0	137.0	128.0	141.0	134.0	131.0
e f	WY2009 WY2010	134.0 137.0	140.0 140.0					129.0	138.0 133.0	134.0	137.0	136.0 143.0	127.0
	n	6	6	0	0	0	0	5	6	5	5	6	5
	t,	5	3	5	5	5	5	3	5	5	5	5	5
	t ₂	0	1	0	0	0	0	1	0	0	0	0	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t4	0	0	0	0	0	0	0	0	0	0	0	0
	t _s	0	0	0	0	0	0	0	0	0	0	0	0
	b-a	-1 -1	1 1					-1 -1	-1 -1	-1 -1	-1 -1	-1 -1	1 1
	c-a d-a	-1	1					-1 -1	-1	-1	-1 -1	-1 -1	-1
	e-a	-1	1					-1	-1	-1	-1	-1	-1
	f-a	-1	1					-1	-1	-1	- 1	-1	-1
	c-b	-1	-1					-1	-1	-1	-1	-1	-1
	d-b	-1	-1					-1	-1	-1	-1	-1	-1
	e-b	-1	-1					-1	-1	-1	-1	-1	-1
	f-b	-1	-1						-1			-1	
	d-c	1	-1					-1	-1	-1	1	-1	-1
	e-c	-1	-1					-1	-1	-1	-1	-1	-1
	f-c e-d	-1 -1	-1 1					0	-1 1	1	-1	1 1	-1
	f-d	-1	1					0	-1	1	-1	1	-1
	f-e	1	0						-1			1	
	S _k	-11	0	0	0	0	0	-9	-13	-8	-8	-7	-6
	² s=	28.33	21.67					15.67	28.33	16.67	16.67	28.33	16.67
	S _k /σ _s	-2.07	0.00					-2.27	-2.44	-1.96	-1.96	-1.32	-1.47
	Z_{k}^{2}												
	Z k	4.27	0.00					5.17	5.96	3.84	3.84	1.73	2.16
	$\Sigma Z_k =$			Tie Extent	t ₁	t ₂	t ₃	t ₄	t _s			Σn	44
	$\Sigma Z_k^2 =$	26.97		Count	56	2	0	0	0			ΣS_k	-62
Z	2-bar=ΣZ _k /K=	-1.69	I										
	$\gamma^2 - \Sigma 7^2$	K(Z-bar) ² =	4.24		@~-5	% χ ² _(K-1) =	14.07		Tost for sta	tion homog	opoity		
	λ h−44 k			. L	@ u= 0	/0 λ (K-1) [—]	14.07		$\chi^2 h < \chi^2 (K-1)$				
		р	0.752					/			ACCEPT		
	$\Sigma VAR(S_k)$	\mathbf{Z}_{calc}	-4.65		@α/2=	=2.5% Z=	1.96		H ₀ (No		REJECT		
	172.33	р	0.000						H _A (±	trend)	ACCEPT		
190 -	-												
170 -			•										
150 -												0 "	
~ 130 -									-	Seasona		Confidence Ir	
/b	-									α	Lower Limit	Sen's Slope	Upper Limit
<u></u>									-	0.010	-6.33	Slope	-3.00
- 90 -		_/								0.050	-6.00	4.00	-4.00
₹ ₇₀	-									0.100	-5.77	-4.88	-4.00
0, tal		/								0.200	-5.50		-4.00
- 130 - - 01 - 02 - 02 - 02 - 02 - 02													
30 -												-3.5%	
10 -					1			1					
	WY2005	5 WY	2006	WY2007	WY2	2008	WY2009	WY2	2010				
	—— Oc	×t _□	– Nov	— <u></u> Dec		-Jan			- Mar				
	——————————————————————————————————————		- May	• Jun					- Mar - Sep				
	· 74	· I	way	- 0011	~	501	– <i>A</i> uį	3	000				

Site	#57	Seasonal Kendall analysis for Sulfate, Total (mg/l)													
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep		
а	WY2005	50.8	56.5					51.3	52.0	62.7	66.2	68.2	68.6		
b	WY2006	52.2	52.4					61.7	59.4	66.0	60.1	58.5	50.0		
С	WY2007	49.4	44.3					47.4	50.8	49.6	51.9	56.7	58.8		
d	WY2008	59.0	47.1					57.0	57.1	47.3	48.7	49.4	48.3		
е	WY2009	38.8	43.4					44.2	54.8	60.1	63.5	58.8	62.1		
f	WY2010	51.7	57.5						44.3			60.5			
	n	6	6	0	0	0	0	5	6	5	5	6	5		
	t,	5	5	5	5	5	5	5	5	5	5	5	5		
	t ₂	0	0	0	0	0	0	0	0	0	0	0	0		
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0		
	t ₄	0	0	0	0	0	0	0	0	0	0	0	0		
	t _s	0	0	0	0	0	0	0	0	0	0	0	0		
	b-a	1	-1					1	1	1	-1	-1	-1		
	c-a	-1	-1					-1	-1	-1	-1	-1	-1		
	d-a	1	-1					1	1	-1	-1	-1	-1		
	e-a	-1	-1					-1	1	-1	-1	-1	-1		
	f-a	1	1					·	-1	•		-1			
	c-b	-1	-1					-1	-1	-1	-1	-1	1		
	d-b	1	-1					-1	-1	-1	-1	-1	-1		
	e-b	-1	-1					-1	-1	-1	1	1	1		
	f-b	-1	1						-1			1			
	d-c	1	1					1	1	-1	-1	-1	-1		
	e-c	-1	-1					-1	1	1	1	1	1		
	f-c	1	1						-1			1			
	e-d	-1	-1					-1	-1	1	1	1	1		
	f-d	-1	1						-1			1			
	f-e S _k	<u> </u>	-3	0	0	0	0	-4	-1 -5	-4	-4	-1	-2		
	UK	-1	-5	0	0	0	0	-4	-5	-4	-4	-1	-2		
	5 ² s=	28.33	23.33					16.67	28.33	16.67	16.67	28.33	16.67		
Z _k =	= S _k /\sigma _S	-0.19	-0.62					-0.98	-0.94	-0.98	-0.98	-0.19	-0.49		
	Z ² _k	0.04	0.39					0.96	0.88	0.96	0.96	0.04	0.24		
	$\Sigma Z_{k} =$	-5.37	J	Tie Extent	t ₁	t ₂	t ₃	t4	t ₅			Σn	44		
	ΣZ_{k}^{2}	4.46		Count	60	0	0	0	0			ΣS_k	-24		
-				Count	00	U	U	U	U			20 _K	-24		

Seasonal Ke	ndall analys	eis for Sulfat	e, Total (mg/l)
		is ior ounai	

Z-bar= $\Sigma Z_k/K$ = -0.67

$\chi^2_h = \Sigma Z^2_k$	$\chi^2_h = \Sigma Z^2_k - K(Z-bar)^2 = 0.86$			@α=5% χ ² _(K-1) =	14.07	Test for station homo	geneity
	р	0.997	_			$\chi^{2}_{h} < \chi^{2}_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	Z_{calc}	-1.74		@α=5% Z=	1.64	H₀ (No trend)	REJECT
175.00	р	0.041				H _A (± trend)	ACCEPT

Site	#57	Seasonal Kendall analysis for Zinc, Dissolved (ug/l)												
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	
а	WY2005	91.3	69.7					14.7	21.8	19.4	31.3	23.9	12.4	
b	WY2006	10.3	9.5					6.0	22.7	8.1	11.3	12.4	5.8	
С	WY2007	6.0	3.7					8.1	5.9	4.8	10.8	7.0	6.1	
d	WY2008	6.0	13.7					11.5	11.6	5.7	8.4	14.3	17.6	
е	WY2009	56.2	9.8					8.1	6.5	4.9	3.5	7.1	10.0	
f	WY2010	4.9	5.8						23.5			6.9		
	n	6	6	0	0	0	0	5	6	5	5	6	5	
	t,	5	5	5	5	5	5	5	5	5	5	5	5	
	t ₂	0	0	0	0	0	0	0	0	0	0	0	C	
	t ₃	0	0	0	0	0	0	0	0	0	0	0	C	
	t4	0	0	0	0	0	0	0	0	0	0	0	C	
	t _s	0	0	0	0	0	0	0	0	0	0	0	C	
	b-a	-1	-1					-1	1	-1	-1	-1	-1	
	c-a	-1	-1					-1	-1	-1	-1	-1	-1	
	d-a	-1	-1					-1	-1	-1	-1	-1	1	
	e-a	-1	-1					-1	-1	-1	-1	-1	-1	
	f-a	-1	-1						1			-1		
	c-b	-1	-1					1	-1	-1	-1	-1	1	
	d-b	-1	1					1	-1	-1	-1	1	1	
	e-b	1	1					1	-1	-1	-1	-1	1	
	f-b	-1	-1						1			-1		
	d-c	1	1					1	1	1	-1	1	1	
	e-c	1	1					1	1	1	-1	1	1	
	f-c	-1	1						1			-1		
	e-d	1	-1					-1	-1	-1	-1	-1	-1	
	f-d f-e	-1 -1	-1 -1						1 1			-1 -1		
	S _k	-7	-5	0	0	0	0	0	1	-6	-10	-9	2	
σ	²s=	28.33	23.33					16.67	28.33	16.67	16.67	28.33	16.67	
	s_ S _k /σ _s	-1.32	-1.04					0.00	0.19	-1.47	-2.45	-1.69	0.49	
2	z ² _k	1.73	1.07					0.00	0.04	2.16	6.00	2.86	0.24	
	$\Sigma Z_k =$	-7.28	Г	Tie Extent	t ₁	t ₂	t ₃	t ₄	t ₅			Σn	44	
	ΣZ_{k}^{2}	14.09		Count	60	0	0	0	0			ΣS_k	-34	
-	-bar=ΣZ _k /K=	-0.91	L	500		v	•	v	v				υ.	

Seasonal Kendall	analysis for	Zinc	Dissolved	(ua/l)
		2010,	DISSOIVCU	(uu/))

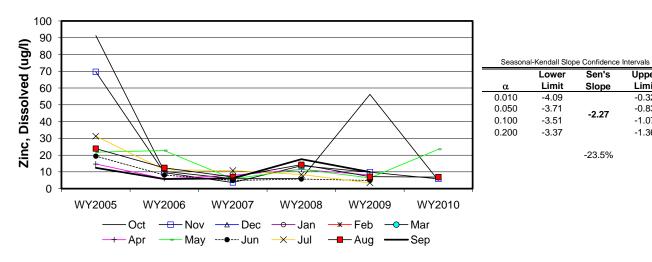
 $\chi^2_{h=\Sigma}Z^2_{k}-K(Z-bar)^2=$ 7.47 @α=5% χ²_(K-1)= 14.07 Test for station homogeneity 0.382 $\chi^2_h < \chi^2_{(K-1)}$ ACCEPT р $\Sigma VAR(S_k)$ Z_{calc} -2.49 @α/2=2.5% Z= 1.96 H_0 (No trend) REJECT 175.00 0.006 H_A (± trend) ACCEPT р

Sen's

Slope

-2.27

Upper


Limit

-0.32

-0.83

-1.07

-1.36

INTERPRETIVE REPORT SITE 56 "MONITORING WELL D-00-01"

The data collected during the current water year are listed in the following "Table of Results for Water Year 2010" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the rightmost column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

Sampling at this site was added to the FWMP in October-2001. All data collected at this site for the past six years are included in the data analyses. As shown in the table below, there were no data outliers.

Sample Date	Parameter	Value	Qualifier	Notes	
No outliers have	been identified by HC	GCMC for the peri	od of October	r 2005 through September 2010.	

The data for Water Year 2010 have been compared to the strictest fresh water quality criterion for each applicable analyte. No results exceeding these criteria have been identified as listed in the table below.

Sample Date	Parameter	Value Hardness (mg/L)		Standard	Standard Type
No ex	ceedances have been ide	ntified by HO	GCMC for the period	of Oct-09 tho	ugh Sept-10.

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. These plots have been visually analyzed for the appearance of any trend in concentration. No visually obvious trends were apparent. As with the increase in chromium seen at the other sites (site 48, site 6, site 54, site 49, site 46, and site 13), chromium was seen to increase at this site also. However, the increased values were similar to those recorded in previous water years and to a lesser extent.

A non-parametric statistical analysis for trend was preformed for conductivity, pH, alkalinity, sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall

analyses are presented in detail on the pages following this interpretive section. The adjacent table summarizes the results on the data collected between May-04 and Sep-10 (WY2005-WY2010). There was one statistically significant ($\alpha/2=2.5\%$) trend identified for

Site 56-WY2010, summary statistics for trend analysis.

M	ann-Ke	endall test	<u>Sen's slop</u>	e estimate	
Parameter	N (1)	p (2)	Trend	Q	Q(%)
Conductivity, Lab	6	0.32	0		
pH, Lab	6	0.53	0		
Alkalinity, Total	6	<0.01	-	-1.79	-3.1
Sulfate, Total	6	0.80	0		
Zinc, Dissolved	6	0.35	0		
(1): Number of yea	(2):Signif	icance lev	vel		

the current water year. Total alkalinity (p=0.01) has an estimated slope of -1.79 mg/L/yr or a slope of -3.1%. This trend is similar to those calculated for the previous two water years and is similar in direction and magnitude to that seen at Site 6 (Middle Greens Creek). Dissolved zinc failed the test for homogeneity that is required for the Mann-Kendall calculations.

A comparison of median values for total alkalinity, laboratory pH, laboratory conductivity, total sulfate, and dissolved zinc between Site 56 and Site 57 has been conducted as specified in the Statistical Information Goals for Site 56. Additional X-Y plots have been generated for alkalinity, pH, conductivity, sulfate, and dissolved zinc that co-plot data from Site 56 and Site 57, the up-gradient control site, to aid in the comparison between those two sites. Calculation details of the non-parametric signed-rank tests are presented in detail on the pages following this interpretive section. The table below summarizes the results of the signed-rank test as performed on the Water Year 2010 data set.

Parameter	Signed Ranks p-value	Site 57 median	Site 56 median	Median of Differences
Conductivity, Lab	1.00	389.5	144	252.0
pH, Lab	1.00	7.6	7.6	0.1
Alkalinity, Total	1.00	138.5	59.3	79.3
Sulfate, Total	1.00	54.6	11.7	42.7
Zinc, Dissolved	1.00	6.34	0.45	5.89

Site 56 vs Site 57 - WY2010, summary statistics for median analysis.

The only significant difference identified by the typical one-tailed test was for total alkalinity. Median values for alkalinity for Site 49 and Site 46 are 138.5 mg/L and 59.3 mg/L respectively. The median difference, Site 49 minus Site 46, is 79.3 mg/L. It should be noted that if a two-tailed signed-rank test was applied to the dataset for these sites a very significant (p=1.00) difference would exist with respect to the other parameters included in the signed-ranks analysis. Specifically, conductivity, sulfate, and dissolved zinc fail to meet the null hypothesis of no significant difference between medians when the alternative hypothesis is cast in terms without regard to the direction of the difference (H_a: median [D] \neq 0). The obvious differences of the major water-quality parameters at these sites are likely the result of several inherent hydrological/geological differences between the two sites.

The two major differences between the sites are the unit of completion and the hydrological setting. The up-gradient control site, Site 57, is in an area away from the influence of any major surface flow. The screened interval is in the colluvial unit that underlies most of Site 23 production rock area and samples 63 to 68 feet below the surface. The aquifer sampled by the screened interval may be one of multiple perched aquifers located below Site 23 as noted in the "Site 23/D Hydrogeology and Geochemistry Analysis" report (EDE, 2004). The down-gradient well, Site 56, is to the southeast of the Site 23/D production rock areas and is located approximately 40 feet west of the lower reaches of Bruin Creek. The screened interval was originally

interpreted as the same colluvial unit as Site 57, but recent drilling information suggests the completion is in the alluvial sands which underlie most of Site D. The sampled interval is at a depth of 14 to 19 feet. The difference in the unit of completion may have an effect on the resulting water quality. The colluvium is characterized as a fine to coarse sand with angular to sub-rounded, partially weathered chloritic rock with localized residual pyrite. The alluvial sand is characterized as a fine to coarse sand with subangular to rounded gravel and is composed of well-weathered clasts with a more stable mineral assemblage. Thus the colluvial material, being less deeply weathered, would typically generate a higher leachable load of dissolved salts that would be reflected in the chemistry of the associated ground water. Additionally, the proximity of Site 56 to Bruin Creek and Greens Creek and its shallow completion depth suggest there would be a much greater influence of a surface water component relative to Site 57. The water temperature data for Site 56 reflects this by showing a very strong seasonal variation that is very similar to the data collected at the nearby surface sites 46 and 6. In contrast the Site 57 water temperature data shows a much lower variation that is indicative of groundwater with a minor seasonal surface component. The surface water recharge to the local aquifer would tend to act as a diluent with respect to the more concentrated dissolved fraction of groundwater. Finally, if Site 57 does sample a localized, perched aquifer it would probably be more strongly influenced by seasonal and/or annual variations in recharge rate since the area of capture would be more limited than for Site 56. In summary, the combined effects of the difference in completion units and the different hydrological regimes likely explain the disparity in analyte concentrations found at the two sites.

Because of the differences in the completions of these well the statistical analysis of the inter-comparison is prone to failure if not misinterpretation. An attempt was made this season to analyze this well data on an intra-well comparison basis using the combined Shewhart-CUSUM control chart approach. This method was first referenced by Westgard et al. 1977 then further developed by Lucas (1982). This form of analysis has been recommended for use in intra-well monitoring by the U.S. Environmental Protection Agency (EPA) (EPA 1989, 1992).

The Shewhart-CUSUM is a sequential analysis technique to determine changes in a variable. The methodology involves the calculation of a standardized difference z_i for each measurement at time t_i as x_i :

$$Z_i = (x_i - x) / s$$

At each time t_i, the cumulative sum is computed as:

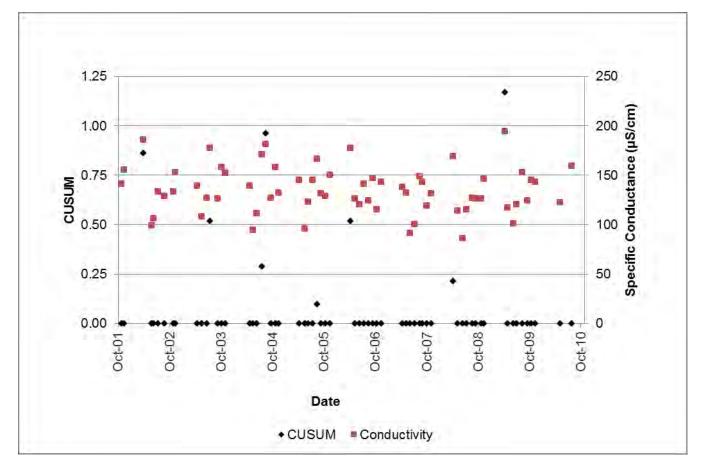
$$S_0 = 0$$

 $S_i = \max[0, (z_i - d) + (S_i - 1)]$

Setting $S_0 = 0$ ensures that only cumulative increase over background are monitor. When the value of *S* exceeds a certain threshold value, a change in value has been found. The above formula only detects changes in the positive direction. Plot the values S_i (y-axis) versus t_i (x-axis) on time plot for visual purposes. A process (analyte) is considered 'out of control' when the cumulative increase in the parameter over background S_i >= h (e.g. h=5) or a standardized increase $z_i \ge$ SCL (e.g. SCL = 4.5 standard deviations units over background).

For this year's FWMP report the combined Shewhart-CUSUM control chart statistical analysis was carried out on the specific conductance, dissolved zinc, and total sulfate data from Site 56 starting from October 2001. In order to use the analysis background values were calculated for each of the analytes. Without a true background record the first year of sampling was chosen for this calculation. Results of these calculations are summarized in the Table 1.

The visual representations of these calculations are graphed in the Figures 1 - 3. All three of the analytes reached the lowest control limit (SCL=2) and only total sulfate reached the control limit of SCL=4. Each of the sites were below the EPA recommend control limit of SCL=4.5. Values for the CUMSUM statistic ranged from a low of 0, observed in each analysis to a high of 3.3 recorded for total sulfate. None of the analysis exceed the established limit of h=5. In order for a process to be considered 'out of control' both metrics (Shewhart & CUMSUM) need to be 'out of control'. With these analyses the only analyte that neared both these limits was total sulfate.


Once a background value is established the proceeding years are not 'out of control' the data for those years can be used to recalculate the background values. It is suggested that these calculations be carried out every two years. In order to prevent the incorporation of a gradual trend into the background data, it is important to test for background trends on a routine basis. Currently, HGCMC is using the Mann-Kendall test for seasonal trends for trend analysis. Of the three analytes used, for the combined Shewhart-CUSUM control charts, none of them had a significant seasonal trend. Therefore, it should be possible to incorporate more of the measurements into the calculation of the baseline statistics.

With this being the initial investigation into intra-well monitoring using the combined Shewhart-CUSUM control charts the results of these analyses need to be considered carefully. From the seasonal trend analyses, the similarity to Site 46 analytes, and the Shewhart-CUSUM results; it is concluded that the impact HGCMC has had on the groundwater at Site 56 is negligible or currently undetectable.

Table 1.Specific Conductance, Dissolved Zinc, and Total Sulfate Baseline Periods,
Summary Statistics and Various Control Limits

	Site 56 Conductivity (µS/cm)	Site 56 Diss. Zinc (µg/L)	Site 56 Total Sulfate (mg/L)
Baseline Statistics			
Baseline Period	10/25/01 - 11/12/02	10/25/01 - 11/12/02	10/25/01 - 11/12/02
Number of Samples	9	9	9
Mean (x)	137.20	1.07	9.47
Standard Deviation	26.20	1.02	2.33
Shewhart-CUSUM Control Limits	(SCL)		
Control Limit (mean x+ 2s)	190	3	14
Control Limit (mean x + 3s)	216	4	16
Control Limit (mean x + 4s)	242	5	19
Control Limit (mean x + 4.5s)	255	6	20
CUSUM Control Limits			
Cumulative increase – h	5	5	5

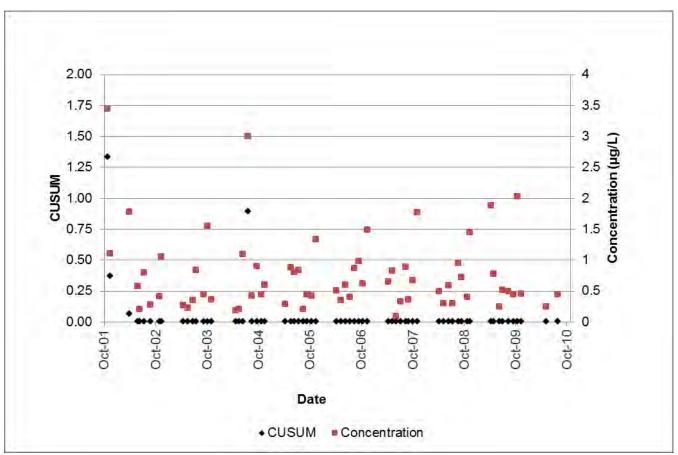
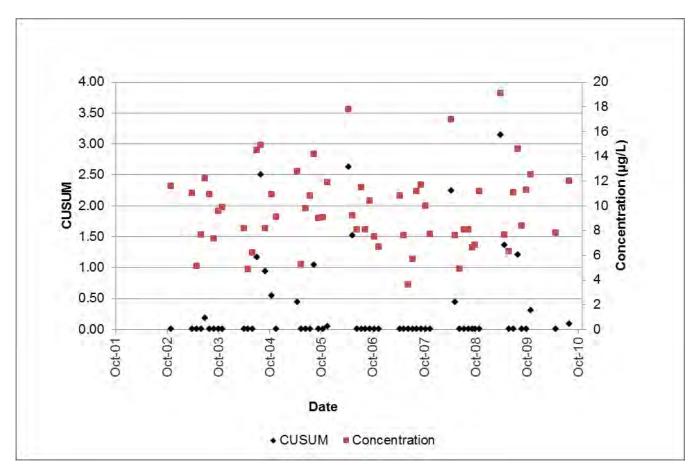



Figure 2. Observed Dissolved Zinc Measurements from Site 56 Compared to the Combined Shewhart-Cusum Control Limits From Table 1

Figure 3. Observed Total Sulfate Measurements from Site 56 Compared to the Combined Shewhart-Cusum Control Limits From Table 1

Table of Results for Water Year 2010

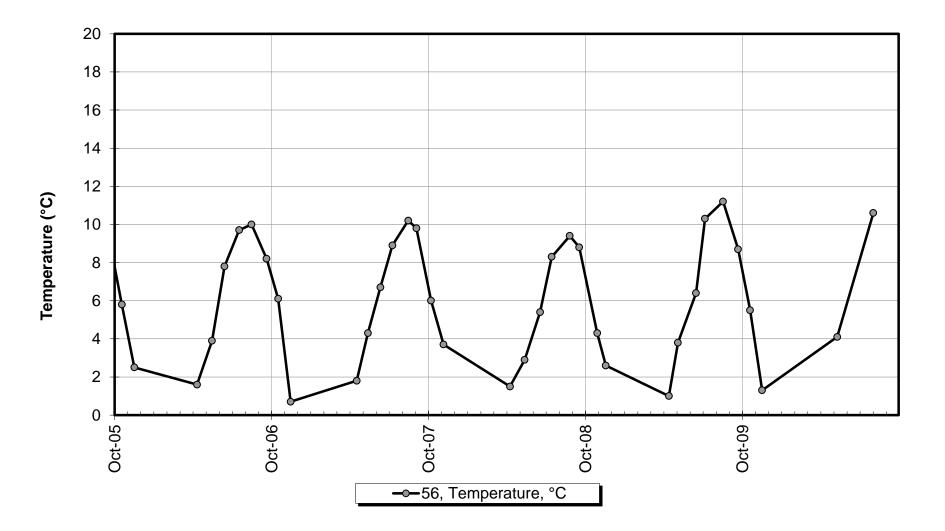
Site 56 "MW-D-00-01"													
Sample Date/Parameter	10/20/2009	11/17/2009	Dec-09	Jan-10	Feb-10	Mar-10	4/6/2010	5/11/2010	6/15/2010	7/13/2010	8/3/2010	9/14/2010	Median
Water Temp (°C)	5.5	1.3	G			Ć	5	4.1	Ľ)	10.6	U	4.8
Conductivity-Field(µmho)	158	127	ž				2	131	- N		155	Ň	143
Conductivity-Lab (µmho)	145	143 J				-	J	122			159	Ĺ	144
pH Lab (standard units)	7.54	7.59 J	ם			2		7.66	۵ ۲	-	7.00	ב	7.57
pH Field (standard units)	7.05	6.85	27					7.73	A N		6.80	AMP	6.95
Total Alkalinity (mg/L)	58.6	59.9 J	SP		pc	Ŭ		46.3	U U		66.1	7S	59.3
Total Sulfate (mg/L)	11.3	12.5	Ľ.		Perio			7.8 v	Ω		12.0 J	Ŕ	11.7
Hardness (mg/L)	78.3	73.4	5		e G		5	59.7	Ċ	5	79.5	ð	75.9
Dissolved As (ug/L)	0.135	0.119	ш			Ŭ	Ĺ	0.133	Ŭ		0.163	Ĩ	0.134
Dissolved Ba (ug/L)	11.6	10.5	Ω		5	C	נ	7.4	C	۵	12.8	Δ	11.1
Dissolved Cd (ug/L)	0.018	0.015 J	Щ		nsition	Ľ		0.009 J	ũ	1	0.017	Ш,	0.016
Dissolved Cr (ug/L)	0.186 U	0.200 U	5		SL		5	1.940	=	5	1.970	5	1.070
Dissolved Cu (ug/L)	0.602	0.563	ā		ar	Č	5	0.471	Ē	Ś.	0.615	Δ	0.583
Dissolved Pb (ug/L)	0.0044 U	<0.0030	Ψ		Trai			<0.0030 U	ц	<u>.</u>	<0.0030 U	Ш	0.0015
Dissolved Ni (ug/L)	1.020	0.823	5			ີ	5	0.824	L C	5	0.915 U	Ċ	0.870
Dissolved Ag (ug/L)	<0.003	<0.003	ŭ.			ũ		<0.004	Ū.	5	<0.004	Š	0.002
Dissolved Zn (ug/L)	2.03 U	0.45 U	ļ			ŀ	-	0.25	ļ-	-	0.44 U	 	0.45
Dissolved Se (ug/L)	0.992 J	0.761	<u>o</u>			Ž	2	0.385	c	2	0.740	<u>o</u>	0.751
Dissolved Hg (ug/L)	0.001660	0.000934	z			2	2	0.001320	Ż	5	0.001590	Ż	0.001455

Site 56 "MW D 00 01"

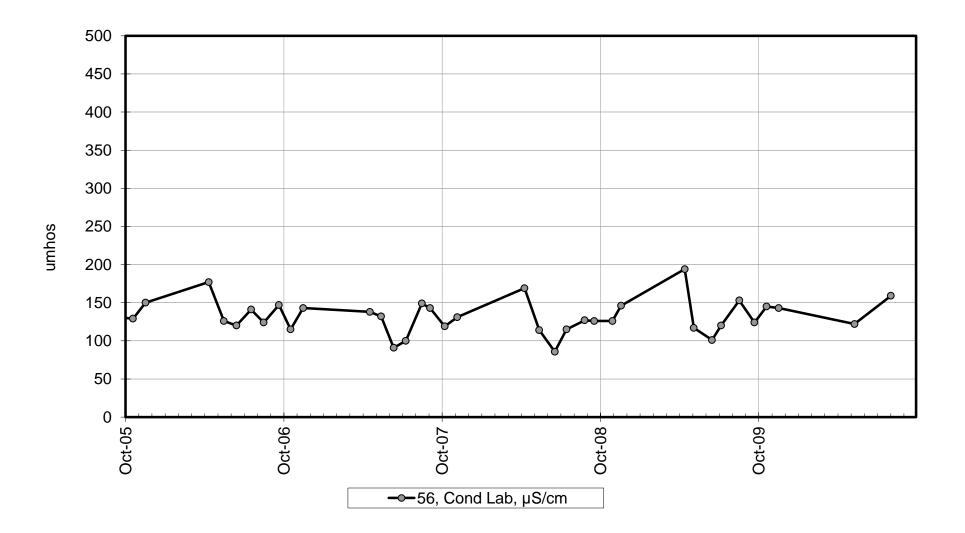
For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

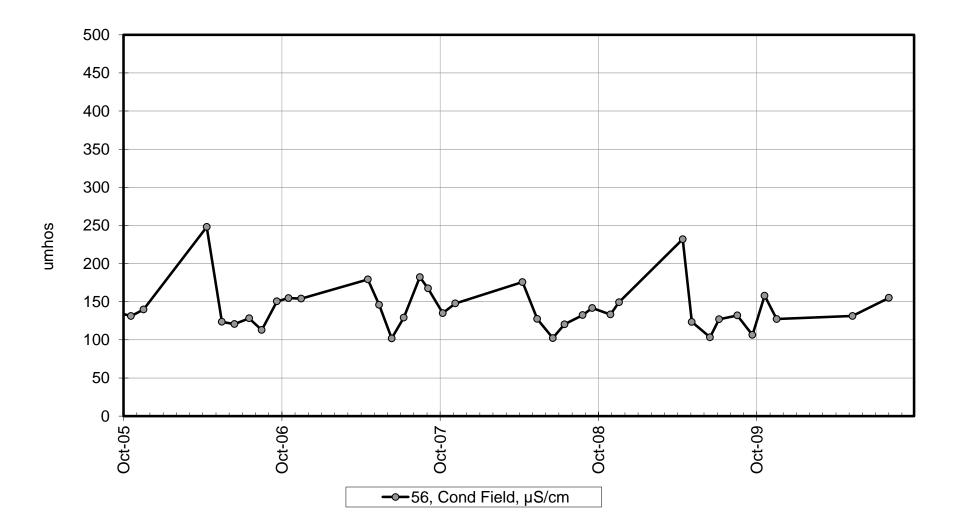
Shaded data has been qualified as an outlier by HGCMC and removed from any further analysis and is not included into the calculation of the median

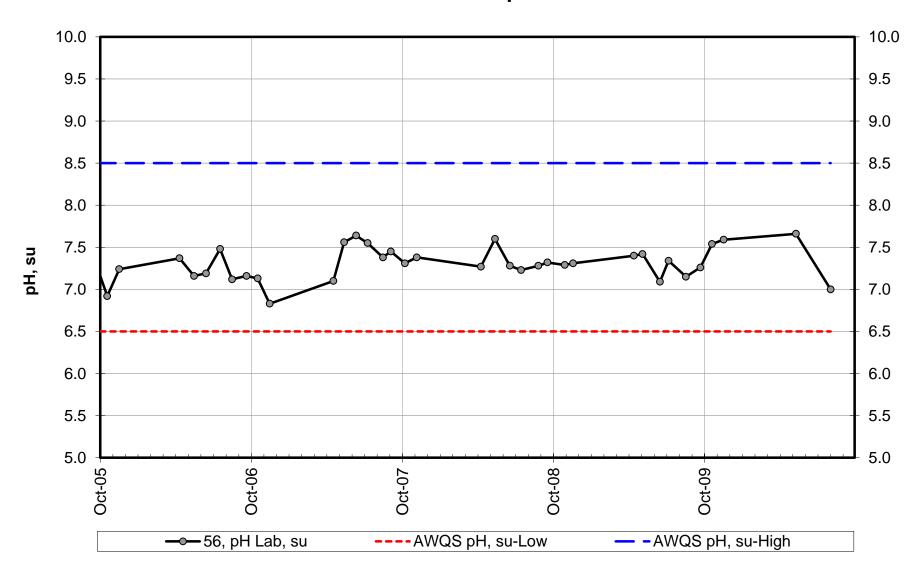

Qualified Data by QA Reviewer

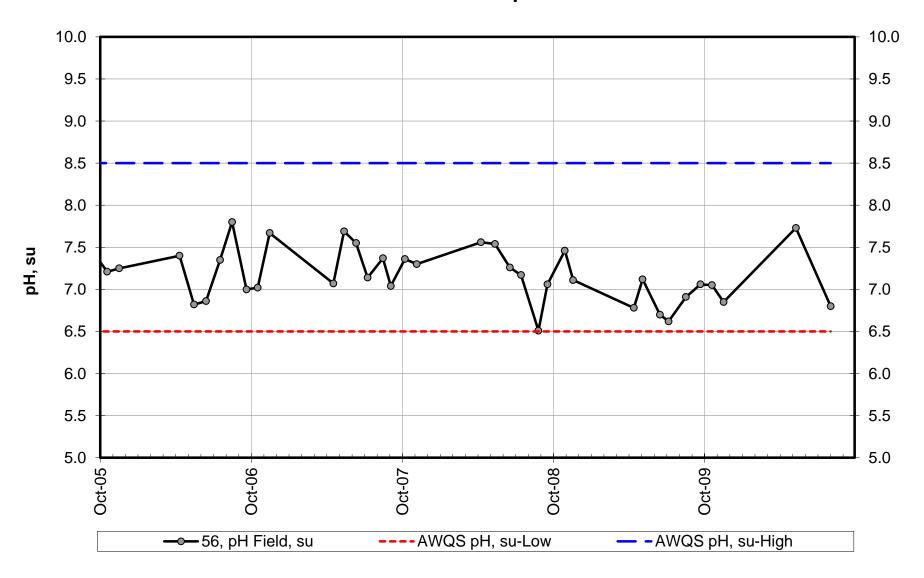
Date Range: 10/01/2009 to 09/30/2010

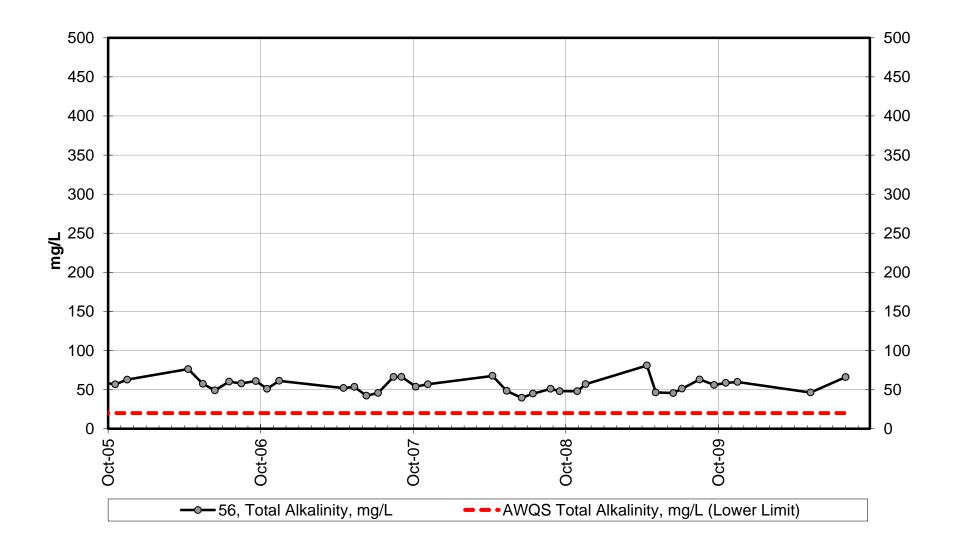

Site No.	Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier
56	10/20/2009	12:00 AM				
			Cr diss, µg/l	0.18	U	Method Blank Contamination
			Pb diss, µg/l	0.00438	U	Field Blank Contamination
			Se diss, µg/l	0.99	J	Matrix Spike Recovery
			Zn diss, µg/l	2.03	U	Field Blank Contamination
6	11/17/2009	12:00 AM				
			Alk Tot,mg/l	59.9	J	Temperature Exceedance
			Cond, µs/cm	143	J	Temperature Exceedance
			Cd diss, µg/l	0.01	J	Below Quantitative Range
			Cr diss, µg/l	0.2	U	Field Blank Contamination
			Zn diss, µg/l	0.45	U	Field Blank Contamination
			pH Lab, su	7.59	J	Hold Time Violation
6	5/11/2010	12:52 PM				-
			Cd diss, µg/l	0.00891	J	Below Quantitative Range
			Pb diss, µg/l	-0.003	U	Field Blank Contamination
			SO4 Tot, mg/l	7.8	J	Sample Temperature
6	8/3/2010	10:58 AM				
			Ni diss, µg/l	0.915	U	Field Blank Contamination
			Pb diss, µg/l	-0.003	U	Field Blank Contamination
			Zn diss, µg/l	0.444	U	Field Blank Contamination
			SO4 Tot, mg/l	12	J	Sample Temperature

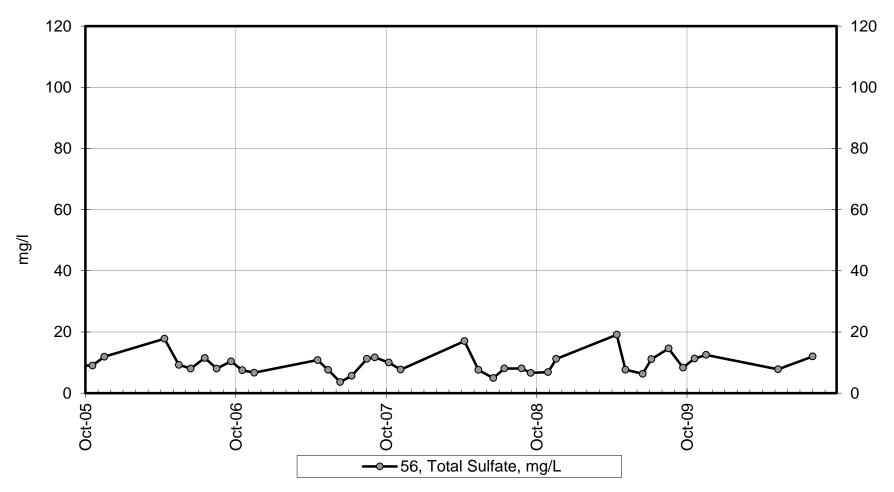
Qualifier	Description
J	Positively Identified - Approximate Concentration
Ν	Presumptive Evidence For Tentative Identification
NJ	Tentatively Identified - Approximate Concentration
R	Rejected - Cannot be Verified
U	Not Detected Above Quantitation Limit
UJ	Not Detected Above Approximate Quantitation Limit


Site 56 -Water Temperature

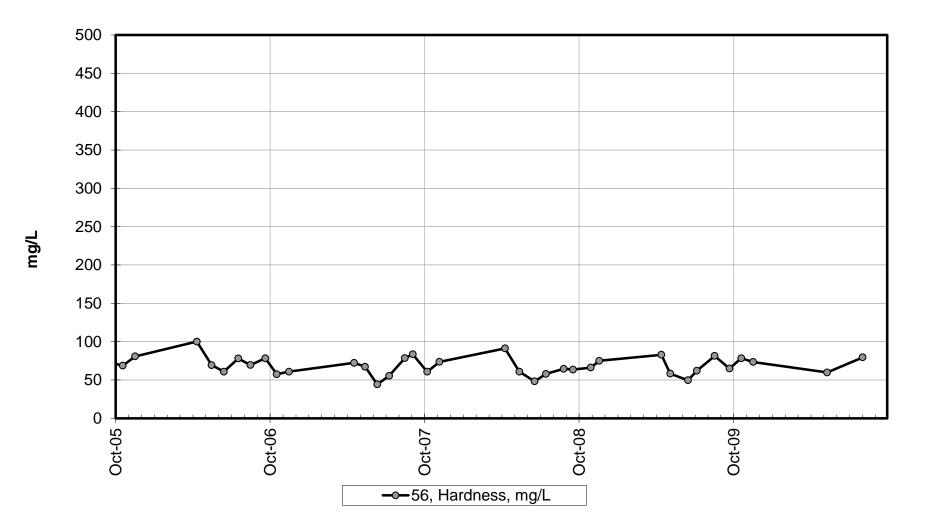

Site 56 - Conductivity-Lab


Site 56 - Conductivity-Field

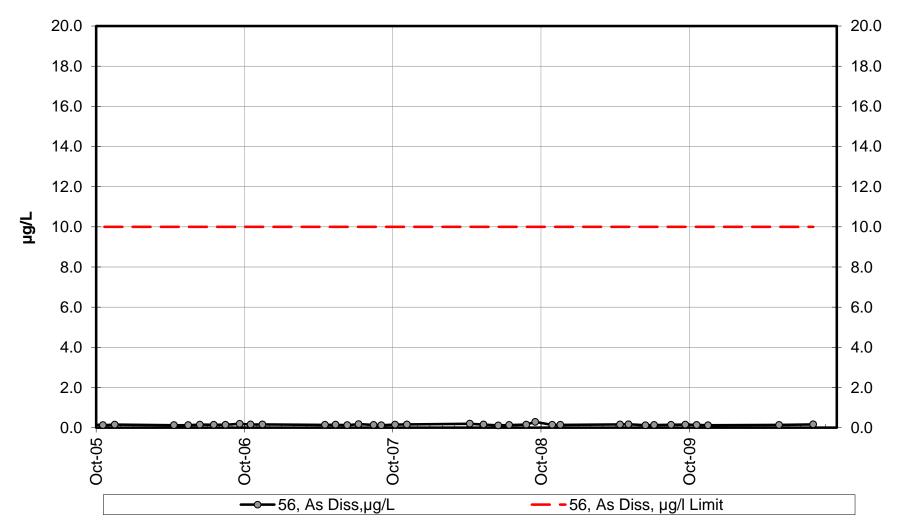

Site 56 - Lab pH


Site 56 - Field pH

Site 56 - Total Alkalinity

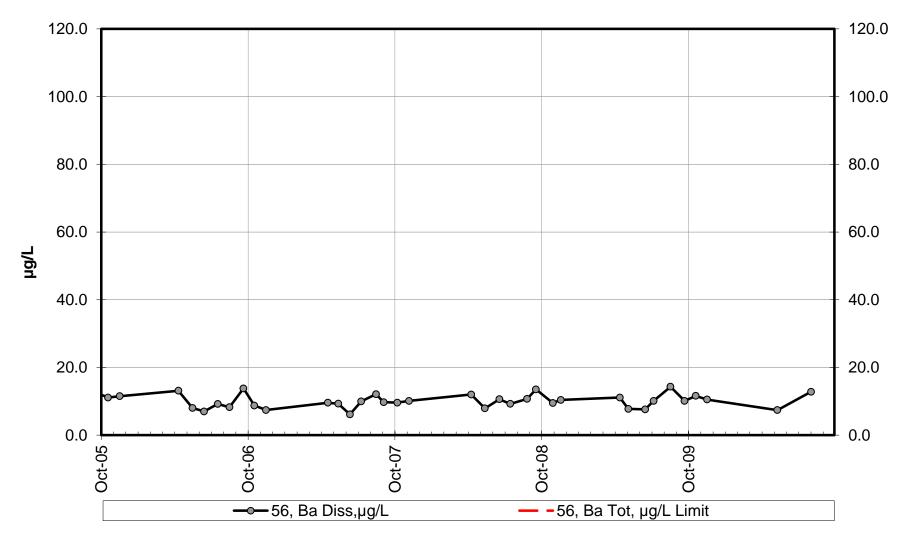


Site 56 - Total Sulfate

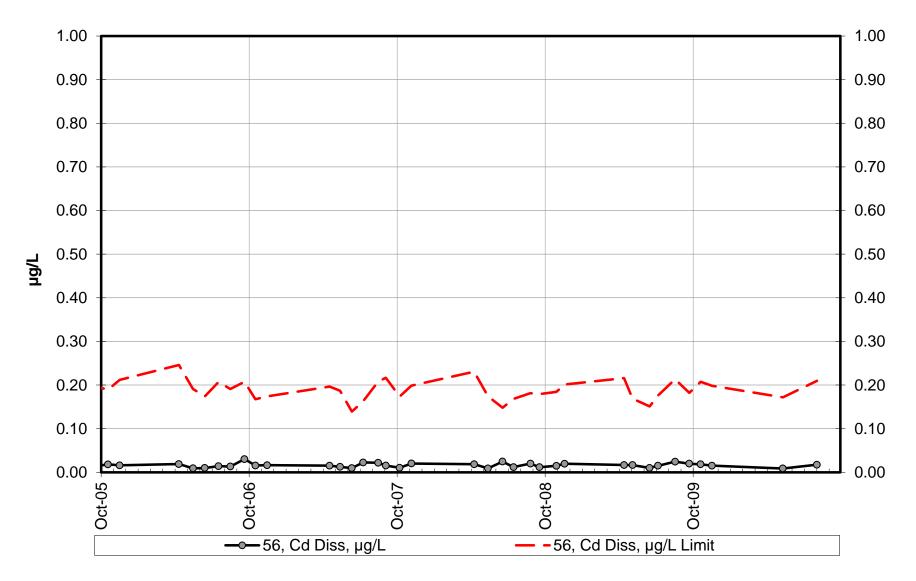


Note: The AWQS for Total Sulfate is 250 mg/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination.

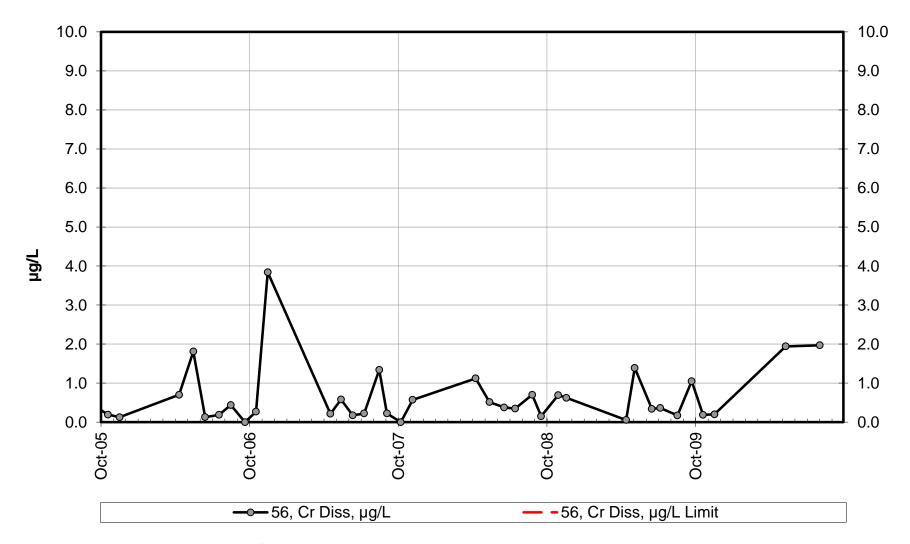
Site 56 - Hardness



Site 56 - Dissolved Arsenic

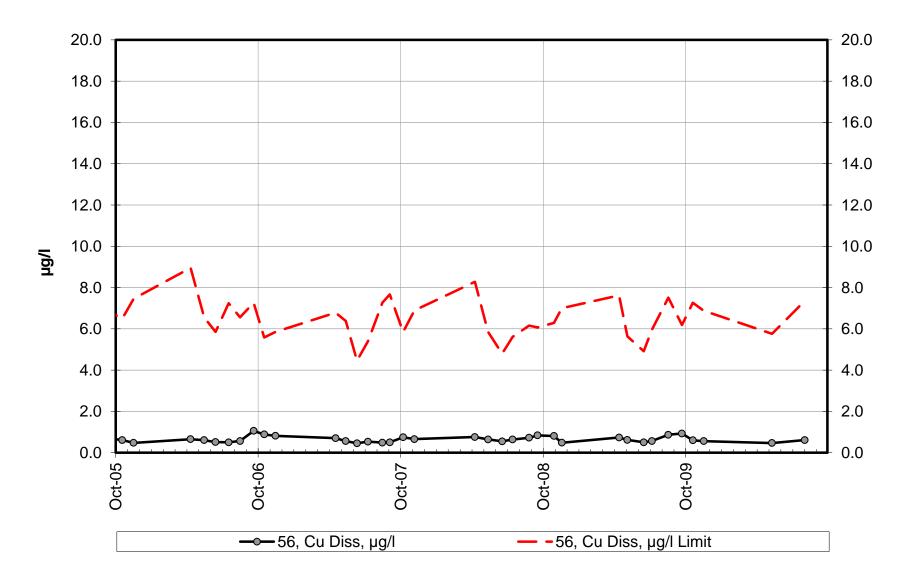

Note: The AWQS for total arsenic is 10 ug/L and thus may not be shown on this graph in order to allow greater visual detail of plotted values for trend determination

Site 56 - Dissolved Barium

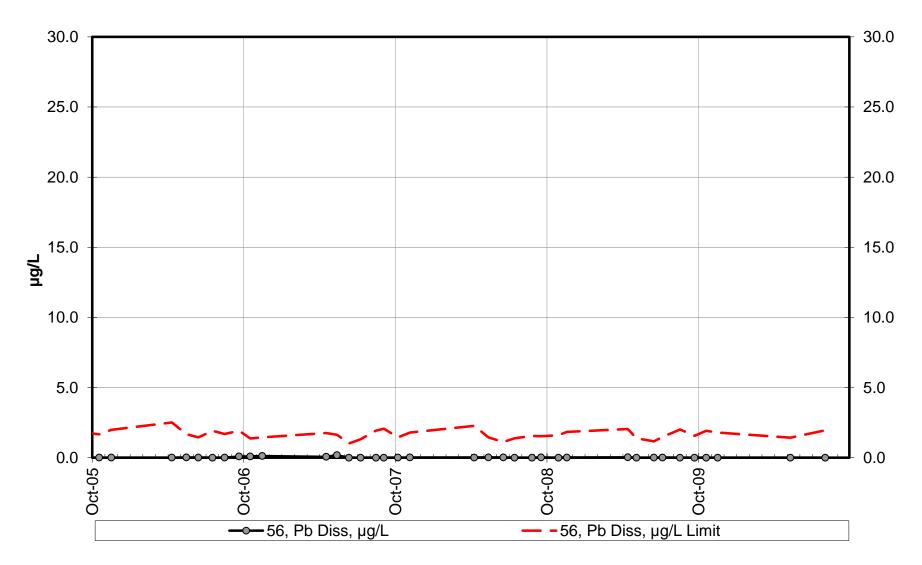


Note: the AWQS for Total Barium is 1000 ug/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination

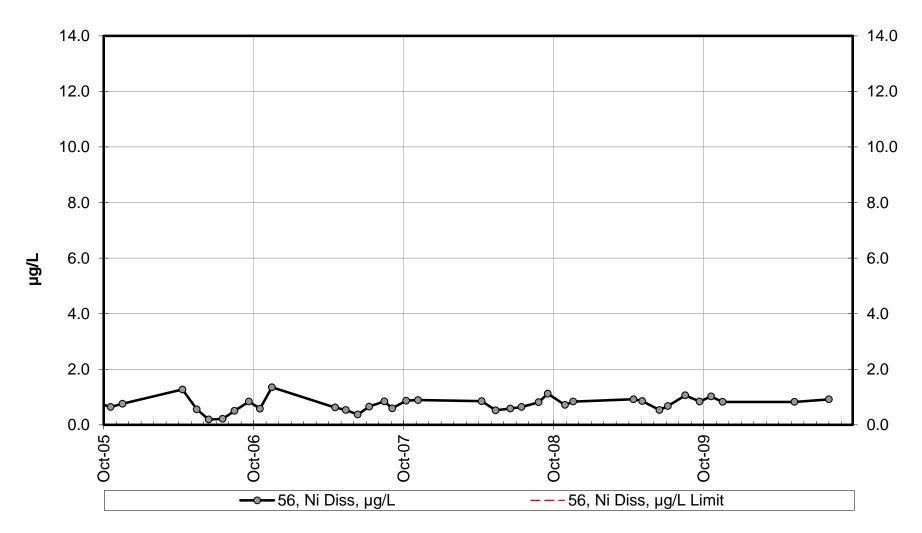
Site 56 - Dissolved Cadmium



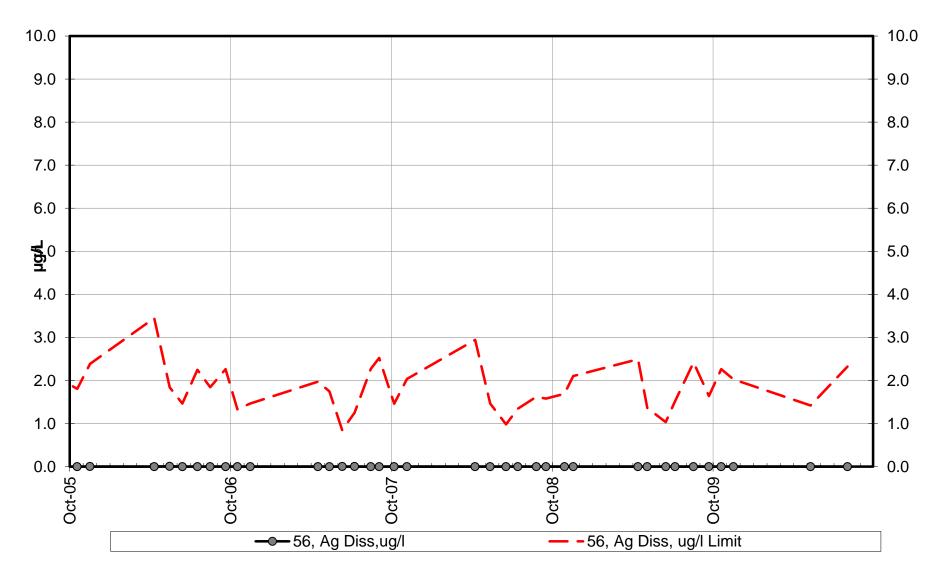
Site 56 - Dissolved Chromium



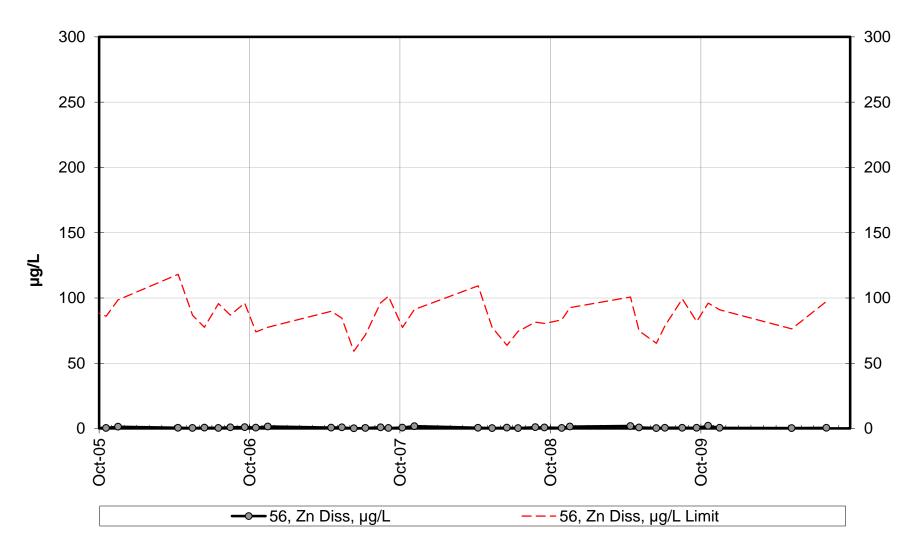
Note: the AWQS for Dissolved Chromium is 11 µg/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination


Site 56 - Dissolved Copper

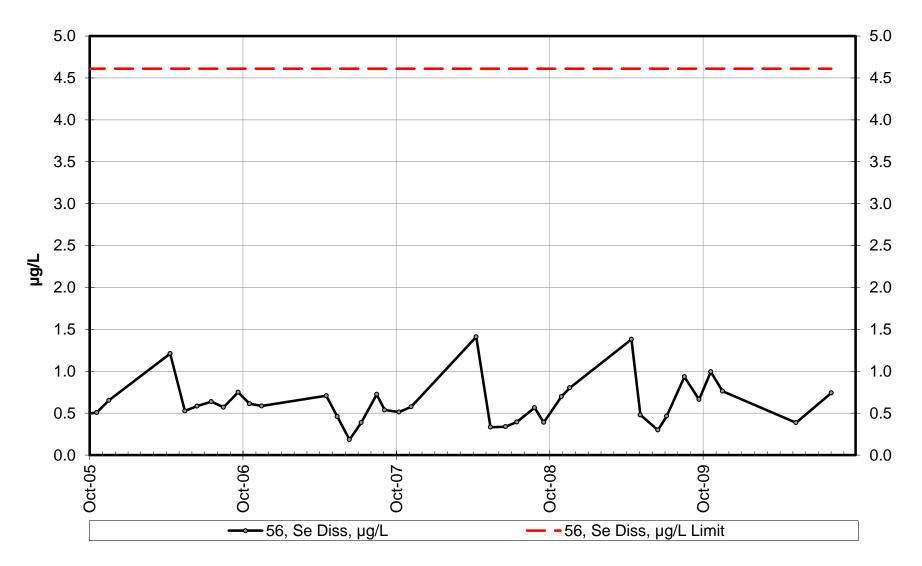
Site 56 - Dissolved Lead

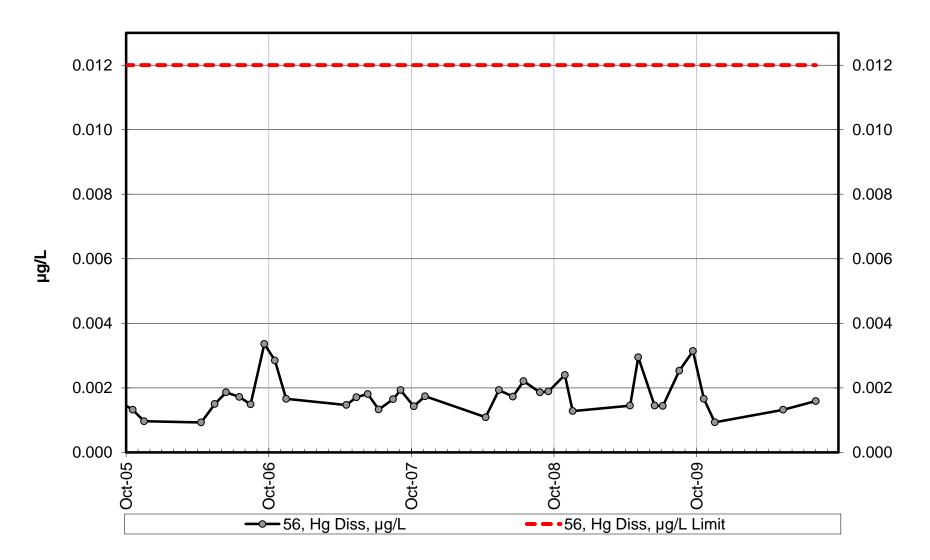


Site 56 - Dissolved Nickel

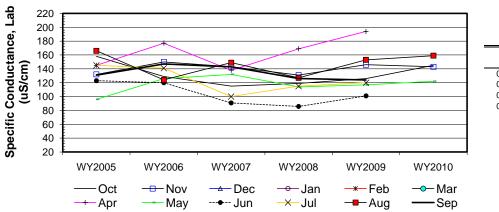


Note: The AWQS for dissolved nickel is hardness dependant and varies between 16 ug/L and 128 ug/L for waters with hardness values of 25 mg/L and 400 mg/L respectively. The AWQS, which would plot above the upper value on the Y-axis, are not shown on this graph to allow for greater visual detail of the plotted values.


Site 56 - Dissolved Silver


Site 56 - Dissolved Zinc

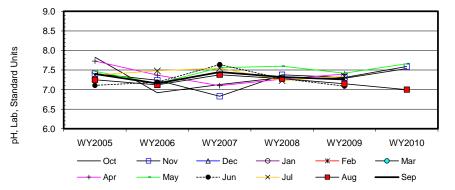
Site 56 - Dissolved Selenium



Site 56 - Dissolved Mercury

ow label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2005	158	132					145	96	123	145	166	131
b	WY2006	129	150					177	126	120	141	124	147
с	WY2007	115	143					138	132	90.9	100	149	143
d	WY2008	119	131					169	114	85.7	115	127	126
е	WY2009	126	146					194	117	101	120	153	124
f	WY2010	145	143						122			159	
	n	6	6	0	0	0	0	5	6	5	5	6	5
	t ₁	5	3	5	5	5	5		5	5	5	5	5
	t ₂	0	1	0	0	0	0	0	0	0	0	0	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t ₄	0	0	0	0	0	0	0	0	0	0	0	C
	t₅	0	0	0	0	0	0	0	0	0	0	0	C
	b-a	-1	1					1	1	-1	-1	-1	1
	c-a	-1	1					-1	1	-1	-1	-1	1
	d-a	-1	-1					1	1	-1	-1	-1	-1
	e-a	-1	1					1	1	-1	-1	-1	-1
	f-a	-1	1						1			-1	
	c-b	-1	-1					-1	1	-1	-1	1	-1
	d-b	-1	-1					-1	-1	-1	-1	1	-1
	e-b	-1	-1					1	-1	-1	-1	1	-1
	f-b	1	-1 -1					1	-1 -1	4	1	-1	4
	d-c e-c	1	-1					1	-1	-1 1	1	-1	-1 -1
	f-c	1	0						-1		1	1	- 1
	e-d	1	1					1	1	1	1	1	-1
	f-d	1	1						1			1	
	f-e	1	-1						1			1	
	S _k	-1	0	0	0	0	0	4	3	-6	-4	3	-6
σ	² s=	28.33	21.67					16.67	28.33	16.67	16.67	28.33	16.67
$Z_k =$	Sk/Os	-0.19	0.00					0.98	0.56	-1.47	-0.98	0.56	-1.47
	Z ² _k	0.04	0.00					0.96	0.32	2.16	0.96	0.32	2.16
	$\Sigma Z_k =$	-2.00	Г	Tie Extent	t1	t ₂	t ₃	t4	t₅			Σn	44
	$\Sigma Z_k^2 =$	-2.00 6.91										ΣS _k	
	∠∠ _k = Z-bar=∑Z _k /K=	6.91 -0.25	L	Count	58	1	0	0	0			∠3 _k	-7

$\chi^2_h = \Sigma Z^2_k$	$\chi^2_{h} = \Sigma Z^2_{k} - K(Z-bar)^2 = 6.41$		@ $\alpha = 5\% \chi^2_{(K-1)} =$	14.07	Test for station homogeneity	
	р	0.493			$\chi^{2}_{h} < \chi^{2}_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	\mathbf{Z}_{calc}	-0.46	@α/2=2.5% Z=	1.96	H ₀ (No trend)	ACCEPT
173.33	р	0.324			H _A (± trend)	REJECT



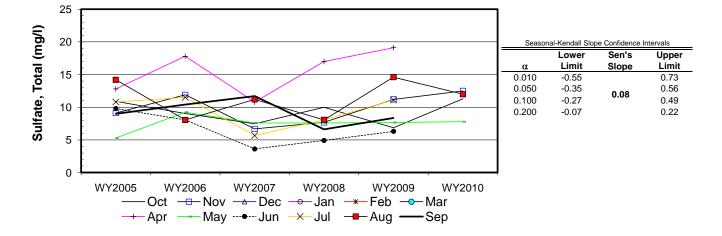
	ope	Jpper Limit
•		Limit
21		
.31		5.00
.32 1	1.17	3.47
.00		2.55
		1.50
	.00	.00

Site	#56			Sea	asonal k	Kendall a	nalysis	for pH, La	ab, Stano	dard Unit	S		
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
а	WY2005	7.8	7.4					7.7	7.5	7.1	7.4	7.3	7.4
b	WY2006	6.9	7.2					7.4	7.2	7.2	7.5	7.1	7.2
С	WY2007	7.1	6.8					7.1	7.6	7.6	7.6	7.4	7.5
d	WY2008	7.3	7.4					7.3	7.6	7.3	7.2	7.3	7.3
e	WY2009	7.3	7.3					7.4	7.4	7.1	7.3	7.2	7.3
f	WY2010	7.5	7.6						7.7			7.0	
	n	6	6	0	0	0	0	5	6	5	5	6	5
	t,	5	5	5	5	5	5	5	5	5	5	5	Ę
	t ₂	0	0	0	0	0	0	0	0	0	0	0	(
	t ₃	0	0	0	0	0	0	0	0	0	0	0	C
	t₄ t₅	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0
	L 5	0	0	0	0	0	0	0	0	0	0	0	U
	b-a	-1	-1					-1	-1	1	1	-1	-1
	c-a	-1	-1					-1	1	1	1	1	1
	d-a	-1	-1					-1	1	1	-1	1	-1
	e-a	-1	-1					-1	-1	-1	-1	-1	-1
	f-a	-1	1						1			-1	
	c-b	1	-1					-1	1	1	1	1	1
	d-b	1	1					-1	1	1	-1	1	1
	e-b	1	1					1	1	-1	-1	1	1
	f-b	1	1					1	1	4	4	-1	4
	d-c e-c	1	1					1	-1	-1 -1	-1 -1	-1 -1	-1 -1
	f-c	1	1					I	-1	-1	-1	-1	-1
	e-d	-1	-1					1	-1	-1	1	-1	-1
	f-d	1	-1					1	-1	-1	1	-1	-1
	f-e	1	1						1			-1	
1	S _k	3	3	0	0	0	0	-2	7	0	-2	-5	-2
σ	² s=	28.33	23.33					16.67	28.33	16.67	16.67	28.33	16.67
	s– S _k /σ _s	0.56	0.62					-0.49	1.32	0.00	-0.49	-0.94	-0.49
2	z ² _k	0.32	0.39					0.24	1.73	0.00	0.24	0.88	0.24
	$\Sigma Z_k =$	0.09	F	Tie Extent	t,	t ₂	t ₃	t4	t₅			Σn	44
	ΣZ_{k}^{2}	4.04		Count	60	0	0	0	0			ΣS_k	2
_	-bar=ΣZ _k /K=	0.01	L	200		•	v	v	v				-

Seasonal Kenda	II analysis fo	or pH. Lab	. Standard	Units

$\chi^2_h = \Sigma Z^2_k$	$\chi^{2}_{h} = \Sigma Z^{2}_{k} - K(Z-bar)^{2} = 4.03$		@α=5% χ ² _(K-1) =	14.07	Test for station homo	ogeneity
	р	0.776			χ ² h<χ ² (K-1)	ACCEPT
$\Sigma VAR(S_k)$	Z_{calc}	0.08	@α/2=2.5% Z=	1.96	H ₀ (No trend)	ACCEPT
175.00	р	0.530			H _A (± trend)	REJECT

Seasona	al-Kendall Slop	e Confidence	Intervals
	Lower	Sen's	Upper
α	Limit	Slope	Limit
0.010	-0.05		0.07
0.050	-0.03	0.01	0.04
0.100	-0.03	0.01	0.04
0.200	-0.02		0.03


Site	#56				Season	al Kenda	all analy	sis for To	otal Alk,	(mg/l)			
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
а	WY2005	74.2	62.8					80.0	52.9	62.3	66.8	72.3	59.5
b	WY2006	56.8	62.8					76.3	57.4	49.1	60.3	57.9	61.0
C	WY2007	51.2	61.3					52.1	53.5	42.3	45.8	66.3	66.3
d e	WY2008 WY2009	53.8 48.0	56.9 57.0					67.6 80.9	48.4 46.4	39.6 45.6	44.9 51.3	51.1 63.0	48.1 56.1
f	WY2010	40.0 58.6	59.9					00.9	46.3	45.0	51.5	66.1	50.1
	n	6	6	0	0	0	0	5	6	5	5	6	5
	t ₁	5	3	5	5	5	5	5	5	5	5	5	5
	t ₂	0	1	0	0	0	0	0	0	0	0	0	0
	t₃ +	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
	t₄ t₅	0	0	0	0	0	0	0	0	0	0	0	0
		4	0					4		4	4	4	
	b-a c-a	-1 -1	0 -1					-1 -1	1 1	-1 -1	-1 -1	-1 -1	1
	d-a	-1	-1					-1	-1	-1	-1	-1	-1
	e-a	-1	-1					1	-1	-1	-1	-1	-1
	f-a	-1	-1						-1			-1	
	c-b	-1	-1					-1	-1	-1	-1	1	1
	d-b e-b	-1 -1	-1 -1					-1 1	-1 -1	-1 -1	-1 -1	-1 1	-1 -1
	f-b	1	-1					1	-1			1	
	d-c	1	-1					1	-1	-1	-1	-1	-1
	e-c	-1	-1					1	-1	1	1	-1	-1
	f-c	1	-1						-1			-1	
	e-d f-d	-1 1	1 1					1	-1 -1	1	1	1 1	1
	f-e	1	1						-1			1	
	S _k	-5	-8	0	0	0	0	0	-11	-6	-6	-3	-2
	² s=	28.33	21.67					16.67	28.33	16.67	16.67	28.33	16.67
	s- S _k /σ _s	-0.94	-1.72					0.00	-2.07	-1.47	-1.47	-0.56	-0.49
	Z_k^2	0.88	2.95					0.00	4.27	2.16	2.16	0.32	0.24
	⊢ K	0.00	2.00					0.00	7.21	2.10	2.10	0.02	0.24
	$\Sigma Z_k =$	-8.72	ſ	Tie Extent	t ₁	t ₂	t ₃	t ₄	t ₅			Σn	44
	$\Sigma Z_k^2 =$	12.98		Count	58	1	0	0	0			ΣS_k	-41
Z	2-bar=ΣZ _k /K=	-1.09	-										
	$\chi^2_h = \Sigma Z^2_k$ -	K(Z-bar) ² =	3.49		@α=5%	⁄ω χ ² _(K-1) =	14.07	Т	est for sta	tion homoge	eneity		
		р	0.837	L				2	$\chi^2_h < \chi^2_{(K-1)}$		ACCEPT		
	$\Sigma VAR(S_k)$	Z_{calc}	-3.04		@a/2-	2.5% Z=	1.96		H₀ (No		REJECT		
	173.33	Pcaic p	0.001	L	e0/2-	2.070 22	1.50		H _A (±		ACCEPT		
90 -													
80 -							+						
	- -		+										
70 -	×		$\overline{}$							Seasonal	-Kendall Slope	Confidence Ir	ntervals
S 60									3		Lower	Sen's	Upper
Ê.						\langle			-	α	Limit	Slope	Limit
Total Alk, (mg/l) 0 - 09 0 - 09 0 - 09				×						0.010	-3.68		-0.74
a 40				÷						0.050 0.100	-3.00 -2.94	-1.79	-1.18 -1.39
a	-				-					0.200	-2.56		-1.50
jo 30 -													
20												-3.1%	
10													
10 +	WY2005	WY:	2006	WY2007	WY2	008	WY2009	WY2	2010				
	Oc		– Nov						-Mar				
	—+— Ар	I <u> </u>	- May	● Jun	— X —	Jui	— ■ — Au	y <u> </u>	-Sep				

Site	#56			S	easonal	Kendall	analysis	s for Sulf	ate, Tota	al (mg/l)			
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
а	WY2005	10.9	9.1					12.8	5.3	9.8	10.8	14.2	9.0
b	WY2006	9.0	11.9					17.8	9.2	8.1	11.5	8.1	10.4
С	WY2007	7.5	6.7					10.8	7.6	3.6	5.7	11.2	11.7
d	WY2008	10.0	7.7					17.0	7.6	4.9	8.1	8.1	6.6
е	WY2009	6.9	11.2					19.1	7.7	6.3	11.1	14.6	8.4
f	WY2010	11.3	12.5						7.8			12.0	
	n	6	6	0	0	0	0	5	6	5	5	6	5
	t ₁	5	5	5	5	5	5	5	5	5	5	5	5
	t ₂	0	0	0	0	0	0	0	0	0	0	0	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t₄	0	0	0	0	0	0	0	0	0	0	0	0
	t ₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a	-1	1					1	1	-1	1	-1	1
	c-a	-1	-1					-1	1	-1	-1	-1	1
	d-a	-1	-1					1	1	-1	-1	-1	-1
	e-a	-1	1					1	1	-1	1	1	-1
	f-a	1	1						1			-1	
	c-b	-1	-1					-1	-1	-1	-1	1	1
	d-b	1	-1					-1	-1	-1	-1	1	-1
	e-b	-1	-1					1	-1	-1	-1	1	-1
	f-b	1	1						-1			1	
	d-c	1	1					1	1	1	1	-1	-1
	e-c	-1	1					1	1	1	1	1	-1
	f-c	1	1						1			1	
	e-d	-1	1					1	1	1	1	1	1
	f-d f-e	1	1						1			1 -1	
	S _k	-1	5	0	0	0	0	4	7	-4	0	3	-2
	σ_{s}^{2} =	28.33	23.33					16.67	28.33	16.67	16.67	28.33	16.67
		-0.19	1.04					0.98		-0.98		0.56	
	= S _k /σ _s								1.32		0.00		-0.49
	Z ² _k	0.04	1.07					0.96	1.73	0.96	0.00	0.32	0.24
	$\Sigma Z_k =$	2.24]	Tie Extent	t ₁	t ₂	t ₃	t4	t₅			Σn	44
	ΣZ_{k}^{2}	5.31		Count	60	0	0	0	0			ΣS_k	12
-	$Z_{-bar} = \nabla Z / K_{-}$	0.29	L	Journ		v	v	v	v				

Seasonal Kendall	analysis	for Sulfate	Total (mg/l)
	analysis		

Z-bar= $\Sigma Z_k/K$ = 0.28

$\chi^2_h = \Sigma Z^2_k$	$\chi^{2}_{h} = \Sigma Z^{2}_{k} - K(Z-bar)^{2} = 4.69$			@α=5% χ ² _(K-1) =	14.07	Test for station home	ogeneity
	р	0.698	-			$\chi^2_h < \chi^2_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	Z_{calc}	0.83		@α=5% Z=	1.64	H ₀ (No trend)	ACCEPT
175.00	р	0.797				H _A (± trend)	REJECT

Site	#56			Se	easonal	Kendall	analysis	for Zinc	, Dissolv	ed (ug/l)			
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
а	WY2005	0.4	0.6					0.3	0.9	0.8	0.8	0.2	0.
b	WY2006	0.4	1.3					0.5	0.4	0.6	0.4	0.9	1.
С	WY2007	0.6	1.5					0.7	0.8	0.1	0.3	0.9	0.
d	WY2008	0.7	1.8					0.5	0.3	0.6	0.3	1.0	0.
е	WY2009	0.4	1.5					1.9	0.8	0.2	0.5	0.5	0
f	WY2010	2.0	0.5						0.2			0.4	
	n	6	6	0	0	0	0	5	6	5	5	6	
	t,	5	5	5	5	5	5	5	5	5	5	5	
	t ₂	0	0	0	0	0	0	0	0	0	0	0	
	t ₃	0	0	0	0	0	0	0	0	0	0	0	
	t ₄	0	0	0	0	0	0	0	0	0	0	0	
	t ₅	0	0	0	0	0	0	0	0	0	0	0	
	b-a	-1	1					1	-1	-1	-1	1	
	c-a	1	1					1	-1	-1	-1	1	-
	d-a	1	1					1	-1	-1	-1	1	
	e-a	-1	1					1	-1	-1	-1	1	
	f-a	1	-1						-1			1	
	c-b	1	1					1	1	-1	-1	1	-
	d-b	1	1					-1	-1	-1	-1	1	-
	e-b	-1	1					1	1	-1	1	-1	-
	f-b	1	-1						-1			-1	
	d-c	1	1					-1	-1	1	-1	1	
	e-c	-1	-1					1	-1	1	1	-1	
	f-c	1	-1						-1			-1	
	e-d f-d	-1	-1					1	1	-1	1	-1	-
	f-e	1 1	-1 -1						-1 -1			-1 -1	
	S _k	5	1	0	0	0	0	6	-9	-6	-4	1	
σ	² s=	28.33	23.33					16.67	28.33	16.67	16.67	28.33	16.6
	s- S _k /σ _s	0.94	0.21					1.47	-1.69	-1.47	-0.98	0.19	0.0
2	Z ² _k	0.88	0.04					2.16	2.86	2.16	0.96	0.04	0.0
	$\Sigma Z_k =$	-1.34	Г	Tie Extent	t ₁	t ₂	t ₃	t ₄	t₅			Σn	44
	ΣZ_{k}^{2}	9.10		Count	60	0	0	0	0			ΣS_k	-6
_	Z-bar=ΣZ _k /K=	-0.17	L	20011		v	v	v	v				•

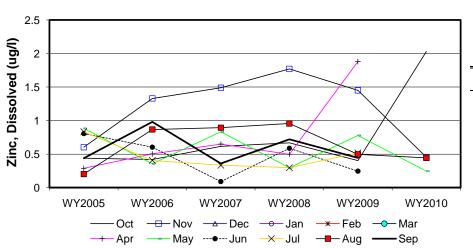
Seasonal Kendall analysis for Zinc, Dissolved (ug/l	Seasonal Ke	ndall analysis	for Zinc.	Dissolved	(ua/l)
---	-------------	----------------	-----------	-----------	--------

