Strategic & Critical Minerals – A Global Perspective Energy Critical Elements – Securing Materials for Emerging Technologies

Jon Price Nevada Bureau of Mines and Geology

* with help from Murray Hitzman, Colorado School of Mines

Strategic & Critical Minerals – A Global Perspective Energy Critical Elements – Securing Materials for Emerging Technologies

> Jon Price Nevada Bureau of Mines and Geology

- 1. Critical and strategic minerals will change with time.
- 2. Demand is high.
- **3.** China will be a major force in the world of strategic and critical minerals.
- 4. The U.S.A. has the right geology to be a major force as well for many, but not all, minerals.

Arrowhead clipart from www.firstpeople.us

Critical and strategic minerals will change with time.

Avatar

Arrowhead clipart from www.firstpeople.us

Critical and strategic minerals will change with time.

Culn_xGa_(1-x)Se₂ or CIGS, for solar panels? CdTe, GaAs, and Ge for solar panels? Nd, Dy for magnets for wind and other electrical turbines? Li and V for different types of batteries?

Energy Critical Elements:								
			5 B Boron 10.811	6 C Carbon 12.0107	7 N Nitrogen 14.00674	8 Oxygen 15.9994	9 F Fluorine 18.9984032	10 Ne Neon 20.1797
			13 Aluminum 26.981538	14 Si Slicon 28.0855	15 P Phosphorus 30.973761	16 S Sulfur 32.066		
28 Ni Nickel 58.6934	29 Cu Copper 63.546	30 Zn Zine 65.39	31 Ga Gallium 69.723	32 Ge Germanium 72.61	33 As Arsenic 74.92160	34 Se Selenium 78.96		
46 Pd Pallodium 106.42	47 Ag Siver 107,8682	48 Cd Codmium 112.411	49 In Indium	50 Sn 118,710	51 Sb Antimony 121,760	52 Te Tellurium		
78 Pt Platinum 195.078	79 Au Gold 196.96655	80 Hg Mercury 200.59	81 TI Thallium 204.3833	82 Pb Lead 207.2	83 Bi Bismuth 208.98038	84 Po Polonium (209)	85 At Astatine (210)	86 Rn Radon (222)
65 Tb Terbium 158.92534	66 Dy Dysprosium 162.50	67 Ho Holmium 164.93032	68 Er Erbium 167.26	69 Tm Thulium 168.93421	70 Yb Ytterbium 173.04	71 Lu Lutetium 174.967		

Securing Materials for Emerging Technologies

ON PUBLIC AFFAIRS & THE MATERIALS RESEARCH SOCIETY

A 2011 policyoriented study by the **American Physical** Society and the **Materials Research Society** – concerning the availability of minerals needed for new energy technologies.

Robert Jaffe, MIT, Chair Jon Price, NBMG, Co-Chair

The underlying issue: Increasing worldwide demand for energy, mineral resources, food, etc.

EIA, 2010

Both world population and average standard of living keep rising.

Global copper production in 2010 (16.2 million metric tons) nearly equaled over 100 years of production from the Bingham Canyon mine (17.0 million metric tons).

Definition:

Energy-critical elements (ECEs) are a class of chemical elements that currently appear critical to one or more new energy-related technologies. A shortage of these elements would significantly inhibit large-scale deployment, which could otherwise be capable of transforming the way we produce, transmit, store, or conserve energy. We reserve the term ECE for chemical elements that have not been widely extracted, traded, or utilized in the past, and are therefore not the focus of wellestablished and relatively stable markets.

