Case Study: Kemess South Mine Reclamation and Closure
(Development of a Risk-Based Remediation Plan)

NORTHERN LATITUDES MINE RECLAMATION WORKSHOP

Presented by:
Liza Flemming, P.Geo /P.Geol (BC, AB, NWT/NT)
Project Manager

Northgate Minerals Corporation
Agenda

1. Project Overview and Site Description
2. Site Screening and Investigation Process
3. Risk Assessment and Remedial Action Plan
4. Outcomes and Project Summary
Case Study – Essential Components

- **Project Scale**
 - Both the site itself and our overall scope

- **Integrated Framework**
 - Complex regulatory requirements and multi-phase approach

- **Risk-Based Remedial Plan**
 - Focused, site-specific

- **Successful Site Closure Strategy**
Site Location – near Mackenzie, BC
Site Setting – Core and Non-Core

- Project Scale
- Successful Contaminated Sites Strategy
- Integrated Framework
- Risk-Based Remedial Planning
- Risk-Based Remedial Planning
- Risk-Based Remedial Planning
- Risk-Based Remedial Planning
More than 14 km from one end of the site to the other – non-core areas numerous and distributed
The Mine Site – Regulatory Drivers

- BC Requirements – Mine Sites
 - Past - Ministry of Energy, Mines, and Petroleum Resources (MEMPR)
 - Now – MEMPR Environmental Management Act – Ministry of Environment (MOE) and MEMPR
 - Complete closure plan – core **AND** non-core areas
Remedial Plan – Risk-Based Approach

- Site Screening
- Site-Specific Risk Assessment
- Conceptual Site Model
- Site Investigation

Risk Based Remedial Planning

- Contaminated Sites Strategy
- Integrated Framework
- Project Scale

Risk-Based Remedial Planning

- Integrated Framework
- Project Scale
- Contaminated Sites Strategy

Risk-Based Remedial Planning

- Integrated Framework
- Project Scale
- Contaminated Sites Strategy

Risk-Based Remedial Planning

- Integrated Framework
- Project Scale
- Contaminated Sites Strategy
Site Screening

- Identify areas of environmental concern and associated contaminants of concern – screen all possible sources
Jet Fuel Storage

Site Screening
Risk Based Remedial Planning
Conceptual Site Model
Site-Specific Risk Assessment
Site Investigation
Warehouse Laydown and Storage Area
15 areas of potential environmental concern across the non-core lands
Conceptual Site Model

- Identify potential receptors and exposure pathways—focus the investigation program
Aquatic Receiving Environment

Kemess Creek adjacent to pumphouse
Integrate potential contaminant sources, pathways, and receptors

- Sources from Site Screening
- Release Mechanisms
- Transport Pathways
- Exposure Routes
- Receptors
Summary of Results
Site Investigation Objectives

- Characterize potential sources and migration potential – key elements of Risk Assessment
- Three major sources and pathways:
 1. Surface soil – soil ingestion and eco
 2. Sub-soil – soil ingestion, eco, and shallow groundwater
 3. Deep groundwater – eco, aquatic, and drinking water users
Phase 1 - Surface Soil

Site Screening
Risk Based Remedial Planning
Conceptual Site Model
Site Investigation
Site-Specific Risk Assessment
Site Screening
Phase 2 – Test Pits (Sub-Soil)

Note the staining in shallow soil.
Phase 3 - Groundwater

- Wells at worst-case locations – directly down-gradient of sources and/or adjacent to receptors
- Characterize flow, aquifer and identify contaminant migration potential
Phase 3 - Groundwater
Summary of Investigation Results

- 15 areas of **potential** environmental concern reduced to 10 **actual** areas of environmental concern
- Completed in short time (2 months)
- Limited resources required
- Met the objectives – data from targeted sources
Risk Assessment Strategy

- Identification of risk – incorporate Conceptual Site Model and investigation results
- Evaluate potential for adverse effects to human and ecological receptors – ten areas of concern
- Focus on future exposure during post-decommissioning activities
Human Receptors

- Future human users of the site – main driver for Risk Assessment and Remedial Plan
 - Environmental sources - more sensitive receptors
Ecological Receptors

- Site Screening
- Risk Based Remedial Planning
- Conceptual Site Model
- Site Investigation
- Site-Specific Risk Assessment
Summary of Potential Risk

- Ten areas of environmental concern reduced to four with unacceptable risk
 - Unacceptable risk to ecological receptors in soil for metals; shallow impacts
 - Acceptable risk to human health
- Mine site contamination was not considered extensive
Risk-Based Approach – Remedial Plan

- Site Screening
- Conceptual Site Model
- Site Investigation
- Site-Specific Risk Assessment
- Risk Based Remedial Planning
- Contaminated Sites Strategy
- Integrated Framework
- Project Scale
- Risk-Based Remedial Planning
Final step of the integrated strategy to address the non-core areas

Targeted remedial strategies for each of the four areas of environmental concern with potential risk

Based on **future** land use at the site
Remediation Strategy

- Soil contamination – shallow excavations
 - onsite disposal
- Further investigation
 - Stained soil, surface impacts, inaccessible buildings
Remediation Strategy

- Recommendations only at those areas with unacceptable risk to receptors
- Remediation methods tailored to site conditions and available resources
- Designed to meet MOE requirements for Non-Core areas
Successes of Our Approach

- Short time frame
 - Site Screening to RAP in 8 months
- Reduced cost to complete entire program
 - Four major tasks – significantly less than full-scale remediation
- Site-specific remedial options
- Risk-based RAP successfully integrated into Mine Closure Plan for core and non-core areas
 - Innovative alternative to “traditional” reclamation
Questions? Thank You!

Liza Flemming P.Geo /P.Geol (BC, AB, NWT/NT)
Project Manager/Geologist
Hemmera
P: 604.669.0424 (120)
E: lflemming@hemmera.com

www.hemmera.com
Vancouver | Burnaby | Victoria | Calgary