 $\chi^2_{h=\Sigma}Z^2_{k}-K(Z-bar)^2=$ 8.88 14.07 Test for station homogeneity @α=5% χ²_(K-1)= р 0.262 $\chi^2_h < \chi^2_{(K-1)}$

 $\Sigma VAR(S_k)$

175.00

 Z_{calc}


р

-0.38

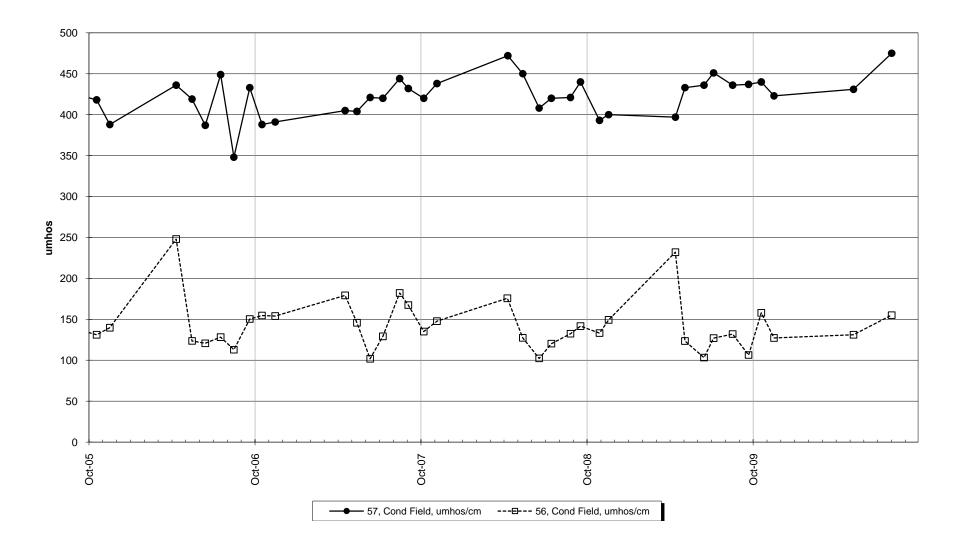
0.353

 $@\alpha/2=2.5\%$ Z=

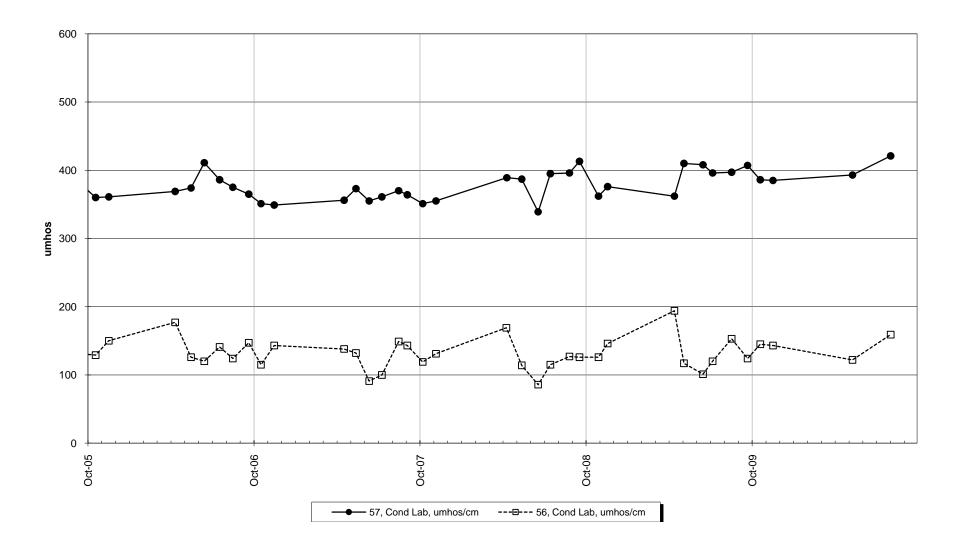
1.96

Seasona	al-Kendall Slop	e Confidence	Intervals		
	Lower	Sen's	Upper		
α	Limit	Slope	Limit		
0.010	-0.08	Cicpo	0.08		
0.050	-0.04	-0.01	0.05		
0.100	-0.03	-0.01	0.04		
0.200	-0.03		0.03		

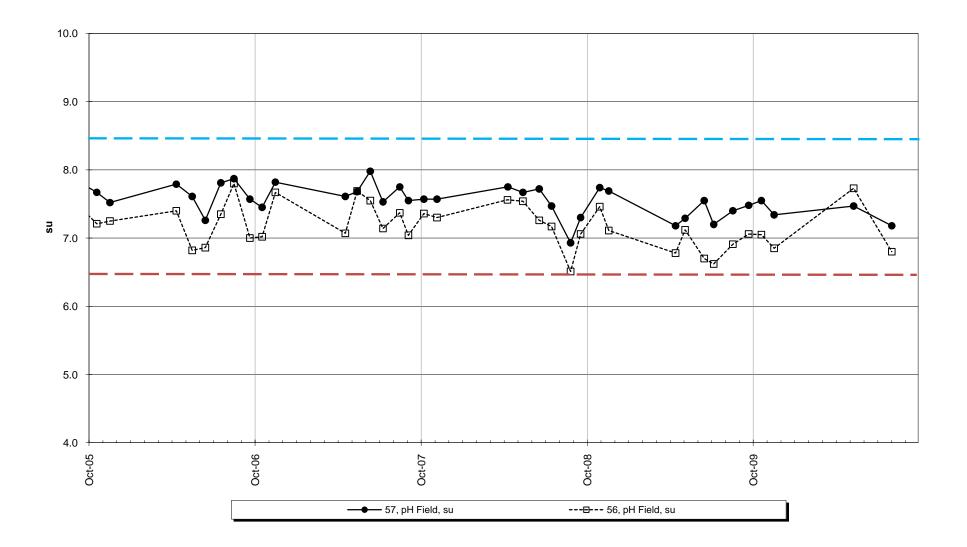
ACCEPT

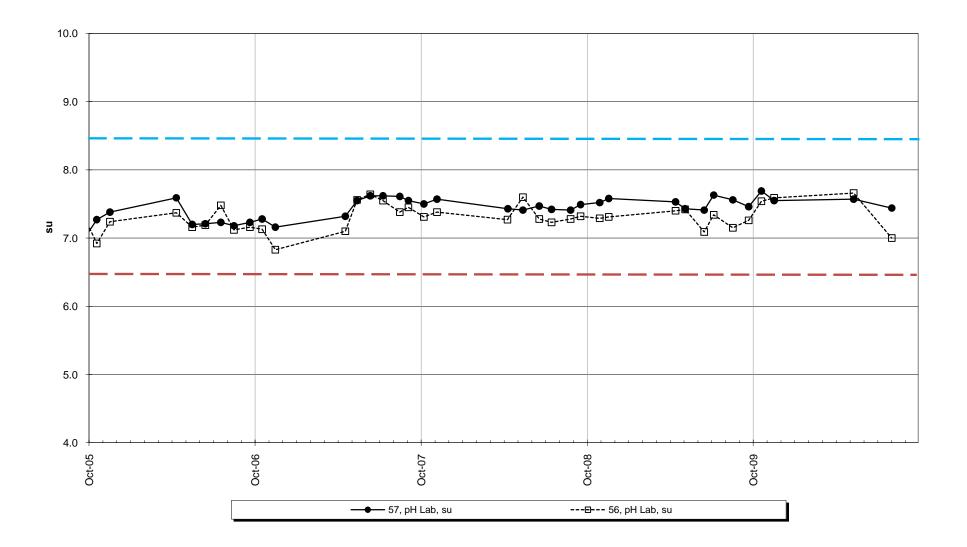

ACCEPT

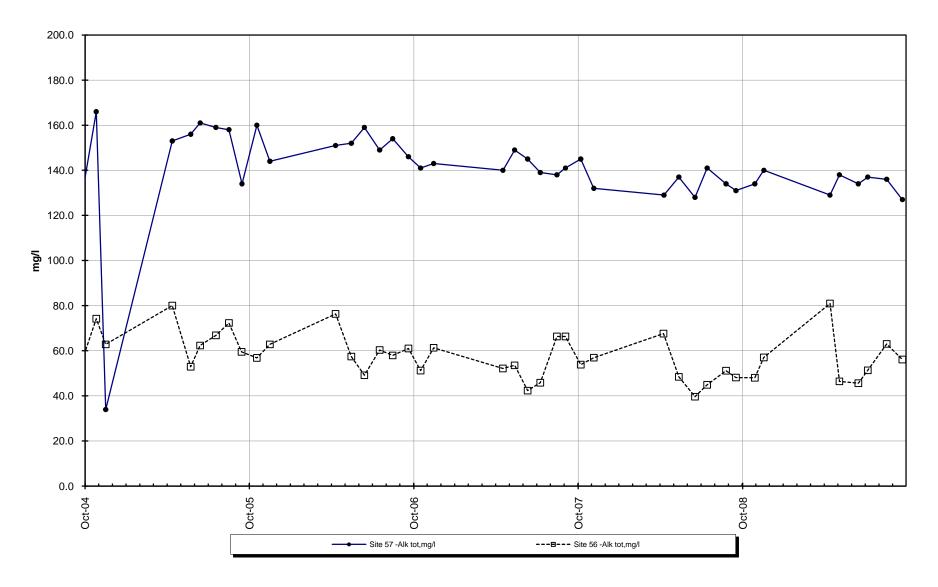
REJECT


H₀ (No trend)

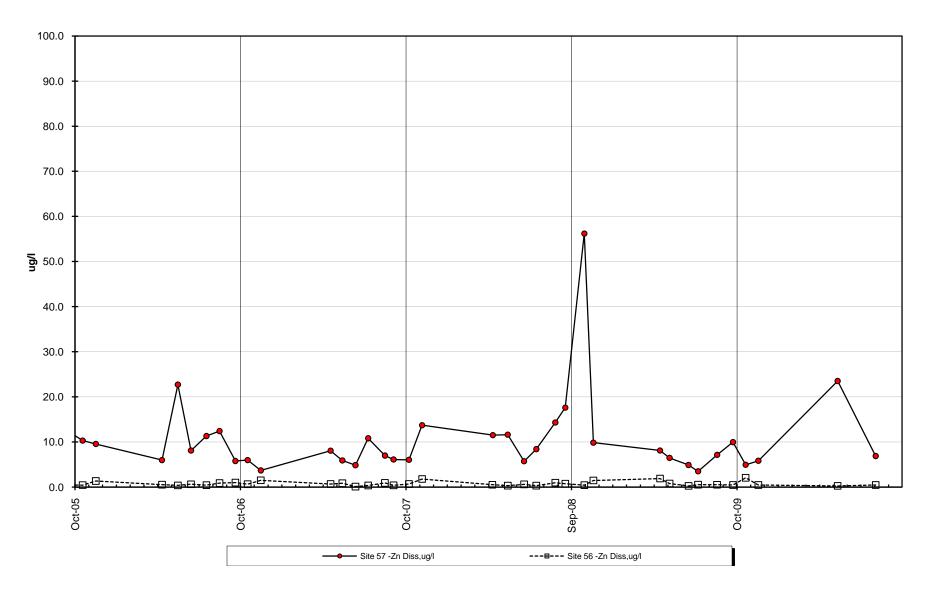
H_A (± trend)


Site 57 vs Site 56 -Conductivity-Field


Site 57 vs Site 56 -Conductivity


Site 57 vs Site 56 -Field pH


Site 57 vs Site 56 -Lab pH


Site 57 vs. Site 56 -Total Alkalinity

Site 57 vs. Site 56 - Total Sulfate

Site 57 vs. Site 56 -Dissolved Zinc

Wi	lcoxon-sigr		test		
.,		Form	I <i>(</i>	0/2.22)	
Variable:	-		ance, Lab (u5/cm)	
Site	X #57	Y #56	Differe	ences	
Year	WY2010	WY2010	D		Rank
Oct	386.0	145.0	241.0	241.0	1
Nov	385.0	143.0	242.0	242.0	2
Dec					
Jan					
Feb					
Mar					
Apr					
May	393.0	122.0	271.0	271.0	4
Jun					
Jul					
Aug	421.0	159.0	262.0	262.0	3
Sep					
Median	389.5	144.0	252.0	252.0	
	n	m		N=	4
	4	4		$\Sigma R=$	
		·			
	α			W+=	
	5.0%			10	
	W' α,n			p-test	
	#N/A]		0.000	
H ₀	median [D]	=0	REJECT		
	median [D]	.0	ACCEPT		I

Wi	lcoxon-sigr		test		
Variable:	Exact nH Lab	Form , Standarc	l I Inits		
vanabie.	X	Y Y			
Site	#57	# 56	Differe	ences	
Year	WY2010	WY2010	D	D	Rank
Oct	7.69	7.54	0.15	0.15	3
Nov	7.55	7.59	-0.04	0.04	-1
Dec					
Jan					
Feb					
Mar					
Apr					
May	7.57	7.66	-0.09	0.09	-2
Jun					
Jul					
Aug	7.44	7.00	0.44	0.44	4
Sep					
Median	7.56	7.57	0.06	0.12	
	n	m		N=	4
	4	4		$\Sigma R =$	
	·	·			
	α			W+=]
	95.0%			7	
	W' α,n			p-test	
	#N/A]		0.000	
H ₀	median [D]	=0	ACCEPT]
H ₁	median [D]	> 0			

Wil	coxon-sign		test		
Variable:	Exact I Total All				
vanable.	X	Y, (ing/i)			
Site	#57	#56	Differ	ences	
Year	WY2010	WY2010	D	D	Rank
Oct	137.0	58.6	78.4	78.4	2
Nov	140.0	59.9	80.1	80.1	3
Dec					
Jan					
Feb					
Mar					
Apr					
May	133.0	46.3	86.7	86.7	4
Jun					
Jul					
Aug	143.0	66.1	76.9	76.9	1
Sep					
Median	138.5	59.3	79.3	79.3	
	n	m		N=	4
	4	4		$\Sigma R =$	10
	α			W+=	1
	95.0%			10	
	W' α,n			p-test	
	#N/A			0.000	
				0.000	1
H ₀	median [D]=	=0	ACCEPT]
H ₁	median [D]>	<u>.</u> 0			

Wil	coxon-sigr Exact		test		
Variable:		, Total (mg	/I)		
	Χ	Υ			
Site	#57	#56	Differe		
Year	WY2010	WY2010	D	D	Rank
Oct	51.7	11.3	40.4	40.4	2
Nov	57.5	12.5	45.0	45.0	3
Dec					
Jan					
Feb					
Mar					
Apr	44.0	7.0	<u> </u>	00 F	
May	44.3	7.8	36.5	36.5	1
Jun					
Jul	60 F	12.0	19 5	10 E	4
Aug Sep	60.5	12.0	48.5	48.5	4
Median	54.6	11.7	42.7	42.7	
Median	54.0	11.7	42.1	42.1	
	n	m		N=	4
	4	4		$\Sigma R=$	
		·			10
	α	1	I	W+=	1
	5.0%			10	
	W' α,n			p-test	
	#N/A			0.000	
		1	l	0.000	<u>]</u>
H ₀	median [D]	=0	REJECT]
H ₁	median [D]		ACCEPT		

Wil	coxon-sign Exact		est		
Variable:		ssolved (u	g/l)		
	Χ	Υ			
Site	#57	#56		ences	
Year	WY2010	WY2010	D	D	Rank
Oct	4.92	2.03	2.89	2.89	1
Nov	5.81	0.45	5.36	5.36	2
Dec					
Jan					
Feb					
Mar					
Apr					
May	23.50	0.25	23.25	23.25	4
Jun					
Jul	o o .	o	0.40	0.40	
Aug	6.87	0.44	6.43	6.43	3
Sep	0.04	0.45	E 00	5.00	
Median	6.34	0.45	5.89	5.89	
	n	m		N=	4
	4	4		10	
	·				
	α			W+=	1
	5.0%			10	
	W' α,n			p-test	
	#N/A			0.000	
	π IN/ Γ			0.000	J
H ₀	median [D]:	=0	REJECT]
H ₁	median [D]-	<0	ACCEPT		

SITE 13 "MINE ADIT DISCHARGE EAST"

The data collected during the current water year are listed in the following "Table of Results for Water Year 2010" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the rightmost column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

All data collected at this site for the past six years are included in the data analyses. As shown in the table below, there were no data outliers.

Sample Date	Parameter	Value	Qualifier	Notes					
No outliers have been identified by HGCMC for the period of October 2005 through September 2010.									

The data for Water Year 2010 have been compared to the strictest fresh water quality criterion for each applicable analyte. Two results exceeding these criteria have been identified, as listed in the table below. The data are for total sulfate from the Oct-2009 and Aug-2010 samplings with values of 265 mg/L and 271 mg/L respectively. This year's data breaks from the trend of decreasing sulfate trending towards the historic (1985 – 1990) mean of 160 mg/L. over the past few years the waste rock material has been being removed from the 1350 Area. Most if not all of this removal has not been in the drainage that passes through Site 13. It is expected that during the 2011 construction season that the majority of the remaining material (East Lobe) will be removed. When this removal is completed, water quality at this site is expected to improve.

Sample Date	Parameter	Value	Hardness (mg/L)	Standard	Standard Type
20-Oct-09	SO4 Tot, mg/l	265		6.5	Aquatic Life, chronic
3-Aug-10	SO4 Tot, mg/l	271		6.5	Aquatic Life, chronic

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. As with the other sites in the 920 Area, there was a substantial increase in the dissolved chromium concentration at site 13.

A non-parametric statistical analysis for trend was performed for conductivity, pH, alkalinity, sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall analyses are presented in detail on the pages

Site 13-WY2010, summary statistics for trend analysis.

M	ann-Ke	endall test	<u>statistics</u>	Sen's slope estimate			
Parameter	N(1)	p (2)	Trend	Q	Q(%)		
Conductivity, Lab	6	0.35	0				
pH, Lab	6	0.98	+	0.06	0.8		
Alkalinity, Total	6	<0.01	-	-8.80	-6.20		
Sulfate, Total	5	0.16	0				
Zinc, Dissolved	6	0.42	0				
(1): Number of yea	ars	(2):Signif	vel				

following this interpretive section. The following table summarizes the results on the data collected between Oct-04 and Sep-10 (WY2005-WY2010). For datasets with a statistically significant trend a Seasonal-Sen's Slope estimate statistic has also been calculated. Statistically significant (a/2=2.5%) trends are present in the datasets for conductivity, alkalinity, total sulfate, and dissolved zinc.

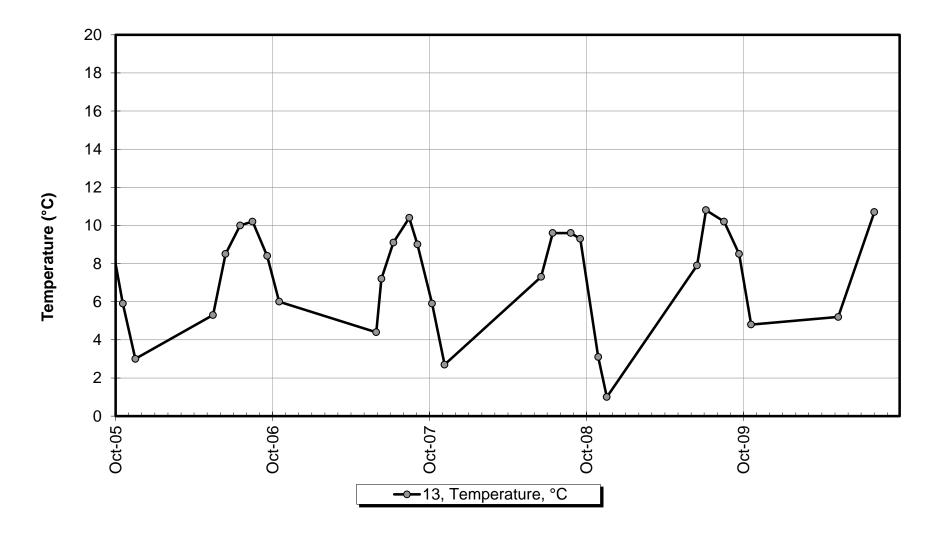
As hypothesized for several years, the drier summers of WY2003 and WY2004 lead to an increase in pyrite oxidation, resulting in an increase in alkalinity from carbonate mineral dissolution. As climatic conditions 'normalized' in the following years, this increasing alkalinity trend reversed and is now a significant (p<0.01) decreasing trend with an estimated slope of -8.80 mg/L/yr or a -6.20% decrease. However, there is still ample buffering capacity contained in the waste rock at this site, as evidenced by the slightly increasing trend in pH. .Laboratory pH exhibits a significant (p=0.98) increasing trend with an estimated slope of 0.06 su/yr or a 0.8% increase. Though this trend is increasing the values are well within the AWQS. Furthermore, HGCMC feels the current FWMP program is sufficient to monitor any future increases at Site 13 before any water quality values are impaired. The overall constituent loading for this site is within the range expected from exposed waste rock.

	Site 13 "Mine Adit Discharge Creek"												
Sample Date/Parameter	10/20/2009	11/17/2009	Dec-09	Jan-10	Jan-10	Mar-10	4/6/2010	5/11/2010	6/15/2010	7/13/2010	8/3/2010	9/14/2010	Median
Water Temp (°C)	4.8				ŋ			5.2	Ċ)	10.7	ĊD.	5.2
Conductivity-Field(µmho)	842				ž			812	С И	£	895	ING	842
Conductivity-Lab (µmho)	746				J			768		j	846		768
pH Lab (standard units)	7.84				AMPLING			7.91		=	7.84	MPL	7.84
pH Field (standard units)	7.86				Z			7.95	2		7.47		7.86
Total Alkalinity (mg/L)	134.0				SP			141.0	2	5	181.0	SA	141.0
Total Sulfate (mg/L)	265.0	~						439.0	ں م		271.0 J	Ř	265.0
Hardness (mg/L)	469.0	SS			OR			241.0 J	č	5	512.0	Ö	469.0
Dissolved As (ug/L)	0.193	e			Ľ			0.115	ũ	-	0.146	Ū.	0.146
Dissolved Ba (ug/L)	24.7	ö			B			17.3	G	٤	22.7	Δ	22.7
Dissolved Cd (ug/L)	0.020	A			Щ			0.012 J			0.011 J	Щ	0.012
Dissolved Cr (ug/L)	0.395	Ŷ			CHEDUL			7.340	-	5	8.330	5	7.340
Dissolved Cu (ug/L)	1.170	~			ā			0.404	C		0.483	Δ	0.483
Dissolved Pb (ug/L)	0.0068 U				Щ			0.0046 U	II I	1	0.0169 U	ШТ	0.0068
Dissolved Ni (ug/L)	2.960				ち			2.980	ť	5	2.550	5	2.960
Dissolved Ag (ug/L)	<0.003				ŭ			<0.004	ប	5	<0.004	Š	0.002
Dissolved Zn (ug/L)	12.60				F			8.38	ŀ	•	5.94	-	8.38
Dissolved Se (ug/L)	0.404 J				LON			0.426	TON)	0.443	ON	0.426
Dissolved Hg (ug/L)	0.000641				Z			0.000749 U	N	4	0.000815 U	Z	0.000749

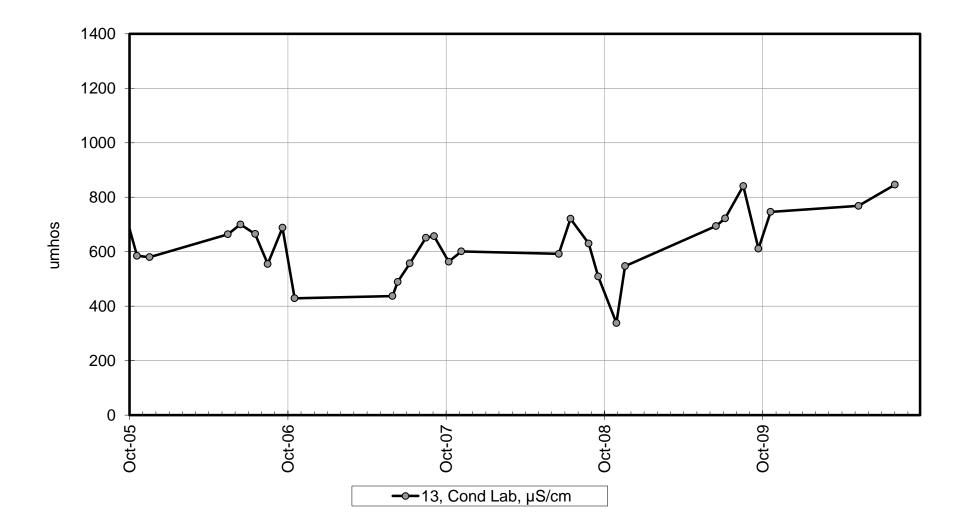
For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

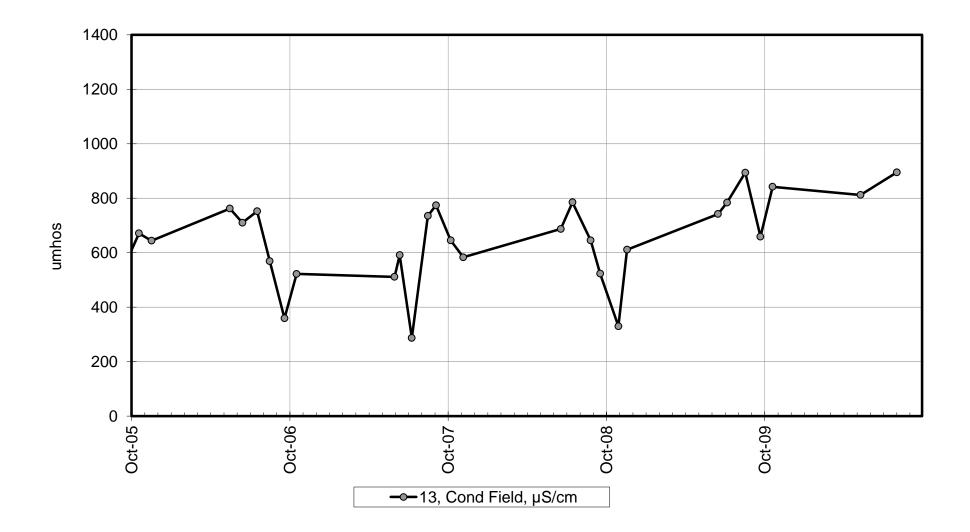
Shaded data has been qualified as an outlier by HGCMC and removed from any further analysis and is not included into the calculation of the median

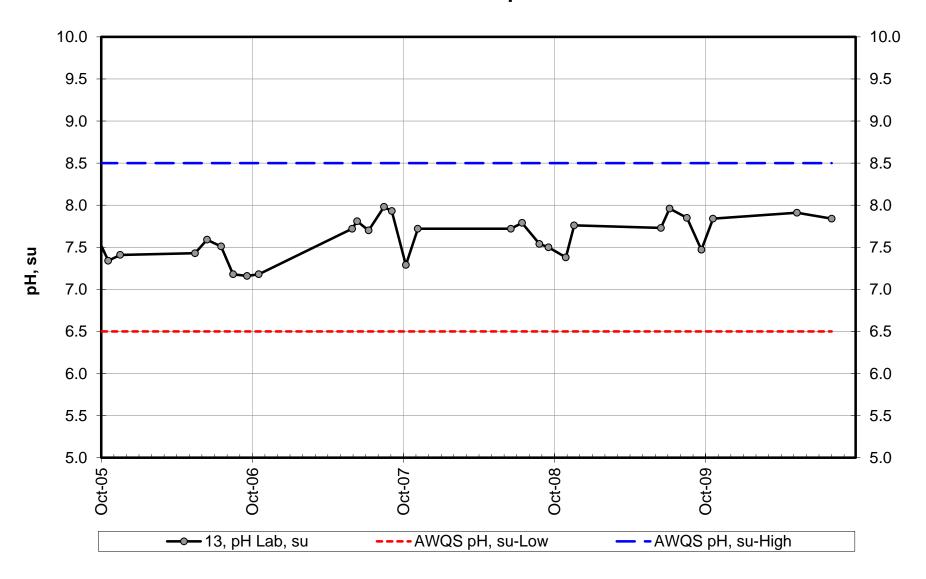

Qualified Data by QA Reviewer

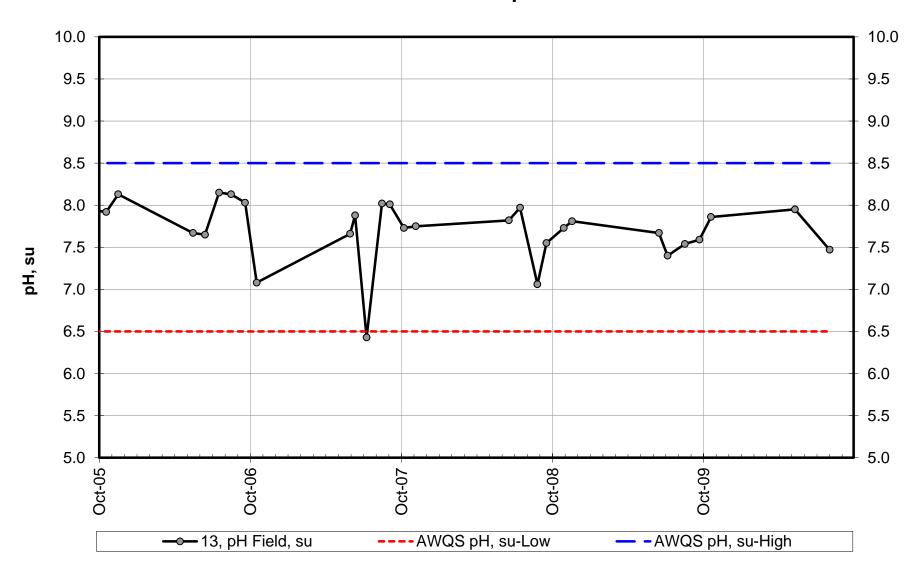
Date Range: 10/01/2009 to 09/30/2010

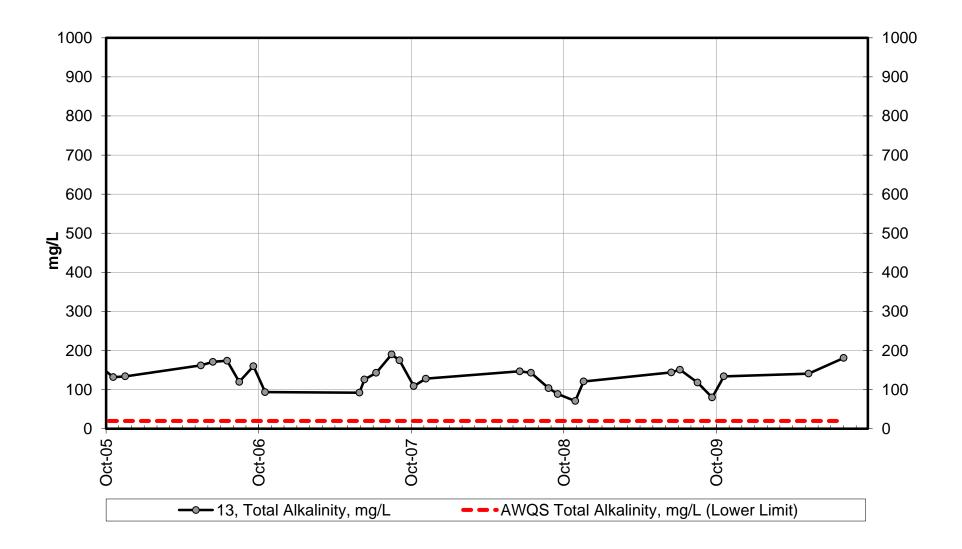

Site No.	Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier
13	10/20/2009	12:00 AM				
			Pb diss, µg/l	0.00681	U	Field Blank Contamination
			Se diss, µg/l	0.4	J	Matrix Spike Recovery
13	5/11/2010	1:31 PM				
			Cd diss, µg/l	0.0117	J	Below Quantitative Range
			Hg diss, µg/l	0.000749	U	Field Blank Contamination
			Pb diss, µg/l	0.00455	U	Field Blank Contamination
			SO4 Tot, mg/l	241	J	Sample Temperature
13	8/3/2010	11:39 AM				
			Cd diss, µg/l	0.0111	J	Below Quantitative Range
			Hg diss, µg/l	0.000815	U	Field Blank Contamination
			Pb diss, µg/l	0.0169	U	Field Blank Contamination
			SO4 Tot, mg/l	271	J	Sample Temperature

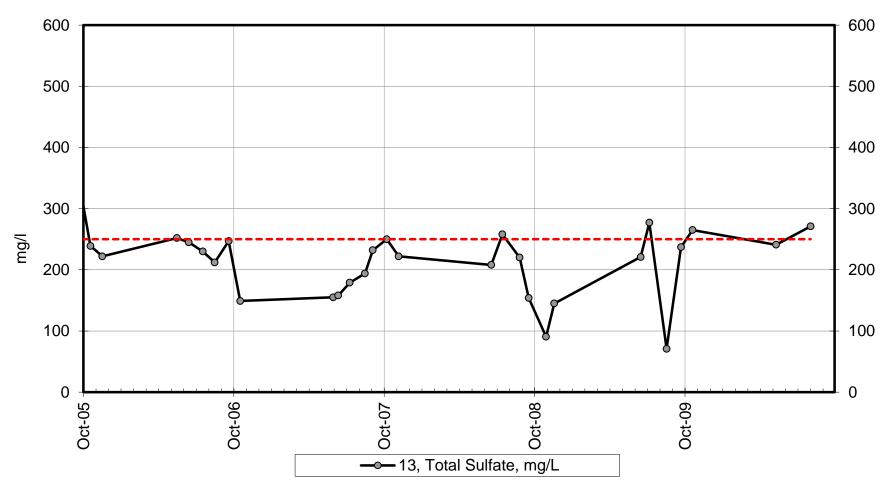
Qualifier	Description
J	Positively Identified - Approximate Concentration
Ν	Presumptive Evidence For Tentative Identification
NJ	Tentatively Identified - Approximate Concentration
R	Rejected - Cannot be Verified
U	Not Detected Above Quantitation Limit
UJ	Not Detected Above Approximate Quantitation Limit


Site 13 -Water Temperature

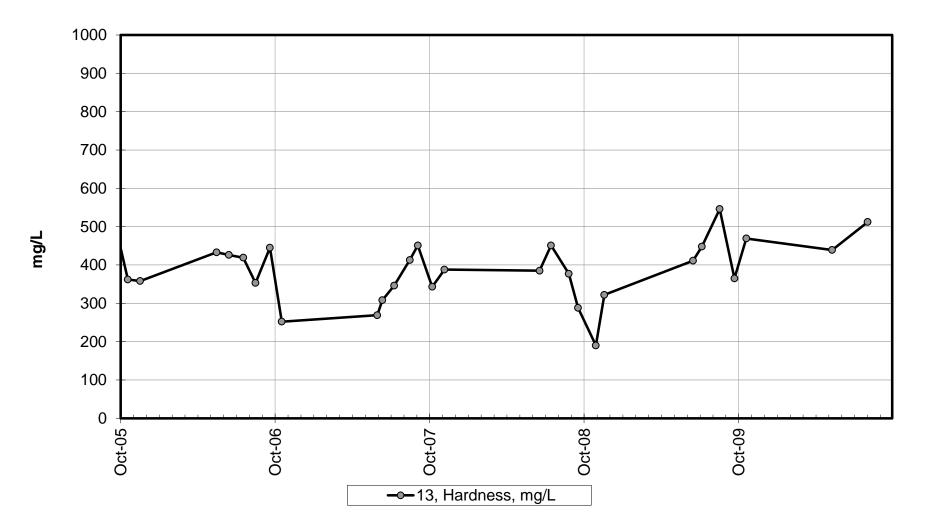

Site 13 - Conductivity-Lab


Site 13 - Conductivity-Field

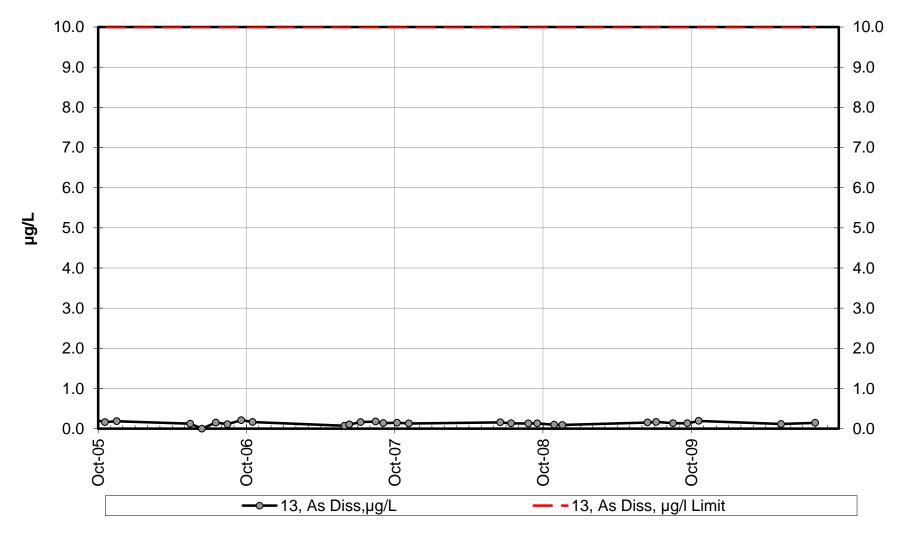

Site 13 - Lab pH


Site 13 - Field pH

Site 13 - Total Alkalinity

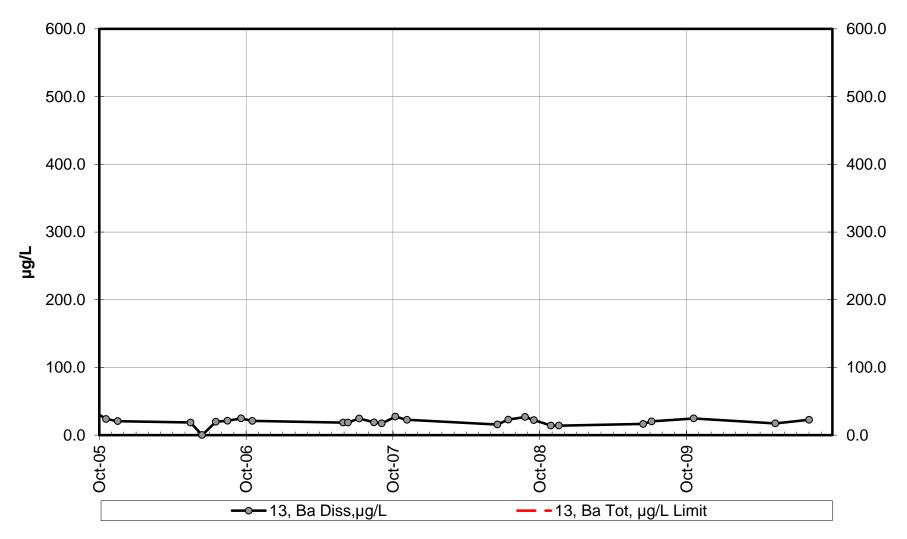


Site 13 - Total Sulfate

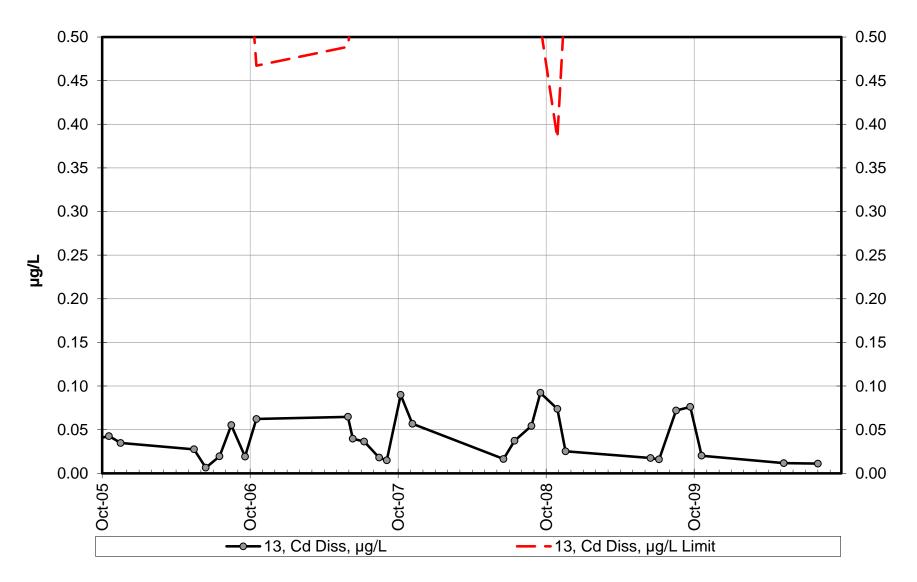


Note: The AWQS for Total Sulfate is 250 mg/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination.

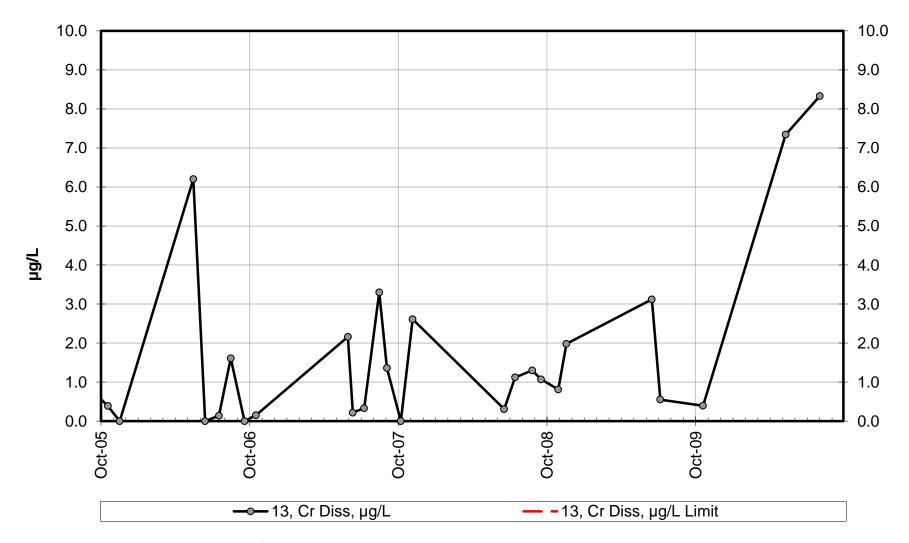
Site 13 - Hardness



Site 13 - Dissolved Arsenic

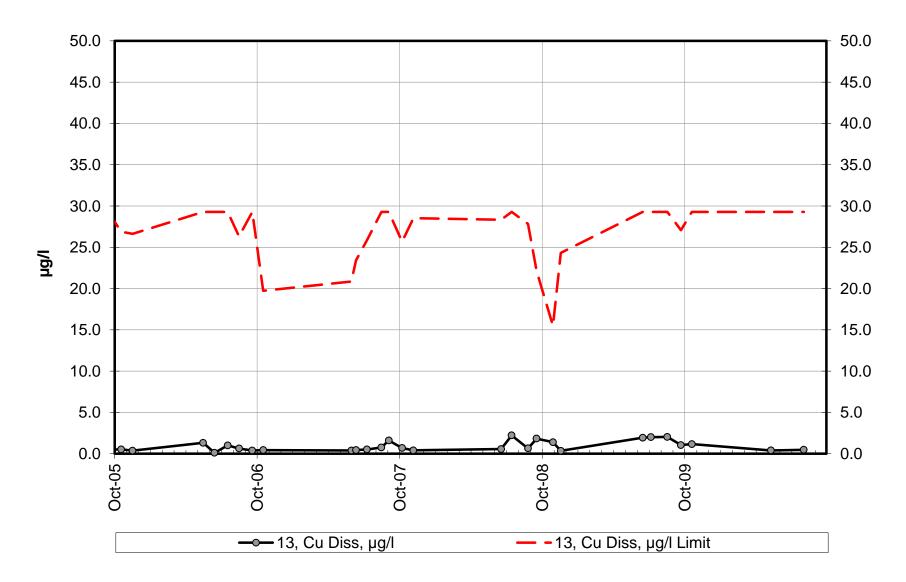

Note: The AWQS for total arsenic is 10 ug/L and thus may not be shown on this graph in order to allow greater visual detail of plotted values for trend determination

Site 13 - Dissolved Barium

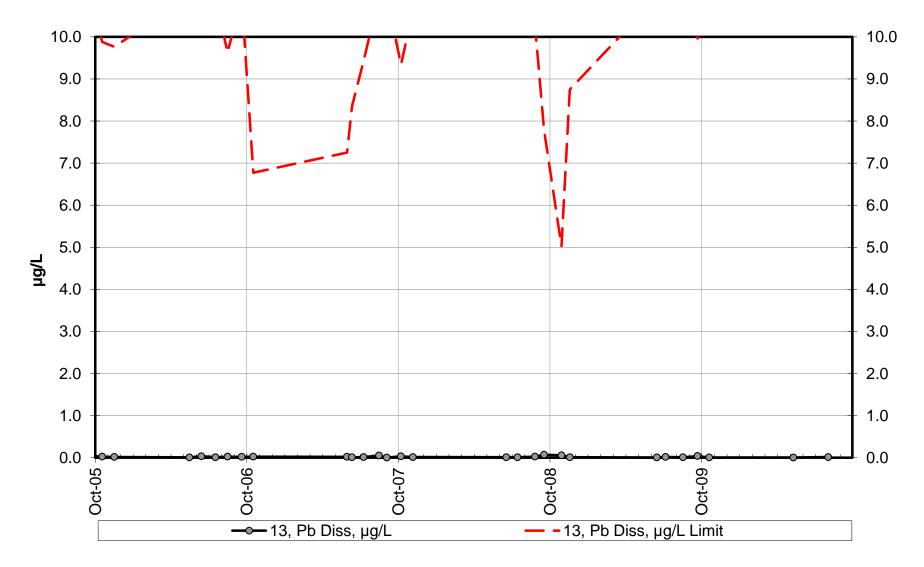


Note: the AWQS for Total Barium is 1000 ug/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination

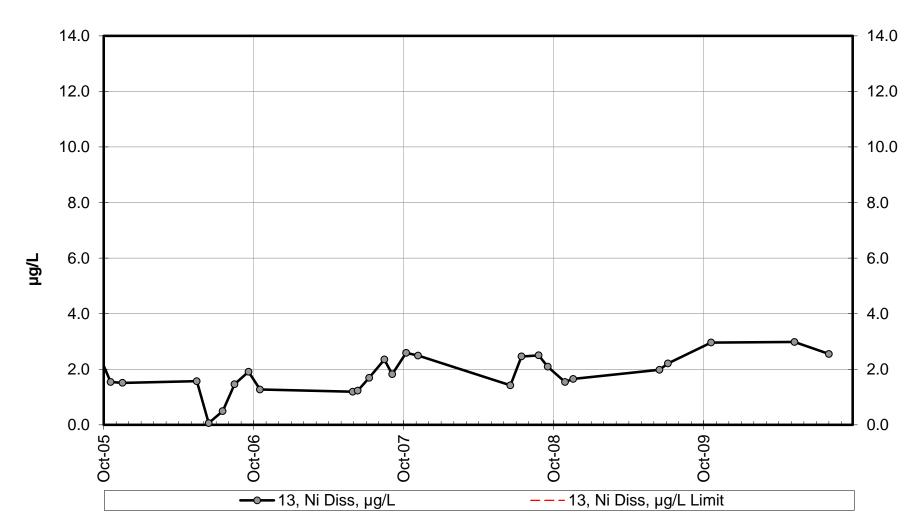
Site 13 - Dissolved Cadmium



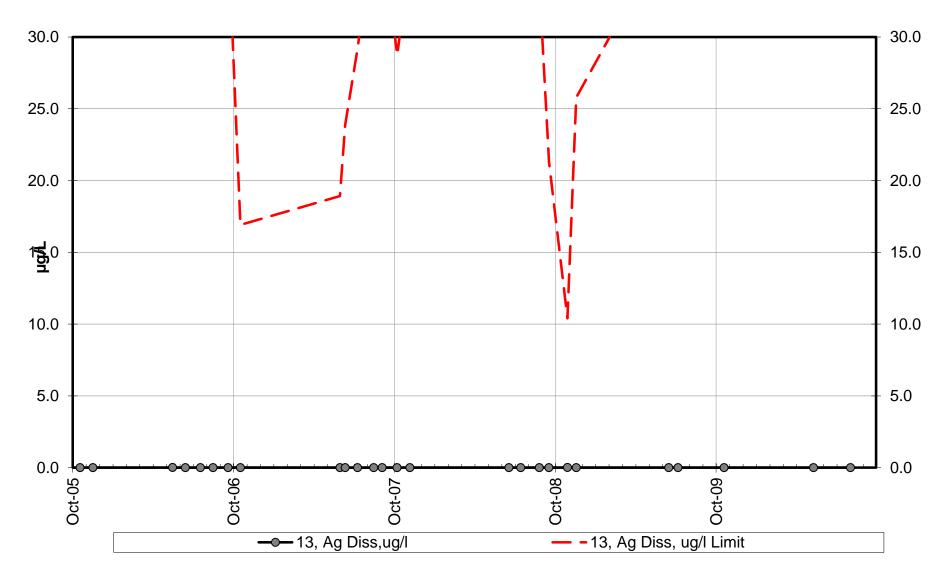
Site 13 - Dissolved Chromium



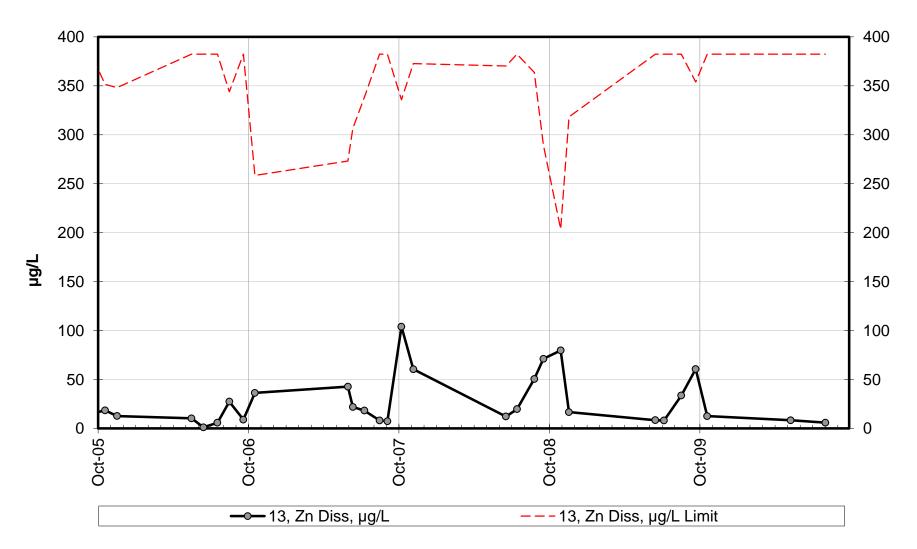
Note: the AWQS for Dissolved Chromium is 11 µg/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination


Site 13 - Dissolved Copper

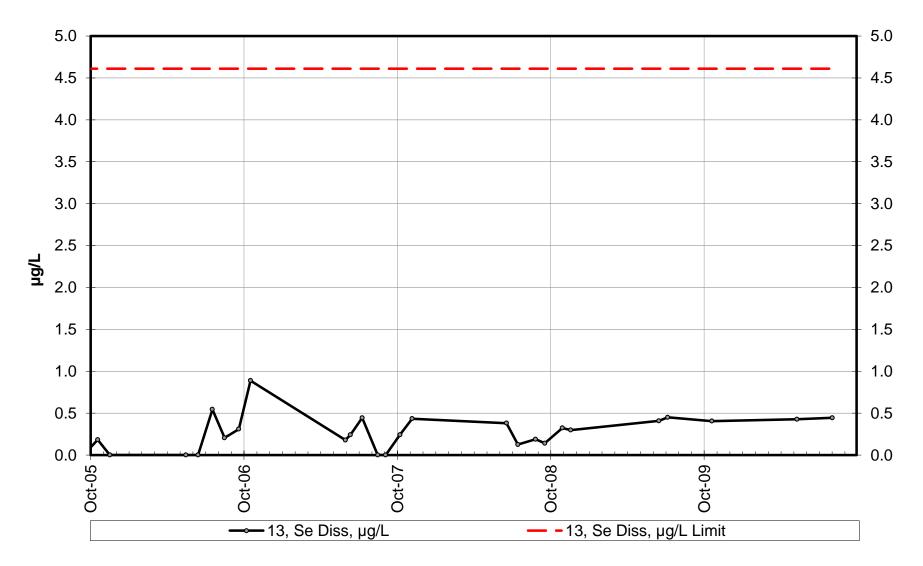
Site 13 - Dissolved Lead

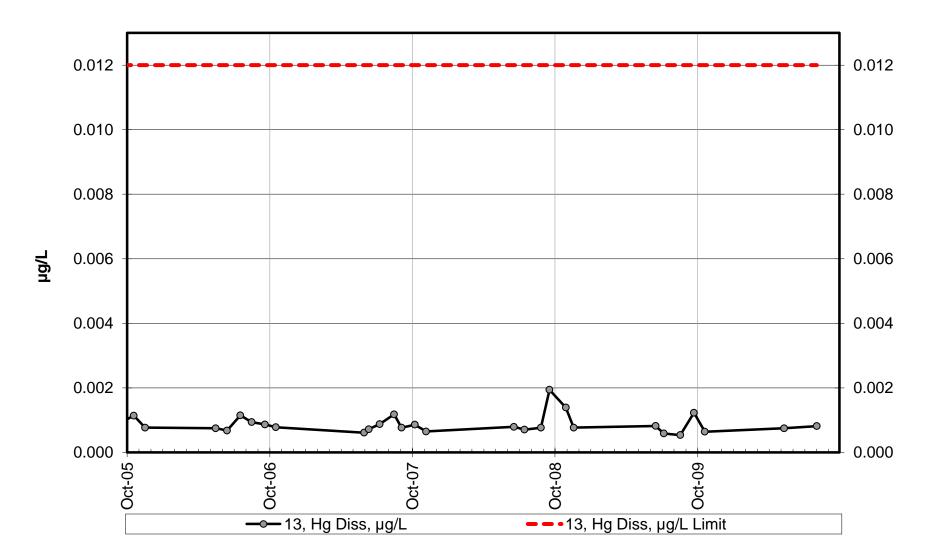


Site 13 - Dissolved Nickel

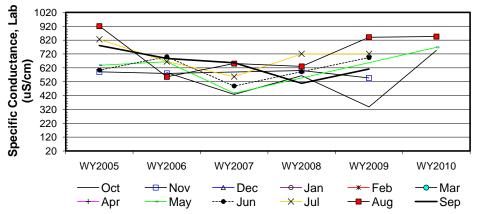


Note: The AWQS for dissolved nickel is hardness dependant and varies between 16 ug/L and 128 ug/L for waters with hardness values of 25 mg/L and 400 mg/L respectively. The AWQS, which would plot above the upper value on the Y-axis, are not shown on this graph to allow for greater visual detail of the plotted values.


Site 13 - Dissolved Silver


Site 13 - Dissolved Zinc

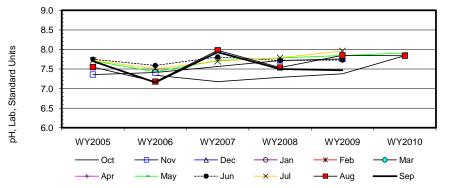
Site 13 - Dissolved Selenium


Site 13 - Dissolved Mercury

ow label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
a	WY2005	001	591	Dec	Vall	100	Intal	Арі	639	604	826	921	78
b	WY2006	585	580						664	700	665	555	68
С	WY2007	429							437	489	557	651	65
d	WY2008	563	601							592	721	630	50
е	WY2009	338	547							694	722	841	611
f	WY2010	746							768			846	
	n	5	4	0	0	0	0	0	4	5	5	6	5
	t,	5	5	5	5	5	5		5	5	5	5	ţ
	t ₂	0	0	0	0	0	0	0	0	0	0	0	(
	t ₃	0	0	0	0	0	0	0	0	0	0	0	(
	t ₄	0	0	0	0	0	0	0	0	0	0	0	(
	t ₅	0	0	0	0	0	0	0	0	0	0	0	
	b-a		-1						1	1	-1	-1	-
	c-a								-1	-1	-1	-1	-'
	d-a		1							-1	-1	-1	-
	e-a		-1							1	-1	-1	-
	f-a c-b	4							1 -1	4	4	-1	
	с-b d-b	-1 -1	1						-1	-1 -1	-1 1	1	
	u-b e-b	-1 -1	-1							-1	1	1	-
	f-b	-1	-1						1	-1	1	1	-
	d-c	1								1	1	-1	_
	e-c	-1								1	1	1	
	f-c	1							1			1	
	e-d	-1	-1							1	1	1	
	f-d	1										1	
	f-e	1										1	
	S _k	0	-2	0	0	0	0	0	2	0	0	3	-8
σ	² s=	16.67	3.67						8.67	16.67	16.67	28.33	16.67
	S _k /\sigma _S	0.00	-1.04						0.68	0.00	0.00	0.56	-1.9
	Z ² _k	0.00	1.09						0.46	0.00	0.00	0.32	3.8
		4.70	Г	Tie Friday	•	+	+	+	+			Σn	24
	$\Sigma Z_k =$	-1.76		Tie Extent	t,	t ₂	t ₃	t4	t _s				34
	$\Sigma Z_k^2 =$	5.71		Count	60	0	0	0	0			ΣS_k	-5

Seasonal Kendall analysis for Specific Conductance, Lab (uS/cm)

$\chi^2_h = \Sigma Z^2_k - K(Z-bar)^2$	= 5.27	@α=5% χ ² _(K-1) =	12.59	Test for station homogeneity	
	0.510	-		$\chi^{2}h < \chi^{2}(K-1)$	ACCEPT
$\Sigma VAR(S_k)$ Z_{ca}	c -0.39	@a/2=2.5% Z=	1.96	H ₀ (No trend)	ACCEPT
107.33	0.350			H _A (± trend)	REJECT



Season	al-Kendall Slop	e Confidence	Intervals
	Lower Limit	Sen's	Upper Limit
<u>α</u> 0.010	-44.15	Slope	27.10
0.010	-26.10		22.55
0.100	-23.37	-11.00	11.68
0.200	-19.30		3.01

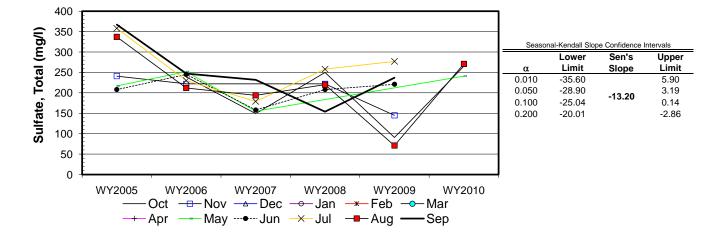
Site	#13						-		ab, Stand	bard Unit			
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
а	WY2005		7.4						7.7	7.8	7.7	7.6	7.
b	WY2006	7.3	7.4						7.4	7.6	7.5	7.2	7.
С	WY2007	7.2							7.7	7.8	7.7	8.0	7.9
d	WY2008	7.3	7.7							7.7	7.8	7.5	7.
e	WY2009	7.4	7.8						7.0	7.7	8.0	7.9	7.5
f	WY2010	7.8 5	4	0	0	0	0	0	7.9	5	5	7.8	į
	n	Э	4	0	0	0	0	0	4	5	5	0	:
	t,	5	5	5	5	5	5	5	5	5	5	5	Ę
	t ₂	0	0	0	0	0	0	0	0	0	0	0	(
	t ₃	0	0	0	0	0	0	0	0	0	0	0	(
	t ₄	0	0	0	0	0	0	0	0	0	0	0	(
	t ₅	0	0	0	0	0	0	0	0	0	0	0	(
	b-a		1						-1	-1	-1	-1	-^
	c-a								1	1	-1	1	
	d-a		1							-1	1	-1	-*
	e-a		1							-1	1	1	-'
	f-a								1			1	
	c-b	-1							1	1	1	1	
	d-b	-1	1							1	1	1	
	e-b	1	1							1	1	1	
	f-b	1							1			1	
	d-c e-c	1								-1 -1	1 1	-1 -1	-^ -^
	f-c	1							1	-1	1	-1 -1	-
	e-d	1	1						1	1	1	-1	-*
	f-d	1	I								1	1	-
	f-e	1										-1	
	S _k	6	6	0	0	0	0	0	4	0	6	3	-2
	² s=	16.67	3.67						8.67	16.67	16.67	28.33	16.67
	s- S _k /σ _s	1.47	3.13						1.36	0.00	1.47	0.56	-0.49
2	Z ² _k	2.16	9.82						1.85	0.00	2.16	0.32	0.24
	$\Sigma Z_{k} =$	7.51	Г	Fie Extent	t,	t ₂	t ₃	t4	t ₅			Σn	34
	ΣZ_{k}^{2}	16.54		Count	60	0	0	0	0			ΣS_k	23
	-bar=ΣZ _k /K=	1.07	L	Jount	00	v	0		•			20K	20

Seasonal Kendall analysis for pH, Lab, Standard Units

$\chi^2_h = \Sigma Z^2_k$	K(Z-bar) ² =	8.50	@α=5% χ ² _(K-1) =	12.59	Test for station home	ogeneity
	р	0.204			$\chi^2 h < \chi^2 (K-1)$	ACCEPT
$\Sigma VAR(S_k)$	Z_{calc}	2.12	@α/2=2.5% Z=	1.96	H ₀ (No trend)	REJECT
107.33	р	0.983			H _A (± trend)	ACCEPT

	Lower	Sen's	Upper
α	Limit	Slope	Limit
0.010	0.00		0.12
0.050	0.01	0.06	0.11
0.100	0.03	0.06	0.10
0.200	0.04		0.09

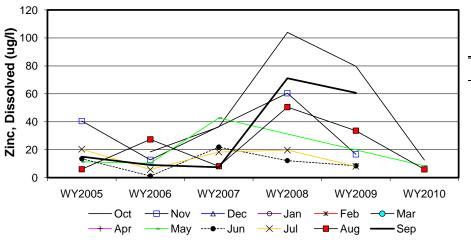
0.8%


	#13								tal Alk, (
w label a b c d e f	Water Year WY2005 WY2006 WY2007 WY2008 WY2009 WY2010	Oct 132.0 93.8 109.0 70.9 134.0	Nov 120.0 134.0 128.0 121.0	Dec	Jan	Feb	Mar	Apr	May 186.0 162.0 92.3 141.0	Jun 201.0 171.0 126.0 147.0 144.0	Jul 188.0 174.0 143.0 143.0 151.0	Aug 207.0 120.0 190.0 104.0 118.0 181.0	Sep 162 160 175 88 80
	n	5	4	0	0	0	0	0	4	5	5	6	
	t₁ t₂ t₃ t₄ t₅	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	3 1 0 0 0	5 0 0 0 0	
	b-a c-a d-a e-a f-a c-b d-b	-1 -1	1 1 1 -1						-1 -1 -1 -1	-1 -1 -1 -1 -1	-1 -1 -1 -1 -1 -1	-1 -1 -1 -1 -1 1 -1	
	e-b f-b d-c e-c f-c e-d f-d f-e	-1 1 -1 1 -1 1 1	-1						-1 1	-1 1 1 -1	-1 0 1	-1 1 -1 -1 1 1	
	S _k	0	0	0	0	0	0	0	-4	-6	-5	-5	
Z _k =	² s= S _k /σ _S Z ² _k	16.67 0.00 0.00	3.67 0.00 0.00						8.67 -1.36 1.85	16.67 -1.47 2.16	15.67 -1.26 1.60	28.33 -0.94 0.88	16 -1 2
Z	$\Sigma Z_{k} = \Sigma Z_{k}^{2} = -bar = \Sigma Z_{k}/K =$	-6.50 8.64 -0.93	[Tie Extent Count	t, 58	t ₂ 1	t ₃ 0	t4 0	t ₅ 0			Σ n Σ S _k	34 -26
	χ² _h =ΣΖ² _k -ł	р	2.61 0.856		@α = 5%	% χ ² _(K-1) =	12.59		test for stati	on homoge A	neity ACCEPT		
	ΣVAR(S _k) 106.33	Z _{calc} p	-2.42 0.008		@α/2=	2.5% Z=	1.96		H₀ (No t H _A (± ti				
260 210 160 110									= 	α 0.010 0.050 0.100	Lower Limit -20.43 -14.99 -14.03	Confidence Ir Sen's Slope -8.80	Upp Lim -1.3 -3.0 -5.1
60 -	WY2005	WY2		_				- 		0.200	-11.49	-6.2%	-7.1

Site	#13			S	easonal	Kendall	analysis	s for Sul	fate, Tota	al (mg/l)			
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
а	WY2005		241.0						217.0	208.0	358.0	337.0	367.0
b	WY2006	239.0	222.0						252.0	245.0	230.0	212.0	247.0
С	WY2007	149.0							155.0	158.0	179.0	194.0	232.0
d	WY2008	250.0	222.0							208.0	258.0	220.0	154.0
e	WY2009	90.6	145.0							221.0	277.0	70.8	237.0
f	WY2010	265.0							241.0			271.0	
	n	5	4	0	0	0	0	0	4	5	5	6	5
	t,	5	3	5	5	5	5	5	5	3	5	5	5
	t ₂	0	1	0	0	0	0	0	0	1	0	0	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t₄ ⁺	0	0	0 0	0	0 0	0	0	0	0	0	0 0	0
	t ₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a		-1						1	1	-1	-1	-1
	c-a								-1	-1	-1	-1	-1
	d-a		-1							0	-1	-1	-1
	e-a		-1							1	-1	-1	-1
	f-a								1			-1	
	c-b	-1							-1	-1	-1	-1	-1
	d-b	1	0							-1	1	1	-1
	e-b	-1	-1							-1	1	-1	-1
	f-b d-c	1							-1	1	1	1	-1
	e-c	1								1	1	-1	-1
	f-c	-1							1	1	1	-1	
	e-d	-1	-1							1	1	-1	1
	f-d	1	·							•	•	1	•
	f-e	1										1	
	S _k	2	-5	0	0	0	0	0	0	1	0	-3	-6
	σ ² s=	16.67	2.00						8.67	15.67	16.67	28.33	16.67
	= S _k /σ _s	0.49	-3.54						0.00	0.25	0.00	-0.56	-1.47
	Z_{k}^{2}												
	∠ k	0.24	12.50						0.00	0.06	0.00	0.32	2.16
	$\Sigma Z_k =$	-4.83	ļ	Tie Extent	t ₁	t ₂	t ₃	t ₄	t ₅			Σn	34
	$\Sigma Z_k^2 =$	15.28		Count	56	2	0	0	0			ΣS_k	-11
7	7_har_∑7./K_	-0.69					-	-	-				

			-			
Seasonal	12 and all	analyzaia	for	Cultoto	Totol	(max)
Seasonar	Nenoali	anaivsis	101	Sunale	TOTAL	([[[[] /] /]]

Z-bar= $\Sigma Z_k/K$ = -0.69


$\chi^2_h = \Sigma Z^2_k$ -	K(Z-bar) ² =	11.95		@α=5% χ ² _(K-1) =	12.59	Test for station home	ogeneity
	р	0.063	_			$\chi^{2}h < \chi^{2}(K-1)$	ACCEPT
$\Sigma VAR(S_k)$	Z_{calc}	-0.98		@α=5% Z=	1.64	H ₀ (No trend)	ACCEPT
104.67	р	0.164				H _A (± trend)	REJECT

Row label							,		, Dissolv	(U)			
	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2005		40.5						11.3	13.5	20.3	6.0	15.0
b	WY2006	18.5	12.7						10.3	1.2	5.8	27.4	9.0
C	WY2007	36.3							42.7	21.9	18.3	8.2	7.4
d	WY2008	104.0	60.5							12.2	19.7	50.5	71.1
е	WY2009	79.7	16.7							8.5	8.1	33.6	60.7
f	WY2010	12.6							8.4			5.9	
	n	5	4	0	0	0	0	0	4	5	5	6	5
-	t,	5	5	5	5	5	5	5	5	5	5	5	5
	t ₂	0	0	0	0	0	0	0	0	0	0	0	C
	t ₃	0	0	0	0	0	0	0	0	0	0	0	C
	t4	0	0	0	0	0	0	0	0	0	0	0	C
-	t₅	0	0	0	0	0	0	0	0	0	0	0	C
-	b-a		-1						-1	-1	-1	1	-1
	c-a								1	1	-1	1	-1
	d-a		1							-1	-1	1	1
	e-a		-1							-1	-1	1	1
	f-a								-1			-1	
	c-b	1							1	1	1	-1	-1
	d-b	1	1							1	1	1	1
	e-b	1	1							1	1	1	1
	f-b	-1							-1			-1	
	d-c	1								-1	1	1	1
	e-c	1								-1	-1	1	1
	f-c	-1							-1			-1	
	e-d	-1	-1							-1	-1	-1	-1
	f-d	-1										-1	
=	f-e	-1										-1	
-	S _k	0	0	0	0	0	0	0	-2	-2	-2	1	2
σ	²s=	16.67	3.67						8.67	16.67	16.67	28.33	16.67
	S _k /σ _S	0.00	0.00						-0.68	-0.49	-0.49	0.19	0.49
Z	2 - k	0.00	0.00						0.46	0.24	0.24	0.04	0.24
	$\Sigma Z_k =$	-0.98	Ŀ	Tie Extent	t,	t ₂	t ₃	t4	t ₅			Σn	34
	$\Sigma Z_k^2 =$	1.22		Count	60	0	0	0	0			ΣS_k	-3

Seasonal Kendall	analysis for Zinc	Dissolved (ug/l)

$\chi^2_h = \Sigma Z^2_k$	K(Z-bar) ² =	1.08		@α=5% χ ² _(K-1) =	12.59	Test for station home	ogeneity
	р	0.982	-			$\chi^2_h < \chi^2_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	Z_{calc}	-0.19		@α/2=2.5% Z=	1.96	H₀ (No trend)	ACCEPT
107.33	р	0.423				H _A (± trend)	REJECT

Seasonal-Kendall Slope Confidence Intervals								
	Lower	Sen's	Upper					
α	Limit	Slope	Limit					
0.010	-4.51		6.91					
0.050	-1.63	-0.20	4.23					
0.100	-1.28	-0.20	2.12					
0.200	-0.96		1.30					

INTERPRETIVE REPORT SITE 58 "MONITORING WELL T-00-01C"

The data collected during the current water year are listed in the following "Table of Results for Water Year 2010" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the rightmost column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

Sampling at this site was added to the FWMP in May-2002. As shown in the table below, there were no data outliers.

Sample Date	Parameter	Value	Qualifier	Notes	
No outliers have	been identified by HG	CMC for the peri	od of October	r 2005 through S	eptember 2010.

The data for Water Year 2010 have been compared to the strictest fresh water quality criterion for each applicable analyte. Seven values exceeding these criteria have been identified, as listed in the table below. Five of these values were for field and laboratory pH. Values for field and laboratory pH from other wells completed into organic rich peat sediments similar to Site 58 have historically resulted in pH values ranging from 5 to 6 su (*e.g.* Sites 27, 29, and 32). Likewise, total alkalinity for organic, peat rich completions are typically at or below the 20 mg/L AWQS.

Sample Date	Parameter	Value	Hardness (mg/L)	Standard	Standard Type
11-May-10	pH Field, su	5.12		6.5	Aquatic Life, chronic
11-May-10	pH Lab, su	6.04		6.5	Aquatic Life, chronic
13-Jul-10	pH Field, su	5.33		6.5	Aquatic Life, chronic
13-Jul-10	pH Lab, su	5.3		6.5	Aquatic Life, chronic
21-Sep-10	pH Field, su	6.18		6.5	Aquatic Life, chronic
21-Sep-10	pH Lab, su	5.41		6.5	Aquatic Life, chronic
11-May-10	Alkalinity Total, mg/L	16.9		20	Aquatic Life, chronic

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. These plots have been visually analyzed for the appearance of any trend in concentration. Visually dissolved manganese appears to be increasing over the past few years. Though it appears to be increasing the values are still ~1/3 the AWQS (200 μ g/L). Also, another trend noticed is a moderate increase in the dissolved mercury concentration measured at the end of the water year. This increase has also been noted for other sites in the tailings area. One plausible explanation for this is that preparatory work for the East Ridge expansion is driving this increase. During the spring of 2010 HGCMC dropped the tree cover over the area for the East Ridge expansion. This removal of the canopy, along with the disturbance to the substrate by the heavy equipment, may have impacted the natural processes in this

region. Even though the value has increased, it is well within the AWQS. HGCMC accepts that with the changes made to the FWMP schedule in 2010, the program is sufficient to monitor any future increases.

A non-parametric statistical analysis for trend was performed for conductivity, pH, alkalinity, sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall analyses are presented in detail on the pages following this interpretive section. The adjacent table summarizes the results on

Site 58-WY2010, summary statistics for trend analysis.

Ma	ann-Ke	endall test	<u>Sen's slo</u>	pe estimate	
Parameter	N (1)	p (2)	Trend	Q	Q(%)
Conductivity, Lab	6	0.04	0		
pH, Lab	6	0.15	0		
Alkalinity, Total	6	0.07	0		
Sulfate, Total	6	0.12	0		
Zinc, Dissolved	6	0.93	0		
(1). Number of ve	are	(2).Signif	icance lev	رما	

(1): Number of years (2): Significance level

the data collected between Oct-04 and Sep-10 (WY2005-WY2010). There were no statistically significant ($\alpha/2=2.5\%$) trends identified for the current water year.