Some ECEs today

1 H Hydregen 1.01			Platin Group	um 5 Elemo	ents		Ot	her EC	Es								2 He Hetum 4.00
3 Li Liftican 6.94	4 Be Reryliam 9.01		Rare Earth Elements				Photovoltaic ECEs				5 B Batan 10,81	6 C Carbon 12.01	7 N Nicagen 14.01	8 0 0aygen 18.00	9 F Fluorine 19.00	10 Ne Nean 20.18	
11 Na 5oclum 22.99	12 Mg Magnesium 24.31									13 Al Alum rum 25.95	14 SI 81cm 28.03	15 P Ptospton.s 30.97	16 S Suthir 32.07	17 Cl Chlorine 35,45	18 Ar Argan 39.95		
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
Potessium 39.10	Celdum 40.03	Secretaria 44.98	Therium 47.87	Vaneelum 50.94	Chrismium 52.00	Vergenase 54.64	Iron 55.65	Cobat 58.93	Nickel 58.69	Gapper 63.55	Zinc 65.39	Gallur 69.72	Sermarium 72.61	Atsenic 74.92	Selanum 78.98	Rromine 79.90	Krymon 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
Rubicium 85.47	Strantum 87.62	Yttrium 88.91	Ziborium 91,22	Nikobium \$2,91	Valvtadenum 95.94	Fechnetium (95)	Buthonium 101.07	Rhodium 102.91	Poliadum 105.42	8865° 107.87	Codmium 112.41	114.52	Tr 118.71	Arithmony 121.76	Telutum 127,60	lodine 126.90	Xanon 131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Cesium 132.91	Barlum 137.33	Larithanum 138.91	Halnium 178,49	Tanfalum 180.95	Tungsten 183.84	Rhenium 186.21	Osmium 190.23	192.22	Platinum 195.08	Geld 195.97	Mercury 200.59	Thallum 204.38	Leas 207.2	Bismuth 205-38	Pelonium (209)	Astatine (210)	Hadon (222)
87	88	89	104	105	105	107	108	109		199101					2-0-1	4	1.00
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
Prancium (228)	Rad um (226)	Actinium (227)	Publicition (261)	12621	Scaporgium (256)	Sohrium (264)	Hassium (269)	Meilnerfum (268)									
Jer (A	16607 (667) (667) (671) (671) (671) (674) (674)																
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
				Cerum 140.12	Prescodyni, n 140,91	Necdymiam 144.24	Promethium (145)	Samarium 150.36	Europium 151.96	Gedainium 157.25	Terbium 156.93	Dysprcaum 182.50	Homium 184.93	Ettian 167.26	Thulum 156.93	Yilarbium 173.04	Lutetium 174.97
							11.102								100.00		11 1.01

90

Th

Thorium

232.04

91

Pa

Peterinium

231.04

92

U

Uranium

238.03

93

Np

Neptunium

(237)

94

Pu

Plutonium

(244)

95

Am

Americium

(243)

96

Cm

Curium

(247)

97

Bk

Berkelium

(247)

98

Cf

Cailonium

(261)

99

Es

Einsteinium

(252)

100

Fm

Fermium

(257)

101

Md

Vendelevium.

(258)

102

No

Nobelium

(259)

103

Lr

awrendium

(262)

New Energy Technologies

- Renewable
- CO₂ neutral

Tellurium Gallium Indium Germanium

Neodymium Dysprosium Praseodymium Samarium

Terbium Europium

Lithium Lanthanum

Constraints on availability of ECEs

- A. Crustal abundance, concentration, and distribution
- **B.** Geopolitical risk
- C. Risks of joint production
- **D.** Environmental and social concerns
- E. Response times in production and utilization

Source of data: USGS, EIA, CRC Handbook of Chemistry and Physics, others

Constraints on availability of ECEs

- A. Crustal abundance, concentration, and distribution
- **B.** Geopolitical risk
- C. Risks of joint production
- **D.** Environmental and social concerns
- E. Response times in production and utilization

Source of data: USGS, EIA, CRC Handbook of Chemistry and Physics, others

Data sources: USGS, EIA, CIA

20

World's leading rare earth producer (China, 97%)

Countries with 4% or more of global production - none

Other countries with production or major reserves

Rare earth elements – significant current supply risk

Platinum – possible supply risk

Data source: USGS

Constraints on availability of ECEs

- A. Crustal abundance, concentration, and distribution
- **B.** Geopolitical risk
- **C. Risks of joint production**
- **D.** Environmental and social concerns
- E. Response times in production and utilization

Source of data: USGS, EIA, CRC Handbook of Chemistry and Physics, others

	Main product Cu	Byproduct Se	Byproduct Te
Global production (metric tons)	16,200,000	2,260	~500
Price (\$/kg)	\$7.54/kg	\$77.16/kg	\$210/kg
Value of global production (\$)	\$122 x 10 ⁹	\$174 x 10 ⁶	\$105 x 10 ⁶
Ratio of values of global production		Cu:Se = 700:1	Cu:Te = 1200:1

Securing more mineral resources that are recovered as byproducts will require either exploration for new types of resources or research on metallurgical extraction.

Constraints on availability of ECEs

- A. Crustal abundance, concentration, and distribution
- **B.** Geopolitical risk
- C. Risks of joint production
- **D.** Environmental and social concerns
- E. Response times in production and utilization

Collapsed shaft in the street by the school in Virginia City, Nevada (circa 1995, from mining in the late 1800s) – The principal's car went into the "sinkhole."