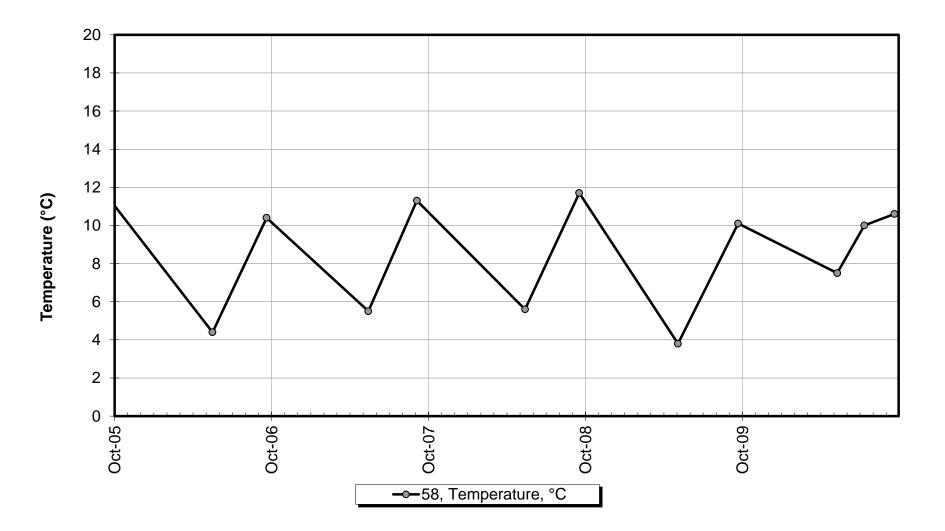
Table of Results for Water Year 2010

Site 58 "MW-T-00-01C"													
Sample Date/Parameter	Oct-09	Nov-09	Dec-09	Jan-10	Jan-10	Mar-10	Apr-10	5/11/2010	Jun-10	Jul-10	Aug-10	9/21/2010	Median
Water Temp (°C)								7.5	co	10.0	(7)	10.6	10.0
Conductivity-Field(µmho)								58	ž	7	ž	76	58
Conductivity-Lab (µmho)								54	_	70		69	69
pH Lab (standard units)								6.04	₽	5.30	<u>e</u>	5.41	5.41
pH Field (standard units)								5.12	SAMPLING	5.33	SAMPLING	6.18	5.33
Total Alkalinity (mg/L)								16.9	20	24.8	SF	22.9	22.9
Total Sulfate (mg/L)								1.1 J		<0.5 UJ		0.9 J	0.9
Hardness (mg/L)								19.7	OR	29.0	FOR	30.0	29.0
Dissolved As (ug/L)								0.229	й	0.235	ш	0.305	0.235
Dissolved Ba (ug/L)		NOT	SCHEDU	ILED FO	R SAMF	LING		14.5	Δ	19.8	Δ	23.5	19.8
Dissolved Cd (ug/L)								<0.004	CHEDULED	< 0.004	SCHEDULED	<0.008	0.002
Dissolved Cr (ug/L)								1.720	5	1.200	5	0.614	1.200
Dissolved Cu (ug/L)								0.100 U	ā	0.116	ā	0.192	0.116
Dissolved Pb (ug/L)								0.0342 U	Ψ	0.0302	Щ.	0.0911	0.0342
Dissolved Ni (ug/L)								0.413	さ	0.423	ち	0.686	0.423
Dissolved Ag (ug/L)								<0.004	Ň	< 0.004	S	<0.008	0.002
Dissolved Zn (ug/L)								0.28	H	0.92	H	0.81	0.81
Dissolved Se (ug/L)								0.261 J	NOT	0.944	NOT	0.243 J	0.261
Dissolved Hg (ug/L)								0.000881	Z	0.000979 U	Z	0.003570	0.000979

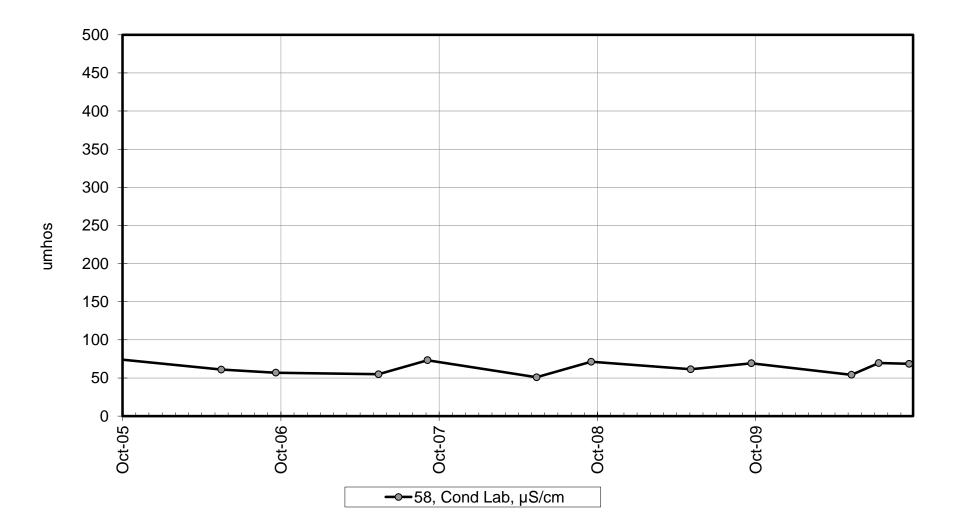
For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

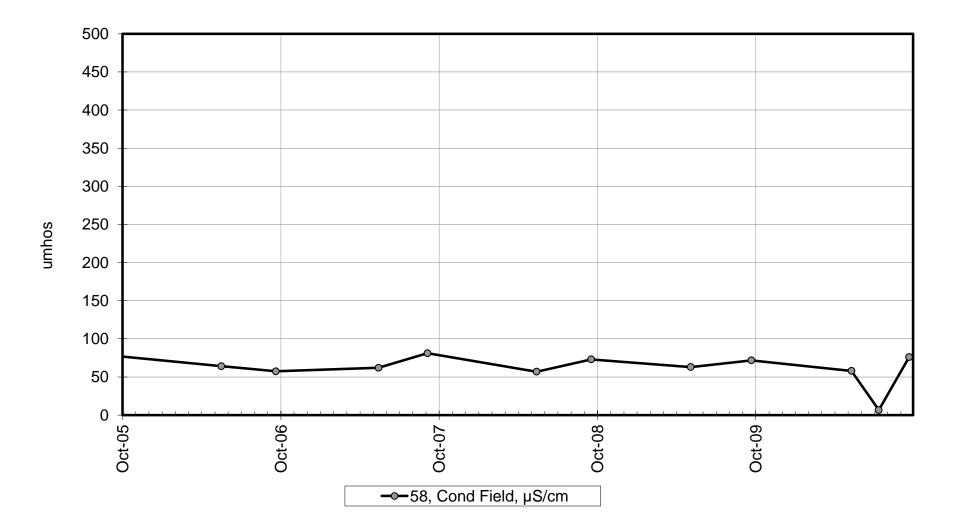
Shaded data has been qualified as an outlier by HGCMC and removed from any further analysis and is not included into the calculation of the median

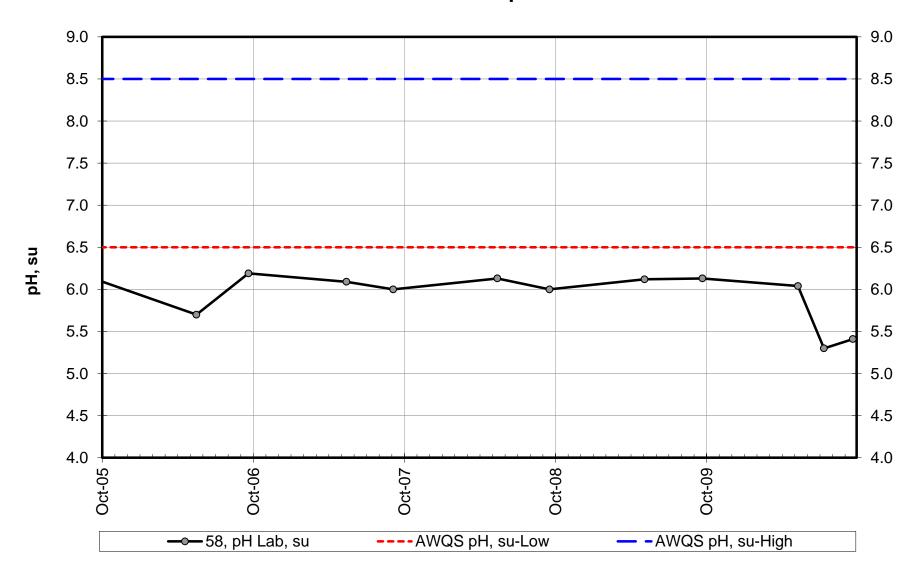

Qualified Data by QA Reviewer

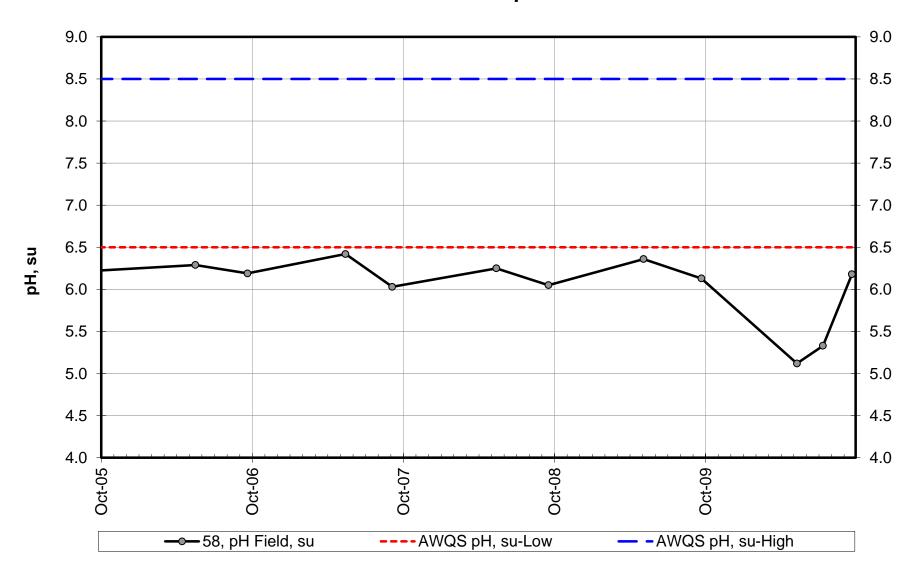
Date Range: 10/01/2009 to 09/30/2010

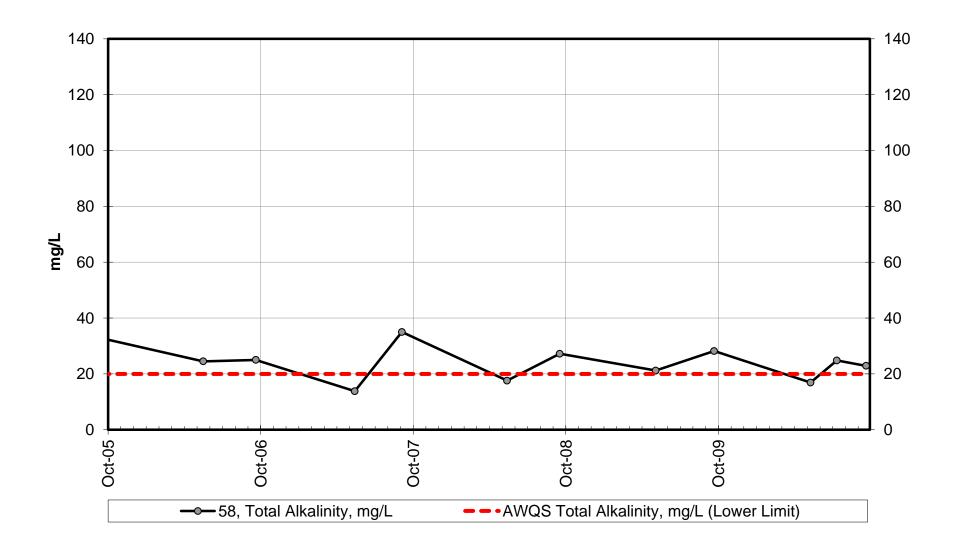

Site No.	Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier
58	5/11/2010	9:56 AM				
			Cu diss, µg/l	0.1	U	Field Blank Contamination
			Pb diss, µg/l	0.0342	U	Field Blank Contamination
			Se diss, µg/l	0.261	J	Below Quantitative Range
			SO4 Tot, mg/l	1.1	J	Sample Temperature
8	7/13/2010	2:25 PM				
			Hg diss, µg/l	0.000979	U	Field Blank Contamination
			SO4 Tot, mg/l	0	UJ	Sample Reciept Temperature
8	9/21/2010	9:43 AM				
			Se diss, µg/l	0.243	J	Below Quantitative Range
			SO4 Tot, mg/l	0.9	J	Below Quantitative Range

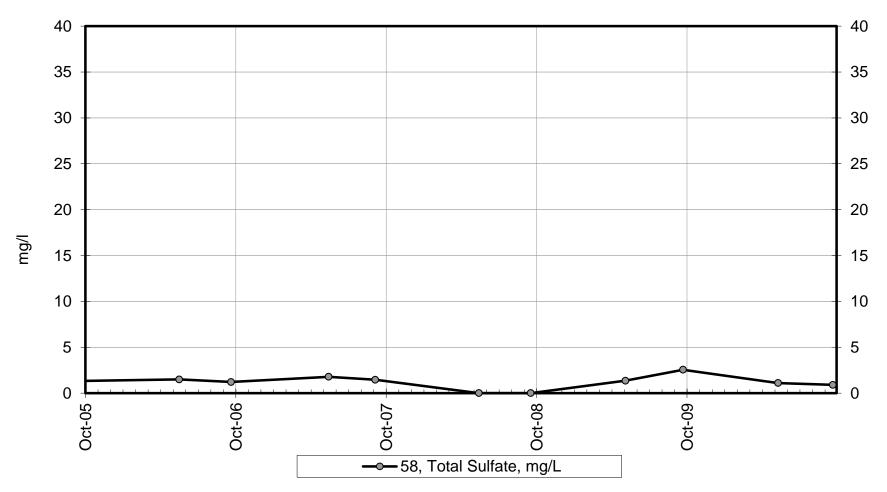
Qualifier	Description
J	Positively Identified - Approximate Concentration
Ν	Presumptive Evidence For Tentative Identification
NJ	Tentatively Identified - Approximate Concentration
R	Rejected - Cannot be Verified
U	Not Detected Above Quantitation Limit
UJ	Not Detected Above Approximate Quantitation Limit


Site 58 -Water Temperature

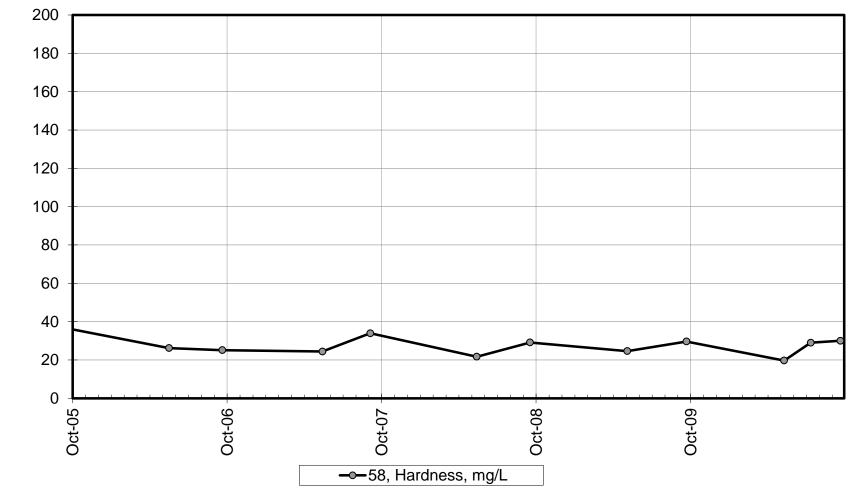

Site 58 - Conductivity-Lab


Site 58 - Conductivity-Field

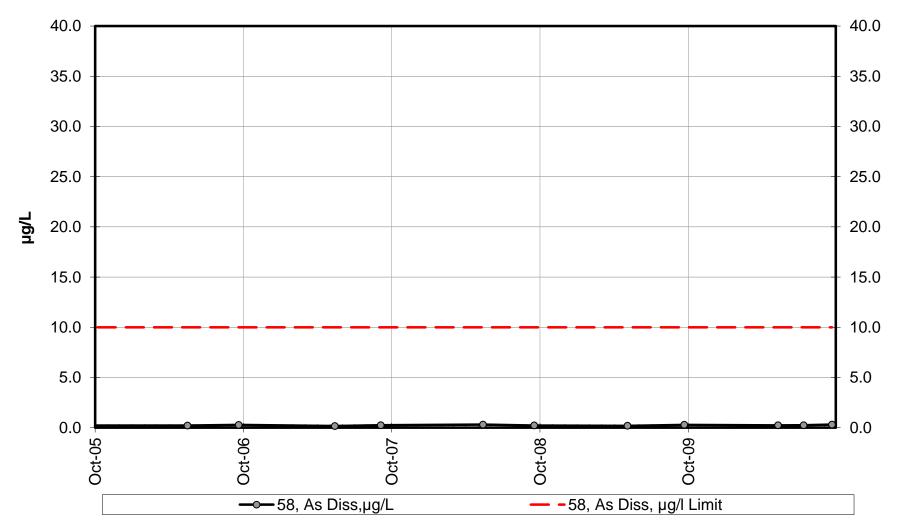

Site 58 - Lab pH


Site 58 - Field pH

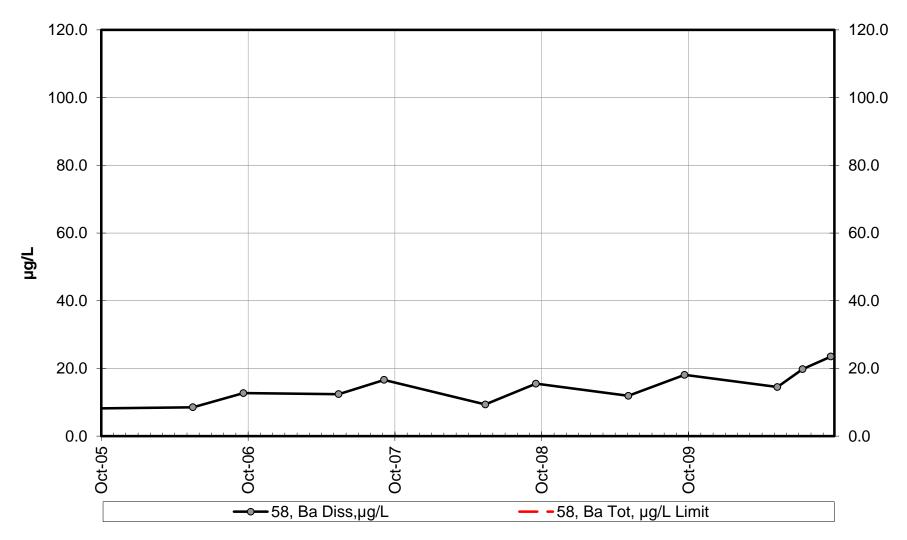
Site 58 - Total Alkalinity



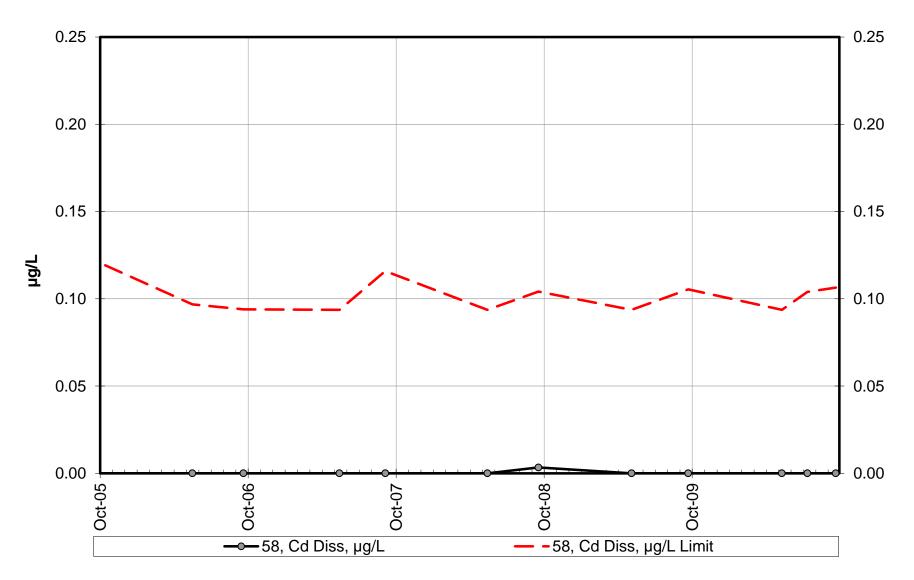
Site 58 - Total Sulfate


Note: The AWQS for Total Sulfate is 250 mg/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination.

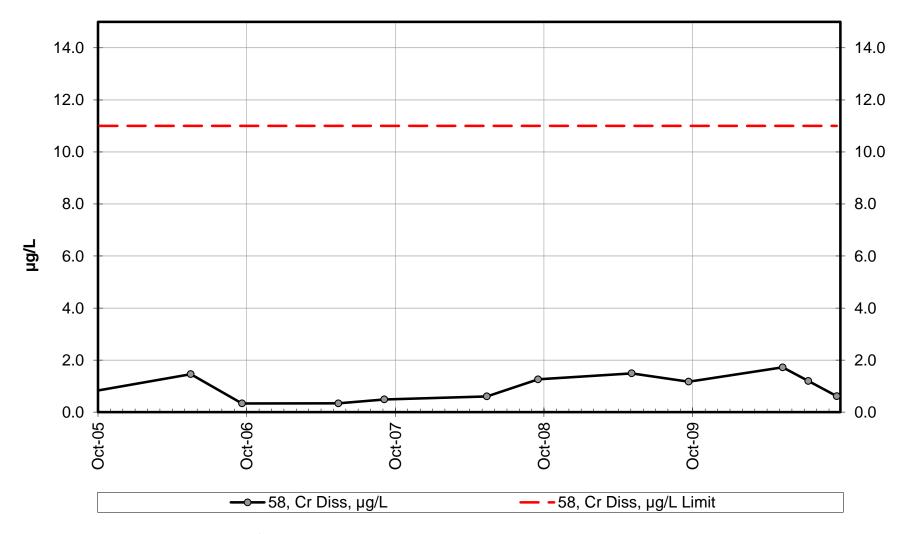
Site 58 - Hardness


mg/L

Site 58 - Dissolved Arsenic

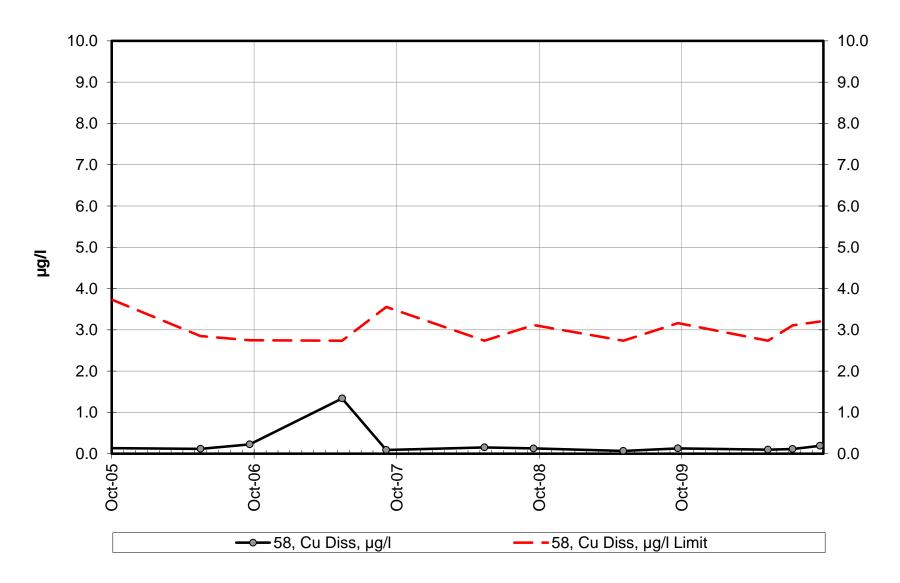

Note: The AWQS for total arsenic is 10 ug/L and thus may not be shown on this graph in order to allow greater visual detail of plotted values for trend determination

Site 58 - Dissolved Barium

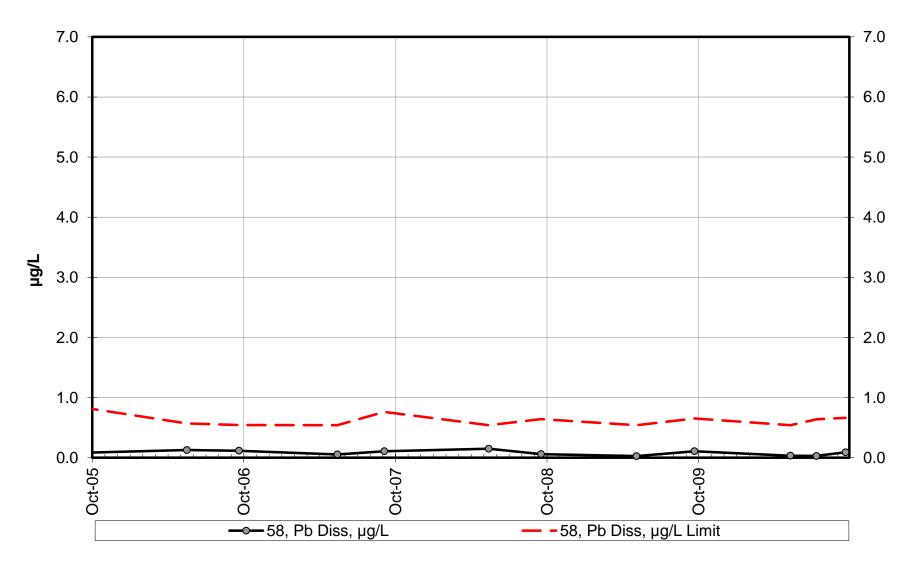


Note: the AWQS for Total Barium is 1000 ug/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination

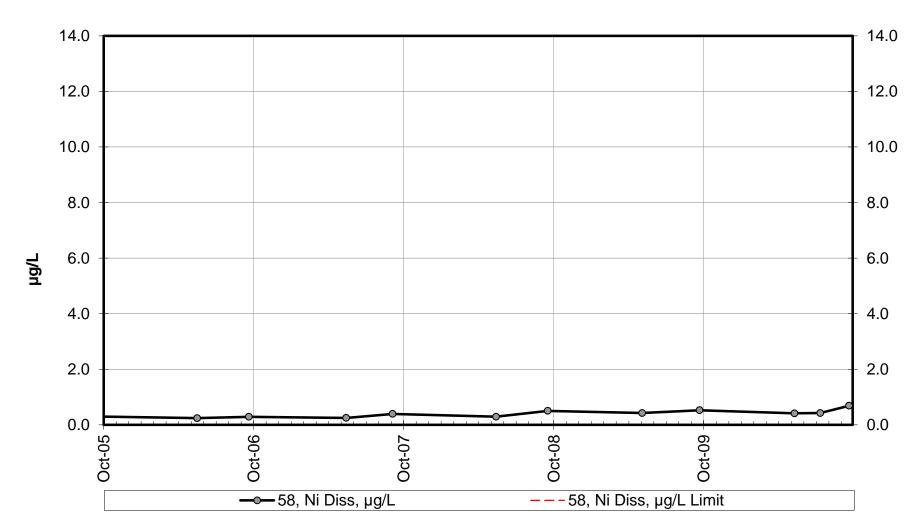
Site 58 - Dissolved Cadmium



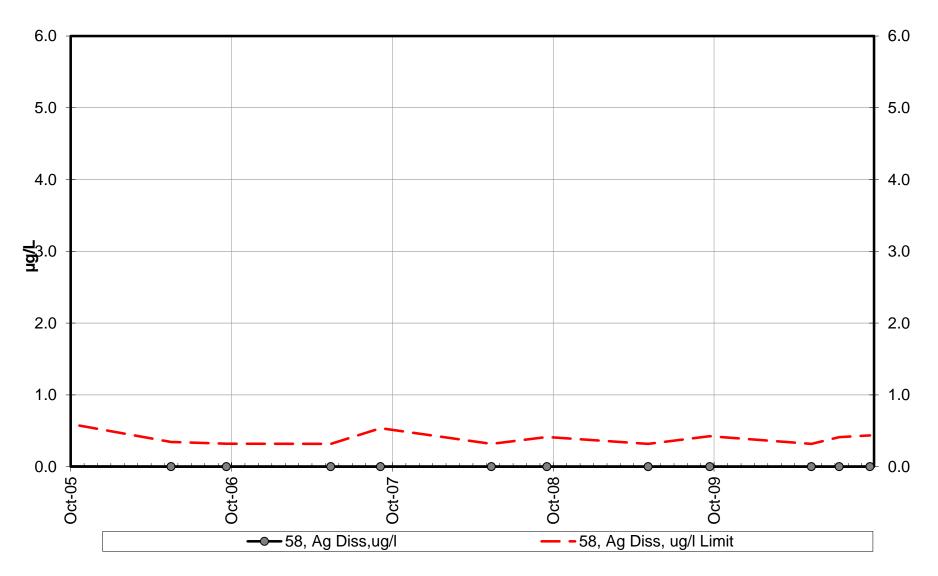
Site 58 - Dissolved Chromium



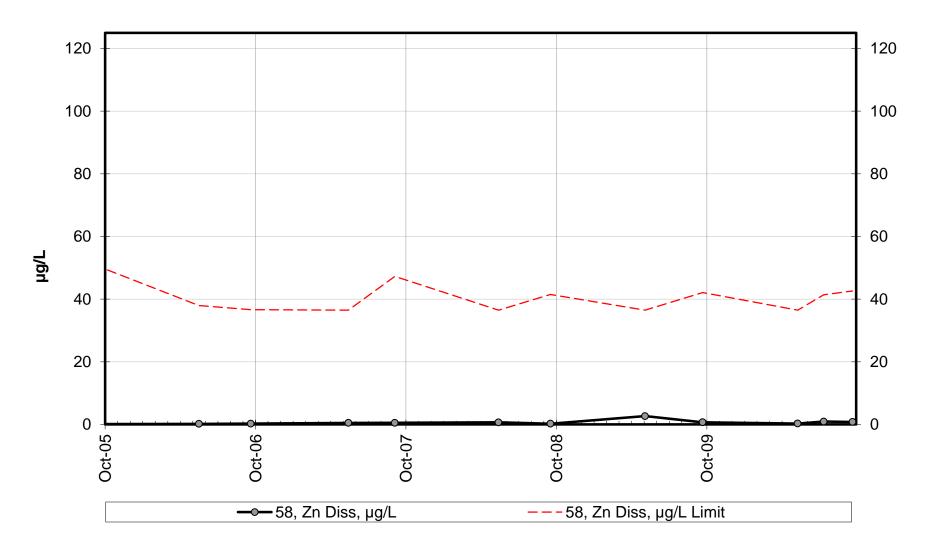
Note: the AWQS for Dissolved Chromium is 11 µg/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination


Site 58 - Dissolved Copper

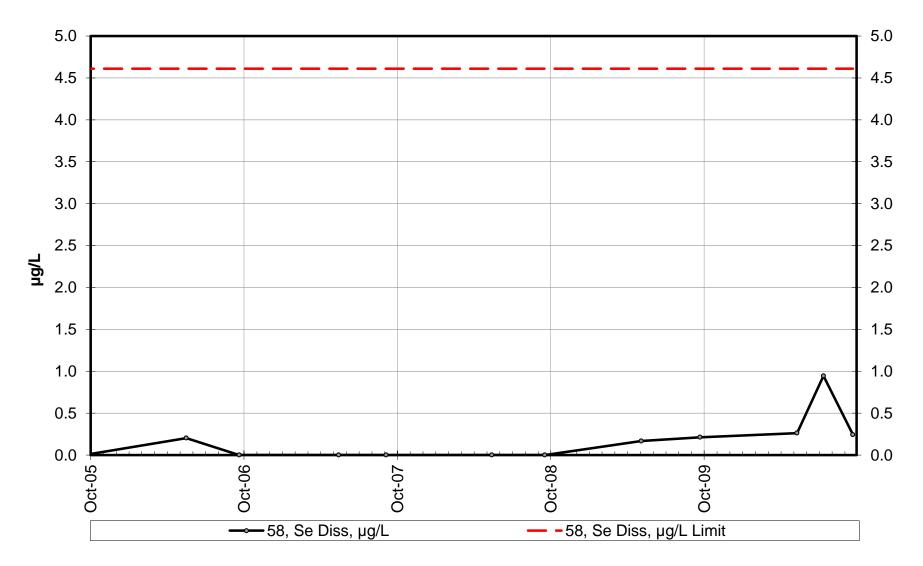
Site 58 - Dissolved Lead

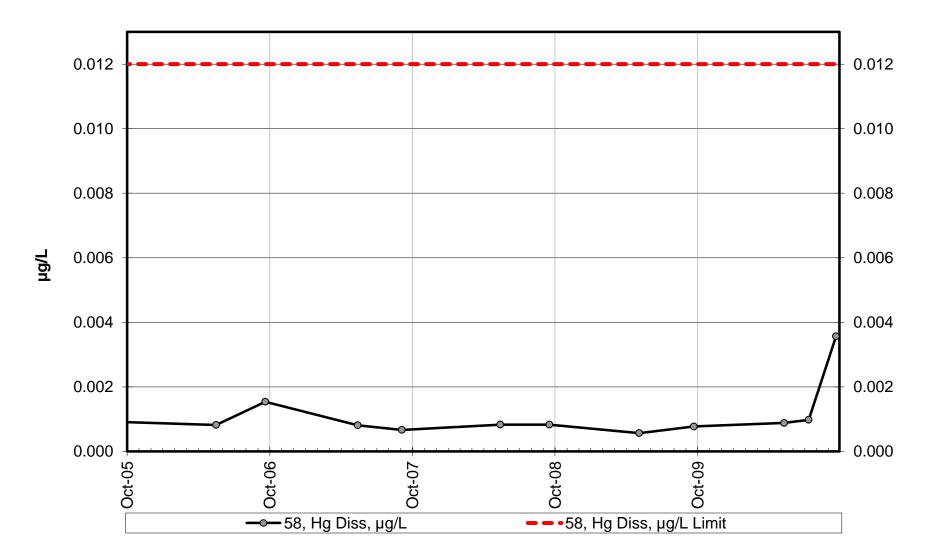


Site 58 - Dissolved Nickel

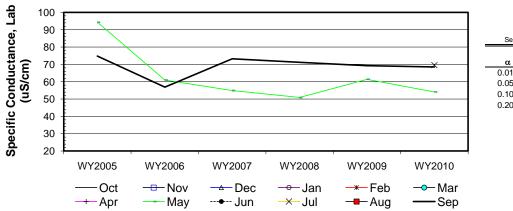


Note: The AWQS for dissolved nickel is hardness dependant and varies between 16 ug/L and 128 ug/L for waters with hardness values of 25 mg/L and 400 mg/L respectively. The AWQS, which would plot above the upper value on the Y-axis, are not shown on this graph to allow for greater visual detail of the plotted values.


Site 58 - Dissolved Silver

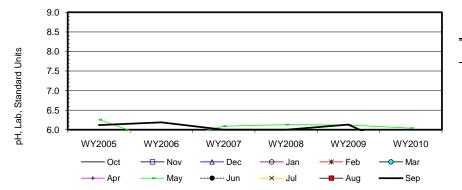

Site 58 - Dissolved Zinc

Site 58 - Dissolved Selenium


Site 58 - Dissolved Mercury

Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2005							- F	94.3			· J	74.8
b	WY2006								61				56.9
С	WY2007								54.9				73.2
d	WY2008								50.9				71.2
е	WY2009								61.4				69.3
f	WY2010								54.1		69.6		68.5
	n	0	0	0	0	0	0	0	6	0	1	0	6
	t,	5	5	5	5	5	5		5	5	5	5	5
	t ₂	0	0	0	0	0	0	0	0	0	0	0	C
	t ₃	0	0	0	0	0	0	0	0	0	0	0	C
	t₄	0 0	0	0	0	0	0	0	0	0	0	0	C
	t ₅	0	0	0	0	0	0	0	0	0	0	0	C
	b-a								-1				-1
	c-a								-1				-1
	d-a								-1				-1
	e-a								-1				-1
	f-a								-1				-1
	c-b								-1				1
	d-b								-1				1
	e-b f-b								1				1
	d-c								-1				ا 1-
	e-c								-1				-1
	f-c								-1				-1
	e-d								1				-1
	f-d								1				-1
	f-e								-1				-1
	S _k	0	0	0	0	0	0	0	-7	0	0	0	-7
	² s=								28.33				28.33
	S _k /σ _s								-1.32				-1.32
	Z^2_k								1.73				1.73
	$\Sigma Z_k =$	-2.63	Г	Tie Extent	t,	+	+	+	+			Σn	10
						t ₂	t ₃	t₄	t₅				13
	$\Sigma Z_k^2 =$	3.46		Count	60	0	0	0	0			ΣS_k	-14

58	Seasonal Kendall analysis for Specific Conductance, Lab (uS/cm)	
----	---	--


$\chi^2_h = \Sigma Z^2_k$	$\chi^{2}_{h} = \Sigma Z^{2}_{k} - K(Z-bar)^{2} = 0.00$		@α=5% χ ² _(K-1) = 3.84		Test for station homogeneity	
	р	1.000			$\chi^{2}_{h} < \chi^{2}_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	\mathbf{Z}_{calc}	-1.73	@α/2=2.5% Z=	1.96	H ₀ (No trend)	ACCEPT
56.67	р	0.042			H _A (± trend)	REJECT

	Lower	Sen's	Upper
α	Limit	Slope	Limit
0.010	-7.86		1.24
0.050	-5.25	-1.47	-0.70
0.100	-3.65	-1.47	-0.87
0.200	-1.96		-1.25

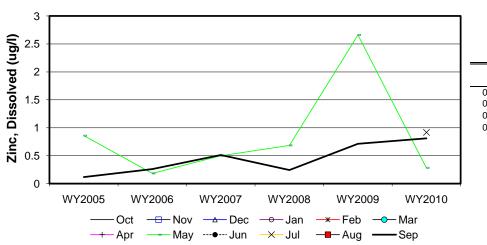
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
a b	WY2005 WY2006							-	6.3 5.7				6.1 6.2
C	WY2007								6.1				6.0
d e	WY2008 WY2009								6.1 6.1				6.0 6.1
f	WY2010								6.0		5.3		5.4
	n	0	0	0	0	0	0	0	6	0	1	0	6
	t,	5	5	5	5	5	5	5	5	5	5	5	3
	t ₂	0	0	0	0	0	0	0	0	0	0	0	1
	t ₃	0	0	0	0	0	0	0	0	0	0	0	C
	t ₄ t ₅	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	C
	b-a								-1				1
	c-a								-1				-1
	d-a								-1				-1
	e-a								-1				1
	f-a								-1				-1
	c-b								1				-1
	d-b e-b								1				-1 -1
	е-b f-b								1				-1
	d-c								1				Ċ
	e-c								1				1
	f-c								-1				-1
	e-d								-1				1
	f-d f-e								-1 -1				-1 -1
	S _k	0	0	0	0	0	0	0	-3	0	0	0	-6
	² s=								28.33				27.33
	s- S _k /σ _s								-0.56				-1.15
- k -	Z_{k}^{2}								0.32				1.32
	$\Sigma Z_k =$	-1.71	-	Tie Extent	t₁	t ₂	t ₃	t4	t ₅			Σn	13
	ΣZ_{k}^{2}	1.63		Count	58	52 1	0	0	0			ΣS _k	-9

$\chi^2_h = \Sigma Z^2_k$	$\chi^2_{h=\Sigma}Z^2_{k}-K(Z-bar)^2=$ 0.17		@α=5% χ ² _(K-1) = 3.84		3.84	Test for station home	ogeneity
	р	0.680				χ ² h<χ ² (K-1)	ACCEPT
$\Sigma VAR(S_k)$	Z_{calc}	-1.07		@α/2=2.5% Z=	1.96	H ₀ (No trend)	ACCEPT
55.67	р	0.142				H _A (± trend)	REJECT

Seasona	Seasonal-Kendall Slope Confidence Intervals										
	Lower	Sen's	Upper								
α	Limit	Slope	Limit								
0.010	-0.17		0.06								
0.050	-0.09	0.04	0.00								
0.100	-0.08	-0.04	0.00								
0.200	-0.05		-0.02								

Water Year	0.04											
WY2005 WY2006 WY2007 WY2008 WY2009	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May 47.0 24.5 13.8 17.6 21.2 16.9	Jun	Jul 24.8	Aug	Sep 32.1 25.1 35.1 27.2 28.2 22.2
n	0	0	0	0	0	0	0	6	0	24.0	0	22.
t₁ t₂ t₃ t₄ t₅	5 0 0 0 0	5 0 0 0 0	5 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	
b-a c-a d-a e-a f-a c-b d-b e-b f-b d-c e-c f-c e-d f-d f-e								-1 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1				
S _k	0	0	0	0	0	0	0	-7	0	0	0	-
$S_{s=}^{2}$ S_{k}/σ_{s} Z_{k}^{2}	-2.25	Γ	Tie Extent	t ₁	t ₂	t ₃	t ₄	28.33 -1.32 1.73 t₅			Σn	28.3 -0.9 0.8 13
$\Sigma Z_{k}^{2} =$ Z-bar= $\Sigma Z_{k}/K =$	2.61 -1.13		Count	60	0	0	0	0			ΣS_k	-12
$\chi^{2}_{h} = \Sigma Z^{2}_{k} K$		l	L	@α=5%	6 χ ² _(K-1) =	3.84						
$\Sigma VAR(S_k)$	\mathbf{Z}_{calc}	-1.46		@α/2=	2.5% Z=	1.96		H ₀ (No	trend) A	ACCEPT		
								=	<u>α</u> 0.010 0.050 0.100 0.200	Kendall Slope Lower Limit -7.47 -5.44 -4.25 -3.55	Confidence Ir Sen's Slope -1.94	Upper Limit 1.06 -0.09 -0.63 -1.14
WY2005		2006	WY2007	WY2	008	WY2009	WY2	2010				
	$\begin{array}{c} & \text{WY2006} \\ & \text{WY2007} \\ & \text{WY2009} \\ & \text{WY2010} \\ \hline n \\ \hline \\ t_1 \\ t_2 \\ t_3 \\ t_4 \\ t_5 \\ \hline \\ t_6 \\ t_6 \\ c_6 \\ c_7 \\ c_8 \\ c$	$\begin{array}{c c} WY2006\\ WY2007\\ WY2008\\ WY2010\\ \hline n & 0\\ \hline t_1 & 5\\ t_2 & 0\\ t_3 & 0\\ t_4 & 0\\ t_5 & 0\\ \hline t_4 & 0\\ t_5 & 0\\ \hline t_4 & 0\\ t_5 & 0\\ \hline t_6 & 0\\ \hline t_7 $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

w label	#58 Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
a b c d e f	Water Year WY2005 WY2006 WY2007 WY2008 WY2009 WY2010	001	NOV	Dec	Jali	<u>rep</u>	<u>ina</u>		3.9 1.5 1.8 -3.8 1.4 1.1	Jun	0.0	Aug	1.3 1.2 1.5 -7.5 2.6 0.9
	n	0	0	0	0	0	0	0	6	0	1	0	(
	t,	5	5	5	5	5	5	5	5	5	5	5	
	t ₂ t ₃	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	(
	t ₄	0	0	0	0	0	0	0	0	0	0	0	(
	t ₅	0	0	0	0	0	0	0	0	0	0	0	(
	b-a c-a								-1 -1				-*
	d-a								-1				-*
	e-a f-a								-1 -1				
	c-b								1				
	d-b e-b								-1 -1				
	f-b								-1				ہ۔ ب
	d-c e-c								-1 -1				
	f-c e-d								-1 1				-*
	f-d								1				
	f-e S _k	0	0	0	0	0	0	0	-1 -9	0	0	0	
	σ² _s = = S _k /σ _s								28.33 -1.69				28.33 -0.19
	Z ² _k								2.86				0.04
	$\Sigma Z_k =$	-1.88	Г	Tie Extent	t ₁	t ₂	t ₃	t4	t ₅			Σn	13
	$\Sigma Z_k^2 = Z-bar = \Sigma Z_k/K =$	2.89		Count	60	0	0	0	0			$\Sigma \mathbf{S_k}$	-10
	$\chi^2_h = \Sigma Z^2_k - k$	(Z-bar) ² =	1.13		@α=5%	% χ ² _(K-1) =	3.84			ion homoge	neity		
		р	0.288			_		2	$\chi^2_h < \chi^2_{(K-1)}$		ACCEPT		
	∑VAR(S _k) 56.67	Z _{calc}	-1.20 0.116	L	@0	x=5% Z=	1.64		H₀ (No H _A (± t		ACCEPT REJECT		
	6 4									Seasona	I-Kendall Slope	e Confidence Int	arvals
	2								-		Lower	Sen's	Upper
	0 2 WY20		///2000						×	α 0.010	Limit -2.53	Slope	Limit 0.30
	-2 <u>= VV Y 20</u> E	VV CO	Y2006	WY2007		2008	WY2009	<u>, vv</u>	2010	0.050 0.100	-1.18 -0.63	-0.15	0.10 -0.05
	-4				$ \rightarrow $	< /				0.200	-0.30		-0.08
	-6				-	-							
	-8				•	v							
	-0 [
	10												


	#58			Seasonal Kendall analysis fo						1l A	Son		
low label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
a	WY2005								0.9				0.
b	WY2006								0.2				0.
c d	WY2007 WY2008								0.5 0.7				0. 0.
e	WY2009								2.7				0.
f	WY2010								0.3		0.9		0.
	n	0	0	0	0	0	0	0	6	0	1	0	
	t ₁	5	5	5	5	5	5	5	5	5	5	5	:
	t ₂	0	0	0	0	0	0	0	0	0	0	0	
	t ₃	0	0	0	0	0	0	0	0	0	0	0	
	t₄ t₅	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	
•	L 5	0	0	0	0	0	0	0	0	0	0	0	
•	b-a								-1				
	c-a d-a								-1 -1				
	e-a f-a								1 -1				
	c-b								-1				
	d-b								1				-
	e-b								1				
	f-b								1				
	d-c								1				-
	e-c								1				
	f-c								-1				
	e-d								1				
	f-d f-e								-1 -1				
•	S _k	0	0	0	0	0	0	0	1	0	0	0	1
σ	² s=								28.33				28.3
	S_k / σ_S								0.19				2.0
	z ² k								0.04				4.2
	$\Sigma Z_k =$	2.25	-	Tie Extent	t,	t ₂	t ₃	t ₄	t ₅			Σn	13
	$\Sigma Z_{k}^{2} =$	4.31		Count	60	0	0	0	0			ΣS_k	12
Z	-bar=∑Z _k /K=	1.13	L	Count	00	0	0	0	0			20 _k	12
	$\chi^2_h = \Sigma Z^2_k - k$	(Z-bar) ² =	1.76		@α=59	% χ ² _(K-1) =	3.84	-	Fest for stati	on homoge	neity		
		p	0.184	L					χ ² h<χ ² (K-1)		CCEPT		

@α/2=2.5% Z=

1.96

H₀ (No trend)

H_A (± trend)

 $\Sigma VAR(S_k)$

56.67

 Z_{calc}

p 0.928

1.46

Seasona	al-Kendall Slop	e Confidence	Intervals
	Lower	Sen's	Upper
α	Limit	Slope	Limit
0.010	-0.10		0.28
0.050	-0.02	0.14	0.21
0.100	0.03	0.14	0.18
0.200	0.09		0.15

ACCEPT

REJECT

INTERPRETIVE REPORT SITE 27 "MONITORING WELL 2S"

The data collected during the current water year are listed in the following "Table of Results for Water Year 2010" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the rightmost column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

All data collected at this site for the past six years are included in the data analyses. As shown in the table below, there were no data outliers.

Sample Date	Parameter	Value	Qualifier	Notes		
No outliers have	been identified by HG	CMC for the peri	od of Octobe	2005 through Sep	otember 2010.	

The data for Water Year 2010 have been compared to the strictest fresh water quality criterion for each applicable analyte. Six samples exceeding these criteria have been identified, as listed in the table below. These exceedances are for pH values, both field and laboratory, which are below the lower limit of 6.5 su listed in the AWQS. Values for field and laboratory pH from other wells completed into organic rich peat sediments similar to Site 27 have historically resulted in pH values ranging from 5 to 6 su (*e.g.* Sites 58, 29, and 32). All of the other analytes were within AWQS for the current water year.

Sample Date	Parameter	Value	Hardness (mg/L)	Standard	Standard Type
11-May-10	pH Field, su	5.57		6.5	Aquatic Life, chronic
11-May-10	pH Lab, su	5.97		6.5	Aquatic Life, chronic
13-Jul-10	pH Field, su	5.5		6.5	Aquatic Life, chronic
13-Jul-10	pH Lab, su	5.14		6.5	Aquatic Life, chronic
21-Sep-10	pH Field, su	6.18		6.5	Aquatic Life, chronic
21-Sep-10	pH Lab, su	5.48		6.5	Aquatic Life, chronic

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. These plots have been visually analyzed for the appearance of any trend in concentration. Visually the increasing trend seen in sulfate values for the last two water years is now a downward trend. Also, the

decreasing trend in alkalinity noted in the 2009 FWMP has now slightly begun to increase. These trends are supported by the non-parametric statistical analysis that were performed for conductivity, pH, alkalinity, sulfate, and dissolved zinc.

Site 27-WY2010, summary statistics for trend analysis.

	,				
<u>1</u>	Mann-Ke	endall test	statistics	<u>Sen's slop</u>	<u>pe estimate</u>
Parameter	N(1)	p (2)	Trend	Q	Q(%)
Conductivity, Lat	o 6	0.98	+	9.1	10.2
pH, Lab	6	0.82	0		
Alkalinity, Total	6	0.18	0		
Sulfate, Total	6	1.00	+	3.52	35.2
Zinc, Dissolved	6	0.45	0		
(1): Number of v	ears	(2):Sianif	icance lev	/el	

Calculation details of the Seasonal Kendall analyses are presented in detail on the pages following this interpretive section. The above table summarizes the results on the data collected between Oct-04 and Sep-10 (WY2005-WY2010).

For datasets with a statistically significant trend ($\alpha/2=2.5\%$) a Seasonal-Sen's Slope estimate statistic has also been calculated. The dataset for laboratory conductivity has a statistically significant (p=0.98) trend and a slope estimate of 9.1 µs/yr or a 10.2% increase over the past 6 years. Also, total sulfate has a statistically significant (p=1.00) trend with a slope estimate of 3.52 mg/L/yr or a 35.2% increase over the last 6 years. Sulfate results at this site prior to 1996 are highly variable and typically ranged between 1 to 10 mg/L. The sulfate trend that was identified over the previous five years was of very low magnitude. WY2009 results indicate a substantial increase in sulfate concentration at Site 27, however by the end of WY 2010 sulfate values were <1/2 the maximum concentration seen in the previous WY. With the changes that were made to the FWMP monitoring schedule (*i.e.* increase sampling frequency), HGCMC feels that the program is sufficient to monitor any further increases, before the AWQS are exceeded.

Additional X-Y plots have been generated for alkalinity, pH, conductance, sulfate, and dissolved zinc that co-plot data from Site 27 and Site 58, the upgradient control site, to aid in the comparison between those two sites. Total alkalinity, laboratory conductivity, and pH are all approximately within the same range for both sites. Total sulfate currently and has been higher at the down gradient site for the last three years.

In general the waters for these two different sites are characterized by significantly different hydrological and geological conditions. Site 58 is located in close proximity to the large bedrock ridge, which defines the eastern geologic and hydrologic boundary of the tails area. The upslope portion of the ridge acts as the major recharge zone to the area aquifer. Along this ridge it is likely that groundwater flow is dominated by shallow or near surface flows due to the steep gradient and thin mineral soil. Thus, the groundwater at Site 58 is typically a mixture of surficial recharge from the immediate area with a component of relatively juvenile groundwater originating from the ridge to the east. In contrast, Site 27 is located in an area of gently sloping muskeg that forms part of the upper Tributary Creek drainage area. The area's groundwater is characterized by diffuse flow through the peat/sand strata that make up the upper portion of the unconsolidated sediment fill in the Tributary Creek valley. Additionally, Site 27 is located in an area identified as a groundwater discharge site into Tributary Creek. Thus, Site 27 samples groundwater that is relatively mature in comparison to Site 58 and may have a higher component of groundwater that has been in contact with a larger variety of strata for a longer period of time. Therefore, the groundwater would be expected to have a higher dissolved load. The lower pH would be due to the greater interaction with organic matter in the muskeg and would promote greater solubility for naturally occurring dissolved metals sampled at this site.

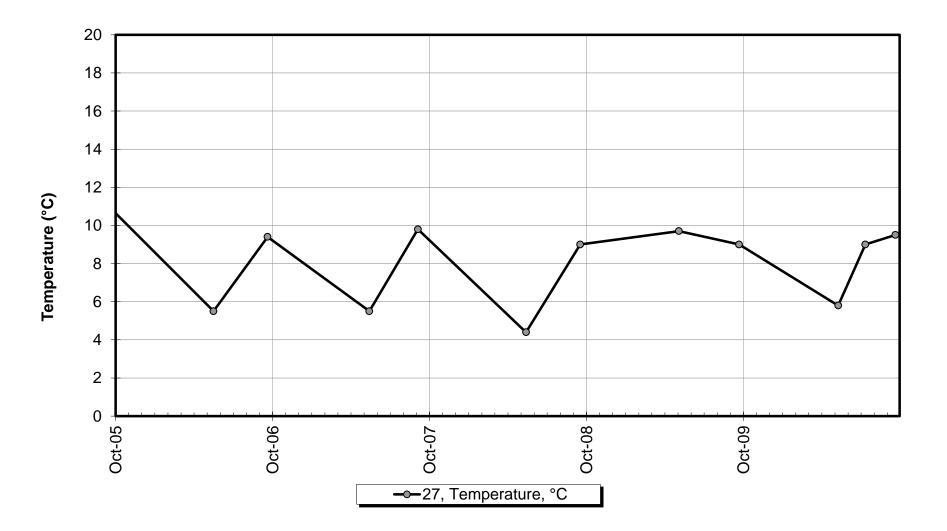
Table of Results for Water Year 2010

				Site	27 "MW-	2S"							
Sample Date/Parameter	Oct-09	Nov-09	Dec-09	Jan-10	Jan-10	Mar-10	Apr-10	5/11/2010	Jun-10	Jul-10	Aug-10	9/21/2010	Median
Water Temp (°C)								5.8	(7)	9.0	(7)	9.5	9.0
Conductivity-Field(µmho)								107	ING	110	Ž	127	110
Conductivity-Lab (µmho)								110	J	105		121	110
pH Lab (standard units)								5.97	<u>C</u>	5.14	ᅀ	5.48	5.48
pH Field (standard units)								5.57	SAMPL	5.50	SAMPLING	6.18	5.57
Total Alkalinity (mg/L)								22.0	20	22.6	S	31.7	22.6
Total Sulfate (mg/L)								18.0 J		10.0 J		13.7 J	13.7
Hardness (mg/L)								36.2	FOR	38.2	FOR	43.5	38.2
Dissolved As (ug/L)								4.900	Ľ	3.830	ш	3.960	3.960
Dissolved Ba (ug/L)		NOT S	SCHEDU	ILED FO	R SAMF	PLING		42.1	Δ	44.9	Δ	51.6	44.9
Dissolved Cd (ug/L)								0.008 J	Щ	0.010 J	B	<0.008	0.008
Dissolved Cr (ug/L)								3.320	SCHEDULE	0.729	SCHEDUI	0.840	0.840
Dissolved Cu (ug/L)								0.330	ā	0.251	Ā	0.240	0.251
Dissolved Pb (ug/L)								0.7130	Щ	0.7930	<u></u>	0.4760	0.7130
Dissolved Ni (ug/L)								1.750	5	1.530	ち	1.660	1.660
Dissolved Ag (ug/L)								<0.004	õ	<0.004	Š	<0.008	0.002
Dissolved Zn (ug/L)								20.90	H	7.74	H	1.26	7.74
Dissolved Se (ug/L)								<0.114	NOT	<0.114	Ö	<0.228	0.057
Dissolved Hg (ug/L)								0.000587 U	Z	0.001130 U	Z	0.003090	0.001130

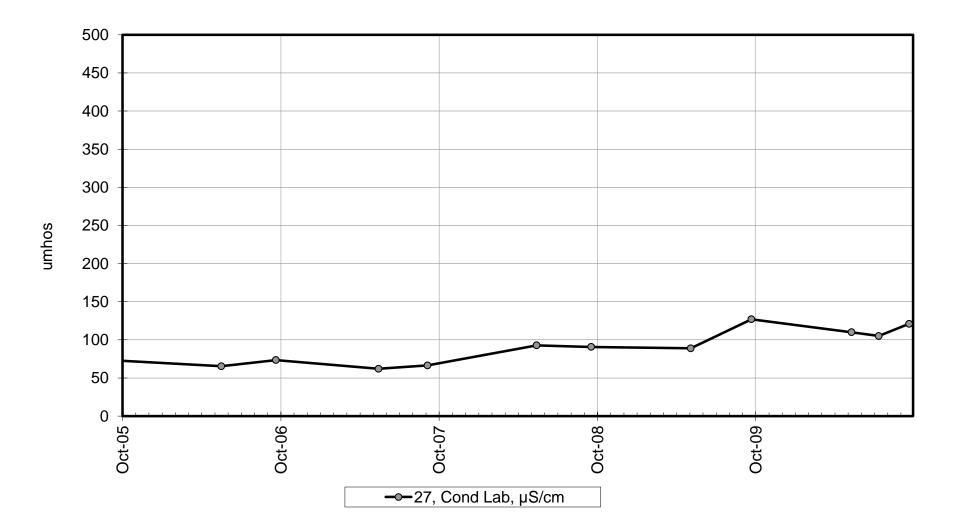
For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

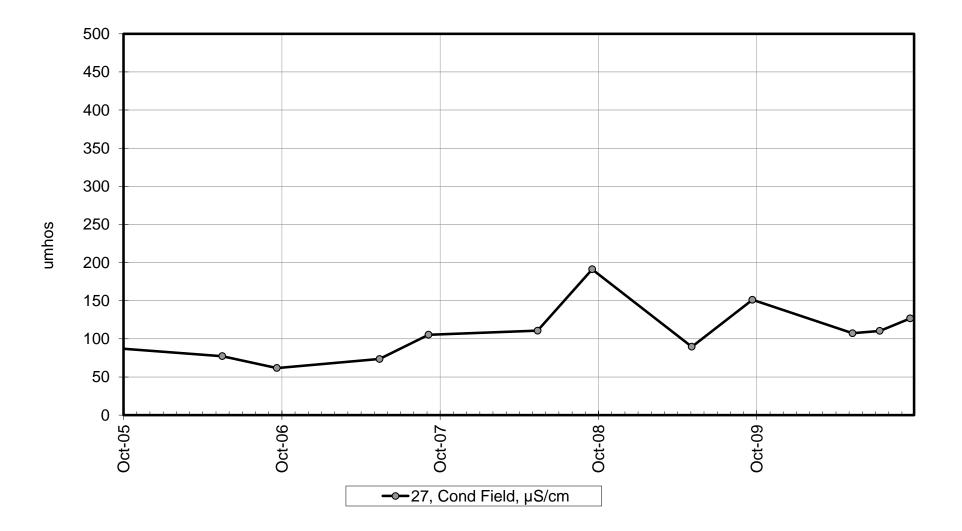
Shaded data has been qualified as an outlier by HGCMC and removed from any further analysis and is not included into the calculation of the median

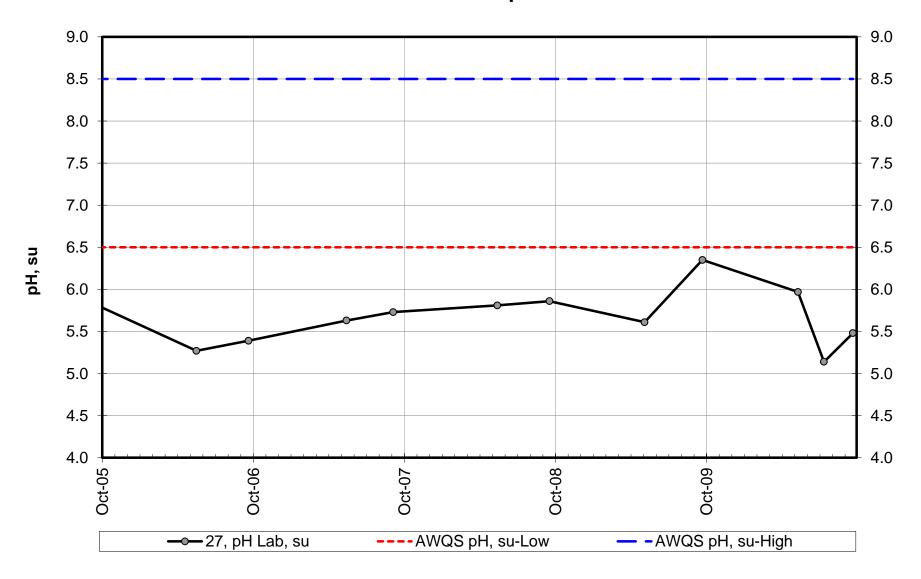

Qualified Data by QA Reviewer

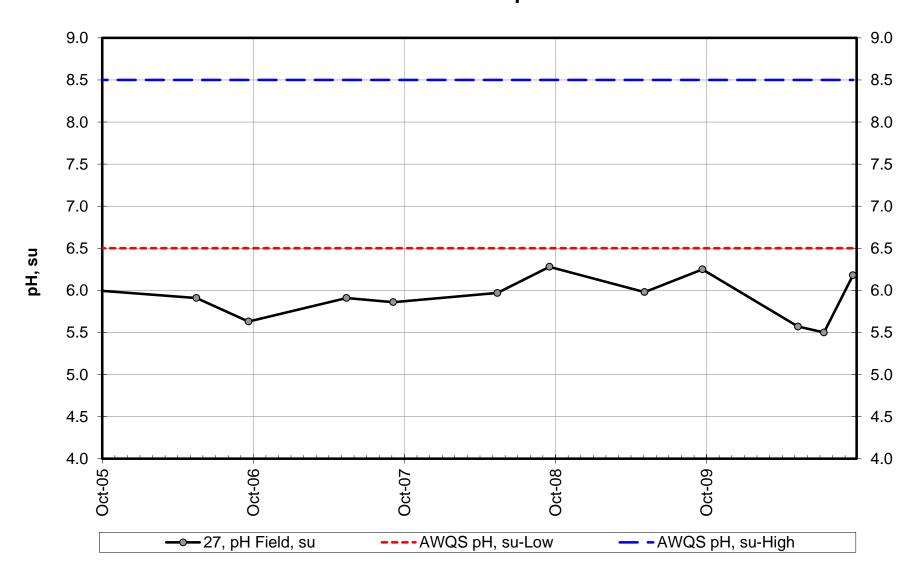
Date Range: 10/01/2009 to 09/30/2010

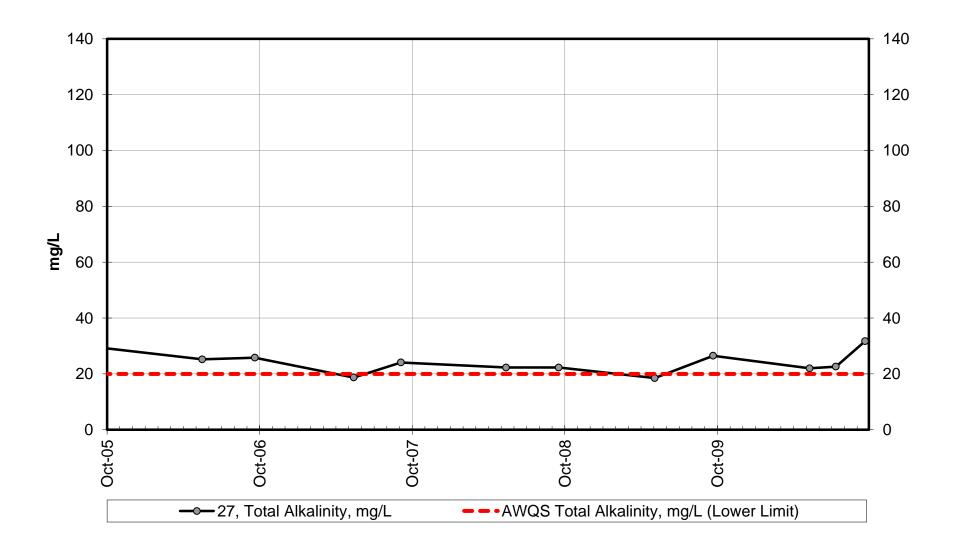

Site No.	Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier
27	5/11/2010	1:05 PM				
			Cd diss, µg/l	0.00762	J	Below Quantitative Range
			Hg diss, µg/l	0.000587	U	Field Blank Contamination
			SO4 Tot, mg/l	18	J	Sample Temperature
27	7/13/2010	12:27 PM				
			Cd diss, µg/l	0.0095	J	Below Quantitative Range
			Hg diss, µg/l	0.00113	U	Field Blank Contamination
			SO4 Tot, mg/l	10	J	Sample Reciept Temperature
27	9/21/2010	11:41 AM				
			SO4 Tot, mg/l	13.7	J	Sample Receipt Temperature

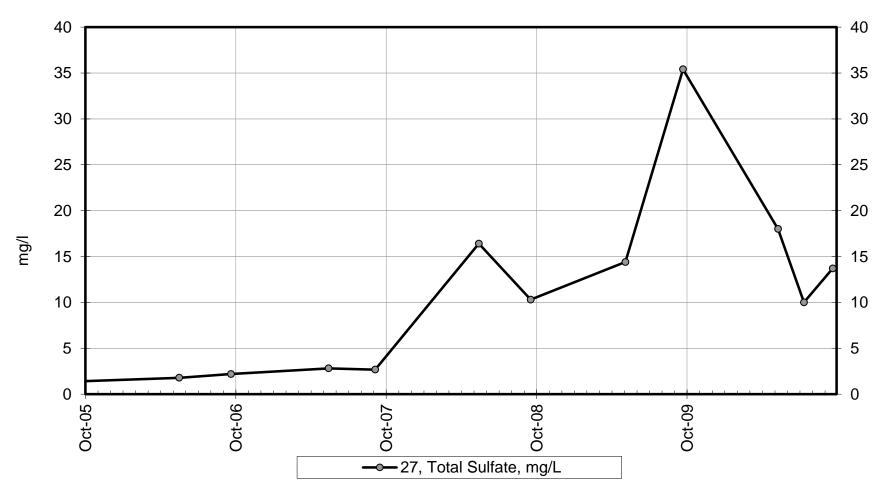
Qualifier	Description
J	Positively Identified - Approximate Concentration
Ν	Presumptive Evidence For Tentative Identification
NJ	Tentatively Identified - Approximate Concentration
R	Rejected - Cannot be Verified
U	Not Detected Above Quantitation Limit
UJ	Not Detected Above Approximate Quantitation Limit


Site 27 -Water Temperature

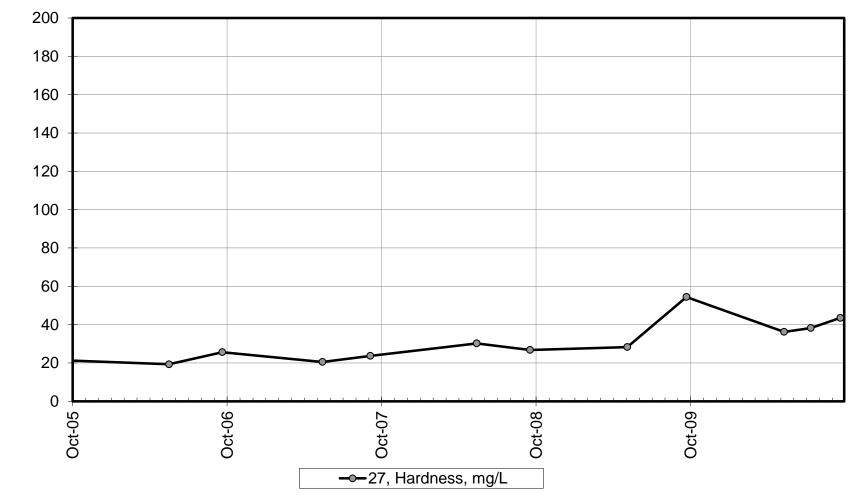

Site 27 - Conductivity-Lab


Site 27 - Conductivity-Field

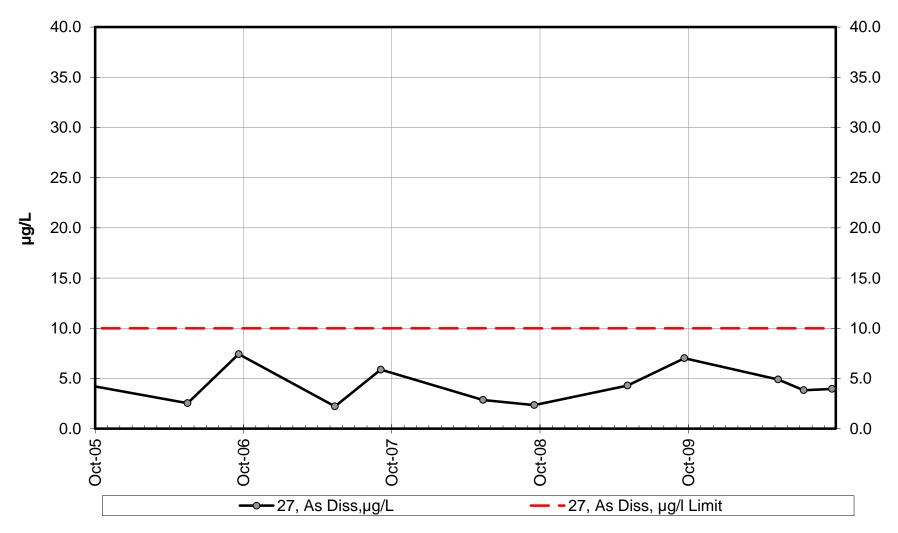

Site 27 - Lab pH


Site 27 - Field pH

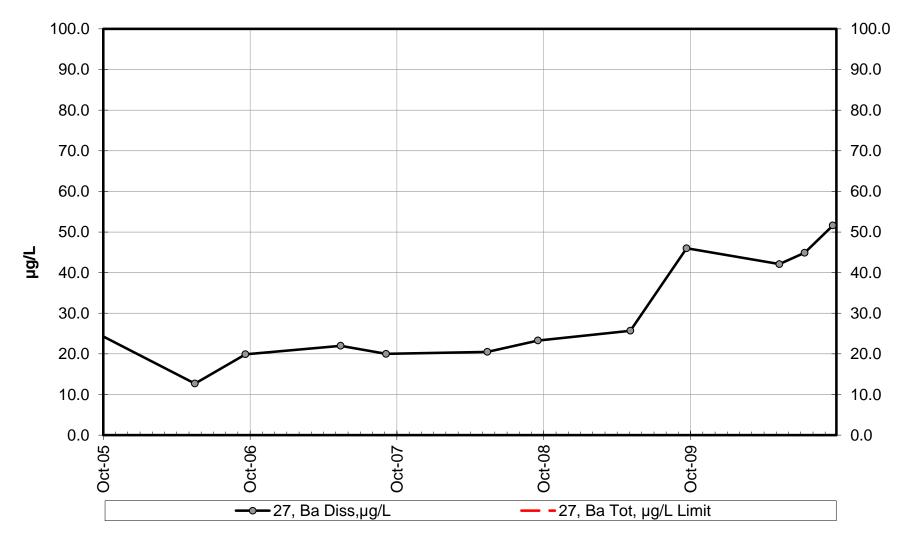
Site 27 - Total Alkalinity



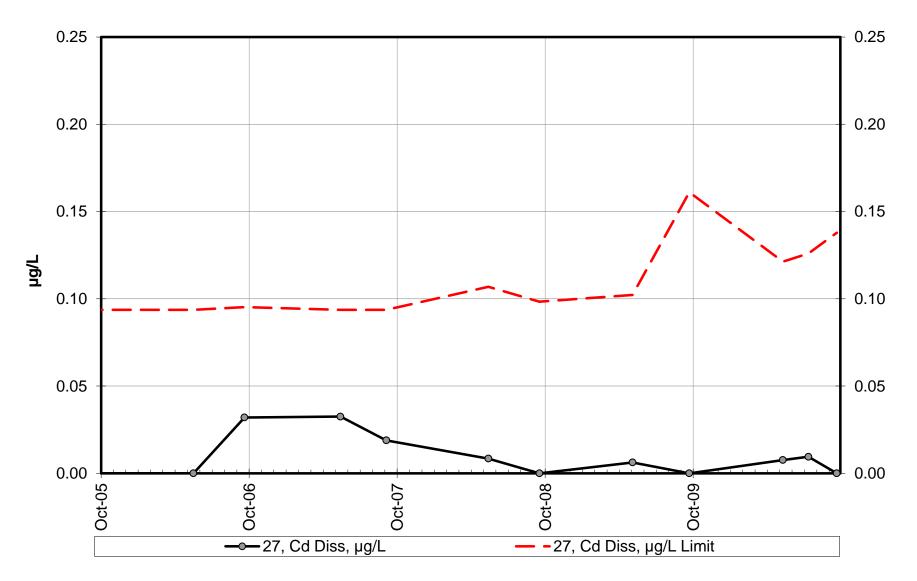
Site 27 - Total Sulfate


Note: The AWQS for Total Sulfate is 250 mg/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination.

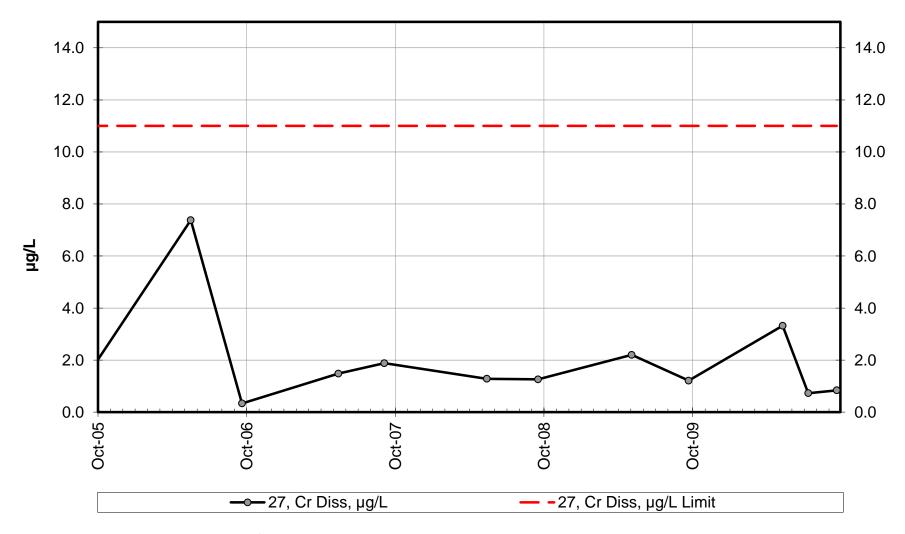
Site 27 - Hardness


mg/L

Site 27 - Dissolved Arsenic

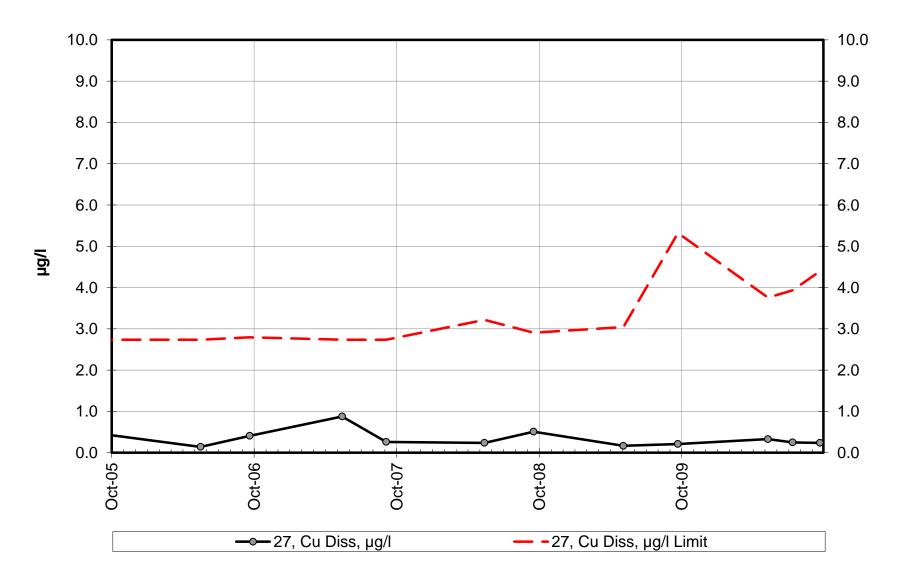

Note: The AWQS for total arsenic is 10 ug/L and thus may not be shown on this graph in order to allow greater visual detail of plotted values for trend determination

Site 27 - Dissolved Barium



Note: the AWQS for Total Barium is 1000 ug/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination

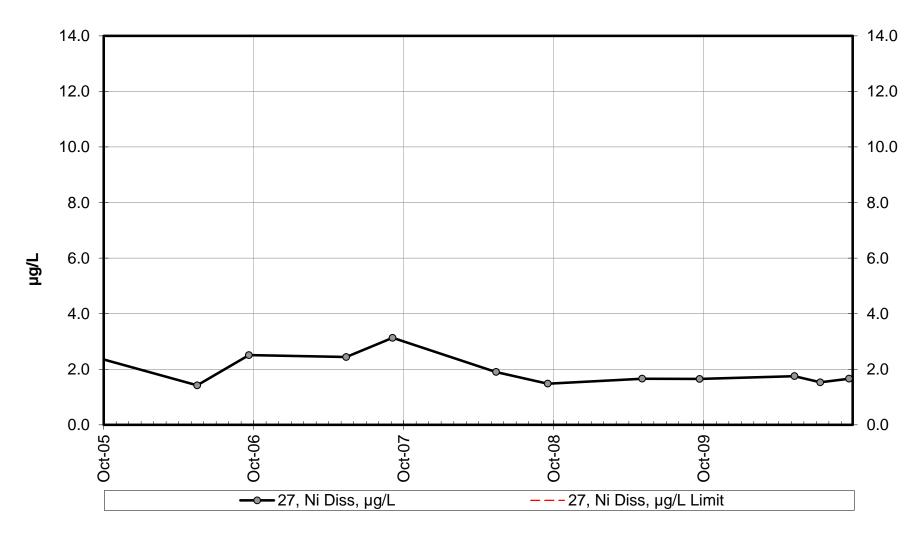
Site 27 - Dissolved Cadmium



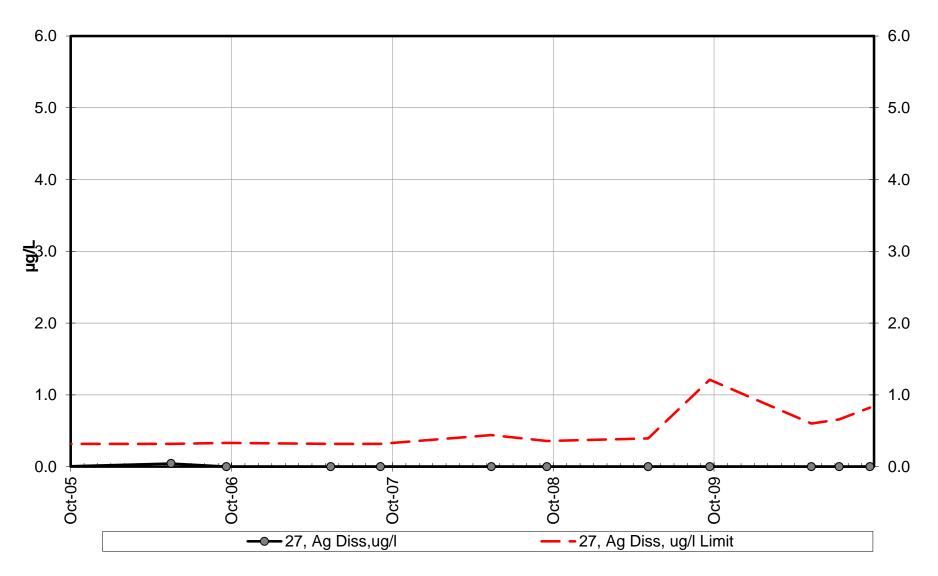
Site 27 - Dissolved Chromium



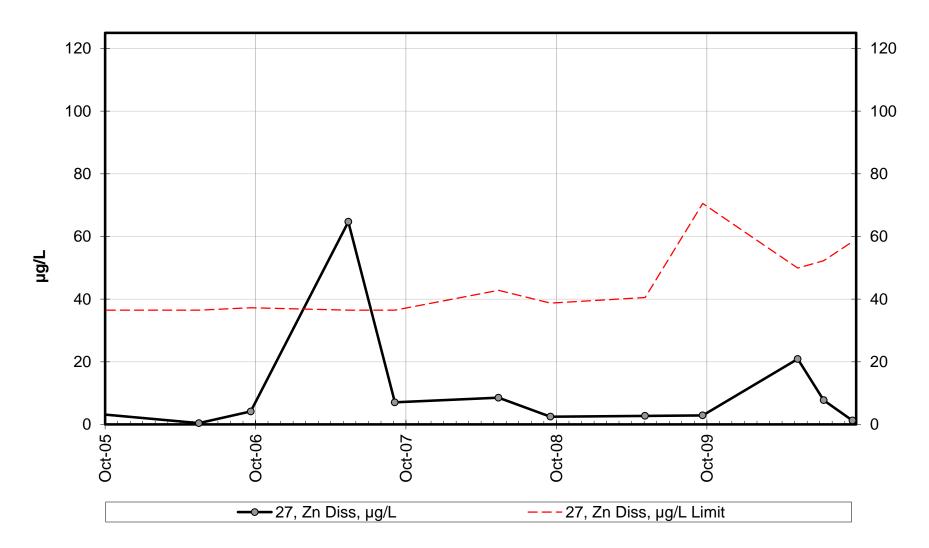
Note: the AWQS for Dissolved Chromium is 11 µg/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination


Site 27 - Dissolved Copper

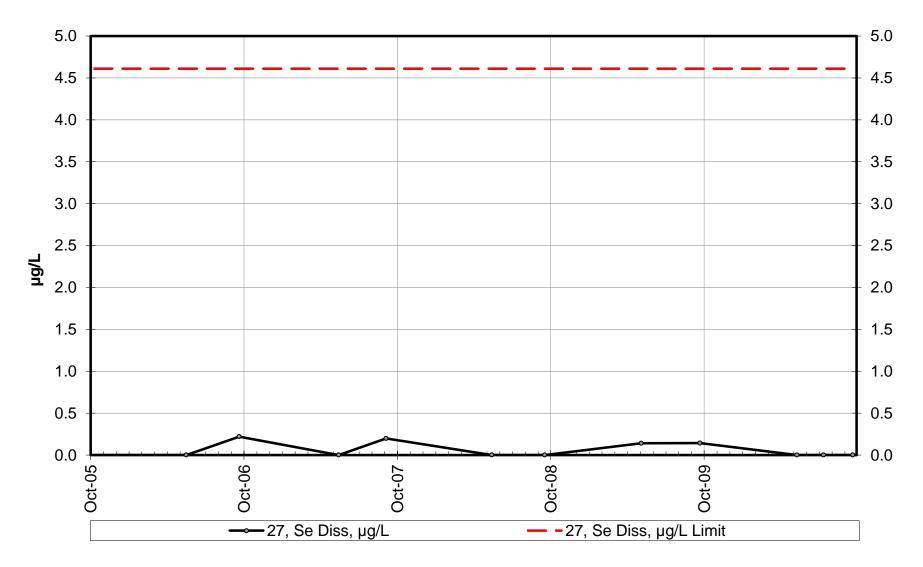
Site 27 - Dissolved Lead

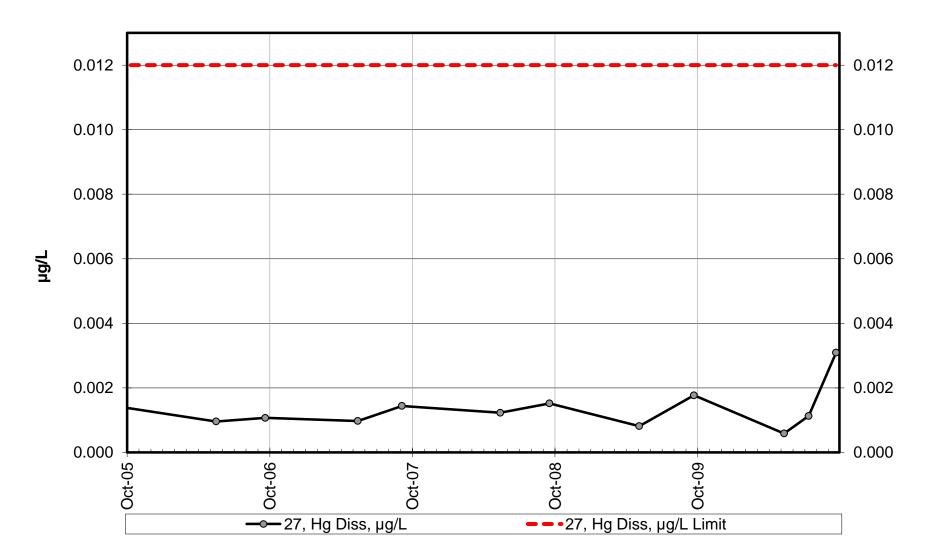


Site 27 - Dissolved Nickel

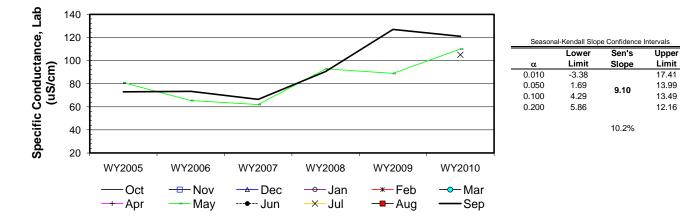


Note: The AWQS for dissolved nickel is hardness dependant and varies between 16 ug/L and 128 ug/L for waters with hardness values of 25 mg/L and 400 mg/L respectively. The AWQS, which would plot above the upper value on the Y-axis, are not shown on this graph to allow for greater visual detail of the plotted values.

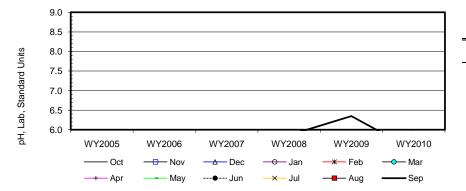

Site 27 - Dissolved Silver


Site 27 - Dissolved Zinc

Site 27 - Dissolved Selenium


Site 27 - Dissolved Mercury

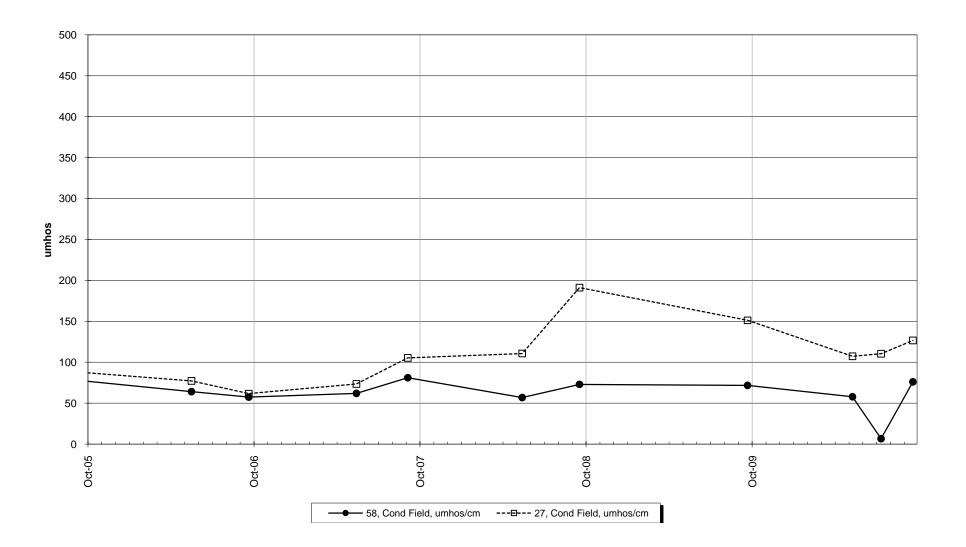
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2005								80.9			J. J	73
b	WY2006								65.4				73.4
С	WY2007								62				66.4
d	WY2008								92.8				90.6
е	WY2009								88.9				127
f	WY2010								110		105		121
	n	0	0	0	0	0	0	0	6	0	1	0	6
	t,	5	5	5	5	5	5	5	5	5	5	5	5
	t ₂	0	0	0	0	0	0	0	0	0	0	0	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t ₄	0	0	0	0	0	0	0	0	0	0	0	0
	t₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a								-1				1
	c-a								-1				-1
	d-a								1				1
	e-a								1				1
	f-a								1				1
	c-b								-1				-1
	d-b								1				1
	e-b								1				1
	f-b								1				1
	d-c								1				1
	e-c								1				1
	f-c e-d								1				1
	f-d								-1				1
	f-e								1				ا 1-
	S _k	0	0	0	0	0	0	0	7	0	0	0	-1
		-	-		-	-	-	-		-	-	-	-
	² s=								28.33				28.33
Z _k =	S_k/σ_S								1.32				1.69
2	Z ² _k								1.73				2.86
	$\Sigma Z_k =$	3.01	Г	Tie Extent	t ₁	t ₂	t ₃	t4	t ₅			Σn	13
	ΣZ_{k}^{2}	4.59		Count	60	0	0	0	0			ΣS _k	
_			L	Count	00	U	U	U	U			20k	16
2	Z-bar=∑Z _k /K=	1.50											


7	Seasonal Kendall a	analysis for Sp	pecific Conductance,	Lab (uS/cm)

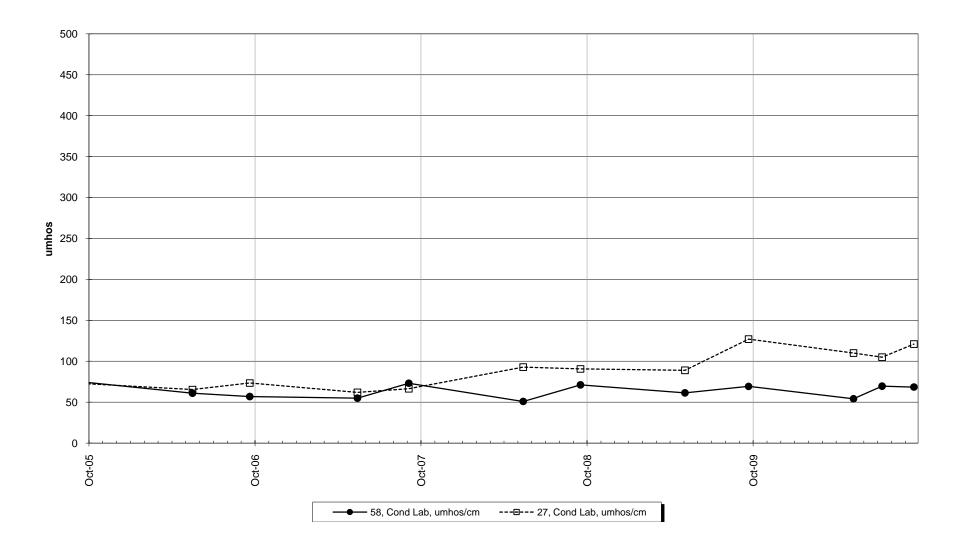
$\chi^2_h = \Sigma Z^2_k$	K(Z-bar) ² =	0.07	@α=5% χ ² _(K-1) =	3.84	Test for station homogeneity	
	р	0.790			$\chi^{2}_{h} < \chi^{2}_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	\mathbf{Z}_{calc}	1.99	@α/2=2.5% Z=	1.96	H ₀ (No trend)	REJECT
56.67	р	0.977			H _A (± trend)	ACCEPT

Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2005								5.7				5.8
b	WY2006								5.3				5.4
С	WY2007								5.6				5.7
d	WY2008								5.8				5.9
e f	WY2009								5.6		E 4		6.4
T	WY2010	0	0	0	0	0	0	0	6.0 6	0	5.1 1	0	5.5
	n	0	0	0	0	0	0	0	0	0	1	0	C
	t,	5	5	5	5	5	5	5	5	5	5	5	5
	t ₂	0	0	0	0	0	0	0	0	0	0	0	C
	t ₃	0	0	0	0	0	0	0	0	0	0	0	C
	t4	0	0	0	0	0	0	0	0	0	0	0	0
	t ₅	0	0	0	0	0	0	0	0	0	0	0	C
	b-a								-1				-1
	c-a								-1				-1
	d-a								1				1
	e-a								-1				1
	f-a								1				-1
	c-b								1				1
	d-b e-b								1				1
	е-b f-b								1				1
	d-c								1				1
	e-c								-1				1
	f-c								1				-1
	e-d								-1				1
	f-d								1				-1
	f-e								1				-1
	S _k	0	0	0	0	0	0	0	5	0	0	0	3
σ	² s=								28.33				28.33
	S _k /σ _S								0.94				0.56
	Z ² _k								0.88				0.32
	$\Sigma Z_k =$	4 50	Г	E. E.t.at	+	t ₂	+	t4	t ₅			Σn	40
	$\Sigma Z_{k}^{2} =$	1.50		Tie Extent	t,		t ₃						13
	ΣΖ [−] _k =	1.20		Count	60	0	0	0	0			ΣS_k	8

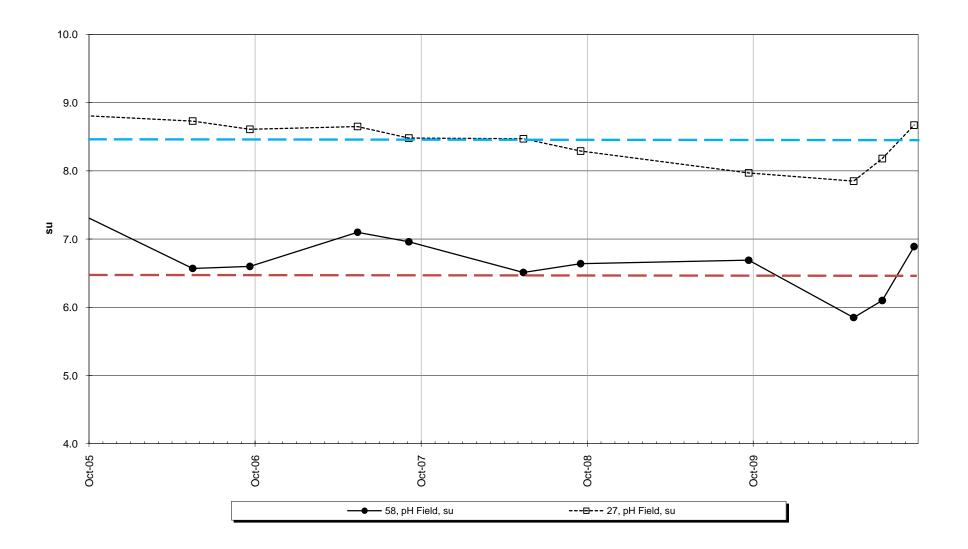
$\chi^2_h = \Sigma Z^2_k$	K(Z-bar) ² =	0.07	@α=5% χ ² _(K-1) =	3.84	Test for station home	ogeneity
	р	0.790			$\chi^2_h < \chi^2_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	Z_{calc}	0.93	@α/2=2.5% Z=	1.96	H ₀ (No trend)	ACCEPT
56.67	р	0.824			H _A (± trend)	REJECT

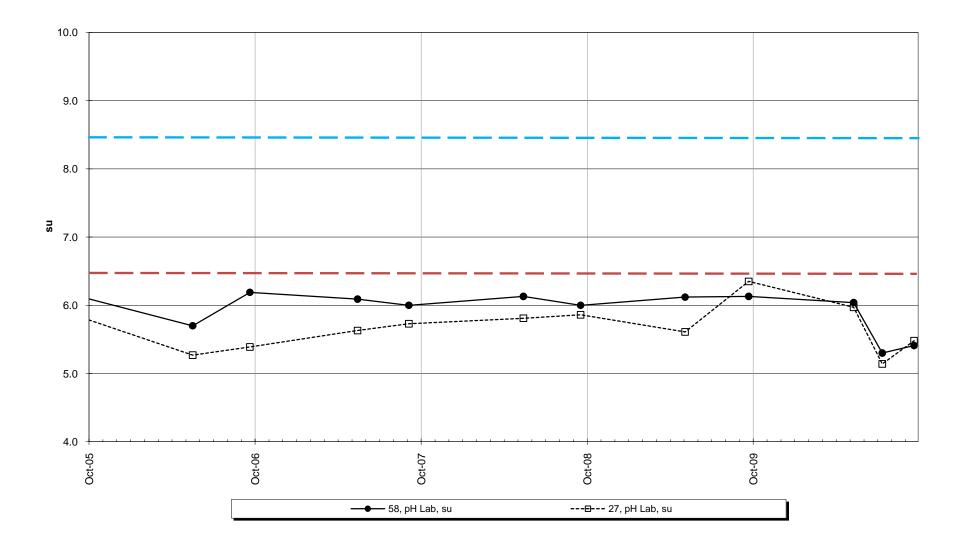

Seasona	al-Kendall Slop	e Confidence	Intervals
	Lower	Sen's	Upper
α	Limit	Slope	Limit
0.010	-0.08		0.26
0.050	-0.05	0.06	0.18
0.100	-0.03	0.00	0.13
0.200	0.01		0.12

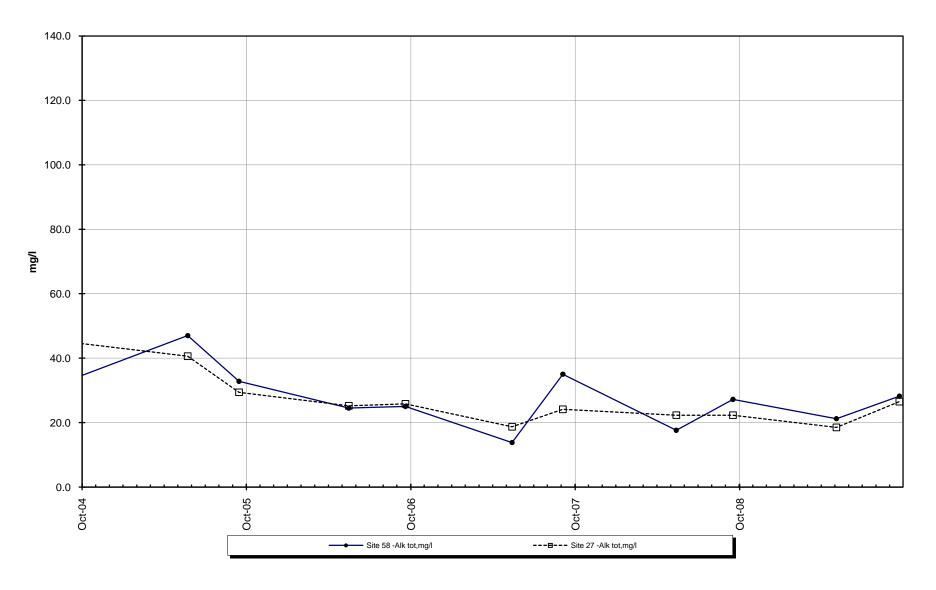
Site	#27						all analys				_	_	
Row label a b c d e f	Water Year WY2005 WY2006 WY2007 WY2008 WY2009 WY2010	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May 40.6 25.2 18.7 22.3 18.5 22.0	Jun	Jul 22.6	Aug	Sep 29. 25. 24. 22. 26. 31.
1	n	0	0	0	0	0	0	0	6	0	1	0	51.
	t₁ t₂ t₃ t₄ t₅	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	
	b-a c-a d-a e-a f-a c-b d-b e-b f-b d-c e-c f-c e-d f-d f-e S_k	0	0	0	0	0	0	0	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	0	0	0	
		0	0	0	0	0	0	0	-9	0	0	0	
Z _k =	² s= S _k /σ _S Z ² _k								28.33 -1.69 2.86				28.3 0.1 0.0
z	$\Sigma Z_{k} = \Sigma Z_{k}^{2} = Z_{k} - \Sigma Z_{k}/K = \Sigma Z_{k}/$	-1.50 2.89 -0.75		Tie Extent Count	t, 60	t ₂ 0	t ₃ 0	t ₄ 0	t _s 0			Σ n Σ S _k	13 -8
	$\chi^2_h = \Sigma Z^2_k$ -I	K(Z-bar) ² =	1.76		@α=5%	6 χ ² _(K-1) =	3.84		est for sta	tion homog	eneitv		
	70 H K	р	0.184			70 (R-1)			ζ ² h<χ ² (K-1)		ACCEPT		
	ΣVAR(S _k) 56.67	Z _{calc}	-0.93 0.176		@α/2=	2.5% Z=	1.96		H₀ (No H _A (±1		ACCEPT REJECT		
45 - 40 -													
35 -		<u> </u>								Seasona	I-Kendall Slope		
()/bu 30 -		<u> </u>						/		α	Lower Limit	Sen's Slope	Upper Limit
Total Alk, (mg/l) - 25 - - 20 - - 12 - 12 -					>	<			<u>-</u>	0.010 0.050 0.100 0.200	-3.78 -2.83 -2.34 -1.87	-1.13	1.41 0.58 0.17 -0.14
10 -	WY2005	WY	2006	WY2007	WY2	008	WY2009	WY2	2010				
	—— Ос —+— Ар		– Nov – May	<u> </u>			—*— Feb —∎— Aug		- Mar - Sep				

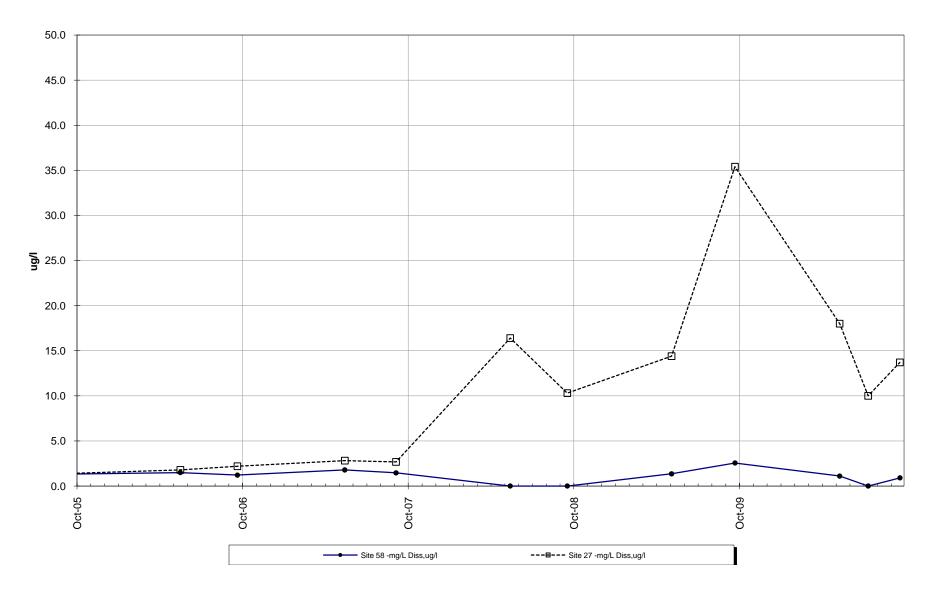

abel	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
	WY2005								0.8				1.4
	WY2006 WY2007								1.8 2.8				2.2 2.7
	WY2008								16.4				10.3
	WY2009								14.4				35.4
	WY2010 n	0	0	0	0	0	0	0	18.0 6	0	10.0 1	0	13.7 6
-													
	t1 t2	5 0	5 0	5 0	5 0	5 0	5 0	5 0	5 0	5 0	5 0	5 0	5 0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t₄ t₅	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
-		5	Ū		Ŭ	Ū		0		Ū	Ŭ	Ŭ	
	b-a c-a								1 1				1
	d-a								1				1
	e-a								1				1
	f-a c-b								1				1
	d-b								1				1
	e-b								1				1
	f-b d-c								1 1				1
	e-c								1				1
	f-c								1				1
	e-d f-d								-1 1				1
=	f-e								1				-1
-	S _k	0	0	0	0	0	0	0	13	0	0	0	13
σ	²s=								28.33				28.33
	S _k /σ _S								2.44				2.44
Z	2 - k								5.96				5.96
	$\Sigma Z_{k} =$	4.88	Г	Tie Extent	t ₁	t ₂	t ₃	t4	t₅			Σn	13
	ΣZ_{k}^{2}	11.93		Count	60	0	0	0	0			ΣS_k	26
Z·	-bar=∑Z _k /K=	2.44											
ſ	χ ² _h =ΣZ ² _k -k	K(Z-bar) ² =	0.00		@α=5	% χ ² _(K-1) =	3.84	Т	est for stati	on homogei	neity		
[р	1.000					2	ζ ² h<χ ² (K-1)	A	CCEPT		
	$\Sigma VAR(S_k)$	Z_{calc}	3.32	Ĺ	@	α=5% Z=	1.64		H₀ (No t		EJECT		
l	56.67	р	1.000						H _A (± tr	end) <mark>A</mark>	CCEPT		
40													
40 35	E .						_						
30)	/ ``							=	Seasonal	-Kendall Slope	Confidence Int	uervals Upper
25	t i							\backslash		α	Limit	Slope	Limit
	t i									0.010	0.84		6.94 5.00
20) [0.050 0.100	1.02 1.83	3.52	5.09 4.18
15	; [\neg				0.200	2.81		4.06
10	t i								×			05.004	
	F				//							35.2%	
5	; <u> </u>												
0) 🖡 💻	1			1			1					
	WY20		Y2006	WY2007		2008	WY2009		2010				
	_	-Oct		v 📥 De	ic — — .I	lan «	Feb —	-Mar					

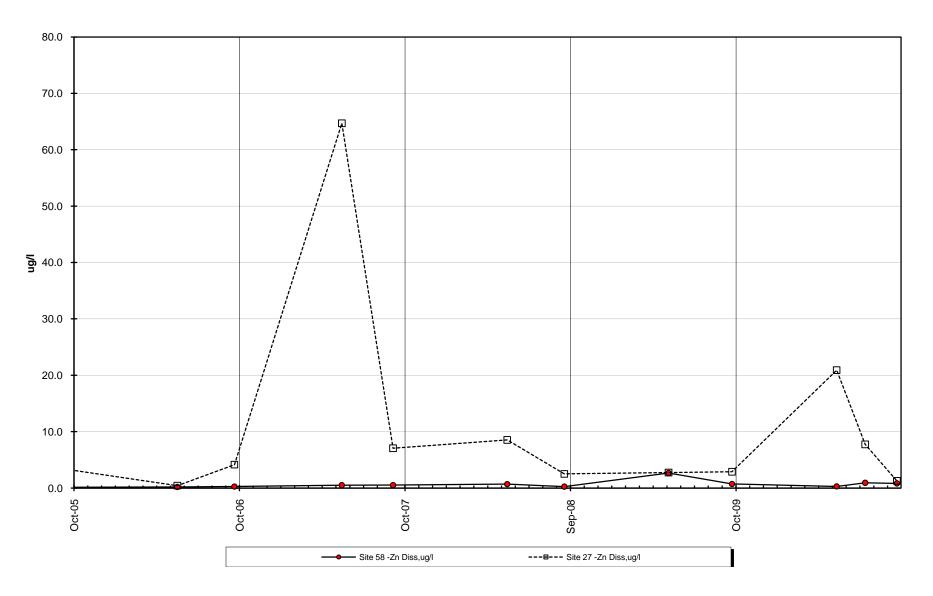
/ label	M-4 M	0-4	Nevi							ed (ug/l)		A	e
a b c d e f	Water Year WY2005 WY2006 WY2007 WY2008 WY2009 WY2010	Oct	Νον	Dec	Jan	Feb	Mar	Apr	May 0.5 0.4 64.7 8.5 2.7 20.9	Jun	Jul 7.7	Aug	Sep 3.3 4.1 7.1 2.5 2.9 1.3
	n	0	0	0	0	0	0	0	6	0	1	0	6
,	t₁ t₂ t₃ t₄ t₅	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0
	b-a c-a d-a e-a f-a c-b d-b d-b f-b d-c e-c f-c e-d f-e								-1 1 1 1 1 1 1 -1 -1 -1 -1 1 1				1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
	S _k	0	0	0	0	0	0	0	5	0	0	0	-7
$Z_k =$	$\sum_{k=1}^{2} \frac{S_{k}}{\sigma_{S}}$	-0.38		ie Extent	t,	t ₂	t_3	t4	28.33 0.94 0.88			Σn	28.33 -1.32 1.73 13
Z	$\Sigma Z^{2}_{k} =$ -bar= $\Sigma Z_{k}/K =$ $\chi^{2}_{h} = \Sigma Z^{2}_{k} - I$ $\Sigma VAR(S_{k})$	2.61 -0.19 $\langle (Z-bar)^2 = \frac{p}{Z_{calc}}$	2.54 0.111 -0.13			0 % χ ² (K-1)= 2.5% Z=	0 3.84 1.96		χ ² _h <χ ² _(K-1) H ₀ (No 1	trend) A	CCEPT	ΣS_k	-2
	56.67	р	0.447						H _A (± t	rend) F	REJECT		
70 60 50										Seasonal-		Confidence In	
60 50			/						=	α	Lower Limit	Confidence In Sen's Slope	Upper Limit
60									=		Lower	Sen's	Upper
60 50 40 30 20								X	=	α 0.010 0.050 0.100	Lower Limit -2.04 -0.97 -0.70	Sen's Slope	Upper Limit 3.77 2.02 0.81


Site 58 vs Site 27 -Conductivity-Field


Site 58 vs Site 27 -Conductivity


Site 58 vs Site 27 -Field pH


Site 58 vs Site 27 -Lab pH


Site 58 vs. Site 27 -Total Alkalinity

Site 58 vs. Site 27 - Total Sulfate

Site 58 vs. Site 27 -Dissolved Zinc

INTERPRETIVE REPORT SITE 29 "MONITORING WELL 3S"

The data collected during the current water year are listed in the following "Table of Results for Water Year 2010" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the rightmost column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

All data collected at this site for the past six years are included in the data analyses. As shown in the table below, there were no data outliers.

Sample Date	Parameter	Value Qua	lifier	Notes				
No outliers have been identified by HGCMC for the period of October 2005 through September 2010.								

The data for Water Year 2010 have been compared to the strictest fresh water quality criterion for each applicable analyte. Ten results exceeding these criteria have been identified, as listed in the table below. Six of these records are for pH, both for field and laboratory, values below the lower limit of 6.5 su listed in AWQS. Field and laboratory pH from other wells completed into organic rich peat sediments similar to Site 29 have historically resulted in pH values ranging from 5 to 6 su (*e.g.* Sites 58, 27, and 32). The other exceedances are for dissolved lead (0.679 μ g/L), and all three samplings for total alkalinity.

Sample Date	Parameter	Value	Hardness (mg/L)	Standard	Standard Type
11-May-10	pH Field, su	4.47		6.5	Aquatic Life, chronic
11-May-10	pH Lab, su	5.27		6.5	Aquatic Life, chronic
13-Jul-10	pH Field, su	4.76		6.5	Aquatic Life, chronic
13-Jul-10	pH Lab, su	4.6		6.5	Aquatic Life, chronic
21-Sep-10	pH Field, su	4.93		6.5	Aquatic Life, chronic
21-Sep-10	pH Lab, su	4.32		6.5	Aquatic Life, chronic
13-Jul-10	Lead, Dissolved ug/L	0.679	21.9	0.54	Aquatic Life, chronic
11-May-10	Alkalinity Total, mg/L	8.7		20	Aquatic Life, chronic
13-Jul-10	Alkalinity Total, mg/L	10.5		20	Aquatic Life, chronic
21-Sep-10	Alkalinity Total, mg/L	-1		20	Aquatic Life, chronic

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. These plots have been visually analyzed for the appearance of any trend in concentration. There is a visually apparent downward trend in total alkalinity values across the last five water years. The same trend is apparent in the dissolved arsenic, dissolved barium, dissolved manganese, hardness, and conductivity data. Currently, HGCMC does not have explanation for the mechanism that is in operation causing the visual decrease in these values.

A non-parametric statistical analysis for trend was preformed for conductivity, pH, alkalinity, sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall analyses are presented in detail on the pages following this interpretive section. The following table summarizes

following table summarizes the results on the data collected between Oct-04 and Sep-10 (WY2005-WY2010). One significant trend was identified with this analysis. Total alkalinity (p=0.02) was negatively trending with an estimated slope of -6.07

Site 29-WY2010, summary statistics for trend analysis.							
Ma	ann-Ke	endall test	Sen's slope estimate				
Parameter	N(1)	p (2)	Trend	Q	Q(%)		
Conductivity, Lab	6	0.04	0				
pH, Lab	6	0.18	0				
Alkalinity, Total	6	0.02	-	-6.07	-23		
Sulfate, Total	6	Discontin	uation in t	he continui	ty of the MD		
Zinc, Dissolved	6	0.55	0				
(1): Number of yea	ars	(2):Signifi	icance lev	vel			

 μ g/L/yr or a 23.0% increase. This apparent decrease in total alkalinity is an artifact of the sampling and analysis procedure. When comparing the laboratory and field pH for the three sampling events for WY 2010 it was noticed that these values have opposite trends. The field pH increases across the season where as the laboratory pH decreases in time. There is frequently a decrease in the sample pH after the samples have been shipped to the laboratory. Standard method recommends the titration pH end point for a low alkalinity sample (~30 mg CaCO₃/L) to be a pH of 4.9 su. Based on the standard method (2320B) the starting pH for the last sample was below the standard titration end point, which would account for the sample having no alkalinity at the laboratory.

Trend analysis was not performed on the total sulfate dataset because of a change in the method detection limit used by Analytica Laboratories. A primary assumption of the Mann-Kendall test is "... only one censoring threshold exists. When more than one detection limit exists, the Mann-Kendall test cannot be performed without further censoring the data." In order to prevent this from occurring HGCMC has worked to establish a consistent MDL for sulfate from the laboratory.

Additional X-Y plots have been generated for alkalinity, pH, conductance, sulfate, and dissolved zinc that co-plot data from Site 29 and Site 58, the up-gradient control site, to aid in the comparison between those two sites. Laboratory conductivity and total alkalinity are within similar ranges at both sites. Laboratory pH is slightly lower at Site 29 than Site 58, while total sulfate is slightly higher at Site 58 (note Site 29 typically returns sulfate values that are below the 0.1 mg/L SO₄ MDL). Site 29 routinely has dissolved zinc values that are $\sim 5 \,\mu g/L$ higher than values found at Site 58. These results are similar in magnitude and range to what was noted previously for Site 27 with respect to the comparison with Site 58. The hydrogeologic conditions that exist at Site 29 are similar to Site 27 with the exception that Site 29 is not typically in an active surface discharge zone. However, the area around Site 29 is located in an area of gently sloping muskeg that is part of the upper headwater region of Further Creek, which drains westward into Hawk Inlet. The site's groundwater is characterized by diffuse flow through the peat/sand strata. Thus the lower pH would be due to the greater interaction with organic matter in the muskeg. The lower pH would also promote greater solubility for dissolved metals sampled at this site.

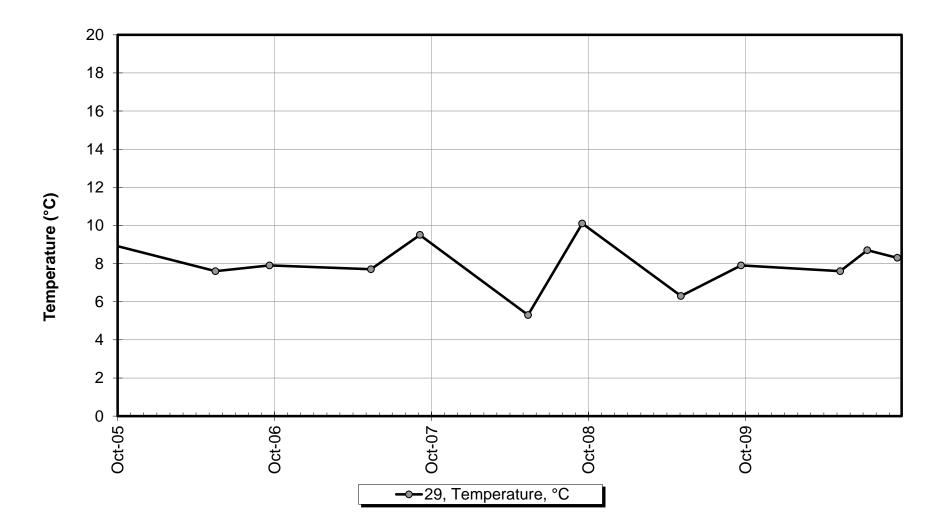
Table of Results for Water Year 2010

				Site	29 "MW-	·3S"							
Sample Date/Parameter	Oct-09	Nov-09	Dec-09	Jan-10	Jan-10	Mar-10	Apr-10	5/11/2010	Jun-10	Jul-10	Aug-10	9/21/2010	Median
Water Temp (°C)								7.6	(7)	8.7	Ū	8.3	8.3
Conductivity-Field(µmho)								62	ING NG	62	Ň	49	62
Conductivity-Lab (µmho)								53		54		38	53
pH Lab (standard units)								5.27	SAMPL	4.60	AMPL	4.32	4.60
pH Field (standard units)								4.47	2	4.76	N	4.93	4.76
Total Alkalinity (mg/L)								8.7	20	10.5	SP	<1.0	8.7
Total Sulfate (mg/L)								<10.0 UJ	2	<10.0 UJ	R	<10.0 J	5.0
Hardness (mg/L)								20.8	ō	21.9	ō	10.8	20.8
Dissolved As (ug/L)								8.68	й.	7.75	й	3.67	7.75
Dissolved Ba (ug/L)		NOT S	SCHEDU	ILED FO	R SAMF	PLING		8.4	Δ	9.3	B	6.7	8.4
Dissolved Cd (ug/L)								0.006 J	SCHEDULE	0.004 J		<0.008	0.004
Dissolved Cr (ug/L)								10.400	5	1.830	SCHEDUI	0.925	1.830
Dissolved Cu (ug/L)								0.309	Ō	0.360	Ā	0.182	0.309
Dissolved Pb (ug/L)								0.4090	Щ	0.6790	Щ	0.3750	0.4090
Dissolved Ni (ug/L)								1.260	5	1.290	さ	1.130	1.260
Dissolved Ag (ug/L)								<0.004	õ	<0.004	Š	<0.008	0.002
Dissolved Zn (ug/L)								3.67	Η	3.42	Η-	2.80	3.42
Dissolved Se (ug/L)								0.356	NOT	<0.114	Q	<0.228	0.114
Dissolved Hg (ug/L)								0.000666 U	Z	0.001670	Z	0.001090	0.001090

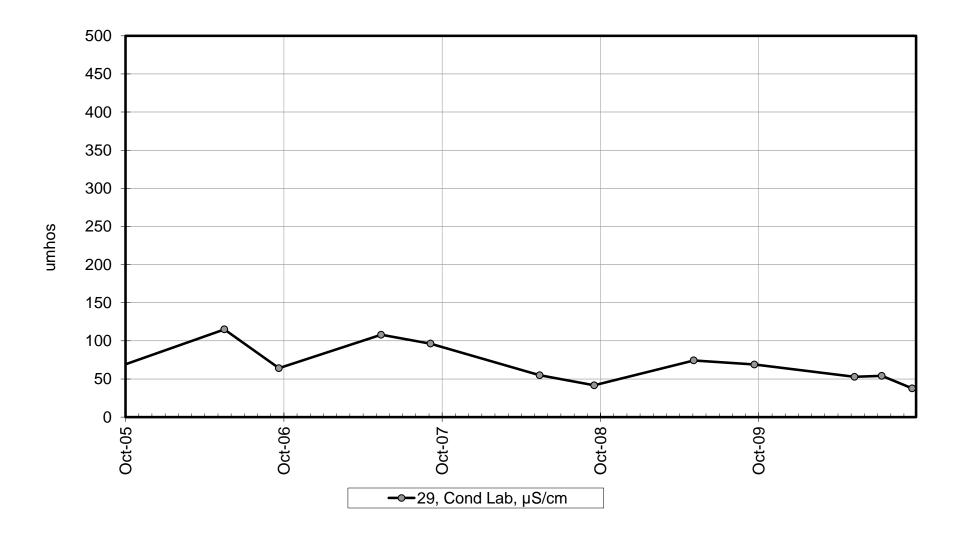
For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

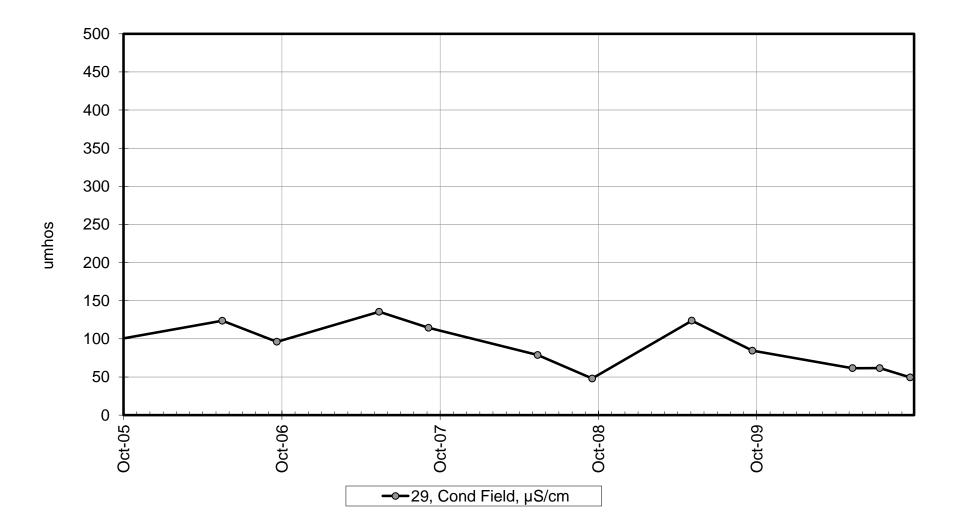
Shaded data has been qualified as an outlier by HGCMC and removed from any further analysis and is not included into the calculation of the median

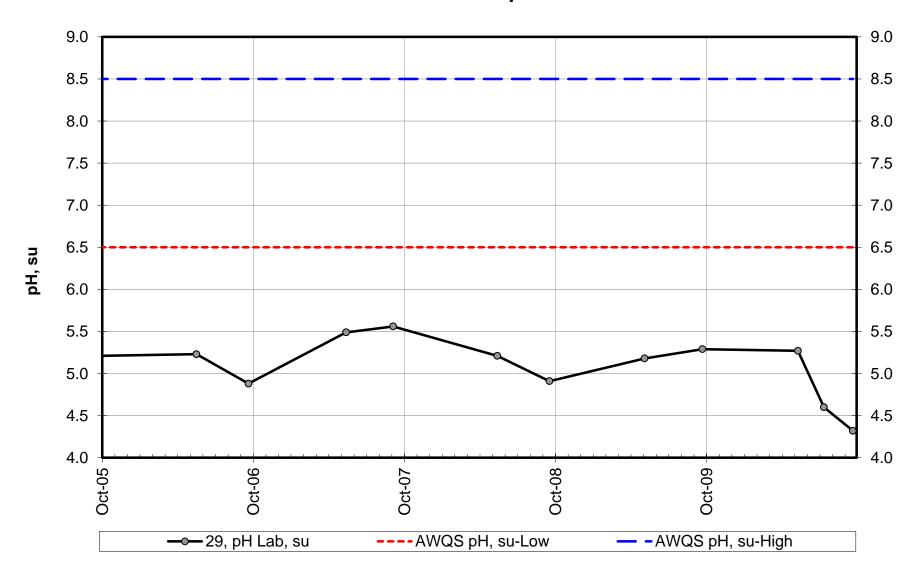

Qualified Data by QA Reviewer

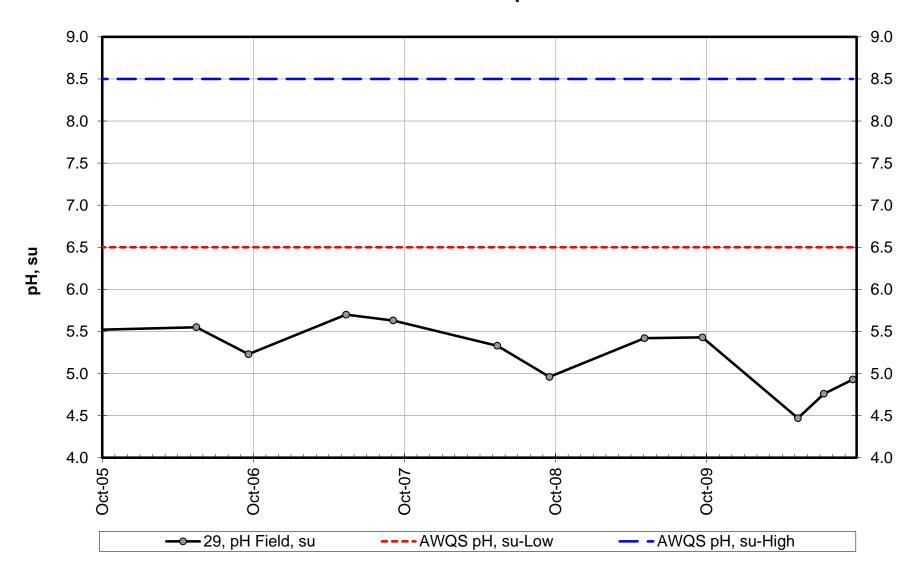
Date Range: 10/01/2009 to 09/30/2010

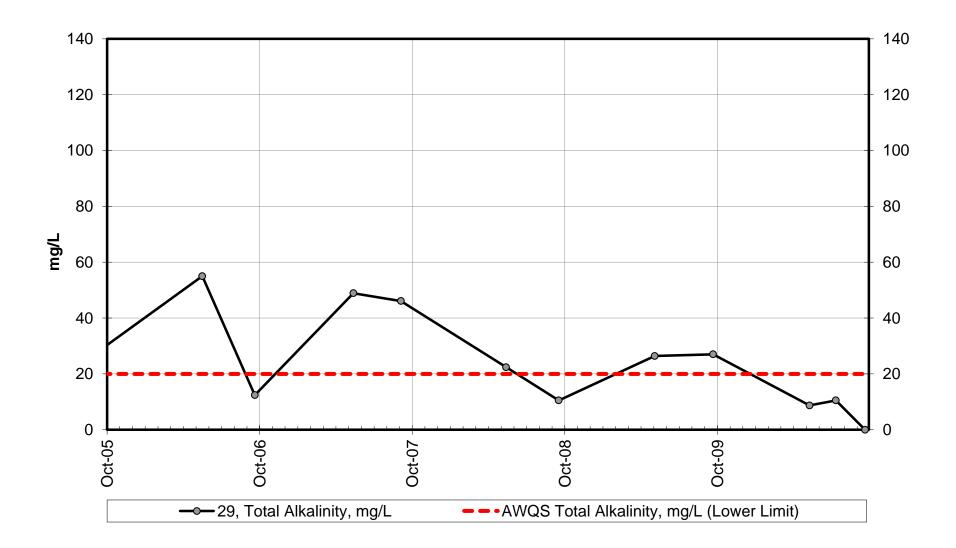

Site No.	Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier
8	5/11/2010	12:53 PM		B		
			Pb diss, µg/l	-0.003	U	Field Blank Contamination
			Se diss, µg/l	0.241	J	Below Quantitative Range
			Zn diss, µg/l	0.0964	U	Field Blank Contamination
			SO4 Tot, mg/l	11.3	J	Sample Temperature
3	7/13/2010	12:17 PM				
			Hg diss, µg/l	0.000156	U	Field Blank Contamination
			SO4 Tot, mg/l	10.4	J	Sample Reciept Temperature
3	9/21/2010	11:29 AM				
			Cr diss, µg/l	0.171	J	Below Quantitative Range
			Zn diss, µg/l	0.0783	J	Below Quantitative Range
			SO4 Tot, mg/l	11	J	Sample Receipt Temperature

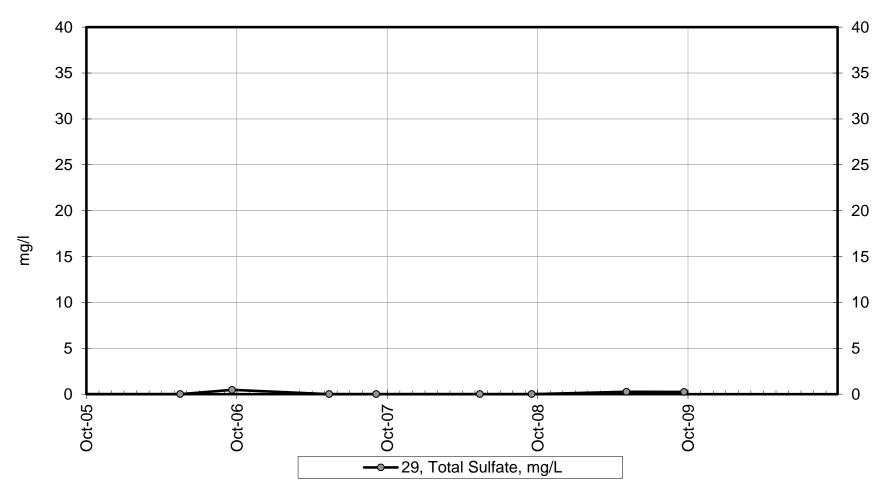
Qualifier	Description
J	Positively Identified - Approximate Concentration
Ν	Presumptive Evidence For Tentative Identification
NJ	Tentatively Identified - Approximate Concentration
R	Rejected - Cannot be Verified
U	Not Detected Above Quantitation Limit
UJ	Not Detected Above Approximate Quantitation Limit


Site 29 -Water Temperature

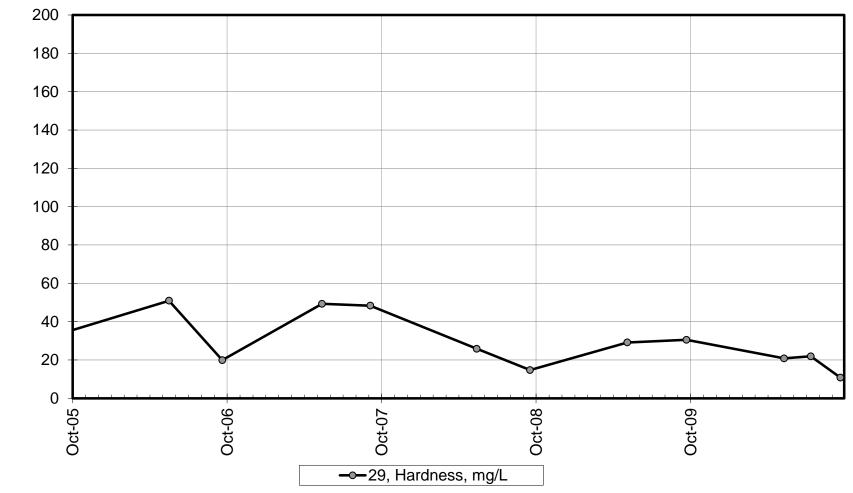

Site 29 - Conductivity-Lab


Site 29 - Conductivity-Field


Site 29 - Lab pH


Site 29 - Field pH

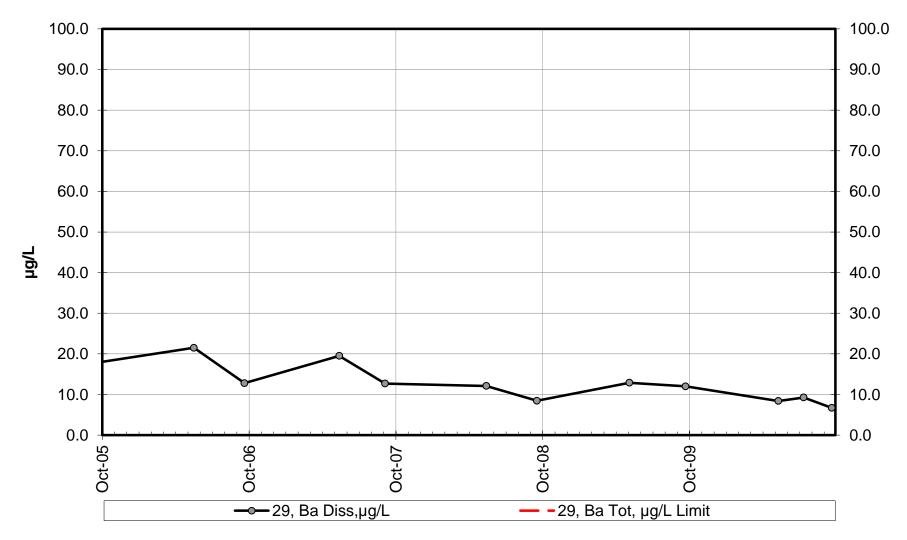
Site 29 - Total Alkalinity



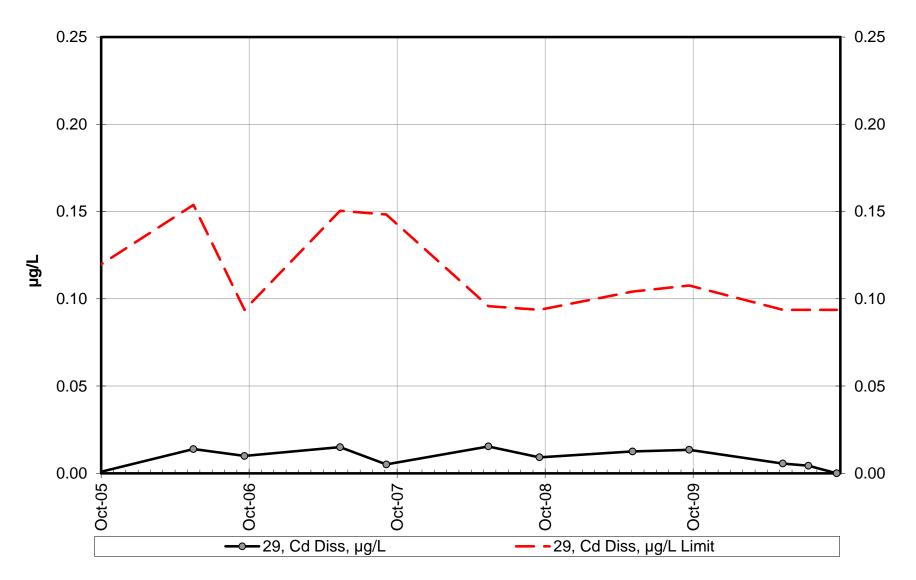
Site 29 - Total Sulfate

Note: The AWQS for Total Sulfate is 250 mg/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination.

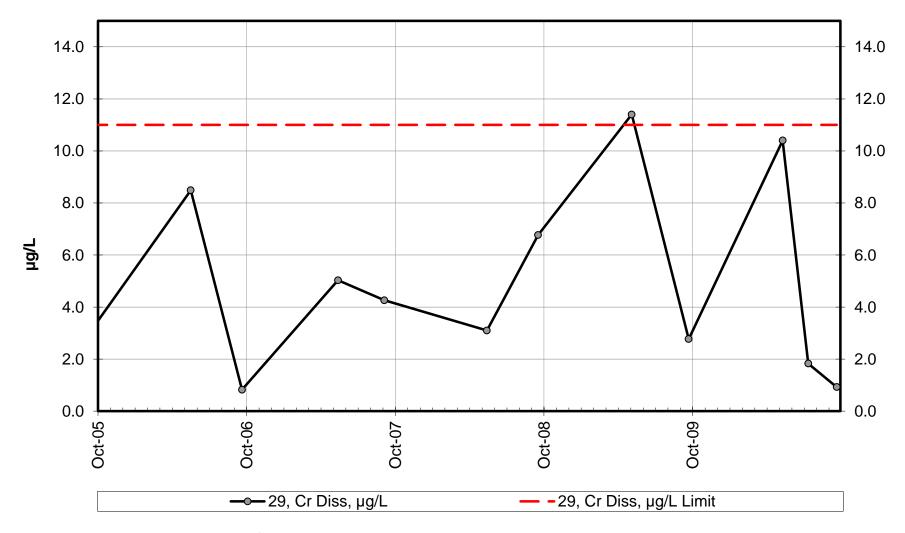
Site 29 - Hardness


mg/L

Site 29 - Dissolved Arsenic

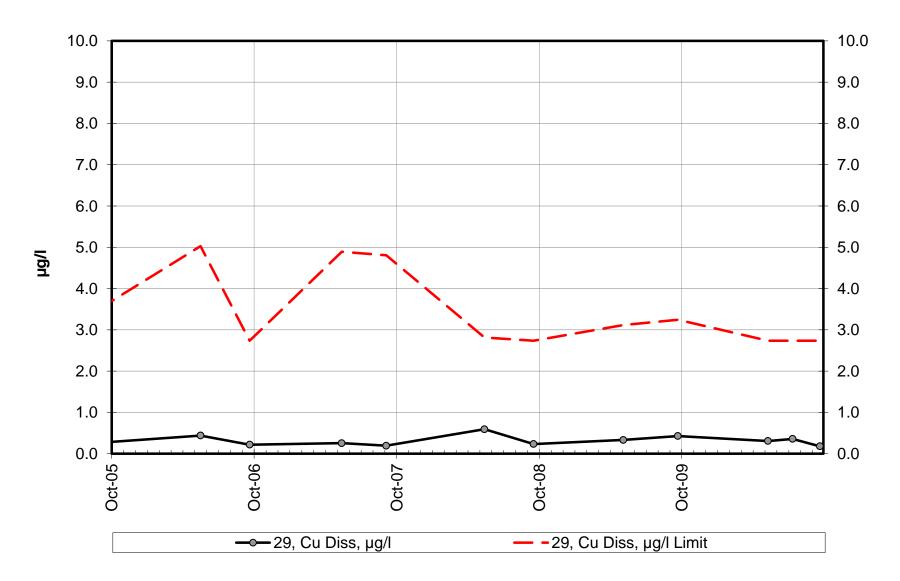

Note: The AWQS for total arsenic is 10 ug/L and thus may not be shown on this graph in order to allow greater visual detail of plotted values for trend determination

Site 29 - Dissolved Barium

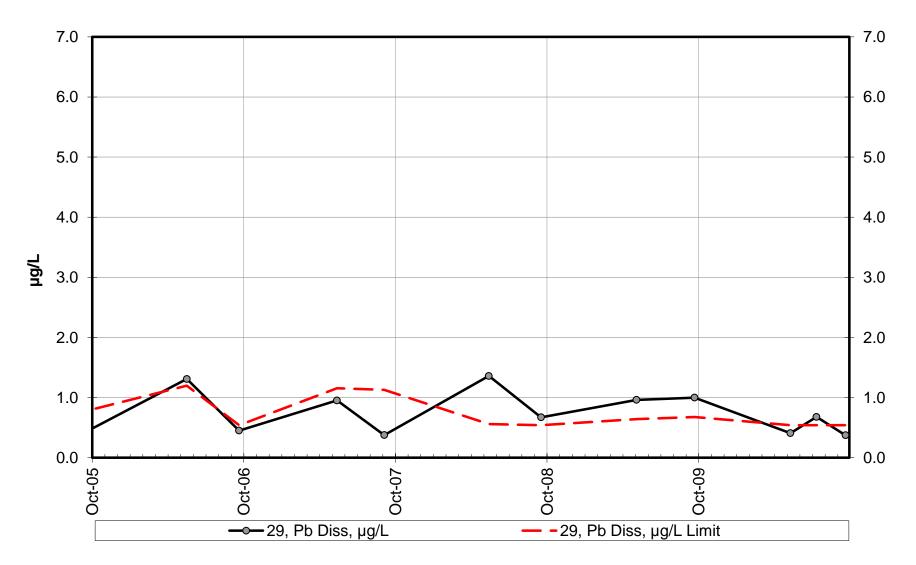


Note: the AWQS for Total Barium is 1000 ug/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination

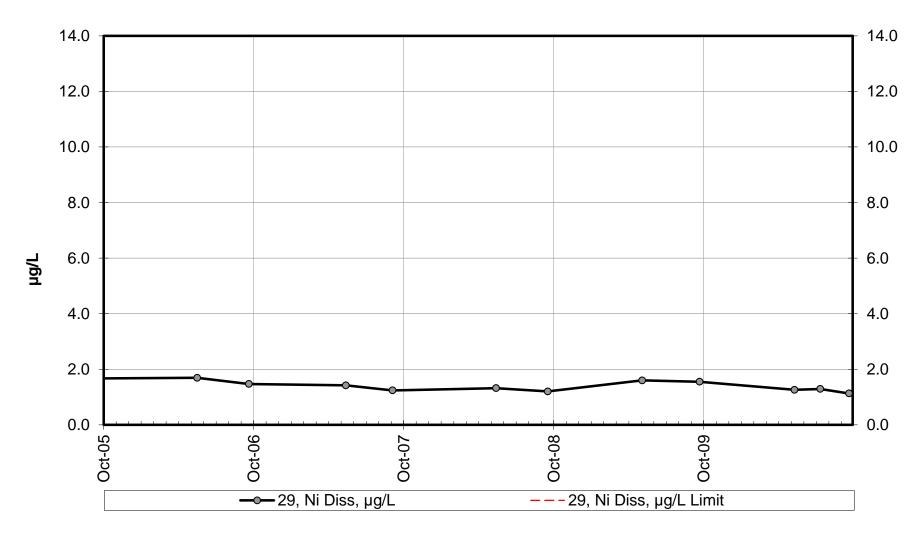
Site 29 - Dissolved Cadmium



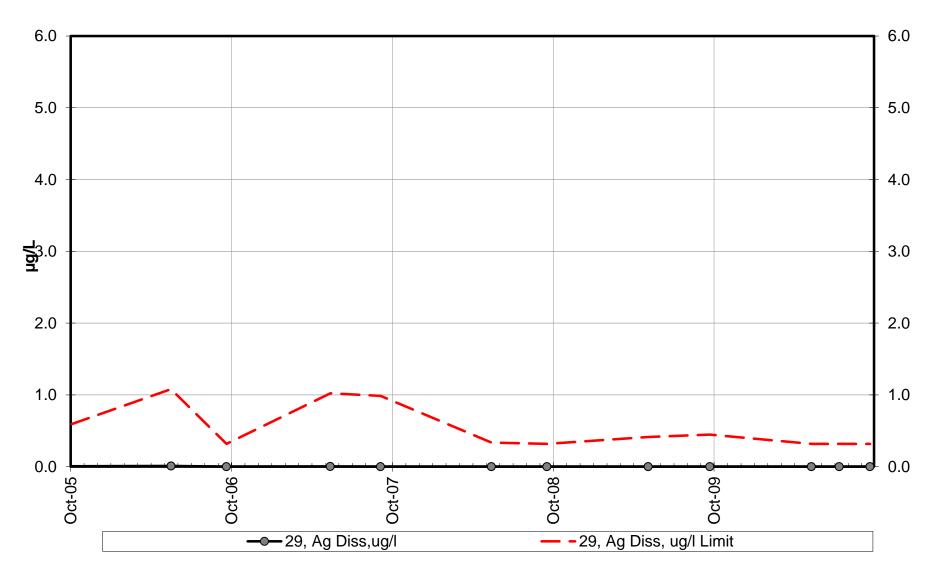
Site 29 - Dissolved Chromium



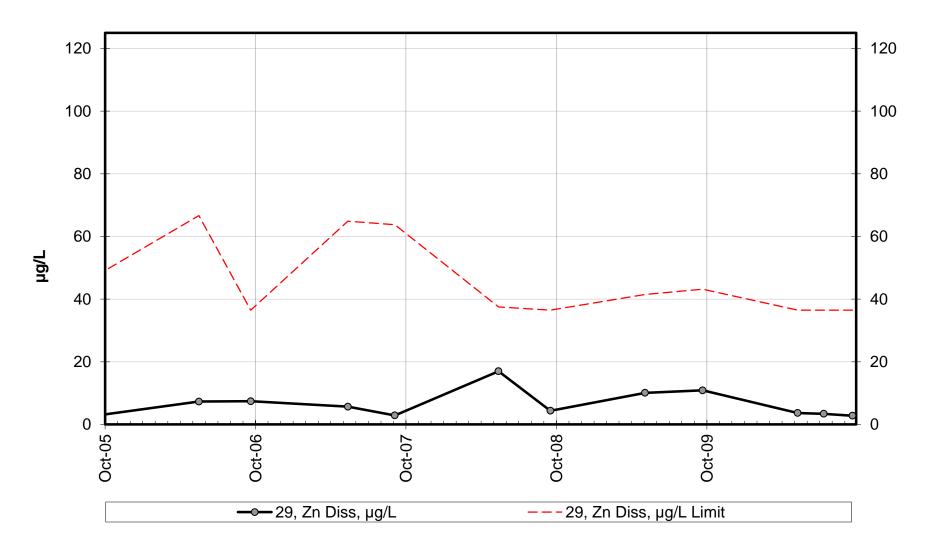
Note: the AWQS for Dissolved Chromium is 11 µg/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination


Site 29 - Dissolved Copper

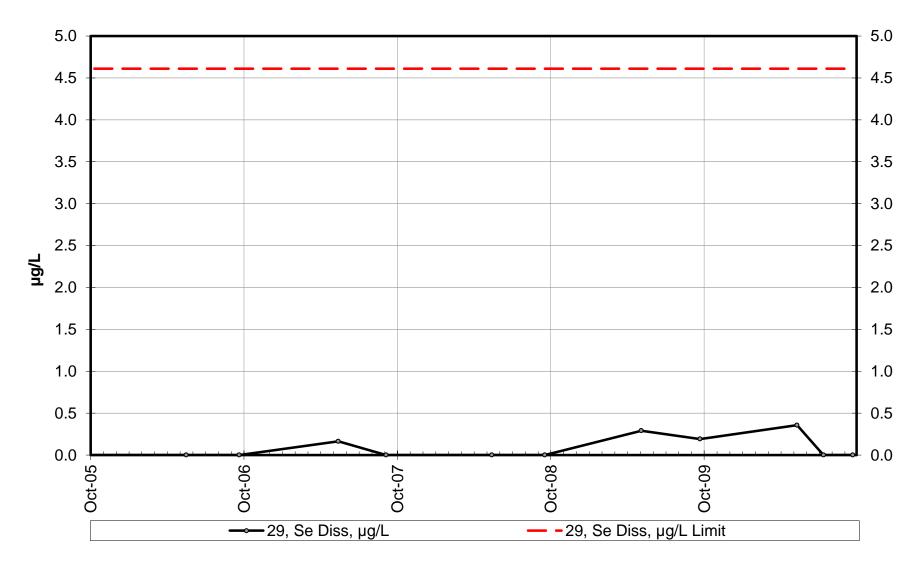
Site 29 - Dissolved Lead

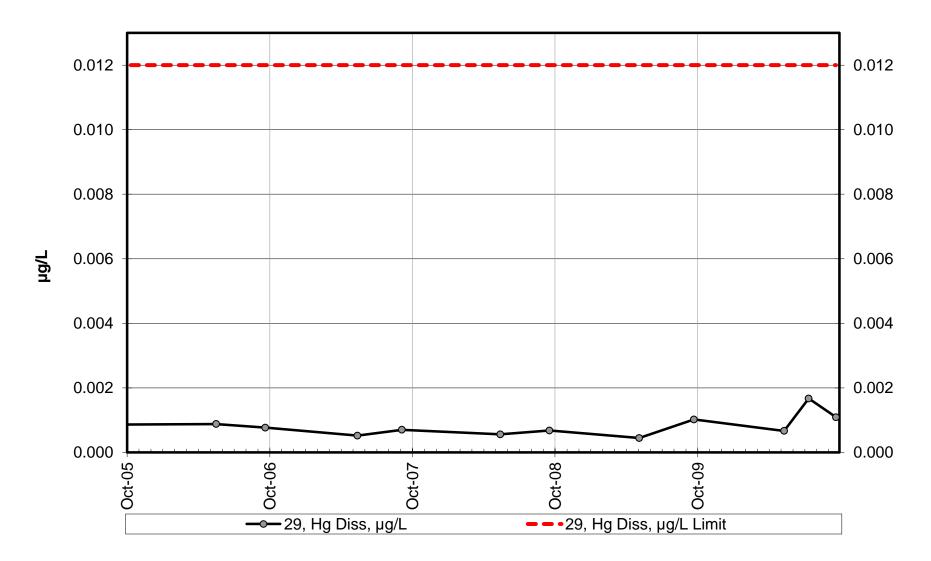


Site 29 - Dissolved Nickel

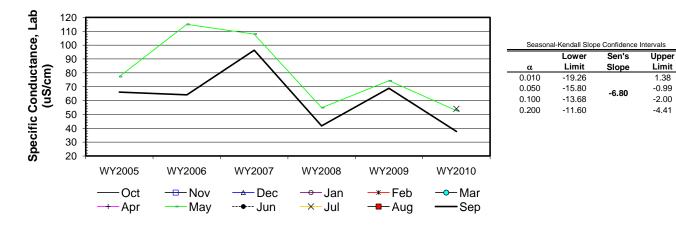


Note: The AWQS for dissolved nickel is hardness dependant and varies between 16 ug/L and 128 ug/L for waters with hardness values of 25 mg/L and 400 mg/L respectively. The AWQS, which would plot above the upper value on the Y-axis, are not shown on this graph to allow for greater visual detail of the plotted values.


Site 29 - Dissolved Silver


Site 29 - Dissolved Zinc

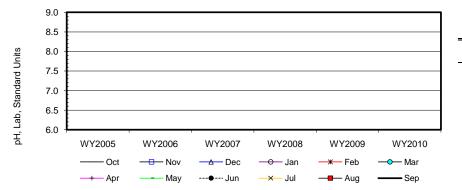
Site 29 - Dissolved Selenium


Site 29 - Dissolved Mercury

low label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2005								77.3				66.
b	WY2006								115				64.1
С	WY2007								108				96.3
d	WY2008								54.9				41.7
e	WY2009								74.3		F 4		68.9
f	WY2010 n	0	0	0	0	0	0	0	52.8 6	0	54 1	0	37.7
		0	0	0	0	0	0	0	0	0		0	, i
	t1	5	5	5	5	5	5	5	5	5	5	5	5
	t ₂	0	0	0	0	0	0	0	0	0	0	0	(
	t ₃	0	0	0	0	0	0	0	0	0	0	0	(
	t ₄	0	0	0	0	0	0	0	0	0	0	0	(
	t ₅	0	0	0	0	0	0	0	0	0	0	0	(
	b-a								1				-1
	c-a								1				1
	d-a								-1				-1
	e-a								-1				1
	f-a								-1				-1
	c-b								-1				1
	d-b								-1				-1
	e-b								-1				1
	f-b								-1				-1
	d-c								-1 -1				-1 -1
	e-c f-c								-1				-1
	e-d								1				-
	f-d								-1				-1
	f-e								-1				-1
	S _k	0	0	0	0	0	0	0	-9	0	0	0	-{
	² s=								28.33				28.33
	S _k /\sigma _S								-1.69				-0.94
2	Z ² k								2.86				0.88
	$\Sigma Z_k =$	-2.63	Г	Tie Extent	t,	t ₂	t ₃	t4	t ₅			Σn	13
	$\Sigma Z_{k}^{2} =$	3.74		Count	60	0	0	0	0			ΣS_k	-14
-	Z-bar=∑Z _k /K=	-1.32	L	000		~	÷	č	÷				

29	Seasonal Kendall analysis for Specific Conductance, Lab (uS/cm)	
----	---	--

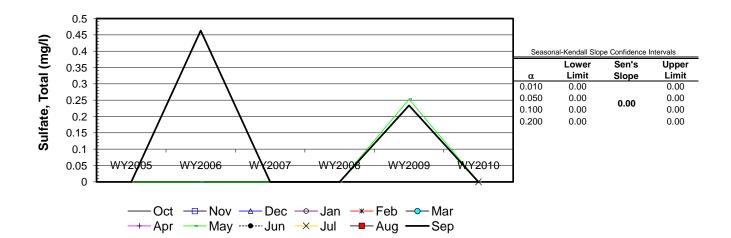
$\chi^2_h = \Sigma Z^2$	$\chi^{2}_{h} = \Sigma Z^{2}_{k} - K(Z-bar)^{2} = 0.28$		@ α =5% $\chi^2_{(K-1)}$ = 3.84 Test for station homogeneity	
	р	0.595	$\chi^2 h \lesssim \chi^2 (K-1)$	ACCEPT
$\Sigma VAR(S_k)$	Z_{calc}	-1.73	@α/2=2.5% Z= 1.96 H ₀ (No trend)	ACCEPT
56.67	р	0.042	H _A (± trend)	REJECT


1.38 -0.99

-2.00

-4.41

Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2005								5.3				5.2
b	WY2006								5.2				4.9
С	WY2007								5.5				5.6
d	WY2008								5.2				4.9
e	WY2009								5.2		4.0		5.3
f	WY2010	0	0	0	0	0	0	0	5.3 6	0	4.6	0	4.3
	n	0	0	0	0	0	0	0	0	0	1	0	C
	t,	5	5	5	5	5	5	5	5	5	5	5	5
	t ₂	0	0	0	0	0	0	0	0	0	0	0	C
t	t ₃	0	0	0	0	0	0	0	0	0	0	0	C
	t₄	0	0	0	0	0	0	0	0	0	0	0	0
	t ₅	0	0	0	0	0	0	0	0	0	0	0	C
	b-a								-1				-1
	c-a								1				1
	d-a								-1				-1
	e-a								-1				1
	f-a								-1				-1
	c-b								1				1
	d-b								-1				1
	e-b f-b								-1				1
	d-c								-1				-1 -1
	e-c								-1				-1
	f-c								-1				-1
	e-d								-1				1
	f-d								1				-1
	f-e								1				-1
	S _k	0	0	0	0	0	0	0	-5	0	0	0	-3
σ	² s=								28.33				28.33
	S _k /σ _s								-0.94				-0.56
—к –	Z^2_k												
4	Ż k								0.88				0.32
	$\Sigma Z_k =$	-1.50	[-	Tie Extent	t,	t ₂	t ₃	t4	t ₅			Σn	13
	ΣZ_{k}^{2}	1.20		Count	60	0	0	0	0			ΣS_k	-8


$\chi^2_h = \Sigma Z^2_k$	$\chi^{2}_{h} = \Sigma Z^{2}_{k} - K(Z-bar)^{2} = 0.07$		@α=5% χ ² _(K-1) = 3.84		Test for station homogeneity	
	р	0.790			χ ² h<χ ² (K-1)	ACCEPT
$\Sigma VAR(S_k)$	Z_{calc}	-0.93	@α/2=2.5% Z=	1.96	H ₀ (No trend)	ACCEPT
56.67	р	0.176			H _A (± trend)	REJECT

Seasonal-Kendall Slope Confidence Intervals										
Lower	Sen's	Upper								
Limit	Slope	Limit								
-0.26		0.08								
-0.14	0.02	0.02								
-0.13	-0.02	0.01								
-0.08		-0.01								
	Lower Limit -0.26 -0.14 -0.13	Lower Sen's Limit Slope -0.26 -0.14 -0.13 -0.02								

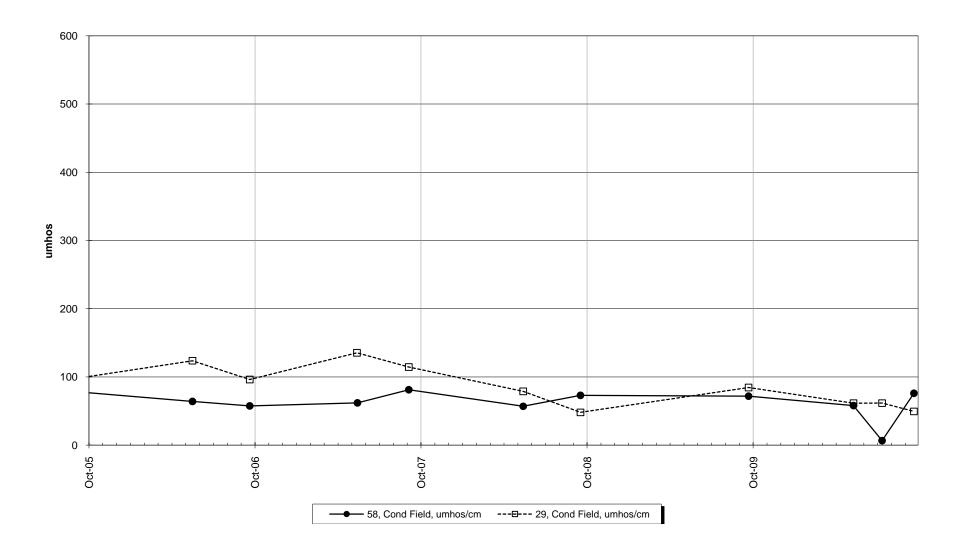
Site	#29	0.04	Nov		Seasona	Feb	Mar		May	Jun	Jul	Au-	8
Row label a b c d e f	Water Year WY2005 WY2006 WY2007 WY2008 WY2009 WY2010	Oct	Nov	Dec	Jan	Feb	Mar	Apr	39.5 55.0 48.9 22.4 26.4 8.7	Jun	Jui 10.5	Aug	Sep 28. 12. 46. 10. 27. 0.
I	n	0	0	0	0	0	0	0	6	0	10.0	0	0.
	t₁ t₂ t₃ t₄ t₅	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	
	b-a c-a d-a e-a f-a c-b d-b f-b d-c e-c f-c e-d f-d f-e S_k	0	0	0	0	0	0	0	1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	0	0	0	
$Z_k =$	/²s= S _k /σ _s Z ² _k								28.33 -1.69 2.86				28.3 -1.3 1.7
z	$\Sigma Z_{k} = \Sigma Z_{k}^{2} = \Sigma Z_{k}/K = \Sigma Z_$	-3.01 4.59 -1.50		Tie Extent Count	t ₁ 60	t ₂ 0	t ₃ 0	t ₄ 0	t ₅ 0			Σ n Σ S _k	13 -16
	$\chi^2_h = \Sigma Z^2_k - k$	(Z-bar) ² =	0.07		@α=5%	6 χ ² _(K-1) =	3.84	Т	est for sta	tion homoge	eneitv		
	Zink	р	0.790			N (IC-1)			ζ ² h<χ ² (K-1)		ACCEPT		
	ΣVAR(S _k) 56.67	Z_{calc} p	-1.99 0.023		@α/2=	2.5% Z =	1.96		H₀ (No H _A (±1		REJECT ACCEPT		
60 55 -													
50 - 45	-									Seasonal	Kendall Slope	e Confidence li	ntervals
() 6 40											Lower	Sen's	Upper
Ĕ 35					\searrow				-	<u>α</u> 0.010	Limit -16.00	Slope	Limit 2.93
02 July 10 July 10			-		$\not\vdash$		\wedge			0.050 0.100 0.200	-11.92 -10.95 -9.54	-6.07	-2.69 -3.62 -5.62
15 -			/			\neq						-23.0%	
10 -	WY2005	WY2	2006	WY2007	WY2	008	WY2009	WY2	2010				
	—— Oc —+— Ap		– Nov – May	<u> </u>			—*— Feb —∎— Aug		−Mar −Sep				

Site	#29			S	easona	l Kendall	analysis	s for Sulf	fate, Tota	l (mg/l)			
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
а	WY2005								0.0				0.0
b	WY2006 WY2007								0.0				0.5
c d	WY2007 WY2008								0.0 0.0				0.0 0.0
e	WY2009								0.3				0.0
f	WY2010								0.0		0.0		
	n	0	0	0	0	0	0	0	6	0	1	0	0.0
	t ₁	0	0	0	0	0	0	0	1	0	1	0	2
	t ₂	0	0	0	0	0	0	0	0	0	0	0	0
	t₃	0	0	0	0	0	0	0	0	0	0	0	0
	t₄ t₅	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0 0	1 0
	4 5	0	0	0	0	0	0	0	1	0	0	0	0
	b-a								0 0				1
	c-a d-a								0				0 0
	e-a								1				1
	f-a								0				0
	c-b								0				-1
	d-b								0				-1
	e-b								1				-1
	f-b								0				-1
	d-c								0				0 1
	e-c f-c								0				0
	e-d								1				1
	f-d								0				0
	f-e								-1				-1 -1
	S _k	0	0	0	0	0	0	0	3	0	0	0	-1
σ	5 ² s=								11.67				19.67
Z _k =	S_k/σ_S								0.88				-0.23
	Z ² _k								0.77				0.05
	$\Sigma Z_k =$	0.65		Tie Extent	t,	t ₂	t ₃	t4	t ₅			Σn	13
	ΣZ_{k}^{2}	0.82		Count		0	0	1	1			ΣS_k	2
7	∠∠_ _k – Z-bar=∑Z _k /K=	0.82		Count	4	0	0	1	I			$2\mathbf{O}_{k}$	2
2	$-bai=2z_k/K=$	0.33											
	2 _ 2					2							
	$\chi^2_h = \Sigma Z^2_k - k$		0.61		@α=5	5% χ ² _(K-1) =	3.84		Test for stati				
		p	0.435			-0/ 77			$\chi^2_h < \chi^2_{(K-1)}$		ACCEPT		
	$\Sigma VAR(S_k)$	\mathbf{Z}_{calc}	0.18		a	α=5% Z=	1.64		H ₀ (No t	rend) A	ACCEPT		