Data source: USGS

Environmental and Social Concerns

- Decades of increasing vigilance in mining industry with respect to environmental and social issues
- Generally high environmental and social standards in the developed world.
- Rising worldwide social and environmental sustainability standards
 - ✓ International Council on Mining and Minerals (ICMM)
 - ✓ International Finance Corp (IFC)
 - ✓ World Bank
 - ✓ Major lending banks

The major companies are acting responsibly.

Galamsey (artisanal, subsistence miners) at Kyereboso, Ghana, 2008 - not a major company

Constraints on availability of ECEs

- A. Crustal abundance, concentration, and distribution
- **B.** Geopolitical risk
- C. Risks of joint production
- **D.** Environmental and social concerns
- **E.** Response times in production and utilization

Time to plan, research, develop, fund, permit, and deploy

Exploration to mining: New technology for producing, transmitting, storing, or conserving energy: **5 to 15+ years**

also 5 to 15+ years or even decades

Information

The United States government should gather, analyze, and disseminate information on energy-critical elements across the life-cycle supply chain including discovered and potential resources, production, use, trade, disposal, and recycling. The entity undertaking this task should be a "Principal Statistical Agency" with survey enforcement authority.

The federal government should regularly survey emerging energy technologies and the supply chain for elements throughout the periodic table, with the aim of identifying critical applications as well as potential shortfalls.

Research, development, and workforce issues

The federal government should establish a research and development effort focused on energy-critical elements and possible substitutes that can enhance vital aspects of the supply chain including: geological deposit modeling, mineral extraction and processing, material characterization and substitution, utilization, manufacturing, recycling, and lifecycle analysis.

The role of material efficiency

Steps should be taken to improve rates of post-consumer collection of industrial and consumer products containing ECEs, beginning with an examination of the numerous methods being explored and implemented in various states and countries.

Possible market interventions

With the exception of helium, the Committee does not propose government interventions in markets beyond those contained in the other recommendations concerning research and development, information gathering and analysis, and recycling. In particular, the Committee does not recommend nondefense-related economic stockpiles.

Helium is unique even among ECEs. We concur with and reiterate the APS Helium Statement of 1995: "Measures should be adopted that will both conserve and enhance the nation's helium reserves. Failure to do so would not only be wasteful, but would also be economically and technologically shortsighted." **Strategic & Critical Minerals – A Global Perspective**

Energy Critical Elements – Securing Materials for Emerging Technologies

Thank you!

- 1. Critical and strategic minerals will change with time.
- 2. Demand is high.
- **3.** China will be a major force in the world of strategic and critical minerals.
- 4. The U.S.A. has the right geology to be a major force as well for many, but not all, minerals.

Conclusions from the report

- We are not facing an imminent absolute shortage of energy critical elements (Hubbard's Peak scenario).
- However, market-driven shortages are possible (happening today).
- No country can become "ECE independent."
- Securing ECEs will require both

Aggressive research (geological, metallurgical, materials science) and

Free markets.

REEs — Chinese Export Quotas

Year	Quota
2005	65,609 t REO*
2006	61,821 t REO
2007	59,643 t REO
2008	56,643 t REO
2009	50,145 t REO
2010	30,258 t REO
(first half 2011)	14,508 t REO

* **REO** = rare earth oxides

- Quota: Domestic + foreign companies
- 2008: Adjusted to an equivalent 12 month quota as there was a change in the dates for which they applied

We exclude carbon (as coal, oil, natural gas) and uranium, since they have been the subject of many studies and mature regulation; moreover, increased demand does not create novel issues for these elements beyond those already explored in the economic, technical, and political arenas. We exclude elements like phosphorus and potassium, for which we can see only peripheral relevance to energy issues.

Many important elements are notably absent from this list. Copper, aluminum, iron, tin, and nickel are absolutely essential for energy applications. However, because they enjoy large, mature, and vigorous markets with many suppliers, a strong demand from the energy sector would most likely be met with a market-driven increase in supply.

Copper resources are broadly distributed.

Data source: USGS

Source of data: USGS, EIA, CRC Handbook of Chemistry and Physics, others

Source of data: USGS, EIA, CRC Handbook of Chemistry and Physics, others

This report surveys potential constraints on the availability of ECEs and then identifies five specific areas of potential action by the United States to insure their availability:

- 1) federal agency coordination;
- 2) information collection, analysis, and dissemination;
- 3) research, development, and workforce enhancement;
- 4) efficient use of materials; and,
- 5) market interventions.

Thank you!

Securing Materials for Emerging Technologies

A REPORT BY THE APS PANEL ON PUBLIC AFFAIRS & THE MATERIALS RESEARCH SOCIETY