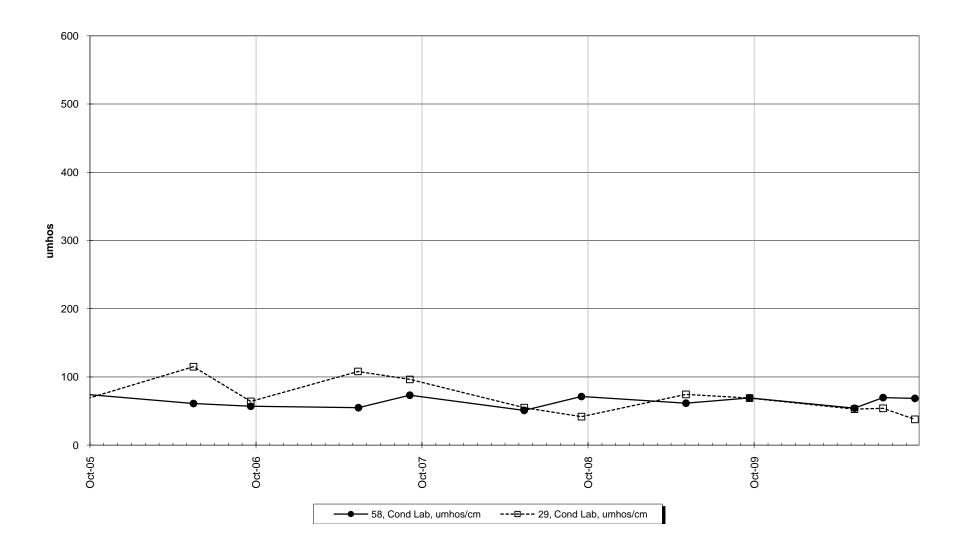
REJECT

H_A (± trend)

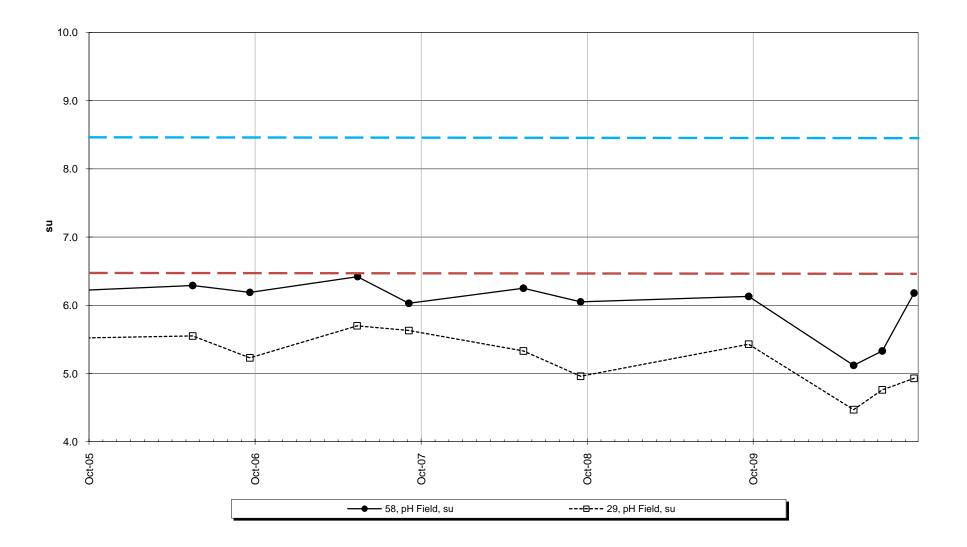
31.33

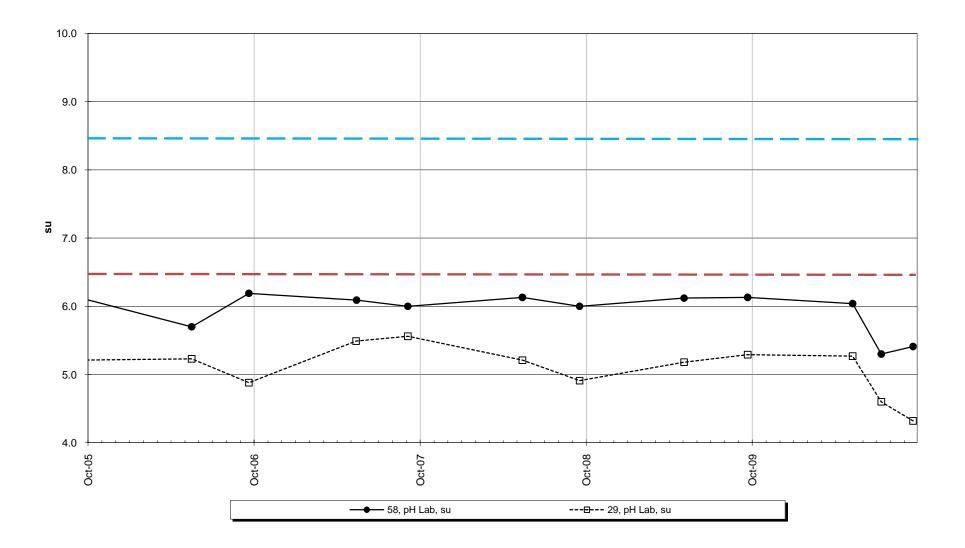

0.571

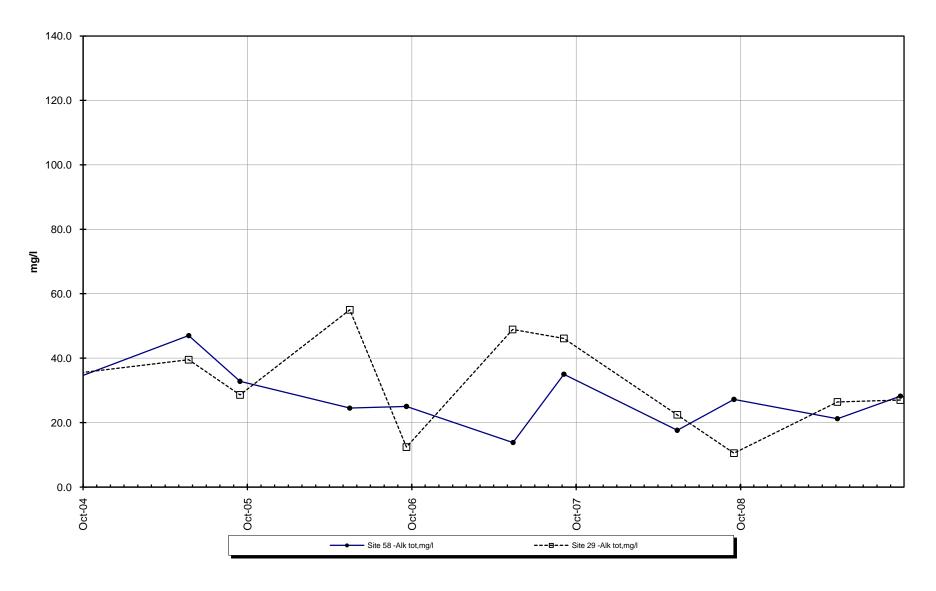
р

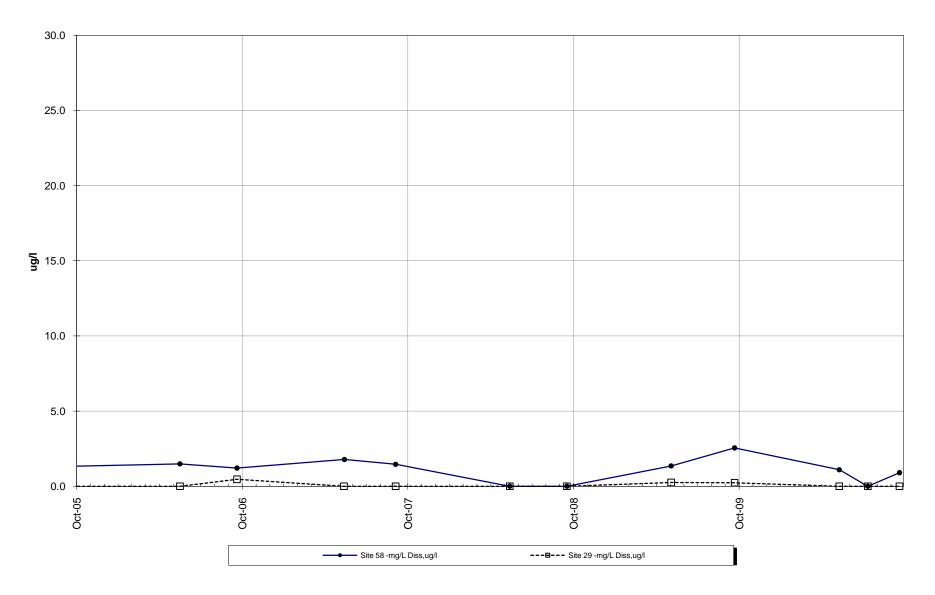

	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
a D C d	WY2005 WY2006 WY2007 WY2008		-				-	·	2.9 7.3 5.7 17.0				2.9 7.4 2.9 4.4
e F	WY2009 WY2010								10.1 3.7		3.4		10.9 2.8
	n	0	0	0	0	0	0	0	6	0		0	
-	t,	5	5	5	5	5	5	5	5	5		5	-
	t ₂ t ₃	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0		0 0	(
_	t₄ t₅	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0		0 0	
-	b-a								1				
	c-a d-a								1 1				 -
	e-a								1				
	f-a c-b								1 -1				
	d-b								1				-
	e-b f-b								1 -1				-
	d-c e-c								1 1				
	f-c								-1				-*
	e-d f-d								-1 -1				۔ -
=	f-e S _k	0	0	0	0	0	0	0	-1 3	() 0	0	ہ۔ ہے
-		0	0	0	0	0	0	0	5	(, 0	0	-
	²s= S _k /σ _S								28.33 0.56				28.33 -0.19
	3 _k /0 _S ₂ · k								0.38				-0.13
	ΣZ _k =	0.00	[-	Tie Extent	t₁	t ₂	t ₃	t4	t ₅			Σn	
	$\Sigma Z_{k}^{2} =$	0.38 0.35		Count	60	0	ι ₃ Ο	0	0			ΣS_k	13 2
Z	-bar=∑Z _k /K=	0.19	_										
	$\chi^2_h = \Sigma Z^2_k - K$	(Z-bar) ² =	0.28 0.595		@α=5%	6 χ ² _(K-1) =	3.84		Test for stat $\chi^2_h < \chi^2_{(K-1)}$	ion homo	geneity ACCEPT		
	$\Sigma VAR(S_k)$		0.13		@α/2=	2.5% Z=	1.96		H ₀ (No 1	trend)	ACCEPT		
		p	0.553						H _A (± t		REJECT		
	56.67												
18	56.67												
	56.67				/								
18 - 16 - 14 -	56.67									Seasor	nal-Kendall Slop	e Confidence	Intervals
16 - 14 -	56.67										Lower	Sen's	Upper
16 - 14 - 12 -	56.67								= =	Seasor α 0.010			
16 - 14 - 12 -	56.67			/					=	α 0.010 0.050	Lower Limit -1.62 -0.96	Sen's	Upper Limit 3.56 1.83
16 - 14 - 12 - 10 -	56.67						$\overline{\langle}$		=	<u>α</u> 0.010	Lower Limit -1.62	Sen's Slope	Upper Limit 3.56
16 - 14 - 12 - 10 - 8 -	56.67								=	α 0.010 0.050 0.100	Lower Limit -1.62 -0.96 -0.77	Sen's Slope	Upper Limit 3.56 1.83 1.47
16 - 14 - 12 - 10 - 8 - 6 -	56.67									α 0.010 0.050 0.100	Lower Limit -1.62 -0.96 -0.77	Sen's Slope	Upper Limit 3.56 1.83 1.47

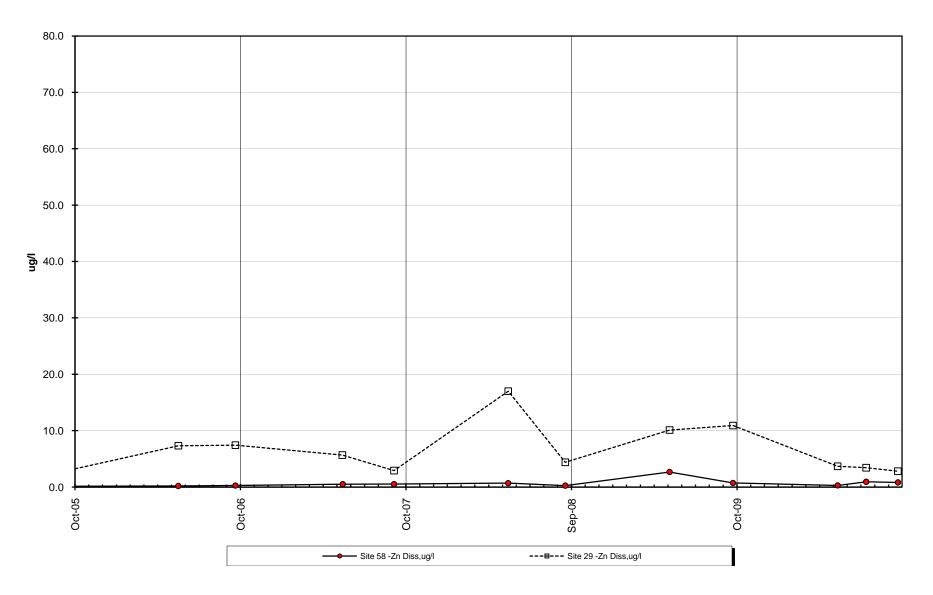
_+_Apr ___May ---●---Jun _X_Jul _■_Aug ___Sep


Site 58 vs Site 29 -Conductivity-Field


Site 58 vs Site 29 -Conductivity


Site 58 vs Site 29 -Field pH


Site 58 vs Site 29 - Lab pH


Site 58 vs. Site 29 - Total Alkalinity

Site 58 vs. Site 29 - Total Sulfate

Site 58 vs. Site 29 -Dissolved Zinc

INTERPRETIVE REPORT SITE 32 "MONITORING WELL 5S"

The data collected during the current water year are listed in the following "Table of Results for Water Year 2010" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the rightmost column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

All data collected at this site for the past six years are included in the data analyses. As shown in the table below, there were no data outliers.

Sample Date	Parameter	Value (Qualifier	Notes	
No outliers have	been identified by HG	CMC for the period	l of October	2005 through Septe	mber 2001.

The data for Water Year 2010 have been compared to the strictest fresh water quality criterion for each applicable analyte. Thirteen results exceeding these criteria have been identified, as listed in the table below. Six of these data points are for pH, both field and laboratory, showing values below the lower limit of 6.5 su listed in AWQS. Field and laboratory pH for Site 32 has historically resulted in values ranging from a pH of 4.5 to 5.5 su which are characteristic for wells completed in organic rich peat sediments. Three exceedances are for total alkalinity samples taken during the WY 2010. Another, three exceedances are for dissolved lead concentrations during the season. Due to the low hardness for this site, 30 of the past 31 samples have returned lead values higher than the AWQS. As noted in previous reports, fugitive tailings dust may be contributing to the elevated lead levels monitored at Site 32. Though the values exceed the AWQS the general trend over the past four years has been a decrease in the concentration. The final exceedance was for dissolved chromium (11.7 μ g/L) in the May 2010 sampling. This

Sample Date	Parameter	Value	Hardness (mg/L)	Standard	Standard Type
11-May-10	pH Field, su	4.64		6.5	Aquatic Life, chronic
13-Jul-10	pH Field, su	4.75		6.5	Aquatic Life, chronic
21-Sep-10	pH Field, su	5.15		6.5	Aquatic Life, chronic
11-May-10	pH Lab, su	5.23		6.5	Aquatic Life, chronic
13-Jul-10	pH Lab, su	4.48		6.5	Aquatic Life, chronic
21-Sep-10	pH Lab, su	4.5		6.5	Aquatic Life, chronic
11-M ay-10	Lead, Dissolved ug/L	1.79	9.64	0.54	Aquatic Life, chronic
13-Jul-10	Lead, Dissolved ug/L	2.34	9.17	0.54	Aquatic Life, chronic
21-Sep-10	Lead, Dissolved ug/L	1.84	8.05	0.54	Aquatic Life, chronic
11-May-10	Alkalinity Total, mg/L	6.4		20	Aquatic Life, chronic
13-Jul-10	Alkalinity Total, mg/L	-1		20	Aquatic Life, chronic
21-Sep-10	Alkalinity Total, mg/L	-1		20	Aquatic Life, chronic
11-May-10	Chromium, Dissolved µg/L	11.7		11.00	Aquatic Life, chronic

concentration is similar to the concentration (11.6 μ g/L) recorded the previous year in May. By the July sampling the concentration was below the AWQS limit and in a range that appears to be normal for the site. Furthermore, the AWQS is for Cr(VI) and the analysis is for unspeciated dissolved chromium. Speciation of the sample at the current pH level would results in Cr existing as Cr(III). Following along this reasoning, the AWQS for Cr(III) is hardness dependent. A hardness of 9.6 mg/L (May 2010) would result in an upper chronic limit of 12 μ g/L. Because Cr(III) is a hardness based criteria a slight decrease in the hardness can have a significant impact on the AWQS. It is HGCMC intention to request Batelle Marine Science run the May 2011 sample for the various chromium species, if possible.

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. These plots have been visually analyzed for the appearance of any trend in concentration. No obvious trends are apparent except for dissolved lead which has decreased the last four water years from a peak in WY2006. A non-parametric statistical analysis for trend was performed for conductivity,

pH, alkalinity, sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall analyses are presented in detail on the pages following this interpretive section. The adjacent table summarizes the results on the data collected between Oct-04 and Sep-10 (WY2005-WY2010). No significant trends

Site 32-WY2010, summary statistics for trend analysis.

Ma	ann-K	endall test	statistics	Sen's slope estimate		
Parameter	N(1)	p (2)	Trend	Q	Q(%)	
Conductivity, Lab	6	0.91	0			
pH, Lab	6	0.30	0			
Alkalinity, Total	6	0.04	0			
Sulfate, Total	6	Discontin	uation in t	he continu	ity of the MD	
Zinc, Dissolved	6	0.55	0			
(1): Number of yea	ars	(2):Signif	icance lev	/el		

were identified with this analysis. Trend analysis was not performed on the total sulfate dataset because of a change in the method detection limit used by Analytica Laboratories. A primary assumption of the Mann-Kendall test is "... only one censoring threshold exists. When more than one detection limit exists, the Mann-Kendall test cannot be performed without further censoring the data." In order to prevent this from occurring HGCMC has worked to establish a consistent MDL for sulfate from the laboratory.

Additional X-Y plots have been generated for alkalinity, pH, conductance, sulfate, and dissolved zinc that co-plot data from Site 32 and Site 58, the upgradient control site, to aid in comparison between those two sites. Typically, laboratory conductivity, total sulfate, and total alkalinity are slightly higher at Site 58 while laboratory pH is more basic at Site 58 than at Site 32. Dissolved zinc levels are higher at Site 32 than at Site 58. The long-term median value for dissolved zinc since June 1998 is 9.72 μ g/L, which is elevated with respect to Site 58 and the other shallow wells completed into peat (*e.g.* Site 27 and Site 29). The previously discussed mechanisms (fugitive dust) that may be elevating the dissolved lead levels would also be expected to increase dissolved zinc. In addition the lower pH at Site 32 with respect to the other shallow wells may exacerbate the elevated zinc concentration found there due to higher zinc solubility at a lower pH.

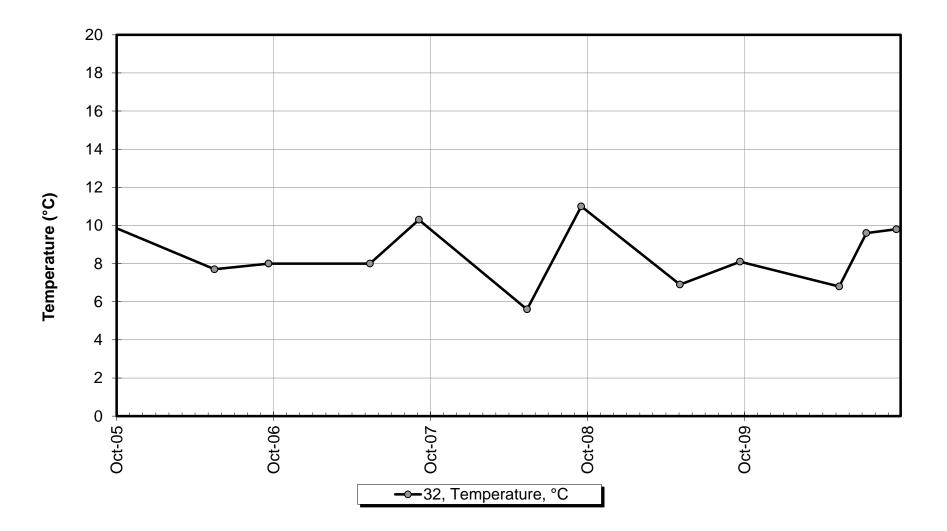
Table of Results for Water Year 2010

	Site 32 "MW-5S"												
Sample Date/Parameter	Oct-09	Nov-09	Dec-09	Jan-10	Jan-10	Mar-10	Apr-10	5/11/2010	Jun-10	Jul-10	Aug-10	9/21/2010	Median
Water Temp (°C)								6.8	U	9.6	G	9.8	9.6
Conductivity-Field(µmho)								72	ž	67	Ň	67	67
Conductivity-Lab (µmho)								55	J	57	J	61	57
pH Lab (standard units)								5.23	≙	4.48	≏	4.50	4.50
pH Field (standard units)								4.64	SAMPLIN	4.75	SAMPL	5.15	4.75
Total Alkalinity (mg/L)								6.4	40	<1.0	Z,	<1.0	0.5
Total Sulfate (mg/L)								<10.0	2	<10.0 UJ	2	<30.0 J	5.0
Hardness (mg/L)								9.6	ö	9.2	ö	8.1	9.2
Dissolved As (ug/L)								5.880	й	5.510	Ľ	4.200	5.510
Dissolved Ba (ug/L)		NOT S	SCHEDL	ILED FO	R SAM	PLING		15.6	Δ	16.3	Δ	14.7	15.6
Dissolved Cd (ug/L)								0.020	Щ	0.024	Щ	0.019 J	0.020
Dissolved Cr (ug/L)								11.700	SCHEDUL	2.860	5	1.660	2.860
Dissolved Cu (ug/L)								1.080	ā	1.150	SCHEDUI	0.883	1.080
Dissolved Pb (ug/L)								1.790	Щ	2.340	Щ	1.840	1.840
Dissolved Ni (ug/L)								3.640	ち	3.770	ち	3.260	3.640
Dissolved Ag (ug/L)								0.004	Š	<0.004	ŭ	<0.008	0.004
Dissolved Zn (ug/L)								11.90	H-	9.88	μ-	8.50	9.88
Dissolved Se (ug/L)								0.505	NOT	<0.114	Öz	0.347 J	0.347
Dissolved Hg (ug/L)								0.002310	Z	0.001870	Z	0.003470	0.002310

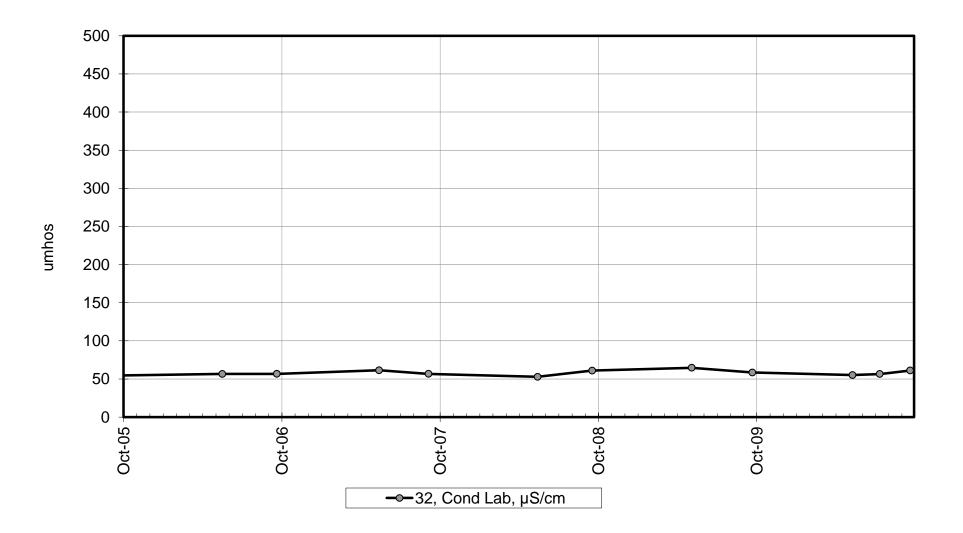
For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

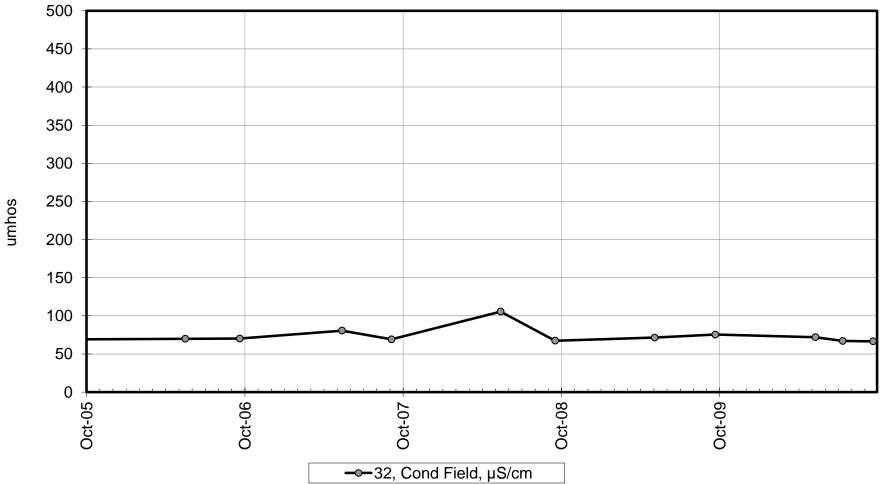
Shaded data has been qualified as an outlier by HGCMC and removed from any further analysis and is not included into the calculation of the median

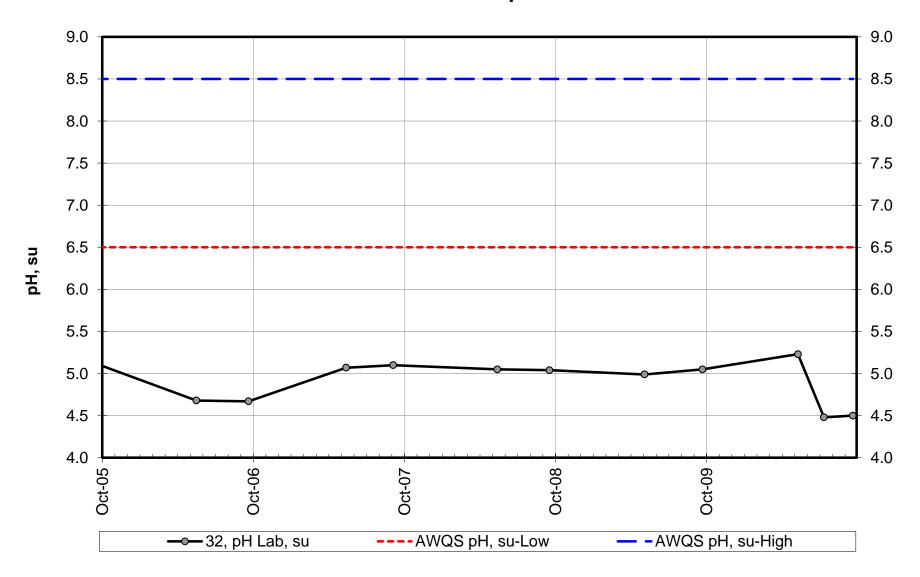

Qualified Data by QA Reviewer

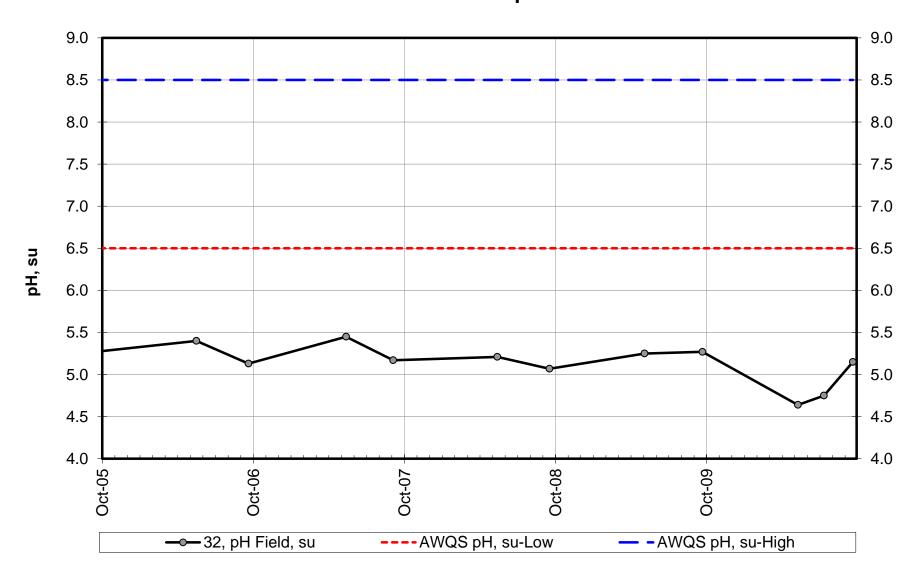
Date Range: 10/01/2009 to 09/30/2010

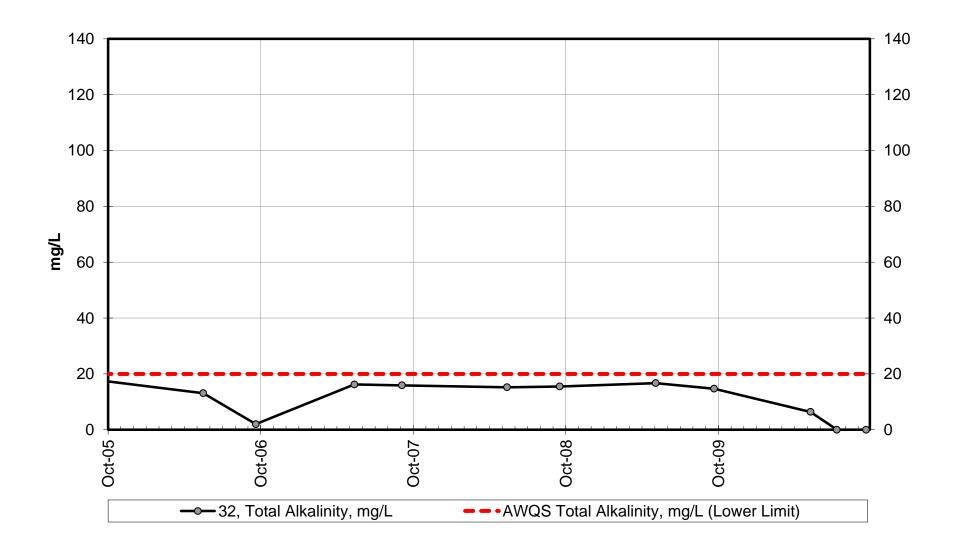

Site No.	Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier
32	5/11/2010	10:47 AM				
			Ag diss, µg/l	0.00403	J	Below Quantitative Range
			SO4 Tot, mg/l	0	UJ	Sample Temperature
32	7/13/2010	1:22 PM				
			SO4 Tot, mg/l	0	UJ	Sample Reciept Temperature
32	9/21/2010	10:32 AM				
			Cd diss, µg/l	0.0191	J	Below Quantitative Range
			Se diss, µg/l	0.347	J	Below Quantitative Range
			SO4 Tot, mg/l	0	J	Sample Receipt Temperature

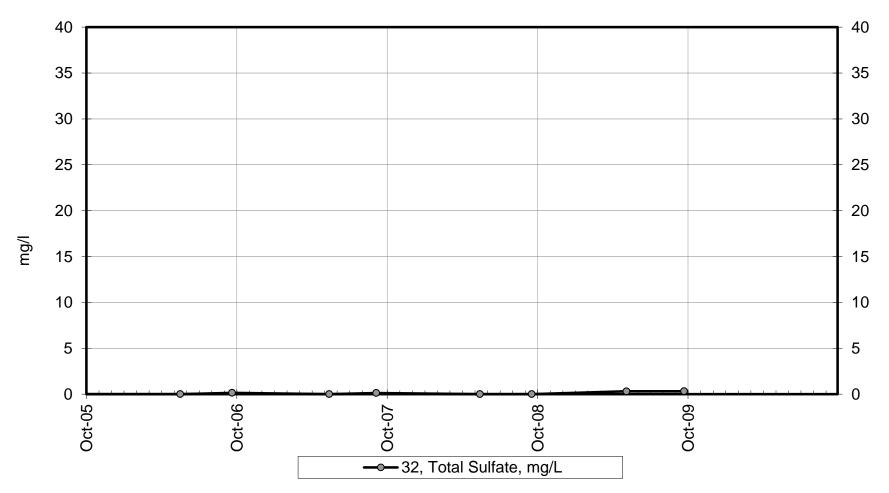
Qualifier	Description
J	Positively Identified - Approximate Concentration
Ν	Presumptive Evidence For Tentative Identification
NJ	Tentatively Identified - Approximate Concentration
R	Rejected - Cannot be Verified
U	Not Detected Above Quantitation Limit
UJ	Not Detected Above Approximate Quantitation Limit


Site 32 -Water Temperature

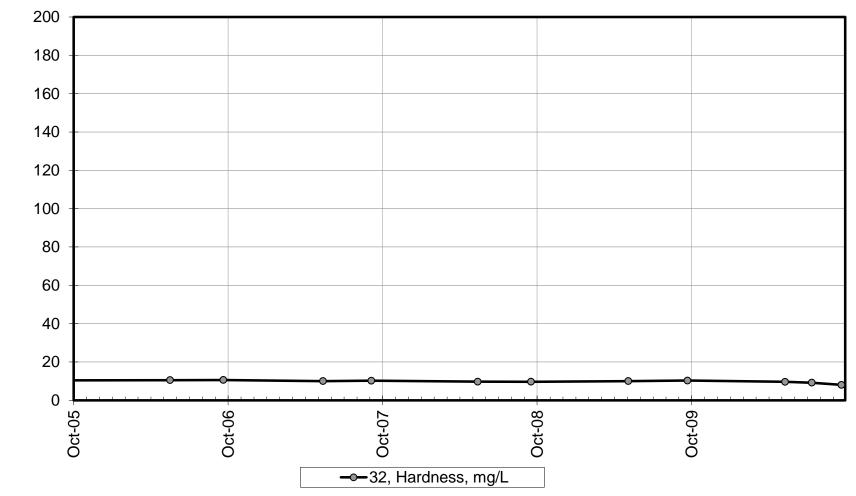

Site 32 - Conductivity-Lab


Site 32 - Conductivity-Field

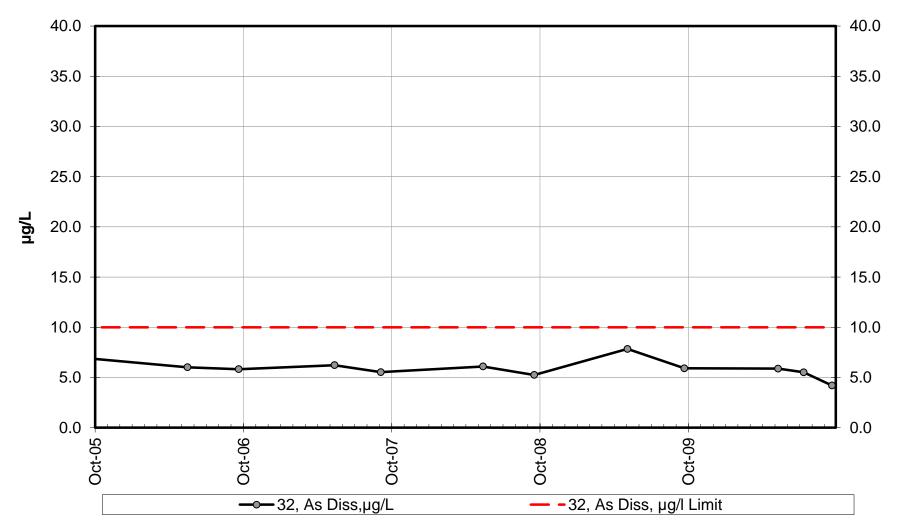

Site 32 - Lab pH


Site 32 - Field pH

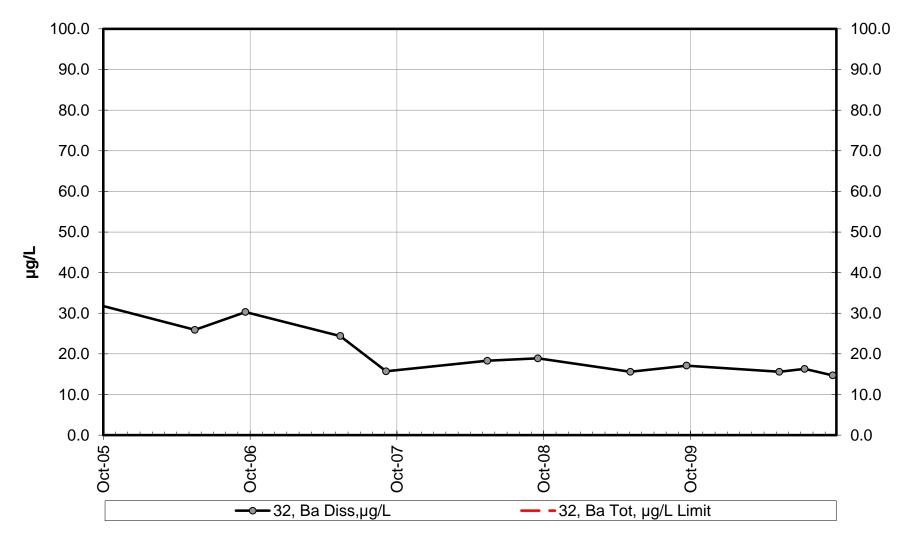
Site 32 - Total Alkalinity



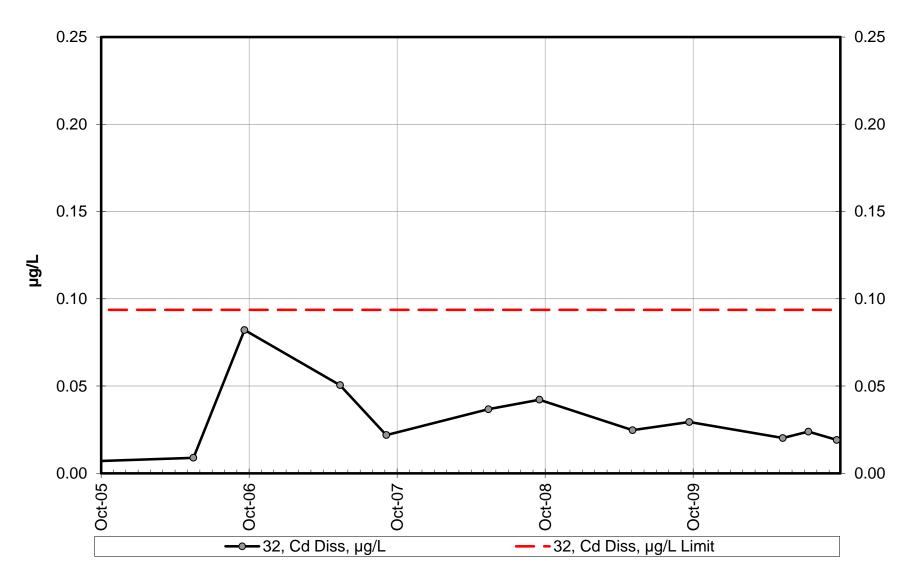
Site 32 - Total Sulfate


Note: The AWQS for Total Sulfate is 250 mg/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination.

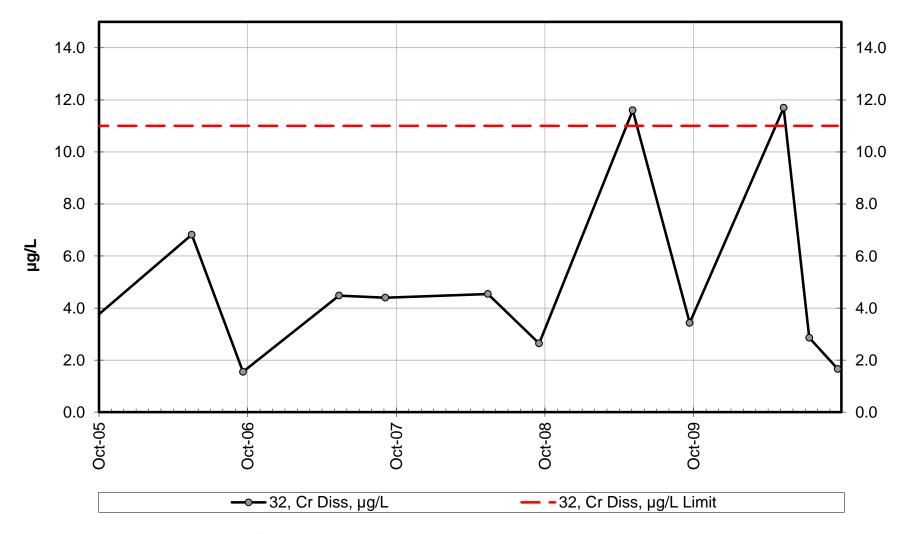
Site 32 - Hardness


mg/L

Site 32 - Dissolved Arsenic

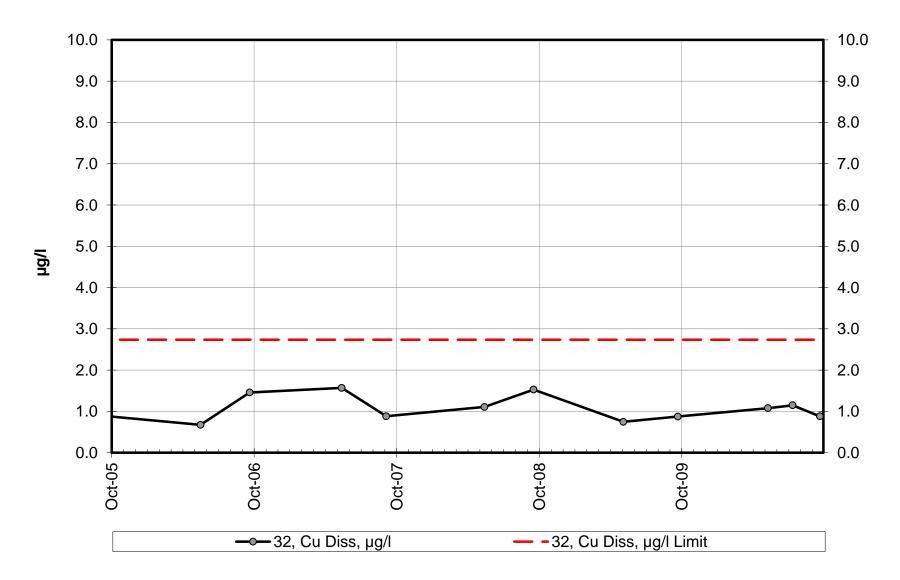

Note: The AWQS for total arsenic is 10 ug/L and thus may not be shown on this graph in order to allow greater visual detail of plotted values for trend determination

Site 32 - Dissolved Barium

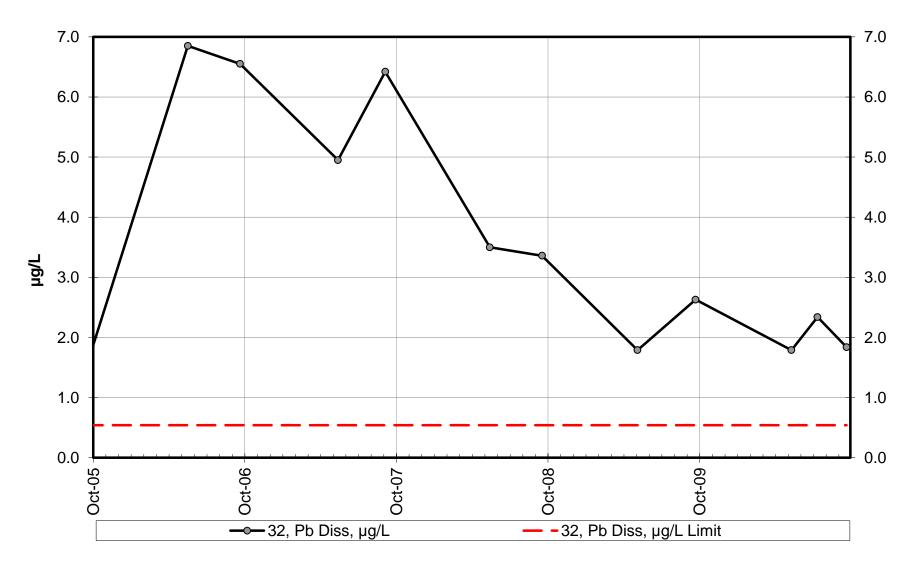


Note: the AWQS for Total Barium is 1000 ug/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination

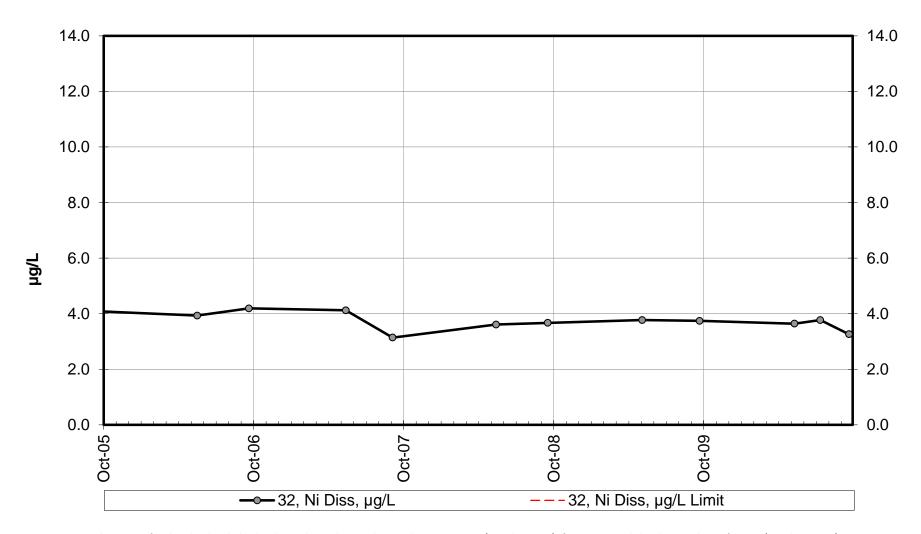
Site 32 - Dissolved Cadmium



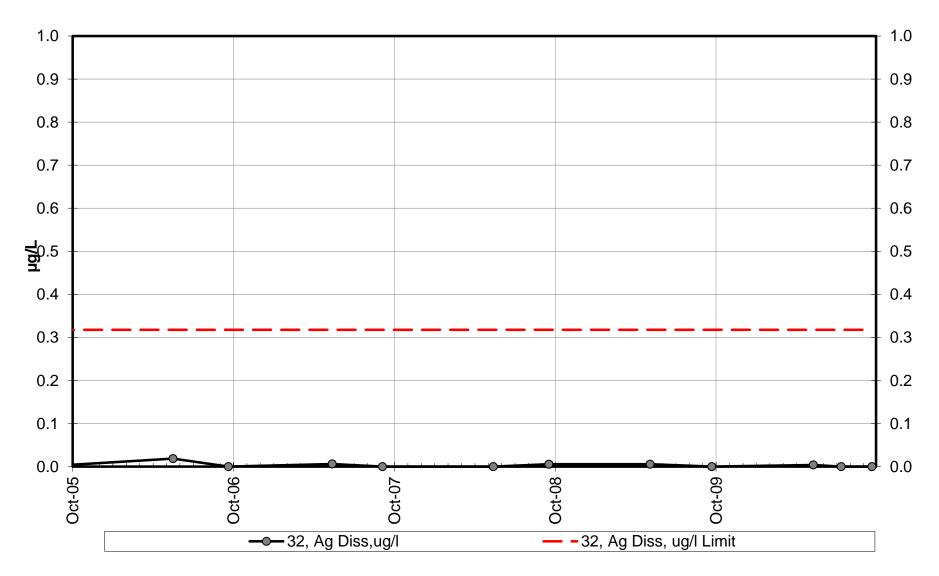
Site 32 - Dissolved Chromium



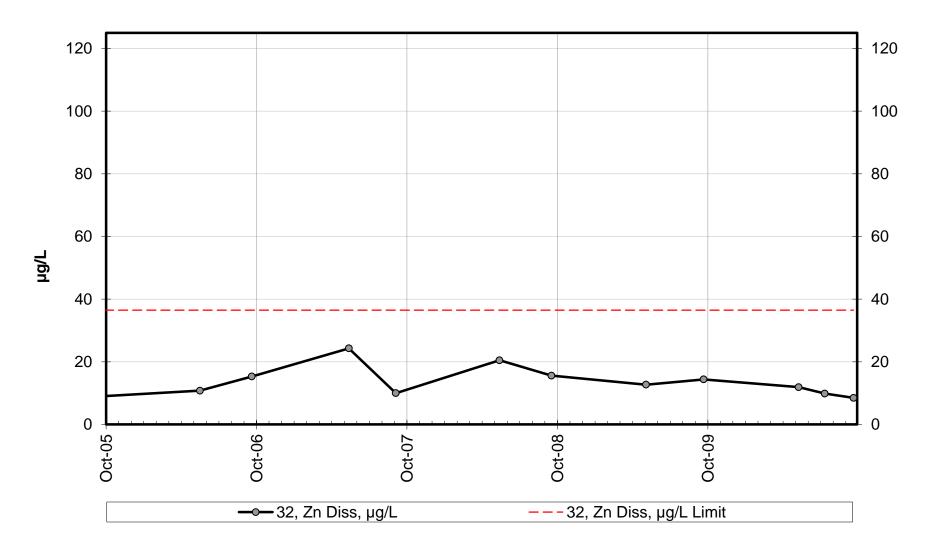
Note: the AWQS for Dissolved Chromium is 11 µg/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination


Site 32 - Dissolved Copper

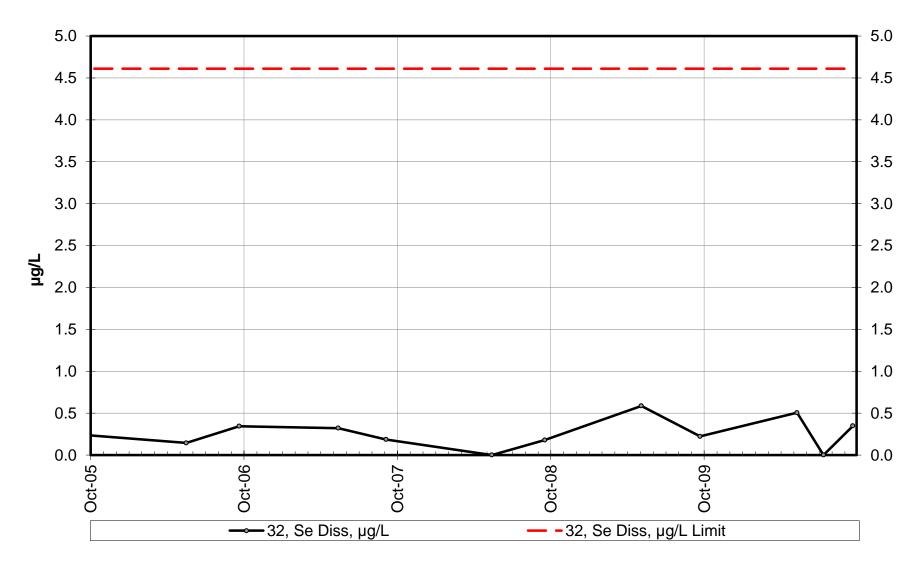
Site 32 - Dissolved Lead

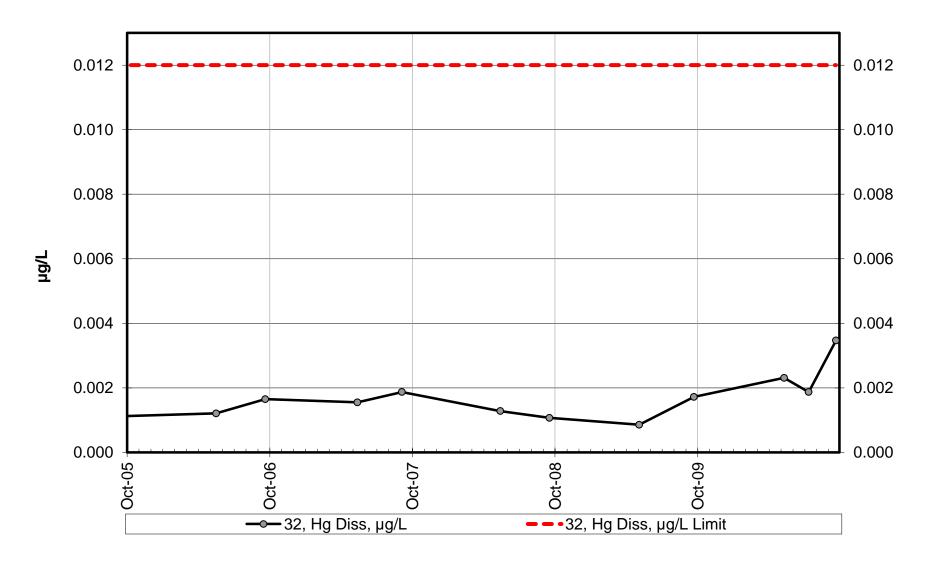


Site 32 - Dissolved Nickel



Note: The AWQS for dissolved nickel is hardness dependant and varies between 16 ug/L and 128 ug/L for waters with hardness values of 25 mg/L and 400 mg/L respectively. The AWQS, which would plot above the upper value on the Y-axis, are not shown on this graph to allow for greater visual detail of the plotted values.

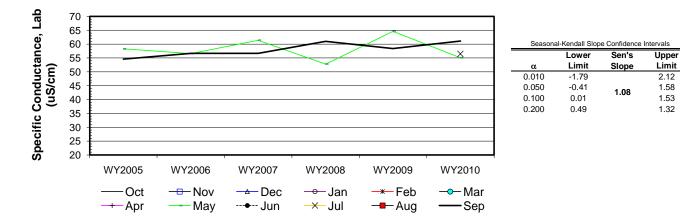

Site 32 - Dissolved Silver


Site 32 - Dissolved Zinc

Site 32 - Dissolved Selenium

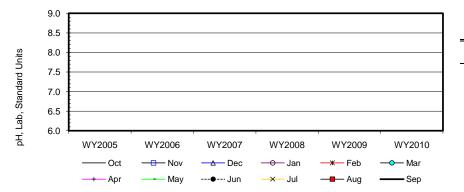
Site 32 - Dissolved Mercury

		0.1	N						ductance, L			A	A
Row label a b c d e f	Water Year WY2005 WY2006 WY2007 WY2008 WY2009	Oct 61.5	Νον	Dec	Jan	Feb	Mar	Apr	May 58.3 56.6 61.4 52.8 64.6	Jun	Jul	Aug	Sep 54.1 56. 56. 6 58.
t	WY2010		0	0	0	0	0		55.1	0	56.5	0	61.
	n	1	0	0	0	0	0	0	6	0	1	0	
	t ₁	5	5	5	5	5	5	5	5	5	5	5	
	t ₂	0	0	0	0	0	0	0	0	0	0	0	
	t ₃	0	0	0	0	0	0	0	0	0	0	0	
	t ₄	0	0	0	0	0	0	0	0	0	0	0	
	t ₅	0	0	0	0	0	0	0	0	0	0	0	
	b-a								-1				
	c-a								1				
	d-a								-1				
	e-a								1				
	f-a								-1				
	c-b								1				
	d-b								-1				
	e-b								1				
	f-b								-1				
	d-c								-1				
	e-c								1				
	f-c								-1				
	e-d								1				-
	f-d								1				
	f-e S _k								-1			-	
	3 _k	0	0	0	0	0	0	0	-1	0	0	0	1:
	² s=								28.33				27.3
	S _k /\sigma _S								-0.19				2.3
	Z ² _k								0.04				5.2
	57	0.44		Tie Enter/	+	•	+	•	+			Σn	4.4
	$\Sigma Z_k =$	2.11		Tie Extent	t,	t ₂	t ₃	t ₄	t ₅				14
	$\Sigma Z_k^2 =$	5.30		Count	58	1	0	0	0			ΣS_k	11


2 Seasonal Kendall analysis for	Specific Conductance, Lab (uS/cm)
---------------------------------	-----------------------------	--------

$\chi^2_h = \Sigma Z^2_k$	K(Z-bar) ² =	3.08	@α=5% χ ² _(K-1) =	3.84	Test for station homogeneity	
	р	0.079			$\chi^{2}h < \chi^{2}(K-1)$	ACCEPT
$\Sigma VAR(S_k)$	\mathbf{Z}_{calc}	1.34	@α/2=2.5% Z=	1.96	H ₀ (No trend)	ACCEPT
55.67	р	0.910			H _A (± trend)	REJECT

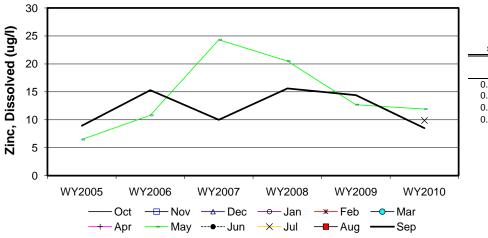
2.12 1.58 1.53


1.32

1.08

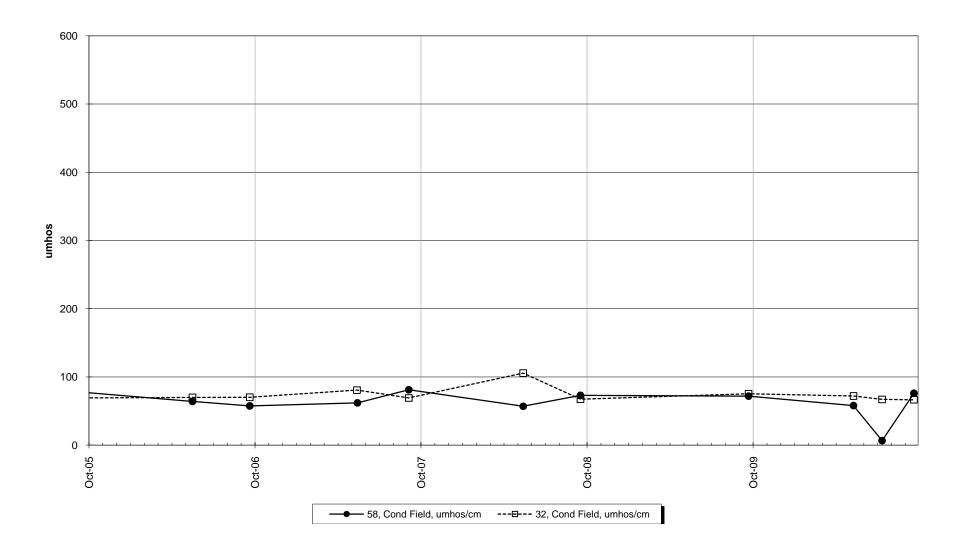
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2005								5.1				5.1
b	WY2006								4.7				4.7
c	WY2007								5.1				5.1
d	WY2008								5.1				5.0
e f	WY2009 WY2010								5.0 5.2		4.5		5.1 4.5
1	n	0	0	0	0	0	0	0	6	0	4.5	0	4.0
	t,	5	5	5	5	5	5	5	3	5	5	5	5
	t ₂	0	0	0	0	0	0	0	1	0	0	0	0
	t₃ ≁	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0
	t₄ t₅	0	0	0	0	0	0	0	0	0	0	0	C
									_				
	b-a								-1				-1
	c-a d-a								0 -1				-1 -1
	e-a								-1 -1				-1
	f-a								-1				-1
	c-b								1				1
	d-b								1				1
	e-b								1				1
	f-b								1				-1
	d-c								-1				-1
	e-c								-1				-1
	f-c								1				-1
	e-d								-1				1
	f-d f-e								1				-1 -1
	S _k	0	0	0	0	0	0	0	2	0	0	0	-7
	2												
	² s=								27.33				28.33
$Z_k =$	$s_{\rm k}\!/\!\sigma_{\rm s}$								0.38				-1.32
Z	Z ² _k								0.15				1.73
	$\Sigma Z_k =$	-0.93	Г	Tie Extent	t,	t ₂	t ₃	t ₄	t ₅			Σn	13
	ΣZ_{k}^{2}	1.88		Count	58	2 1	0	-4 0	0			ΣS _k	-5

$\chi^2_h = \Sigma Z^2_k$	K(Z-bar) ² =	1.44	@α=5% χ ² _(K-1) =	3.84	Test for station home	ogeneity
	р	0.230			χ ² h<χ ² (K-1)	ACCEPT
$\Sigma VAR(S_k)$	Z_{calc}	-0.54	@α/2=2.5% Z=	1.96	H ₀ (No trend)	ACCEPT
55.67	р	0.296			H _A (± trend)	REJECT

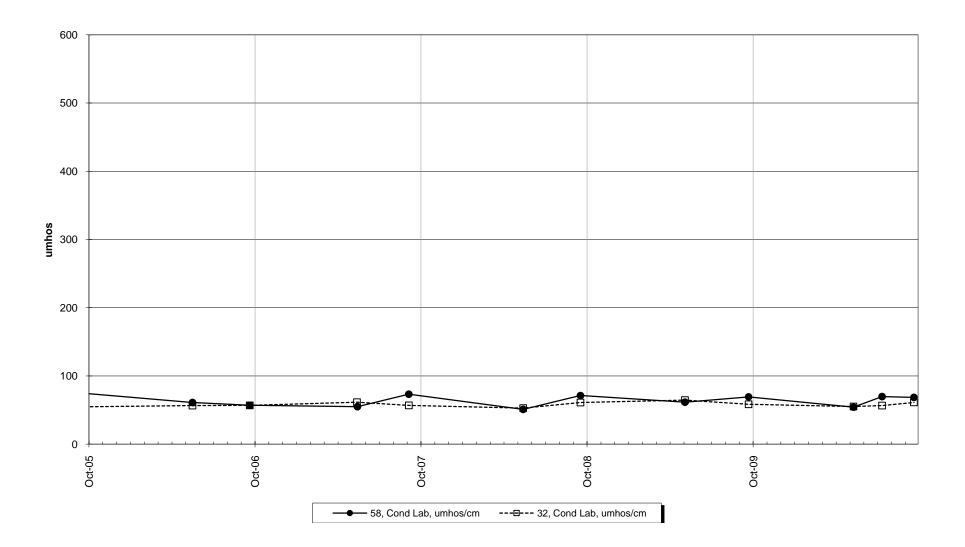

Seasona	Seasonal-Kendall Slope Confidence Intervals										
	Lower	Sen's	Upper								
α	Limit	Slope	Limit								
0.010	-0.10		0.12								
0.050	-0.04	-0.01	0.06								
0.100	-0.04	-0.01	0.03								
0.200	-0.03		0.00								

	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	is for To	Мау	Jun	Jul	Aug	Sep
w label a b c d	WY2005 WY2006 WY2007 WY2008		NOV	Dec	Jan	reb	Mai	Арі	21.4 13.1 16.2 15.2	<u> </u>	501	Aug	17.6 2.0 15.9 15.5
e f	WY2009 WY2010								16.7 6.4		0.0		14.7 0.0
	n	0	0	0	0	0	0	0	6	0	1	0	6
	t,	5	5	5	5	5	5	5	5	5	5	5	5
	t ₂	0	0	0	0	0	0	0	0	0	0	0	0
	t₃ t₄	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
	t₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a								-1				-1
	c-a								-1				-1
	d-a e-a								-1 -1				-1 -1
	f-a								-1				-1
	c-b								1				1
	d-b e-b								1 1				1
	f-b								-1				-1
	d-c e-c								-1 1				-1 -1
	f-c								-1				-1
	e-d f-d								1 -1				-1 -1
	f-e								-1 -1				- I -1
	S _k	0	0	0	0	0	0	0	-5	0	0	0	-9
σ	² s=								28.33				28.33
Z _k =	S _k /σ _S								-0.94				-1.69
	S _k /σ _S Z ² _k												
	Z ² _k				4		4		-0.94 0.88			Σ	-1.69 2.86
	ΣZ_{k}^{2}	-2.63		Tie Extent	t ₁	t ₂	t ₃	t ₄	-0.94 0.88 t ₅			Σn	-1.69 2.86 13
Z	ΣZ_{k}^{2} ΣZ_{k}^{2} ΣZ_{k}^{2}	3.74		Tie Extent Count	t, 60	t ₂ 0	t ₃ 0	t ₄ 0	-0.94 0.88			Σ n Σ S _k	-1.69 2.86
Z	ΣZ_{k}^{2}		[60	0			-0.94 0.88 t ₅				-1.69 2.86 13
Z	$\Sigma Z_{k}^{2} = \Sigma Z_{k}^{2} = \Sigma Z_{k}^{2}/K =$	3.74	0.28		60			0 T	-0.94 0.88 t ₅ 0	ion homoge	eneity		-1.69 2.86 13
Z	ΣZ_{k}^{2} ΣZ_{k}^{2} ΣZ_{k}^{2} ΣZ_{k}^{2} ΣZ_{k}^{2} ΣZ_{k}^{2}	3.74 -1.32 K(Z-bar) ² = p	0.28 0.595		60 @α=5%	0 6 χ ² (K-1)=	0 3.84	0 T	-0.94 0.88 $\overline{t_{s}}$ 0 $\overline{t_{s}}$ 0 $\overline{t_{s}}$		ACCEPT		-1.69 2.86 13
Z	$\sum_{k=1}^{2^{2}k} \sum_{k=1}^{2^{2}k} \sum_{k$	3.74 -1.32 $K(Z-bar)^{2} = \frac{p}{Z_{calc}}$	0.28 0.595 -1.73		60 @α=5%	0	0	0 T	-0.94 0.88 t_s 0 0 t_s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	rend)	ACCEPT ACCEPT		-1.69 2.86 13
Z	ΣZ_{k}^{2} ΣZ_{k}^{2} ΣZ_{k}^{2} ΣZ_{k}^{2} ΣZ_{k}^{2} ΣZ_{k}^{2}	3.74 -1.32 K(Z-bar) ² = p	0.28 0.595		60 @α=5%	0 6 χ ² (K-1)=	0 3.84	0 T	-0.94 0.88 $\overline{t_{s}}$ 0 $\overline{t_{s}}$ 0 $\overline{t_{s}}$	rend)	ACCEPT		-1.69 2.86 13
z	Z_{k}^{2} $\Sigma Z_{k} = \Sigma Z_{k}^{2}$ $Z_{k}^{2} = \Sigma Z_{k}^{2} = \Sigma Z_{k}^{2} = \Sigma Z_{k}^{2} = \Sigma Z_{k}^{2}$ $\Sigma VAR(S_{k}) = 56.67$	3.74 -1.32 $K(Z-bar)^{2} = \frac{p}{Z_{calc}}$	0.28 0.595 -1.73		60 @α=5%	0 6 χ ² (K-1)=	0 3.84	0 T	-0.94 0.88 t_s 0 0 t_s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	rend)	ACCEPT ACCEPT		-1.69 2.86 13
z 22 -	Z_{k}^{2} $\Sigma Z_{k} = \Sigma Z_{k}^{2}$ $Z_{k}^{2} = \Sigma Z_{k}^{2} = \Sigma Z_{k}^{2} = \Sigma Z_{k}^{2} = \Sigma Z_{k}^{2}$ $\Sigma VAR(S_{k}) = 56.67$	3.74 -1.32 $K(Z-bar)^{2} = \frac{p}{Z_{calc}}$	0.28 0.595 -1.73		60 @α=5%	0 6 χ ² (K-1)=	0 3.84	0 T	-0.94 0.88 t_s 0 0 t_s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	rend)	ACCEPT ACCEPT		-1.69 2.86 13
z 22 -	Z_{k}^{2} $\Sigma Z_{k} = \Sigma Z_{k}^{2}$ $Z_{k}^{2} = \Sigma Z_{k}^{2} = \Sigma Z_{k}^{2} = \Sigma Z_{k}^{2} = \Sigma Z_{k}^{2}$ $\Sigma VAR(S_{k}) = 56.67$	3.74 -1.32 $K(Z-bar)^{2} = \frac{p}{Z_{calc}}$	0.28 0.595 -1.73		60 @α=5%	0 6 χ ² (K-1)=	0 3.84	0 T	-0.94 0.88 t_s 0 0 t_s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	rend)	ACCEPT ACCEPT REJECT	ΣS _k	-1.69 2.86 13 -14
Z	Z_{k}^{2} $\Sigma Z_{k} = \Sigma Z_{k}^{2}$ $Z_{k}^{2} = \Sigma Z_{k}^{2} = \Sigma Z_{k}^{2} = \Sigma Z_{k}^{2} = \Sigma Z_{k}^{2}$ $\Sigma VAR(S_{k}) = 56.67$	3.74 -1.32 $K(Z-bar)^{2} = \frac{p}{Z_{calc}}$	0.28 0.595 -1.73		60 @α=5%	0 6 χ ² (K-1)=	0 3.84	0 T	-0.94 0.88 t_s 0 0 t_s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	rend)	ACCEPT ACCEPT REJECT	ΣS _k	-1.69 2.86 13 -14
z z 22 1 20 1	Z_{k}^{2} $\Sigma Z_{k} = \Sigma Z_{k}^{2}$ $Z_{k}^{2} = \Sigma Z_{k}^{2} = \Sigma Z_{k}^{2} = \Sigma Z_{k}^{2} = \Sigma Z_{k}^{2}$ $\Sigma VAR(S_{k}) = 56.67$	3.74 -1.32 $K(Z-bar)^{2} = \frac{p}{Z_{calc}}$	0.28 0.595 -1.73		60 @α=5%	0 6 χ ² (K-1)=	0 3.84	0 T	-0.94 0.88 t_s 0 0 t_s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	rend)	ACCEPT ACCEPT REJECT	ΣS _k	-1.69 2.86 13 -14
z z 22 - 20 - 18 -	Z_{k}^{2} $\Sigma Z_{k} = \Sigma Z_{k}^{2}$ $Z_{k}^{2} = \Sigma Z_{k}^{2} = \Sigma Z_{k}^{2} = \Sigma Z_{k}^{2} = \Sigma Z_{k}^{2}$ $\Sigma VAR(S_{k}) = 56.67$	3.74 -1.32 $K(Z-bar)^{2} = \frac{p}{Z_{calc}}$	0.28 0.595 -1.73		60 @α=5%	0 6 χ ² (K-1)=	0 3.84	0 T	-0.94 0.88 t_s 0 0 t_s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	rrend) rend) Seasonal α 0.010	ACCEPT ACCEPT REJECT -Kendall Slope Lower Limit -5.08	ΣS _k e Confidence Ir Sen's	-1.69 2.86 13 -14 Upper Limit 0.85
22 T 22 T 20 T 18 T 16 T	Z_{k}^{2} $\Sigma Z_{k} = \Sigma Z_{k}^{2}$ $Z_{k}^{2} = \Sigma Z_{k}^{2} = \Sigma Z_{k}^{2} = \Sigma Z_{k}^{2} = \Sigma Z_{k}^{2}$ $\Sigma VAR(S_{k}) = 56.67$	3.74 -1.32 $K(Z-bar)^{2} = \frac{p}{Z_{calc}}$	0.28 0.595 -1.73		60 @α=5%	0 6 χ ² (K-1)=	0 3.84	0 T	-0.94 0.88 t_s 0 0 t_s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	rrend) rend) <u>Seasonal</u> <u>α</u> 0.010 0.050	ACCEPT ACCEPT REJECT I-Kendall Slope Lower Limit -5.08 -3.32	ΣS _k e Confidence Ir Sen's	-1.69 2.86 13 -14 Upper Limit 0.85 -0.48
22 T 22 T 20 T 18 T 16 T	Z_{k}^{2} $\Sigma Z_{k} = \Sigma Z_{k}^{2}$ $Z_{k}^{2} = \Sigma Z_{k}^{2} = \Sigma Z_{k}^{2} = \Sigma Z_{k}^{2} = \Sigma Z_{k}^{2}$ $\Sigma VAR(S_{k}) = 56.67$	3.74 -1.32 $K(Z-bar)^{2} = \frac{p}{Z_{calc}}$	0.28 0.595 -1.73		60 @α=5%	0 6 χ ² (K-1)=	0 3.84	0 T	-0.94 0.88 t_s 0 0 t_s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	rrend) rend) Seasonal α 0.010	ACCEPT ACCEPT REJECT -Kendall Slope Lower Limit -5.08	ΣS _k e Confidence Ir Sen's Slope	-1.69 2.86 13 -14 Upper Limit 0.85
22 T 22 T 20 T 18 T 16 T 14 T	Z_{k}^{2} $\Sigma Z_{k} = \Sigma Z_{k}^{2}$ $Z_{k}^{2} = \Sigma Z_{k}^{2} = \Sigma Z_{k}^{2} = \Sigma Z_{k}^{2} = \Sigma Z_{k}^{2}$ $\Sigma VAR(S_{k}) = 56.67$	3.74 -1.32 $K(Z-bar)^{2} = \frac{p}{Z_{calc}}$	0.28 0.595 -1.73		60 @α=5%	0 6 χ ² (K-1)=	0 3.84	0 T	-0.94 0.88 t_s 0 0 t_s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	rend) rend) <u>Seasonal</u> <u>α</u> 0.010 0.050 0.100	ACCEPT ACCEPT REJECT Limit -5.08 -3.32 -2.93	ΣS _k e Confidence Ir Sen's Slope	-1.69 2.86 13 -14 Upper Limit 0.85 -0.48 -0.62
22 - 22 - 20 - 18 - 16 - 14 -	Z_{k}^{2} $\Sigma Z_{k} = \Sigma Z_{k}^{2}$ $Z_{k}^{2} = \Sigma Z_{k}^{2} = \Sigma Z_{k}^{2} = \Sigma Z_{k}^{2} = \Sigma Z_{k}^{2}$ $\Sigma VAR(S_{k}) = 56.67$	3.74 -1.32 $K(Z-bar)^{2} = \frac{p}{Z_{calc}}$	0.28 0.595 -1.73		60 @α=5%	0 6 χ ² (K-1)=	0 3.84	0 T	-0.94 0.88 t_s 0 0 t_s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	rend) rend) <u>Seasonal</u> <u>α</u> 0.010 0.050 0.100	ACCEPT ACCEPT REJECT Limit -5.08 -3.32 -2.93	ΣS _k e Confidence Ir Sen's Slope	-1.69 2.86 13 -14 Upper Limit 0.85 -0.48 -0.62
22 - 22 - 20 - 18 - 16 - 14 - 12 -	Z_{k}^{2} $\Sigma Z_{k} = \Sigma Z_{k}^{2}$ $Z_{k}^{2} = \Sigma Z_{k}^{2} = \Sigma Z_{k}^{2} = \Sigma Z_{k}^{2} = \Sigma Z_{k}^{2}$ $\Sigma VAR(S_{k}) = 56.67$	3.74 -1.32 $K(Z-bar)^{2} = \frac{p}{Z_{calc}}$	0.28 0.595 -1.73		60 @α=5%	0 6 χ ² (K-1)=	0 3.84	0 T	-0.94 0.88 t_s 0 0 t_s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	rend) rend) <u>Seasonal</u> <u>α</u> 0.010 0.050 0.100	ACCEPT ACCEPT REJECT Limit -5.08 -3.32 -2.93	ΣS _k e Confidence Ir Sen's Slope	-1.69 2.86 13 -14 Upper Limit 0.85 -0.48 -0.62
22 T 22 T 20 T 18 T 16 T	Z_{k}^{2} $\Sigma Z_{k} = \Sigma Z_{k}^{2}$ $Z_{k}^{2} = \Sigma Z_{k}^{2} = \Sigma Z_{k}^{2} = \Sigma Z_{k}^{2} = \Sigma Z_{k}^{2}$ $\Sigma VAR(S_{k}) = 56.67$	3.74 -1.32 K(Z-bar) ² = p Z _{calc} p	0.28 0.595 -1.73 0.042		60 @α=5%	0 6 χ ² (K-1)= 2.5% Z=	0 3.84	0 T	-0.94 0.88 t_s 0 $\zeta^2 h < \chi^2 (K-1)$ H ₀ (No t H _A (± tt	rend) rend) <u>Seasonal</u> <u>α</u> 0.010 0.050 0.100	ACCEPT ACCEPT REJECT Limit -5.08 -3.32 -2.93	ΣS _k e Confidence Ir Sen's Slope	-1.69 2.86 13 -14 Upper Limit 0.85 -0.48 -0.62
22 - 22 - 20 - 118 - 114 - 12 -	ΣZ_{k}^{2} ΣZ_{k}^{2} ΣZ_{k}^{2} ΣZ_{k}^{2} ΣZ_{k}^{2} $\Sigma VAR(S_{k})$ 56.67	3.74 -1.32 K(Z-bar) ² = p Z _{calc} p	0.28 0.595 -1.73 0.042		60 @α=5% @α/2=:	0 6 χ ² (K-1)= 2.5% Z=	0 3.84 1.96	0 T 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-0.94 0.88 t_s 0 $\zeta^2 h < \chi^2 (K-1)$ H ₀ (No t H _A (± tt	rend) rend) <u>Seasonal</u> <u>α</u> 0.010 0.050 0.100	ACCEPT ACCEPT REJECT Limit -5.08 -3.32 -2.93	ΣS _k e Confidence Ir Sen's Slope	-1.69 2.86 13 -14 Upper Limit 0.85 -0.48 -0.62

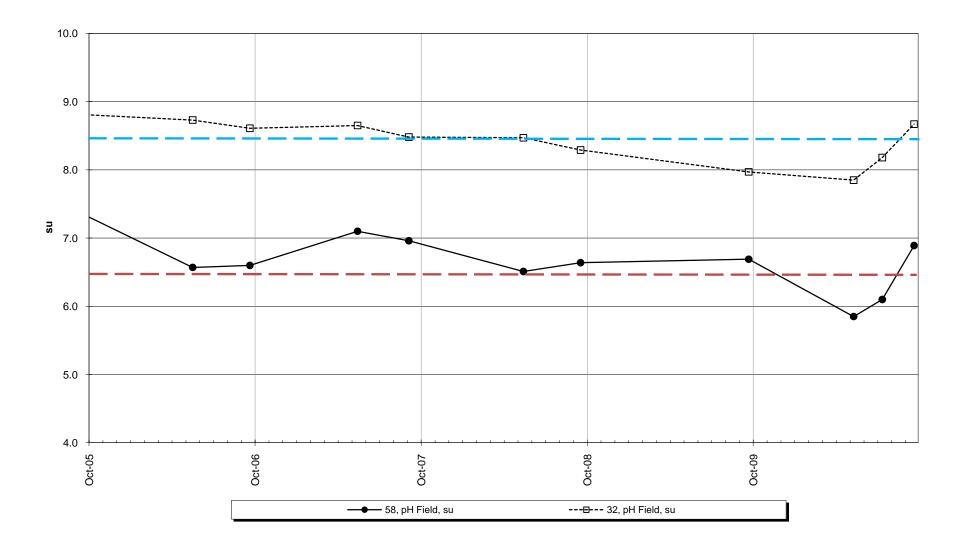
w label a b	Water Year WY2005	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
c d	WY2006 WY2007 WY2008								0.1 0.0 0.0 0.0 0.3				-0. 0. 0.
e f	WY2009 WY2010								0.3 0.0		0.0		0. 0.
	n	0	0	0	0	0	0	0	6	0	1	0	
-	t,	0	0	0	0	0	0	0	2	0	1	0	
	t ₂	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	
	t₃ t₄	0	0	0	0	0	0	0	1	0	0	0	
-	t₅	0	0	0	0	0	0	0	0	0	0	0	
-	b-a								-1				
	c-a d-a								-1 -1				
	e-a								1				
	f-a								-1				
	c-b d-b								0 0				•
	e-b								1				
	f-b d-c								0 0				•
	e-c								1				
	f-c								0 1				
	e-d f-d								0				
=	f-e								-1				
-	S _k	0	0	0	0	0	0	0	-1	0	0	0	
	² _s =								19.67				27.3
	S _k /σ _s								-0.23				0.3
Z	2 k								0.05				0.1
	$\Sigma Z_k =$	0.16	[Tie Extent	t ₁	t ₂	t ₃	t ₄	t ₅			Σ n	13
7	ΣZ ² _k = ·bar=ΣZ _k /K=	0.20 0.08	L	Count	7	1	0	1	0			ΣS_k	1
F	$\chi^2_h = \Sigma Z^2_k - H$ $\Sigma VAR(S_k)$	$\frac{(Z-bar)^2}{p}$	0.18 0.667 0.00			$\% \chi^{2}_{(K-1)} =$ $\alpha = 5\% Z =$	3.84		Test for station $\chi^2_h < \chi^2_{(K-1)}$ H ₀ (No triangle)	A	neity ACCEPT		
L	47.00	p	0.500				-		H _A (± tr		REJECT		
											-		
0.35													
0.3 0.25 0.2 0.15 0.1 0.05 0 -0.05													
0.25							$/ \land$			Seasona	I-Kendall Slope		
0.2						/	/			α	Lower Limit	Sen's Slope	Uppe Limit
0.15				_						0.010	-0.03		0.09
0.1	1	_ /	·			/_				0.050 0.100	-0.02 -0.01	0.00	0.05 0.03
0.05	WY20	05 /W	Y2006	WY2007	WY	2008	WY2009	- WX	2010	0.200	0.00		0.00
0		$-\!\!-\!\!-$	<u>></u> .			4			×				
-0.05		/											
-0.1	+												
-0.15	E												
0.15													

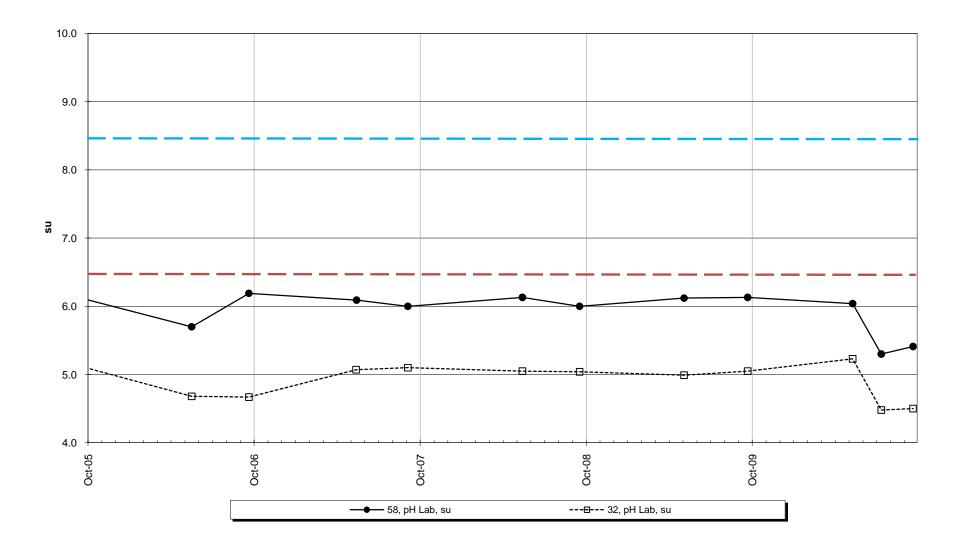

$\begin{array}{c} \mbox{tater Year} \\ \mbox{VY2005} \\ \mbox{VY2006} \\ \mbox{VY2007} \\ \mbox{VY2008} \\ \mbox{VY2009} \\ \mbox{VY2009} \\ \mbox{VY2010} \\ \mbox{n} \\ \hline \\ \mbox{t}_1 \\ \mbox{t}_2 \\ \mbox{t}_3 \\ \mbox{t}_4 \\ \mbox{t}_5 \\ \end{array}$	0ct 0 5 0 0	Nov 0 5 0	Dec	Jan 0	Feb	Mar	Apr	May 6.5 10.8 24.3 20.5 12.7	Jun	Jul	Aug	Sep 9.0 15.3 10.0 15.0
$\begin{array}{c} \text{VY2006} \\ \text{VY2007} \\ \text{VY2008} \\ \text{VY2009} \\ \text{VY2010} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	5 0 0	5		0	0			10.8 24.3 20.5				15. 10.
$\begin{array}{c} \text{VY2007} \\ \text{VY2008} \\ \text{VY2009} \\ \text{VY2010} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	5 0 0	5		0	0			24.3 20.5				10
$\begin{array}{c} \textbf{VY2008} \\ \textbf{VY2009} \\ \textbf{VY2010} \\ \hline \textbf{n} \\ \hline t_1 \\ t_2 \\ t_3 \\ t_4 \\ \end{array}$	5 0 0	5		0	0			20.5				
VY2009 VY2010 n t ₁ t ₂ t ₃ t ₄	5 0 0	5		0	0							15
VY2010 n t ₁ t ₂ t ₃ t ₄	5 0 0	5		0	0			12.7				
n t ₁ t ₂ t ₃ t ₄	5 0 0	5		0	0			11.9		9.9		14. 8.
t ₂ t ₃ t ₄	0 0				•	0	0	6	0	<u> </u>	0	0.
t ₂ t ₃ t ₄	0 0			5	5	5	5	5	5	5	5	
t₃ t₄	0		5 0	0	0	0	5 0	0	0	0	0	
t4		0	0	0	0	0	0	0	0	0	0	
		0 0	0	0	0	ů 0	0 0	ů 0	0	0	ů 0	
	0	0	0	0	0	0	0	0	0	0	0	
b-a								1				
c-a								1				
d-a								1				
e-a								1				
f-a								1				-
								1				-
								1				
								1				-
								-1				-
								-1 -1				
								-1				-
e-d								-1				-
f-d								-1				-
f-e								-1				-*
	0	0	0	0	0	0	0	3	0	0	0	-
								28.33				28.3
σ_{s}								0.56				-0.1
3								0.32				0.0
57	0.00	Г		+	4		+				Σn	
												13
			Count	60	0	0	0	0			ΣS_k	2
r=∑Z₂/K=	0.19											
c	d-a e-a f-a c-b d-b e-b f-b d-c e-c f-c f-c f-d f-e	$\begin{array}{c c} d{\text{-}a} & \\ e{\text{-}a} & \\ f{\text{-}a} & \\ c{\text{-}b} & \\ d{\text{-}b} & \\ e{\text{-}b} & \\ f{\text{-}b} & \\ d{\text{-}c} & \\ e{\text{-}c} & \\ f{\text{-}c} & \\ e{\text{-}c} & \\ f{\text{-}c} & \\ e{\text{-}d} & \\ f{\text{-}d} & \\ f{\text{-}d} & \\ f{\text{-}d} & \\ \hline \end{array}$	$\begin{array}{c c c c c c c c } d-a & & & & & & & \\ e-a & & & & & & \\ f-a & & & & & & \\ c-b & & & & & & \\ d-b & & & & & & \\ e-b & & & & & & \\ f-b & & & & & & \\ d-c & & & & & & \\ e-c & & & & & & \\ e-c & & & & & & \\ f-c & & & & & & \\ e-c & & & & & & \\ e-c & & & & & & \\ f-d & & & & & & \\ \hline \end{array}$	d-a e-a f-a c-b d-b e-b f-b d-c e-c f-c e-d f-d f-d f-e ΣZ _k = 0.38 ΣZ _k = 0.38 ΣZ ^k _k = 0.35	$\begin{array}{c c c c c c c } d-a & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

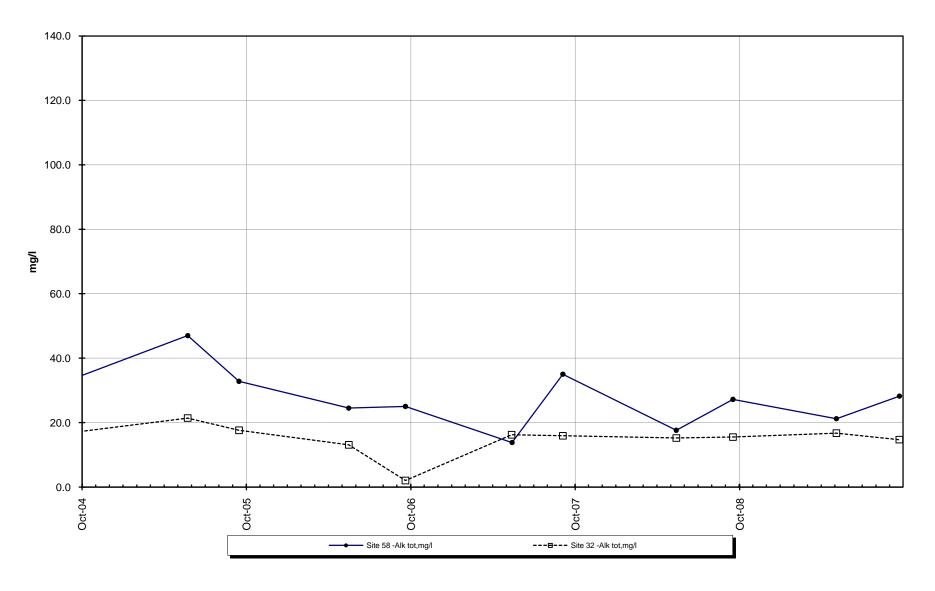
$\chi^2_h = \Sigma Z^2_k$	-K(Z-bar) ² =	0.28	@α=5% χ ² _(K-1) =	3.84	Test for station homog	jeneity
	р	0.595			$\chi^2_h < \chi^2_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	\mathbf{Z}_{calc}	0.13	@α/2=2.5% Z=	1.96	H ₀ (No trend)	ACCEPT
56.67	р	0.553			H _A (± trend)	REJECT

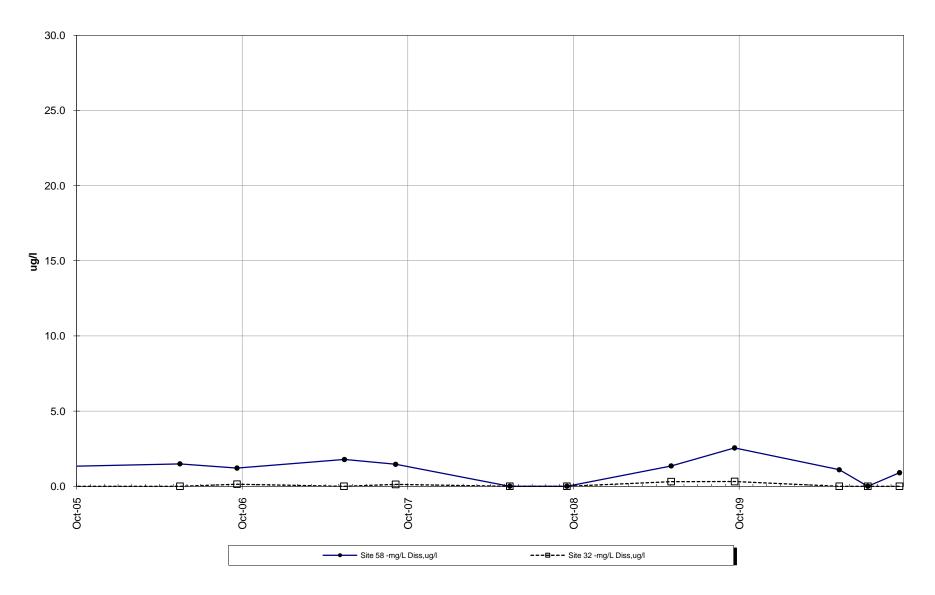


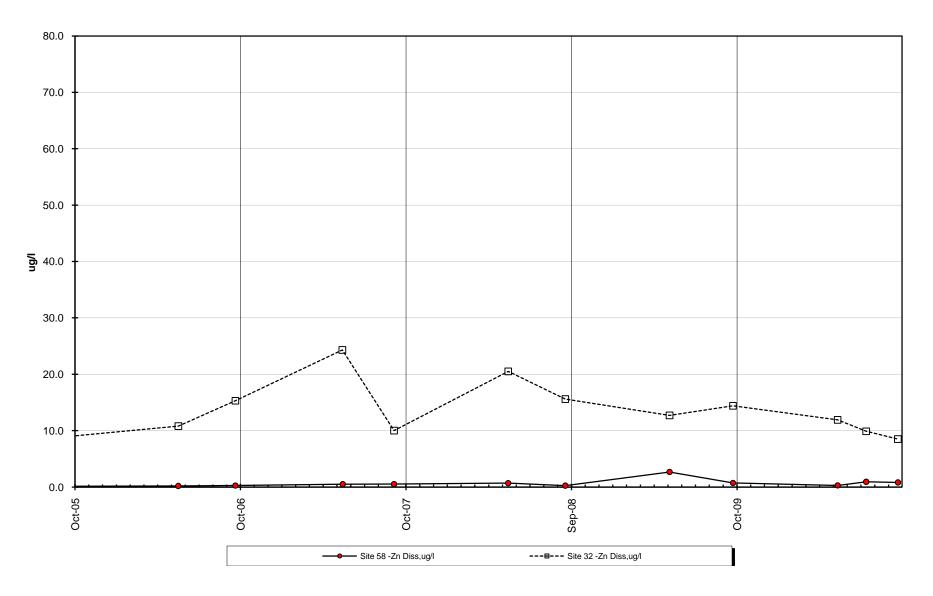
Seasonal-Kendall Slope Confidence Intervals							
	Lower	Sen's	Upper				
α	Limit	Slope	Limit				
0.010	-4.05		3.81				
0.050	-2.05	0.21	1.68				
0.100	-1.13	0.21	1.31				
0.200	-0.55		0.71				


Site 58 vs Site 32 -Conductivity-Field


Site 58 vs Site 32 -Conductivity


Site 58 vs Site 32 -Field pH


Site 58 vs Site 32 -Lab pH


Site 58 vs. Site 32 -Total Alkalinity

Site 58 vs. Site 32 - Total Sulfate

Site 58 vs. Site 32 -Dissolved Zinc

INTERPRETIVE REPORT SITE 59 "MONITORING WELL T-00-01A"

The data collected during the current water year are listed in the following "Table of Results for Water Year 2010" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the rightmost column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

Sampling at this site was added to the FWMP in May-2002. All data collected at this site for the past six years are included in the data analyses. As shown in the table below, there were no data outliers.

Sample Date	Parameter	Value	Qualifier	Notes	
No outliers have	been identified by HG	CMC for the period	od of Octobe	r 2005 through September 2010.	

The data for Water Year 2010 have been compared to the strictest fresh water quality criterion for each applicable analyte. Out of the three sampling events, two were in exceedance for laboratory pH and the other was in exceedance for the field pH.

Sample Date	Parameter	Value	Hardness (mg/L)	Standard	Standard Type
11-May-10	pH Field, su	5.85		6.5	Aquatic Life, chronic
13-Jul-10	pH Field, su	6.1		6.5	Aquatic Life, chronic
13-Jul-10	pH Lab, su	6.38		6.5	Aquatic Life, chronic
21-Sep-10	pH Lab, su	6.11		6.5	Aquatic Life, chronic

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. One visual trend in dissolved mercury concentration has been identified. There was a moderate increase in the dissolved mercury concentration measured at Site 59 by the end of the water year. This increase has also been noted for the other upgradient well Site 58 and is thought to be a result of the preparatory work for the East Ridge expansion.

A non-parametric statistical analysis for trend was preformed for conductivity, pH,

alkalinity, sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall analyses are presented in detail on the pages following this interpretive section. The adjacent table summarizes the results on the data collected between Oct-04 and Sep-10 (WY2005-

Site 59-WY2010, summary statistics for trend analysis.

	Mann-Ke	endall test	<u>statistics</u>	Sen's slope estimate		
Parameter	n(1)	p (2)	Trend	Q	Q(%)	
Conductivity, La	b 6	1.00	+	3.33	3.2	
pH, Lab	6	0.45	0			
Alkalinity, Total	6	0.35	0			
Sulfate, Total	6	0.98	+	0.29	6.4	
Zinc, Dissolved	6	0.18	0			
(1): Number of y	/ears	(2):Signif	icance lev	/el		

WY2010). Two statistically significant ($\alpha/2=2.5\%$) trends were identified. Laboratory conductivity (p=1.00) with an estimated slope of 3.33 µS/cm/yr or a 3.2% increase, and total sulfate (p=0.99) with an estimated slope of 0.29 mg/L/yr or a 6.4% increase. The small magnitude of change and limited dataset (started 2002) makes drawing definitive conclusions difficult. Currently without further information and with the site being upgradient, this variation is considered natural.

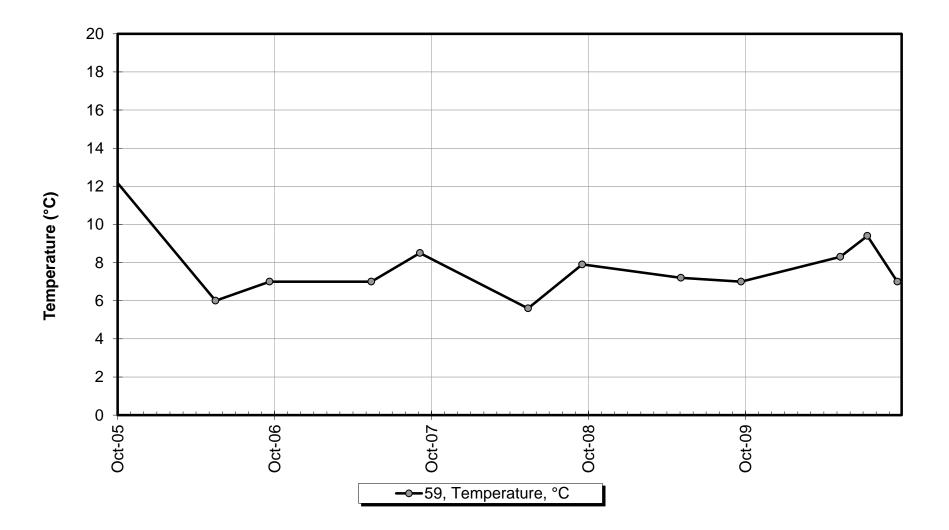
Table of Results for Water Year 2010

				Site 59	"MW-Т-0	0-01A"							
Sample Date/Parameter	Oct-09	Nov-09	Dec-09	Jan-10	Jan-10	Mar-10	Apr-10	5/11/2010	Jun-10	Jul-10	Aug-10	9/21/2010	Median
Water Temp (°C)								8.3	(7)	9.4	(1)	7.0	8.3
Conductivity-Field(µmho)								107	AMPLING	117	SAMPLING	121	117
Conductivity-Lab (µmho)								112	J	115]	115	115
pH Lab (standard units)								6.80	<u> </u>	6.38	<u>C</u>	6.11	6.38
pH Field (standard units)								5.85	N	6.10	Z	6.89	6.10
Total Alkalinity (mg/L)								40.5	SP	41.0	25	42.1	41.0
Total Sulfate (mg/L)								5.3 J	2	4.7 J	2	5.5 J	5.3
Hardness (mg/L)								46.1	ö	49.7	ō	48.0	48.0
Dissolved As (ug/L)								0.141	Ľ	0.177	FO	0.161	0.161
Dissolved Ba (ug/L)		NOT S	SCHEDU	ILED FO	R SAME	PLING		6.7	Δ	7.4	Δ	7.9	7.4
Dissolved Cd (ug/L)								0.011 J	SCHEDULE	0.011 J	ED	0.012 J	0.011
Dissolved Cr (ug/L)								6.910	5	4.740	5	4.070	4.740
Dissolved Cu (ug/L)								0.080 U	ā	0.116	ā	0.168	0.116
Dissolved Pb (ug/L)								0.0481	Щ	0.0044 J	SCHEDUI	0.0076 J	0.0076
Dissolved Ni (ug/L)								1.010	ち	0.864	ホ	1.130	1.010
Dissolved Ag (ug/L)								<0.004	š	<0.004	ŭ	<0.008	0.002
Dissolved Zn (ug/L)								0.35	-	0.87	-	0.45	0.45
Dissolved Se (ug/L)								0.319 J	NOT	0.503	NON NO	<0.228	0.319
Dissolved Hg (ug/L)								0.002010	Z	0.000194 U	Z	0.003820	0.002010

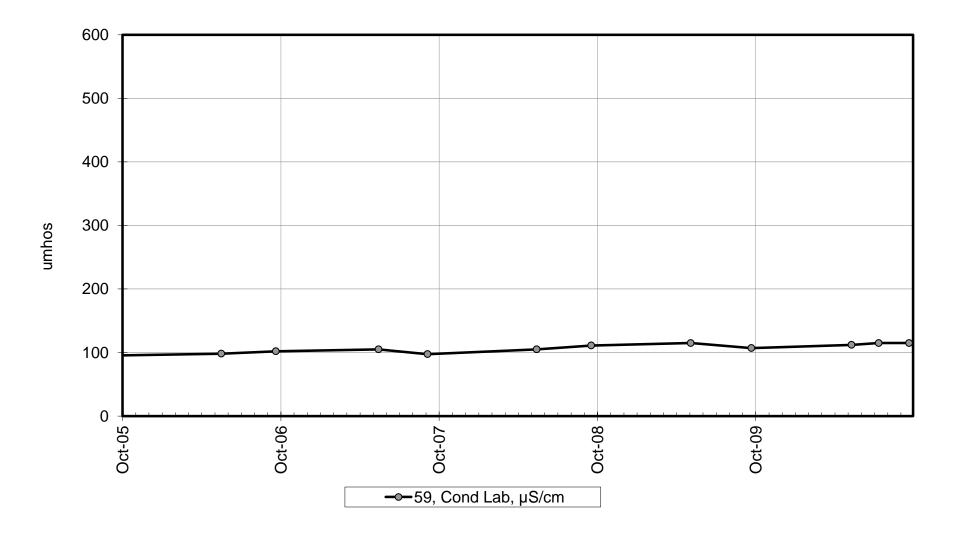
For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

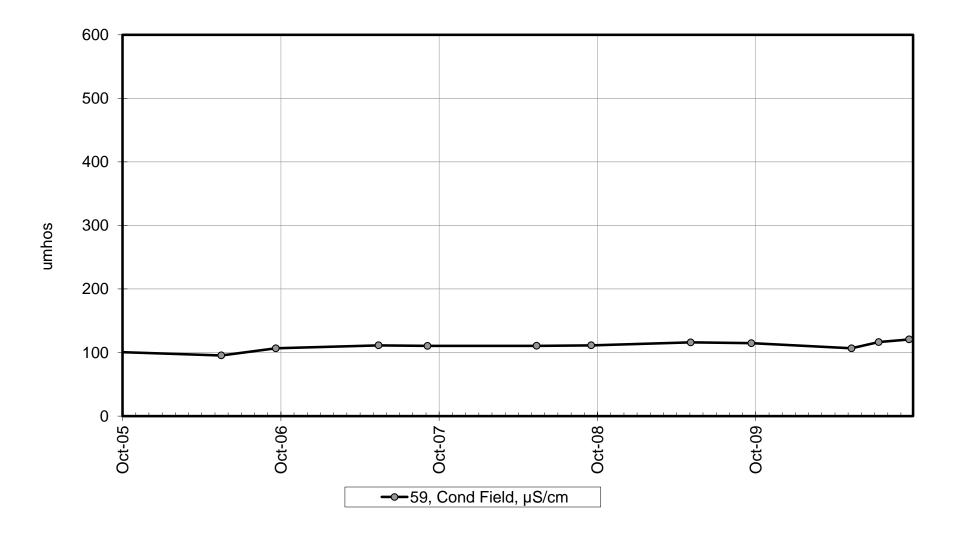
Shaded data has been qualified as an outlier by HGCMC and removed from any further analysis and is not included into the calculation of the median

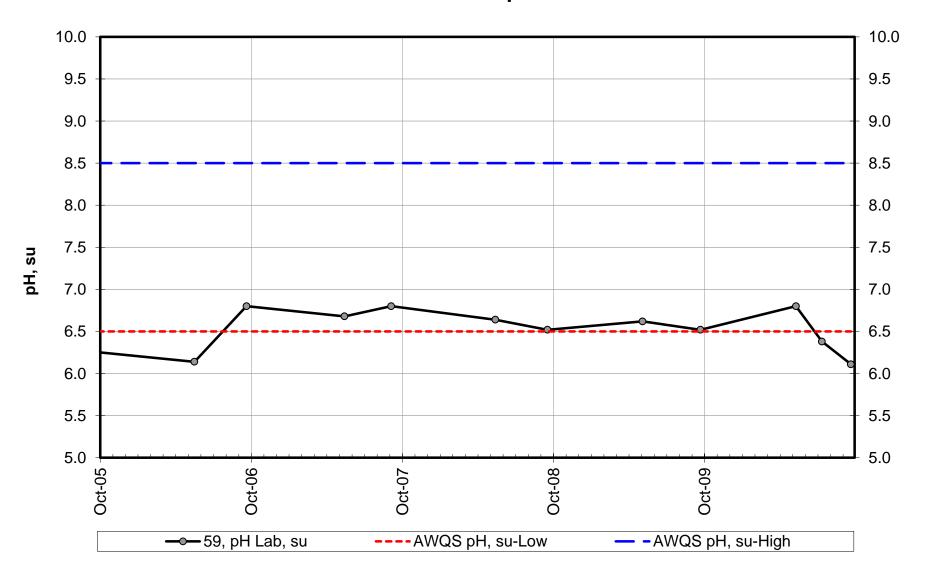

Qualified Data by QA Reviewer

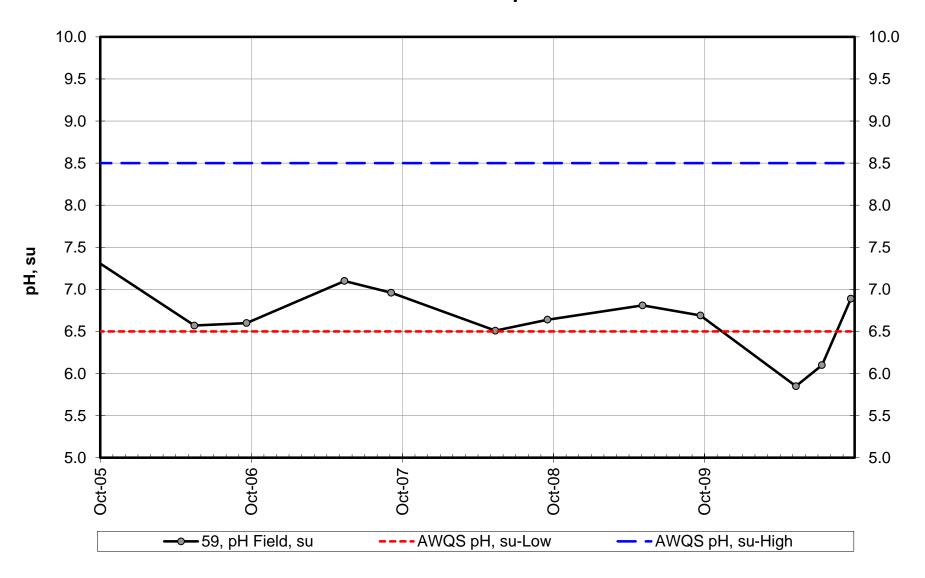
Date Range: 10/01/2009 to 09/30/2010

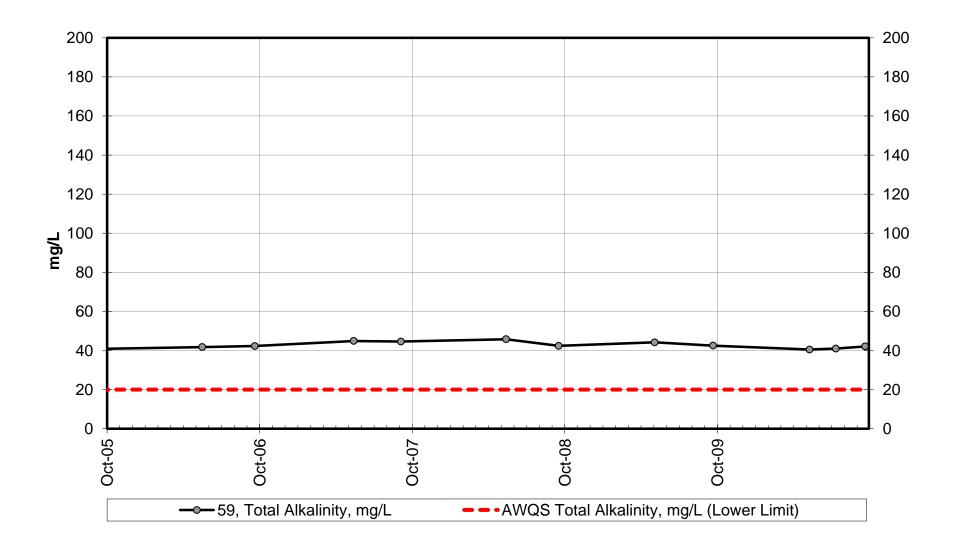

Site No.	Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier
9	5/11/2010	10:18 AM				
			Cd diss, µg/l	0.0112	J	Below Quantitative Range
			Cu diss, µg/l	0.0798	U	Field Blank Contamination
			Se diss, µg/l	0.319	J	Below Quantitative Range
			SO4 Tot, mg/l	5.3	J	Sample Temperature
9	7/13/2010	2:12 PM				
			Cd diss, µg/l	0.0114	J	Below Quantitative Range
			Hg diss, µg/l	0.000194	U	Field Blank Contamination
			Pb diss, µg/l	0.00443	J	Below Quantitative Range
			SO4 Tot, mg/l	4.7	J	Sample Reciept Temperature
9	9/21/2010	9:28 AM				
			Cd diss, µg/l	0.0116	J	Below Quantitative Range
			Pb diss, µg/l	0.00763	J	Below Quantitative Range
			SO4 Tot, mg/l	5.5	J	Sample Receipt Temperature

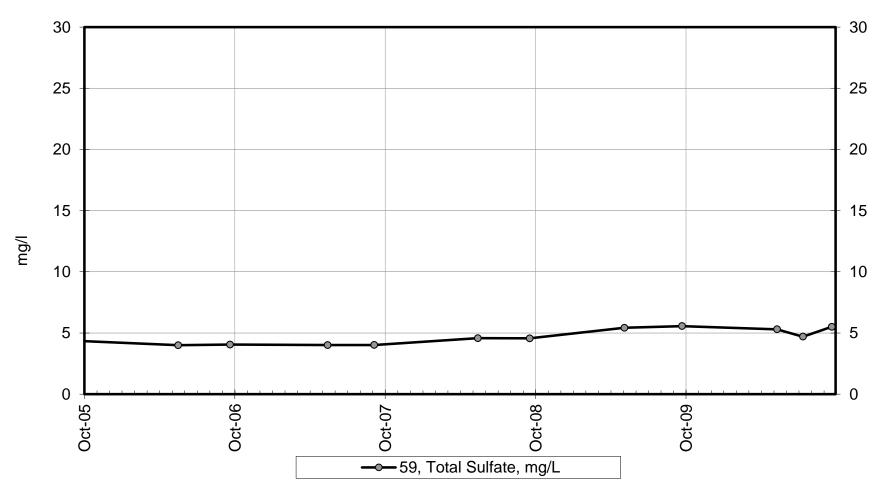
Qualifier	Description
J	Positively Identified - Approximate Concentration
Ν	Presumptive Evidence For Tentative Identification
NJ	Tentatively Identified - Approximate Concentration
R	Rejected - Cannot be Verified
U	Not Detected Above Quantitation Limit
UJ	Not Detected Above Approximate Quantitation Limit


Site 59 -Water Temperature

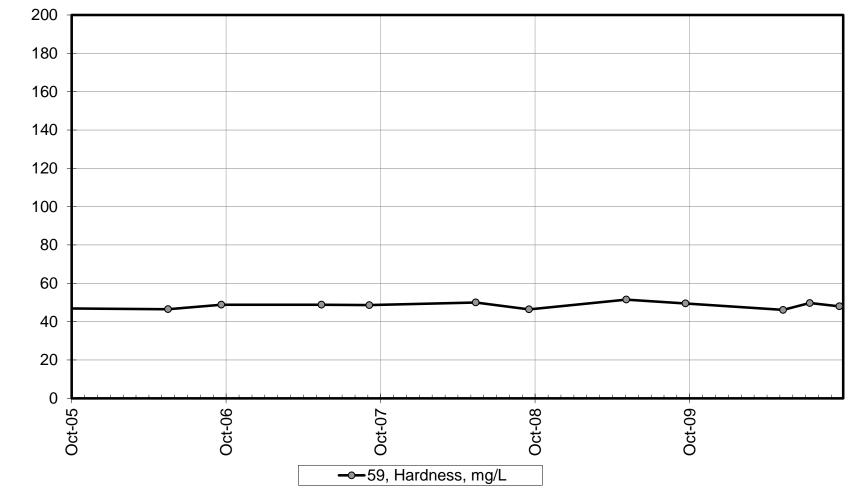

Site 59 - Conductivity-Lab


Site 59 - Conductivity-Field

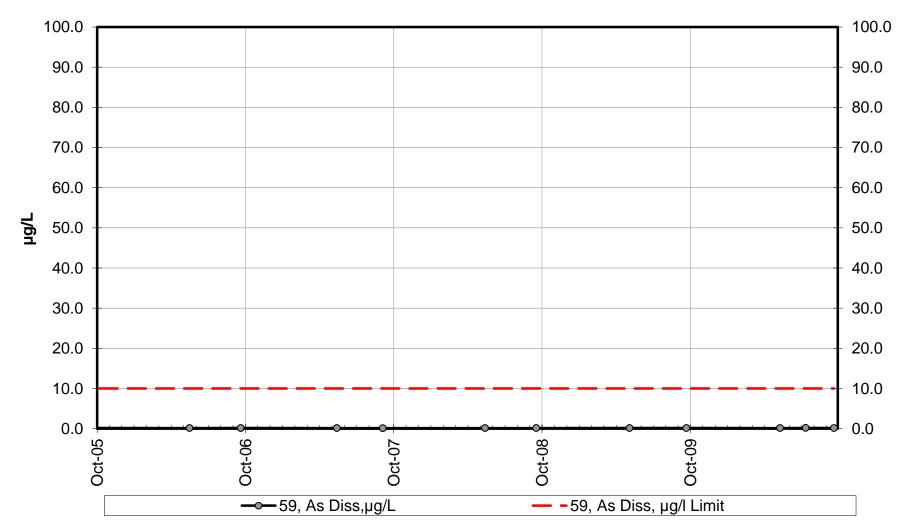

Site 59 - Lab pH


Site 59 - Field pH

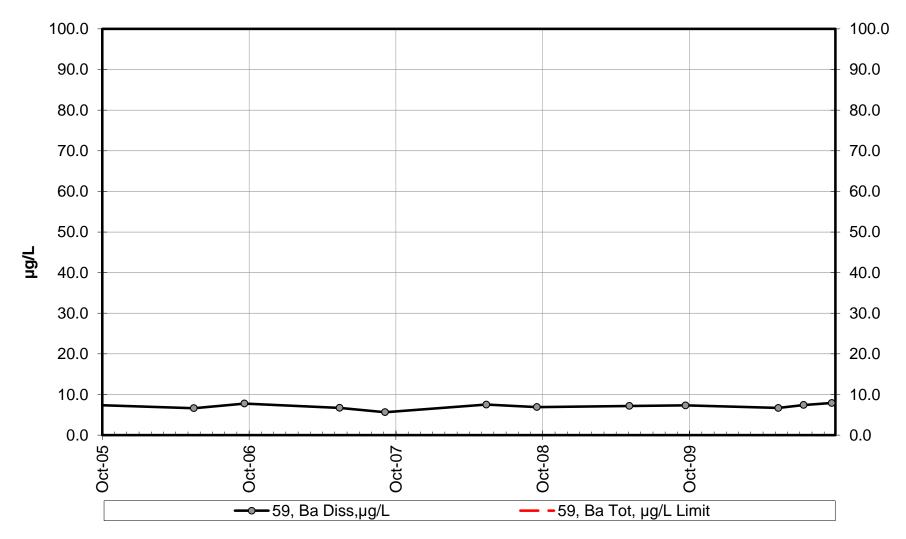
Site 59 - Total Alkalinity



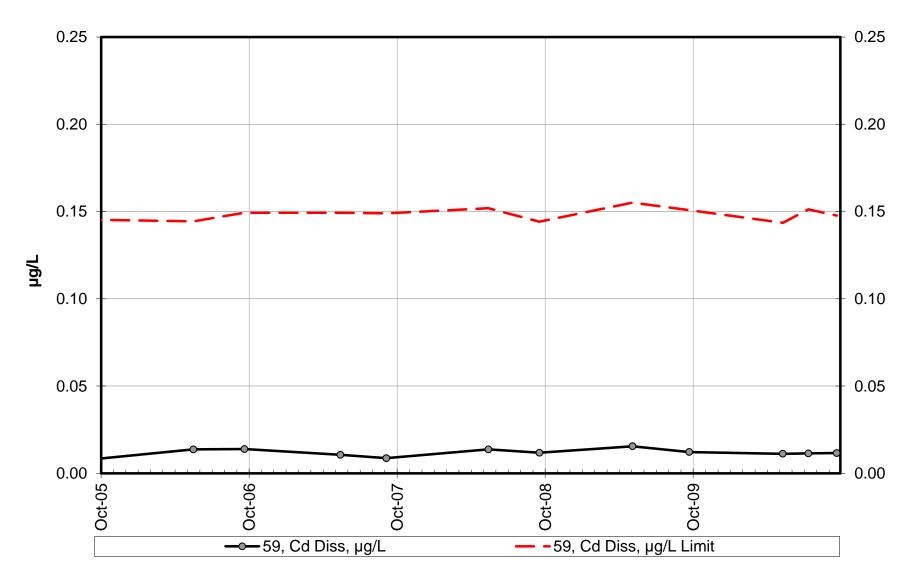
Site 59 - Total Sulfate


Note: The AWQS for Total Sulfate is 250 mg/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination.

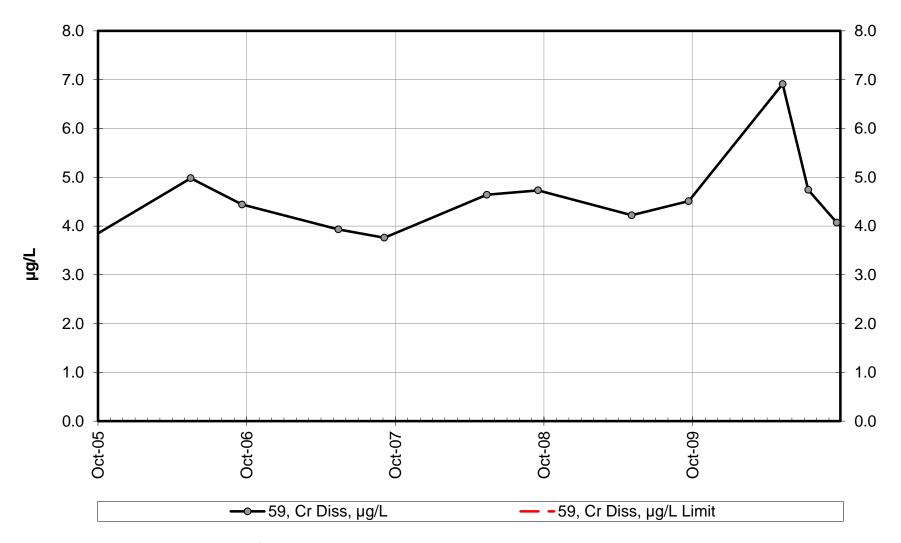
Site 59 - Hardness


mg/L

Site 59 - Dissolved Arsenic

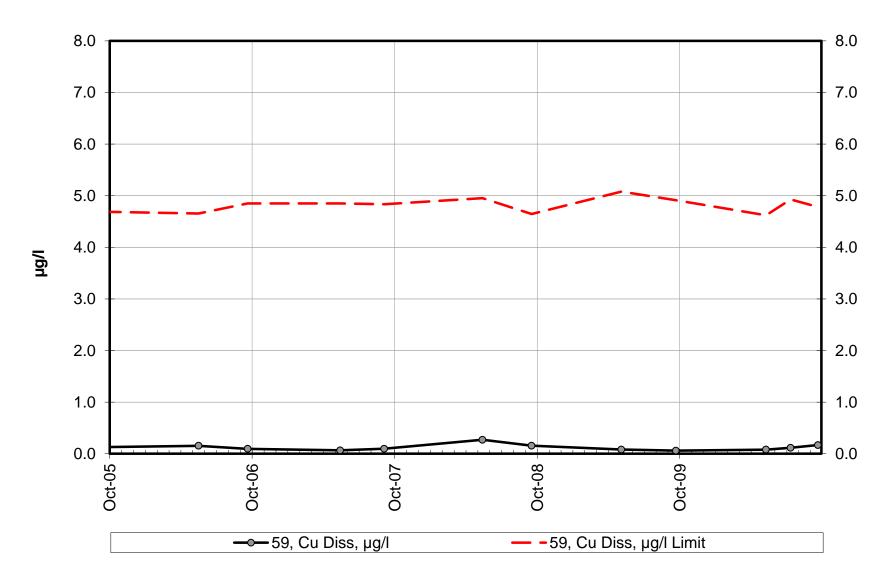

Note: The AWQS for total arsenic is 10 ug/L and thus may not be shown on this graph in order to allow greater visual detail of plotted values for trend determination

Site 59 - Dissolved Barium

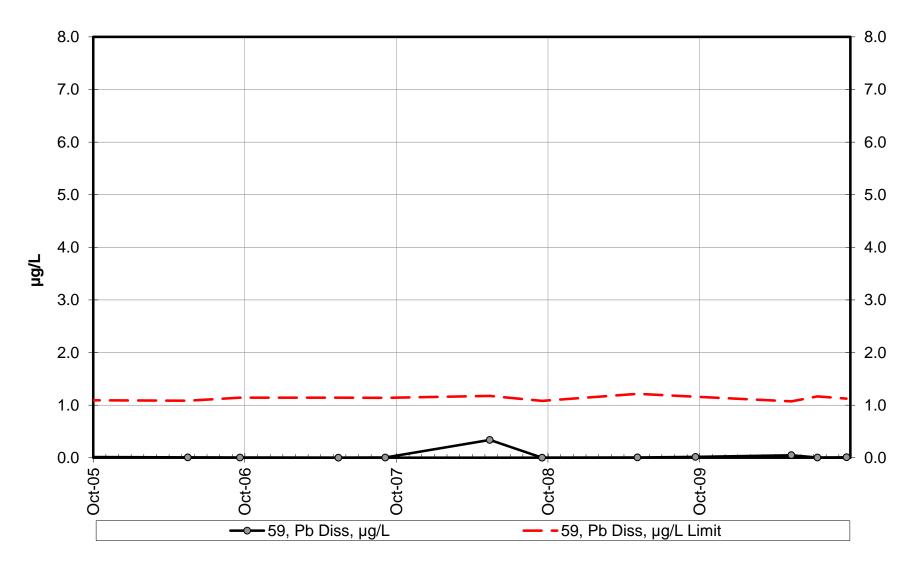


Note: the AWQS for Total Barium is 1000 ug/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination

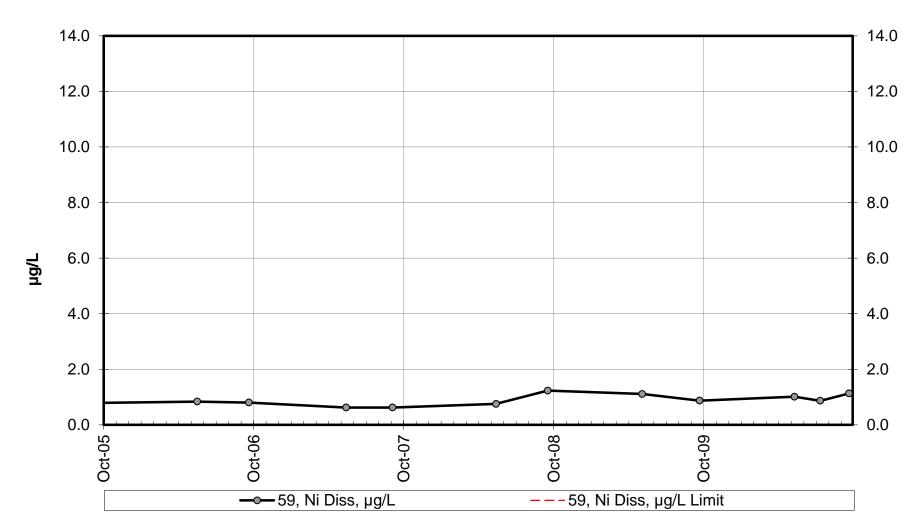
Site 59 - Dissolved Cadmium



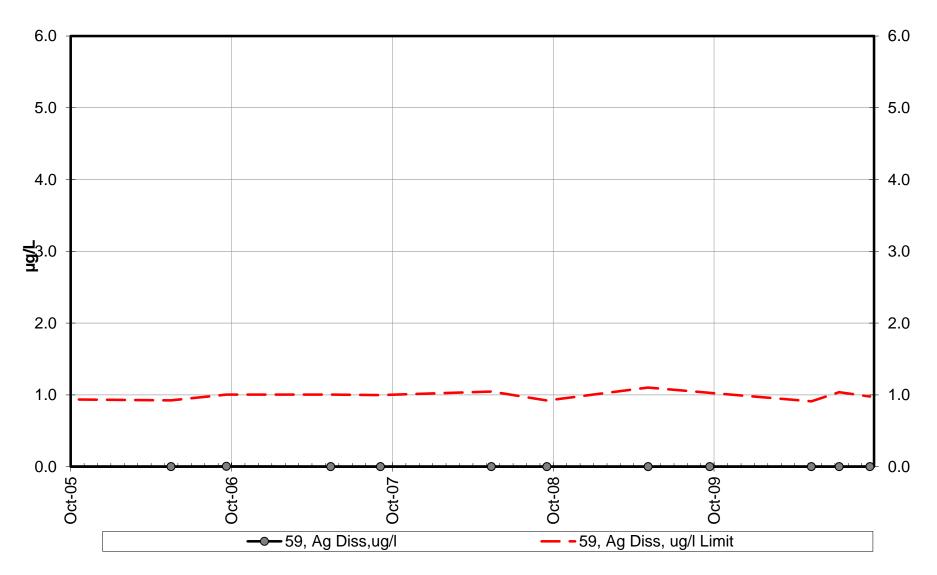
Site 59 - Dissolved Chromium



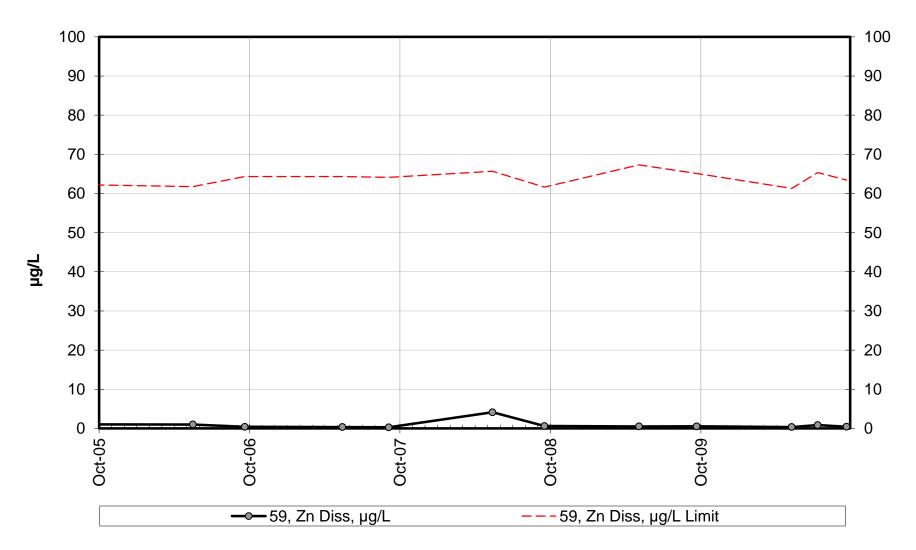
Note: the AWQS for Dissolved Chromium is 11 µg/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination


Site 59 - Dissolved Copper

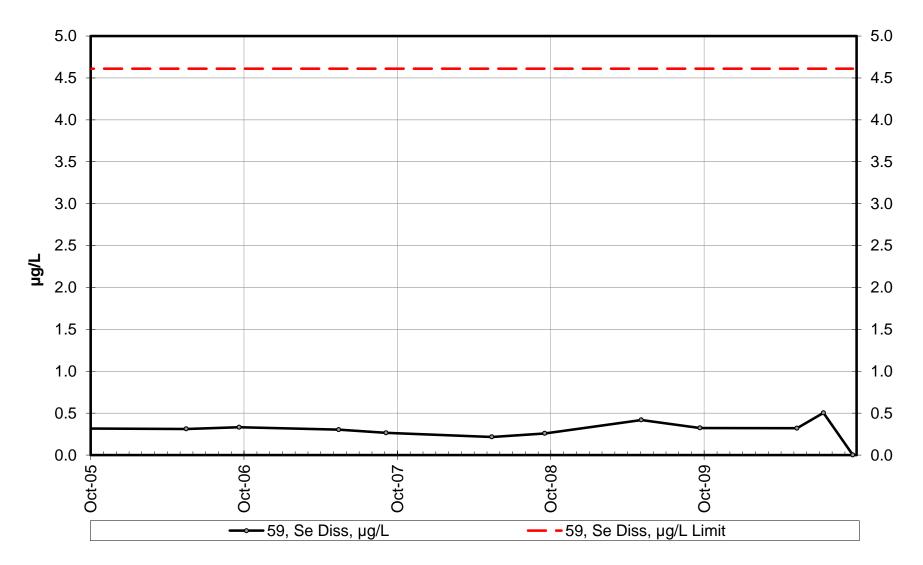
Site 59 - Dissolved Lead

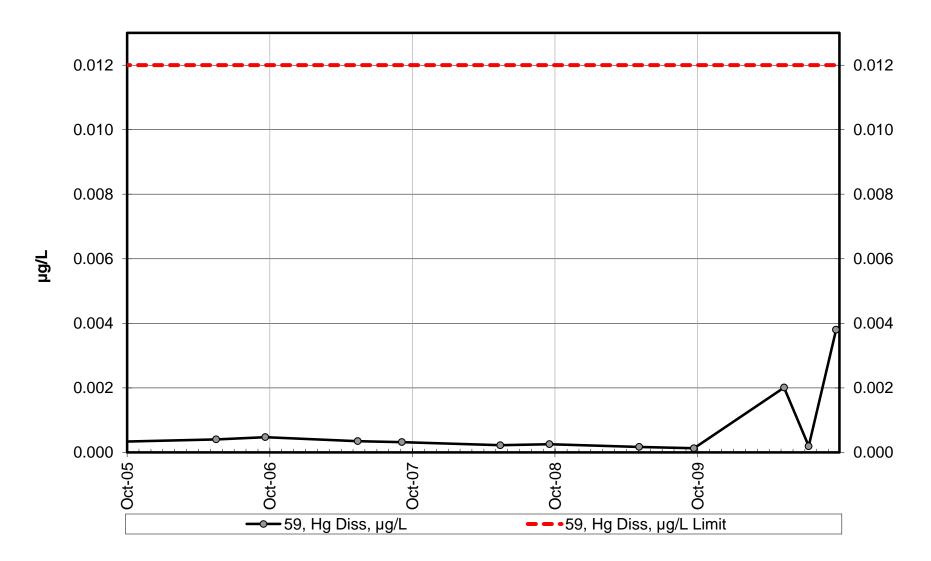


Site 59 - Dissolved Nickel

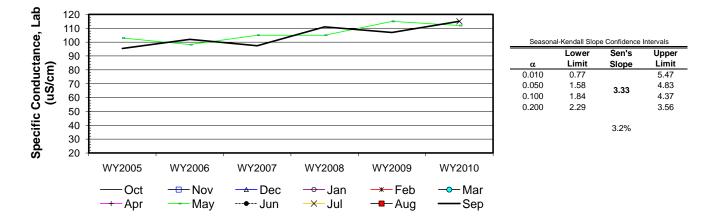


Note: The AWQS for dissolved nickel is hardness dependant and varies between 16 ug/L and 128 ug/L for waters with hardness values of 25 mg/L and 400 mg/L respectively. The AWQS, which would plot above the upper value on the Y-axis, are not shown on this graph to allow for greater visual detail of the plotted values.

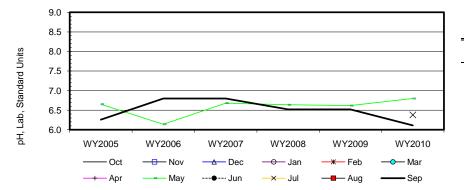

Site 59 - Dissolved Silver


Site 59 - Dissolved Zinc

Site 59 - Dissolved Selenium

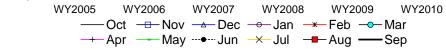

Site 59 - Dissolved Mercury

Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2005								103				95.4
b	WY2006								98.2				102
С	WY2007								105				97.4
d	WY2008								105				111
e	WY2009								115				107
f	WY2010 n	0	0	0	0	0	0	0	112 6	0	115 1	0	115
		Ŭ	Ū	Ŭ	Ū	Ŭ	0	0	0	0	·	0	
	t1	5	5	5	5	5	5	5	3	5	5	5	5
	t ₂	0	0	0	0	0	0	0	1	0	0	0	C
	t ₃	0	0	0	0	0	0	0	0	0	0	0	C
	t ₄	0	0	0	0	0	0	0	0	0	0	0	C
i	t ₅	0	0	0	0	0	0	0	0	0	0	0	C
1	b-a								-1				1
	c-a								1				1
	d-a								1				1
	e-a								1				1
	f-a								1				1
	c-b								1				-1
	d-b								1				1
	e-b								1				1
	f-b								1				1
	d-c								0				1
	e-c								1				1
	f-c								1				1
	e-d								1				-1
	f-d								1				1
:	f-e S _k	0	0	0	0	0	0	0	-1	0	0	0	1
	Sk	0	0	0	0	0	0	0	10	0	0	0	11
σ	² s=								27.33				28.33
	S_k/σ_S								1.91				2.07
	Z^{2}_{k}								3.66				4.27
		2.00		Tie Futert	+	+	+	+	+			Σn	40
	$\Sigma Z_k =$	3.98		Tie Extent	t,	t ₂	t ₃	t₄	t₅				13
	ΣZ_{k}^{2}	7.93		Count	58	1	0	0	0			ΣS_k	21


9	Seasonal Kendall ana	lysis for Specific	Conductance, Lab	(uS/cm)
---	----------------------	--------------------	------------------	---------

$\chi^2_h = \Sigma Z^2_k - I$	$\chi^2_{h} = \Sigma Z^2_{k} - K(Z-bar)^2 = 0.01$		@α=5% χ ² _(K-1) =	@ α =5% $\chi^2_{(K-1)}$ = 3.84		
	р	0.913			$\chi^{2}_{h} < \chi^{2}_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	\mathbf{Z}_{calc}	2.68	@α/2=2.5% Z =	1.96	H ₀ (No trend)	REJECT
55.67	р	0.996			H _A (± trend)	ACCEPT

Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2005								6.7				6.3
b	WY2006								6.1				6.8
C	WY2007								6.7				6.8
d	WY2008 WY2009								6.6 6.6				6.5 6.5
e f	WY2010								6.8		6.4		6.1
	n	0	0	0	0	0	0	0	6	0	1	0	6
	t,	5	5	5	5	5	5	5	5	5	5	5	1
	t ₂	0	0	0	0	0	0	0	0	0	0	0	2
	t ₃	0	0	0	0	0	0	0	0	0	0	0	C
	t₄ t₅	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	C
		-	-			-	-	-		-	-	-	
	b-a								-1				1
	c-a d-a								1 -1				1
	e-a								-1 -1				1
	f-a								-1				י -1
	c-b								1				C
	d-b								1				-1
	e-b								1				-1
	f-b								1				-1
	d-c								-1				-1
	e-c								-1				-1
	f-c								1				-1
	e-d								-1				C
	f-d f-e								1 1				-1 -1
	S _k	0	0	0	0	0	0	0	3	0	0	0	-5
σ	² s=								28.33				26.33
	S _k /σ _s								0.56				-0.97
—к	Z^2_k								0.32				0.95
	$\Sigma Z_k =$	0.44	-		+	+	+	4	+			Σn	40
	$\Sigma Z_{k}^{2} =$	-0.41 1.27		Fie Extent	t₁ 56	t ₂	t ₃	t ₄	t₅			ΣS_k	13 -2


$\chi^2_h = \Sigma Z^2_k$	K(Z-bar) ² =	1.18	@α=5% χ ² _(K-1) =	3.84	Test for station home	ogeneity
	р	0.277			χ ² h<χ ² (K-1)	ACCEPT
$\Sigma VAR(S_k)$	Z_{calc}	-0.14	@α/2=2.5% Z=	1.96	H ₀ (No trend)	ACCEPT
54.67	р	0.446			H _A (± trend)	REJECT

Seasona	Seasonal-Kendall Slope Confidence Intervals									
	Lower	Sen's	Upper							
α	Limit	Slope	Limit							
0.010	-0.16		0.13							
0.050	-0.10	0.00	0.07							
0.100	-0.04	0.00	0.04							
0.200	-0.03		0.02							

Site	#59					al Kenda							
Row label a b c d e f	Water Year WY2005 WY2006 WY2007 WY2008 WY2009 WY2010	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May 51.6 41.8 44.9 45.8 44.2 40.5	Jun	Jul 41.0	Aug	Sep 40. 42. 44. 42. 42. 42. 42.
	n	0	0	0	0	0	0	0	6	0		0	
	t₁ t₂ t₃ t₄ t₅	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0	5 0 0 0	5 0 0 0 0	5 0 0 0	5 0 0 0 0	5 0 0 0 0	0 0 0	5 0 0 0 0	
	b-a c-a d-a e-a f-a c-b d-b e-b f-b d-c e-c f-c e-d f-c f-d f-e S_k	0	0	0	0	0	0	0	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -7	0	0	0	
	Sk	0	0	0	0	0	0	0	-7	0	0	0	
$Z_k =$	² s= S _k /σ _s Z ² _k								28.33 -1.32 1.73				28.3 0.5 0.3
Z	$\Sigma Z_{k} = \Sigma Z_{k}^{2} = -bar = \Sigma Z_{k}/K =$	-0.75 2.05 -0.38		Tie Extent Count	t, 60	t ₂ 0	t ₃ 0	t ₄ 0	t ₅ 0			Σ n Σ S _k	13 -4
	$\chi^2_h = \Sigma Z^2_k - k$	(Z-bar) ² =	1.76		@α=5%	6 χ ² _(K-1) =	3.84	1	est for sta	tion homo	peneity		
	λ II - κ	р	0.184	L		- 7, (R-1)			ζ ² h<χ ² (K-1)		ACCEPT		
	ΣVAR(S _k) 56.67	Z _{calc} p	-0.40 0.345		@α/2=	2.5% Z=	1.96		H₀ (No H _A (±		ACCEPT REJECT		
55 _T	30.07	μ	0.343							(renu)	REJECT		
50 -	•												
45 -		\searrow											
€ ⁴⁰								\rightarrow	<u>نا</u> -	Season	al-Kendall Slope	Confidence Ir Sen's	Upper
6 35										<u>α</u> 0.010	Limit -2.13	Slope	Limit 0.73
(1) 35 30 25 20 15										0.010 0.050 0.100 0.200	-2.13 -1.65 -1.39 -0.87	-0.24	0.73 0.27 0.09 0.05
10 -	WY2005	WY	2006	WY2007	WY2	008	WY2009	WY2	2010				
	Oc + Api		— Nov — May	─ <u>^</u> Dec ● Jun	 X		<mark>—∗—</mark> Feb —∎— Aug		– Mar – Sep				

ow label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
a	WY2005				•				4.6				4
b	WY2006								4.0				4
C.	WY2007								4.0				4
d	WY2008 WY2009								4.6 5.4				4 5
e f	WY2010								5.3		4.7		5
	n	0	C	0	0	0	0	0	6	0	1	0	
	t,	5	5	5	5	5	5	5	5	5	5	5	
	t ₂	0	C		0	0	0	0	0	0	0	0	
	t ₃	0	C		0	0	0	0	0	0	0	0	
	t₄ ⁺	0	C		0	0	0	0	0	0	0	0	
-	t ₅	0	C	0	0	0	0	0	0	0	0	0	
-	b-a								-1				-
	c-a								-1				-
	d-a								1				
	e-a f-a								1				
	c-b								1				-
	d-b								1				
	e-b								1				
	f-b								1				
	d-c e-c								1				
	f-c								1				
	e-d								1				
	f-d								1				
-	f-e S _k	0	C	0	0	0	0	0	-1 9	0	0	0	-
-		-	-	-		-	-				-		
	²s=								28.33				28.3
	S _k /σ _s								1.69				1.3
Z	2 k								2.86				1.7
	$\Sigma Z_k =$	3.01		Tie Extent	t ₁	t ₂	t ₃	t4	t ₅			Σn	13
	$\Sigma Z_{k}^{2} =$	4.59		Count	60	0	0	0	0			ΣS_k	16
Z	-bar=∑Z _k /K=	1.50		oount	00	0	Ũ	Ū	Ũ			20 K	10
ſ	χ² _h =ΣΖ² _k -ł	K(Z-bar) ² =	0.07		@α=5	% χ ² _(K-1) =	3.84			ion homoge			
		р	0.790					λ	ζ ² h<χ ² (K-1)		ACCEPT		
	$\Sigma VAR(S_k)$	Z_{calc}	1.99		@	α =5% Ζ =	1.64		H₀ (No t	trend)	REJECT		
	56.67	р	0.977						H _A (± ti	rend)	ACCEPT		
L													
l	·												
6 2	-								-				
	-							>	: <	Season	al-Kendall Slope		
								>	- 		Lower	Sen's	Upper
								>		α	Lower Limit		Upper Limit
								>	× =	<u>α</u> 0.010	Lower Limit -0.05	Sen's Slope	Upper Limit 0.50
			<u> </u>					>	- -	α	Lower Limit	Sen's	Upper Limit
)	- 	α 0.010 0.050	Lower Limit -0.05 0.01	Sen's Slope	Upper Limit 0.50 0.47
								>	- 	α 0.010 0.050 0.100	Lower Limit -0.05 0.01 0.08	Sen's Slope 0.29	Upper Limit 0.50 0.47 0.42
5 4 3								,		α 0.010 0.050 0.100	Lower Limit -0.05 0.01 0.08	Sen's Slope	Upper Limit 0.50 0.47 0.42

Site	#59			S	easonal	Kendall	analysis	s for Z	inc, I	Dissolv	ved (ug/l))		
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr		Мау	Jun	Jul	Aug	Sep
a b c d	WY2005 WY2006 WY2007 WY2008									0.7 1.0 0.4 4.1				1. 0. 0. 0.
e f	WY2009 WY2010									0.5 0.4		0.9		0. 0.
•	n	0	C	0 0	0	0	0		0	6	0	1	(
	t,	5	5	5	5	5	5		5	5	5	5	Ę	5
	t ₂ t ₃	0 0	C		0 0	0 0	0 0		0 0	0 0	0 0	0 0	(
	t₄ t₅	0 0	C		0 0	0 0	0 0		0 0	0 0	0 0	0 0	(
		0	Ľ	0	0	0	0		0		0	0	(
	b-a c-a									1 -1				
	d-a									1				
	e-a f-a									-1 -1				
	c-b									-1				
	d-b e-b									1 -1				
	f-b									-1				
	d-c e-c									1 1				
	f-c									-1				
	e-d f-d									-1 -1				
	f-e S _k	0	C) 0	0	0	0		0	-1 -5	0	0	()
	L	0		, 0	0	0	0		0	-5	0	0	()
	$\sigma_{s=0}^{2}$									28.33				28.3
	= S _k /σ _S Z ² _k									-0.94 0.88				-0.5 0.3
				[4					$\sum_{i=1}^{n}$	
	$\Sigma Z_k = \Sigma Z_k^2 =$	-1.50 1.20		Tie Extent Count	t₁ 60	t ₂ 0	t₃ 0	t₄ 0		t₅ 0			Σn ΣS _k	13 -8
2	Z-bar=∑Z _k /K=	-0.75		oount	00	0	0	0		0			20 _K	0
	$\chi^2_h = \Sigma Z^2_k - k$	K(Z-bar) ² =	0.07		@α=5	% χ ² _(K-1) =	3.84				tion homoge	eneity		
		р	0.790	_					χ²r	-<χ ² (K-1)		ACCEPT		
	$\Sigma VAR(S_k)$	\mathbf{Z}_{calc}	-0.93		@α/2=	=2.5% Z=	1.96			H₀ (No		ACCEPT		
	56.67	р	0.176							H _A (± 1	rend)	REJECT		
4.5														
e 4					/	٨								
7 IIIC: DISSOINED (ng/l)											Seasonal	-Kendall Slope		
5 3	-					\rightarrow					α	Lower Limit	Sen's Slope	Upper Limit
2.5	-				_/	-					0.010	-0.17	olope	0.09
2					/		<u></u>				0.050 0.100	-0.16 -0.14	-0.08	0.04 0.00
5 1.5				/	/						0.200	-0.12		-0.03
1	\vdash		<u> </u>	/			\rightarrow		X					
J 0.5							\setminus							
0														

0 -

WY2005

WY2006

WY2007

---- Oct -B Nov -A Dec -O Jan - Feb -O Mar -+- Apr --- May ---●--- Jun -X Jul -B Aug ---- Sep

WY2008

WY2009

WY2010

INTERPRETIVE REPORT SITE 28 "MONITORING WELL 2D"

The data collected during the current water year are listed in the following "Table of Results for Water Year 2010" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the rightmost column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

All data collected at this site for the past six years are included in the data analyses. As shown in the table below, there were no data outliers.

Sample Date	Parameter	Value	Qualifier	Notes				
No outliers have been identified by HGCMC for the period of October 2005 through September 2010.								

The data for Water Year 2010 have been compared to the strictest fresh water quality criterion for each applicable analyte. Four results exceeding these criteria have been identified, as listed in the table below. Dissolved arsenic was in exceedance for all three monthly FWMP sampling events. This site has routinely returned arsenic values above the AWQS and has a mean value of 72 μ g/L based on sampling since October-1988. The other exceedance was for the field pH taken during the September sampling event.

Sample Date	Parameter	Value	Hardness (mg/L)	Standard	Standard Type
21-Sep-10	pH Field, su	8.67		8.5	Aquatic Life, chronic
11-May-10	Arsenic Dissolved ug/L	75.1		10	Aquatic Life, chronic
13-Jul-10	Arsenic Dissolved ug/L	72.8		10	Aquatic Life, chronic
21-Sep-10	Arsenic Dissolved ug/L	68.5		10	Aquatic Life, chronic

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. These plots have been visually analyzed for the appearance of any trend in concentration. No obvious trends were apparent.

A non-parametric statistical analysis for trend was preformed for conductivity, pH, alkalinity, sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall analyses are presented in detail on the pages following this interpretive section. The adjacent table

Site 28-WY2010, summary statistics for trend analysis.

Ma	ann-Ke	endall test	<u>statistics</u>	Sen's slope estimate			
Parameter	N (1)	p (2)	Trend	Q	Q(%)		
Conductivity, Lab	6	0.98	+	5.75	2.8		
pH, Lab	6	0.82	0				
Alkalinity, Total	6	0.07	0				
Sulfate, Total	6	0.67	0				
Zinc, Dissolved	6	0.04	0				
(1): Number of yea	ars	(2):Signif	icance lev	/el			

summarizes the results on the data collected between Oct-04 and Sep-10 (WY2005-WY2010). There was one significant trend identified in laboratory conductivity (p=0.98) with an estimated slope of 5.75 μ S/cm/yr or a 2.8% increase, during the 2010 water year.

Additional X-Y plots have been generated for alkalinity, pH, sulfate, conductance, and dissolved zinc that co-plot data from Site 28 and Site 59, the up-gradient control site, to aid in comparison between those two sites. Laboratory conductivity, laboratory pH, total alkalinity, and sulfate are all higher at Site 28 than at Site 59 while the dissolved zinc concentrations are generally similar except for the 2006 water year which shows a pronounced spike of moderate amplitude. By the end of the 2007 water year dissolved zinc was again at a typical value for Site 28. Site 59 and Site 28 are deep completion wells that are each respectively co-located with Site 58 and Site 27. A similar line of reasoning discussed in the section for Site 28. Thus, the generally higher concentrations at Site 28 reflect the more mature nature of the groundwater sampled at this site.

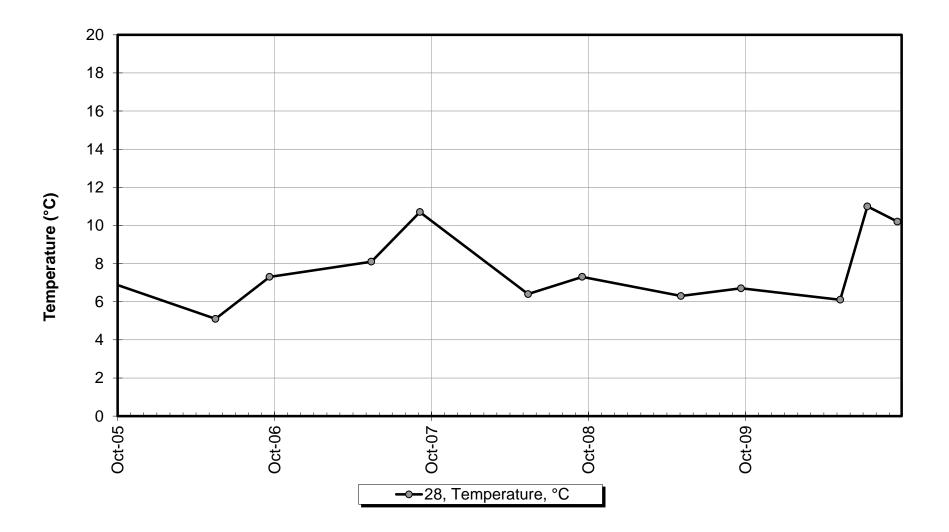
Table of Results for Water Year 2010

Site 28 "MW-2D"													
Sample Date/Parameter	Oct-09	Nov-09	Dec-09	Jan-10	Jan-10	Mar-10	Apr-10	5/11/2010	Jun-10	Jul-10	Aug-10	9/21/2010	Median
Water Temp (°C)								6.1	(7)	11.0	(7)	10.2	10.2
Conductivity-Field(µmho)								243	ING	199	Ž	216	216
Conductivity-Lab (µmho)								218		208		209	209
pH Lab (standard units)								8.32	Ē	7.80	ᅀ	7.83	7.83
pH Field (standard units)								7.85	SAMPL	8.18	SAMPLING	8.67	8.18
Total Alkalinity (mg/L)								86.5	S	79.0	S	89.5	86.5
Total Sulfate (mg/L)								11.3 J		10.4 J	· · · · · · · · · · · · · · · · · · ·	11.0 J	11.0
Hardness (mg/L)								71.4	OR	77.9	OR	77.1	77.1
Dissolved As (ug/L)								75.10	Ľ	72.80	ш	68.50	72.80
Dissolved Ba (ug/L)		NOT S	SCHEDU	ILED FO	R SAMF	LING		6.0	Δ	6.3	Δ	6.3	6.3
Dissolved Cd (ug/L)								<0.004	Щ	<0.004	B	<0.008	0.002
Dissolved Cr (ug/L)								1.290	SCHEDUL	0.799	5	0.171 J	0.799
Dissolved Cu (ug/L)								0.160	ā	0.049	ā	0.188	0.160
Dissolved Pb (ug/L)								<0.0030 U	Щ	<0.0030	SCHEDI	<0.0060	0.0015
Dissolved Ni (ug/L)								0.719	ち	0.547	ち	0.805	0.719
Dissolved Ag (ug/L)								<0.004	Š	<0.004	Š	<0.008	0.002
Dissolved Zn (ug/L)								0.10 U	F-	0.47		0.08 J	0.10
Dissolved Se (ug/L)								0.241 J	NOT	<0.114	NOT	<0.228	0.114
Dissolved Hg (ug/L)								0.001170	Z	0.000156 U	Z	0.000515	0.000515

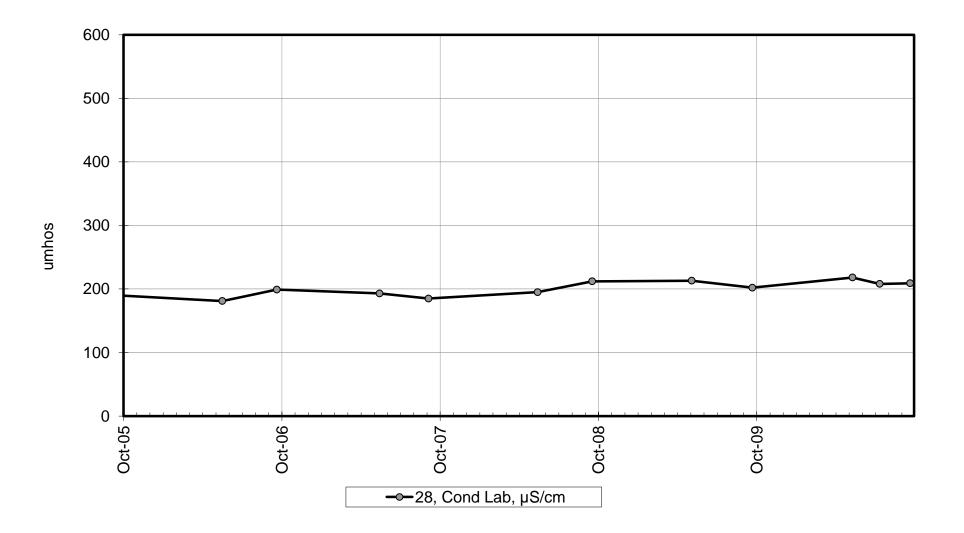
For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

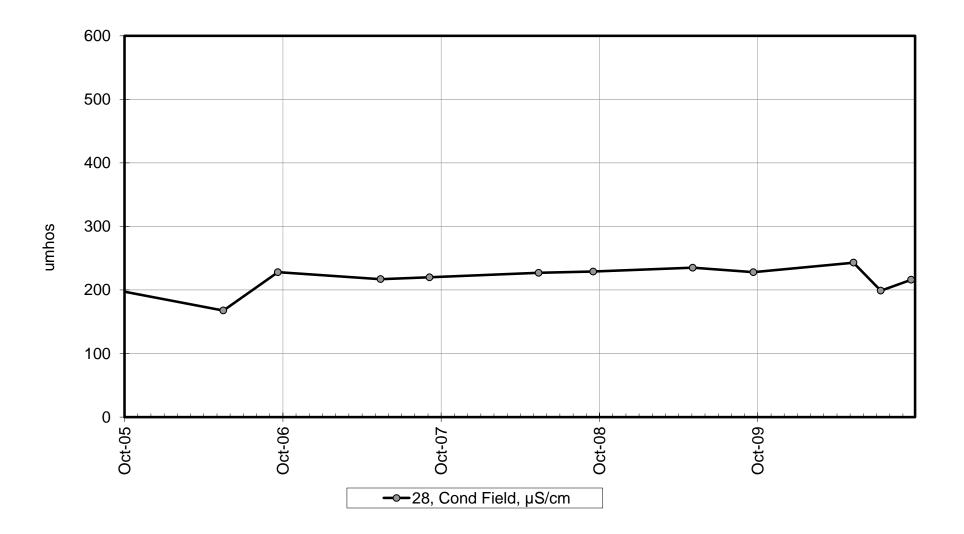
Shaded data has been qualified as an outlier by HGCMC and removed from any further analysis and is not included into the calculation of the median

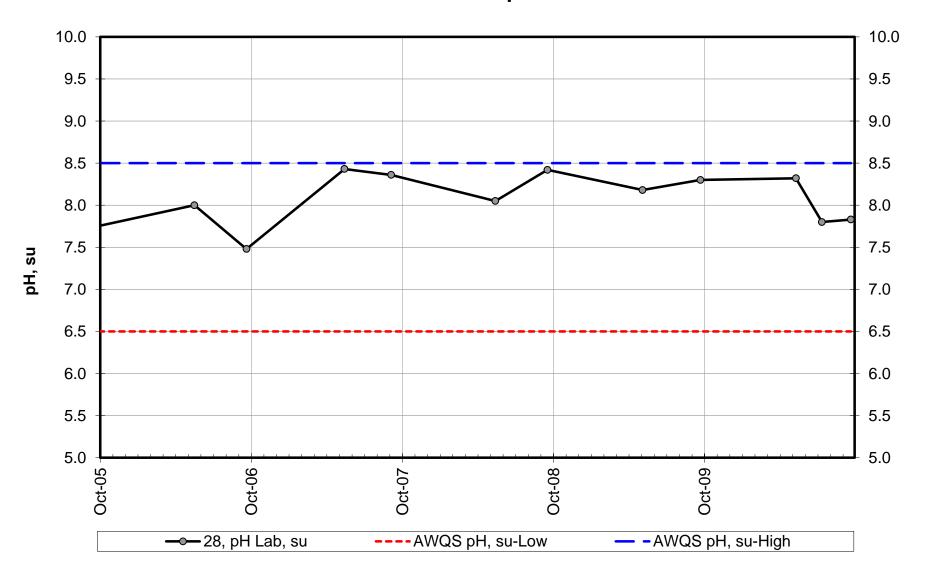

Qualified Data by QA Reviewer

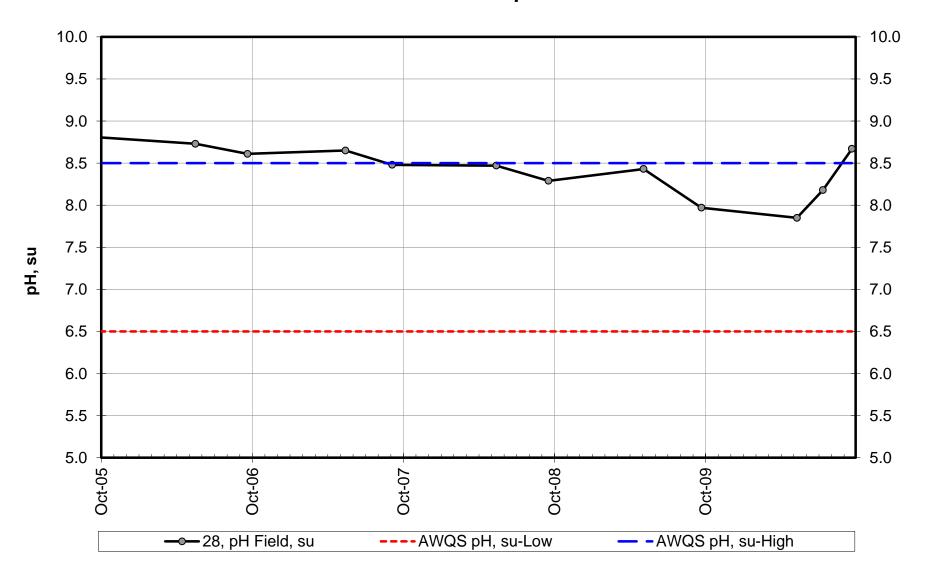
Date Range: 10/01/2009 to 09/30/2010

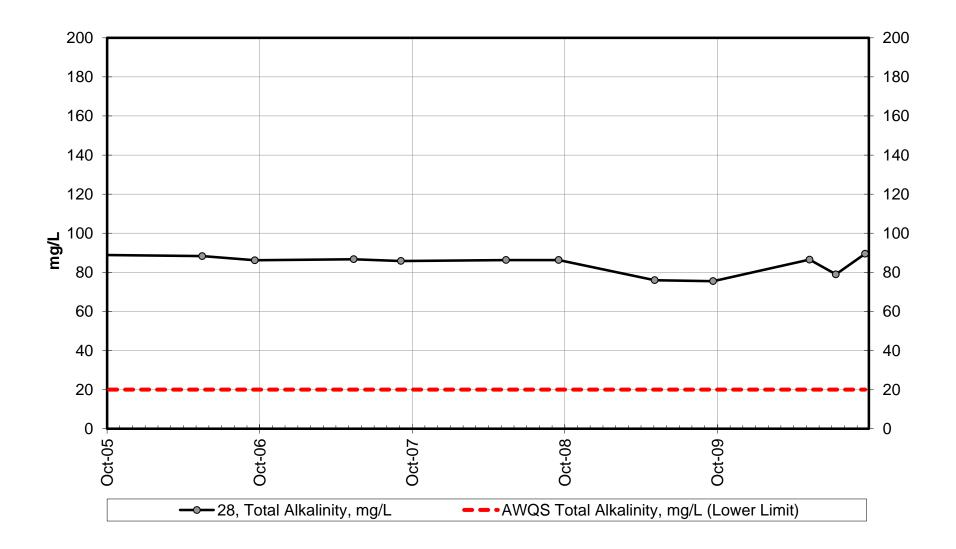

Site No.	Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier
8	5/11/2010	12:53 PM		B		
			Pb diss, µg/l	-0.003	U	Field Blank Contamination
			Se diss, µg/l	0.241	J	Below Quantitative Range
			Zn diss, µg/l	0.0964	U	Field Blank Contamination
			SO4 Tot, mg/l	11.3	J	Sample Temperature
3	7/13/2010	12:17 PM				
			Hg diss, µg/l	0.000156	U	Field Blank Contamination
			SO4 Tot, mg/l	10.4	J	Sample Reciept Temperature
3	9/21/2010	11:29 AM				
			Cr diss, µg/l	0.171	J	Below Quantitative Range
			Zn diss, µg/l	0.0783	J	Below Quantitative Range
			SO4 Tot, mg/l	11	J	Sample Receipt Temperature

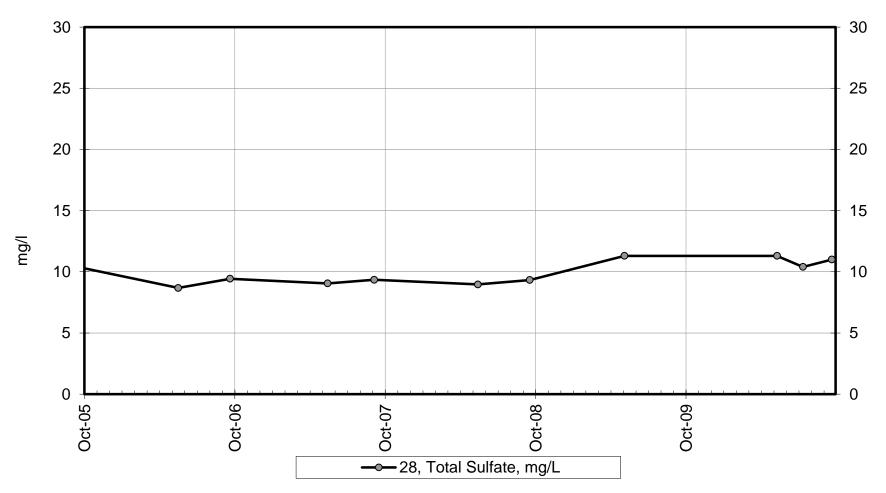
Qualifier	Description
J	Positively Identified - Approximate Concentration
Ν	Presumptive Evidence For Tentative Identification
NJ	Tentatively Identified - Approximate Concentration
R	Rejected - Cannot be Verified
U	Not Detected Above Quantitation Limit
UJ	Not Detected Above Approximate Quantitation Limit


Site 28 -Water Temperature

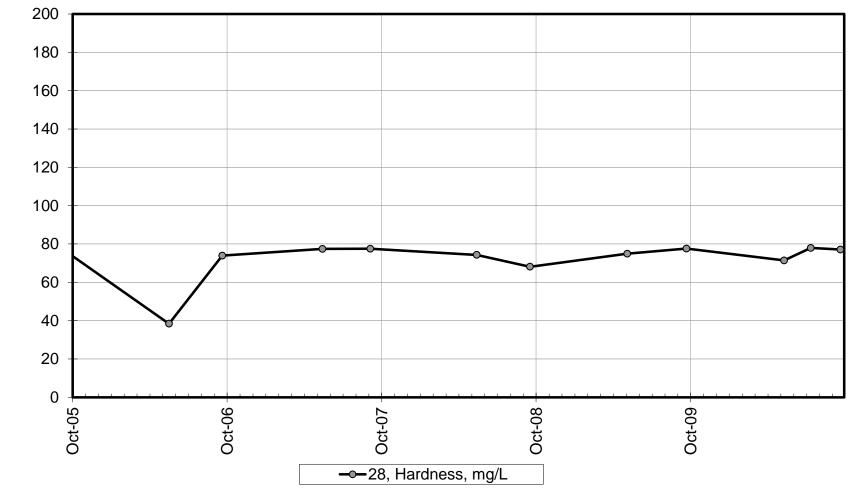

Site 28 - Conductivity-Lab


Site 28 - Conductivity-Field

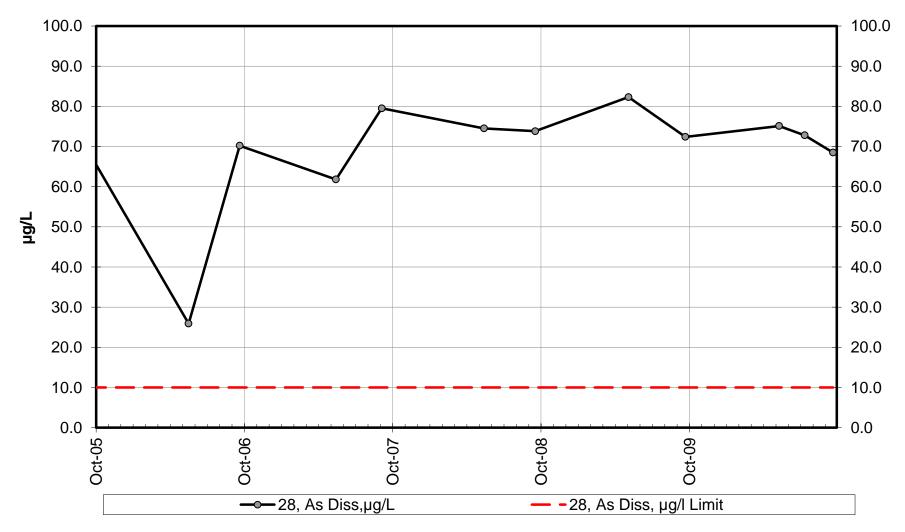

Site 28 - Lab pH


Site 28 - Field pH

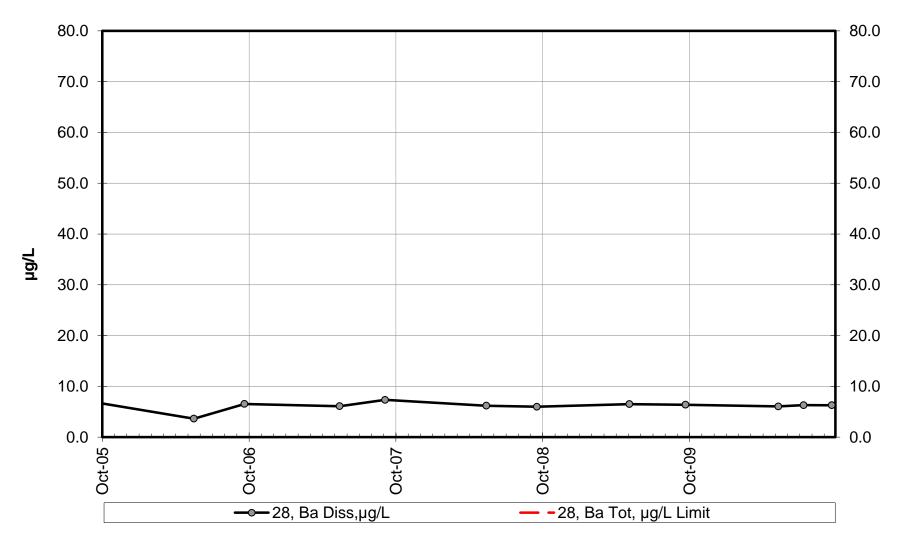
Site 28 - Total Alkalinity



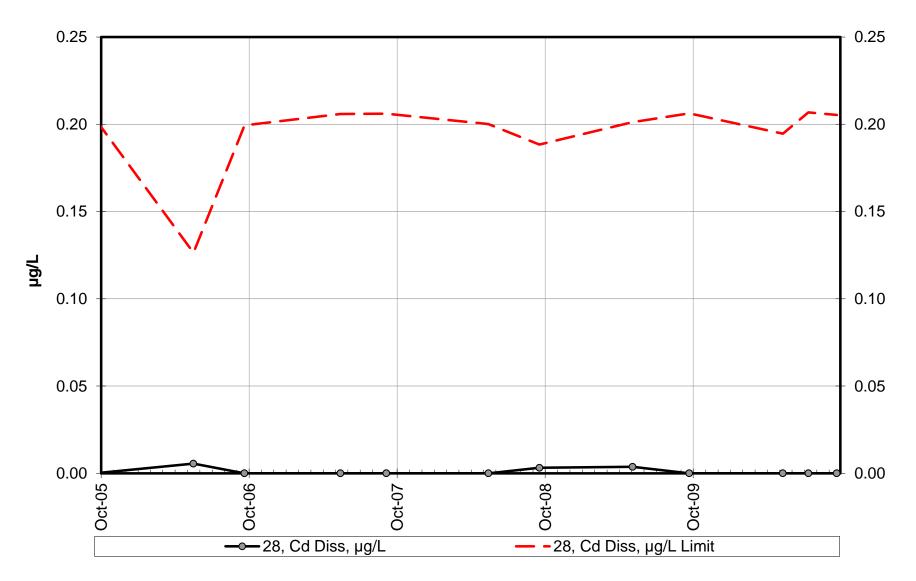
Site 28 - Total Sulfate


Note: The AWQS for Total Sulfate is 250 mg/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination.

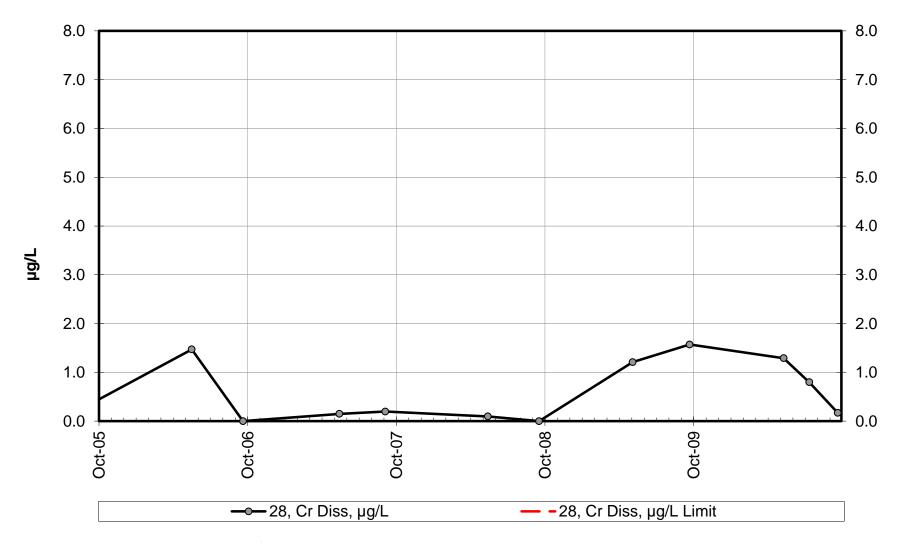
Site 28 - Hardness


mg/L

Site 28 - Dissolved Arsenic

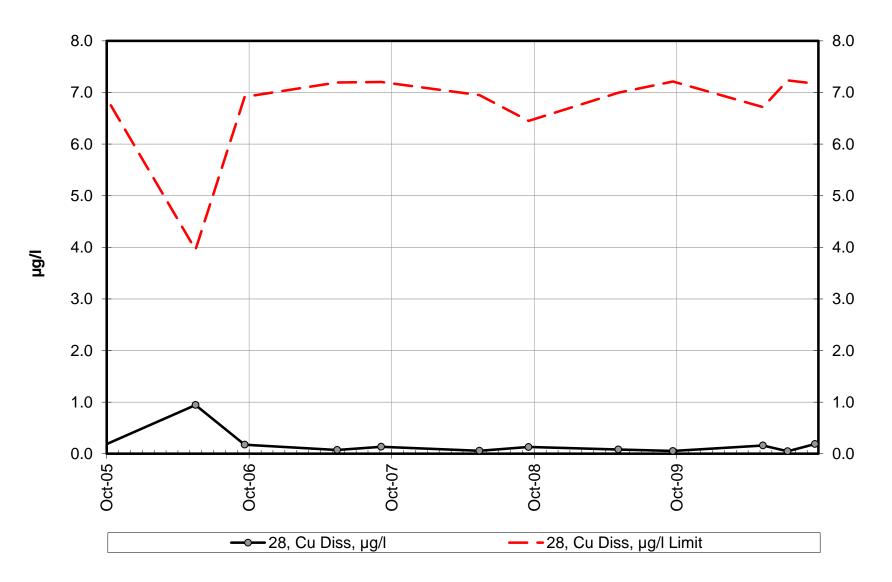

Note: The AWQS for total arsenic is 10 ug/L and thus may not be shown on this graph in order to allow greater visual detail of plotted values for trend determination

Site 28 - Dissolved Barium

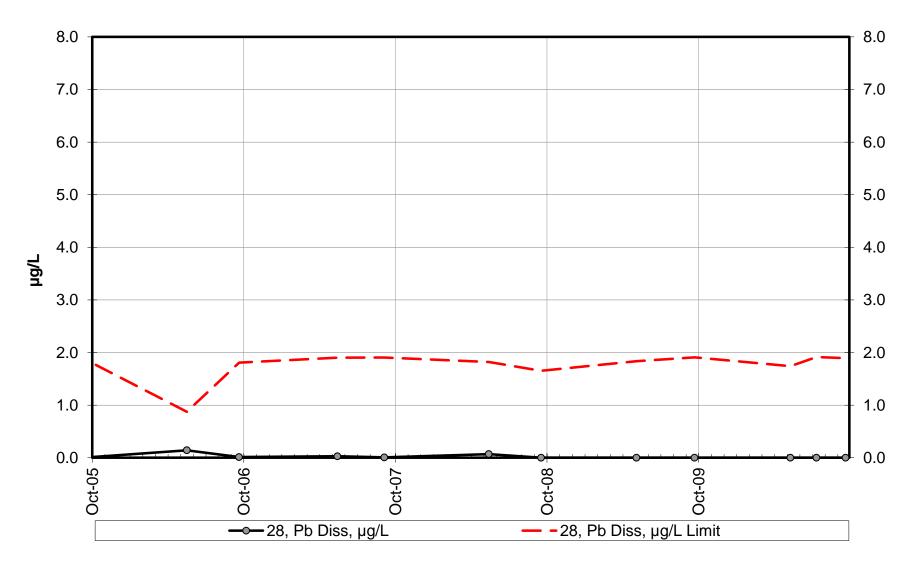


Note: the AWQS for Total Barium is 1000 ug/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination

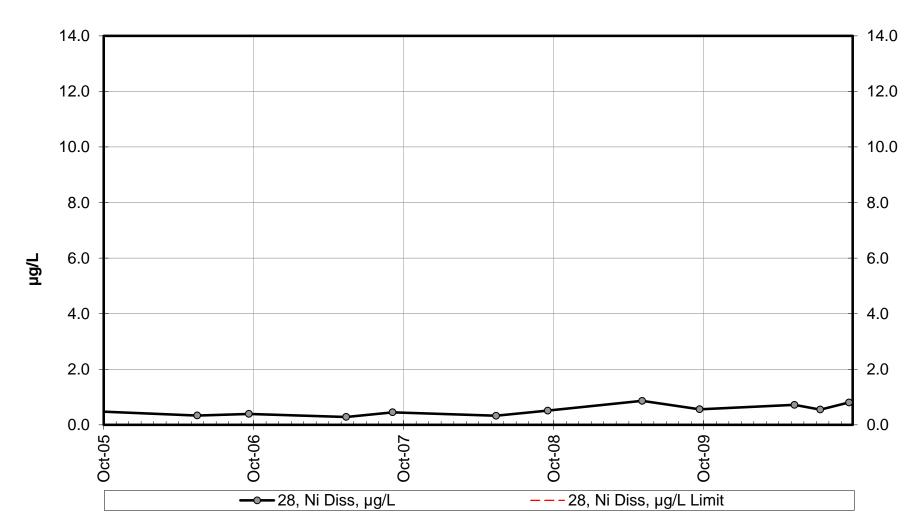
Site 28 - Dissolved Cadmium



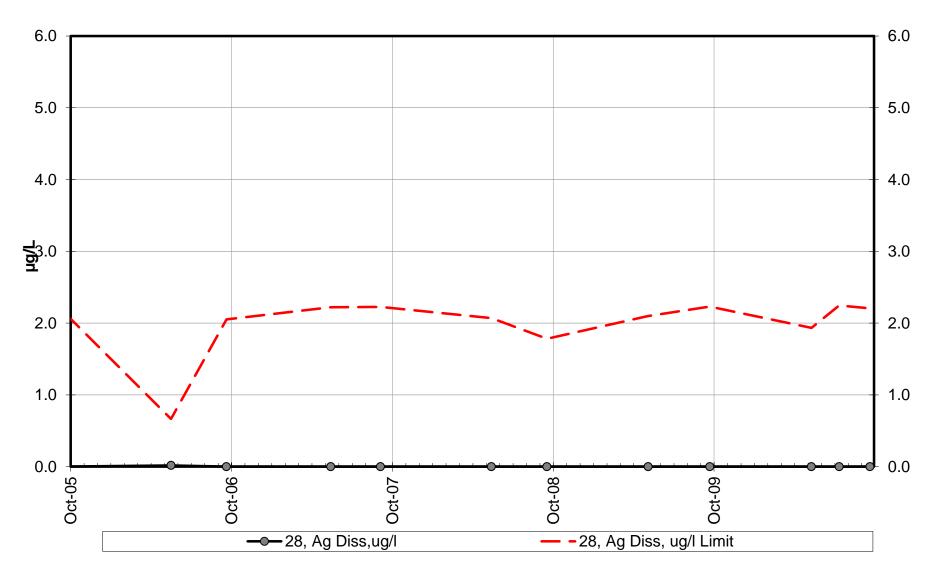
Site 28 - Dissolved Chromium



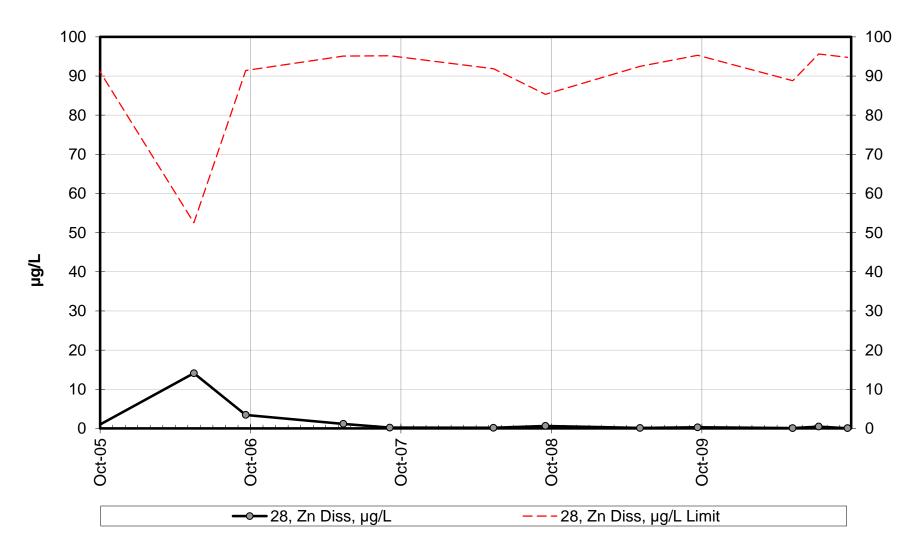
Note: the AWQS for Dissolved Chromium is 11 µg/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination


Site 28 - Dissolved Copper

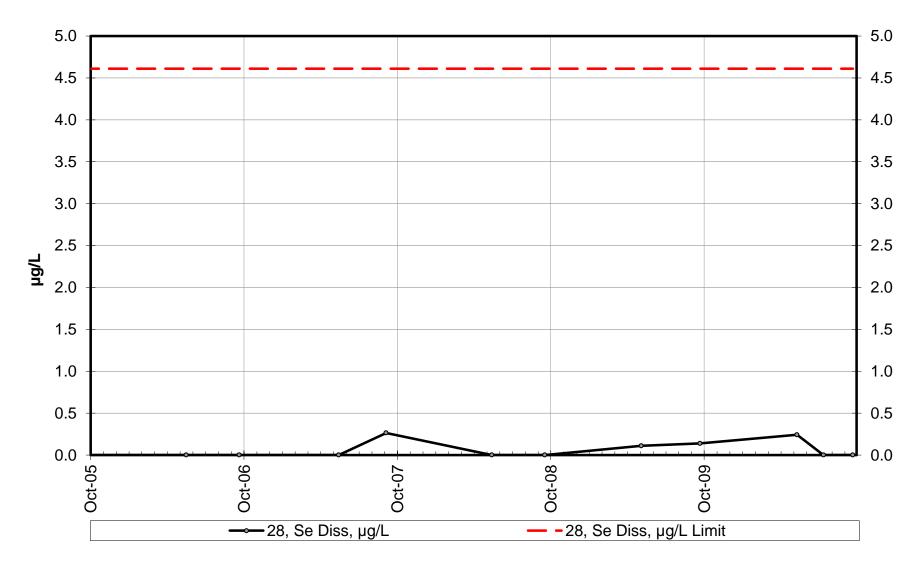
Site 28 - Dissolved Lead

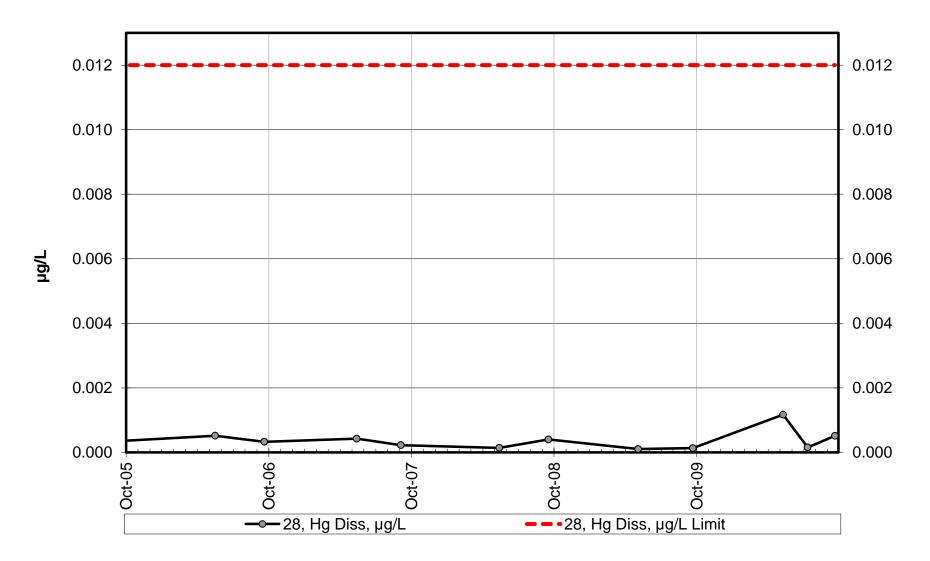


Site 28 - Dissolved Nickel

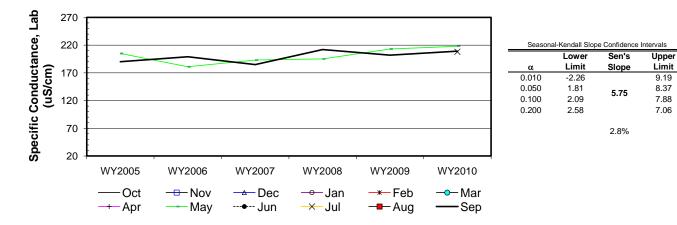


Note: The AWQS for dissolved nickel is hardness dependant and varies between 16 ug/L and 128 ug/L for waters with hardness values of 25 mg/L and 400 mg/L respectively. The AWQS, which would plot above the upper value on the Y-axis, are not shown on this graph to allow for greater visual detail of the plotted values.


Site 28 - Dissolved Silver


Site 28 - Dissolved Zinc

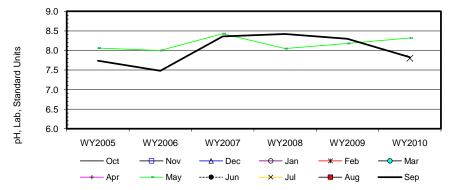
Site 28 - Dissolved Selenium


Site 28 - Dissolved Mercury

Site	#28								ductance, L				
a b c d e	Water Year WY2005 WY2006 WY2007 WY2008 WY2009	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May 205 181 193 195 213	Jun	Jul	Aug	Sep 19 19 18 21 20
f	WY2010								218		208		20
	n	0	0	0	0	0	0	0	6	0	1	0	
	t ₁	5	5	5	5	5	5	5	5	5	5	5	
	t ₂	0	0	0	0	0	0	0	0	0	0	0	
	t ₃	0	0	0	0	0	0	0	0	0	0	0	
	t4	0	0	0	0	0	0	0	0	0	0	0	
	t ₅	0	0	0	0	0	0	0	0	0	0	0	
	b-a								-1				
	c-a								-1				
	d-a								-1				
	e-a								1				
	f-a								1				
	c-b								1				-
	d-b								1				
	e-b								1				
	f-b								1				
	d-c								1				
	e-c								1				
	f-c								1				
	e-d								1				-
	f-d								1				-
	f-e S _k	0	0	0	0	0	0	0	9	0	0	0	
	² s=								28.33				28.3
Z _k =	S_k/σ_S								1.69				1.3
	Z ² _k								2.86				1.7
	$\Sigma Z_k =$	3.01	Г	Tie Extent	t,	t ₂	t ₃	t₄	t ₅			Σn	13
	ΣZ_{k}^{2}	4.59										ΣS _k	
	∠∠ _k =	4.59		Count	60	0	0	0	0			∠o _k	16

8 5	Seasonal Kendall anal	ysis for Specific Co	onductance, Lab (uS/cm)
-----	-----------------------	----------------------	-------------------	--------

$\chi^2_h = \Sigma Z^2_k$	K(Z-bar) ² =	0.07	@α=5% χ ² _(K-1) =	3.84	Test for station homogeneity	
	р	0.790			$\chi^{2}h < \chi^{2}(K-1)$	ACCEPT
$\Sigma VAR(S_k)$	\mathbf{Z}_{calc}	1.99	@a/2=2.5% Z=	1.96	H ₀ (No trend)	REJECT
56.67	р	0.977			H _A (± trend)	ACCEPT

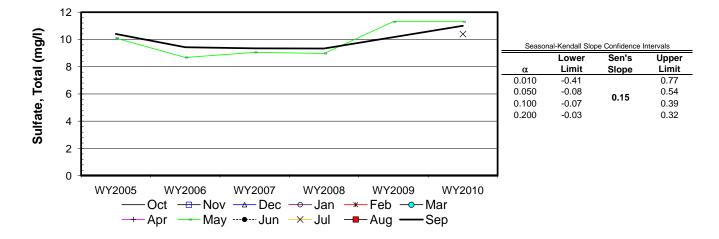

9.19 8.37

7.88

7.06

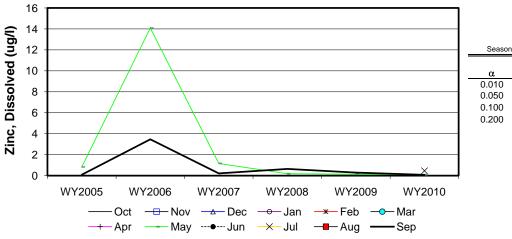
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														7.7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														8.4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														8.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												7.0		8.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	I		0	0	0	0	0	0	0		0		0	7.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0	0	0	0	0	0	0	0	0	1	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $														0 0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		h a								1				-1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														-1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										1				1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										1				1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										1				1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										1				1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										1				1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										1				1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										-1 -1				י 1-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										-1				-1
$\begin{tabular}{c c c c c c c c c c c c c c c c c c c $										1				-1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										1				-1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														-1
$Z_k = S_k/\sigma_S$ 0.94 00 Z_k^2 0.88 0 $\Sigma Z_k =$ 1.50 Tie Extent t_1 t_2 t_3 t_4 t_5 Σn 13	1	S _k	0	0	0	0	0	0	0	5	0	0	0	3
$Z_k = S_k/\sigma_S$ 0.94 00 Z_k^2 0.88 0 $\Sigma Z_k =$ 1.50 Tie Extent t_1 t_2 t_3 t_4 t_5 Σn 13	σ	² s=								28.33				28.33
Z_k^2 0.88 0 ΣZ_k = 1.50 Tie Extent t_1 t_2 t_3 t_4 t_5 Σn 13	Z _k =	S₂/σs								0.94				0.56
	ž	$\frac{z^2}{k}$								0.88				0.32
		57	4.50	[-	E. E.t.at	+	+	+	+	+			Σn	40
		$\Sigma Z_{k}^{2} =$	1.50		Count	60	ι ₂ Ο	ι ₃ Ο	ι. 0	ι ₅ Ο			ΣS_k	13

$\chi^2_h = \Sigma Z^2_k$	$\chi^2_{h} = \Sigma Z^2_{k} - K(Z-bar)^2 = 0.07$		@α=5% χ ² _(K-1) =	3.84	Test for station home	ogeneity
	р	0.790			$\chi^2_h < \chi^2_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	Z_{calc}	0.93	@α/2=2.5% Z=	1.96	H ₀ (No trend)	ACCEPT
56.67	р	0.824			H _A (± trend)	REJECT

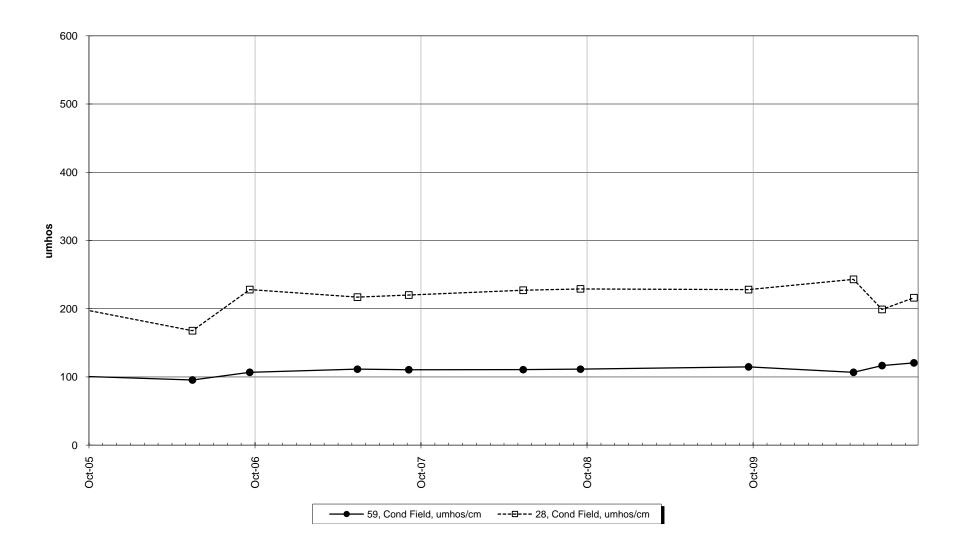


Seasona	Seasonal-Kendall Slope Confidence Intervals											
	Lower Sen's											
α	Limit	Slope	Limit									
0.010	-0.12		0.17									
0.050	-0.04	0.06	0.14									
0.100	-0.03	0.00	0.12									
0.200	0.01		0.08									

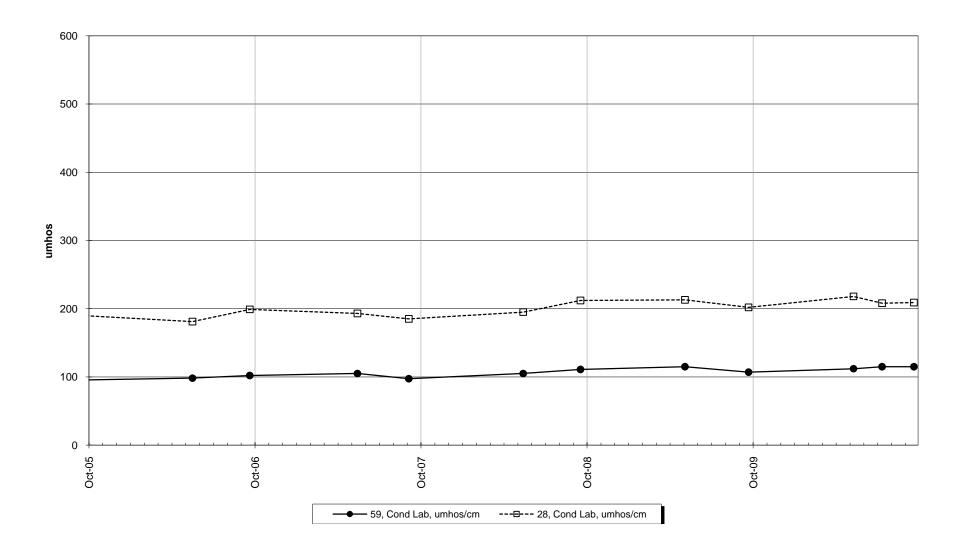
ow label a b c d e f f	Water Year WY2005 WY2006 WY2007 WY2008 WY2009 WY2010 n t, t,	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May 100.0	Jun	Jul	Aug	Sep 88.1
-	t,	0							88.3 8.7 86.3 76.0 86.5		79.0		86. 85. 86. 75. 89.
-		Ũ	0	0	0	0	0	0	6	0	1	0	
-	t ₂ t ₃ t ₄ t ₅	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	
	b-a c-a d-a e-a f-a c-b d-b f-b d-c e-c f-c e-c f-c e-d f-e S_k	0	0	0	0	0	0	0	-1 -1 -1 -1 -1 -1 -1 1 1 -1 1 1 1 1 1 -5	0	0	0	· · · · · · · · · · · · · · · · · · ·
-	S _k	0	0	0	0	0	0	0	-5	0	0	0	-
σ^2 $Z_k = S$ Z^2	S_k/σ_S								28.33 -0.94 0.88				28.3 -0.1 0.0
Z-I	$\Sigma Z_{k} = \Sigma Z_{k}^{2} = bar = \Sigma Z_{k}/K =$	-1.13 0.92 -0.56	[Tie Extent Count	t, 60	t ₂ 0	t ₃ 0	t ₄ 0	t₅ 0			Σ n Σ S _k	13 -6
Г	$\chi^2_h = \Sigma Z^2_k - k$	(Z-bar) ² =	0.28		@α=5%	6 χ ² _(K-1) =	3.84	Т	est for stat	ion homoge	neity		
ļ		р	0.595			_		2	ζ ² h<χ ² (K-1)		CCEPT		
	ΣVAR(S _k) 56.67	Z _{calc} p	-0.66 0.253	L	@α/2=	2.5% Z=	1.96		H₀ (No t H _A (± ti		CCEPT EJECT		
110 100 90 80 100 60 10 10 10 10 10 10 10 100 10	WY2005			WY2007	WY2	008	 WY2009	WY2				Confidence Ir Sen's Slope -0.93	tervals Upper Limit 1.13 0.19 0.09 -0.32


Site	#28							s for Sulf					
ow label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
а	WY2005								10.1				10.
b	WY2006								8.7				9.
c	WY2007								9.1				9.4
d	WY2008 WY2009								9.0 11.3				9.3
e f	WY2009 WY2010								11.3		10.4		11.(
•	n	0	0	0	0	0	0	0	6	0	1	0	5
	t ₁	5	5	5	5	5	5	5	3	5	5	5	5
	t ₂	0	0	0	0	0	0	0	1	0	0	0	C
	t ₃	0	0	0	0	0	0	0	0	0	0	0	C
	t4	0	0	0	0	0	0	0	0	0	0	0	C
	t₅	0	0	0	0	0	0	0	0	0	0	0	C
	b-a								-1				-1
	c-a								-1				-1
	d-a								-1				-1
	e-a								1				
	f-a								1				1
	c-b								1				-1
	d-b								1				-1
	e-b								1				
	f-b d-c								1				1 -1
	e-c								-1				- 1
	f-c								1				1
	e-d								1				
	f-d								1				1
	f-e								0				
	S _k	0	0	0	0	0	0	0	6	0	0	0	-2
σ	5 ² s=								27.33				16.67
Z _k =	S _k /σ _s								1.15				-0.49
	Z ² _k								1.32				0.24
	$\Sigma Z_k =$	0.66		Tie Extent	t ₁	t ₂	t3	t4	t₅			Σn	12
	ΣZ_{k}^{2}												
_		1.56	L	Count	58	1	0	0	0			$\Sigma \mathbf{S_k}$	4
Z	Z-bar=∑Z _k /K=	0.33											
	$\chi^2_h = \Sigma Z^2_k$ -I	K(Z-bar) ² =	1.34		@α=5	% χ ² _(K-1) =	3.84	Ţ	Fest for stati	on homoge	neity		
									22				

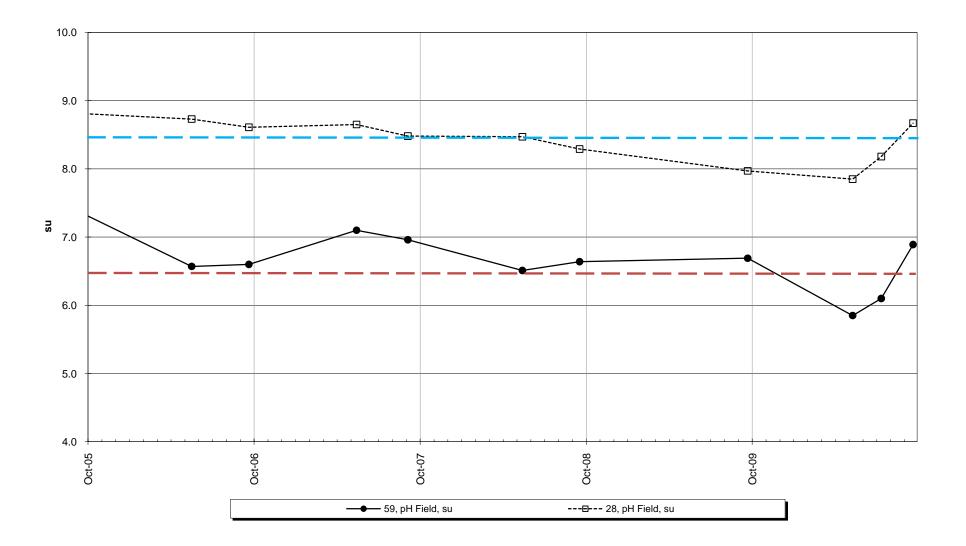
$\chi^2_h = \Sigma Z^2_k$	K(Z-bar) ² =	1.34	@α=5% χ ² _(K-1) =	3.84	Test for station homogene	ity
	р	0.247			$\chi^2 h < \chi^2 (K-1) $ ACC	CEPT
$\Sigma VAR(S_k)$	Z_{calc}	0.45	@α=5% Z=	1.64	H ₀ (No trend) ACC	CEPT
44.00	р	0.674			H _A (± trend) RE.	JECT

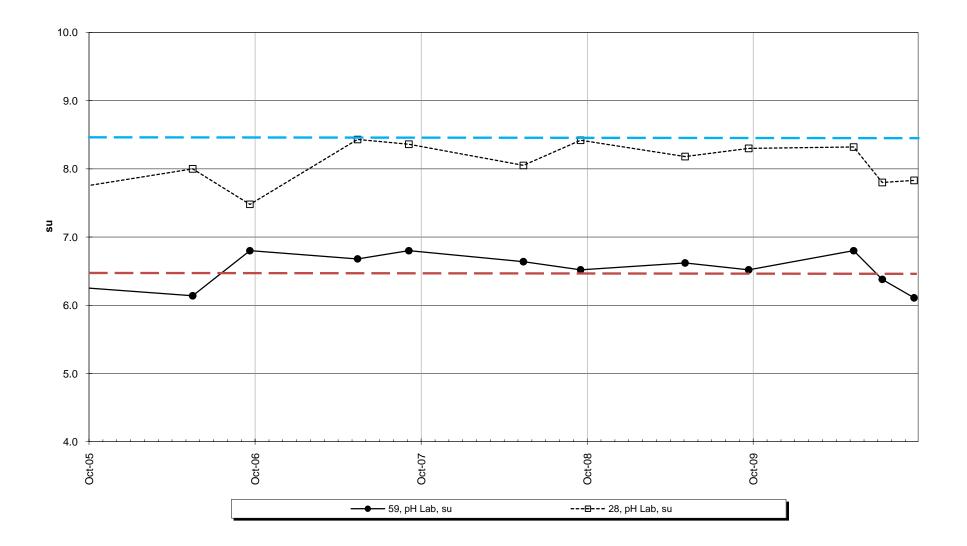

Site	#28					Kendall							
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
a	WY2005								0.8				0.
b	WY2006								14.1				3.
c d	WY2007 WY2008								1.2 0.2				0.: 0.
e	WY2009								0.2				0.0
f	WY2010								0.1		0.5		0.0
	n	0	0	0	0	0	0	0	6	0	1	0	(
	t,	5	5	5	5	5	5	5	5	5	5	5	Į
	t ₂	0	0	0	0	0	0	0	0	0	0	0	(
	t ₃	0	0	0	0	0	0	0	0	0	0	0	(
	t4	0	0	0	0	0	0	0	0	0	0	0	(
	t _s	0	0	0	0	0	0	0	0	0	0	0	(
	b-a								1				
	c-a								1				
	d-a								-1				
	e-a								-1				
	f-a								-1				-*
	c-b d-b								-1 -1				-^ -^
	а-b e-b								-1 -1				-
	f-b								-1				
	d-c								-1				
	e-c								-1				
	f-c								-1				-*
	e-d								-1				-*
	f-d								-1				-^
	f-e								-1				-^
	S _k	0	0	0	0	0	0	0	-11	0	0	0	-0
	² s=								28.33				28.33
Z _k =	S_k/σ_s								-2.07				-0.56
Z	<u>z</u> ² _k								4.27				0.32
	$\Sigma Z_k =$	-2.63	F	Tie Extent	t,	t ₂	t ₃	t ₄	t ₅			Σn	13
	$\Sigma Z_{k}^{2} =$	4.59		Count	60	0	0	0	0			ΣS_k	-14
-	-bar=∑Z _k /K=		L	Count	00	U	U	U	U			$20_{\rm k}$	-14
Ζ	-val=22k/K=	-1.32											

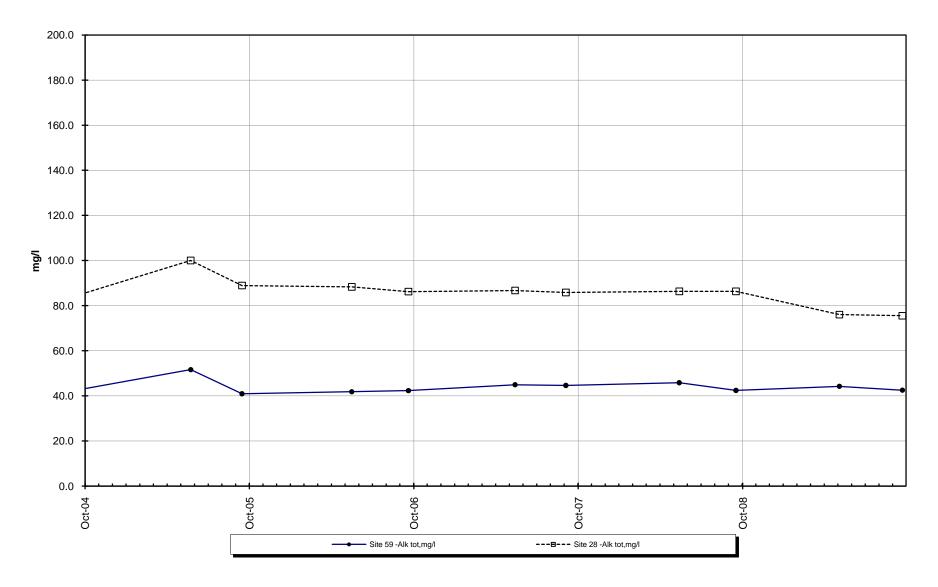
$\chi^2_h = \Sigma Z^2_k$ -I	$\chi^{2}_{h} = \Sigma Z^{2}_{k} - K(Z-bar)^{2} = 1.13$		@α=5% χ ² _(K-1) =	3.84	Test for station homo	geneity
	р	0.288			$\chi^{2}_{h} < \chi^{2}_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	Z_{calc}	-1.73	@α/2=2.5% Z=	1.96	H ₀ (No trend)	ACCEPT
56.67	р	0.042			H _A (± trend)	REJECT

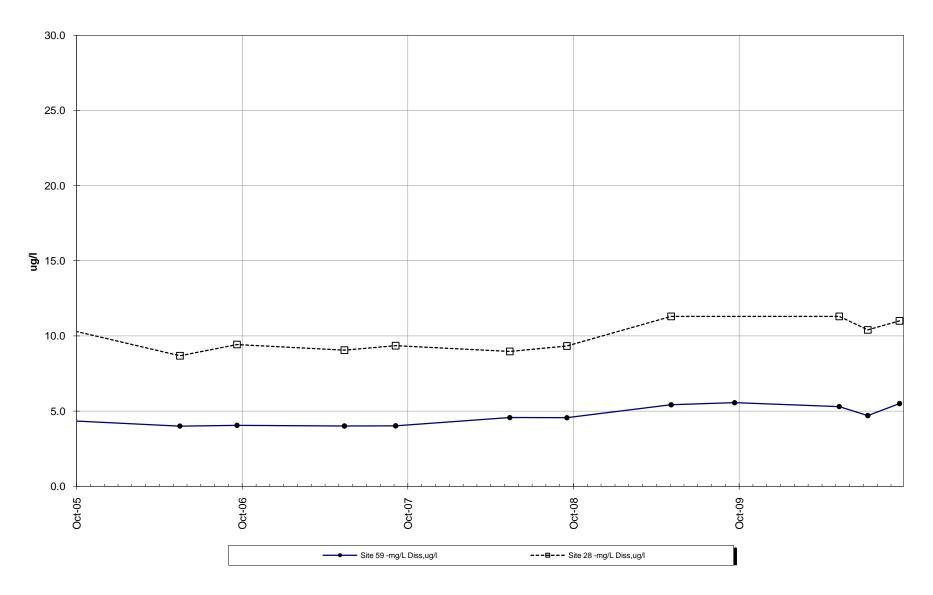


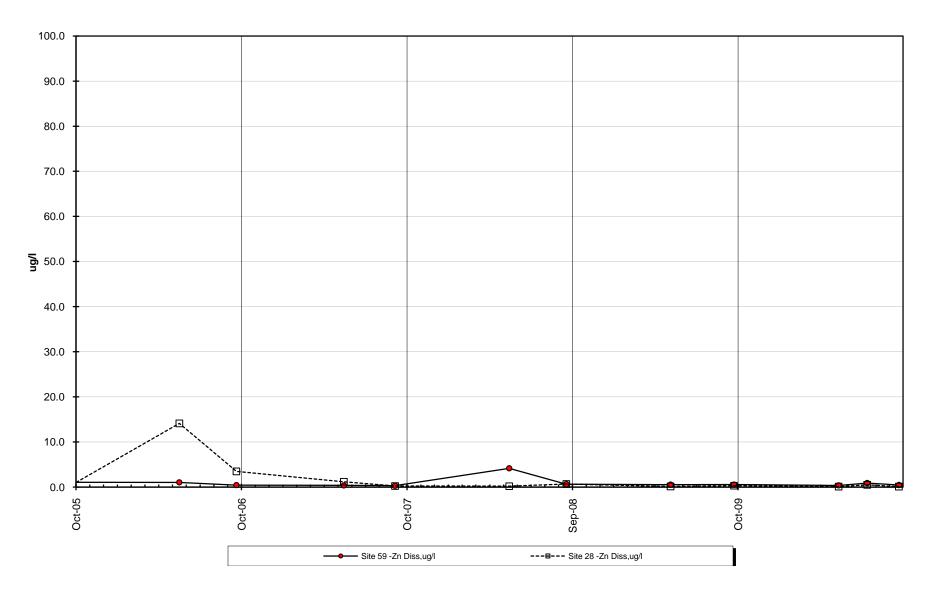
Seasona	Seasonal-Kendall Slope Confidence Intervals											
	Lower	Sen's	Upper									
α	Limit	Slope	Limit									
0.010	-1.33		0.04									
0.050	-0.88	-0.19	-0.03									
0.100	-0.49	-0.19	-0.04									
0.200	-0.36		-0.05									


Site 59 vs Site 28 -Conductivity-Field


Site 59 vs Site 28 -Conductivity


Site 59 vs Site 28 -Field pH


Site 59 vs Site 28 -Lab pH


Site 59 vs. Site 28 -Total Alkalinity

Site 59 vs. Site 28 - Total Sulfate

Site 59 vs. Site 28 -Dissolved Zinc

INTERPRETIVE REPORT SITE 9 "TRIBUTARY CREEK"

The Tributary Creek site was initially located to monitor the effects on water quality caused by the originally planned, larger slurry tailings impoundment. It is approximately one mile downstream from the present dry stack tailings site. The site was monitored from 1981 – 1993 when it was temporarily suspended by administrative agreement with the USFS. The site was re-activated in 2001 as a biological monitoring site for the Tailings Pile. HGCMC recommenced collection of water chemistry samples after receiving a suggestion to do so from ADNR-Office of Habitat Management and Permitting personnel. It was noted that should the required annual biomonitoring show significant changes, an understanding of any related water chemistry variations would enhance the interpretation of those results. During the 2010 water year, samples were collected in conjunction with the normal monthly FWMP sampling run during the months of May, July, and September and analyzed for Suite Q analytes.

The data collected during the current water year are listed in the following "Table of Results for Water Year 2010" report. The table includes all the FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the right-most column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

Routine water chemistry data collection was reinstated May 2006. All data collected at the site since then are included in the data analyses. As shown in the table below, there were no data outliers.

Sample Date	Parameter	Value	Qualifier	Notes	
No outliers hav	e been identified by	HGCMC for th	he period of	October 2	2006 through September 2010.

The data for Water Year 2010 have been compared to the strictest fresh water quality criterion for each applicable analyte. Four results exceeding these criteria have been identified, and listed in the table below. Two data points are for the total alkalinity values of 18.2 mg/L and 18.7 mg/L for the May 2010 and September 2010 sampling events respectively, which exceeds the AWQS lower limit of 20 mg/L. Also, the May field pH value was 6.2 su and the September laboratory pH was 6.15 su. However, the reciprocal pH reading (laboratory / field) for both of these events were within AWQS.

Sample Date	Parameter	Value	Hardness (mg/L)	Standard	Standard Type
11-May-10	pH Field, su	6.2		6.5	Aquatic Life, chronic
14-Sep-10	pH Lab, su	6.15		6.5	Aquatic Life, chronic
11-May-10	Alkalinity Total, mg/L	18.2		20	Aquatic Life, chronic
14-Sep-10	Alkalinity Total, mg/L	18.7		20	Aquatic Life, chronic

As stated in past reports, HGCMC feels that the current limited dataset for this site makes definitive interpretation of these exceedances difficult at this time. Site 29 (MW-3S), located in the headwaters of Tributary Creek, also had exceedances for these two analytes. In the previous four water years there have been dissolved lead exceedances recorded in each year. This water year all of the dissolved lead values were approximately half the AWQS, which was around one. As additional data are collected, it may be possible to make a determination whether the lead values represent natural background concentrations, or result from HGCMC activities.

X-Y plots have been generated to graphically present the data for each of the analytes that are listed in Suite Q. Given the short record, no clear determination can be made as to if any trends are present. Comparisons made between the current dataset and an analysis of data from the prior monitoring period from 1981 to 1993, indicates that no major changes in water chemistry for the listed analytes appear to have occurred in the in-between years.

HGCMC will continue to monitor Site 9 during May, July, September, and November for the Suite Q analytes. This sampling is in addition to the already scheduled July biomonitoring. HGCMC feels that this schedule will adequately characterize the water quality parameters while addressing safety concerns associated with winter access down the steep slope that leads to the site and the increased potential for bear encounters during salmon spawning season.

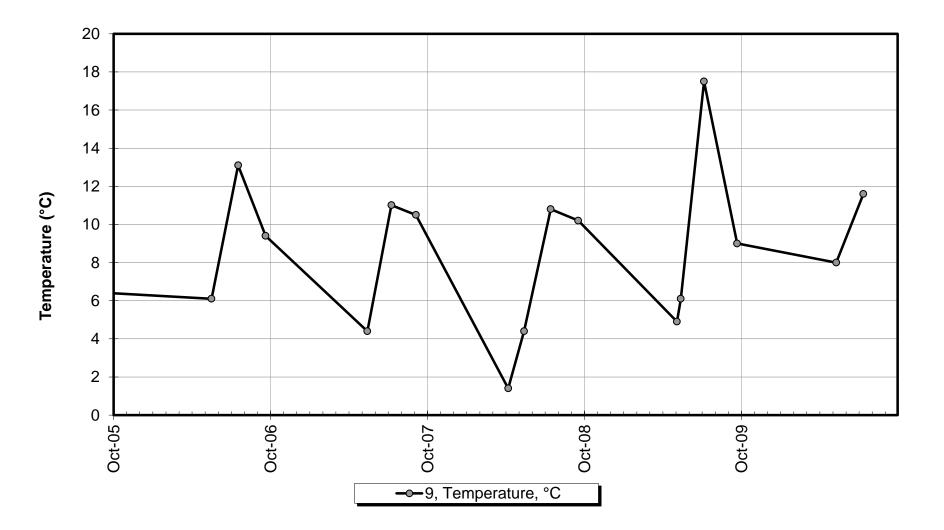
Table of Results for Water Year 2010

Site 9 "Tributary Creek"													
Sample Date/Parameter	Oct-09	Nov-09	Dec-09	Jan-10	Jan-10	Mar-10	Apr-10	5/11/2010	Jun-10	7/13/2010	Aug-10	9/14/2010	Median
Water Temp (°C)								8.0	ĊD	11.6	(7)		9.8
Conductivity-Field(µmho)								89.5	BN	91.7	ž	91.5	91.5
Conductivity-Lab (µmho)								94	J	96		102	96
pH Lab (standard units)								6.95	SAMPL	5.98	SAMPLING	6.15	6.15
pH Field (standard units)								6.20	Z	6.52	N	7.19	6.52
Total Alkalinity (mg/L)								18.2	40	18.7	34	21.3	18.7
Total Sulfate (mg/L)								18.0 J		12.0 J	0 0 0 0 0 0 0 0 0 0 0 ⁻ 0 0 0 0 0 0 0 0	18.3	18.0
Hardness (mg/L)								39.7	FOR	43.6	FOR	45.9	43.6
Dissolved As (ug/L)								0.867	й	1.050	ŭ	1.150	1.050
Dissolved Ba (ug/L)		NOT S	SCHEDU	LED FO	R SAMF	LING		36.1	Δ		Δ		36.1
Dissolved Cd (ug/L)								0.0226	SCHEDULED	0.0326	SCHEDULED	0.0425	0.0326
Dissolved Cr (ug/L)								1.330	5		5		1.330
Dissolved Cu (ug/L)								1.600	ā	1.980	ā	1.920	1.920
Dissolved Pb (ug/L)								0.3250	Щ	0.4360	Щ	0.5090	0.4360
Dissolved Ni (ug/L)								2.680	ホ		ち		2.680
Dissolved Ag (ug/L)								0.008 J	Š		š		0.008
Dissolved Zn (ug/L)								5.22		6.68	⊢	6.04	6.04
Dissolved Se (ug/L)								0.221 J	NOT		NOT		0.221
Dissolved Hg (ug/L)								0.002210	Z	0.003770	Z	0.003430	0.003430

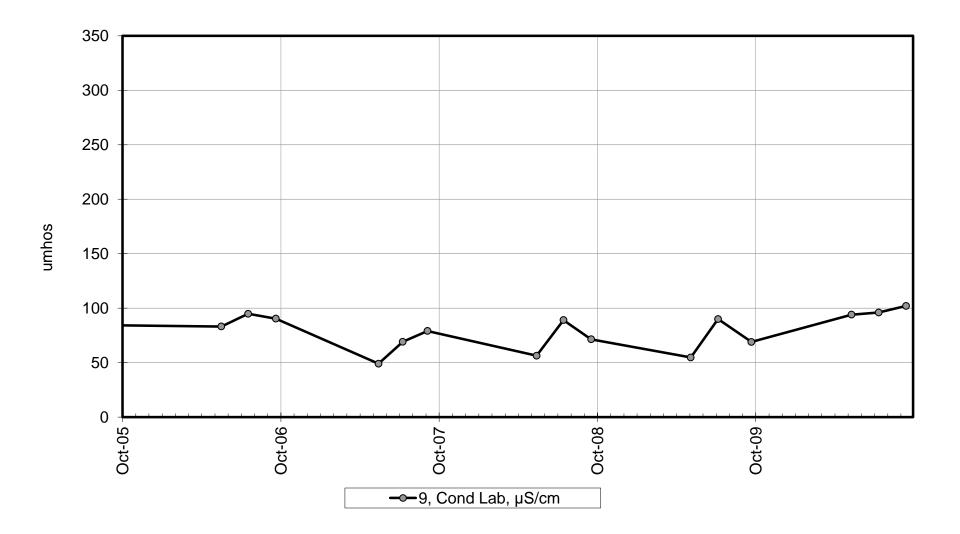
For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

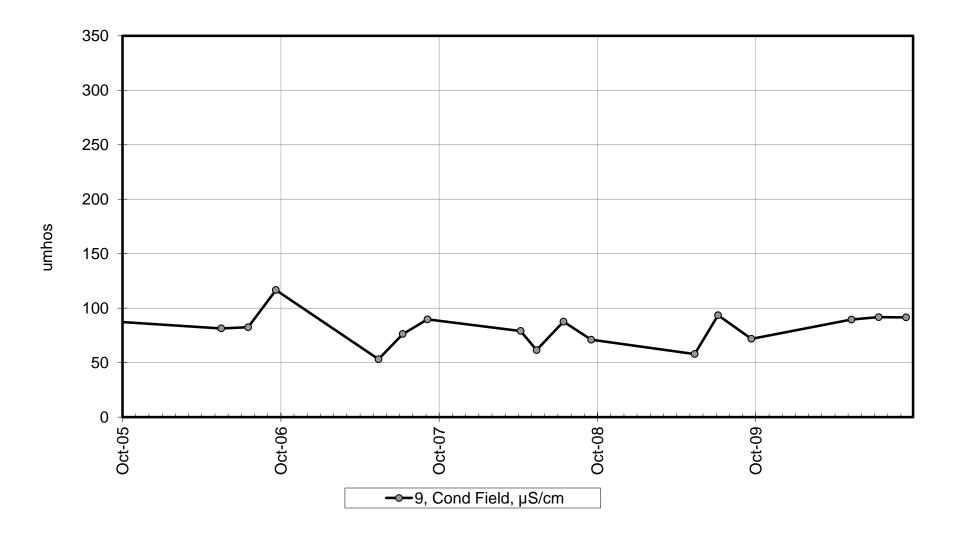
Shaded data has been qualified as an outlier by KGCMC and removed from any further analysis and is not included into the calculation of the median

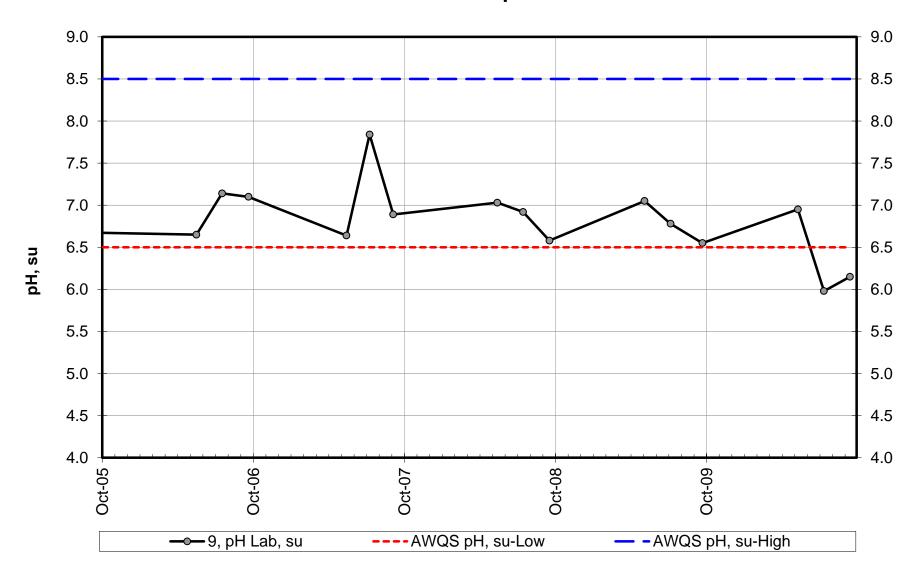

Qualified Data by QA Reviewer

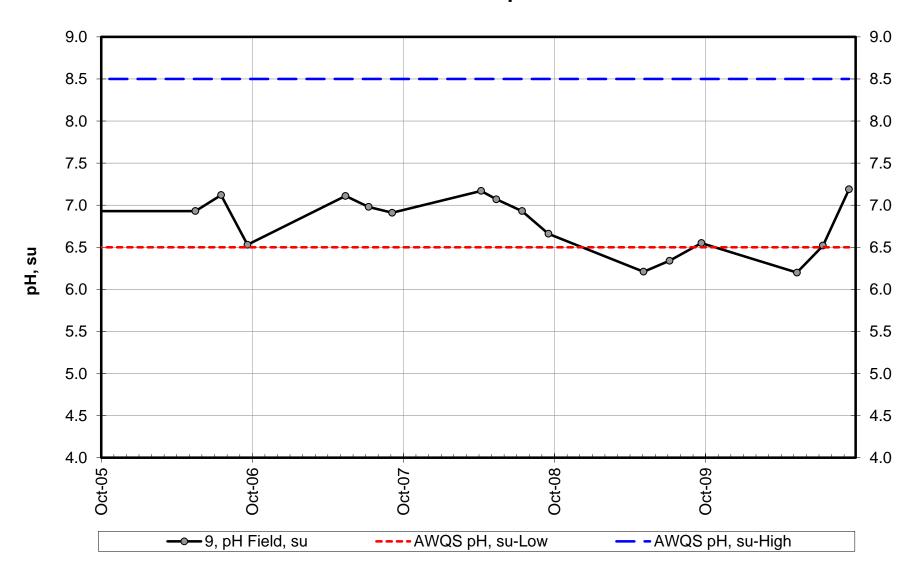
Date Range: 10/01/2009 to 09/30/2010

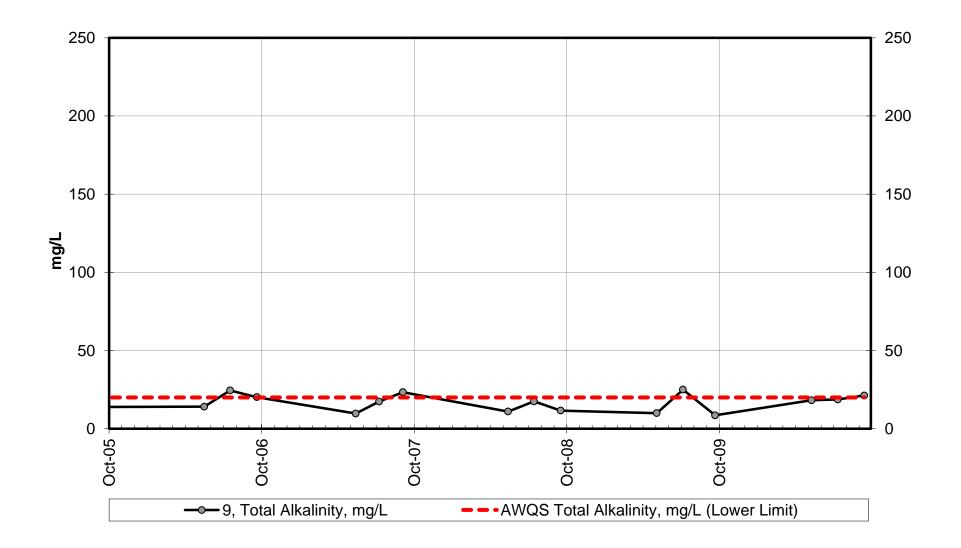

Site No.	Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier
9	5/11/2010	12:00 AM				
			Ag diss, µg/l	0.00769	J	Below Quantitative Range
			Se diss, µg/l	0.221	J	Below Quantitative Range
			SO4 Tot, mg/l	18	J	Sample Temperature
)	7/13/2010	11:15 AM				
			SO4 Tot, mg/l	12	J	Sample Reciept Temperature

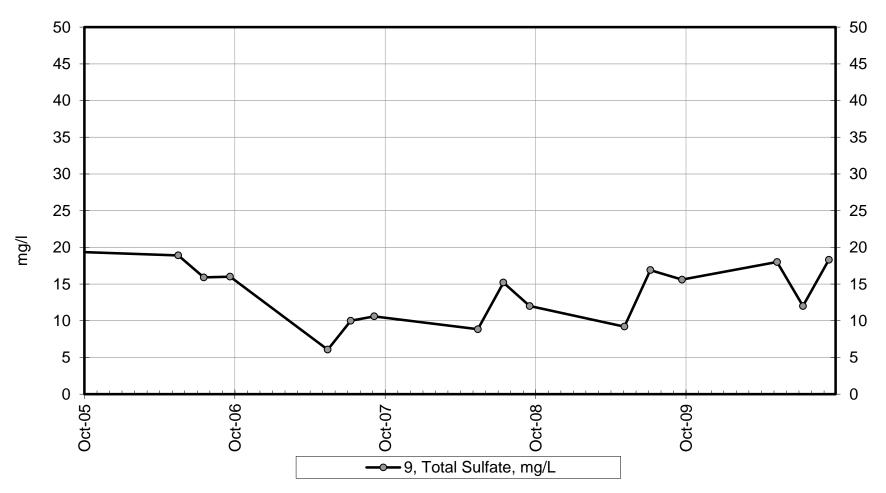
Qualifier	Description
J	Positively Identified - Approximate Concentration
Ν	Presumptive Evidence For Tentative Identification
NJ	Tentatively Identified - Approximate Concentration
R	Rejected - Cannot be Verified
U	Not Detected Above Quantitation Limit
UJ	Not Detected Above Approximate Quantitation Limit


Site 9 -Water Temperature

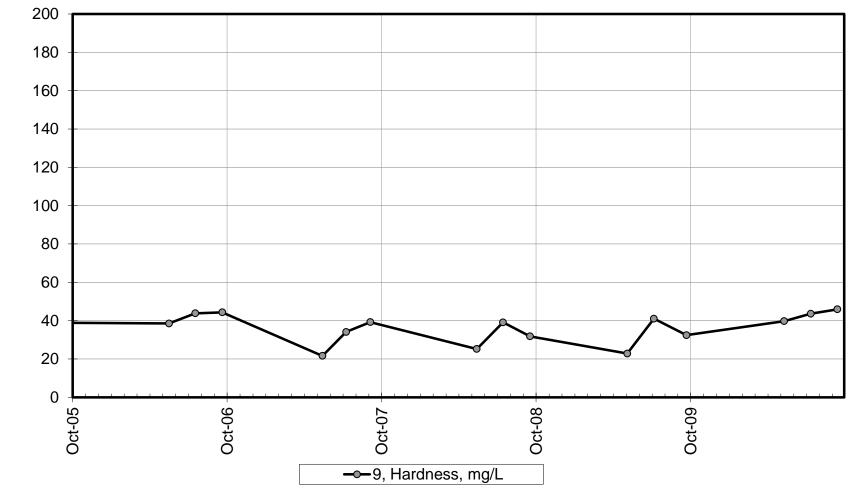

Site 9 - Conductivity-Lab


Site 9 - Conductivity-Field

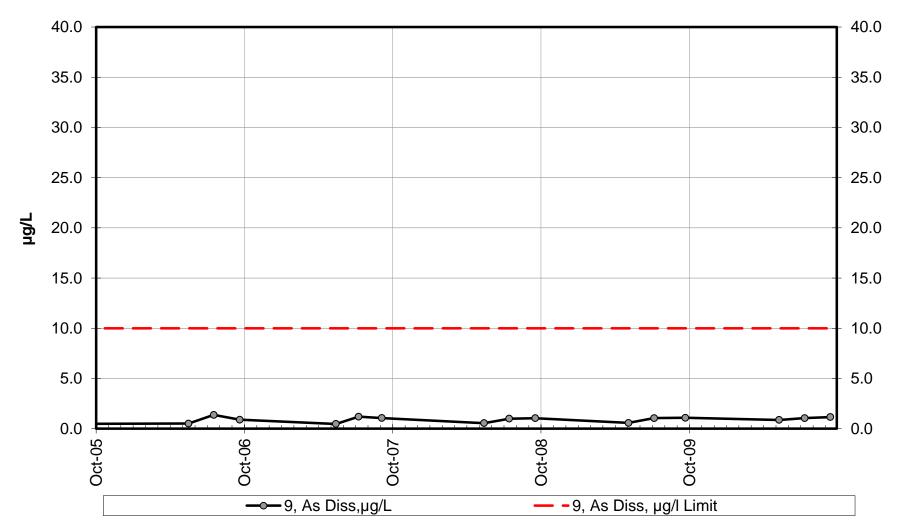

Site 9 - Lab pH


Site 9 - Field pH

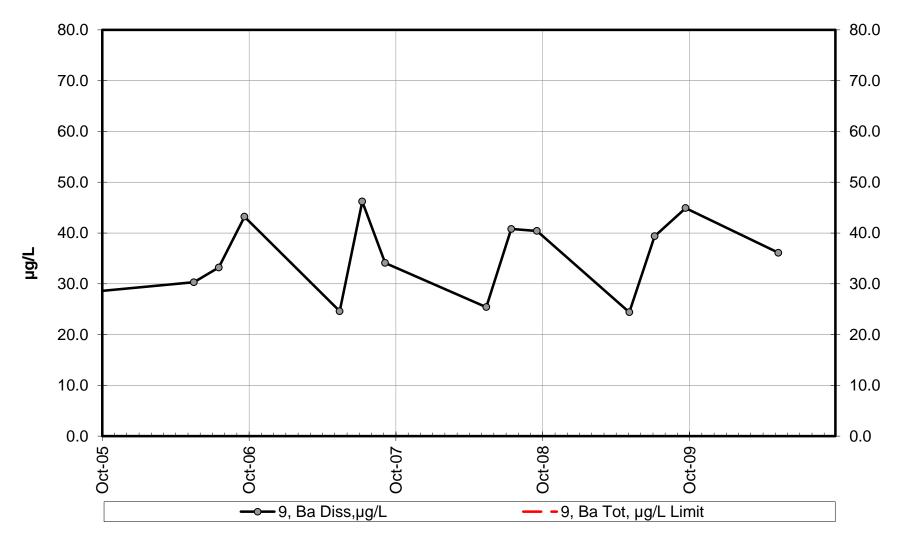
Site 9 - Total Alkalinity



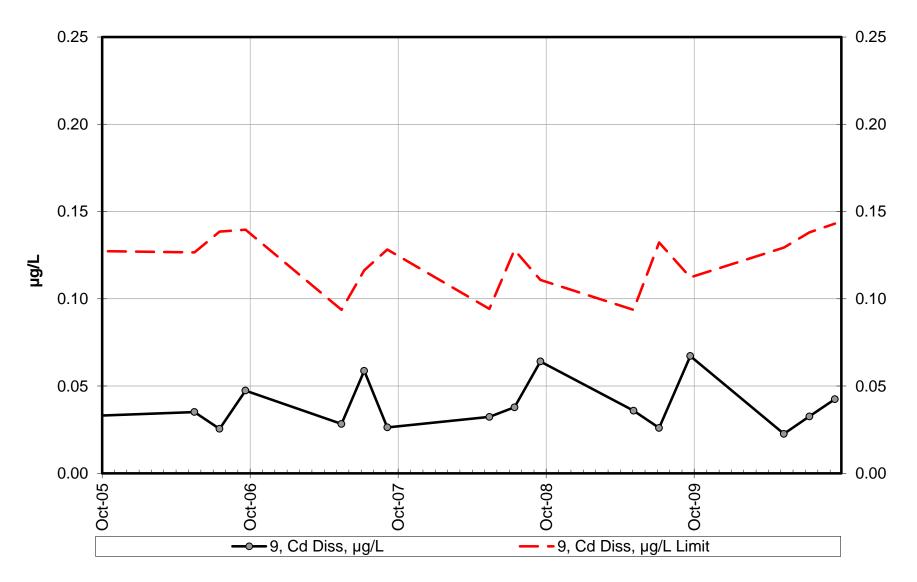
Site 9 - Total Sulfate


Note: The AWQS for Total Sulfate is 250 mg/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination.

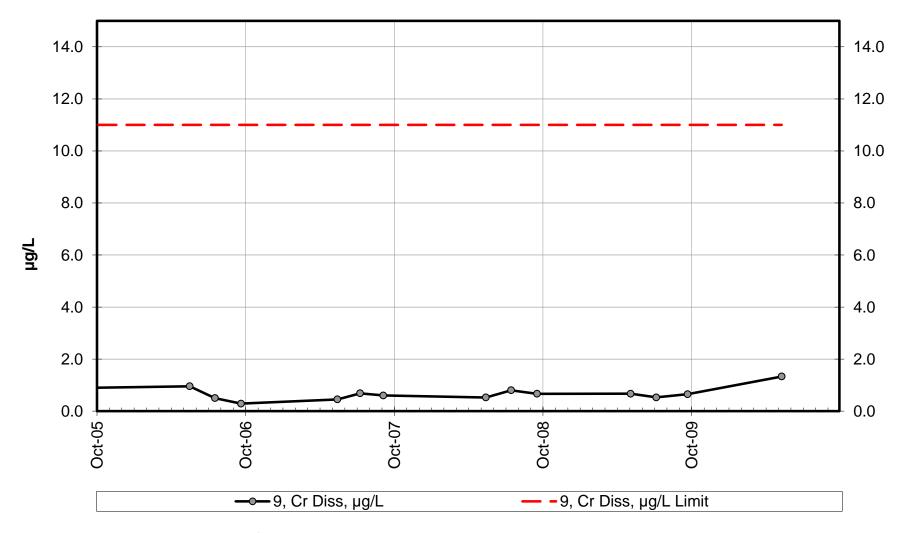
Site 9 - Hardness


mg/L

Site 9 - Dissolved Arsenic

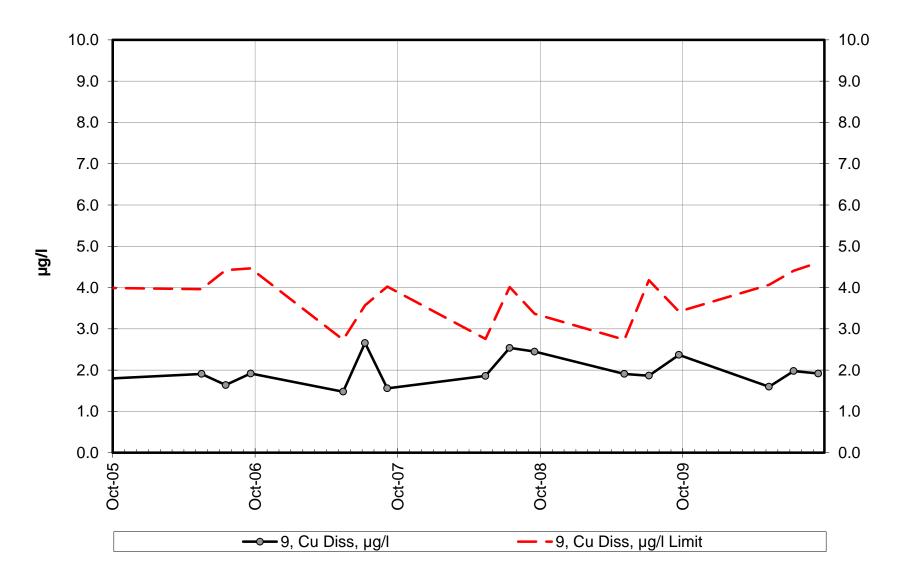

Note: The AWQS for total arsenic is 10 ug/L and thus may not be shown on this graph in order to allow greater visual detail of plotted values for trend determination

Site 9 - Dissolved Barium

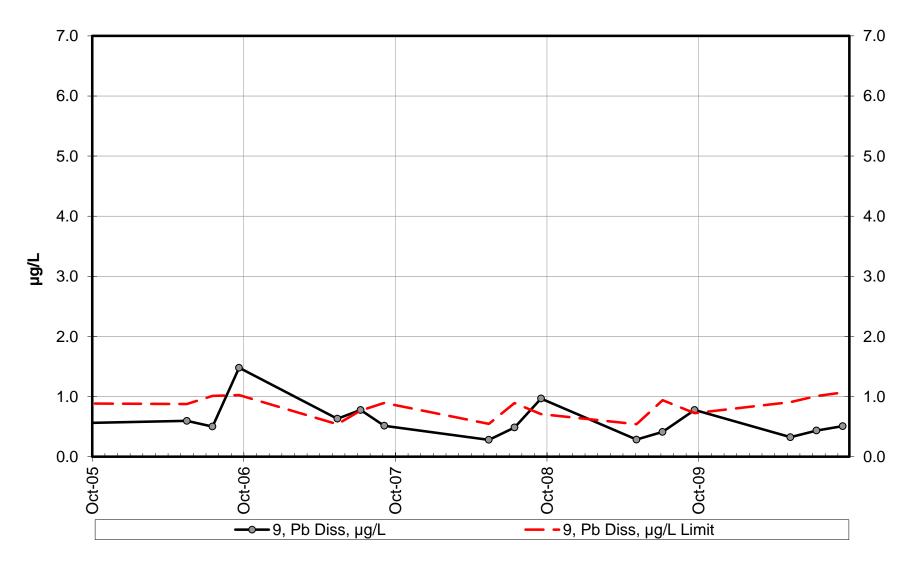


Note: the AWQS for Total Barium is 1000 ug/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination

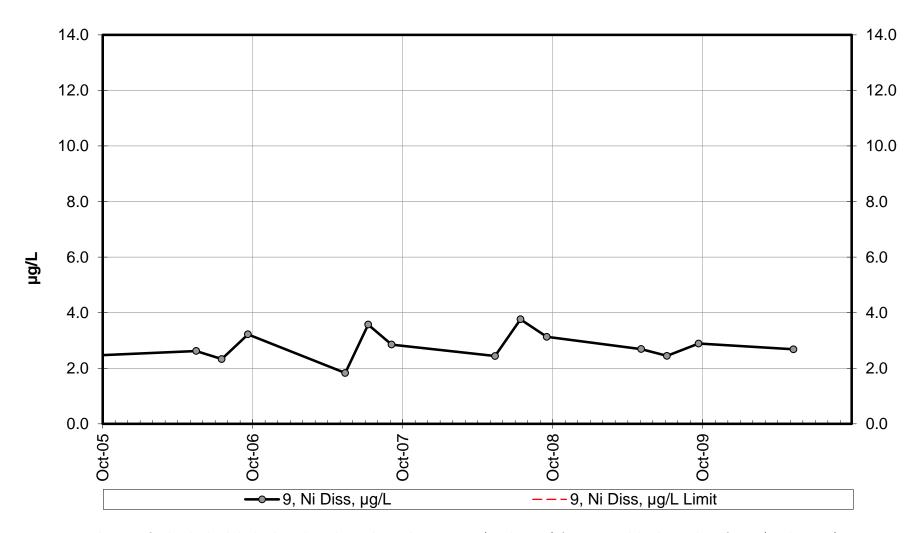
Site 9 - Dissolved Cadmium



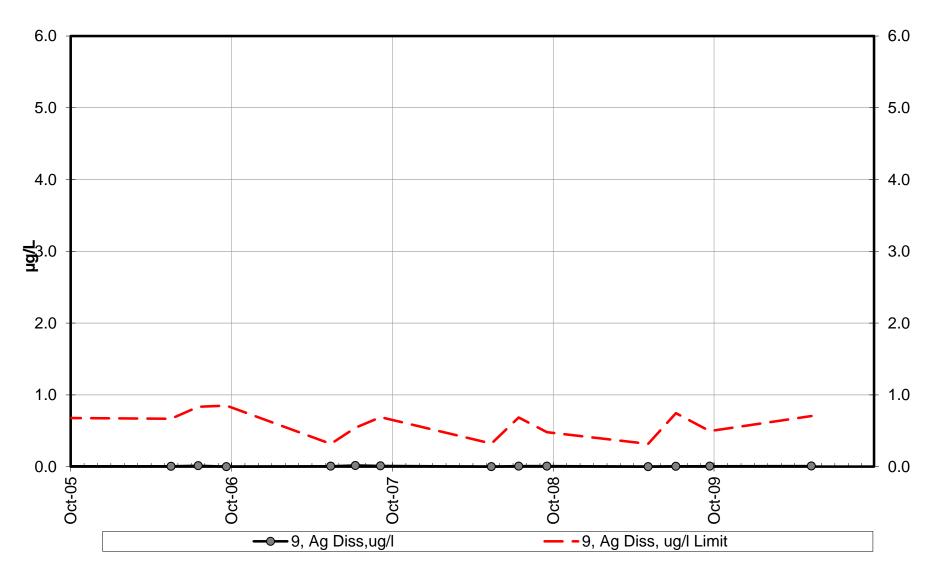
Site 9 - Dissolved Chromium



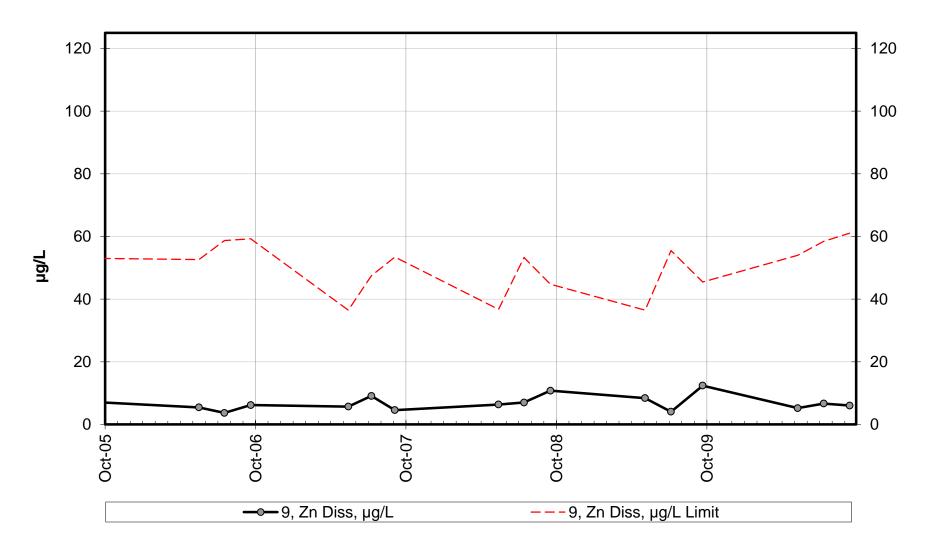
Note: the AWQS for Dissolved Chromium is 11 µg/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination


Site 9 - Dissolved Copper

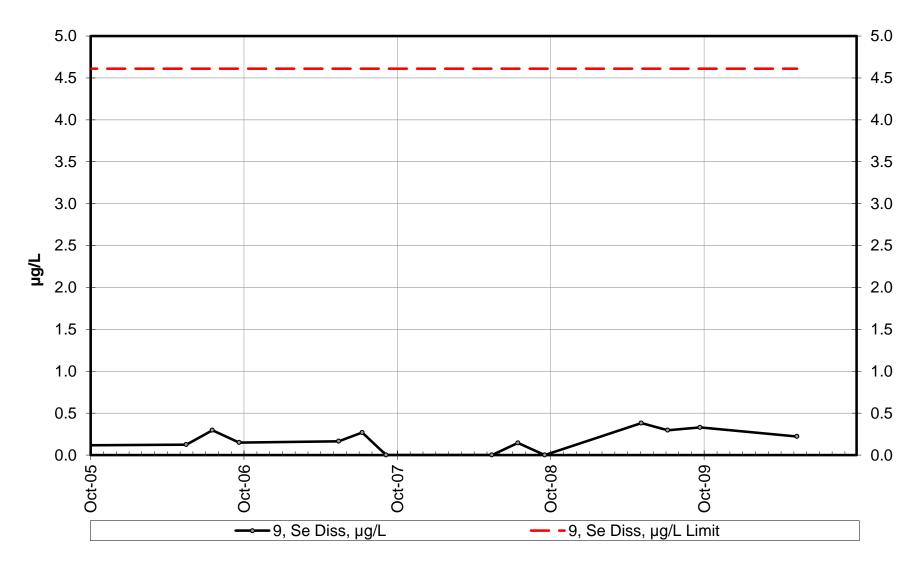
Site 9 - Dissolved Lead

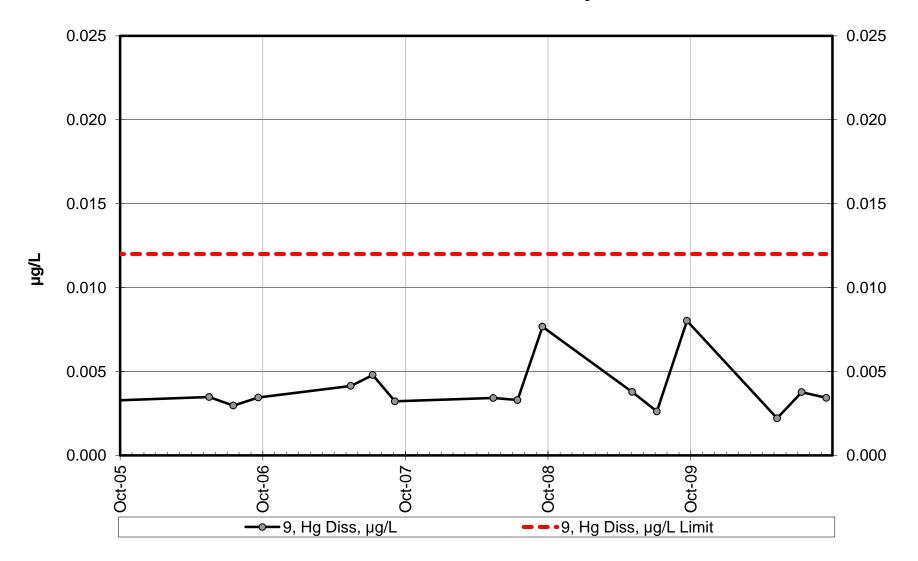


Site 9 - Dissolved Nickel

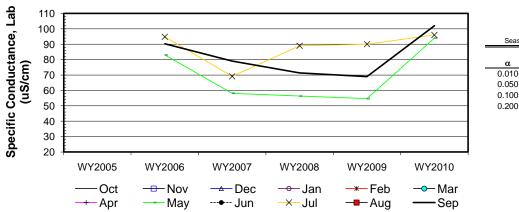


Note: The AWQS for dissolved nickel is hardness dependant and varies between 16 ug/L and 128 ug/L for waters with hardness values of 25 mg/L and 400 mg/L respectively. The AWQS, which would plot above the upper value on the Y-axis, are not shown on this graph to allow for greater visual detail of the plotted values.


Site 9 - Dissolved Silver

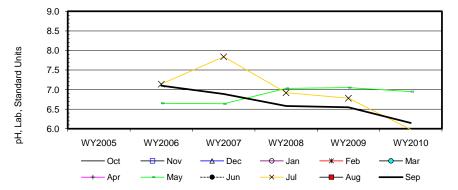

Site 9 - Dissolved Zinc

Site 9 - Dissolved Selenium



Site 9 - Dissolved Mercury

Site	#9	Oct	Nov	Dec	Jan	Feb	Mar		ductance, L May	Jun	Jul	A	Con
ow label a b c d e	Water Year WY2005 WY2006 WY2007 WY2008 WY2009	Uct	NOV	Dec	Jan	reb	Mar	Apr	83.1 58.15 56.3 54.7	Jun	94.8 69.1 89 90	Aug	90 90 71
f	WY2010	0	0	0	0	0	0	0	94 5	0	96 5	0	1
	n	0	0	0	0	0	0	0	5	0	5	0	
	t,	5	5	5	5	5	5	5	5	5	5	5	
	t ₂	0	0	0	0	0	0	0	0	0	0	0	
	t ₃	0	0	0	0	0	0	0	0	0	0	0	
	t₄	0	0	0	0	0	0	0	0	0	0	0	
	t₅	0	0	0	0	0	0	0	0	0	0	0	
	b-a												
	c-a												
	d-a												
	e-a												
	f-a												
	c-b								-1		-1		
	d-b								-1		-1		
	e-b								-1		-1		
	f-b d-c								1		1		
	e-c								-1		1		
	f-c								-1		1		
	e-d								-1		1		
	f-d								1		. 1		
	f-e								1		1		
	S _k	0	0	0	0	0	0	0	-2	0	4	0	
σ	² s=								16.67		16.67		16.
	S _k /σ _s								-0.49		0.98		-0.
	Z^{2}_{k}								0.24		0.96		0.
-	К								0.2.1		0.00		
	$\Sigma Z_k =$	0.00	Γ	Tie Extent	t1	t ₂	t ₃	t4	t ₅			Σn	15
	$\Sigma Z_k^2 =$	1.44		Count	60	0	0	0	0			ΣS_k	0
Z	Z-bar=∑Z _k /K=	0.00	_										
	ĸ												
	0.00	0				0							
	$\chi_{h}^{2} = \Sigma Z_{k}^{2}$	K(Z-bar) ² =	1.44		@α=5	i% χ ² _(K-1) =	5.99	Te	est for station ho	mogeneity			
	1		0.407						2 n ²		AOOFDT		


$\chi^2_h = \Sigma Z^2_k$	K(Z-bar) ² =	1.44	@α=5% χ ² _(K-1) =	5.99	Test for station homogeneity	
	р	0.487			$\chi^2 h < \chi^2 (K-1)$	ACCEPT
$\Sigma VAR(S_k)$	\mathbf{Z}_{calc}	0.00	@α/2=2.5% Z=	1.96	H ₀ (No trend)	ACCEPT
50.00	р	0.500			H _A (± trend)	REJECT

Seasonal-Kendall Slope Confidence Intervals												
α	Lower Limit	Sen's Slope	Upper Limit									
0.010	-8.02	Siope	9.30									
0.050	-4.61	-0.65	5.54									
0.100	-2.67	-0.65	3.23									
0.200	-1.85		2.68									

Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
a b c	WY2005 WY2006 WY2007							•	6.7 6.6		7.1 7.8	-	7.1
d	WY2008								7.0		6.9		6.6
e f	WY2009 WY2010								7.1 7.0		6.8 6.0		6.6 6.2
	n	0	0	0	0	0	0	0	5	0	5	0	5
	t,	5	5	5	5	5	5	5	5	5	5	5	5
	t ₂	0	0	0	0	0	0	0	0	0	0	0	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t₄ t	0	0	0	0	0	0	0	0	0	0	0	0
	t ₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a												
	c-a												
	d-a												
	e-a												
	f-a c-b								-1		1		-1
	d-b								1		-1		-1
	e-b								1		-1		-1
	f-b								1		-1		-1
	d-c								1		-1		-1
	e-c								1		-1		-1
	f-c								1		-1		-1
	e-d f-d								1		-1 -1		-1
	f-e								-1 -1		-1 -1		-1 -1
	S _k	0	0	0	0	0	0	0	4	0	-8	0	-10
	Qm												
	² s=								16.67		16.67		16.67
	S _k /\sigma _S								0.98		-1.96		-2.45
2	Z ² _k								0.96		3.84		6.00
	$\Sigma Z_k =$	-3.43	Г	Fie Extent	t,	t ₂	t ₃	t4	t _s			Σn	15
	ΣZ_{k}^{2}	10.80		Count	60	0	0	0	0			ΣS_k	-14

$\chi^2_h = \Sigma Z^2_k$	K(Z-bar) ² =	6.88	@α=5% χ ² _(K-1) =	5.99	Test for station homo	geneity
	p 0.032				$\chi^2_h < \chi^2_{(K-1)}$	REJECT
$\Sigma VAR(S_k)$	Z_{calc}	-1.84	@α/2=2.5% Z=	1.96	H ₀ (No trend)	NA
50.00	р	0.033			H _A (± trend)	NA

Seasona	al-Kendall Slop	e Confidence	Intervals
	Lower	Sen's	Upper
α	Limit	Slope	Limit
0.010	-0.33		0.03
0.050	-0.26	-0.16	-0.03
0.100	-0.24	-0.16	-0.07
0.200	-0.21		-0.11

Site	#9				Season	al Kenda	all analys	sis for To	otal Alk,	(mg/l)			
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
a b c d e f	WY2005 WY2006 WY2007 WY2008 WY2009 WY2010								14.1 9.7 11.0 10.0 18.2		24.5 17.4 17.5 25.0 18.7		20.2 23.4 11.6 8.6 21.3
	n	0	0	0	0	0	0	0	5	0	5	0	5
	t ₁ t ₂ t ₃ t ₄ t ₅	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0
	b-a c-a d-a e-a f-a c-b d-b e-b f-b d-c e-c f-c e-d f-d f-e S_k	0	0	0	0	0	0	0	-1 -1 -1 1 1 1 1 -1 1 1 2	0	-1 -1 -1 1 1 1 1 1 1 -1 2	0	1 -1 -1 -1 -1 -1 -1 -1 1 1 1 -2
	σ ² s=								16.67		16.67		16.67
Z _k =	= S _k /σ _s Z ² _k								0.49		0.49		-0.49 0.24
Z	$\Sigma Z_k = \Sigma Z_k^2 = \Sigma Z_k K = $	0.72		Tie Extent Count	t, 60	t ₂ 0	t ₃ 0	t₄ 0	t _s O			Σ n Σ S _k	15 2
	$\chi^2_h = \Sigma Z^2_k$ -	K(Z-bar) ² =	0.64		@α=5°	% χ ² _(K-1) =	5.99			tion homoge			
		p	0.726			0	1.00	2	$\chi^2_h < \chi^2_{(K-1)}$		CCEPT		
	ΣVAR(S _k) 50.00	Z _{calc}	0.14 0.556		@α/2=	=2.5% Z=	1.96		H₀ (No H _A (± t		CCEPT REJECT		
26 - 24 - 22 -	- - - - - - - -	>	<	\wedge									
									· _ =	Seasonal-	Kendall Slope	Confidence II	Upper
/bu	-			/ /	\mathbf{V}			X	× -	α	Limit	Slope	Limit
- 20 - 80 - 10 - 14 - 12 - 12 - 12				×						0.010 0.050 0.100 0.200	-3.96 -2.73 -1.50 -1.36	0.13	2.92 0.95 0.52 0.27
10 -	WY2005	5 WY2	2006	WY2007	WY2	2008	WY2009	WY2	2010				
	Oc + Ap		– Nov – May	— <u> </u>		-Jan Jul	<mark>—∗—</mark> Fet —∎— Auç		– Mar – Sep				

						Kendall							
ow label a b c d e f	Water Year WY2005 WY2006 WY2007 WY2008 WY2009 WY2010	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May 18.9 6.1 8.8 9.2 18.0	Jun	Jul 15.9 10.0 15.2 16.9 12.0	Aug	Sep 16 10 12 15 18
	n	0	0	0	0	0	0	0	5	0	5	0	
	t ₁ t ₂ t ₃ t ₄ t ₅	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	
	b-a c-a d-a e-a f-a c-b d-b e-b f-b d-c e-c f-c e-d f-d f-d f-e								-1 -1 -1 1 1 1 1 1		-1 -1 -1 -1 -1 -1 -1 -1		
-	Sk	0	0	0	0	0	0	0	2	0	0	0	
Z _k =	s_{k}^{2} s= S _k / σ_{s} Z ² _k								16.67 0.49 0.24		16.67 0.00 0.00		16. 0. 0.
z	$\Sigma Z_k = \Sigma Z_k^2 = -bar = \Sigma Z_k/K =$	1.47 1.20 0.49	[Tie Extent Count	t ₁ 60	t ₂ 0	t₃ O	t₄ O	t₅ 0			Σ n Σ S _k	15 6
	$\chi^2_h = \Sigma Z^2_k - k$		0.48		@α=5°	% χ ² _(K-1) =	5.99		est for statio	-	-		
	∑VAR(S _k) 50.00	p Z _{calc} p	0.787 0.71 0.760		@0	α=5% Z=	1.64	,	ζ ² h<χ ² (K-1) H₀ (No tr H _A (± tr	rend) A	CCEPT CCEPT EJECT		
20 18 16 14	3		r X			×	×		=	Seasonal	-Kendall Slope	e Confidence Int	ervals Uppe
2011ate, 10tal (1119/1)	2 3 6								×	α 0.010 0.050 0.100 0.200	Limit -2.28 -0.86 -0.29 -0.12	Slope 0.62	Limit 2.86 2.55 2.12 1.57

label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
a c d e f	WY2005 WY2006 WY2007 WY2008 WY2009 WY2010								5.5 5.7 6.4 8.4 5.2		3.7 9.1 7.0 4.1 6.7		6.2 4.6 10.8 12.4 6.0
	n	0	0	0	0	0	0	0	5	0	5	0	5
•	t ₁ t2 t3 t4 t5	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 0 0 0 0	5 () () ()
-	b-a c-a d-a f-a c-b d-b e-b f-b d-c e-c f-c e-c f-c f-d f-e								1 1 -1 1 -1 1 -1 -1		1 1 -1 -1 -1 -1 -1 1		
-	S _k	0	0	0	0	0	0	0	2	0	0	0	2
$Z_k =$	² s= S _k /σ _s								16.67 0.49 0.24		16.67 0.00 0.00		16.67 0.49 0.24
Z	$\Sigma Z_{k} = \Sigma Z_{k}^{2} = -bar = \Sigma Z_{k}/K =$	0.98 0.48 0.33	Т	ïe Extent Count	t, 60	t ₂ 0	t ₃ 0	t ₄ 0	t₅ 0			Σ n Σ S _k	15 4
ļ	χ² _h =ΣΖ² _k -ł		0.16		@α=5%	6 χ ² _(K-1) =	5.99		Fest for stati	-	-		
	ΣVAR(S _k) 50.00	p Z _{calc} p	0.923 0.42 0.664	L	@α/2=	2.5% Z=	1.96		$\frac{\chi^2_h < \chi^2_{(K-1)}}{H_0 \text{ (No t)}}$ $\frac{H_0 \text{ (No t)}}{H_A \text{ (± tr)}}$	rend)	ACCEPT ACCEPT REJECT		
14 · 12 · 10 ·										Seasona	-Kendall Slope		
				X			~	\mathbf{X}		α	Lower Limit	Sen's Slope	Upper Limit
8 - 6 - 4 - 2 -				J						0.010 0.050 0.100 0.200	-1.70 -0.50 -0.16 -0.06	0.35	1.75 1.29 0.87 0.65
0 -	WY2005				1			1					

INTERPRETIVE REPORT SITE 60 "-LOWER ALTHEA CREEK"

Sampling at this site was initiated during background investigations conducted by HGCMC for the Stage II Tailings EIS. The two sampling events that occurred in 2003 were submitted to Analytica Alaska Laboratories for analysis and subject to standard QAQC procedures. The detection limits achieved during this analysis were slightly higher for some analytes than are currently achieved under FWMP sampling protocols. The two sample events that occurred in the 2006 water year were analyzed in parallel with standard FWMP samples and thus subject to the same analytical procedures.

The data collected during the current water year are listed in the following "Table of Results for Water Year 2010" report. The table includes all the required FWMP analyte data (field and lab) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the right-most column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

Both ADEC and the USFS requested during the WY2006 annual meeting that an additional monitoring point be added to monitor the impact from Pond 7 on the western, downgradient drainage. Greens Creek proposed the current site on lower Althea, and after review by ADEC and USFS during a site visit (June 2, 2007 – USFS Inspection #259) the new site was added to the routine monitoring schedule.

As shown in the table below, there were no data outliers.

Sample Date	Parameter	Value	Qualifier	Notes	
No outliers have	been identified by HGC	CMC for the peri-	od of October	r 2005 through September 2010.	

The data for Water Year 2010 have been compared to the strictest fresh water quality criterion for each applicable analyte. Eight results exceeding these criteria have been identified, as listed in the table below. Four of the datum are for pH; two laboratory pH values of 5.45 su (July) and 6.01 su (September), and two field pHs with values of 5.5 su (July) and 6.47 su (September), all of which are below the AWQS limit of 6.50 su. Historical sampling for this site in 2003, prior to any disturbance that would directly impact Althea Creek, indicates that the natural background pH ranged from 4.1 to 4.8 su for both field and laboratory analyses. For both the July and September sampling events total alkalinity was in exceedance at Site 60, with the respective values of 11.3 mg/L and 10.7 mg/L. However, this is a continuation of the visual trend of decreasing alkalinity, towards pre-disturbance values.

Sample Date	Parameter	Value	Hardness (mg/L)	Standard	Standard Type
13-Jul-10	pH Field, su	5.5			Aquatic Life, chronic
14-Sep-10	pH Field, su	6.47			Aquatic Life, chronic
13-Jul-10	pH Lab, su	5.45			Aquatic Life, chronic
14-Sep-10	pH Lab, su	6.01			Aquatic Life, chronic
13-Jul-10	Alkalinity Total, mg/L	11.3		20	Aquatic Life, chronic
14-Sep-10	Alkalinity Total, mg/L	10.7		20	Aquatic Life, chronic
13-Jul-10	Mercury, Dissolved µg/L	0.0156		0.012	
14-Sep-10	Mercury, Dissolved µg/L	0.0227		0.012	

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. Because of the limited amount of sampling for this site, non-parametric statistical analyses for trend were not performed. Site 60 was added to the FWMP as a monitoring point for impacts from Pond 7. Some analytes (*e.g.* sulfate, barium) and measurements (*e.g.* pH, conductivity, hardness, and alkalinity) have similar decreasing visual trends over water years 2007 - 2009. Initially, after the construction of Pond 7 there was a spike in these analytes and measurements. With the completion of the Pond 7 under drain caisson pump back system, these values have begun to decrease and normalize.

The notable exception to this is the current elevated dissolved mercury levels in the past few years. It is theorized that this too is an artifact from the construction of Pond 7. When the natural waters shifted to a more alkaline state after the disturbance caused by Pond 7 construction, this caused dissolved mercury that naturally existed at a low level to adsorb on to other particles and come out of solution. With the success of the pump back system the area is beginning to returning to its natural state as previously mentioned. Because there is this fundamental chemistry shift in the pH the adsorbed mercury is now going back into solution causing the increased values. As the 'pool' of adsorbed mercury is depleted, mercury levels should return to levels recorded in 2006 (mean = $.00395\mu g/L$). Though the data last year suggested that dissolved mercury levels were starting to decrease, the September 2010 sample was the highest level ($0.227 \mu g/L$) recorded. Additional sampling in adjacent drainages during WY2009 showed that this issue was isolated to only the Althea watershed. As a final note, the November 2011 dissolved mercury sample was $0.00622 \mu g/L$, which is below the AWQS limit.

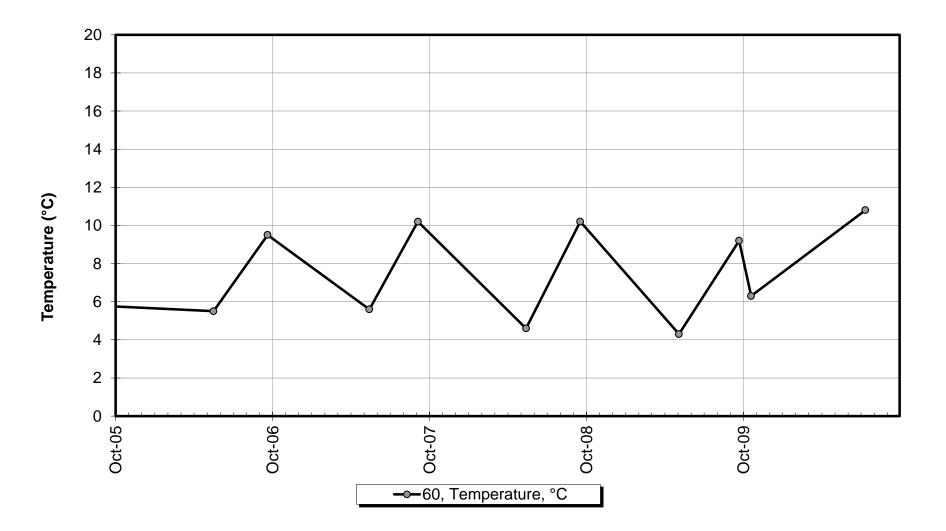
Table of Results for Water Year 2010

			Site	60 "ALTH	HEA CRE	EK - LOW	ER"						
Sample Date/Parameter	Oct-09	Nov-09	Dec-09	Jan-10	Feb-10	Mar-10	Apr-10	5/11/2010	Jun-10	7/13/2010	Aug-10	9/14/2010	Median
Water Temp (°C)									(D)	10.8	(J)		10.8
Conductivity-Field(µmho)									ž	54.7	DNG	51.6	53.2
Conductivity-Lab (µmho)									SAMPLING	60		55	57
pH Lab (standard units)									≙	5.45	SAMPL	6.01	5.73
pH Field (standard units)									Z	5.50	N	6.47	5.99
Total Alkalinity (mg/L)									40	11.3	90	10.7	11.0
Total Sulfate (mg/L)										<5.0 UJ		<5.0	2.5
Hardness (mg/L)								Z	FOR	29.7	For	29.0	29.4
Dissolved As (ug/L)								No	й	2.160	ŭ	2.620	2.390
Dissolved Ba (ug/L)		NOT S	SCHEDU	LED FO	R SAM	PLING		Ш	Δ		Δ		
Dissolved Cd (ug/L)								Ŷ	Щ	0.0206	Щ	0.0267	0.0237
Dissolved Cr (ug/L)								Z	5		5		
Dissolved Cu (ug/L)									ā	1.060	ā	1.160	1.110
Dissolved Pb (ug/L)									SCHEDULED	0.1640	SCHEDULED	0.2420	0.2030
Dissolved Ni (ug/L)									ち		ホ		
Dissolved Ag (ug/L)									Š		Š		
Dissolved Zn (ug/L)									Η-	5.23	 	5.29	5.26
Dissolved Se (ug/L)									NOT		NOT		
Dissolved Hg (ug/L)									Z	0.015600 U	Z	0.022700	0.019150

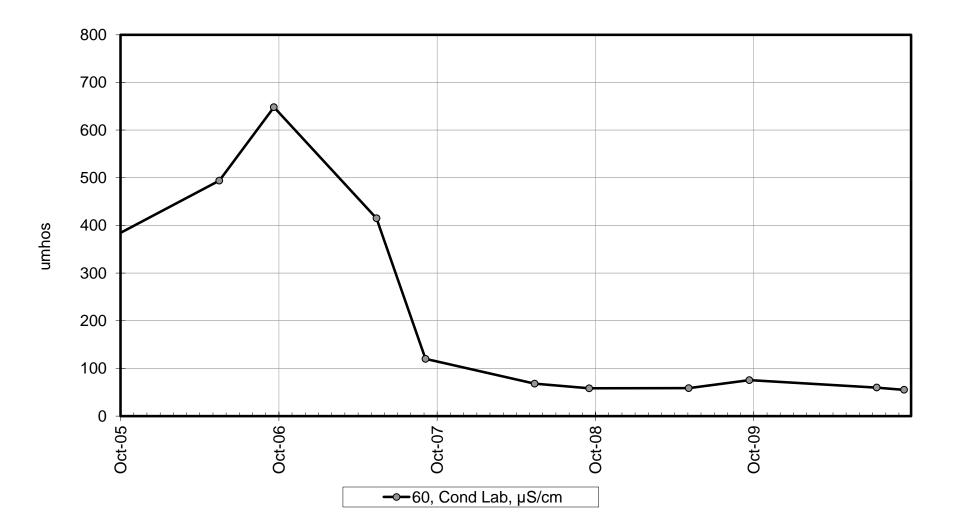
For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

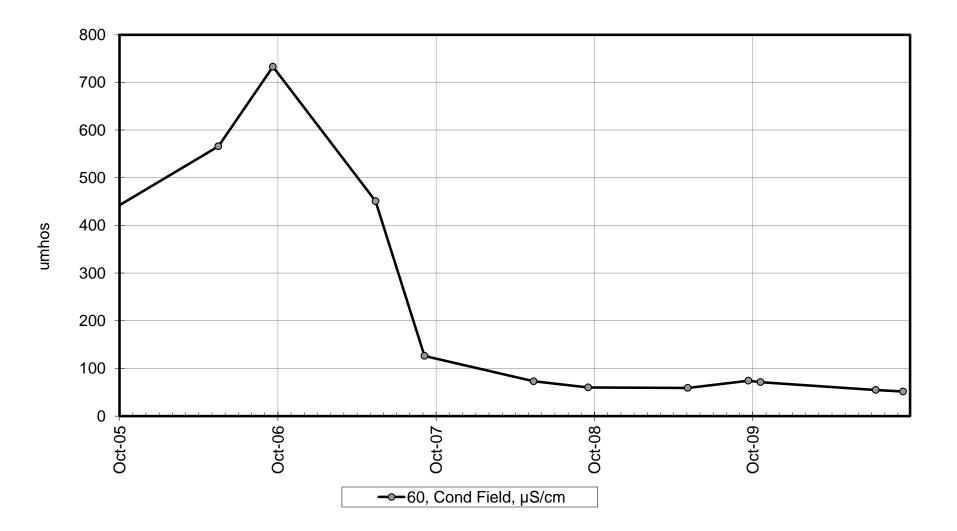
Shaded data has been qualified as an outlier by KGCMC and removed from any further analysis and is not included into the calculation of the median

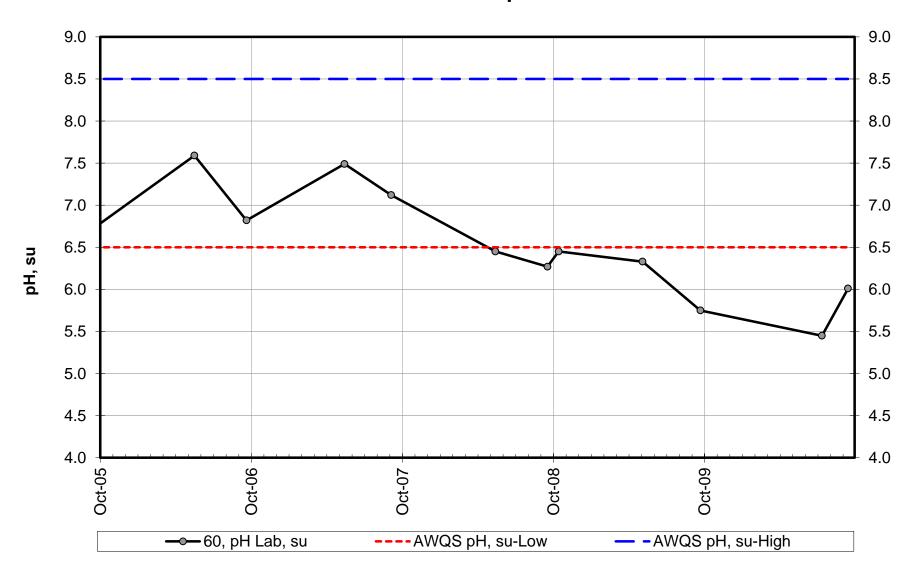

Qualified Data by QA Reviewer

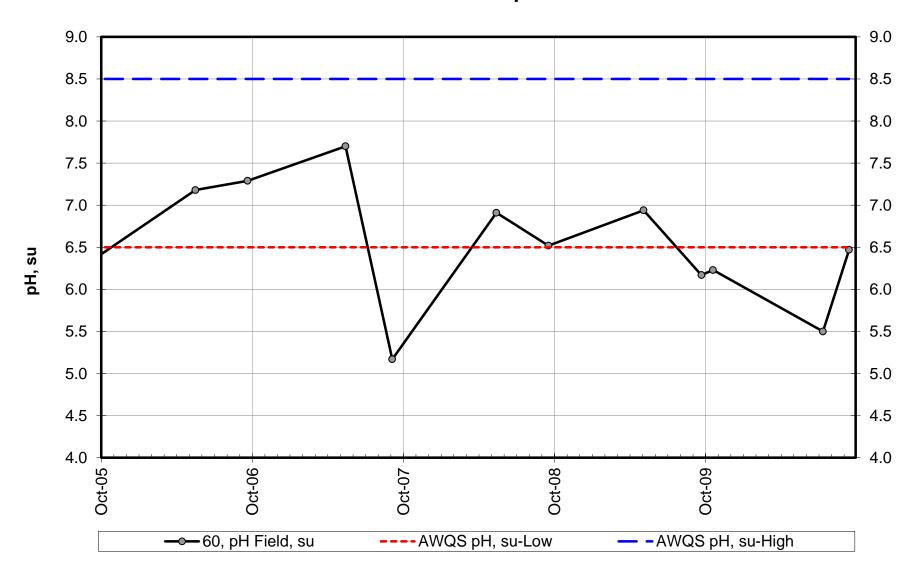
Date Range: 10/01/2009 to 09/30/2010

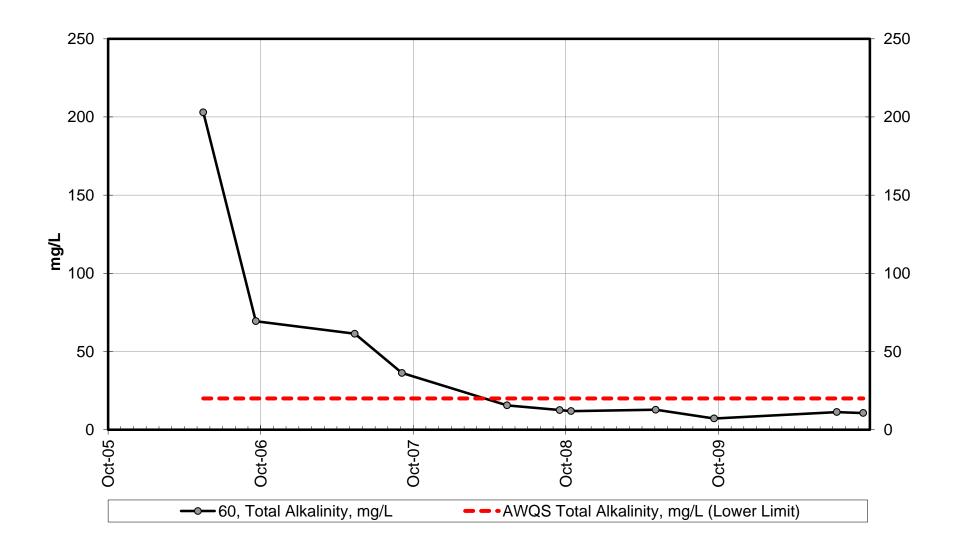

Site No.	Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier
60	7/13/2010	1:07 PM				
			SO4 Tot, mg/l	0	UJ	Sample Reciept Temperature

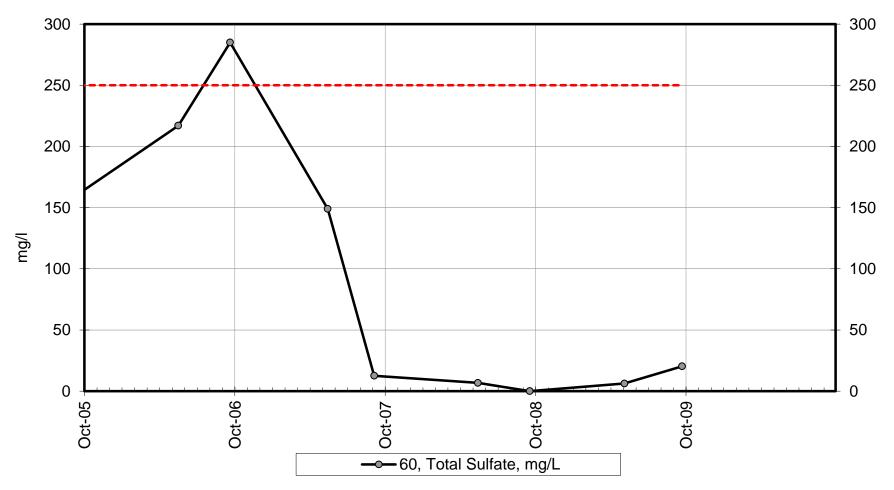
Qualifier	Description
J	Positively Identified - Approximate Concentration
Ν	Presumptive Evidence For Tentative Identification
NJ	Tentatively Identified - Approximate Concentration
R	Rejected - Cannot be Verified
U	Not Detected Above Quantitation Limit
UJ	Not Detected Above Approximate Quantitation Limit


Site 60 -Water Temperature

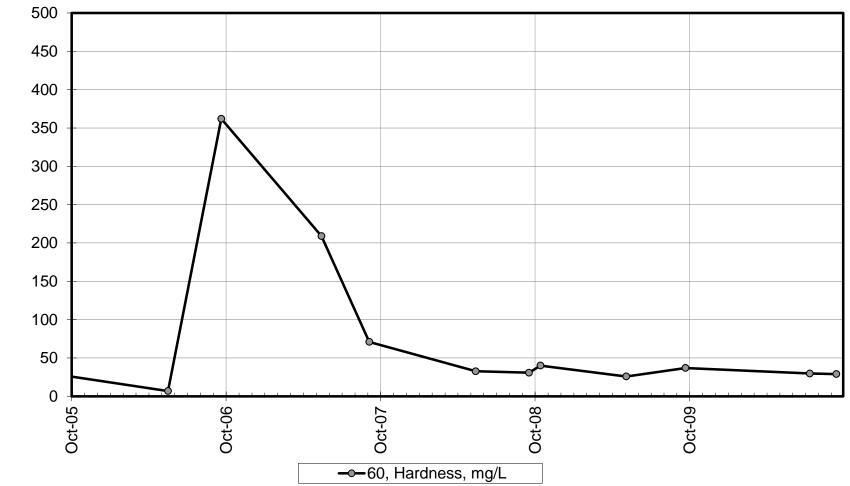

Site 60 - Conductivity-Lab


Site 60 - Conductivity-Field

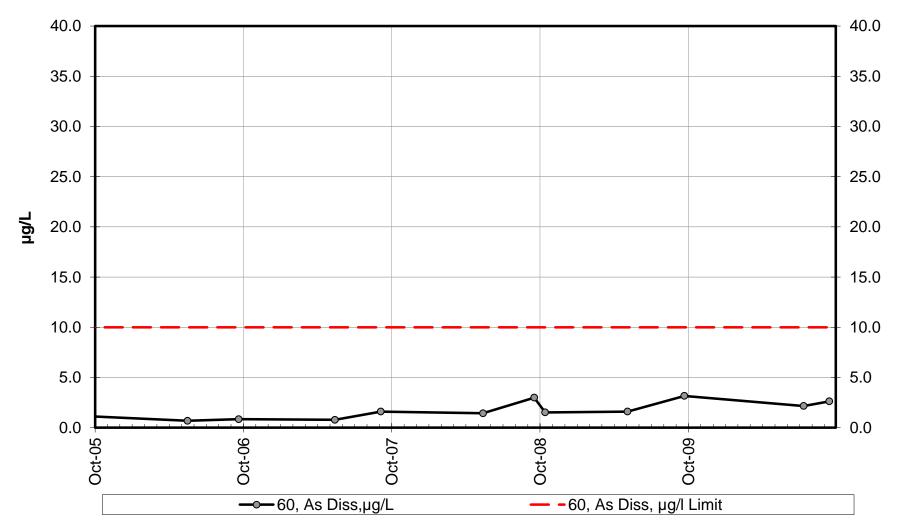

Site 60 - Lab pH


Site 60 - Field pH

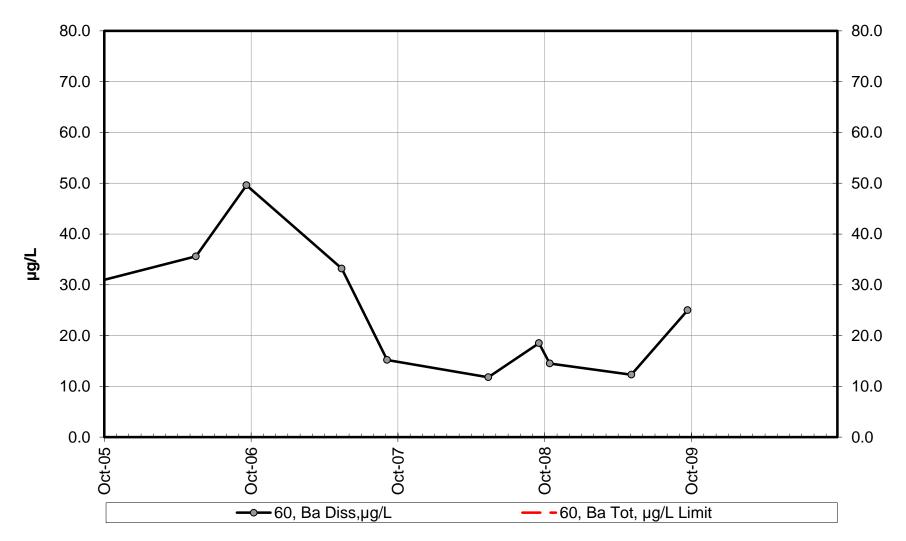
Site 60 - Total Alkalinity



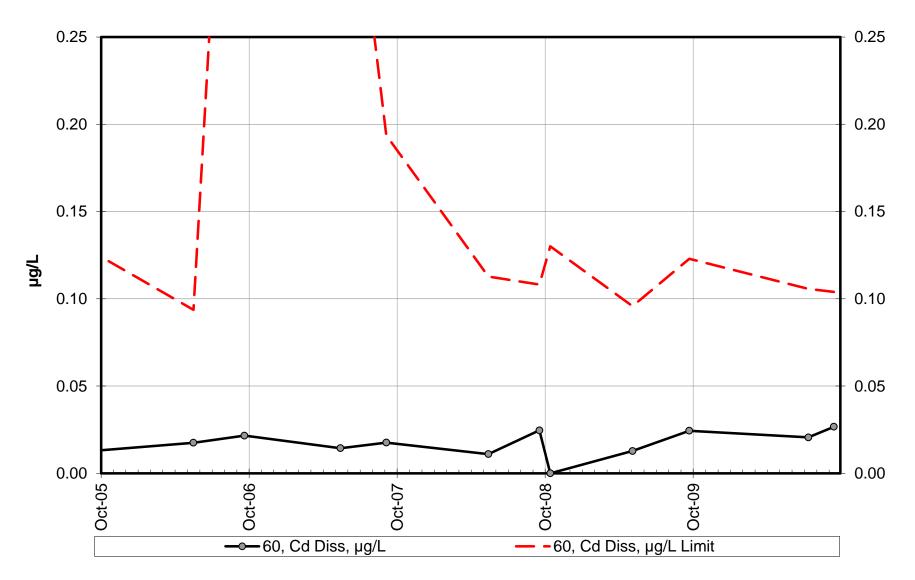
Site 60 - Total Sulfate


Note: The AWQS for Total Sulfate is 250 mg/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination.

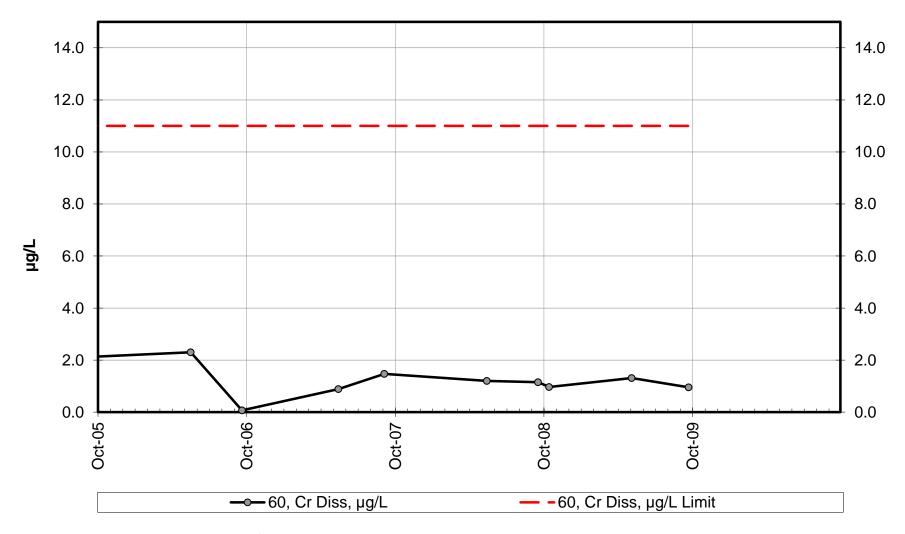
Site 60 - Hardness


mg/L

Site 60 - Dissolved Arsenic

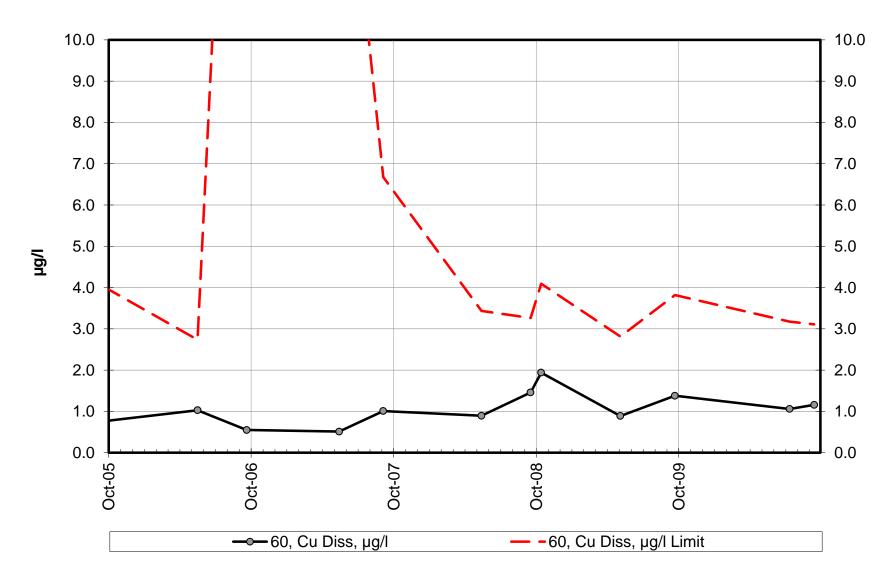

Note: The AWQS for total arsenic is 10 ug/L and thus may not be shown on this graph in order to allow greater visual detail of plotted values for trend determination

Site 60 - Dissolved Barium

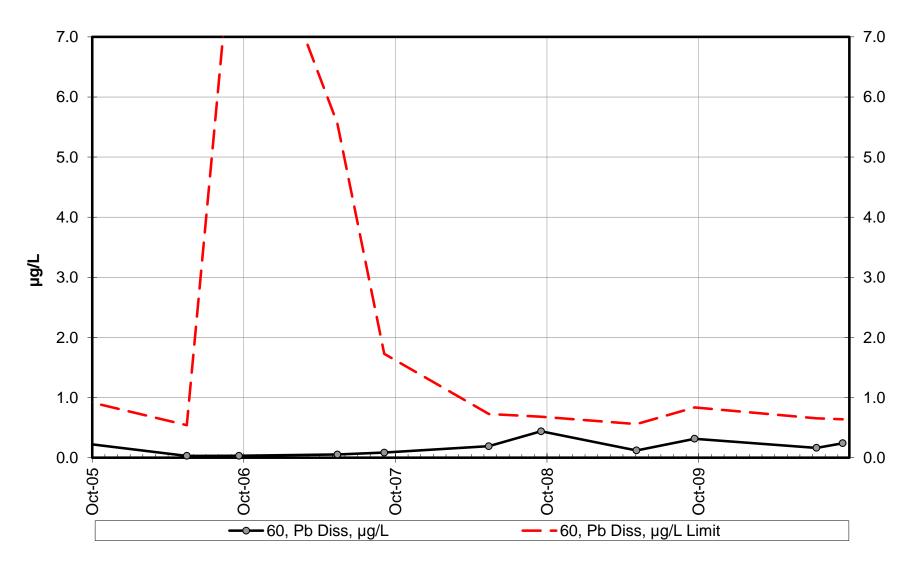


Note: the AWQS for Total Barium is 1000 ug/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination

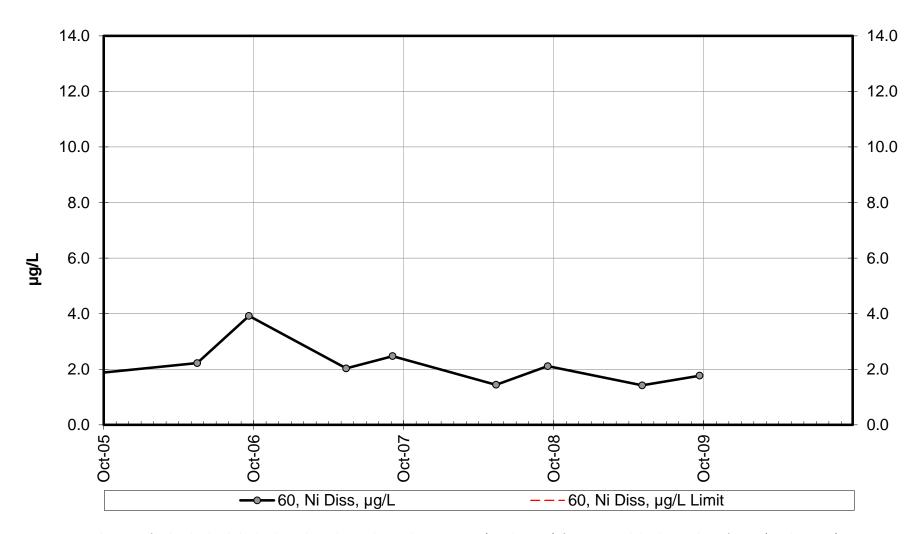
Site 60 - Dissolved Cadmium



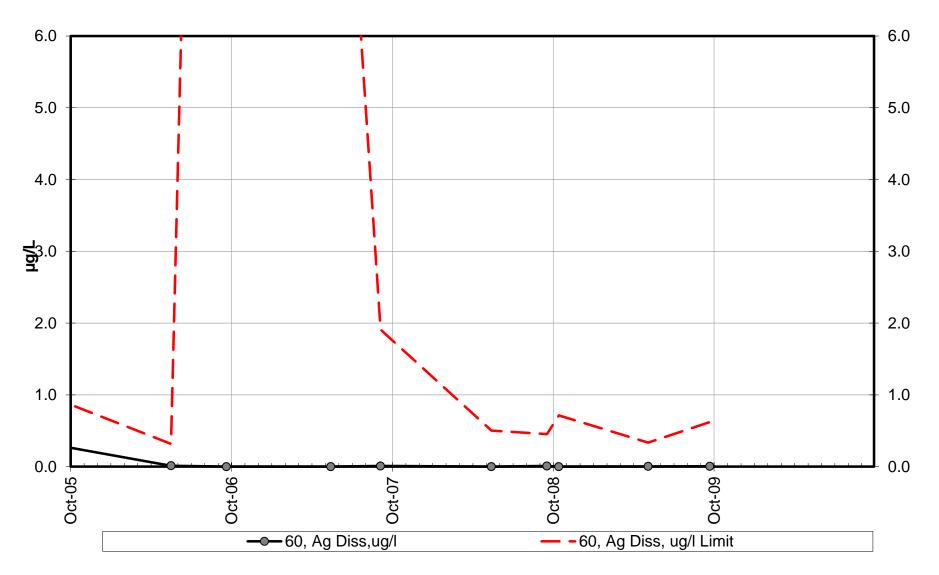
Site 60 - Dissolved Chromium



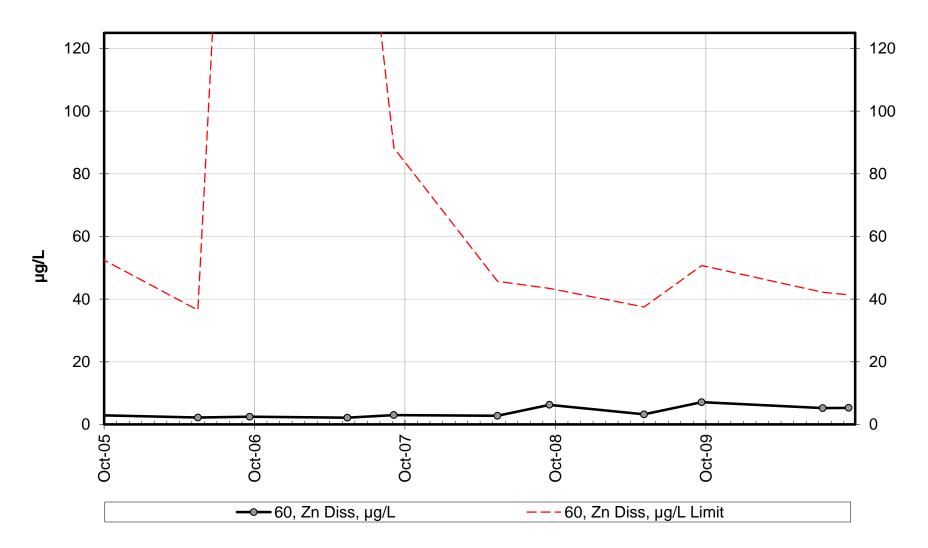
Note: the AWQS for Dissolved Chromium is 11 µg/L and thus may not be shown on this graph in order to allow greater visual detail of measured values for trend determination


Site 60 - Dissolved Copper

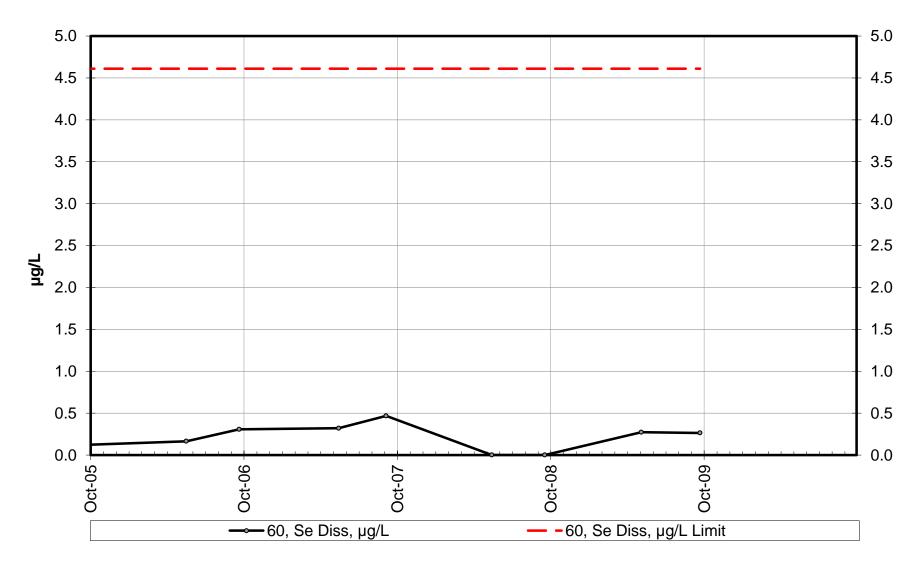
Site 60 - Dissolved Lead

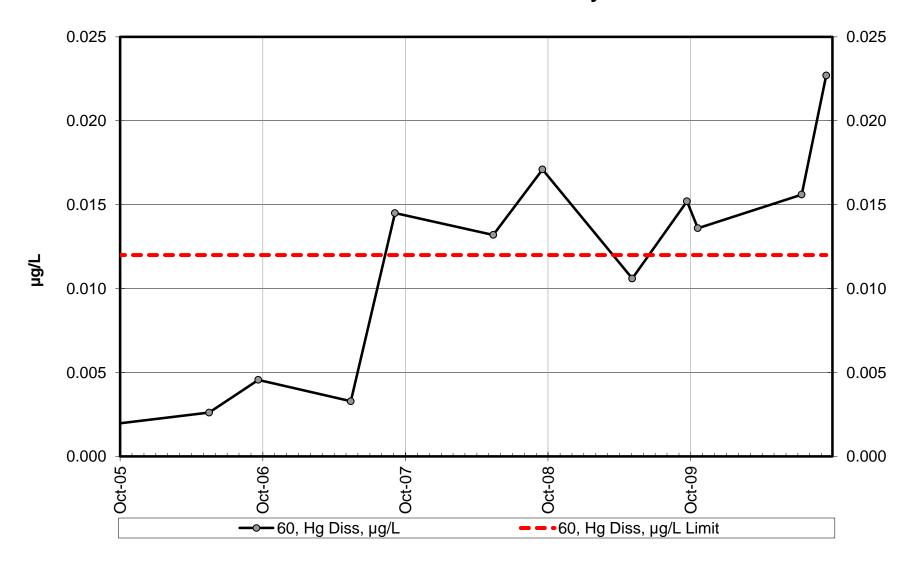


Site 60 - Dissolved Nickel

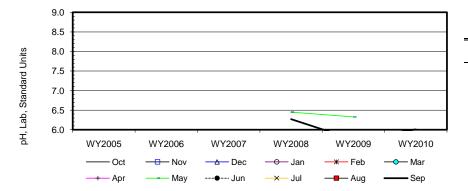


Note: The AWQS for dissolved nickel is hardness dependant and varies between 16 ug/L and 128 ug/L for waters with hardness values of 25 mg/L and 400 mg/L respectively. The AWQS, which would plot above the upper value on the Y-axis, are not shown on this graph to allow for greater visual detail of the plotted values.


Site 60 - Dissolved Silver


Site 60 - Dissolved Zinc

Site 60 - Dissolved Selenium



Site 60 - Dissolved Mercury

Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
a b c	WY2005 WY2006 WY2007							·				U	· ·
d	WY2008								6.5				6.3
е	WY2009								6.3				5.8
f	WY2010										5.5		6.0
	n	0	0	0	0	0	0	0	2	0	1	0	:
	t,	5	5	5	5	5	5	5	5	5	5	5	
	t ₂	0	0	0	0	0	0	0	0	0	0	0	(
	t₃	0	0	0	0	0	0	0	0	0	0	0	(
	t₄ t₅	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	(
	-5	Ū	Ŭ	Ū	Ū	Ŭ	Ū	Ŭ	Ŭ	Ū	Ŭ	Ū	
	b-a												
	c-a												
	d-a												
	e-a f-a												
	c-b												
	d-b												
	e-b												
	f-b												
	d-c												
	e-c f-c												
	e-d								-1				
	f-d												-*
	f-e												1
	S _k	0	0	0	0	0	0	0	-1	0	0	0	-^
σ	² _s =								1.00				3.67
	S _k /σ _s								-1.00				-0.52
	Z^{2}_{k}								1.00				0.27
	$\Sigma Z_k =$	-1.52	[-	Fie Extent	t,	t ₂	t ₃	t4	t _s			Σn	6
	$\Sigma Z_{k}^{2} =$	-1.32 1.27											
	∠∠ _k = bar=∑Z _k /K=.	-0.76		Count	60	0	0	0	0			ΣS_k	-2

$\chi^2_h = \Sigma Z^2_k$	$\chi^2_h = \Sigma Z^2_k - K(Z-bar)^2 = 0.11$		$\chi^2_h = \Sigma Z^2_k - K(Z-bar)^2 =$		@α=5% χ ² _(K-1) =	3.84	Test for station home	ogeneity
	р	0.735			χ ² h<χ ² (K-1)	ACCEPT		
$\Sigma VAR(S_k)$	Z_{calc}	-0.46	@α/2=2.5% Z=	1.96	H ₀ (No trend)	ACCEPT		
4.67	р	0.322			H _A (± trend)	REJECT		

Seasona	al-Kendall Slop	e Confidence	Intervals
	Lower	Sen's	Upper
α	Limit	Slope	Limit
0.010	#NUM!		#NUM!
0.050	#NUM!	-0.13	0.18
0.100	#NUM!	-0.13	0.03
0.200	-0.48		-0.12

Site	#60				Season	al Kenda	all analys	is for To	otal Alk,	(mg/l)			
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
a b c d e f	WY2005 WY2006 WY2007 WY2008 WY2009 WY2010								203.0 61.4 15.6 12.8		11.3		69.4 36.3 12.6 7.2 10.7
	n	0	0	0	0	0	0	0	4	0	1	0	Ę
	t ₁	5	5	5	5	5	5	5	5	5	5	5	Ę
	t₂ t₃	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	(
	t₄ t₅	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	(
		0	Ŭ	0	0	Ű	0	Ũ	Ŭ	0	0	0	
	b-a c-a d-a e-a f-a c-b								-1				-
	d-b e-b								-1 -1				
	f-b												-1
	d-c e-c								-1 -1				-1 -1
	f-c e-d								-1				-1 -1
	f-d f-e												-1 1
	S _k	0	0	0	0	0	0	0	-6	0	0	0	-8
	² _S =								8.67				16.67
	S _k /σ _S Z ² _k								-2.04 4.15				-1.96 3.84
												5	
	$\Sigma Z_k = \Sigma Z_k^2 =$	-4.00 7.99		Tie Extent Count	t₁ 60	t ₂ 0	t ₃ 0	t₄ O	t₅ 0			Σ n Σ S _k	10 -14
Z	2-bar=ΣZ _k /K=	-2.00	L										
	$\chi^2_h = \Sigma Z^2_k - k$	K(Z-bar) ² =	0.00		@α=59	% χ ² _(K-1) =	3.84	٦	Fest for sta	tion homoge	eneity		
		р	0.956	. L					$\chi^2_h < \chi^2_{(K-1)}$		ACCEPT		
	ΣVAR(S _k) 25.33	Z _{calc}	-2.58 0.005	L	@α/2=	2.5% Z=	1.96		H₀ (No H_A (±1		REJECT		
000	20.00	P	0.000						Π _Α (±	(incina) /			
260	-												
210 -	-		P										
<u> </u>	-		\backslash						-	Seasonal	-Kendall Slope	Confidence li Sen's	ntervals Upper
ີ ອີ160 ມີ			$\overline{}$							α	Limit	Slope	Limit
) ¥110	-			<u></u>						0.010 0.050	-89.29 -48.25	-22.22	-3.18 -8.10
tal A	-			\mathbf{n}						0.100 0.200	-35.96 -28.95		-13.20 -14.66
Total Alk , (mg/l) 09 00 09 00	-	•										-156.5%	
	-												
10 -	WY2005	WY2	2006	WY2007	WY2	2008	WY2009	WY2	2010				
	—— Oc —— Ap		- Nov - May	—▲— Dec ● Jun		-Jan	—*— Feb —■— Aug		– Mar – Sep				

w label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
a b c d e f	WY2005 WY2006 WY2007 WY2008 WY2009 WY2010								217.0 149.0 6.7 6.2		0.0		285.0 12.6 -7.5 20.3 0.0
	n	0	0	0	0	0	0	0	4	0	1	0	5
	t,	5	5	5	5	5	5	5	5	5	5	5	5
	t ₂ t ₃	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
	t₄ t₅	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
	b-a c-a d-a f-a f-a c-b d-b e-b								-1 -1 -1				-1 -1 -1
	f-b d-c e-c f-c e-d f-d								-1 -1 -1				-1 -1 1 -1 1
	f-e S _k	0	0	0	0	0	0	0	-6	0	0	0	-1 -4
Z _k =	σ_{s}^{2} = S_{k}/σ_{s} Z_{k}^{2}								8.67 -2.04 4.15				16.67 -0.98 0.96
2	$\Sigma Z_{k} = \Sigma Z_{k}^{2} = Z-bar = \Sigma Z_{k}/K =$	-3.02 5.11 -1.51		Tie Extent Count	t ₁ 60	t ₂ 0	t ₃ 0	t ₄ 0	t _s 0			Σ n Σ S _k	10 -10
	$\chi^2_h = \Sigma Z^2_k - K$	<(Z-bar) ² =	0.56 0.454		@α=5	% χ ² _(K-1) =	3.84		Test for stati χ ² h<χ ² (K-1)		eneity ACCEPT		
	ΣVAR(S _k) 25.33	Z _{calc}	-1.79 0.037	l	@	α=5% Z=	1.64		H ₀ (No t H _A (± tr	rend)	REJECT ACCEPT		
30	0	F	<u> </u>							0			
25 20	t i		~						=	Season	al-Kendall Slop	e Confidence In Sen's	tervals Upper
20 15	E .									<u>α</u> 0.010	Lower Limit -145.67	Slope	Limit 3.13
25 20 15 10 5	0									0.010 0.050 0.100 0.200	-110.31 -92.04 -73.38	-69.13	-3.69 -16.52 -20.28
	0								×——			-715.3%	
	0 WY20	05 V	VY2006	WY200	7 WY	2008	WY2009	WY	2010				

, et	ater		ater			ļ	Aquatic Life	Fresh Water					th Criteria for cinogens
mete	No	10NSte	ar Nº			Acute				Chronic		Water +	Aquatic
Parameter	Drinking Nater	Stocknater	highion water	criteria	as	multilply by conversion factor	to convert to	criteria	as	multiply by conversion factor	to convert to	Aquatic Organisms	Organisms Only
alkalinity								20,000 minimum					
As	10	50	100	340	TR	1	D	150	TR	1	D		
Ва	2,000												
Cd	5	10	10	e^1.0166(In hardness)-3.924	TR	1.136672-[(In hardness)(0.041838)]	D	e^0.7409(In hardness)-4.719	TR	1.101672-[(In hardness)(0.041838)]	D		
Cr	100												
Cr(total)			100										
Cr(III)				e^0.819(In hardness)+3.7256	TR	0.316	D	e^0.819(In hardness)+0.6848	TR	0.860	D		
Cr(VI)		50		16	D			11	D				
Cu			200	e^0.9422(In hardness)-1.700	TR	0.960	D	e^0.8545(In hardness)-1.702	TR	0.960	D	1,300	
Pb		50	5,000	e^1.273(In hardness)-1.460	TR	1.46203-[(In hardness)(0.145712)]	D	e^1.273(In hardness)-4.705	TR	1.46203-[(In hardness)(0.145712)]	D		
Hg	2			1.4	D			0.012	TR			0.05	0.051
Ni	100		200	e^0.846(In hardness)+2.255	TR	0.998	D	e^0.846(In hardness)+0.0584	TR	0.997	D	610	4,600
Se	50	10	20	1/[([selenite]/185.9)+ ([selenate]/12.83]	TR	0.922	D	5	TR	0.922	D	170	11,000
Ag				e^1.72(In hardness)-6.52	TR	0.850	D						
Zn			2,000	e^0.8473(In hardness)+0.884	TR	0.978	D	e^0.8473(In hardness)+0.884	TR	0.986	D	9,100	69,000

all units in micrograms per liter (ug/L)

TR total recoverable

D dissolved

DENOTES STRICTEST CRITERIA

H some of the criteria for this parameter are hardness dependant

FWA Fresh Water Acute

FWC Fresh Water Chronic

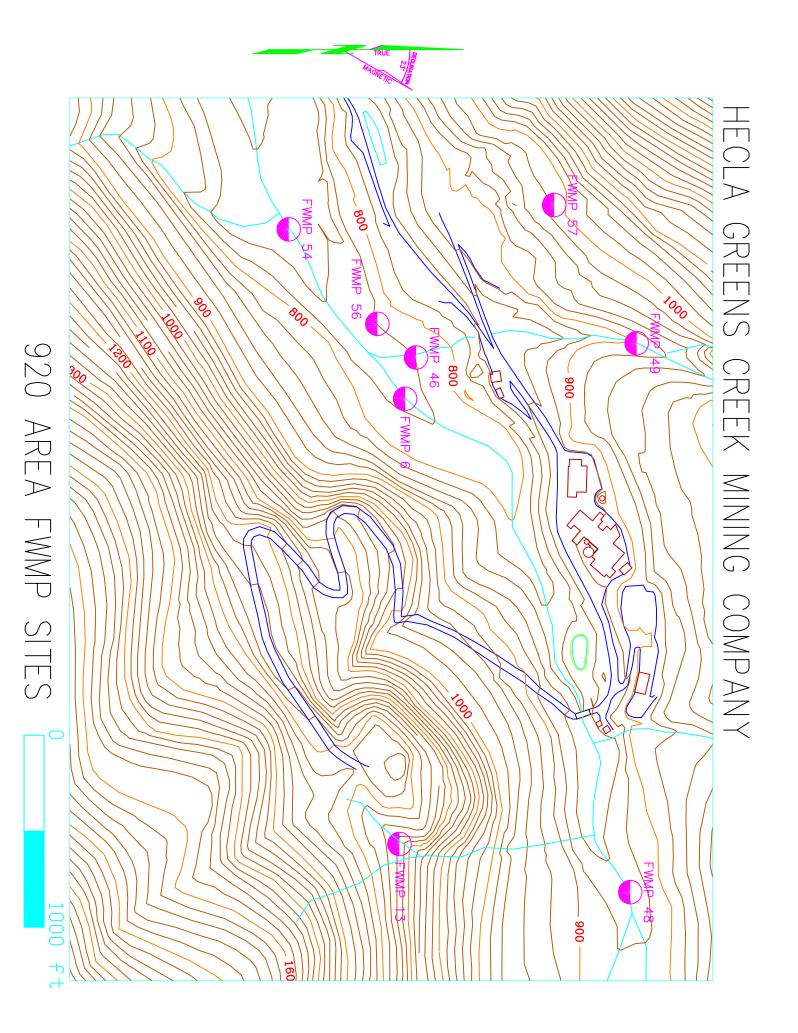
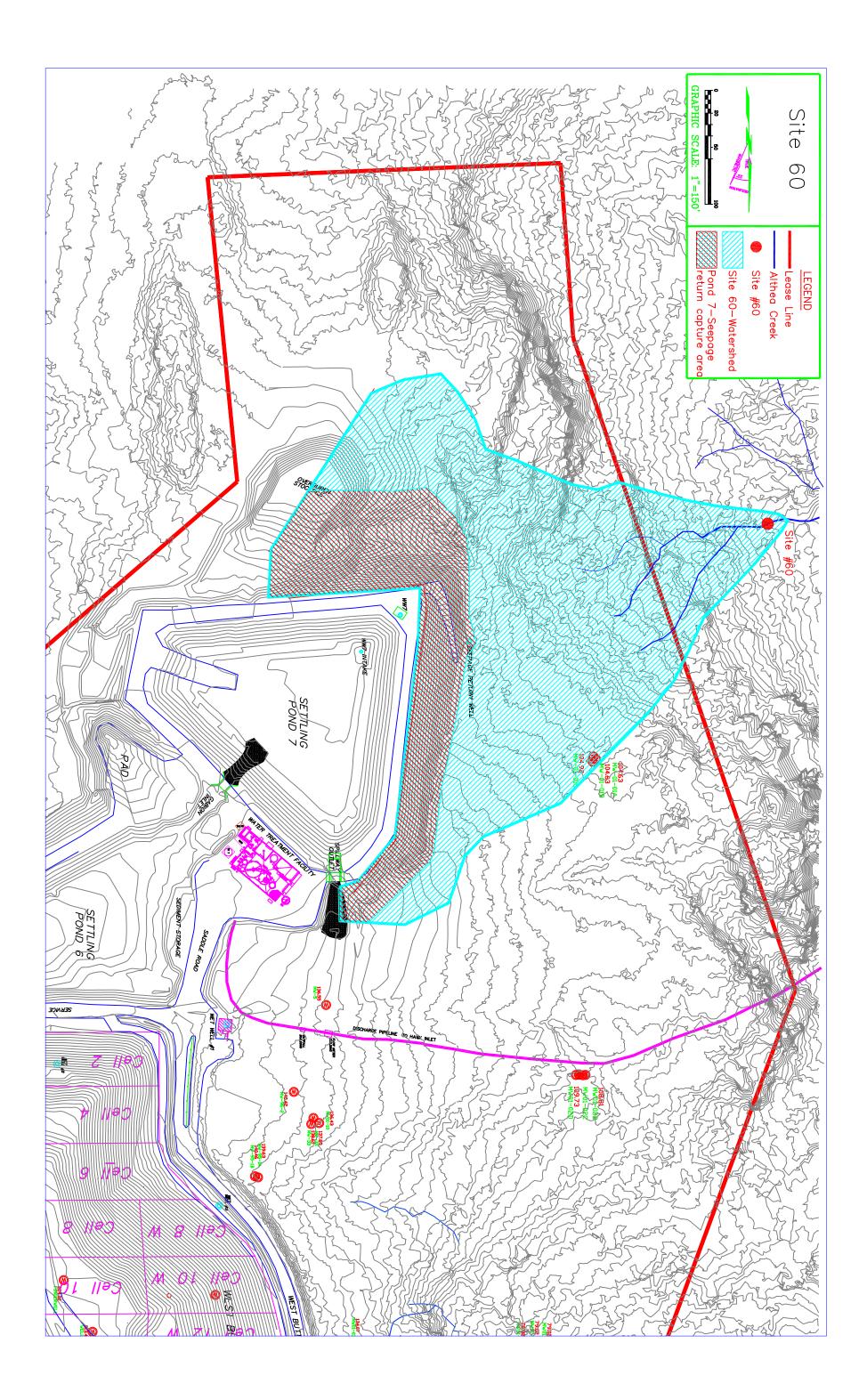

Source: http://www.dec.state.ak.us/water/wqsar/wqs/toxicsbook.xls

Table formatting was modified by HGCMC to include only parameters include in Suite P and Q and to highlight the strictest standard.

- APPENDIX B


Map Sheets

C1-920 Area FWMP Sites C2-Tailings Area FWMP Sites C3-Site 60, Lower Althea Creek

ETTLING TAILS AREA FWMP SITES C. Sor 13 S2 1007774 25 EAST TAILINGS AN

HECLA GREENS CREEK MINING COMPANY

